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Abstract. Now pervasive in many mathematics and computer science
research domains, proof assistants have recently gained importance in
education, mostly during the college years. In this article, we propose
a new learning environment as a layer above the Lean proof assistant,
specifically targeting high-school level proofs. Drawing inspiration from
coherent logic and adaptations of proof assistants for teaching, such as
Lean-Verbose and Coq Waterproof, along with our own experience us-
ing proof assistants in higher education, we designed Yalep, a declarative
controlled natural language, with a minimal number of syntactic construc-
tions, which favors forward-chaining of facts. Yalep provides convenience
for type theory hiding, and functions defined on type subsets. This paper
presents the design choices and implementation of these features.

1 Introduction

Proof assistants are software that help users construct formal proofs and verify
their correctness. Proof assistants are used more and more for teaching proof
and proving1 in higher education, but their use in high school is still limited.
In [37], we presented a survey of the use of proof assistants for teaching, and we
showed that most of the work is done in the context of higher education. Very
few works are done in the context of high school. TPE [32], EasyProve [25], and
Edukera [28] have been partly designed for high school. As these tools provide
mainly a point-and-click user interface, the design of the input language was
not crucial. Sylvie Boldo et al. also designed a set of exercises for high-school
students about divisibility using the Coq/Rocq proof assistant and tested it with
three high-school students [5].

1 Mathematics didactics distinguishes between proof and proving [34]. Proving is the
process, proof is the concept. Yalep aims to support the teaching of both: what is a proof
(which, as opposed to a simple convincing argument, can be checked mechanically),
and also how to produce a proof (by training students). For the sake of concision, in
the paper we wrote “teaching proof” to mean “teaching proof and proving”.
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In this paper, we present the prototype of a tool called Yalep2 for teaching
proof in high school using a proof assistant. Our work is inspired by Lean-
Verbose [24], Coq Waterproof [43] and Isabelle Proof Buddy [18], which are
layers above a proof assistant for use in higher education. Other ingredients for
the design include our personal empirical experience with proof assistants in
research and/or higher education, as well as coherent logic. The main goal of
Yalep is to provide an environment for learning proof using a minimal language
that is close to the language used in high school.

The context of the design of Yalep is the French educational system, in
which all coauthors of this paper are involved. We chose to address high-school
students because we all encountered difficulties in our undergraduate courses
when it came to writing proofs.3 Addressing high-school proofs requires us to
develop a system that is easy to use, targeting students and teachers without
a background in computer science or logic. Despite the fact that a few design
choices may be specific to the French context, we strongly believe that many
ideas presented in the paper could be used in other countries where proof is
part of the curriculum.

In Section 2, we draw on the particularities of the high-school teaching con-
text to set out the requirements for our tool. In Section 3, we describe the main
characteristics and the design of our language. We then dive into more imple-
mentation details. Section 4 describes how Yalep renders the type-theoretical
foundations of the proof assistant as invisible as possible. Section 5 focuses on
how it represents functions whose domain and co-domain are type subsets.
Section 6 presents a didactic progression to validate our tool.

2 Requirements Geared Towards High School

Our ambition for Yalep is to provide an ecosystem that helps high-school stu-
dents understand the notion of mathematical proofs. This section provides a
specification for Yalep, along with the limitations of existing approaches.

Language design Usually, and notably in the French educational system, high-
school students are not familiar with logic and formal proofs, and very few
of them are familiar with programming languages. Wemmenhove [42] thus
points out that the steep learning curve of the syntax of an educative proving
tool is one major difficulty for students (and also math teachers). Conversely,
existing approaches using point-and-click user interfaces (such as Edukera),
despite their “intuitive” interface, have shown their limits in terms of efficiency
in the long term: some skills required for paper-and-pencil proofs may in fact be
hidden in the graphical interface [3,19]. We aim to design a language “natural

2 Yet Another Learning Environment for Proof.
3 Moreover, Villani (field medallist) and Torossian wrote in 2018 a

report about teaching mathematics (https://www.education.gouv.fr/
21-mesures-pour-l-enseignement-des-mathematiques-3242) which advocates to
give more room to proof in high school.

https://www.education.gouv.fr/21-mesures-pour-l-enseignement-des-mathematiques-3242
https://www.education.gouv.fr/21-mesures-pour-l-enseignement-des-mathematiques-3242
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enough” so it can be read by high-school students without prior training or
executing the proof script in a proof assistant, and as uncluttered as possible
without generating ambiguity, so students can use it while focusing on proof
rather than syntax.

We thus propose the following language requirements:

RL1 A declarative style for the proofs resembling what we could expect a high-
school student to write.

RL2 A restricted formal textual language: very few keywords, no synonyms
(different keywords referring to the same proof action, like obtain/fix for
eliminating existential).

RL3 No overloaded keywords (a same keyword referring to separate proof
actions depending on the context, like “let x :“ 0” / “let x P R”)

RL4 Syntactic sugar to hide the mathematical notations that are out of the scope
of high-school curriculum: for instance, avoid the @ symbol.

Expressivity and automation With a focus on high-school curriculum, the topics
covered by our proposal have to include at least: elementary number theory,
elementary numeric and literal computations, numeric functions (composition,
variations), numeric sequences, limits, and derivatives. In addition, our solution
should enable some (restricted) kind of automation, to transparently enable the
computer check to “skip” parts of the proofs that would not have been justified
by students.

This variety of topics gives the following requirements:

RA1 The technological choices should make it possible to consider extensions
to many secondary education subjects without too much development;

RA2 All proof steps for which the teacher considers that no justification is
needed should be accepted silently;

RA3 All proof steps for which the teacher expects a proof should be rejected
when submitted without a sub-proof;

RA4 The level of justification required should be configurable by the teacher.

Assistance The tool should assist the student in the process of writing a proof,
more specifically, the learning environment should:

RH1 display the current proof state, making explicit the known statements and
the current goal at a given point of a proof;

RH2 provide constant feedback to the student about the correctness of the proof
steps;

RH3 provide relevant explanations in case of errors;
RH4 help the student with the formal “rhetorical” part of the proof, providing

help with proof by cases/induction;
RH5 provide help for the “creative” part of the proof.
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2.1 The choice of Lean

Proof assistants, unlike (fully automatic) provers, offer facilities to adapt the
automation level to topics or users’ skills. Their interaction features also enable
a constant display of the proof state (requirement RH1).

Among the available proof assistants, we chose Lean, which provides the
following relevant features:

– A particularly flexible parser and delaborator (pretty printer), which is con-
venient to implement a controlled natural language (referred to as CNL in
the rest of the paper) [24];

– A large and unified mathematical library for having solid foundations with-
out reinventing the wheel;

– Lean4Web4 runs Lean in a web browser, enabling easy usage in class;
– A Lean module enables to interact with JavaScript/React widgets hosted in

a Visual Studio extension [26], which we exploit for some graphical display
and point-and-click interaction.

The work described in this paper could also be carried out using Rocq. We could
quite easily adapt Coq Waterproof to fit our design goals, and use Jscoq for the
web interface, as it also allows some interactivity [13]. Jscoq runs the proof
assistant on the client side, which allows dealing with many students with a
modest server.

3 Yalep, a Tiny Controlled Language for Forward Reasoning

Our proposition, Yalep, constructed as a layer over Lean, aims at describing a
set of statements followed by their proof.5 In order to give a taste of it, we depict
in Figure 1 a simple running example for the current section.

3.1 A “pseudo-natural” declarative language with very few variants

A proof exercise in Yalep is composed of a statement (under the form of As-
sumptions followed by a Conclusion), and its Proof. The syntax for proofs is
inspired by coherent logic [33], a subset of first-order logic that is as expressive
as first-order logic and has good meta-theoretical properties.

A proof (that can be hierarchical) is composed of a list of facts, delimited
using the connector ˛. It ends with the � connector. Proofs are mandatorily
expressed using forward reasoning.

Assumptions and proof statements are not mandatorily labeled. This brings
the user scripts closer to traditional pen-and-paper practice, where assumptions

4 https://github.com/leanprover-community/lean4web
5 Its grammar, intentionally restricted, is available in BNF format in the project reposi-

tory hosted at https://gricad-gitlab.univ-grenoble-alpes.fr/yalep/Yalep as well as other
examples in English and in French.

6 In the Yalep language, integer qualifies an element of Z.

https://github.com/leanprover-community/lean4web
https://gricad-gitlab.univ-grenoble-alpes.fr/yalep/Yalep
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Theorem product even "5. Proving (for all . . .)"
Conclusion: for all integer n, for all integer b, if n is even then n*b is even

Proof
let n be an integer
let b be an integer
assume n is even
˛ there exists an integer k such that n = 2*k
obtain such k
˛ n*b = 2*(k*b)
˛ there exists an integer q such that n*b = 2*q
˛ n*b is even

�

Theorem nn1even "7. Using (. . . or . . .) : proof by cases"
Assumptions: (forall integer n, n is even or n is odd)
Conclusion: for all integer n, n*(n+1) is even

Proof
let n be an integer
˛ n is even or n is odd
˛ if n is even then n*(n+1) is even
proof
assume n is even
˛ n*(n+1) is even by product even

�
˛ if n is odd then n*(n+1) is even
proof
assume n is odd
˛ n+1 is even
˛ n*(n+1) is even by product even

�
˛ n*(n+1) is even

�

Fig. 1: A taste of Yalep proofs.6

are generally only named when they represent key facts or as abbreviations to
avoid copying long statements (Requirement RL1).

To meet the requirements of the French high-school curriculum, statements
and facts are expressed in plain English (or French) using verbal formulations
that correspond to the usual symbols (e.g., logical symbols ^,_,@, D, ùñ, ðñ,
and number set notations N, Z, Q, R) to which pupils are not yet supposed
to be exposed, depending on their grade level (RL4). Our tool also extends the
relative quantification (like @x ą 0, . . . ) already available out of the box in proof
assistants, to tactic constructs (such as let x>0 ; let n be an integer, etc. ) (RL1).

Predicates can be written in sentential form, such as n is odd in Figure 1.
Additionally, to fulfill requirement RL2, and unlike other CNL, we chose to

provide, if possible, a unique syntactical construct for each proof action. As an
example, our language does not allow writing “let x P R such that x ` 2 ą 0”,
since the same semantics can be achieved using let xPR, assume x+2>0.

In our language, we do not allow imperative commands such as “Unfold
the definition of . . . ” or “Let’s rewrite the goal” that are often used in proof
assistants. As an example, in Figure 1, the fact ˛ n is even or n is odd has
to be stated instead of saying “apply assumption 1 to n” as possible in Lean
Verbose/Coq Waterproof.

In the following sections, we will explain the underlying choices behind this
syntax and the automation.
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3.2 A language based on forward chaining

Backward reasoning consists of proof steps (or tactics in a proof assistant) mod-
ifying the goal or creating new goals, whereas forward chaining corresponds to
proof steps acting on the assumptions, or deducing new facts from assumptions
in the context.

In usual mathematical practice, as well as in proof assistant scripts, steps
of both kinds are freely mixed. Occurrences of backward reasoning are usu-
ally explicitly introduced, for instance, with “since . . . it suffices to prove that
. . . ”. However, since proof beginners tend to confuse necessary and sufficient
conditions, some teachers try to stick to forward reasoning, at least as far as
the written trace of the proof is concerned. In the proof search phase, however,
backward chaining is frequently used orally.

This analysis led us to propose a rather constrained language that “syntac-
tically avoids” backward reasoning in final proofs; whereas it enables “proof
holes” to mimic the “bottom to top” blackboard usage, frequently used by
teachers. As an example, case disjunction is not triggered by an a priori an-
nouncement like “Let’s discuss whether n is even or n is odd”. Instead, the user
has to state (and possibly prove) three facts: ˛ P ùñ R ; ˛ Q ùñ R and ˛ R.

Mixing backward and forward Our language discards as many backward tactics as
possible. However, two of them must remain to maintain expressivity, namely
let and assume, corresponding respectively to the introduction rules of the con-
nectors @ and ùñ.7 Since they introduce a new object or hypothesis into the
context, and consequently modify the goal, they have no forward equivalent.8

Discussion From the pedagogical perspective, favoring forward chaining has
the following advantages:9

– It restricts the number of commands (RL2): instead of learning a list of
tactics (one per backward chaining command), students only learn the sole
forward chaining command, ˛, that inserts a new fact in the proof context.

– Students have to explicitly announce new facts (RL1): for instance, to prove
R by using the assumption P or Q, they should explicitly announce (and
prove) ˛ P ùñ R and ˛ Q ùñ R (like a pen and paper proof). The coun-
terpart here is that the proof assistant does not help/assist the user in the
task of discovering new goals.

– Forward facts can be written in any order, provided that they are provable
in the context at the moment they are needed. The drawback here is that
it may favor “unstructured proofs”. In backward automated proofs, only
“opened” sub-goals can be proven.

7 In fact, these two constructions are the same in proof assistants implementing the
type-theory paradigm of “propositions as types”.

8 This ability to introduce @ and ñ and to create sub-proofs distinguishes our language
from flat two-column proofs [16].

9 As an illustrative comparison, we provide, in the project documentation, two variants
of an inductive proof that every natural number is either even or odd.
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– Forward tactics do not modify the main goal; instead, they make an ac-
cumulation of facts in the current context. Each fact can be justified by a
“sub-proof”. This is the analogue of sub-goal creation in backward chain-
ing.

3.3 Implicit proof actions

Yalep also provides additional features so to fulfill requirement RA2:
– It implicitly introduces or eliminates some of the logic connectors.
– Connectors � and ˛ allow to structure proofs and trigger parametrized

automation.

Implicit versus explicit connectors Table 1 depicts usual logic connectors’ usage
in Yalep. The indication “(silent)” means that:

– if the connector appears in the goal, the presence of the premises in the
context is enough to state a new fact introducing the connector.

– if the connector appears in a hypothesis, one can state a new fact following
from the elimination of the connector, without justifying anything.

Table 1: Implicit or explicit introduction or elimination of connectors in Yalep
Connector Appears in goal Appears in assumption
P and Q (silent) (silent)
P or Q (silent) (silent)
P ùñ Q assume P (silent)

@x P E,Ppxq let x P E (silent)
Dx P E,Ppxq (silent) obtain such x

P ðñ Q (silent) (silent)

As on paper proofs, dealing with conjunction is completely implicit, and
introduction of existential is implicit (Dx P E,Ppxq needs no justification as long
as the context contains a P E and a proof of Ppaq). For disjunction, usually,
on paper, the introduction rule is implicit, but the elimination of disjunction
(reasoning by cases) often is explicit. We decided to make both implicit, which
contributes to reducing the language.10

Finally, similarly to coherent logic [33], we allow the implicit combination of
universal quantifier and implication. For example, if a fact of the form @x,H1pxq^

. . . ^ Hnpxq ñ Qpxq is known and facts H1paq, . . . , Hnpaq are in the context, one
can conclude Qpaq without any explicit justification.

The introductions of the universal quantifier and implication need to remain
explicit, as they are usually explicit in paper proofs, and rendering the intro-
duction of the universal quantifier implicit would require automatic naming.

10 More precisely, case disjunction is implicit but not automatic; if P or Q lies in the
context, it is up to the user to decide whether to create or not and prove new facts

˛ P ùñ R and ˛ Q ùñ R so that subsequent fact ˛ R can be asserted without
further explicit justification.
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One could decide to introduce implicitly x when the goal is @x,Ppxq and x is
available. But that would introduce confusion between the name of the bound
variable and the name of the arbitrary variable, and the system would assist the
student too much.

The rule for eliminating the existential quantifier needs to be explicit, because
it introduces a new object. Precisely, it is often a pedagogical objective to expect
from the student a proper naming of the newly introduced free variable, not
necessarily named after the bounded variable, especially if a same existential
definition is used twice and they should choose two different names (as in
“assume that m and n are even. Obtain k and k1 such that. . . ”).

Solving facts As we give priority to forward chaining, the syntactic construction
to create a new fact (˛) has a central role. The user can then solve this subgoal
in three different ways:

– either opening a whole nested sub-proof by the construct (proof . . . �).
– either by using one of the two provided types of explicit short justifications,

those that relate to a statement or a fact (we use the keyword since as in
since x > 0) and those that relate to a statement or a fact name (we use the
keyword by as in by triangle inequality).

– either silently, with no justification at all, by relying on the automation.
We provide a syntactic construction (�) that is similar to Lean (calc) or Lean

Verbose (Calc) or Waterproof (&) tactics. It enables chaining several relational
propositions by transitivity.11

Unlike Lean Verbose (that uses the current computation to solve the current
goal), our (�) keeps the pure forward chaining style, and introduces a new fact
independently of the current goal. It even feeds the context with intermediate
calculations. For example:

� x ď y

< z

will add three new facts to the context: x ⩽ y , y ă z
and x ă z.

Discussion Let us firstly remark that all the (silent) in Table 1 demonstrate the
minimal need for additional syntax (Requirement RL2).

Making elimination implicit also enables a step towards coherent logic [33],
in which proofs are of coarser granularity than those in, for instance, natural
deduction.12 As a simple example, A ^ B ^ C is automatically split onto tA,B,Cu

as soon as it enters the context, which saves the double elimination of ^.
Some teachers may find the implicit elimination of connectors @, ùñ, ðñ,

or _ too permissive (RA3). This advocates for a (yet to be developed) “à la carte”
justification, according to some teacher-based parametrization (RA4), because
it depends on the contextual “base of knowledge”.

11 The term is somewhat mathematically abusive since we allow combining different
relations, e.g. x ⩽ y ^ y ă z ùñ x ă z.

12 This approach tending to enlarge proof granularity [29] is similar to assertion level
proofs [17], implemented in Tutch [1] or Omega [31,2].
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3.4 User interface, interaction and automation

Proof automation In this section, we consider the choices toward the objective of
requirement RA2. The design choice is to rely on Lean powerful tactics, instead
of relying on a general-purpose prover (like Lurch [8], Naproche). We think
that this choice will facilitate the fulfillment of requirement RA3, and produce
relevant feedback.

Our tool provides different kinds of automation that are triggered silently,
which include:

– Elimination of connectors such as and, or, ùñ (already discussed in the
previous section).

– Termination of unfinished proofs (from the proof assistant point of view,
but that should “look finished” for the user). It is generally triggered by the
end-of-proof or end-of-sub-proof token � , but can be called by other tactics.
The implementation of the tactic itself is an ordered collection of trial and
error attempts, using connector introduction, basic properties of operators
(commutativity, associativity) or “trivial” lemmas (such as x ą 0 ñ x ě 0),
and the Lean tactic for solving tautologies.13

– Justification of numerical facts: whenever a stated fact is left unjustified, it
triggers native Lean tactics performing numerical computations and apply-
ing lemmas from the math Lean library targeting the high-school topics.

– Proof of legality of a function application: it derives facts from assumptions
and membership class inference. (see Section 5)
Some other automation tactics are triggered by some idioms of our language.

For instance, on Figure 1, n is odd is elaborated into a library definition, and by
product even has the effect of trying to prove the statement using the provided
predicate. Other similar behaviors are linked to since or by induction.

User interface and facilitation The user already benefits from the native real-time
display of the “proof state” (current assumptions and goal) provided by the Lean
Proof assistant, customized thanks to the configurability of the pretty printer.

Considering that in the research phase of a proof, a student is frequently
led to conduct backward reasoning, either orally or in draft form, we propose
a point-and-click user-friendly way to trigger “backward-style” actions, which
insert text into the proof script in our forward style.

The integration of interface buttons via JavaScript widgets hosted in a Visual
Code extension communicating with the Lean Server is made possible by the
Lean ProofWidgets layer [26]. For instance:

– when selecting the goal, the system displays a button to insert an appropriate
“tactic” introducing the main connector.

– when selecting an assumption in the proof state, a button is displayed to
insert a tactic eliminating the main connector of the assumption.

13 This implies that Yalep is not suitable for teaching the fine-grained rules of logic. Many
other tools are available for this purpose [14,12,27,38,36,23,20,35,22,40,39,41], see [37]
for further details.
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In our example, starting with the incomplete proof on the left of Figure 2,
clicking on n is even or n is odd will expand the hole ? with the proof
displayed on the right-hand side.

˛ n is even or n is odd
?

˛ n is even or n is odd
˛ if n is even then n*(n+1) is even

proof
assume n is even
?

�
˛ if n is odd then n*(n+1) is even
-- similar

Fig. 2: Backward reasoning using proof widgets.

4 Hiding Types from High-school Students

In type theory — which constitutes the basis of proof assistants such as Rocq
or Lean — each object x comes with a type T, and the judgement x : T is not
a proposition; in contrast, usual educational presentation of mathematics relies
on set theory, where all objects are un-typed sets, and when x and T are two
sets, the proposition x P T can be proved or disproved. In contrast, Yalep allows
to state and prove

?
2 < Q.14 Without any additional interface, students would

have to grasp the subtle nuance between x : R and x P R` ; the tight seal
between types would lead to weird considerations when mixing different types
of numbers, e.g., pp2 : Nq ą 0q could be rejected when pp2 : Rq ą 0q is expected
; functions defined between types do not model accurately usual high-school
functions defined between sets as they would have to be “type-partial” (see
next section).

Yalep avoids any type manipulation. On the cosmetic side, we exploit
the Lean ability to implicitly infer any type ascription, either in statements
(@x P E,Ppxq elaborates as @x : T, x P E ùñ Ppxq), in tactics (let x P E will
elaborate as let x:T \ assume x P E ) or in theorem statements (Theorem test
(. . .) Assumptions: (x P E) (. . .) will elaborate as theorem test (x:T) (h : x

P E) (. . .)). In each case, the type ascription x : T does not appear explicitly,
replaced by a set-based predicate (x P E).

On the theoretical side, one step towards hiding types is to consider several
types as subsets of a unique type. The special case of number types is essential.
Proof assistants like Lean, Rocq, usually represent sets of numbers (N,Z,Q,R)
as “hermetic” types, resulting from their construction. T. Portet and Y. Bertot
presented a formalization of numbers where the only number type to be con-
sidered is the Real type [4]. In their proposition,N is considered as an inductive
predicate over Real, which allows to keep native inductive proofs and to re-
cover recursive sequence definitions by means of an additional layer. Since the
stability of operations overN becomes propositional (px ` y PNq is a statement

14 Two different proofs of this statement are available in the project repository.
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to be proved, whereas the judgement px ` y : Natq was definitional), automatic
proof of such statements is triggered by a type class inference mechanism.

Yalep implements some of the above ideas, taking into account the require-
ments for high-school proofs. We keep the idea of a unique number type, of
whichN, Z, Q, R are subsets, and the solution of using class inference to facil-
itate automation triggering. However, we do not defineN inductively. Rather,
for any types T and E, provided there exists an injective mapping c : E Ñ T,
we define the set of objects of type E with sE :“ tx : T | Dy : E, x “ cpyqu. For
numbers, we denote our reference type by Number (presently an alias of Real but
it may evolve to the type Complex in the future).

This simpler representation has the advantage of applying directly and in
the same manner to N, Z, Q and R, with the adaptation of the library theo-
rems specific to number type being reduced to a matter of coercions. However,
inductive proofs and recursive functions are not native in Yalep and require in-
termediate lemmas. In addition, we are not aiming at preserving computability,
whereas it is an objective of Portet and Bertot’s work.

5 Partial Functions in Yalep

In proof assistants based on type theory (Lean, Rocq, . . . ), functions are total
over a type (let’s say “type-total”): they must be defined at any point of the
domain type. In mathematics education, functions are total over a set (let’s say
“set-total”). A set being a predicate on a type, these functions would have to be
represented in type theory as “type-partial”.

Various approaches have been proposed to handle this situation.
Mathlib for Lean or Math Components for Rocq give a default value (e.g.,

0) to functions where they are not defined, and subject associated theorems to
assumptions that guarantee that function arguments belong to their domain.
For example, in Lean’s Mathlib, the inverse of p0 : Qq is defined to be 0, but
the predicate a ¨ a´1 “ 1 will only hold if a , 0. Other ways of dealing with
this issue include attaching a proof obligation to each relation involving terms
that may be undefined [32] (implemented in TPE), or simulating a logic of
partial terms with partial setoids and formalizing “directed quasi equalities”,
then automating their proofs [9].15 In this last paper, Sacerdoti-Coen and Zoli
specify that they do not consider the Rocq type theoretic approach (also possible
in Lean) to encode the function domain into the type because it makes visible
that a proof term is an argument of the function. We propose exploring this
approach anyway, but hiding the proof term in suitable syntactic sugar with
automation.

Considering that students are usually supposed to verify that a term is
defined before writing it, and that set-theoretic presentation of a function is a
triple f :“ pD,F,Gq encoding the domain D, the co-domain F, and the graph
G Ď D ˆ F, we aim at obtaining a Lean formalization of a type-partial function

15 A synthetic presentation can also be found in C. Paulin’s lecture https://www.lri.fr/
„paulin/LASER/coq-slides4.pdf

https://www.lri.fr/~paulin/LASER/coq-slides4.pdf
https://www.lri.fr/~paulin/LASER/coq-slides4.pdf
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f P FD, that, associated with suitable automation and syntactic sugar, satisfies
the following conditions:

PF1 The internal representation of f contains its domain and co-domain, and
should expose them whenever it is required;

PF2 To write the term f pxq the context must contain a proof of x P D, should it
be proven silently or by the user;

PF3 The internal representation of f contains a proof of @x P D, f pxq P F;
PF4 Usual notations for function application and definition are preserved (RL4).

The rest of the section is devoted to the design of our library for partial
functions.

5.1 A first proposition: functions between subtypes associated to sets

Consider a set D and a set F of elements of respective types α and β, and that we
want to model a map from D to F. The sub-type associated to D:Set α , denoted
ÒD, is the type

ÿ

x:α

px P Dq of dependent pairs xx:α,hx: x P Dy. As ÒD is a type,

as well as ÒF, we can consider the type-total function f : ÒD Ñ ÒF which embeds
all the required information. This representation satisfies PF1, PF2 and PF3 and
also, on the developer side:
(a) eases the definition of a function f P FD such that @x P D, f pxq “ . . . (pro-

vided a proof that @x P D, f pxq P F ). Example:
def f:Òr2;+8rÑÒr3;+8r:=fun xx,(hx:xě2)y=>xxˆ2,((by nlinarith):(xˆ2 ě

3))y creates the square function f from r2; `8r to r3; `8r ;
(b) eases the definition of a function application expression f pxq, provided a

proof that x P D is given.
Example: (f x3,(by norm num:(2:Real)ď3)y).valwould mean f p3q ;

(c) allows f pxq to be definitionaly equal to its expression (e.g. x2) (their equality
does not require any proof). Example: Lean would automatically unify the
previous expression with 32.
Let’s now examine (a) and (b) from the student side: the examples above

show that the underlying formalization has to be encapsulated to satisfy PF4.
Regarding (b): each time the user wants to apply f to some x : α, she has to
express f xx,hx: x P Dy, that is, prove that x P D, which is tedious in practice
(even if it has been proved once, it must be repeated each time); additionally
the notation is heavy. Thus, we combine this formalization with:

– A tactic that automates the proof of x P D. It calls the Lean tactic assumption,
so that proving the fact once is enough for all occurrences of f pxq. It will also
attempt to perform basic numerical calculations, as well as class inferences,
to determine membership in a subset of numbers.

– Some syntactic sugar to hide the original notation. We take advantage of the
fact that, while proof assistants use the f x notation for function application,
the usual mathematical notation is f pxq. So, parsing fpxq will discharge the
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proof goal hx : x P D and then expand to f xx,hxy. 16 Note that to avoid
parsing conflicts, we chose to use here a special Unicode pair of parentheses.
Regarding (a), to define a new function, the user has to prove that f pxq P F

provided that x P D. To avoid this, we provide a tactic automating this task
and some syntactic sugar to create a new function while triggering the tactic. In
Yalep, our previous function then becomes:

let’s define the function f from r2;+8r to r3;+8r that maps x to xˆ2

5.2 A second formalization for partial functions

The previous formalization still has a few drawbacks:
– f : ÒD Ñ ÒF is a type ascription. Type manipulation is exposed to the user.
– Given f : ÒD Ñ ÒF and g : ÒD’ Ñ ÒF’, f and g have distinct types, thus

homogeneous equality f “ g does not typecheck, even if D “ D1 and
F “ F1 propositionally (it does not make sense to prove or disprove it).17 For
example, suppose that for f : D Ñ F we denote by f 1 the derivative of f ,
whose domain is D1

f :“ tx P D | f is derivable at xu. Then it is not possible
to define the set of functions t f : D Ñ F | D1

f “ D and f “ f 1u.
To tackle this, we bundle the function domain, co-domain, and a type-total

function into a structure (Map α β). Any function from a set of elements of type
α to a set of elements of type βwould have type (Map α β).

structure Map (α β : Type) [i:Inhabited β] where

func : α Ñ β
domain : Set α
codomain : Set β
prop : @ x P domain, func x P codomain

prop out : @ x:α, x < domain Ñ func x = i.default

For instance, two functions g : r1, 2s ˆ Q` Ñ Z and h : N ˆ Q´ Ñ r0; `8r

would have the same type Map (Number ˆ Number) Number.
The main drawback of this structure is the absence of automatic proof obliga-

tions when applying a function. We restore these proof obligations by defining
two mutually reciprocal functions σ and ζ, allowing to switch from one repre-
sentation to another. Then, applying and defining a function within the second
representation reduces to the same activities as within the first one:

– Applying a function:σmaps (u : Map α β) to rσpuq : Òpu.domainq Ñ Òpu.codomainqs

well-defined by: @xx, hy P Òpu.domainq, σpuqxx, hy “ xfuncpuqpxq,proppuqphqy.

16 f xx,hxy being a pair xy:β,hy: y P Fy, the macro f pxq also silently applies the
projection Subtype.val := fun xy,hyy => y when needed, to avoid students ma-
nipulating directly objects of sub-type ÒF.

17 It might have been worth considering heterogeneous equality here, but we did not
investigate further since it might have led to considering two different equalities, and
run into complications about congruence closure [30].
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Applying u to x means applying σpuq to xx, h : x P Dy, thus the opera-
tion generates the obligation to prove x P D. The user oriented macro up¨q

expands just like σpuqp¨q.
– Defining a function: Conversely, ζmaps a function f : ÒD Ñ ÒF to a structure
ζp f q of type Map α β, defined by:
• domainpζp f qq “ D and codomainpζp f qq “ F

• @x, funcpζp f qqpxq “

#

Subtype.val p f xx, hxyq 18 if phx : x P Dq

b (an arbitrary fixed value of type β) if phx : x < Dq

• proofs of proppζp f qq and prop outpζp f qq are straightforward.
Like in the first formalization, a specific syntax allows to define a new appli-

cation u :“ ζp f q where f is built as described in §5.1. But two technical difficulties
arise: first, if x P D. . .. blocks automatic unification and forces a call to the tactic
apply dif pos judiciously placed in the appropriate tactics.19 Second, the state-
ment uPFˆD, which means u.domain=D and u.codomain=F, is propositional (rather
than definitional): once again, a tactic has to be triggered to use it when needed.

In our solution, a macro providing an interface for function definition also
automatically generates, for each defined function, two lemmas that help tactics
to unify upxq with its expression, and u.domain and u.codomain with concrete
values to which they may be propositionally equal.

For instance, the last example of section 5.1 generates:18

– f.def: @xPr2;+8r, ((sigma f) xx, . . . y).val = xˆ2
– f.domains: f P r3;+8rˆr2;+8r

5.3 Consequences

Defining function properties Each definition of a property of a function may
require its own automation. Once again, we hide the automation in the syntax.

For example, defining the syntax “ f is increasing on D1” requires proving
that D1 Ď D. If not, in the term @xPD’,@yPD’, xďyùñfpxqďfpyq, the automation
associated to fpxq will not be able to deduce that x P D from x P D1.

The need of contextual connectors ( and , ùñ) As pointed out by Wiedijk [45], when
elaborating P ùñ Q or pP and Qq, the automation will be stuck if elaborating
Q requires a proof of P. For example, to be able to elaborate statements like
@x, x , 0 ÝÑ f pxq , 0 or @x P R, x2 ` 1 , 0 and f

`

x2 ` 1
˘

ą 0, the automation
hidden in f p¨q should access respectively proofs that x , 0 and x2 ` 1 , 0.
For that reason, we redefine the implication P ùñ Q as @ph : Pq, Q and the
conjunction pP and Qq to mean Dph : Pq, Q.

18 Subtype.val is the projection fun xy,hyy => y . When z:ÒF , z.val is syntactic
sugar for Subtype.val z .

19 The decision procedure generated by if x P D would demand that proposition
x P D is decidable, which is not the case in general, except in classical logic, at the
cost of marking definition noncomputable.
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6 Validation

During the design of Yalep, we also developed a pedagogical progression in-
tended for tenth-graders. Its goal is to introduce the main proof structures
gradually, without emphasizing formal logic. Our running example 1 is part of
this progression: it illustrates two exercises designed respectively to present the
introduction of quantifier @ and the elimination of connector or (proof by cases).
The whole progression culminates in the classical proof of irrationality of

?
2

(as integer parity and this particular proof are parts of the French high-school
curriculum). This proof is the classical proof used as an example and will allow
the reader to compare with other proof assistants [31,32,44]. To demonstrate the
readability and accessibility of Yalep, we also reproduced the so-called informal
proof proposed by Barendregt in the first chapter of [44], which is based on the
fact that there is no infinite descending sequence of natural numbers.20

In June 2025, the tool was tested during a 6-hour workshop at IRIF21 spread
over a week, with tenth-grade students. Students engaged enthusiastically in
the proof tasks and the goals of supporting an introduction to proof course
at the high-school level, while leaving plenty of autonomy were achieved. We
felt that students really grasped the main ideas about proof, but were often
hampered by their weaknesses in literal arithmetic. However, the main technical
limitations we encountered were the current inability to configure the scope of
the automation – some incoherently ordered proof steps have sometimes been
validated simply because the tool could prove them to be true – and the lack of
optimization leading to poor responsiveness for an interactive tool on ageing
machines.

7 Related work

TPE [32] is a complete environment geared towards teaching proof. Proof steps
are checked with Otter. Since it only provides a “point-and-click” end-user
interaction mode, there is no need for defining and parsing an input language.

As for minimality, the syntax of Tutch [1] is close to Yalep’s since the tool was
conceived with the same objective in mind. However, the tool does not seem to
handle any other theory than natural numbers, logic, and lists.

Lean Verbose [24] and Coq Waterproof [43], respectively based on proof
assistants Lean and Rocq, provide other controlled natural languages (CNL)
with comprehensive libraries. They both propose teacher configuration and
help commands. Coq Waterproof also presents a proof/HTML mixed document
interface. Both adapt the language to make the transfer to paper proof effective,
but none of them tries to restrict the language to a minimal set of constructs.

20 The detailed progression as well as all mentioned proof scripts — solutions to exercises
in the progression, the standard proof and the Barendregt proof of irrationality of

?
2

— are available in the project repository.
21 a French computer science research lab in Paris
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Figure 11 shows a comparison between Lean Verbose and Yalep based on a
proof of the squeeze theorem.

Example "The squeeze theorem. (Lean Verbose)"
Given: (u v w:NÑR) (ℓ:R)
Assume: (hu:u converges to ℓ)

(hw:w converges to ℓ)
(h :@n,u nďv n) (h’:@n,v nď w n)

Conclusion: v converges to ℓ
Proof:
Let’s prove that @ε>0, DN,@něN,|v n-ℓ|ďε
Fix ε>0
Since u converges to ℓ and ε>0 we get n1
such that h1:@něn1,|u n-ℓ|ďε
Since w converges to ℓ and ε > 0 we get n2
such that h2:@něn2,|w n-ℓ|ďε
Let’s prove that max n1 n2 works:

@němax n1 n2,|v n-ℓ|ďε
Fix němax n1 n2
Since němax n1 n2 we get
(hn1: něn1) and (hn2: něn2)
Since @něn1, |u n-ℓ|ďε and něn1 we get
(hn1ℓ:-εďu n-ℓ) and (hn1d:u n-ℓďε)
Since @něn2,|w n-ℓ|ďε and něn2 we get
(hn2l:-εďw n-ℓ) and (hn2d:w n-ℓďε)
Let’s prove that |v n-ℓ|ďε
Let’s first prove that -εďv n-ℓ
Calc -εďu n-ℓ by assumption

ďv n-ℓ since u nďv n
Let’s now prove that v n-ℓďε
Calc v n-ℓďw n-ℓ since v nďw n

ďε by assumption
QED

Theorem squeeze "The squeeze theorem (Yalep)"
Assumptions:
(uPRˆN)(vPRˆN)(wPRˆN)(ℓPR)
(u converges to ℓ)(w converges to ℓ)
(for all natural n,upnqďvpnq)
(for all natural n,vpnqďwpnq)
Conclusion: (v converges to ℓ)

Proof
let ε > 0
˛ there exists a natural n1 such that
for all natural n,if něn1 then |upnq-ℓ|ďε

obtain such n1
˛ there exists a natural n2 such that
for all natural n,if něn2 then |wpnq-ℓ|ďε

obtain such n2
define n0:=max n1 n2
˛ for all natural n,if něn0 then |vpnq-ℓ|ďε
proof
let n be a natural
assume ně n0
˛ |upnq-ℓ|ďε since něn1
˛ |wpnq-ℓ|ďε since něn2
� -εďupnq-ℓ

ďvpnq-ℓ
� vpnq-ℓďwpnq-ℓ

ď ε
˛ |vpnq-ℓ|ďε

�
�

Fig. 3: Comparison of LeanVerbose and Yalep for the squeeze theorem. The proof in Lean
Verbose is extracted from [24]. In the header, when data are defined by a type ascription
in Lean Verbose (ℓ:R), the same is obtained by a predicate in Yalep (ℓPR)(for that reason
it appears in the section ’Assumptions’). The type ascription (ℓ:Number) exists in the
underlying Lean representation but is implicitly inferred. Lean Verbose expects a precise
justification of each fact, expressed in a rich syntax, whereas Yalep allows it to be omitted.
In Lean Verbose, some specific syntax is dedicated to backward introduction of existential
quantifier and conjunction, as a few (respectively Let’s prove that . . . works and
Let’s first prove . . .)

Diproche [7] also proposes a CNL geared towards education. The most
advanced student error diagnosis technology we know of is “antiATP” technol-
ogy.22 As the verification engine is specially tailored to enable better control over
feedback, Diproche does not rely on an existing and maintained comprehen-
sive library. As a consequence, available topics, currently limited to elementary
number theory, set theory, and geometry, may be difficult to extend. On the
interaction side, Diproche does not display the proof state.

Proof Buddy [18] uses the declarative language of Isar but is geared towards
learning logic, leaving the rules of meta-logic apparent.

22 Carl calls the principle of “buggy rules” antiATP, which consists of adding students’
frequent errors as lemmas and checking whether automation solves the goal. See
also [6,37] for details.
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While proposing a non-ambiguous syntax with minimal redundancy, Yalep
does not aim at recognizing proofs nor statements expressed in natural lan-
guage nor distinguishing ambiguities that arise from such a language, like
in [46]. As ambiguities of natural language are additional hurdles to learning
proof [10,11,15], we propose to separate the learning of logic from the accul-
turation to mathematical style. Our goal is hence very different from that of
Naproche [21], or even Diproche, which uses the same syntax for the introduc-
tion of variables/assumptions and the elimination of the existential quantifier.

Finally, to our knowledge, none of the cited tools, based or not on type theory,
claim to make proofs involving functions defined on subsets of R accessible to
high-school students.23

Other comparisons of Yalep with Lean Verbose, Coq Waterproof, and Diproche
are available in the Yalep repository.

8 Conclusion and Future Work

We have presented Yalep, a Lean-based prototype of a pedagogical environment
for high-school students to learn the concept of proof using a proof assistant.
Yalep’s input language for proofs is inspired by coherent logic, and designed to
favor forward chaining of facts.

In addition to text-based proof writing, Yalep provides point-and-click helpers
and controlled automation. It also offers a formalization of the notion of func-
tion (from sets to sets), and an ambient type Number that prevents explicit type
coercion. All these features were developed with ease of use for high-school
students in mind, as well as similarity to pen-and-paper proofs, and were tested
by tenth-grade students.

Yalep has several limitations: automation can be slow, especially when it
fails to prove the statement proposed by the student; and it is sometimes too
powerful in automatically proving statements that the teacher would require a
justification for. Moreover, our formalization of numbers is not geared toward
computations.

In the future, we plan to work on improving the automation to make it more
configurable by the teacher. Our next goal is to improve the feedback given to the
students (including error messages) beyond the success/failure diagnostic. We
will also evaluate the pedagogical impact of our tool (using students/teachers
surveys, pre- and post-tests, analysis of student productions), in collaboration
with maths teachers and experts in math education.

Acknowledgments This work is partially funded by the ANR Project APPAM
ANR-23-CE38-0009-01. Yalep front-end is inspired by Lean Verbose and even
relies on some pieces of its code, specifically: parts of its parser for theorem
headers and the ’Calc’ environment, and some helper functions.

23 At the time of submitting the paper, Massot informed us that he tweaked Lean Verbose
to make type number coercions transparent to the student and provided a convincing
proof that

?
2 < Q. Due to time constraints, we could not investigate deeply.
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36es Journées Francophones des Langages Applicatifs (JFLA 2025). Roiffé, France
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Appendix A The syntax in BNF

Figure 4 describes the syntax of Yalep’s proof language in BNF form. The root
symbol is proof. ? is a placeholder for a goal which remains to be proved.
The grammar for terms is just the one of Lean, extended with domain specific
notations (n is odd for odd n, Absurd for False, and for ^, . . . ).

xproof y ::= ‘Proof’
xtacticy* xfinalTacticy?
�

xtacticy ::= ‘let’ xidentRelativeBindery

| ‘let’ xidenty ‘be’ xnumberTypey

| ‘assume’ xpropy

| ‘obtain such’ xidenty
| ˛ xassumptionNamey? xpropy

xjustificationy?
| � (xcalcStepy)*
| ‘define’ xidenty ‘:=’ xtermy

xtermy ::= xpropy

| xproof termy

| ... terms of other types...

xcalcStepy ::= xpropy xjustificationy?

xassumptionNamey ::= xidenty ‘:’

xnumberTypey ::= ‘a number’
| ‘a’ (‘real’ | ‘rational’ | ‘natural’)

‘number’?
| ‘an integer’?

xidentTypey ::= xnumberTypey xidenty
| xidenty (‘of type’ | ‘:’ ) xtypey

| xidenty xidentRelativeBindery

xidentRelativeBindery ::= xidenty P xtermy

| xidenty ą xtermy

| etc

xjustificationy ::= ‘since’ xpropy

| ‘since [’ xpropy(,xpropy)* ‘]’
| ‘by’ xidenty
| ‘by [’ xidenty(,xidenty)* ‘]’
| ‘by induction’
| ‘by cases’
| ‘by cases :’ xpropy ‘or’ xpropy

| ‘proof’ xproofBodyy �

xfinalTacticy ::= ‘witness’ xtermy ‘works’
| ‘?’

Fig. 4: BNF grammar
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Appendix B A proposed high-school progression

B.1 A pedagogical progression

Table 2 presents a pedagogical progression for high-school students. We do not
want to teach the reasoning rules using abstract propositional logic, but rather
with concrete mathematical statements. We decide to focus on the topic of parity,
which is a classical topic in high-school mathematics and allows introducing dif-
ferent kind of reasoning: proof by cases, by contradiction, by induction. Whereas
in the first exercises all assumptions are already given in the context, we choose
to introduce the concept of universal quantification and implication from steps
4 and 5.24.

Table 2: A pedagogical progression to introduce the main proof connectors to
10h-grade students on the topic of parity.
n° proof structure to learn example of statement to prove
1 Introduce new facts ; understand what is the goal

in a proof
Prove that 81 “ 2 ˚ 40 ` 1

2 Introduce D. Understand the concept of definition. Prove that 81 is odd.

3 Eliminate D. Understand the concept of assump-
tion, and free variable.

Given an odd integer n, prove that n ` 1 is even.
Given an odd integer n, prove that n2 is odd.

4 Introduce ùñ (in the form ”if P then Q”). Given an integer n, prove that ”if n si even then n2 is
even”.

5 Introduce @ (in the form ”for all n ,...”). Prove that ”for all integer n, for all integer b, if n is even
then n ˚ b is even”.

6 Introduction of or . Prove that ”0 is even or 0 is odd”.

7 Elimination of or : proof by cases. Reusing a pre-
viously proved theorem.

Prove that ”for all integer n, npn ` 1q is even”.
(postponing the proof than that every integer is even or
odd)

8 Proof of negation.
Prove that 1 is not even.
Prove that no integer is both odd and even.

9 Proof by induction.

Prove by induction that for all natural n, we have n ⩽ n2.
Prove by induction that every integer is either odd or
even.
(hint: state a first theorem for every natural)

10 Introduction of ðñ (in the form ”... if and only if
...”).

Prove that for all integer n, n is odd if and only if n is
not even.

11 Proof by contrapositive. Prove that for all integer n, if n2 is even then n is even.

12 A proof with several steps reusing the previous
ones.

Prove that
?

2 is irrational
(provided that every rational r is written in the form p{q
where p is integer, q is positive integer and p and q are
not both even).

24 All proof scripts for these exercises are available at : https://
gricad-gitlab.univ-grenoble-alpes.fr/yalep/Yalep/-/blob/main/ExamplesEnglish/
01 HighSchoolProgression v1.lean

https://gricad-gitlab.univ-grenoble-alpes.fr/yalep/Yalep/-/blob/main/ExamplesEnglish/01_HighSchoolProgression_v1.lean
https://gricad-gitlab.univ-grenoble-alpes.fr/yalep/Yalep/-/blob/main/ExamplesEnglish/01_HighSchoolProgression_v1.lean
https://gricad-gitlab.univ-grenoble-alpes.fr/yalep/Yalep/-/blob/main/ExamplesEnglish/01_HighSchoolProgression_v1.lean
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B.2 Solution to the exercises

Figures 5 to 8 depict solutions to the exercises of the previous section. These
examples demonstrate in our opinion the readability of our proof language.

Theorem "1. Facts"

Conclusion: 81 = 2*40 + 1

Proof

˛ 81 = 2*40 + 1

�

Theorem "2. Proving ’there exists’ "

Conclusion: 81 is odd

Proof

˛ 81 = 2*40 + 1

˛ there exists an integer k such that 81 = 2*k + 1

proof

witness 40 works

�
˛ 81 is odd

�

Theorem successor odd "3a. Using ’there exists’ "

Assumptions: (n is integer) (n is odd)

Conclusion: n+1 is even

Proof

˛ there exists an integer k such that n = 2*k+1

obtain such k

˛ n+1 = 2*(k+1)

˛ there exists an integer q such that n+1 = 2*q

˛ n+1 is even

�

Theorem square odd "3b. Using ’there exists’ "

Assumptions: (n is integer) (n is odd)

Conclusion: nˆ2 is odd

Proof

˛ there exists an integer k such that n = 2*k+1

obtain such k

˛ nˆ2 = 2*(2*kˆ2+2*k) + 1

˛ there exists an integer q such that nˆ2 = 2*q + 1

˛ nˆ2 is odd

�

Theorem "4. Proving (if. . .then. . .)"
Assumptions: (n is integer)

Conclusion: if n is even then nˆ2 is even

Proof

assume n is even

˛ there exists an integer p such that n = 2*p

obtain such p

˛ nˆ2 = 2*(2*pˆ2)

˛ there exists an integer q such that nˆ2 = 2*q

˛ nˆ2 is even

�

Theorem product even "5. Proving (for all . . .)"
Assumptions:

Conclusion: for all integer n, for all integer b, if n is

even then n*b is even

Proof

let n be an integer

let b be an integer

assume n is even

˛ there exists an integer k such that n = 2*k

obtain such k

˛ n*b = 2*(k*b)

˛ there exists an integer q such that n*b = 2*q

˛ n*b is even

�

Theorem zero even or odd "6. Proving (. . . or . . . )"
Assumptions:

Conclusion: 0 is even or 0 is odd

Proof

˛ 0 = 2*0

˛ there exists an integer q such that 0 = 2*q

˛ 0 is even

˛ 0 is even or 0 is odd

�

Fig. 5: Pedagogical progression : proof scripts for exercises 1-6
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Theorem nn1even "7. Using (. . . or . . .) : proof by cases"
Assumptions: (for all integer n, n is even or n is odd)

Conclusion: for all integer n, n*(n+1) is even

Proof

let n be an integer

˛ n is even or n is odd

˛ if n is even then n*(n+1) is even

proof

assume n is even

˛ n*(n+1) is even by product even

�
˛ if n is odd then n*(n+1) is even

proof

assume n is odd

˛ n+1 is even by successor odd

˛ n*(n+1) is even by product even

�
˛ n*(n+1) is even

�

Theorem one not even "8a. Proof of negation"

Conclusion: 1 is not even

Proof

assume (1 is even)

˛ there exists an integer k such that 1 = 2*k

obtain such k

˛ (kě1) or (kď0)

˛ the statement (kě 1) is false

proof

assume k ě 1

˛ 2* k ě 2 * 1 since kě1

˛ 1 ě 2 * 1 since 1 = 2*k

˛ Absurd

�
˛ the statement (kď 0) is false

proof

assume k ď 0

˛ 2* k ď 2 * 0 since kď0

˛ 1 ď 2 * 0 since 1 = 2*k

˛ Absurd

�
˛ Absurd

�

Theorem no integer both even odd "8b. Proof of negation"

Assumptions: (n is integer)

Conclusion: the statement (n is even and n is odd) is false

Proof

assume (n is even) and (n is odd)

˛ there exists an integer k such that n = 2*k

obtain such k

˛ there exists an integer q such that n = 2*q + 1

obtain such q

˛ 1 = 2*(k-q)

˛ 1 is even

˛ 1 is not even by one not even

˛ Absurd

�

Theorem "9a. Proof by induction"

Conclusion: for all natural n, n ď nˆ2

Proof

˛ 0 ď 0ˆ2

˛ for all natural k, if k ď kˆ2 then (k+1)ď (k+1)ˆ2

proof

let k be a natural

assume k ď kˆ2

� (k+1)ˆ2 = kˆ2 + 2*k + 1

ě k + 2*k + 1

ě k+1

�
˛ for all natural n, n ď nˆ2 by induction

�

Fig. 6: Pedagogical progression : proof scripts for exercises 7-9a
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Theorem every natural is even or odd "9b. Proof by induction"

Conclusion: for all natural number n, n is even or n is odd

Proof

˛ 0 is even or 0 is odd by zero even or odd

˛ for all integer k, (if (k is even or k is odd) then

((k+1) is even or (k+1) is odd))

proof

let k be an integer

assume k is even or k is odd

˛ if k is even then (k+1) is even or (k+1) is odd

proof

assume k is even

˛ there exists an integer q such that k = 2*q

obtain such q

˛ k+1 = 2*q+1

˛ (k+1) is odd

�

˛ if k is odd then (k+1) is even or (k+1) is odd

proof

assume k is odd

˛ (k+1) is even by successor odd

�

˛ (k+1) is even or (k+1) is odd

�

˛ for all natural number n, n is even or n is odd by

induction

�

Theorem every integer is even or odd "9c"

Conclusion: for all integer n, n is even or n is odd

Proof

let n be an integer

˛ n ě 0 or n ď -1

˛ if n ě 0 then n is even or n is odd

since for all natural number n, n is even or n is odd

˛ if n ď -1 then n is even or n is odd

proof

assume n ď -1

˛ -n ě 0

˛ (-n) is even or (-n) is odd

since for all natural number k, k is even or k is odd

˛ if (-n) is even then n is even or n is odd

proof

assume (-n) is even

˛ there exists an integer k such that -n=2*k

obtain such k

˛ n = 2*(-k)

˛ n is even

�

˛ if (-n) is odd then n is even or n is odd

proof

assume (-n) is odd

˛ there exists an integer k such that -n=2*k+1

obtain such k

˛ n = 2*(-k-1) +1

˛ n is odd

�

˛ n is even or n is odd

�

˛ n is even or n is odd

�

Fig. 7: Pedagogical progression : proof scripts for exercises 9b-9c
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Theorem odd iff not even "10. Prove (. . . if and only if . . .)"
Assumptions:

Conclusion: for all integer n, n is odd iff n is not even

Proof

let n be an integer

˛ if n is odd then n is not even

proof

assume n is odd

assume n is even

˛ n is even and n is odd

˛ Absurd by no integer both even odd

�

˛ if n is not even then n is odd

proof

assume that n is not even

˛ if (n is not odd) then Absurd

proof

assume that n is not odd

˛ n is not even

˛ n is even or n is odd

by every integer is even or odd

˛ Absurd

�
�

�

Theorem n2 even implies n even "11. Proof by contrapositive"

Assumptions: (n is integer)

Conclusion: if (nˆ2) is even then n is even

Proof

˛ if (n is not even) then (n ˆ 2 is not even)

proof

assume that n is not even

˛ n is odd by odd iff not even

˛ (nˆ2) is odd by square odd

˛ (nˆ2) is not even by odd iff not even

�
�

Theorem square root of 2 is irrational "12.
?
2 < Q"

Conclusion:
?
2 is not rational

Proof

assume
?
2 is rational

˛ there exists an integer p such that

there exists a natural number q such that

q, 0 and
?
2 = p/q and the statement (p is even

and q is even) is false

obtain such p

obtain such q

� pˆ2 = (p/q)ˆ2 * qˆ2

= (
?
2)ˆ2 * qˆ2

= 2 * qˆ2

˛ pˆ2 is even

˛ p is even by n2 even implies n even

˛ there exists an integer k such that p = 2*k

obtain such k

� qˆ2 = (2*qˆ2)/2

= pˆ2 / 2

= (2*k)ˆ2 /2

= 2 * kˆ2

˛ (qˆ2) is even

˛ q is even by n2 even implies n even

˛ Absurd

�

Fig. 8: Pedagogical progression : proof scripts for exercises 10-12
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B.3 An example : a high-school proof with functions

let’s define the function f

from r2;+8r to r3;+8r that maps x to xˆ2

Exercise "f is increasing on r4;+8r"

Conclusion: for all x P r 4 ; +8 r,

for all y ě x,

xě2 and yě2 and fpyq ě fpxq

Proof

let x P r 4 ; +8 r

let y ě x

˛ x ě 2

˛ y ě 2

˛ yˆ2 - xˆ2 = (y-x)*(y+x)

˛ y + x ě 0

˛ y - x ě 0

˛ (y + x)*(y - x) ě 0

˛ yˆ2 - xˆ2 ě 0

˛ xˆ2 ď yˆ2

˛ fpxq ď fpyq

�

P̊r`o“vfleṡ ˚t‚h`a˚t @x P r2; `8r, x2 P r3; `8r

P̊r`o“vfleṡ ˚t‚h`a˚t y P r2; `8r

P̊r`o“vfleṡ ˚t‚h`a˚t x P r2; `8r

P̊r`o“vfleṡ ˚t‚h`a˚t y P r2; `8r

P̊r`o“vfleṡ ˚t‚h`a˚t x P r2; `8r

Fig. 9: Proof that the square function restricted to r2; `8rÑ r3; `8r is increas-
ing on r4; `8r. Notice that the student is required to know the definition of
”increasing”, the system does not provide assistance for unfolding definitions.
Equality between two polynomial expressions do not require justification. Yalep
deals automatically with the types and the fact that x is in the domain of f , and
the use of the equality is implicit.
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Appendix C A comparison with Coq Waterproof, LeanVerbose
and Diproche

In this section, we compare Yalep with other proof assistants and controlled
natural languages. We first show a side by side comparison of Yalep with Coq
Waterproof for the proof that the sum of two continuous functions is continu-
ous 10. Then we compare Yalep with LeanVerbose for the proof of the squeeze
theorem 11. Finally, we compare Yalep with Diproche using the example pro-
vided in the paper about Diproche 13.

Coq Waterproof

Theorem sum continuous (f g : R Ñ R) (a : R)
( : f is continuous in a) ( : g is continuous in a) :

(fun x : R => f(x) + g(x)) is continuous in a.

Proof.

We need to show that

(@ ε > 0, D δ > 0, @ x P R,
0 < |x - a| < δ ñ |(f(x) + g(x)) - (f(a) + g(a))| < ε).

Take ε > 0.
Since (f is continuous in a) it holds that

(@ ε1 > 0, D δ1 > 0, @ x P R,
0 < |x - a| < δ1 ñ |f(x) - f(a)| < ε1 ) (i).

Use ε1 := (ε/2) in (i).
Indeed, (ε/2 > 0).
It holds that

(D δ1 > 0, @ x P R, 0 < |x - a| < δ1 ñ |f(x) - f(a)| < ε
/2).

Obtain such a δ1 .
-- Similarly obtain δ2 from continuity of g.
Choose δ := min(δ1,δ2).
Indeed, (δ > 0).
We need to show that

(@ x P R,
0 < |x - a| < δ ñ |(f(x) + g(x)) - (f(a) + g(a))| < ε).

Take x P R.
Assume that (0 < |x - a| < δ).
It holds that (& 0 < |x - a| < δ ď δ1).
It holds that (& 0 < |x - a| < δ ď δ2).
Since (0 < |x - a| < δ1 ) it holds that (|f(x) - f(a)| < ε/2).
Since (0 < |x - a| < δ2 ) it holds that (|g(x) - g(a)| < ε/2).
We conclude that (& |(f(x) + g(x)) - (f(a) + g(a))|

= |f(x) - f(a) + g(x) - g(a)|

ď (|f(x) - f(a)| + |g(x) - g(a)|)

< ε/2 + ε/2
= ε ).

Qed.

Yalep

Theorem sum continuous "sum of continuous functions"

Assumptions: (D Ď R) (F Ď R)
(f P F ˆ D) (g P F ˆ D) (a P D)

(f is continuous at a) (g is continuous at a)

Conclusion: f+g is continuous at a

Proof

let ε > 0
˛ ε/2 > 0
˛ Dδ>0, @ xPD,|x - a|ď δ ùñ |fpxq - fpaq| ď ε/2
obtain such δ1
˛ Dδ>0, @ xPD,|x - a|ď δ ùñ |gpxq - gpaq| ď ε/2
obtain such δ2
define δ := min δ1 δ2
˛ δ > 0
˛ @ xPD,|x - a|ď δ ùñ |(f+g)pxq - (f+g)paq| ď ε

proof

let x P D

assume |x - a|ď δ
� |x - a|ď δ

ď δ1
˛ |fpxq - fpaq| ď ε/2

� |x - a|ď δ
ď δ2

˛ |gpxq - gpaq| ď ε/2

� |(f+g)pxq-(f+g)paq|=|(fpxq+gpxq)-(fpaq+gpaq)|

= |(fpxq-fpaq)+(gpxq-gpaq)|

ď |fpxq-fpaq|+|gpxq-gpaq|

by triangle inequality

ď ε/2 + ε/2
= ε

�
�

Fig. 10: Comparison of Coq Waterproof and Yalep for the sum of continuous
functions. The proof in Coq Waterproof is taken from [42]. Note that Yalep
handles functions from D to F whereas Coq Waterproof deals with func-
tions from R to R. In Coq Waterproof, the proof is structured by signpost-
ing (We need to show . . . ), sometimes optional, sometimes mandatory when the
goal changes. In Yalep, the proof is structured by facts and possible sub-proofs.
Note that Coq Waterproof’s Choose and Yalep’s define both assign a new vari-
able, but Choose also introduces existential quantification which is automatic in
Yalep.
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Lean Verbose

Example "The squeeze theorem. (Lean Verbose)"
Given: (u v w:NÑR) (ℓ:R)
Assume: (hu:u converges to ℓ)

(hw:w converges to ℓ)
(h :@n,u nďv n) (h’:@n,v nď w n)

Conclusion: v converges to ℓ
Proof:
Let’s prove that @ε>0, DN,@něN,|v n-ℓ|ďε
Fix ε>0
Since u converges to ℓ and ε>0 we get n1
such that h1:@něn1,|u n-ℓ|ďε
Since w converges to ℓ and ε > 0 we get n2
such that h2:@něn2,|w n-ℓ|ďε
Let’s prove that max n1 n2 works:

@němax n1 n2,|v n-ℓ|ďε
Fix němax n1 n2
Since němax n1 n2 we get
(hn1: něn1) and (hn2: něn2)
Since @něn1, |u n-ℓ|ďε and něn1 we get
(hn1ℓ:-εďu n-ℓ) and (hn1d:u n-ℓďε)
Since @něn2,|w n-ℓ|ďε and něn2 we get
(hn2l:-εďw n-ℓ) and (hn2d:w n-ℓďε)
Let’s prove that |v n-ℓ|ďε
Let’s first prove that -εďv n-ℓ
Calc -εďu n-ℓ by assumption

ďv n-ℓ since u nďv n
Let’s now prove that v n-ℓďε
Calc v n-ℓďw n-ℓ since v nďw n

ďε by assumption
QED

Yalep

Theorem squeeze "The squeeze theorem (Yalep)"
Assumptions:
(uPRˆN)(vPRˆN)(wPRˆN)(ℓPR)
(u converges to ℓ)(w converges to ℓ)
(for all natural n,upnqďvpnq)
(for all natural n,vpnqďwpnq)
Conclusion: (v converges to ℓ)

Proof
let ε > 0
˛ there exists a natural n1 such that
for all natural n,if něn1 then |upnq-ℓ|ďε

obtain such n1
˛ there exists a natural n2 such that
for all natural n,if něn2 then |wpnq-ℓ|ďε

obtain such n2
define n0:=max n1 n2
˛ for all natural n,if něn0 then |vpnq-ℓ|ďε
proof
let n be a natural
assume ně n0
˛ |upnq-ℓ|ďε since něn1
˛ |wpnq-ℓ|ďε since něn2
� -εďupnq-ℓ

ďvpnq-ℓ
� vpnq-ℓďwpnq-ℓ

ď ε
˛ |vpnq-ℓ|ďε

�
�

Fig. 11: Comparison of LeanVerbose and Yalep for the squeeze theorem. The proof in
Lean Verbose is extracted from [24]. In the header, when data are defined by a type ascrip-
tion in Lean Verbose (ℓ:R), the same is obtained by a predicate in Yalep (ℓPR)(for that
reason it appears in the section ’Assumptions’). The type ascription (ℓ:Number) exists in
the underlying Lean representation but is implicitly inferred. Lean Verbose expects a pre-
cise justification of each fact, expressed in a rich syntax, whereas Yalep allows it to be omit-
ted. In Lean Verbose, some specific syntax is dedicated to backward introduction of ex-
istential quantifier and conjunction, as a few (respectively Let’s prove that . . . works
and Let’s first prove . . .). Note that a statement @něn1,|upnq-ℓ|ďε would not be
accepted in Yalep since upnq needs an assumption nPN to elaborate. As opposite, in
Lean Verbose the type ascription n:Nat is inferred from the term u n .
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Lean Verbose

Lemme sqrt 2 is irrational "
?
2 < Q"

Given:

Assume:

Conclusion:
?
2 < Q

Proof:

Assume that h :
?
2 P Q

Let’s prove it’s contradictory

Since
?
2 P Q we get p : Z and q : Z such that

f01: q,0, f02: ?2=p/q and f03: ␣(p is even ^ q is even)

Fact f04 : pˆ2 = (2 : R) * qˆ2 by

Calc

pˆ2 = (pˆ2/qˆ2) * qˆ2 since q , 0
= (p/q)ˆ2 * qˆ2 by computation

= (
?
2)ˆ2 * qˆ2 since p/q =

?
2

= 2 * qˆ2 by computation

Since pˆ2 = 2 * qˆ2 we get f05 : pˆ2 is even

Since pˆ2 is even we get f06 : p is even

Since p is even we get k tel que f07 : p = 2 * k

Fact f08 : (2 * k)ˆ2 = 2 * qˆ2 by

Calc (2 * k)ˆ2 = pˆ2 since p = 2 * k

= 2 * qˆ2 by assumption

Since (2 * k)ˆ2 = 2 * qˆ2 we get f09 : 2 * kˆ2 = qˆ2

Since qˆ2 = 2 * kˆ2 we get f10 : qˆ2 is even

Since qˆ2 is even we get f11 : q is even

Since ␣(p is even ^ q is even), p is even et q is even we

conclude that False

QED

Yalep

Theorem square root of 2 is irrational "12.
?
2 < Q"

Conclusion:
?
2 is not rational

Proof

assume
?
2 is rational

˛ there exists an integer p such that

there exists a natural number q such that

q, 0 and
?
2 = p/q and the statement (p is

even and q is even) is false

obtain such p

obtain such q

� pˆ2 = (p/q)ˆ2 * qˆ2

= (
?
2)ˆ2 * qˆ2

= 2 * qˆ2

˛ pˆ2 is even

˛ p is even by n2 even implies n even

˛ there exists an integer k such that p = 2*k

obtain such k

� qˆ2 = (2*qˆ2)/2

= pˆ2 / 2

= (2*k)ˆ2 /2

= 2 * kˆ2

˛ (qˆ2) is even

˛ q is even by n2 even implies n even

˛ Absurd

�

Fig. 12: Comparison of Lean Verbose and Yalep for the irrationality of
?

2.
The Lean Verbose proof has been kindly written by Massot – the developer
of Lean Verbose – for the purpose of this comparison. In Lean Verbose, each
fact or computation must be carefully justified whereas Yalep allows some
unjustified facts. The last version of Lean Verbose (since July 2025) allows to
manipulate integer, rational or real numbers while discharging the student
from explicit ascriptions and coercions (most of the time; is this example there
remains an explicit type ascription (2:R)). However, the internal mechanism is
very different from Yalep’s : while Yalep considers all numbers as real numbers –
integer or rational are predicates over numbers – Lean Verbose keeps the original
Lean number types (N, Z, Q, R) and hides coercions into tactics. For example,
(p:R)ˆ2=2*(q:R)ˆ2 and (p:Z)ˆ2=2*(q:Z)ˆ2 are two distinct statements, but
the latter follows from the former by application of an apply mod cast tactic
triggered by the Since syntax.
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Diproche

Let x be an i n t e g e r .
Prove : I f x i s even , then 2−3x i s even .

Proof :
Let x be even .
Then , there i s an i n t e g e r k such t h a t x=2k .
Let k be an i n t e g e r with x=2k .
Then we have 2−3x=2−3(2k)=2(1−3k ) .
Hence 2−3x i s even .

qed .

Yalep

Theorem "Diproche like"

Assumptions: (x is integer)

Conclusion: if x is even then 2-3*x is even

Proof

assume x is even

˛ there exists an integer k such that x=2*k

obtain such k

� 2-3*x = 2-3*(2*k)

= 2*(1-3*k)

˛ 2-3*x is even

�

Fig. 13: Comparison of Diproche and Yalep for a simple exercise. The proof in
Diproche is taken from [7]. In Yalep, the user does not have to choose between
’Then’ and ’Hence’ nor understand possible shades of meaning between both.
In Diproche, multiplication is implicit; and the same word ’let’ is used for
introducing a symbol, an assumption, or eliminate the existential quantifier,
whereas in Yalep we have chosen to keep three different words (let, assume,
obtain).
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Appendix D Backward vs Forward Proofs

Tables 3 and 4 depict two versions of a proof by induction that every natural
number is either even or odd, using backward chaining or not. The first version,
in Table 3, is written with extensive backward chaining in a pseudo language
very similar to Lean Verbose.25

In the second version depicted in Table 4, written in Yalep with mainly
forward chaining26, the numbers on the left refer to the corresponding tactic
number in version 1. On a blackboard, we could write the proof version 2 in the
chronological order described by the numbers. For example, we could start to
write the conclusion step 1 at the bottom of the blackboard, and then write step
2 (0 is even or 0 is odd) at the top of the blackboard, and then write step 3 (0 is
even) a few lines under, etc.

When k is a natural number, P (k) will denote ” k is even or k is odd ”
and the goal will be $ @ n P N, P (n) .

*
25 We have taken liberties with the language of LeanVerbose to ease the comparison with

the other version.
26 For the sake of conciseness, and as the purpose of this comparison is to focus on

forward and backward reasoning, we used the symbols ùñ, @, D, even it would have
been appropriate for high school students to use their literal versions (if . . . then . . . ,
for all, there exists) as Yalep allows.
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Table 3: First version: with extensive backward chaining
n° Proof step Bwd tactic new goal(s)

Fwd

1 Let’s prove it by induction B induction

2 new goals :
1. $ P (0)

2. $ @ k P N, P (k) ùñ

P (k+1)

quasi silent start of 1st goal (2nd goal pending)
2 Let’s prove that 0 is even or

0 is odd

recalls current goal (optional)

3 Let’s prove that 0 is even B Or introduction (left) $ 0 is even

4 We unfold even B unfold $ D k P N, 0 = 2*k

5 Let’s prove that 0 works B existential introduction (witness
0)

$ 0 = 2*0

6 We compute solves current goal
silent switch to next goal, since the previous has been solved

7 Let’s prove that @kPN, P (k)

ùñ P (k+1)

recalls current goal (optional)

8 Let k be an integer B @ introduction $ P (k) ùñ P (k+1)

9 Assume that k is even or k is

odd

B ùñ introduction $ P(k+1)

10 Let’s discuss whether k is odd

or even

B Or elimination
2 new goals :

1. $ k is even ùñ P (k+1)

2. $ k is odd ùñ P (k+1)

quasi silent start of 1st goal (2nd goal pending) : k is even ùñ P(k+1)
11 Assume that k is even $ P(k+1)

12 By assumption, Choose an

integer q such that k = 2*q

F creates a new variable and a new
assumption

13 Let’s prove that k+1 is odd B Or introduction (right) $ k+1 is odd

14 Let’s prove that q works B introduces existential quantifier $ k+1 = 2*q+1

15 We compute B rewrites goal $ 2*q+1 = 2*q+1

(solved by reflexivity)
silent switch to next goal, since the previous has been solved : current goal : k is odd ùñ

P(k+1)
16 Assume that k is odd $ P(k+1)

17 By assumption, choose an

integer q such that k = 2*q+1

F creates a new variable and a new
assumption

18 Let’s prove that k+1 is even B Or introduction (left) $ k+1 is even

19 Let’s prove that q+1 works B introduces existential quantifier $ k+1 = 2*(q+1)

20 We compute B rewrites goal $ 2*q+1+1 = 2*(q+1)

(solved by computa-
tion)
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Table 4: Second version: Yalep with mainly forward chaining
no Proof step Bwd tactic new goal?

Fwd
sets explicitly a new temporary goal (until closing token � ) (mandatory announce)

2 ˛ 0 is even or 0 is odd F creates a new assumption
proof sub-proof of temporary goal : P(0)

5 ˛ 0 = 2*0 F creates a new assumption
4 ˛ D k P N, 0 = 2*k F introduces existential

quantifier from previous
facts

3 ˛ 0 is even F folds definition from pre-
vious fact

˛ 0 is even or 0 is odd F Or introduction (left)
� closes current goal
sets explicitly a new temporary goal (until closing token � ) (mandatory announce)

7 ˛ @ k P N, P (k) ùñ P (k+1) F creates a new assumption
proof sub-proof of temporary goal : @k PN,Ppkq ñ Ppk ` 1q

8 let k be an integer B @ introduction $ P (k) ùñ P (k+1)

9 assume k is even or k is odd B ùñ introduction $ P(k+1)

sets explicitly a new temporary goal (until closing token � ) (mandatory announce)
˛ k is even ùñ P (k+1) F creates a new assumption
proof sub-proof of temporary goal : k even ñ Ppk ` 1q

11 assume k is even B ùñ introduction $ P(k+1)

there exists an integer q such

that k=2*q

F

12 obtain such q F D elimination
14 ˛ k+1 = 2*q+1 F new assumption deduced

from above
13 ˛ (k+1) is odd F D introduction (+ fold def-

inition)
˛ (k+1) is even or (k+1) is odd F Or introduction (right)

� closes current goal
sets explicitly a new temporary goal (until closing token � ) (mandatory announce)

˛ k is odd ùñ P (k+1) F creates a new assumption
proof sub-proof of temporary goal : k odd ñ Ppk ` 1q

16 assume k is odd B ùñ introduction $ P(k+1)

there exists an integer q such

that k=2*q+1

F

17 obtain such q F D elimination
19 ˛ k+1 = 2*(q+1) F new assumption deduced

from above
18 ˛ (k+1) is even F D introduction (+ fold def-

inition)
˛ (k+1) is even or (k+1) is odd F Or introduction (left)

� closes current goal
10 ˛ (k+1) is even or (k+1) is odd by cases

: k is even or k is odd

F or elimination

� closes current goal
1 ˛ for all natural number n, n is even or n

is odd by induction

F induction
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Appendix E Another proof that
?

2 < Q

The proof script depicted in Figure 14 is a transcription in Yalep of the proof
proposed by Henk Barendregt that

?
2 is irrational, published in [44] as the

”informal proof” given in the first chapter before the 17 versions in proof assis-
tants.

let’s define the function P from N to P that maps m to
(DnPN, mˆ2=2*nˆ2 and m>0)

Theorem claim "Claim"

Assumptions: (mPN)
Conclusion: PpmqùñDm’PN, m’<m and Ppm’q

Proof

assume that Ppmq

˛ DnPN, mˆ2=2*nˆ2 and m>0
obtain such n

˛ mˆ2 is even

˛ m is even by n2 even imp n even

˛ D k P Z, m = 2*k
obtain such k

˛ k ě 0

˛ k P N
� 2*nˆ2 = mˆ2

= 4*kˆ2

˛ nˆ2 = 2*kˆ2

˛ mˆ2 > 0 since m>0

˛ nˆ2 > 0

˛ n > 0

˛ DkPN, nˆ2=2*kˆ2
˛ Ppnq

� mˆ2 = nˆ2 + nˆ2

> nˆ2

˛ m > n

witness n works

�

Theorem claim2 "Claim2"

Conclusion: for all natural m , the statement Ppmq is false

Proof

define A := {mP N | Ppmq}
˛ A Ď N
let m be a natural

assume Ppmq

˛ m P A

˛ A , H
˛ D a P N, a is the least element of A
obtain such a

˛ a P A and @xPA, a ď x

˛ D a’ P N, a’< a and Ppa’q by claim

obtain such a’

˛ a’ P A

� a’< a

ď a’

˛ Absurd

�

Theorem lemma1 "Lemma 1"

Assumptions: (mPN) (nPN)
Conclusion: mˆ2 = 2*nˆ2 ùñ m=0 and n=0

Proof

assume that mˆ2 = 2 * nˆ2

˛ the statement m , 0 is false
proof

assume that m , 0
˛ m ě 0

˛ m > 0

˛ Ppmq

˛ Absurd by claim2

�
˛ m=0

˛ n=0

�

Theorem sqrt 2 is irrational "
?
2 < Q"

Conclusion:
?
2 is not rational

Proof

assume that
?
2 is rational

˛ there exists an integer p such that

there exists an integer q such that

q,0 and ?2 = p/q

obtain such p

obtain such q

˛
?
2 ě 0

define m := |p|

define n := |q|

˛ m P N
˛ n P N
˛ n , 0

� ?
2 = |

?
2|

= |p/q|

= |p|/|q|

= m/n

� mˆ2 = (m/n)ˆ2 * nˆ2

=
?
2 ˆ2 * nˆ2

= 2*nˆ2

˛ m=0 and n=0 by lemma1

˛ Absurd

�

Fig. 14: Proof script in Yalep of Barendregt’s proof of the irrationality of
?

2
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