
NOVEMBER 2016 | VOL. 59 | NO. 11 | COMMUNICATIONS OF THE ACM 31

V
viewpoints

P
H

O
T

O
 B

Y
 C

A
L

V
I

N
 L

I
N

,
U

N
I

V
E

R
S

I
T

Y
 O

F
 T

E
X

A
S

,
A

U
S

T
I

N

hind them. Informally, many students
talk to their parents about science issues
(“Why is the sky blue?”), think about the
numbers in their lives (“How much is
the tax?”), visit science museums, and
see media about mathematics and sci-
ence. Students live in a world where
living, chemical, and physical behavior
is explained by biology, chemistry, and
physics. They develop ideas about how
the world works, some of which are
wrong (like simple Lamarckian evolu-

C
O M P U T I N G E D U C AT I O N I S
changing. At this year’s
CRA Snowbird Conference,
there was a plenary talk and
three breakout sessions

dedicated to CS education and enroll-
ments. In one of the breakout ses-
sions, Tracy Camp showed that much
of the growth in CS classes is coming
from non-CS majors, who have dif-
ferent goals and needs for comput-
ing education than CS majors.a U.S.
President Obama in January 2016 an-
nounced the CS for All initiative with a
goal of making computing education
available to all students.b

Last year, the U.S. Congress passed
the STEM Education Act of 2015, which
officially made computer science part
of STEM (science, technology, engi-
neering, and mathematics). The federal
government offers incentives to grow
participation in STEM, such as scholar-
ships to STEM students and to prepare
STEM teachers. Declaring CS part of
STEM is an important step toward mak-
ing computing education as available as
mathematics or science education.

The declaration is just a first step.
Mathematics and science classes
are common in schools today. Grow-

a	 http://cra.org/wp-content/uploads/2016/07/
BoomCamp.pdf

b	 https://www.whitehouse.gov/blog/2016/01/30/
computer-science-all

ing computing education so it is just
as common requires recognition that
education in computer science is differ-
ent in important ways from education
in STEM. We have to learn to manage
those differences.

Computer Science Is Invisible,
Formally and Informally
Students enter mathematics or science
classes at the post-secondary level with
years of knowledge and experience be-

Education
Growing Computer Science
Education Into a STEM
Education Discipline
Seeking to make computing education
as available as mathematics or science education.

DOI:10.1145/3000612	 Mark Guzdial and Briana Morrison

High school students and teachers engaging in collaborative meetings about computer
science represents an important step toward making computing education as available as
science or mathematics education.

http://dx.doi.org/10.1145/3000612
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3000612&domain=pdf&date_stamp=2016-10-28

32 COMMUNICATIONS OF THE ACM | NOVEMBER 2016 | VOL. 59 | NO. 11

viewpoints

ics education, we do not have learning
progressions. Computer science edu-
cators mostly have had the goal of pre-
paring future professional program-
mers, but goals change when we talk
about teaching everyone. Not every in-
troductory biology student will become
a biologist and not every intro physics
student will become a physicist. We
need to determine what pieces of com-
puting the educated citizen needs to
know. Then we can plan how and in
what order we teach those pieces.

What can we expect a first-year un-
dergraduate to learn in a single term
CS class if they have no previous com-
puting experience? What can we expect
to be able to teach any eight-year-old or
a 12-year-old about computer science?
What are the challenges to teaching
computing successfully to students
with cognitive disabilities, or who are
blind, or who have inadequate math-
ematics preparation?

We first realized in the early 1980s
that we often overestimate what first-
time CS students can do.5 The McCrack-
en Study2 showed that problems that
introductory computer science instruc-
tors find reasonable are not solvable by
a majority of introductory students.

Part of the trick is simply learning
how to measure what students have
learned. Briana Morrison and Lauren
Margulieux showed4 that textual pro-
gramming is cognitively complex. We
want students to learn the concepts
and skills of programming, but pro-
gramming itself is a complex activity—
asking students to program requires
students to be able to do everything.
Morrison and Margulieux showed they
can measure learning toward program-
ming using Parsons Problems.3 A Par-
sons Problem asks students to solve
a programming problem, then gives
them all the lines of code that solve
that problem, on tiles or “refrigera-
tor magnets.” They showed they could
tease out differences in students’ un-
derstanding of programming, even
when the students could not success-
fully program the solutions yet. Being
able to measure the development of
these skills, without requiring stu-
dents to master the skills, is critical to
developing learning progressions.

If we want to teach computer sci-
ence at younger ages, we have to figure
out how to reduce that complexity. We

tion). Students start formal learning
about mathematics and science in the
earliest grades. Mathematics and sci-
ence classes can help answer their ques-
tions and improve the theories that a re-
flective child has about the world.

While computing is ubiquitous in
the developed world, and cellphones
and other handheld computing devices
are increasingly common in the devel-
oping world, few students get the oppor-
tunity to look under the covers of those
devices to reflect on questions about
computing. Maybe children might ask,
“Why is my browser so slow?” The con-
cepts that computer science explains
are mostly invisible to children, such as
digital representations, algorithms, and
networks. If they don’t see the computa-
tion in their world, it’s difficult to reflect
on and develop questions about it. We
have less museum or media coverage
than the rest of STEM. Few students
enter secondary or post-secondary com-
puter science classes with any previous
formal education in computing.

The difference means it is difficult
for a teacher to set expectations. Some
students do have experience coming
in to class; most do not. When does a
student need remedial help? We are in
a transitional stage where the gap be-
tween the haves and have-nots in com-
puting education is large.

There is a positive side to the invisi-
bility of computation in children’s daily
life. Mathematics and science students
develop their misunderstandings of
the world from daily life, too. Students’
incorrect science theories are wrong,
but mostly work. The world is not flat,
but it seems so, and you can live much
of your life believing the world is flat.
On the other hand, students develop
incorrect theories in computer science
only in computer science classes and
mostly because of how we taught them.
If we change the way we teach, we can
reduce misunderstandings.

Developing Learning Progressions
We have been doing mathematics and
science education for a long time. We
have a good idea of what students can
do in science and mathematics from
early ages, and how quickly they can
develop new concepts and skills. Edu-
cators call this a learning progression.

Since computing education is
younger than science and mathemat-

C
O
M
M
U
N
IC
A
T
IO
N
S
A
P
P
S

Available for iPad,
iPhone, and Android

Available for iOS,
Android, and Windows

http://cacm.acm.org/
about-communications/
mobile-apps

Access the

latest issue,

past issues,

BLOG@CACM,

News, and

more.

Available for iPad,

Available for iOS,

NOVEMBER 2016 | VOL. 59 | NO. 11 | COMMUNICATIONS OF THE ACM 33

viewpoints

cation classes, we need to increase the
number of computer science classes
and teachers by a magnitude. That is
an enormous change with dramatic
implications. What we have today may
not tell us much about tomorrow. The
preparation, abilities, and preferences
of existing computer science teachers
may not be predictive when we have a
10-times-larger population of teachers.
We have to invent whole new teacher
education programs.

Steps Toward Pervasive
Computing Education
While computer science is now part of
STEM in the U.S. by fiat, students can-
not access computer science classes
as easily as mathematics and science
education. Many countries are ramp-
ing up computing education, so the
situation is going to change. As it
does, we will have to develop more ac-
curate expectations of how students
learn CS, improve our ability to mea-
sure learning in computing, develop
learning progressions, and create an
infrastructure to develop teachers
and track progress as we reach the
pervasiveness of mathematics and
science education.	

References
1.	 Hewner, M. Undergraduate conceptions of the field of

computer science. In Proceedings of the Ninth Annual
International ACM Conference on International
Computing Education Research (ICER ‘13). ACM, New
York, 2013, 107–114.

2.	 McCracken, M. et al. A multi-national, multi-institutional
study of assessment of programming skills of first-
year CS students. ACM SIGCSE Bulletin 33, 4 (2001),
125–140.

3.	 Morrison, B.B., Margulieux, L.E., and Guzdial, M.
Subgoals, context, and worked examples in learning
computing problem solving. In Proceedings of
the Eleventh Annual International Conference on
International Computing Education Research (Omaha,
Neb., 2015), 21–29.

4.	 Morrison, B.B., Margulieux, L.E., Ericson, B., and
Guzdial, M. Subgoals help students solve Parsons
problems. Paper presented at the Proceedings of the
47th ACM Technical Symposium on Computing Science
Education (Memphis, Tenn., 2016).

5.	 Soloway, E. Learning to program = learning to
construct mechanisms and explanations. Commun.
ACM 29, 9 (Sept. 1986), 850–858.

6.	 Weintrop, D. and Wilensky, U. 2015. Using
commutative assessments to compare conceptual
understanding in blocks-based and text-based
programs. In Proceedings of the Eleventh Annual
International Conference on International
Computing Education Research (ICER ‘15). ACM,
New York, NY, 2015, 101–110; DOI: http://dx.doi.
org/10.1145/2787622.2787721

Mark Guzdial (guzdial@cc.gatech.edu) is a professor at
the Georgia Institute of Technology.

Briana Morrison (bbmorrison@unomaha.edu) is an
assistant professor of computer science at the University
of Nebraska Omaha.

Copyright held by author.

want students to be able to build pro-
grams they find motivating and engag-
ing, without mastering all the skills of
textual programming first. David Wein-
trop and Uri Wilensky have shown that
students using blocks-based languages
(like Scratch, Snap, and Blockly) make
far fewer errors than in textual pro-
gramming languages. Again, part of
their achievement is in measurement.
They developed a commutative assess-
ment6 that allowed them to compare
the same concepts in both textual and
blocks-based programming languages.
We will need many kinds of measures
to develop learning progressions for
computer science.

Computer Science Is
Valued but Misunderstood
Students enter undergraduate math-
ematics and science classes after years
of formal education, so they enter with
a good idea about what those fields
mean. That’s not true for computer sci-
ence. Even undergraduate CS majors
do not know what computer science is.
Mike Hewner showed that even under-
graduate students who declare a major
in computer science only have an un-
clear idea of what the field is about.1

Large-scale surveys in collabora-
tion between Google and Gallup have
shown that parents and principals
think courses in computer science
are about how to use personal com-
puters.c The surveys show parents and
principals highly value computing,

c	 https://services.google.com/fh/files/misc/
images-of-computer-science-report.pdf

and want more computing education
for their children. But the parents and
principals mostly do not understand
what it is.

Students want computer science,
whatever they think it is. Many of them
want it because of the economic value
of knowledge of computer science. They
don’t know what it is, but they know it
can get them a good job and make them
more effective at the job they want.

The CS situation is different from
science or mathematics. Contrast
the number of coding boot camps
available in your area to the num-
ber of biology boot camps or algebra
boot camps. While having a demand
for CS is mostly positive, it creates
a strange dynamic in the computer
science class. Students demand the
“real thing” (which we might inter-
pret as “what will help me in a job”),
even if they don’t know what that is.
For example, students might com-
plain about learning a blocks-based
language or using a pedagogical IDE
because it’s not “real”—even if they
are not quite clear what “real” is.

Building the Infrastructure
for CS Classes
In many countries and U.S. states,
you can learn the number of students
taking primary or secondary school
reading, mathematics, or science
classes. In the U.S., hardly any state
can tell you the number of students
in their computer science classes at
any level, or what is being taught in
those courses. (In many states, “com-
puter science” and “computing ap-
plications” courses are considered
the same.) Because computer science
has only recently been declared part
of STEM, it has not been tracked like
other STEM subjects. We don’t know
with certainty how much computing
education is offered in the U.S. today
nor where it is offered, which makes
it difficult to plan and grow access to
computing education.

We believe (from looking at data
about Advanced Placement CS and in
those states that do track) that far less
than 30% of secondary school students
even have the opportunity take a com-
puter science course in the U.S. today,
and less than 10% of primary school
students. To reach the ubiquity of ac-
cess to mathematics and science edu-

While computer
science is now part
of STEM in the U.S.
by fiat, students
cannot access
computer science
classes as easily as
mathematics and
science education.

