Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2016-1-GA-P1.tex") % (find-angg "LATEX/2016-1-GA-P1.lua") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2016-1-GA-P1.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2016-1-GA-P1.pdf")) % (defun e () (interactive) (find-LATEX "2016-1-GA-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2016-1-GA-P1")) % (defun z () (interactive) (find-zsh "flsfiles-tgz 2016-1-GA-P1.fls 2016-1-GA-P1.tgz")) % (find-xpdfpage "~/LATEX/2016-1-GA-P1.pdf") % (find-xdvipage "~/LATEX/2016-1-GA-P1.dvi") % (find-sh0 "cp -v ~/LATEX/2016-1-GA-P1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2016-1-GA-P1.pdf /tmp/pen/") % file:///home/edrx/LATEX/2016-1-GA-P1.pdf % file:///tmp/2016-1-GA-P1.pdf % file:///tmp/pen/2016-1-GA-P1.pdf % http://angg.twu.net/LATEX/2016-1-GA-P1.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{tikz} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") % \begin{document} % (find-LATEXfile "2015-2-GA-P1-gab.tex" "setofxyst") % (find-LATEXfile "2015-1-GA-P2-gabarito.tex" "setxyst") \def\nip{\par\noindent} \def\uu{{\vec u}} \def\vv{{\vec v}} \def\ww{{\vec w}} \def\Vec#1{\overrightarrow{#1}} \def\VEC#1{{\overrightarrow{(#1)}}} \def\Pr{{\text{Pr}}} \def\Pru{\Pr_\uu} \def\Prv{\Pr_\vv} \def\Prw{\Pr_\ww} \def\setofxyst#1{\setofst{(x,y)∈\R^2}{#1}} \def\setofexprt#1{\setofst{#1}{t∈\R}} \def\setofexpru#1{\setofst{#1}{u∈\R}} % ____ _ _ _ % / ___|__ _| |__ ___ ___ __ _| | |__ ___ % | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \ % | |__| (_| | |_) | __/ (_| (_| | | | | | (_) | % \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/ % {\setlength{\parindent}{0em} \footnotesize \par Geometria Analítica \par PURO-UFF - 2016.1 \par P1 - 8/jun/2016 - Eduardo Ochs \par Respostas sem justificativas não serão aceitas. \par Proibido usar quaisquer aparelhos eletrônicos. % \par Versão: 14/mar/2016 % \par Links importantes: % \par \url{http://angg.twu.net/2015.2-C2.html} (página do curso) % \par \url{http://angg.twu.net/2015.2-C2/2015.2-C2.pdf} (quadros) % \par \url{http://angg.twu.net/LATEX/2015-2-C2-material.pdf} % \par {\tt eduardoochs@gmail.com} (meu e-mail) } \bsk \bsk \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} % Usage: % 1) \T(Total: 2.34 pts) Foo % a) \B(B 0.45 pts) Bar % (find-angg "LATEX/2015-2-GA-P2.tex") 1) \T(Total: 2.5 pts) Sejam % $$\begin{array}{rcl} r_1 &=& \setofxyst{5x-2y=0}, \\ r_2 &=& \setofexprt{(2,2)+t\VEC{2,-1}}, \\ % r_3 &=& \setofexpru{(2,5)+u\VEC{3,-4}} \\ % r_3 &=& \setofexpru{(5,1)+u\VEC{3,-4}} \\ r_3 &=& \setofexpru{(5+3u,1-4u)}. \\ \end{array} $$ a) \B(1.5 pts) Determine as coordenadas de $C∈r_1∩r_2$, $D∈r_1∩r_3$ e $E∈r_2∩r_3$. Obs: se você conseguir encontrar as coordenadas de algum ponto só pelo gráfico basta provar que ele pertence às retas adequadas. b) \B(1.0 pts) Determine a área do triângulo $CDE$. \bsk 2) \T(Total: 2.5 pts) Sejam: % $$\begin{array}{ccl} C = \setofxyst{(x-3)^2 + (y-4)^2 = 25} \\ C' = \setofxyst{(x-7)^2 + (y-3)^2 = 4} \\ C∩C' = \{I,I'\} \\ \end{array} $$ a) \B(2.0 pts) Encontre os dois pontos de interseção $I$ e $I'$ dos dois círculos. Obs: se você conseguir encontrar algum ponto só pelo gráfico basta provar que ele pertence aos dois círculos. b) \B(0.5 pts) Determine o ponto médio $M$ de $I$ e $I'$. \bsk 3) \T(Total: 1.5 pts) Verdadeiro ou falso? Justifique. Se $\uu$ e $\vv$ são ortogonais e não-nulos e $\ww = a\uu+b\vv$ então $\ww = \Pru \ww + \Prv \ww$. % a) \B(1.5 pts) % b) \B(1.0 pts) \bsk 4) \T(Total: 1.0 pts) Determine a distância entre as retas com equações $y=1-\frac x 3$ e $y=2 - \frac x 3$. \bsk \def\sen{\operatorname{sen}} \def\ang{\operatorname{ang}} 5) \T(Total: 2.5 pts) Sejam $A=(2,5)$, $B=(1,3)$, $C=(2,3)$, $D=(2,1)$, % $$r=\setofxyst{x+y=3}.$$ a) \B(0.5 pts) Calcule $\cos(A \hat B C)$. b) \B(2.0 pts) Encontre uma reta $s$ que passa por $D$ e que faz com $r$ o mesmo ângulo que $A \hat B C$. \newpage % ____ _ _ __ % | _ \ ___ __| |_ __ __ _| |_ / /_ % | | | |/ _ \/ _` | '_ \ / _` | __| '_ \ % | |_| | __/ (_| | | | | (_| | |_| (_) | % |____/ \___|\__,_|_| |_|\__,_|\__|\___/ % \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} %\directlua{output(preamble1)} %\def\expr#1{\directlua{output(tostring(#1))}} %\def\eval#1{\directlua{#1}} %\def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") % (find-dn6 "picture.lua" "V") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end %L V.__div = function (v, k) return v*(1/k) end %L V.__index.tow = function (A, B, t) return A+(B-A)*t end -- towards %L V.__index.mid = function (A, B) return A+(B-A)*0.5 end -- midpoint \def\e{\expr} % _ _ _ % | |_(_) | __ ____ % | __| | |/ /|_ / % | |_| | < / / % \__|_|_|\_\/___| % % \mygrid and \myaxes % (find-es "tikz" "mygrid") \tikzset{mycurve/.style=very thick} \tikzset{axis/.style=semithick} \tikzset{tick/.style=semithick} \tikzset{grid/.style=gray!20,very thin} \tikzset{anydot/.style={circle,inner sep=0pt,minimum size=1.2mm}} \tikzset{opdot/.style={anydot, draw=black,fill=white}} \tikzset{cldot/.style={anydot, draw=black,fill=black}} % \def\mygrid(#1,#2) (#3,#4){ \clip (#1-0.4, #2-0.4) rectangle (#3+0.4, #4+0.4); \draw[step=1,grid] (#1-0.2, #2-0.2) grid (#3+0.2, #4+0.2); \draw[axis] (-10,0) -- (10,0); \draw[axis] (0,-10) -- (0,10); \foreach \x in {-10,...,10} \draw[tick] (\x,-0.2) -- (\x,0.2); \foreach \y in {-10,...,10} \draw[tick] (-0.2,\y) -- (0.2,\y); } \def\myaxes(#1,#2) (#3,#4){ \clip (#1-0.4, #2-0.4) rectangle (#3+0.4, #4+0.4); %\draw[step=1,grid] (#1-0.2, #2-0.2) grid (#3+0.2, #4+0.2); \draw[axis] (-20,0) -- (20,0); \draw[axis] (0,-20) -- (0,20); \foreach \x in {-20,...,20} \draw[tick] (\x,-0.2) -- (\x,0.2); \foreach \y in {-20,...,20} \draw[tick] (-0.2,\y) -- (0.2,\y); } % Grid color \tikzset{grid/.style=gray!50,very thin} \def\tikzp#1{\mat{\begin{tikzpicture}#1\end{tikzpicture}}} \def\mydraw #1;{\draw [mycurve] \expr{#1};} \def\mydot #1;{\node [cldot] at \expr{#1} [] {};} \def\myldot #1 #2 #3;{\node [cldot] at \expr{#1} [label=#2:${#3}$] {};} \def\myseg #1 #2;{\draw [mycurve] \expr{#1} -- \expr{#2};} \def\mylabel #1 #2 #3;{\node [] at \expr{#1} [label=#2:${#3}$] {};} \def\myseggrid #1 #2;{\draw [grid] \expr{#1} -- \expr{#2};} % ____ _ _ _ % / ___| __ _| |__ __ _ _ __(_) |_ ___ % | | _ / _` | '_ \ / _` | '__| | __/ _ \ % | |_| | (_| | |_) | (_| | | | | || (_) | % \____|\__,_|_.__/ \__,_|_| |_|\__\___/ % \def\Area{\operatorname{Area}} Mini-gabarito: \bsk 1a) %L r1 = Line.new(v(0, 0), v(2, 5), -0.2, 1.2) %L r2 = Line.new(v(2, 2), v(2, -1), -0.2, 1.2) %L r3 = Line.new(v(5, 1), v(3, -4), -0.2, 1.2) %L C = v(1, 2.5) %L D = v(2, 5) %L E = v(5.6, 0.2) \pu $\tikzp{[scale=0.5,auto] \myaxes (-2,-2) (8,6); \myseg r1:t(-0.2) r1:t(1.2); \mylabel r1:t(0.75) 180 r_1; \myseg r2:t(-1) r2:t(3); \mylabel r2:t(0.5) 270 r_2; \myseg r3:t(-1.2) r3:t(0.5); \mylabel r3:t(-0.5) 0 r_3; % \myldot C 0 C; \myldot C 270 C; \myldot D 0 D; \myldot E 45 E; % \mypgrid 3; } \quad \begin{tabular}{l} Se $C=(1,2.5)$ então \\ $C ∈ r_1$ porque $5·1 - 2·2.5=0$, \\ $C ∈ r_2$ porque $C = (2,2) + (-0.5)\VEC{2,-1}$, \\ portanto $C∈r_1∩r_2$. \\[5pt] Se $D=(2,5)$ então \\ $D ∈ r_1$ porque $5·2 - 2·5=0$, \\ $D ∈ r_3$ porque $D = (5+3·0, 1-4·0)$, \\ portanto $C∈r_1∩r_3$. \\ \\ \\ \end{tabular} $ Se $E = (x,y) ∈ r_2∈r_3$ então $E = (2+2t, 2-t) = (5+3u, 1-4u)$ $2+2t = 5+3u$ $2-t = 1-4u$ $2-1+4u = t$ $t=1+4u$ $2+2(1+4u) = 5+3u$ $2+2-5 + 8u-3u = 0$ $5u = 1$ $u = \frac 1 5$ $t = 1 + 4 \frac 1 5 = \frac 9 5$ $E = (x,y) = (2+2 \frac 9 5, 2 - \frac 9 5) = (5+3 \frac 1 5, 1-4 \frac 1 5) = (\frac {28} 5, \frac 1 5) = (5.6, 0.2)$ \msk 1b) $\Vec{CD} = \VEC{1, 2.5}$, $\Vec{CE} = \VEC{4.6, -2.3}$, $[\Vec{CD}, \Vec{CE}] = \psm{1 & 2.5 \\ 4.6 & -2.3}$ $|[\Vec{CD}, \Vec{CE}]| = \left|\sm{1 & 2.5 \\ 4.6 & -2.3}\right| = -2.3 - 4.6 · 2.5 = -2.3 - 11.5 = -13.8$ $\Area(CDE) = 13.8/2 = 6.9$ \bsk \newpage 2) %L C0 = v(3,4); R = 5 %L CC0 = v(7,3); RR = 2 %L C = Ellipse.newcircle(C0, R) %L CC = Ellipse.newcircle(CC0, RR) %L I = v(7,1) %L uu = CC0 - C0 %L vv = I - C0 %L M = C0 + uu:proj(vv) %L II = I:tow(M, 2) \pu $\tikzp{[scale=0.5,auto] \myaxes (-2,-1) (10,9); \mydraw C:draw(); \mydraw CC:draw(); \myseg C0 CC0; \myldot C0 90 C_0; \myldot CC0 90 C'_0; \myseg I II; \myldot I 270 I; \myldot II 45 I'; \myldot M 0 \phantom{i}M; } $ Seja $I = (7,1)$. Então $I ∈ C$ porque $(7-3)^2 + (1-4)^2 = 25$ e $I ∈ C'$ porque $(7-7)^2 + (1-3)^2 = 4$. Sejam $\uu = \Vec{C_0 C'_0}$, $\vv = \Vec{C_0 I}$, $\ww = \Pru \vv$, $M = C_0+\ww$, $I' = M + \Vec{IM}$. Então $\uu = \VEC{4,-1}$, $\vv = \VEC{4,-3}$, $\ww = \frac {\VEC{4,-1}·\VEC{4,-3}} {\VEC{4,-1}·\VEC{4,-1}} \VEC{4,-1} = \frac{19}{17} \VEC{4,-1} = \VEC{\frac{76}{17},-\frac{19}{17}}$, $M = (3,4) + \VEC{\frac{76}{17},-\frac{19}{17}} = (\frac{51}{17},\frac{68}{17}) + \VEC{\frac{76}{17},-\frac{19}{17}} = (\frac{127}{17},\frac{49}{17})$ $\Vec{IM} = (\frac{127}{17},\frac{49}{17}) - (7,1) = (\frac{127}{17},\frac{49}{17}) - (\frac{119}{17},\frac{17}{17}) = \VEC{\frac{8}{17},\frac{32}{17}}$ $I' = (\frac{127}{17},\frac{49}{17}) + \VEC{\frac{8}{17},\frac{32}{17}} = (\frac{135}{17},\frac{81}{17})$ \bsk \bsk 3) $\Pru\ww = \Pru(a\uu + b\vv) =$ $ \frac{\uu·(a\uu + b\vv)}{\uu·\uu} \uu = \frac{\uu·(a\uu) + \uu·(b\vv)}{\uu·\uu} \uu = \frac{a(\uu·\uu) + b(\uu·\vv)}{\uu·\uu} \uu = \frac{a(\uu·\uu) + b·0}{\uu·\uu} \uu = \frac{a(\uu·\uu)}{\uu·\uu} \uu = a \uu $ $\Prv\ww = \Prv(a\uu + b\vv) =$ $ \frac{\vv·(a\uu + b\vv)}{\vv·\vv} \vv = \frac{\vv·(a\uu) + \vv·(b\vv)}{\vv·\vv} \vv = \frac{a(\vv·\uu) + b(\vv·\vv)}{\vv·\vv} \vv = \frac{a·0 + b(\vv·\vv)}{\vv·\vv} \vv = \frac{b(\vv·\vv)}{\vv·\vv} \vv = b \vv $ $\Pru\ww + \Prv\ww = a \uu + b \vv= \ww$ \bsk \bsk 4) %L vv = v(1, -1/3) %L A = v(0, 1); r = Line.new(A, vv, -0.2, 1.2) %L B = v(0, 2); s = Line.new(B, vv, -0.2, 2.2) %L C = B + vv:proj(A - B) \pu % $\tikzp{[scale=0.5,auto] \myaxes (-1,-1) (7,3); \myseg r:t(-0.5) r:t(3.5); \myseg s:t(-0.5) s:t(6.5); \myseg A C; \myldot A 225 A; \myldot B 135 B; \myldot C 45 C; \mylabel r:t(2.5) 270 r; \mylabel s:t(3.5) 90 s; % \mydraw s:draw(); } $ Sejam: $r = \setofxyst{y = 1-\frac x 3}$, $A = (0,1)$, $s = \setofxyst{y = 2-\frac x 3}$, $B = (0,2)$. Então $d(r,s) = d(A,s) = \frac{d(A,B)}{1 + (-1/3)^2} = \frac 1 {10/9} = \frac{9}{10}$. \newpage 5) %L A = v(2, 5); B = v(1, 3); C = v(2, 3); D = v(2, 1) %L r = Line.new(v(0,3), v(1,-1), 0, 3) %L CC = v(3, 0); AA = v(5, 2) \pu % $\tikzp{[scale=0.5,auto] \myaxes (-1,-1) (6,6); \myseg r:t(-0.5) r:t(3.5); \myseg A B; \myseg B C; \myldot A 90 A; \myldot B 90 B; \myldot C 45 C; % \myseg AA D; \myseg D CC; \myldot AA 90 A'; \myldot D 90 D; \myldot CC 45 C'; % \mydraw s:draw(); } $ % a) \B(0.5 pts) Calcule $\cos(A \hat B C)$. % b) \B(2.0 pts) Encontre uma reta $s$ que passa por $D$ e que faz com % $r$ o mesmo ângulo que $A \hat B C$. 5a) $\cos(A \hat B C) = \frac {\Vec{BA}·\Vec{BC}} {||\Vec{BA}|| \, ||\Vec{BC}||} = \frac 1 {\sqrt{5}}$ 5b) $\VEC{1,-1} + 2\VEC{1,1} = \VEC{3,1}$ $s = \setofexprt{(2,1) + t\VEC{3,1}}$ \end{document} --[[ * (eepitch-lua51) * (eepitch-kill) * (eepitch-lua51) dofile "edrxtikz.lua" vv = v(1, -1/3) A = v(0, 1); r = Line.new(A, vv, -0.2, 1.2) B = v(0, 2); s = Line.new(B, vv, -0.2, 2.2) C = B + vv:proj(A - B) = A = B = r = s = C = r:t(0) V.__index.tow = function (A, B, t) return A+(B-A)*t end -- towards C0 = v(3,4); R = 5 CC0 = v(7,3); RR = 2 C = Ellipse.newcircle(C0, R) CC = Ellipse.newcircle(CC0, RR) I = v(7,1) uu = CC0 - C0 vv = I - C0 ww = uu:proj(vv) M = C0 + ww IM = M - I II = M + IM = ww * 17 = M * 17 = IM * 17 = II * 17 II = I:tow(M, 2) = uu r1 = Line.new(v(0, 0), v(2, 5), -0.2, 1.2) r2 = Line.new(v(2, 2), v(2, -1), -0.2, 1.2) r3 = Line.new(v(5, 1), v(3, -4), -0.2, 1.2) = r1:t(0) = r1:t(1) = r2:t(0) = r2:t(1) = r3:t(0) = r3:t(1) = r = r:draw() = r:proj(v(0, 1)) = r:proj(v(-2, 4)) = r:sym(v(0, 1)) = r:sym(v(-2, 4)) --]] % Local Variables: % coding: utf-8-unix % End: