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hind them. Informally, many students 
talk to their parents about science issues 
(“Why is the sky blue?”), think about the 
numbers in their lives (“How much is 
the tax?”), visit science museums, and 
see media about mathematics and sci-
ence. Students live in a world where 
living, chemical, and physical behavior 
is explained by biology, chemistry, and 
physics. They develop ideas about how 
the world works, some of which are 
wrong (like simple Lamarckian evolu-
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changing. At this year’s 
CRA Snowbird Conference, 
there was a plenary talk and 
three breakout sessions 

dedicated to CS education and enroll-
ments. In one of the breakout ses-
sions, Tracy Camp showed that much 
of the growth in CS classes is coming 
from non-CS majors, who have dif-
ferent goals and needs for comput-
ing education than CS majors.a U.S. 
President Obama in January 2016 an-
nounced the CS for All initiative with a 
goal of making computing education 
available to all students.b 

Last year, the U.S. Congress passed 
the STEM Education Act of 2015, which 
officially made computer science part 
of STEM (science, technology, engi-
neering, and mathematics). The federal 
government offers incentives to grow 
participation in STEM, such as scholar-
ships to STEM students and to prepare 
STEM teachers. Declaring CS part of 
STEM is an important step toward mak-
ing computing education as available as 
mathematics or science education.

The declaration is just a first step. 
Mathematics and science classes 
are common in schools today. Grow-

a	 http://cra.org/wp-content/uploads/2016/07/
BoomCamp.pdf

b	 https://www.whitehouse.gov/blog/2016/01/30/
computer-science-all

ing computing education so it is just 
as common requires recognition that 
education in computer science is differ-
ent in important ways from education 
in STEM. We have to learn to manage 
those differences. 

Computer Science Is Invisible, 
Formally and Informally
Students enter mathematics or science 
classes at the post-secondary level with 
years of knowledge and experience be-
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ics education, we do not have learning 
progressions. Computer science edu-
cators mostly have had the goal of pre-
paring future professional program-
mers, but goals change when we talk 
about teaching everyone. Not every in-
troductory biology student will become 
a biologist and not every intro physics 
student will become a physicist. We 
need to determine what pieces of com-
puting the educated citizen needs to 
know. Then we can plan how and in 
what order we teach those pieces.

What can we expect a first-year un-
dergraduate to learn in a single term 
CS class if they have no previous com-
puting experience? What can we expect 
to be able to teach any eight-year-old or 
a 12-year-old about computer science? 
What are the challenges to teaching 
computing successfully to students 
with cognitive disabilities, or who are 
blind, or who have inadequate math-
ematics preparation?

We first realized in the early 1980s 
that we often overestimate what first-
time CS students can do.5 The McCrack-
en Study2 showed that problems that 
introductory computer science instruc-
tors find reasonable are not solvable by 
a majority of introductory students. 

Part of the trick is simply learning 
how to measure what students have 
learned. Briana Morrison and Lauren 
Margulieux showed4 that textual pro-
gramming is cognitively complex. We 
want students to learn the concepts 
and skills of programming, but pro-
gramming itself is a complex activity—
asking students to program requires 
students to be able to do everything. 
Morrison and Margulieux showed they 
can measure learning toward program-
ming using Parsons Problems.3 A Par-
sons Problem asks students to solve 
a programming problem, then gives 
them all the lines of code that solve 
that problem, on tiles or “refrigera-
tor magnets.” They showed they could 
tease out differences in students’ un-
derstanding of programming, even 
when the students could not success-
fully program the solutions yet. Being 
able to measure the development of 
these skills, without requiring stu-
dents to master the skills, is critical to 
developing learning progressions.

If we want to teach computer sci-
ence at younger ages, we have to figure 
out how to reduce that complexity. We 

tion). Students start formal learning 
about mathematics and science in the 
earliest grades. Mathematics and sci-
ence classes can help answer their ques-
tions and improve the theories that a re-
flective child has about the world.

While computing is ubiquitous in 
the developed world, and cellphones 
and other handheld computing devices 
are increasingly common in the devel-
oping world, few students get the oppor-
tunity to look under the covers of those 
devices to reflect on questions about 
computing. Maybe children might ask, 
“Why is my browser so slow?” The con-
cepts that computer science explains 
are mostly invisible to children, such as 
digital representations, algorithms, and 
networks. If they don’t see the computa-
tion in their world, it’s difficult to reflect 
on and develop questions about it. We 
have less museum or media coverage 
than the rest of STEM. Few students 
enter secondary or post-secondary com-
puter science classes with any previous 
formal education in computing. 

The difference means it is difficult 
for a teacher to set expectations. Some 
students do have experience coming 
in to class; most do not. When does a 
student need remedial help? We are in 
a transitional stage where the gap be-
tween the haves and have-nots in com-
puting education is large.

There is a positive side to the invisi-
bility of computation in children’s daily 
life. Mathematics and science students 
develop their misunderstandings of 
the world from daily life, too. Students’ 
incorrect science theories are wrong, 
but mostly work. The world is not flat, 
but it seems so, and you can live much 
of your life believing the world is flat. 
On the other hand, students develop 
incorrect theories in computer science 
only in computer science classes and 
mostly because of how we taught them. 
If we change the way we teach, we can 
reduce misunderstandings.

Developing Learning Progressions
We have been doing mathematics and 
science education for a long time. We 
have a good idea of what students can 
do in science and mathematics from 
early ages, and how quickly they can 
develop new concepts and skills. Edu-
cators call this a learning progression.

Since computing education is 
younger than science and mathemat-
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cation classes, we need to increase the 
number of computer science classes 
and teachers by a magnitude. That is 
an enormous change with dramatic 
implications. What we have today may 
not tell us much about tomorrow. The 
preparation, abilities, and preferences 
of existing computer science teachers 
may not be predictive when we have a 
10-times-larger population of teachers. 
We have to invent whole new teacher 
education programs. 

Steps Toward Pervasive 
Computing Education
While computer science is now part of 
STEM in the U.S. by fiat, students can-
not access computer science classes 
as easily as mathematics and science 
education. Many countries are ramp-
ing up computing education, so the 
situation is going to change. As it 
does, we will have to develop more ac-
curate expectations of how students 
learn CS, improve our ability to mea-
sure learning in computing, develop 
learning progressions, and create an 
infrastructure to develop teachers 
and track progress as we reach the 
pervasiveness of mathematics and 
science education.	
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want students to be able to build pro-
grams they find motivating and engag-
ing, without mastering all the skills of 
textual programming first. David Wein-
trop and Uri Wilensky have shown that 
students using blocks-based languages 
(like Scratch, Snap, and Blockly) make 
far fewer errors than in textual pro-
gramming languages. Again, part of 
their achievement is in measurement. 
They developed a commutative assess-
ment6 that allowed them to compare 
the same concepts in both textual and 
blocks-based programming languages. 
We will need many kinds of measures 
to develop learning progressions for 
computer science.

Computer Science Is  
Valued but Misunderstood
Students enter undergraduate math-
ematics and science classes after years 
of formal education, so they enter with 
a good idea about what those fields 
mean. That’s not true for computer sci-
ence. Even undergraduate CS majors 
do not know what computer science is. 
Mike Hewner showed that even under-
graduate students who declare a major 
in computer science only have an un-
clear idea of what the field is about.1 

Large-scale surveys in collabora-
tion between Google and Gallup have 
shown that parents and principals 
think courses in computer science 
are about how to use personal com-
puters.c The surveys show parents and 
principals highly value computing, 

c	 https://services.google.com/fh/files/misc/
images-of-computer-science-report.pdf

and want more computing education 
for their children. But the parents and 
principals mostly do not understand 
what it is.

Students want computer science, 
whatever they think it is. Many of them 
want it because of the economic value 
of knowledge of computer science. They 
don’t know what it is, but they know it 
can get them a good job and make them 
more effective at the job they want. 

The CS situation is different from 
science or mathematics. Contrast 
the number of coding boot camps 
available in your area to the num-
ber of biology boot camps or algebra 
boot camps. While having a demand 
for CS is mostly positive, it creates 
a strange dynamic in the computer 
science class. Students demand the 
“real thing” (which we might inter-
pret as “what will help me in a job”), 
even if they don’t know what that is. 
For example, students might com-
plain about learning a blocks-based 
language or using a pedagogical IDE 
because it’s not “real”—even if they 
are not quite clear what “real” is.

Building the Infrastructure 
for CS Classes
In many countries and U.S. states, 
you can learn the number of students 
taking primary or secondary school 
reading, mathematics, or science 
classes. In the U.S., hardly any state 
can tell you the number of students 
in their computer science classes at 
any level, or what is being taught in 
those courses. (In many states, “com-
puter science” and “computing ap-
plications” courses are considered 
the same.) Because computer science 
has only recently been declared part 
of STEM, it has not been tracked like 
other STEM subjects. We don’t know 
with certainty how much computing 
education is offered in the U.S. today 
nor where it is offered, which makes 
it difficult to plan and grow access to 
computing education.

We believe (from looking at data 
about Advanced Placement CS and in 
those states that do track) that far less 
than 30% of secondary school students 
even have the opportunity take a com-
puter science course in the U.S. today, 
and less than 10% of primary school 
students. To reach the ubiquity of ac-
cess to mathematics and science edu-

While computer 
science is now part 
of STEM in the U.S. 
by fiat, students 
cannot access 
computer science 
classes as easily as 
mathematics and 
science education.


