Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2015-1-C2-lista-edrx-1.tex") % (find-angg "LATEX/2015-1-C2-lista-edrx-1.lua") % (defun c () (interactive) (find-LATEXsh "lualatex 2015-1-C2-lista-edrx-1.tex")) % (defun c () (interactive) (find-LATEXsh "lualatex --output-format=dvi 2015-1-C2-lista-edrx-1.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2015-1-C2-lista-edrx-1.pdf")) % (defun d () (interactive) (find-xdvipage "~/LATEX/2015-1-C2-lista-edrx-1.dvi")) % (defun e () (interactive) (find-LATEX "2015-1-C2-lista-edrx-1.tex")) % (defun l () (interactive) (find-LATEX "2015-1-C2-lista-edrx-1.lua")) % (defun eg () (interactive) (find-LATEX "2015-1-GA-lista-edrx-1.tex")) % (find-xpdfpage "~/LATEX/2015-1-C2-lista-edrx-1.pdf") % (find-xdvipage "~/LATEX/2015-1-C2-lista-edrx-1.dvi") \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{tikz} \usepackage{luacode} \begin{document} % \directlua{dofile "\jobname.lua"} \def\th{\theta} \def\sen{\operatorname{sen}} \def\arcsen{\operatorname{arcsen}} \def\Intsab{\int_{s=a}^{s=b}} \def\Barsab{\left.\right|_{s=a}^{s=b}} \def\nip{\par\noindent} {\setlength{\parindent}{0em} \footnotesize \par Cálculo 2 \par PURO-UFF - 2015.1 \par Lista de exercícios 1 - Eduardo Ochs \par Versão: 15/abril/2015 12:40 \par Links importantes: \par \url{http://angg.twu.net/2015.1-C2.html} (página do curso) \par \url{http://angg.twu.net/2015.1-C2/2015.1-C2.pdf} (quadros) \par \url{http://angg.twu.net/2015.1-C2/????.pdf} (livro) \par \url{http://angg.twu.net/2015.1-C2/2015-1-C2-lista-edrx-1.pdf} (lista, atualizada) \par {\tt eduardoochs@gmail.com} (meu e-mail) } \bsk \bsk \nip Lembre que estamos usando os seguintes materiais no curso: \par [RI1], [RI2], ..., [RI6]: vídeos do Reginaldo Demarque sobre integração \par [H]: Cristiane R.\ R.\ A.-F.\ Hernández - Apostila de Cálculo IIA (para EAD) \par [T]: Thomas/Weir/Hass/Giordano: Cálculo, vol.1, 11ª ed \nip Tem links pra eles (exceto o [T]) na página do curso. \bsk Digamos que $u = f(x)$ e $v = g(x)$. Então, por exemplo, $$\begin{array}{ll} \frac{d(u^4)}{dx} = 4 u^3 u_x \\ d(u^4) = 4 u^3 u_x \, dx = 4 u^3 \, du \\ \frac{d(u^{-1})}{dx} = (-1) u^{-2} u_x \\ d(u^{-1}) = - \frac{1}{u^2} u_x \, dx = - \frac{1}{u^2} \, du \\ \frac{d(uv)}{dx} = u_x v + u v_x = \frac{du}{dx} v + u \frac{dv}{dx} \\ d(uv) = v\,du + u\,dv \\ \end{array} $$ \bsk Sejam: $$\begin{array}{ll} c: = \cos \th, & \th = \arccos c, \\ s: = \sen \th, & \th = \arcsen s, \\ t: = \tan \th = \frac{\sen \th}{\cos \th}, & \th = \arctan s, \\ \end{array} $$ Então $ds/d\th = c$, $ds = c \, d\th = \sqrt{1-s^2} d\th$, $\frac{1}{\sqrt{1-s^2}} ds = d\th$, $\Int \frac{1}{\sqrt{1-s^2}} ds = \Int d\th = \Int 1\,d\th = \th$, $\Intsab \frac{1}{\sqrt{1-s^2}} ds = \th \Barsab = \arcsen s \Barsab$, % \nip O objetivo desta lista é {\sl complementar} os materiais acima em \end{document}