Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2016-1-GA-material.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2016-1-GA-material.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2016-1-GA-material.pdf")) % (defun e () (interactive) (find-LATEX "2016-1-GA-material.tex")) % (defun l () (interactive) (find-LATEX "2016-1-GA-material.lua")) % (defun u () (interactive) (find-latex-upload-links "2016-1-GA-material")) % (defun z () (interactive) (find-zsh "flsfiles-tgz 2016-1-GA-material.fls 2016-1-GA-material.tgz") % (defun z () (interactive) (find-zsh "flsfiles-zip 2016-1-GA-material.fls 2016-1-GA-material.zip") % (find-xpdfpage "~/LATEX/2016-1-GA-material.pdf") % (find-sh0 "cp -v ~/LATEX/2016-1-GA-material.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2016-1-GA-material.pdf /tmp/pen/") % file:///home/edrx/LATEX/2016-1-GA-material.pdf % file:///tmp/2016-1-GA-material.pdf % file:///tmp/pen/2016-1-GA-material.pdf % http://angg.twu.net/LATEX/2016-1-GA-material.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{tikz} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") \pu % \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") % (find-dn6 "picture.lua" "V") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end %L V.__div = function (v, k) return v*(1/k) end %L V.__index.tow = function (A, B, t) return A+(B-A)*t end -- towards %L V.__index.mid = function (A, B) return A+(B-A)*0.5 end -- midpoint %L V.__index.norm = function (v) return math.sqrt(v[1]*v[1] + v[2]*v[2]) end %L V.__index.rotleft = function (vv) return v(-vv[2], vv[1]) end %L \def\e{\expr} % ____ _ _ _ % / ___|__ _| |__ ___ ___ __ _| | |__ ___ % | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \ % | |__| (_| | |_) | __/ (_| (_| | | | | | (_) | % \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/ % {\setlength{\parindent}{0em} \footnotesize \par Geometria Analítica \par PURO-UFF - 2016.1 \par Material para exercícios - Eduardo Ochs % \par Versão: veja o pé de página % 21/dez/2015 \par Links importantes: \par \url{http://angg.twu.net/2016.1-GA.html} (página do curso) \par \url{http://angg.twu.net/LATEX/2016-1-GA-material.pdf} (lista, atualizada) \par \url{http://angg.twu.net/2016.1-GA/2016.1-GA.pdf} (quadros) \par \url{http://angg.twu.net/2015.1-GA/GA_Reis_Silva.pdf} (livro) \par \url{http://angg.twu.net/2015.1-GA/mariana_imbelloni_retas.pdf} \par {\tt eduardoochs@gmail.com} (meu e-mail) } \bsk \bsk % _ __ % __| | ___ / _|___ % / _` |/ _ \ |_/ __| % | (_| | __/ _\__ \ % \__,_|\___|_| |___/ % % Dots, labels, vectors % \def\uu{\vec u} \def\vv{\vec v} \def\ww{\vec w} \def\VEC#1{{\overrightarrow{(#1)}}} \def\nm#1{\|#1\|} \def\Reg#1{(#1)} \def\setofxyst#1{\setofst{(x,y)∈\R^2}{#1}} \def\setofet #1{\setofst{#1}{t∈\R}} \def\setofeu #1{\setofst{#1}{u∈\R}} \def\setofpt #1 #2 #3 #4 {\setofet{(#1,#2)+t\VEC{#3,#4}}} \def\setofpu #1 #2 #3 #4 {\setofeu{(#1,#2)+u\VEC{#3,#4}}} % _ _ _ % | |_(_) | __ ____ % | __| | |/ /|_ / % | |_| | < / / % \__|_|_|\_\/___| % % \mygrid and \myaxes % (find-es "tikz" "mygrid") \tikzset{mycurve/.style=very thick} \tikzset{axis/.style=semithick} \tikzset{tick/.style=semithick} \tikzset{grid/.style=gray!20,very thin} \tikzset{anydot/.style={circle,inner sep=0pt,minimum size=1.2mm}} \tikzset{opdot/.style={anydot, draw=black,fill=white}} \tikzset{cldot/.style={anydot, draw=black,fill=black}} % \def\mygrid(#1,#2) (#3,#4){ \clip (#1-0.4, #2-0.4) rectangle (#3+0.4, #4+0.4); \draw[step=1,grid] (#1-0.2, #2-0.2) grid (#3+0.2, #4+0.2); \draw[axis] (-10,0) -- (10,0); \draw[axis] (0,-10) -- (0,10); \foreach \x in {-10,...,10} \draw[tick] (\x,-0.2) -- (\x,0.2); \foreach \y in {-10,...,10} \draw[tick] (-0.2,\y) -- (0.2,\y); } \def\myaxes(#1,#2) (#3,#4){ \clip (#1-0.4, #2-0.4) rectangle (#3+0.4, #4+0.4); %\draw[step=1,grid] (#1-0.2, #2-0.2) grid (#3+0.2, #4+0.2); \draw[axis] (-20,0) -- (20,0); \draw[axis] (0,-20) -- (0,20); \foreach \x in {-20,...,20} \draw[tick] (\x,-0.2) -- (\x,0.2); \foreach \y in {-20,...,20} \draw[tick] (-0.2,\y) -- (0.2,\y); } % Grid color \tikzset{grid/.style=gray!50,very thin} \def\tikzp#1{\mat{\begin{tikzpicture}#1\end{tikzpicture}}} \def\mydraw #1;{\draw [mycurve] \expr{#1};} \def\mydot #1;{\node [cldot] at \expr{#1} [] {};} \def\myldot #1 #2 #3;{\node [cldot] at \expr{#1} [label=#2:${#3}$] {};} \def\myseg #1 #2;{\draw [mycurve] \expr{#1} -- \expr{#2};} \def\mylabel #1 #2 #3;{\node [] at \expr{#1} [label=#2:${#3}$] {};} \def\myseggrid #1 #2;{\draw [grid] \expr{#1} -- \expr{#2};} % ____ _ _ _ % | _ \ ___ __ _(_)_ __ __ _| | __| | ___ % | |_) / _ \/ _` | | '_ \ / _` | |/ _` |/ _ \ % | _ < __/ (_| | | | | | (_| | | (_| | (_) | % |_| \_\___|\__, |_|_| |_|\__,_|_|\__,_|\___/ % |___/ {\setlength{\parindent}{0em} Exercícios de V/F/justifique da primeira lista do Reginaldo, reescritos: \Reg{2a} Se $α\uu+β\vv=\vec0$ então $α=0$ e $β=0$. \Reg{2b} Seja $ABCD$ um quadrilátero... \Reg{2c} $||\,||\uu||\,\vv|| = ||\,||\vv||\,\uu||$ \Reg{2d} Se $||\uu|| = ||\vv||$ então $(\uu-\vv)·(\uu+\vv)=0$. \Reg{2e} $\uu·\vv=||\uu||\,||\vv||$ \Reg{2f} Se $\uu≠\vec0$ e $\uu·\vv=\uu·\ww$ então $\vv=\ww$. \Reg{2g} $||\uu+\vv||^2 = ||\uu||^2 + 2\uu·\vv + ||\vv||^2$. \Reg{2h} $||\uu+\vv||^2 + ||\uu+\vv||^2 = 2(||\uu||^2 + ||\vv||^2)$. \Reg{2i} $||\uu+\vv||^2 + ||\uu-\vv||^2 = 4\uu·\vv$. \Reg{2j} Existe uma reta que contém os pontos $A=(1,3)$, $B=(-1,2)$ e $C=(5,4)$. \Reg{2k} O triângulo com vértices $A=(1,0)$, $B=(0,2)$ e $C=(-2,1)$ é retângulo. \Reg{2l} Todo vetor em $\R^2$ é combinação linear de $\uu=\VEC{2,3}$, $\vv=\VEC{1,\frac32}$. \Reg{2m} Se $\uu≠\vec0$, $\vv≠\vec0$ e $\Pr_{\vv}\uu = \vec0$ então $\uu⊥\vv$. } \newpage % ____ _ % | _ \ _ __ ___ (_) ___ ___ ___ ___ ___ % | |_) | '__/ _ \| |/ _ \/ __/ _ \ / _ \/ __| % | __/| | | (_) | | __/ (_| (_) | __/\__ \ % |_| |_| \___// |\___|\___\___/ \___||___/ % |__/ A {\sl projeção sobre $\vv$ de $\ww$}, $\Pr_{\vv} \ww$, é sempre um vetor da forma $λ\vv$. Digamos que $\Pr_{\vv} \ww_1 = λ_1 \vv_1$, $\Pr_{\vv} \ww_2 = λ_1 \vv_2$, etc. Determine $λ_1$, $λ_2$, etc. %L p = function (a, b) return O + a*uu + b*vv end %L O, uu, vv = v(3, 1), v(2, 1), v(-1, 1) % mypgrid % \def\mypgrid#1;{ \myseggrid p(-3,-#1) p(-3,#1); \myseggrid p(-2,-#1) p(-2,#1); \myseggrid p(-1,-#1) p(-1,#1); \myseggrid p(0,-#1) p(0,#1); \myseggrid p(1,-#1) p(1,#1); \myseggrid p(2,-#1) p(2,#1); \myseggrid p(3,-#1) p(3,#1); % \myseggrid p(-#1,-3) p(#1,-3); \myseggrid p(-#1,-2) p(#1,-2); \myseggrid p(-#1,-1) p(#1,-1); \myseggrid p(-#1,0) p(#1,0); \myseggrid p(-#1,1) p(#1,1); \myseggrid p(-#1,2) p(#1,2); \myseggrid p(-#1,3) p(#1,3); } \def\drawvec #1 #2;{ \draw [->] \e{#1} -- \e{#2}; } \def\drawlvec #1 #2 #3 #4;{ \draw [->] \e{#1} -- \e{#2}; \mylabel {#2} {#3} {#4}; } a) %L O, uu, vv = v(1, 1), v(2, 0), v(0, 2) \pu $\tikzp{[scale=0.35,auto] \myaxes (-8,-8) (10,10); \mypgrid 3; \drawvec p(1,1) p(2,2); \drawlvec p(0,0) p(2,0) 0 \vv; \drawlvec p(0,0) p(3,1) 0 \ww_1; \drawlvec p(0,0) p(3,2) 0 \ww_2; \drawlvec p(0,0) p(3,3) 45 \ww_3; \drawlvec p(0,0) p(2,3) 90 \ww_4; \drawlvec p(0,0) p(1,3) 90 \ww_5; \drawlvec p(0,0) p(0,3) 90 \ww_6; \drawlvec p(0,0) p(-1,3) 90 \ww_7; \drawlvec p(0,0) p(-2,3) 90 \ww_8; \drawlvec p(0,0) p(-3,3) 135 \ww_9; \drawlvec p(0,0) p(-3,2) 180 \ww_{10}; \drawlvec p(0,0) p(-3,1) 180 \ww_{11}; \drawlvec p(0,0) p(-3,0) 180 \ww_{12}; \drawlvec p(0,0) p(-3,-1) 180 \ww_{13}; \drawlvec p(0,0) p(-3,-2) 180 \ww_{14}; \drawlvec p(0,0) p(-3,-3) 225 \ww_{15}; \drawlvec p(0,0) p(-2,-3) 270 \ww_{16}; \drawlvec p(0,0) p(-1,-3) 270 \ww_{17}; \drawlvec p(0,0) p(0,-3) 270 \ww_{18}; % } $ b) %L O, uu, vv = v(1, 1), v(1, 1), v(-1, 1) \pu $\tikzp{[scale=0.45,auto] \myaxes (-8,-8) (10,10); \mypgrid 3; \drawvec p(1,1) p(2,2); \drawlvec p(0,0) p(2,0) 45 \vv; \drawlvec p(0,0) p(3,1) 45 \ww_1; \drawlvec p(0,0) p(3,2) 45 \ww_2; \drawlvec p(0,0) p(3,3) 90 \ww_3; \drawlvec p(0,0) p(2,3) 135 \ww_4; \drawlvec p(0,0) p(1,3) 135 \ww_5; \drawlvec p(0,0) p(0,3) 135 \ww_6; \drawlvec p(0,0) p(-1,3) 135 \ww_7; \drawlvec p(0,0) p(-2,3) 135 \ww_8; \drawlvec p(0,0) p(-3,3) 180 \ww_9; \drawlvec p(0,0) p(-3,2) 225 \ww_{10}; \drawlvec p(0,0) p(-3,1) 225 \ww_{11}; \drawlvec p(0,0) p(-3,0) 225 \ww_{12}; \drawlvec p(0,0) p(-3,-1) 225 \ww_{13}; \drawlvec p(0,0) p(-3,-2) 225 \ww_{14}; \drawlvec p(0,0) p(-3,-3) 270 \ww_{15}; \drawlvec p(0,0) p(-2,-3) 315 \ww_{16}; \drawlvec p(0,0) p(-1,-3) 315 \ww_{17}; \drawlvec p(0,0) p(0,-3) 315 \ww_{18}; % } $ % \end{document} \newpage Calcule: $\{x:\{0,1,2,3\}; x^2\}$ $\{x:\{0,1,2,3\}, x≥2; x\}$ \msk Represente graficamente: $A := \{(1,4), (2,4), (1,3)\}$ $B := \{(1,3), (1,4), (2,4)\}$ $C := \{(1,3), (1,4), (2,4), (2,4)\}$ $D := \{(1,3), (1,4), (2,3), (2,4)\}$ $h := \{(0,3), (1,2), (2,1), (3,0)\}$ $k := \{x:\{0,1,2,3\}; (x,3-x)\}$ $m := \{y:\{0,1,2,3\}; (3-y, y)\}$ % (Adaptado do material da optativa de lógica que eu tou dando...) \newpage Let $A = \{x:\{-1,...,4\}; x^2\}$ and $B = \{x:\{-1,...,4\}; x^2≤5; x\}$. Then $A$ and $B$ can be calculated by: \msk $\begin{array}{cc} x & x^2 \\ \hline -1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ 4 & 16 \\ \end{array} \qquad \begin{array}{cccc} x & x^2 & x^2≤5 & x \\ \hline -1 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 2 & 4 & 1 & 2 \\ 3 & 9 & 0 & \\ 4 & 16 & 0 & \\ \end{array} $ \msk We get: $A = \{1,0,1,4,9,16\}$, $B = \{-1,0,1,2\}$. \bsk Let $A = \{x:\{1,...,5\}, y:\{1,...,x\}, x+y≤6; (x,y)\}$ and $B = \{y:\{1,...,5\}, x:\{y,...,5\}, x+y≤6; (x,y)\}$. Then $A$ and $B$ can be calculated by: \msk $\begin{array}{ccccc} x & y & x+y & x+y≤6 & (x,y) \\ \hline 1 & 1 & 2 & 1 & (1,1) \\ 2 & 1 & 3 & 1 & (2,1) \\ & 2 & 4 & 1 & (2,2) \\ 3 & 1 & 4 & 1 & (3,1) \\ & 2 & 5 & 1 & (3,2) \\ & 3 & 6 & 1 & (3,3) \\ 4 & 1 & 5 & 1 & (4,1) \\ & 2 & 6 & 1 & (4,2) \\ & 3 & 7 & 0 & \\ & 4 & 8 & 0 & \\ 5 & 1 & 6 & 1 & (5,1) \\ & 2 & 7 & 1 & \\ & 3 & 8 & 0 & \\ & 4 & 9 & 0 & \\ & 5 & 10 & 0 & \\ \end{array} \qquad \begin{array}{ccccc} y & x & x+y & x+y≤6 & (x,y) \\ \hline 1 & 1 & 2 & 1 & (1,1) \\ & 2 & 3 & 1 & (2,1) \\ & 3 & 4 & 1 & (3,1) \\ & 4 & 5 & 1 & (4,1) \\ & 5 & 6 & 1 & (5,1) \\ 2 & 2 & 4 & 1 & (2,2) \\ & 3 & 5 & 1 & (3,2) \\ & 4 & 6 & 1 & (4,2) \\ & 5 & 7 & 0 & \\ 3 & 3 & 6 & 1 & (3,3) \\ & 4 & 7 & 0 & \\ & 5 & 8 & 0 & \\ 4 & 4 & 8 & 0 & \\ & 5 & 9 & 0 & \\ 5 & 5 & 10 & 0 & \\ \end{array} $ \msk We get: $A = \{ (1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1), (4,2), (5,1)\}$ and $B = \{ (1,1), (2,1), (3,1), (4,1), (5,1), (2,2), (3,2), (4,2), (3,3)\}$. \bsk \newpage % ____ _ % | _ \ ___| |_ __ _ ___ % | |_) / _ \ __/ _` / __| % | _ < __/ || (_| \__ \ % |_| \_\___|\__\__,_|___/ % % (find-fline "~/2015.2-GA/") % (find-djvupage "~/2015.2-GA/2015.2-GA.djvu") {\bf 2)} (Fizemos este em sala em 16/dez/2015) Represente graficamente as retas abaixo. Nas parametrizadas indique no gráfico os pontos associados a $t=0$ e $t=1$. $r_a = \setofxyst{ x+2y=0 }$ $r_b = \setofxyst{ x+2y=4 }$ $r_c = \setofxyst{ x+2y=2 }$ $r_d = \setofxyst{ 2x+3y=0 }$ $r_e = \setofxyst{ 2x+3y=6 }$ $r_f = \setofxyst{ 2x+3y=3 }$ $r_g = \setofpt 3 -1 -1 1 $ $r_h = \setofpt 3 -1 -2 1 $ $r_i = \setofpt 3 -1 1 -1 $ $r_j = \setofpt 0 3 2 0 $ $r_k = \setofpt 2 0 0 1 $ $r_l = \setofxyst{ y=4 }$ $r_m = \setofxyst{ y=4+x }$ $r_n = \setofxyst{ y=4-2x }$ \bsk \bsk % ____ _ _ _ % | _ \ __ _ _ __ __ _ _ __ ___ ___| |_ _ __(_)______ _ __| | __ _ ___ % | |_) / _` | '__/ _` | '_ ` _ \ / _ \ __| '__| |_ / _` |/ _` |/ _` / __| % | __/ (_| | | | (_| | | | | | | __/ |_| | | |/ / (_| | (_| | (_| \__ \ % |_| \__,_|_| \__,_|_| |_| |_|\___|\__|_| |_/___\__,_|\__,_|\__,_|___/ % %L r0, rv = v(2,3), v(1,1) %L s0, sw = v(2,3), v(2,-1) %L rt = function (t) return r0 + t*rv end %L su = function (u) return s0 + u*sw end \pu \def\rt#1{\expr{rt(#1):xy()}} \def\su#1{\expr{su(#1):xy()}} % \rt 0 \rt 1 \rt 2 % \su 0 \su 1 \su 2 {\bf 3)} Em cada um dos casos abaixo, represente $r$ e $s$ graficamente, marcando os pontos associados a $t=0$, $t=1$, $u=0$, $u=1$; encontre no olhômetro o ponto $P \in r \cap s$; encontre (também no olhômetro) os valores de $t$ e $u$ associados a $P$; e verifique que você encontrou o $t$ e o $u$ certos, fazendo como abaixo. \msk %L inter = v(1,4) %L r0, rv = v(3,3), v(2,-1) %L s0, sw = v(4,1), v(-1,1) \pu % (find-pgfmanualpage 44 "3.9 Adding Labels Next to Nodes") % (find-pgfmanualtext 44 "3.9 Adding Labels Next to Nodes") $\tikzp{[scale=0.5,auto] \mygrid (-1,-1) (7,5); \draw[mycurve] \rt{-2} -- \rt{5}; \draw[mycurve] \su{-2} -- \su{5}; \node [cldot] at \rt{0} [label=60:${t{=}0}$] {}; \node [cldot] at \rt{1} [label=60:${t{=}1}$] {}; \node [cldot] at \su{0} [label=200:${u{=}0}$] {}; \node [cldot] at \su{1} [label=200:${u{=}1}$] {}; \node [cldot] at \su{3} [label=60:$P$] {}; } $ $r = \setofpt 3 3 2 -1 $ $s = \setofpu 4 1 -1 1 $ $(1,4) = (3,3)+(-1)\VEC{2,-1} ∈ r$ $(1,4) = (4,1)+3\VEC{-1,1} ∈ s$ $(1,4) ∈ r∩s$ \msk a) $r = \setofpt 1 0 0 3 $, $s = \setofpu 0 4 2 0 $ b) $r = \setofpt 1 0 3 1 $, $s = \setofpu 0 2 2 3 $ c) $r = \setofet{ (1+3t,t) }$, $s = \setofeu{ (2u,2+3u) } $ d) $r = \setofpt 0 3 2 -1 $, $s = \setofpu 1 0 1 3 $ (No d o olhômetro não basta, você vai precisar resolver um sistema) % \end{document} \newpage % ___ % / _ \ _ _ __ __ % | | | | | | | | \ \ / / % | |_| | | |_| |_ \ V / % \___( ) \__,_( ) \_/ % |/ |/ {\setlength{\parindent}{0em} Exercício: Em cada uma das figuras abaixo vamos definir o sistema de coordenadas $Σ$ por $Σ=(O,\uu,\vv)$ e $(a,b)_Σ = O+a\uu+b\vv$. Sejam: $B = (1,3)_Σ$, $C = (3,3)_Σ$, $D = (1,2)_Σ$, $E = (2,2)_Σ$, $A = (1,1)_Σ$. Desenhe a figura formada pelos pontos $A$, $B$, $C$, $D$ e $E$ e pelos segmentos de reta $\overline{AB}$, $\overline{BC}$ e $\overline{DE}$. (O item (a) já está feito.) } % myvgrid % \def\myvgrid{ \myseggrid p(0,0) p(0,4); \myseggrid p(1,0) p(1,4); \myseggrid p(2,0) p(2,4); \myseggrid p(3,0) p(3,4); \myseggrid p(4,0) p(4,4); \myseggrid p(0,0) p(4,0); \myseggrid p(0,1) p(4,1); \myseggrid p(0,2) p(4,2); \myseggrid p(0,3) p(4,3); \myseggrid p(0,4) p(4,4); \draw [->] \expr{p(0,0)} -- \expr{p(0,1)}; \draw [->] \expr{p(0,0)} -- \expr{p(1,0)}; } \def\mytriangle{ \myseg p(1,2) p(1,3); \myseg p(1,3) p(3,3); \myseg p(3,3) p(1,2); \mydot p(1,2); \mydot p(1,3); \mydot p(3,3); } %L p = function (a, b) return O + a*uu + b*vv end a) %L O, uu, vv = v(3, 1), v(2, 1), v(-1, 1) \pu $\tikzp{[scale=0.4,auto] \myaxes (-1,-1) (13,9); \myvgrid \mylabel p(0,0) 270 O; \mylabel p(1,0) 0 \uu; \mylabel p(0,1) 180 \vv; % \myseg p(1,1) p(1,3); \myseg p(1,3) p(3,3); \myseg p(1,2) p(2,2); \myldot p(1,3) 180 B; \myldot p(3,3) 0 C; \myldot p(1,2) 180 D; \myldot p(2,2) 0 E; \myldot p(1,1) 180 A; } $ % \quad % b) %L O, uu, vv = v(2, 2), v(1, 0), v(0, 1) \pu $\tikzp{[scale=0.4,auto] \myvgrid; \myaxes (-1,-1) (6,6); \mylabel p(0,0) 270 O; \mylabel p(1,0) 0 \uu; \mylabel p(0,1) 90 \vv; } $ c) %L O, uu, vv = v(-5, 1), v(2, 0), v(0, 1) $\tikzp{[scale=0.3,auto] \pu \myvgrid; \myaxes (-6,-1) (4,6); \mylabel p(0,0) 270 O; \mylabel p(1,0) 0 \uu; \mylabel p(0,1) 90 \vv; } $ % \quad % d) %L O, uu, vv = v(1, 1), v(1, 0), v(0, 2) $\tikzp{[scale=0.3,auto] \pu \myvgrid; \myaxes (-1,-1) (6,10); \mylabel p(0,0) 270 O; \mylabel p(1,0) 0 \uu; \mylabel p(0,1) 90 \vv; } $ % \quad % e) %L O, uu, vv = v(2, 2), v(0, 1), v(1, 0) $\tikzp{[scale=0.4,auto] \pu \myvgrid; \myaxes (-1,-1) (6,6); \mylabel p(0,0) 270 O; \mylabel p(1,0) 90 \uu; \mylabel p(0,1) 0 \vv; } $ f) %L O, uu, vv = v(4, 4), v(-2, 1), v(-1, -2) $\tikzp{[scale=0.3,auto] \pu \myvgrid; \myaxes (-8,-5) (6,8); \mylabel p(0,0) 0 O; \mylabel p(1,0) 180 \uu; \mylabel p(0,1) 0 \vv; } $ % \quad % g) %L O, uu, vv = v(-3, 1), v(1, 0), v(1, 1) $\tikzp{[scale=0.4,auto] \pu \myvgrid; \myaxes (-3,-1) (6,6); \mylabel p(0,0) 270 O; \mylabel p(1,0) 0 \uu; \mylabel p(0,1) 90 \vv; } $ \newpage % ___ _ _ _ % / _ \ _ _ __ ___ | |_ _ __(_) __ _ _ __ __ _| | ___ ___ % | | | | | | | | \ \ / (_) | __| '__| |/ _` | '_ \ / _` | |/ _ \/ __| % | |_| | | |_| |_ \ V / _ | |_| | | | (_| | | | | (_| | | __/\__ \ % \___( ) \__,_( ) \_/ (_) \__|_| |_|\__,_|_| |_|\__, |_|\___||___/ % |/ |/ |___/ {\setlength{\parindent}{0em} Agora vamos usar uma notação um pouco mais pesada... $Σ_i=(O_i,\uu_i,\vv_i)$, $Σ_0=((0,0),\VEC{1,0},\VEC{0,1})$, $(a,b)_{Σ_i} = O_i+a\uu_i+b\vv_i$, $B_i = (1,3)_{Σ_i}$, $C_i = (3,3)_{Σ_i}$, $D_i = (1,2)_{Σ_i}$, $E_i = (2,2)_{Σ_i}$, $A_i = (1,1)_{Σ_i}$. As figuras abaixo representam os triângulos $D_iB_iC_i$ para $i=1,\ldots,7$. \medskip Já vimos que na passagem de um diagrama para outro as figuras - `F's e triângulos - podem ser transladadas, ampliadas, reduzidas, amassadas, deformadas, espelhadas... Quais das transformações preservam distâncias ($d(P_i,Q_i) = d(P_j,Q_j)$)? Quais das transformações preservam ângulos ($P_i\hat{Q_i}R_i = P_j\hat{Q_j}R_j$)? } a) %L O, uu, vv = v(3, 1), v(2, 1), v(-1, 1) \pu $\tikzp{[scale=0.4,auto] \myaxes (-1,-1) (13,9); \myvgrid \mylabel p(0,0) 270 O_1; \mylabel p(1,0) 0 \uu_1; \mylabel p(0,1) 180 \vv_1; % \mytriangle; % \myseg p(1,1) p(1,3); % \myseg p(1,3) p(3,3); % \myseg p(1,2) p(2,2); % \myldot p(1,3) 180 B; \myldot p(3,3) 0 C; % \myldot p(1,2) 180 D; \myldot p(2,2) 0 E; % \myldot p(1,1) 180 A; } $ % \quad % b) %L O, uu, vv = v(2, 2), v(1, 0), v(0, 1) \pu $\tikzp{[scale=0.4,auto] \myvgrid; \myaxes (-1,-1) (6,6); \mylabel p(0,0) 270 O_2; \mylabel p(1,0) 0 \uu_2; \mylabel p(0,1) 90 \vv_2; \mytriangle; } $ c) %L O, uu, vv = v(-5, 1), v(2, 0), v(0, 1) $\tikzp{[scale=0.3,auto] \pu \myvgrid; \myaxes (-6,-1) (4,6); \mylabel p(0,0) 270 O_3; \mylabel p(1,0) 0 \uu_3; \mylabel p(0,1) 90 \vv_3; \mytriangle; } $ % \quad % d) %L O, uu, vv = v(1, 1), v(1, 0), v(0, 2) $\tikzp{[scale=0.3,auto] \pu \myvgrid; \myaxes (-1,-1) (6,10); \mylabel p(0,0) 270 O_4; \mylabel p(1,0) 0 \uu_4; \mylabel p(0,1) 90 \vv_4; \mytriangle; } $ % \quad % e) %L O, uu, vv = v(2, 2), v(0, 1), v(1, 0) $\tikzp{[scale=0.4,auto] \pu \myvgrid; \myaxes (-1,-1) (6,6); \mylabel p(0,0) 270 O_5; \mylabel p(1,0) 90 \uu_5; \mylabel p(0,1) 0 \vv_5; \mytriangle; } $ f) %L O, uu, vv = v(4, 4), v(-2, 1), v(-1, -2) $\tikzp{[scale=0.3,auto] \pu \myvgrid; \myaxes (-8,-5) (6,8); \mylabel p(0,0) 0 O_6; \mylabel p(1,0) 180 \uu_6; \mylabel p(0,1) 0 \vv_6; \mytriangle; } $ % \quad % g) %L O, uu, vv = v(-3, 1), v(1, 0), v(1, 1) $\tikzp{[scale=0.4,auto] \pu \myvgrid; \myaxes (-4,-1) (6,6); \mylabel p(0,0) 270 O_7; \mylabel p(1,0) 0 \uu_7; \mylabel p(0,1) 90 \vv_7; \mytriangle; } $ % _ _ _ _ _ % | | | (_)_ __ ___ _ __| |__ ___ | | ___ ___ % | |_| | | '_ \ / _ \ '__| '_ \ / _ \| |/ _ \/ __| % | _ | | |_) | __/ | | |_) | (_) | | __/\__ \ % |_| |_|_| .__/ \___|_| |_.__/ \___/|_|\___||___/ % |_| \newpage \def\xx{\vec{x}} \def\yy{\vec{y}} % (find-LATEX "edrxtikz.lua" "Hyperbole.fromOxe") %L H = Hyperbole.fromOxe(v(0,0), v(1,0), 2, 4) %L H = Hyperbole.fromOxe(v(0,0), v(1,0), 3, 6) %L PP(H) \pu $\tikzp{[scale=0.5,auto] \myaxes (-5,-9) (5,9); \myldot H.F1 135 F_1; \myldot H.F2 45 F_2; \myldot H.P1 135 P_1; \myldot H.P2 45 P_2; \myldot H.P3 225 P_3; \myldot H.P4 315 P_4; \myldot H.P5 135 P_5; \myldot H.P6 45 P_6; \myldot H.D1 225 {}; \myldot H.D2 315 {}; \myldot H.D0 315 {}; \mydraw H:draw(); \mydraw H.au:draw(); \mydraw H.av:draw(); \mydraw H.d1:draw(); \mydraw H.d2:draw(); } $ $\def\so{{\sqrt{8}}} \def\f{\frac} % \begin{array}{lllll} e = 3 & && & \\ \xx = \VEC{1,0} & && & \\ \yy = \VEC{0,1} & && \yy = \xx' & \\ a = 1/2 & && a = ||\xx||/2 & \\ b = \sqrt{8} / 2 & && b = \sqrt{e^2-1}·a & \\ c = 3/2 & && c = e · a & \\ \uu = \VEC{1/2,-\so/2} & && \uu = a\xx - b\yy & \\ \vv = \VEC{1/2, \so/2} & && \vv = a\xx + b\yy & \\ P_1 = (-1,0) & P_2 = (1,0) && P_1 = O-\xx & P_2 = O+\xx \\ F_1 = (-3,0) & F_2 = (3,0) && F_1 = O-e\xx & F_2 = O+e\xx \\ D_1 = (-\f 1 3, 0) & D_2 = (\f 1 3, 0) && D_1 = O-\f 1 e \xx & D_2 = O+\f 1 e \xx \\ P_3 = (-3, 8) & P_4 = (3, 8) && P_3 = F_1+(e^2-1)\yy & P_4 = F_2+(e^2-1)\yy \\ P_5 = (-3, -8) & P_6 = (3, -8) && P_5 = F_1-(e^2-1)\yy & P_6 = F_2-(e^2-1)\yy \\ d_1 : (-\f 1 3, y) & d_2 : (\f 1 3, y) && d_1 : D_1+t\yy & d_2 : D_2+t\yy \\ \aa_{\uu}:(\f12 t, -\f\so2 t) & \aa_{\vv}:(\f12 t, \f\so2 t) && \aa_{\uu}:O+t\uu & \aa_{\vv}:O+t\vv \\ D_0 = O & && D_0 = O & \\ d_0 : D_0 + t\yy & && d_0 : D_0 + t\yy & \\ \end{array} $ % $H = \setofxyst{}$ \newpage \def\mc#1{\multicolumn{2}{c}{#1}} \def\f{\frac} Elipses: Nomes para os pontos mais interessantes: $\begin{array}[t]{ccccccc} & & & P_3 \\ D_1 & P_1 & F_1 & O & F_2 & P_2 & D_2 \\ & & & P_4 \\ \end{array} $ \bsk Fórmulas para os pontos quando $P_1=(-1,0)$ e $P_2=(1,0)$: $\begin{array}[t]{ccccccc} & & & (0,b) \\ (-\frac1c,0) & (-1,0) & (-c,0) & (0,0) & (c,0) & (1,0) & (\frac1c,0) \\ & & & (0,-b) \\ \end{array} $ onde $b^2 + c^2 = a^2 = 1$. \bsk Uma elipse com $e=3$, $d(P,F_1)+d(P,F_2)=2$, $d(P,d_1)=3d(P,F_1)$: $\begin{array}[t]{ccccccc} & & & (0,\f{√8}3) \\ (-3,\_) & (-1,0) & (-\f13,0) & (0,0) & (\f13,0) & (1,0) & (3,\_) \\ & & & 0,-\f{√8}3) \\ \end{array} $ \bsk Uma elipse com $e=3$, $d(P,F_1)+d(P,F_2)=2$, $d(P,d_1)=\f23 d(P,F_1)$: $\begin{array}[t]{ccccccc} & & & (0,\f{√5}3) \\ (-\f32,\_) & (-1,0) & (-\f23,0) & (0,0) & (\f23,0) & (1,0) & (\f32,\_) \\ & & & 0,-\f{√5}3) \\ \end{array} $ \bsk Uma elipse com $e=3$, $d(P,F_1)+d(P,F_2)=2$, $d(P,d_1)=\f{100}{99} d(P,F_1)$: $\begin{array}[t]{ccccccc} & & & (0,\f{√{199}}{100}) \\ (-\f{100}{99},\_) & (-1,0) & (-\f{99}{100},0) & (0,0) & (\f{99}{100},0) & (1,0) & (\f{100}{99},\_) \\ & & & 0,\f{√{199}}{100}) \\ \end{array} $ \newpage Hipérboles: \bsk Nomes para os pontos mais interessantes: $\begin{array}[t]{ccccccc} O-λ\uu & & & & & & O+λ\vv \\ P_4 & & & & & & P_5 \\ & \mc{O-\uu} & & \mc{O+\vv} \\ F_1 & P_1 & D_1 & O & D_2 & P_2 & F_2 \\ & \mc{O-\vv} & & \mc{O+\uu} \\ P_6 & & & & & & P_7 \\ O-λ\vv & & & & & & O+λ\vv \\ \end{array} $ \bsk Uma com $e=3$, $d(P,F_2)=3d(P,d_2)$, $d(P,F_2)-d(P,F_1) = \pm 2$: $\begin{array}[t]{ccccccc} (-3,3√8) & & & & & & (3,3√8) \\ (-3,8) & & & & & & (3,8) \\ & \mc{(-1/2,√8/2)} & & \mc{(1/2,√8/2)} \\ (-3,0) & (-1,0) & (-1/3,\_) & (0,0) & (1/3,\_) & (1,0) & (3,0) \\ & \mc{(-1/2,-√8/2)} & & \mc{(1/2,-√8/2)} \\ (-3,-8) & & & & & & (3,-8) \\ (-3,-3√8) & & & & & & (3,-3√8) \\ \end{array} $ \end{document} % _ _ _ _ _ % | | | (_)_ __ ___ _ __| |__ ___ | | ___ ___ % | |_| | | '_ \ / _ \ '__| '_ \ / _ \| |/ _ \/ __| % | _ | | |_) | __/ | | |_) | (_) | | __/\__ \ % |_| |_|_| .__/ \___|_| |_.__/ \___/|_|\___||___/ % |_| %L e = math.sqrt(5) %L e = 2.2 %L e = 2.1 %L F1 = v(-e*e, 0) %L P2 = v(-e, 0) %L D2 = v(-1, 0) %L D = v(1, 0) %L P3 = v(e, 0) %L F2 = v(e*e, 0) %L h = 1 %L H = Hyperbole.new(v(0,0), v(e/2, h), v(e/2,-h), 2) \pu $\tikzp{[scale=1.2,auto] \myaxes (-5,-2) (5,2); \myldot F1 45 F_1; \myldot F2 135 F_2=F; \myldot F1 315 -e^2; \myldot F2 225 e^2; \myldot P2 45 P_2; \myldot P3 135 P_3; \myldot P2 315 -e; \myldot P3 225 e; \myldot D2 45 D'; \myldot D 135 D; \myldot D2 315 -1; \myldot D 225 1; \mydraw H:draw(); } $ \end{document} \newpage % _____ _ % | ____| |_ ___ % | _| | __/ __| % | |___| || (__ % |_____|\__\___| % %L A, O, B, C = v(0,5), v(0,0), v(2,1), v(2,0) %L print(A:mid(B), "hiiiiiiii") \pu $\tikzp{[scale=0.4,auto] % \myaxes (-1,-1) (13,9); \clip (-1,-1) rectangle (4,6); % \myseg A B; \draw [mycurve] \e{B} -- \e{C} -- \e{O} -- \e{A} -- \e{B} -- \e{O}; % \mylabel B+(C-B)/2 0 hello; \mylabel A:mid(O) 180 h; \mylabel A:mid(C) 0 hc; \mylabel O:mid(B) 90 hs; % \myvgrid % \mylabel p(0,0) 270 O; % \mylabel p(1,0) 0 \uu; % \mylabel p(0,1) 180 \vv; % % \myseg p(1,1) p(1,3); % \myseg p(1,3) p(3,3); % \myseg p(1,2) p(2,2); % \myldot p(1,3) 180 B; \myldot p(3,3) 0 C; % \myldot p(1,2) 180 D; \myldot p(2,2) 0 E; % \myldot p(1,1) 180 A; } $ \end{document} \newpage % Local Variables: % coding: utf-8-unix % End: