Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
-- This file: -- http://angg.twu.net/AGDA/2022HuC3.agda.html -- http://angg.twu.net/AGDA/2022HuC3.agda -- (find-angg "AGDA/2022HuC3.agda") -- file:///home/edrx/TH/L/AGDA/2022HuC3.agda.html -- Author: Eduardo Ochs <eduardoochs@gmail.com> -- Version: 20220207 -- Public domain. -- -- (find-angg "AGDA/find-agdatype.el") -- -- (defun a2 () (interactive) (find-angg "AGDA/2022HuC2.agda")) -- (defun a3 () (interactive) (find-angg "AGDA/2022HuC3.agda")) -- (defun a () (interactive) (find-angg "AGDA/2022HuC3.agda")) module 2022HuC3 where open import Level open import Function.Base using (flip) open import Relation.Binary using (Rel; IsEquivalence) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) open import Categories.Category.Core open import Categories.Functor.Core postulate catA : Category zero zero zero postulate catB : Category zero zero zero postulate R : Functor catB catA module A = Category catA module B = Category catB module R = Functor R postulate A : A.Obj postulate C : B.Obj postulate η : A A.⇒ (R.₀ C) -- (find-agdatype "R.₀ C") -- (find-agdatype "A A.⇒ (R.₀ C)") -- Local Variables: -- coding: utf-8-unix -- End: