Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2016-2-C2-P2.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2016-2-C2-P2.tex" :end)) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2016-2-C2-P2.pdf")) % (defun e () (interactive) (find-LATEX "2016-2-C2-P2.tex")) % (defun u () (interactive) (find-latex-upload-links "2016-2-C2-P2")) % (find-xpdfpage "~/LATEX/2016-2-C2-P2.pdf") % (find-sh0 "cp -v ~/LATEX/2016-2-C2-P2.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2016-2-C2-P2.pdf /tmp/pen/") % file:///home/edrx/LATEX/2016-2-C2-P2.pdf % file:///tmp/2016-2-C2-P2.pdf % file:///tmp/pen/2016-2-C2-P2.pdf % http://angg.twu.net/LATEX/2016-2-C2-P2.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} %\directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end % ____ _ _ _ % / ___|__ _| |__ ___ ___ __ _| | |__ ___ % | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \ % | |__| (_| | |_) | __/ (_| (_| | | | | | (_) | % \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/ % {\setlength{\parindent}{0em} \footnotesize \par Cálculo 2 \par PURO-UFF - 2016.2 \par P2 - 21/dez/2016 - Eduardo Ochs % \par Versão: 14/mar/2016 \par Links importantes: \par \url{http://angg.twu.net/2016.2-C2.html} (página do curso) \par \url{http://angg.twu.net/2016.2-C2/2016.2-C2.pdf} (quadros) % \par \url{http://angg.twu.net/LATEX/2016-1-C2-material.pdf} \par {\tt eduardoochs@gmail.com} (meu e-mail) } \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} % Usage: % 1) \T(Total: 2.34 pts) Foo % a) \B(0.45 pts) Bar \bsk \bsk 1) \T(Total: 4.0 pts) % Sejam: a) \B(1.0 pts) Encontre as duas soluções da forma $e^{(a+ib)x}$ de $f''+6f'+13f=0$. b) \B(0.5 pts) Encontre as duas soluções da forma $e^{(a+ib)x}$ de $f''+3f'-10f=0$. c) \B(1.0 pts) Encontre $a$ e $b$ para os quais $e^{-x} \sen x$ é solução de de $f''+af'+bf=0$. d) \B(1.0 pts) Encontre as soluções básicas reais de $f''+6f'+13f=0$. e) \B(0.5 pts) Encontre uma solução de $f''+3f'-10f=0$ que obedece $f(0)=0$, $f'(0)=1$. \bsk \bsk 2) \T(Total: 2.0 pts) Considere esta EDO: $$\sen(2x)\,dx = \sen(5y)\,dy$$ a) \B(1.0 pts) Resolva-a por variáveis separáveis. b) \B(0.5 pts) Teste a sua solução geral. c) \B(0.5 pts) Encontre uma solução com $f(0)=0$. \bsk \bsk 3) \T(Total: 3.0 pts) Prove que a EDO abaixo é exata e resolva-a: % $$\left( \frac{ xy^2}{xy^2+3} + \ln(xy^2+3) - y \sen x \right) dx + \left( \frac{2x^2y}{xy^2+3} + \ln(xy^2+3) - \cos x \right) dy = 0 $$ Dica: quanto é $\ddx \ln(h(x))$? E $\ddx g(x)\ln(h(x))$? \bsk \bsk 4) \T(Total: 1.0 pts) Considere a EDO: $f'(x) = (y-2)/x$. a) \B(0.5 pts) Represente graficamente o campo vetorial associado a ela. b) \B(0.5 pts) Encontre uma solução pra ela que tenha $f(1)=1$ e represente graficamente esta solução sobre o campo vetorial do item anterior. \newpage % ____ _ _ _ % / ___| __ _| |__ __ _ _ __(_) |_ ___ % | | _ / _` | '_ \ / _` | '__| | __/ _ \ % | |_| | (_| | |_) | (_| | | | | || (_) | % \____|\__,_|_.__/ \__,_|_| |_|\__\___/ % Mini-gabarito (incompleto e ainda não revisado): \msk 1a) $0 = f'' + 6f' + 13f = (D^2 + 6D + 13)f = (D^2 + (2·3)D + (2^2+3^2)) f$ $= (D + (3+2i)) (D + (3-2i)) f$ $(D + (3+2i))f = 0 \;\; ⇒ \;\; f_1 = e^{-(3+2i)x} = e^{(-3-2i)x}$ $(D + (3-2i))f = 0 \;\; ⇒ \;\; f_2 = e^{-(3-2i)x} = e^{(-3+2i)x}$ \msk 1b) $0 = f'' + 3f' -10f = (D^2 + 3D - 10)f = (D+5) (D-2) f$ $f_1 = e^{-5x}$ $f_2 = e^{2x}$ \msk 1c) $f_1 = e^{-x} \cos x = e^{-x} (\frac{e^{ix} + e^{-ix}}{2}) = \frac{1}{2} e^{(-1+i)x} + \frac{1}{2} e^{(-1-i)x}$ $f_2 = e^{-x} \sen x = e^{-x} (\frac{e^{ix} - e^{-ix}}{2i}) = \frac{1}{2i} e^{(-1+i)x} - \frac{1}{2i} e^{(-1-i)x}$ $f_3 = e^{(-1+i)x}$ $f_4 = e^{(-1-i)x}$ EDO: $0 = (D-(-1+i)) (D-(-1-i) f = (D^2 + 2D + (-1+i)(-1-i)) f$ $= (D^2 + 2D + 2)f$ $a=2$, $b=2$ \msk 1d) $f_1 = e^{-3x} e^{-2ix}$, $f_2 = e^{-3x} e^{2ix}$ $f_3 = e^{-3x} (\frac{e^{2ix} + e^{-2ix}}{2}) = e^{-3x} \cos 2x$ $f_4 = e^{-3x} (\frac{e^{2ix} - e^{-2ix}}{2i}) = e^{-3x} \sen 2x$ \msk 1e) $f_1 = e^{-5x}$, $f_2 = e^{2x}$ $f_3(x) = a e^{-5x} + b e^{2x}$ $f'_3(x) = -5a e^{-5x} + 2b e^{2x}$ $f_3(0) = a+b \;\;(=0)$ $f'_3(0) = -5a+2b \;\;(=1)$ $a+b = 0 \;\;⇒\;\; b=-a$ $-5a+2b = 1 \;\;⇒\;\; -5a-2a=1 \;\;⇒\;\; a=-\frac17 \;\;⇒\;\; b=\frac17$ $f_3(x) = -\frac17 e^{-5x} + \frac17 e^{2x}$ \bsk \def\und#1#2{\underbrace{#1}_{#2}} 2) $\und{\sen(2x)}{f(x)} dx = \und{\sen(5y)}{g(y)} dy$ $∫f(x)dx = ∫g(y)dy \;\;⇒\;\; -\frac12 \cos(2x) = -\frac15 \cos(5x) + C_1$ $\cos(5y) = \frac52 \cos(2x)+C_2$ $5y = \arccos(\frac52 \cos(2x)+C_2)$ $y = \frac15 \arccos(\und{\frac52 \cos(2x)+C_2}{h(x)})$ $\frac{dy}{dx} = \frac15 \arccos'(h(x)) h'(x) = \frac15$ \newpage 3) Sejam: $z_x = \frac{ xy^2}{xy^2+3} + \ln(xy^2+3) - y \sen x$, $z_y = \frac{2x^2y}{xy^2+3} + \ln(xy^2+3) - \cos x$. A EDO é $z_x dx + z_y dy = 0$, e temos $(z_x)_y \neq (z_y)_x$... era pra ela ser exata, mas cometi algum erro de digitação... \bsk 4a) $f'(x) = a$ em $y=2+ax$. 4b) Em $(x,y)=(1,1)$ temos $f'(x)=-1$. A solução é $y=2-x$. % In [6]: zx = (x*y**2) / (x*y**2+3) + ln(x*y**2+3) - y*sin(x) % % In [7]: zx % Out[7]: % 2 % x*y / 2 \ % -------- - y*sin(x) + log\x*y + 3/ % 2 % x*y + 3 % % In [8]: zy = (2*x**2*y) / (x*y**2+3) + ln(x*y**2+3) + cos(x) % % In [9]: zy % Out[9]: % 2 % 2*x *y / 2 \ % -------- + log\x*y + 3/ + cos(x) % 2 % x*y + 3 % % In [10]: zx.diff(y) % Out[10]: % 2 3 % 2*x *y 4*x*y % - ----------- + -------- - sin(x) % 2 2 % / 2 \ x*y + 3 % \x*y + 3/ % % In [11]: zy.diff(x) % Out[11]: % 2 3 2 % 2*x *y 4*x*y y % - ----------- + -------- + -------- - sin(x) % 2 2 2 % / 2 \ x*y + 3 x*y + 3 % \x*y + 3/ % % In [12]: zx.diff(y) - zy.diff(x) % Out[12]: % 2 % -y % -------- % 2 % x*y + 3 \end{document} % Local Variables: % coding: utf-8-unix % ee-anchor-format: "«%s»" % End: