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Learning mathematics in a computer
algebra environment: obstacles are
opportunities

Paul Drijvers, Utrecht (The Netherlands)

Abstract: Using computer algebra is not as easy as it may seem.
Students often encounter obstacles while working in a computer
algebra environment. In this paper, global and local obstacles
are distinguished, and obstacles from both categories are iden-
tified. The theory of instrumentation provides a framework for
interpreting an obstacle as an unbalance of the conceptual and
technical aspects of an instrumentation scheme. It is argued that
making the obstacles explicit and trying to overcome them leads
to conceptual development. Therefore, obstacles are oppor-
tunities for learning.

Kurzreferat: Mathematiklernen in einer Computeralgebra-
Umgebung: Hindernisse sind Mdglichkeiten. Die \Verwendung
von Computeralgebra ist nicht so einfach wie sie erscheinen
mag. Schilerlnnen begegnen beim Arbeiten in einer Computer-
algebra-Umgebung h&ufig Hindernissen. In diesem Beitrag wird
zwischen globalen und lokalen Hindernissen unterschieden und
Hindernisse beider Kategorien werden indentifiziert. Die
Theorie der Instrumentierung bietet einen Rahmen, ein Hinder-
nis als eine Unausgewogenheit zwischen konzeptuellen und
technischen Aspekten eines Instrumentierungsschemas zu
deuten. Es werden Argumente dafiir angefiihrt, dass eine Expli-
zierung von Hindernissen und der Versuch sie zu tberwinden zu
einer konzeptuellen Entwicklung fihrt. Hindernisse bieten
daher Mdglichkeiten zu lernen.

ZDM-Classification: C30, C70, D30, D70, H20, 120, U70

1 Introduction

When 1 first encountered computer algebra, in the late
1980s, | was immediately fascinated by the power and the
speed of the system, in my case Derive. Part of the fasci-
nation was the feeling that doing mathematics with such a
system on the one hand seemed so simple, while on the
other hand expertise is needed to use it efficiently. To
make the nature of this expertise tangible is an intriguing
but difficult task.

For example, it is easy to expand an expression such as
(x+y)*+1 (see line #1 in Figure 1). Going the other way
however, getting Derive to transform x*+3x%y+3xy*+y*+1
into (x+y)*+1, is not so easy. The factor command that
often works for ‘undoing expansion’, leads to a different
and more complex result in this case (see line #3 in
Figure 1). If one doesn’t know that the expression
x3+3x%y+3xy*+y>+1 is the expansion of (x+y)>+1, one has
to ‘see’ that x+y might be a factor. The symmetry of x and
y in the expression suggests this. Then one can give x+y a
name, for instance z, then substitute y = z—x (line #6) or
x= z-y and finally substitute z = x+y (line #8). Easy for a
mathematician who has the expertise to notice the sym-
metry of x and y in the expression, but for a student, who
lacks mathematical expertise and experience with the
computer algebra environment?
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This example leads to the didactical issue that this paper
deals with: what obstacles do students encounter when
they work in a computer algebra environment and how
can the teacher deal with these obstacles?
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Figure 1: Finding back the factor x + y with Derive

Why such a ‘negative’ perspective to concentrate on ob-
stacles? In the early years of using computer algebra
systems (CAS) in mathematics teaching and learning
there was much optimism among educators concerning
the possible benefits of computer algebra tools for the
learner, but questions concerning the pitfalls and ob-
stacles were hardly addressed (see, for example, the
topics addressed in Heugl & Kutzler 1993). A few years
later, Artigue (1997) argued that an analysis of constraints
is relevant for the understanding of the potentials of a
technological tool:

“Le travail analytique d’identification des contraintes est
essentiel pour comprendre les fonctionnements possibles du
savoir permis par un logiciel donné, pour analyser les
d’écalages nécessairement existants avec les fonctionnements
scolaires usuels de ce savoir et identifier les conflits et les
problémes de légitimité institutionnelle qui peuvent en résulter.*
(Artigue 1997, p. 139)

In this ZDM-issue, Guin and Trouche (2002) elaborate on
this by distinguishing different types of constraints. My
point of view is that the relation between the potentials of
computer algebra environments and the obstacles they
may generate is important, because students’ difficulties
and errors can be opportunities for real learning, and also
may provide insightful data for the teacher or the
researcher.

This paper describes obstacles that students encounter
while working in a computer algebra environment. A
distinction between global and local obstacles is made. It
is argued that these obstacles offer opportunities for the
learning of mathematics. Classroom experiences during
three subsequent teaching experiments lead to a growing
list of such obstacles.

Section 2 contains a starting definition of an obstacle,
and an inventory of such obstacles observed in the first
teaching experiment. Two categories are distinguished,
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the global obstacles and the local ones. In section 3 the
theory of instrumentation is used to refine the category of
the local, algebraic obstacles. This leads to a revised defi-
nition and to new obstacles that were identified during the
second teaching experiment. Section 4 concerns the rela-
tion between mental conception, computer algebra tech-
nique and paper-and-pencil technique. This issue leads to
a new global obstacle, observed during the third teaching
experiment. Section 5 provides an example of student
behavior, also observed during the third teaching experi-
ment. It shows the complexity of the often-intertwined
global and local obstacles. Section 6 summarizes the
findings and discusses some consequences for teaching.

2 Global and local obstacles

My first probing and more systematic experience with
student obstacles in a computer algebra environment took
place during a teaching experiment in grade 11, the
German SlI. Obstacles are defined as barriers provided by
the CAS that prevent the student from carrying out the
utilization scheme that s/he has in mind (Drijvers 2000).
The observations lead to the following, non-exhaustive
list of obstacles that students encounter while doing
mathematics in a computer algebra environment:

(1) The difference between the algebraic representations
provided by the CAS and those students expect and
conceive as ‘simple’. This concerns difficulties in
recognizing that, for example, -(x — 12), given by the
CAS, is equivalent to 12 — x, that the student had in

mind, or that \/% equals %\/E Recognizing

equivalent expressions is a central issue in algebra,
and still is when working in a computer algebra
environment.

(2) The difference between numerical and algebraic
calculations and the implicit way the CAS deals with

this difference. For many students V2 is not a real
answer: they consider 1.41 as the ultimate result.
They do not really understand the difference in status

of the two answers: /2 “still has some algebra in it’,
whereas 1.41 is purely numerical. The CAS is not
always clear about this difference in status.

(3) The flexible conception of variables and parameters
that using a CAS requires. In a computer algebra en-
vironment ‘all letters are equal’, to paraphrase Orwell.
However, in a specific problem context the variables
have different meanings and roles, such as the role of
unknown, parameter or changing quantity. The
meaning and the role of the letter are ‘in the eye of the
beholder’. Working efficiently with a CAS requires
that one deals flexibly with the roles of the variables
involved and with the context-bound meanings they
may have outside the software and the abstract way of
dealing with them within the software.

(4) The tendency to accept only numerical solutions and
not algebraic solutions. Students often are not
satisfied with answers such as x = % s - % v. In the
end they want to know what value x stands for. This
is called the ‘expected answer obstacle’.
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(5) The limitations of the CAS, and the difficulty in
providing algebraic strategies to help the CAS to
overcome these limitations. Sometimes, as in the
example in the introduction, there is no direct
command to perform a task, or the CAS is unable to
carry it out without any help from the user. In such
cases, cooperation between users’ expertise and CAS
capacities is needed to find a result.

(6) The inability to decide when and how computer
algebra can be useful. Experienced users know what
the CAS can be used for, and how to let it work for
them in a certain problem situation. Novice users
however don’t have this sense of what can be
reasonably expected from the tool.

(7) The black box character of the CAS. Usually the CAS
provides no insight in the way it obtains its results.
This means that students are often unable to verify the
procedure. To them, the CAS has a black box
character. Students may feel uncomfortable with this,
as they are ‘at the mercy of’ a hardly controllable
engine.

Some of these obstacles can be related to the theory of
Realistic Mathematics Education (RME). In the RME
philosophy, a bottom up approach with opportunities for
reinvention and progressive formalization is essential.
From this perspective, the top down and black box
character of the CAS tool, often combined with a certain
amount of idiosyncrasy, can be expected to produce
obstacles in the learning.

Looking back at the list of identified obstacles, two
remarks can be made. First, the obstacles have different
natures. Obstacles 5, 6 and 7 share a global character:
they deal with getting the machine to work for you in
general, and with the relation between the problem
solving plan and the implementation in the computer
algebra environment. The first four obstacles, on the
other hand, have a more local character: they deal with a
particular mathematical topic — in this case algebra — and
with the way it is treated by the CAS. The word ‘local’
does not suggest that it is not important: the issue of
equivalent expressions in the first obstacle, for example,
is essential for algebraic understanding, and in that sense
global within the domain of algebra. However, it does not
involve the overall strategy of using computer algebra for
solving a mathematical problem. In the following, global
obstacles and ‘micro-didactical’ local ones are distin-
guished.

The second remark concerns the question of whether
the obstacles are indeed provided by the CAS. Rather, it
seems that they can be considered as already existing
cognitive obstacles, that are simply becoming more
manifest and more important by working in the computer
algebra environment.

The observations of the local obstacles motivated me to
concentrate my research on the learning of algebra, in
particular the concept of parameter, in a computer algebra
environment. Therefore, most of the examples in the rest
of this paper concern algebra.
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3 Local obstacles and the theory of instrumentation

As described in the previous section, some of the local
obstacles can be related to the theory of RME. A second
theoretical framework that is fruitful for understanding
the difficulties of effective use of technology is the per-
spective of instrumentation (Rabardel 1995; Artigue
1997; Lagrange 1999ab, 2000; Trouche 2000). For an
explanation on the theory of instrumentation | refer to
Guin and Trouche (2002) in this issue. For the purpose of
this paper, the main points of the theory are the notion of
instrumental genesis and the concept of the instrumen-
tation scheme.

In short, instrumental genesis is the process that the
user has to go through while learning to work with a
(technological) tool. In order to be able to use a tool in a
productive way, the learner must develop instrumentation
schemes. These schemes together with the physical tool,
the ‘artifact’, form the instrument. Often, this process
requires time and effort.

Within an instrumentation scheme two components are
intertwined: a technical component and a mental com-
ponent. The technical part concerns the sequence of
actions that one performs on a machine in order to obtain
a certain goal. In the case of mathematical technological
tools the mental part consists of the mathematical objects
involved, and of a mental image of the problem solving
process and the machine actions. Such mental mathe-
matical conceptions are part of the instrumentation
scheme, and can even develop further during the develop-
ment of the scheme. Technical skills and algorithms on
the one hand, and conceptual insights on the other are
inextricably bound up with each other in the instrumen-
tation scheme. In Guin and Trouche (2002) the concept of
instrumentation scheme is elaborated on in detail.

Thus the instrumental genesis is the process of building
up schemes that consist of both techniques and concep-
tions that give meaning to the techniques. In this sense
the theory of instrumentation is in line with current views
on the role of symbols and symbolizing in mathematics
education (Gravemeijer et al. 2000). The point of depar-
ture here is that there is a dialectic relation between sym-
bolizing and the construction of meaning. The elaboration
of the relation between the theory of instrumentation and
theories of symbolizing, however, is beyond the scope of
this paper.

The value of the instrumentation theory is that it
provides a specific way to look at the interaction between
student and technological tool, and in particular it shows
how seemingly technical obstacles can be related to con-
ceptual difficulties. Paying attention to technical ob-
stacles therefore often will involve conceptual aspects,
and therefore may provoke conceptual development.

Let us make the theory concrete. The example from the
introduction concerns rewriting x° + x% + xy? + y® +1 as
(x+y)® + 1. What is needed to be able to perform the
successful sequence of actions in lines #6, #7 and #8 of
Figure 1? First, the student should have the skill to look
at the expression that will be transformed, and realize that
it is symmetric in x and y. This is a conceptual skill.
Second, the student should conclude that in that case it
makes sense to try x+y as a factor, a mental activity
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again. Then the question is how to perform this in the
computer algebra environment. This requires not only the
mastering of the syntax of substitution, but also the in-
sight that one cannot substitute x+y but that the substi-
tution of y = z — x is a good alternative. This leads to line
#6 and simplification yields #7. Then once more some
mental activity is needed: if we want an expression in x
and vy, the z should be replaced by x+y, and this time the
substitution can be performed directly. This combination
of mental conceptions and technical actions can develop
into an instrumentation scheme if it is performed several
times in similar situations, so that it becomes part of the
‘repertoire’ of the student.
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Figure 2: Substitution in TI-Interactive

In similar situations | observed students trying to substi-
tute X + y = z. In Tl-Interactive (see Figure 2), a
relatively new software package that integrates word
processing and CAS, this substitution has no effect and
this may puzzle the user. It shows a lack of knowledge of
the syntax of substitution, but also a limited conception of
the substitution procedure. Substituting y=z—x is a step in
the right direction and results in z>+1. A second substi-
tution of z = x+y does not give the expected (x+y)*+1
because of the automatic simplification of the software.
This illustrates that the relation between mathematical
conception and technical skills is tool-dependent: the
automatic simplification of TI-Interactive makes a
difference compared to Derive. If Maple were used, the
availability of the algsubs-command would affect the
instrumentation.

In the second teaching experiment, that took place in
grade 9, the theory of instrumentation is applied to the
substitution of expressions and the solution of (para-
metric) equations (Drijvers & Van Herwaarden 2000,
2001). This leads to three new local, algebraic obstacles
to add to our growing list:
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(8) The limited conception of algebraic substitution.
Students often think that substitution is limited to
“filling in numerical values’. That conception has to
be extended to algebraic substitution of expressions.

(9) The limited conception of algebraic solution.
Students often think of solving as ‘calculating a
numerical value’. This conception has to be
extended to algebraic solution, including expressing
one variable in terms of others .

(10) The conception of an expression as a process.
Students often see an expression as a compact
means to describe a calculation process. This con-
ception needs to be extended to the expression as an
object, as a ‘thing’ that can be moved, for example
substituted into an equation.

The last obstacle is the most relevant of the three. In
algebra, the duality process — object is very important.
Several authors (Sfard 1991; Tall & Thomas 1991; Gray
& Tall 1994; Tall at al. 2000) argue that mathematical
objects have both a procedural and a structural aspect. To
flexibly deal with this dual nature is an important alge-
braic skill. Wenger (1987) and Arcavi (1994) both point
out that the ability to see (part of) a formula as an entity
that can be moved, transformed or substituted is a strong
indicator of ‘symbol sense’. This issue is close to ob-
stacle (1) in section 2 on equivalent formulas.

In the light of the instrumentation theory the descrip-
tion of an obstacle can be rephrased: An obstacle occurs
when the technical and the conceptual part in an instru-
mentation scheme are not balanced, either because the
technique is not accompanied by appropriate meaning
and conception, or because the technical skills for the
performance of a conceptual idea are lacking. This
description is more symmetric than the one given in
section 2, and does not ‘blame’ the CAS alone for all
problems. Furthermore, it also suggests that conceptual
development is part of the process of instrumentation in
general and of the process of overcoming obstacles in
particular. In that sense, obstacles are opportunities for
learning.

4 Global obstacles and the triangle screen-paper-mind

In the previous section the relation between techniques in
a computer algebra environment and the conceptions in
the mind of the student was considered as crucial for
appropriate instrumentation. However, students who start
to work in a computer algebra environment usually
already have a lot of experience with techniques in
another medium: ‘by-hand’ techniques using paper-and-
pencil. This is their main frame of reference, so it seems
appropriate to consider the relation between the new
‘screen techniques’ and the old ‘paper-and-pencil tech-
niques’ (Drijvers 2002).

It has already been indicated that, contrary to what one
might think, techniques do not disappear or lose
relevance in a computer algebra environment. As
Lagrange points out:

“We found a common assumption: CAS lightens the technical
work in doing mathematics, and then students will focus on
application or understanding. [...] Our survey of the French
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classrooms showed neither a clear lightening in the technical
aspects of the work nor a definite enhancement of pupils’ con-
ceptual reflection. [...] Technical difficulties in the use of CAS
replaced the usual difficulties that pupils encountered in
paper/pencil calculations. Easier calculation did not automati-
cally enhance students’ reflection and understanding.”
(Lagrange 1999b, p. 144)

Ideally speaking, the mental conception, the paper-and-
pencil technique and the computer algebra technique
should be the three connected edges of an integrated
triangle that support each other. For paper-and-pencil and
computer algebra techniques, two conditions are required:
the computer algebra technique should be congruent with
the paper-and-pencil technique, and the computer algebra
technique should be transparent to the student.

By congruence is meant that a technique performed in
both environments can be recognized as such, and is
perceived as a different implementation of the same
technique, instead of two different, unrelated techniques.
For example, the syntax and the notation in the computer
algebra environment should be ‘natural’ from the paper-
and-pencil perspective. This does not mean that the
differences between the paper-and-pencil medium and the
computer algebra environment is ignored; for example, it
is important that students are aware of the flexibility of
paper-and-pencil and the power of computer algebra.

Transparency means that the student is able to ‘look
through’ the way the computer algebra environment finds
and presents its results, on the basis of his paper-and-
pencil experience. This is difficult, as the computer
algebra algorithms usually are more sophisticated than
the  paper-and-pencil  techniques. For example,
substitution in a CAS is often transparent, whereas
solving or simplification often are not. However, simple
features of the computer algebra tools such as the
presentation of results in a comprehensive form and
providing sensible information of eventual errors may
enhance the transparency.

If the conditions of congruence and transparency are
fulfilled, students may relate the different kinds of
techniques, for example by transferring paper-and-pencil
problem solving approaches to the computer algebra
environment or by using computer algebra notations in
their paper-and-pencil work. Two observations from the
third teaching experiment illustrate this interference
between computer algebra technique and paper-and-
pencil technique. First, Martin is solving the system of
equations:

x [y =540

D +y? =39

In the computer algebra environment, Martin prefers to
isolate y in each of the two equations and then set them
equal to each other, while it is shorter to isolate y in only
one equation and then substitute the result in the other
equation. My conjecture is that this behavior in the
computer algebra environment stems from the similar
problem solving approach that Martin is familiar with
from the paper-and-pencil environment: his text book
often uses functions and graphs as contexts for equations,
and usually y is already isolated in the formulas. By the
way, many CASs can solve the system x[¥ =540,



ZDM 2002 \ol. 34 (5)

x% +y? =39 directly.

Second, Dustin is solving a system of equations with
paper-and-pencil. This was after a TI1-89 experiment, but
the computer algebra calculator was no longer available.
As Figure 3 shows, Dustin uses the vertical bar to indi-
cate the substitution, which clearly is inspired from the
TI1-89 notation. The CAS notation is so natural to him,
that transfer to paper-and-pencil takes place.

=a—x

x24+9D= 10“:9_1

Figure 3: Transfer of notation

In general, my classroom observations suggest that such
transfer did occur for the technique of substitution, but
only to a limited extent for the solution of equations.

If transparency and congruence are conditions for
connecting computer algebra techniques and paper-and-
pencil techniques, what are its antagonists? | think the
pseudo-transparency of computer algebra, the double
reference phenomenon and the black box character,
already mentioned as obstacle 7.

Pseudo-transparency (Artigue 1997) means that the
technique in the computer algebra environment is close to
the paper-and-pencil technique, but not exactly the same,
with sometimes quite subtle differences. For example, if
one enters (x+5)/3, in many CAS’s one needs to use
brackets, but on the screen the formula appears without

. . . X+
brackets. In fact, the horizontal fraction-bar in TS can

be considered as a special notation for brackets in the
numerator, but the students often are not aware of that. In
a similar way the brackets used to enter the square root of
an expression disappear immediately after entering. As a
consequence of this pseudo-transparency, students
working in a computer algebra environment sometimes
are not ‘discovering mathematics’, as we expect, but may
be ‘discovering the software’ with all its peculiarities.
That is what is meant by double reference: referring to
specific representations of the computer algebra tool in-
stead of referring to mathematical concepts.

The black box character of most computer algebra tools
(obstacle 7) may prevent students from seeing the con-
gruence between the machine use and the paper-and-
pencil techniques. This seems to be an obstacle for
students who may feel uncomfortable when they are not
able to perform some techniques by hand and have to
‘trust technology” without having means for verification.
| attribute the fact that students seem to have difficulties
with transfer with respect to solving equations to the
black box character of the solving routine in the computer
algebra environment.

This section can be summarized by stating that the inte-
gration of mental conceptions, paper-and-pencil tech-
niques and computer algebra techniques is an important
factor in the learning of mathematics using computer
algebra. The observation of the difficulties in achieving
this adds a new, global obstacle to our list:
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(11) The difficult transfer between CAS technique and
paper-and-pencil technique because of the lack of
congruence between the techniques in the two
media. Factors in this are the black box character
and the non-transparency of the computer algebra
tool.

5 Alternating global and local obstacles: an example

So far a distinction has been made between global and
local obstacles. Several obstacles have been identified
and the description of an obstacle has been related to the
instrumentation theory. This section contains a long class-
room observation of a grade 10 student, Maria, that
shows how the global and local obstacles interfere.
Before the observation, Maria and her colleagues used the
T1-89 symbolic calculators for three weeks. They worked
through assignments where the value of a parameter was
changed with a slider bar. This way they studied the
effect on the parabola, and thus perceived the parameter
as a ‘letter that determines the position of the parabola’.
Maria works on the assignment in Figure 4.

Below you see a sheaf of graphs of the family
y =x? +bx+1. We pay attention to the vertices of the

parabola.

a. Mark and connect the vertices. What kind of
curve do you seem to get?

b. Express the coordinates of the vertex of a
‘family member’ in b. Hint: the minimum lies
between the zeroes, if there are zeroes.

c. Find the equation of the curve through all the
vertices.

Figure 4: Sheaf of graphs

Maria thinks that question a concerns reproducing the
picture with the TI-89. She enters Y1=x"2+a*x+1 in the
function list of the TI-89. Then she sees that the para-
meter is called b, tries to correct this but doesn’t manage,
clears the complete function and re-enters:
Y1=x"2+b*x+~10o=. Then she wonders what the values of
b are. She chooses values -5, -4, -3, ... 4, 5. She sets the
viewing window dimensions, first using the wrong minus
key, corrects and gets a nice picture (see Figure 5). She
managed to overcome the small, local obstacles and she
is proud and happy.

Maria: It works! This is a revolution in my math calculator

thing!
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HMAIN EAD AUT FUME

Figure 5: Maria’s sheaf of graphs on the TI-89

Question b suggests to find the zeroes first. Maria enters
solve(x*2+b*x+1,x), which gives an error message as ‘=0’
is lacking. Some other computer algebra tools are not so
strict on the difference between expressions and
equations, and would have accepted this input. This is an
instrumentation problem with solve, obstacle 9. Maria
doesn’t like the resulting error message:

Maria: It hates me, that calculator!

Then she tries solve(x*2+b*x+1,x(0 She seems to
consider substitution (obstacle 8). Then she changes x
into b, solve(x"2+b*x+1,b), but that doesn’t work either.
An example of role confusion, obstacle 3. Then she
reverts to her graph, to show it to the rest of the class by
means of the projection display. She doesn’t overcome
the obstacles concerning solving and substitution and the
lesson is over.

The next lesson, Maria enters the formula again.
Apparently, it was cleared between the lessons. This time,
however, she forgets the multiplication sign between b
and x: Y1=x"2+bx+1. No graph, not even after adding the
parameter values. When the observer suggests that the
multiplication sign is missing, she corrects and gets the
same picture as the lesson before.

Maria: Oh that has to be ‘times’. Yes that’s always me, |

never do it completely right.

Maria once more wants to find the zeroes. She enters
solve(x"2+b*x+1=y,b), so she now knows that there needs
to be an equation instead of an expression, but she has 'y
instead of 0 and solves with respect to b instead of x. The
machine replies: b=(-x"2-y+1)/x. She seems to focus on b,
probably because b is mentioned in the assignment, and
she does not distinguish between the roles of the different
letters (obst. 4).

Then she enters solve(b=(-x"2-y+1)/x)[b=5). She
probably wants a numerical value instead of the general b
(obst. 3)? However this doesn’t work because of the
errors in the solve command (obs. 9). The next trial
includes a letter with respect to which the equation is
solved: solve(b=(-x"2-y+1)/x),x(b=5) but the brackets are
not well placed. She clears the line and substitutes 5 by
hand: solve(5=(-x"2-y+1)/x,x). This gives an expression
for x in terms of y that doesn’t seem to help her.

Maria: I just don’t understand it, I am simply too stupid.

But | don’t have a y of course.

Here we see the global obstacle of the inability to
implement the problem solving strategy into the techno-
logical environment (obst. 6). One can wonder if Maria
has a clear solving strategy in mind.
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With help from the observer Maria notices that she
should substitute 0 for y in order to find the intersection
points with the x-axis. This gives the x-coordinates of the
zeroes in terms of b (see Figure 6). A nice result, that
could have been obtained in a more direct way.
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Figure 6: Zeroes in terms of parameter b

Maria copies this formula into her notebook, but has
difficulties in reading the solution: the square root sign is
too long in the second solution (see Figure 7).

nudden =

Figure 7: Copying solutions into the notebook

Now that she has the general solution for the zeroes, she
seems to want concrete values for b before being able to
proceed:

Maria: But then you have to fill in a value for b, don’t you?
And, later:
Maria: But there is no use in knowing that the extreme

value lies in the middle of the two zeroes if you
cannot calculate it?

Here we see obstacle 2 on the preference for numerical
results and obstacle 10 on the perception of expressions
as answers. Maria seems to suffer from the so-called
‘lack-of-closure’ obstacle: unless you have a value for the
parameters, you cannot calculate anything and you cannot
go on.

However, with some help from the observer Maria
accepts proceeding with expressions. With some struggle
she takes the average of the two general solutions for x
and finds that the x-coordinate of the vertex equals —b/2.
She is satisfied with that:

Maria: Well | did find this out quite nicely.

In order to find the y-coordinate of the vertex, she
substitutes  x=-b/2  using  the  solve-command:
solve(y=-0.5*b"2+b*-0.5*b+1,y), encountering obstacles 8
and 9. She forgets the brackets around -b/2, so that only b
is squared. The result, y=1-b?, is not correct. Also, using
solve to carry out a substitution is not an efficient way of
working. By the way, she doesn’t seem to worry about
the difference between %2 and 0.5 (obst. 2).

For question ¢, Maria writes down in her notebook that
the vertices have coordinates (-¥2b, 1-b®) and concludes
that the equation of the curve through the vertices is
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y =(1-b%) X —% (b . However, probably with the help of

her neighbor, she corrects her error and ends up with the
right formula for the curve througg the extreme points:
y=1-x

Looking back at Maria’s problem solving behavior,
many of the previously identified obstacles can be
recognized. Also, the observation shows how the
different kinds of obstacles may alternate and interfere.

Some of the more technical obstacles do not frustrate
the problem solving process. For example, at the end
Maria misses the difference between exact and decimal
numbers, but that doesn’t hinder her. Also, the wrong
minus key while setting the window dimensions was
corrected easily. On other occasions, for example when
Maria forgets to put a multiplication symbol between two
variables, technical details can be very time consuming,
can frustrate the process and lead to losing track of the
problem solving strategy while trying to overcome them.
Such relatively simple syntactical problems, that may be
due to the idiosyncrasy of the computer algebra tool, can
have important influences indeed.

A more serious category of obstacles shows up when
the technical problems are related to the conception of the
mathematics involved. Take for example Maria’s
problems with solving equations. She tries to solve ex-
pressions instead of equations, she solves with respect to
the wrong variable or forgets to indicate the variable, and
she seems to confuse solving and substituting. The ob-
stacles she encounters prevent her from following her
original plans and lead to erroneous behavior. | conjecture
that a more mature conception of solving, including the
‘isolation” of one variable in order to express it in terms
of some others, would have helped her. The conception of
a formula as an object is a factor in that, too.

Maria’s problem solving behavior seems to miss a clear
direction. The impression is that the overall solving
strategy is not clear for her, either because the geo-
metrical context, the role of the parameter in the
dynamics of the graph, and the meaning of the question
are not clear to her, or because her global plan is
frustrated by the local obstacles encountered.

As a new element, the observation shows that a
meaningful interpretation of the computer algebra output
is not evident. Maria’s expression of the lack of closure,
as well as her error while copying the solution formula,
suggest that the meaning of these machine results for her
is not clear. This leads to a final obstacle:

(12) The difficulty in interpreting the output of the CAS.

Maria’s comments on what is happening, her feelings
of victory when she succeeds and her frustration when
things do not work indicate that the obstacles may create
strong emotions that prevent the student from advancing
further. That alone is a reason to take these obstacles
seriously.

Several conclusions can be drawn from this case. First,
the observations show how local obstacles lead to losing
track of the global problem solving strategy. Second,
many of the previously identified obstacles show up in
conjunction in this episode. Third, the relation between
technical and conceptual difficulties, as stressed in the
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theory of instrumentation, is observed. Finally, a new
obstacle is identified that concerns the inability to under-
stand the output of the computer algebra device.

6 Conclusion: obstacles are opportunities

This paper identifies the following obstacles that students
encounter while working in a computer algebra environ-
ment.

1 The difference between the algebraic representations
provided by the CAS and those students expect and
conceive as ‘simple’.

2 The difference between numerical and algebraic
calculations and the implicit way the CAS deals with
this difference.

3 The flexible conception of variables and parameters
that using a CAS requires.

4 The tendency to accept only numerical solutions and
no algebraic solutions.

5 The limitations of the CAS, and the difficulty in pro-
viding algebraic strategies to help the CAS to over-
come these limitations.

6 The inability to decide when and how computer

algebra can be useful.

The black box character of the CAS.

The limited conception of algebraic substitution.

The limited conception of algebraic solution.

10 The conception of an expression as a process.

11 The difficult transfer between CAS technique and
paper-and-pencil.

12 The difficulty in interpreting the CAS output.

© o~

Two kinds of obstacles are distinguished: the global ob-
stacles (5, 6, 7, 11, 12) and the local ones (1, 2, 3, 4, 8, 9,
10). For the latter category, the theory of instrumentation
stresses the relation between machine technique and
mathematical conception. Also, the lack of congruence
between machine technique and paper-and-pencil tech-
nique can also play a role, as well as the lack of trans-
parency of the computer algebra device.

It is worthwhile to consider the limitations of this
inventory. First, it does not claim to be exhaustive; the
identified obstacles just imposed themselves on different
occasions. Second, the inventory of the local obstacles is
subject dependent: it emerged from the perspective of the
role of computer algebra in algebra education. With
another focus, however, the list of specific obstacles
might be different. | conjecture, however, that the dual
character of the local obstacles, that share an interference
of technical and conceptual aspects, exceeds the subject-
dependency: if the topic was not algebra with parameters,
the local obstacles might have a similar dual character.
That would support the theory of instrumentation of tech-
nological tools.

There are two reasons why the observed obstacles
should be taken seriously in the classroom. The first
reason is indicated in the previous section: encountering
obstacles can elicit feelings of irritation and frustration by
the students. Although dealing with frustration is a part of
doing mathematics, in some cases it can be counter-
productive. Ignoring the obstacles in teaching can
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amplify this effect.

A second and probably more important reason to take
the obstacles seriously in teaching is that they offer
opportunities for learning. Obstacles, according to the
description in section 3, often integrate a technical and a
conceptual aspect. Therefore, working on overcoming an
obstacle often also means working on the conceptual de-
velopment of the mathematics involved. Many of the ob-
stacles seem to be, at least partially, existing cognitive
obstacles that are simply becoming more manifest in the
computer algebra environment. Therefore, to investigate
what the problem really is, to find out what the ‘logic’ is
behind a specific syntax, to discover the meaning of the
output, to invent a new strategy that is more feasible in
the computer algebra environment, such activities offer
opportunities for a better understanding, an improved
conceptual development and a good mathematical atti-
tude. In that sense, obstacles are opportunities for
learning that can be exploited in interaction with indi-
vidual students and in classroom discussions.

As a consequence for teaching, | recommend a peda-
gogical strategy of considering obstacles seriously,
paying attention to them and taking advantage of the
opportunities they offer. As Simon (1995) stated in a
more general sense than the case of working in a
computer algebra environment;

“Conceptual difficulties that | have previously observed in
students are not to be avoided; rather, they provide particular
challenges, which if surmounted by the students, result in con-
ceptual growth.” (Simon 1995, p. 139)

Instead of trying to ignore the obstacles encountered, |
suggest to make them the subject of classroom discussion
in which the meaning of the techniques and the concep-
tions is developed. The mathematical ideas behind the
obstacles should be considered explicitly, and the
computer algebra environment used as an inspiring object
of study instead of an ‘oracle’. | believe that such an
approach turns the obstacles of computer algebra use into
opportunities for learning, and enriches mathematical
discourse in the classroom.
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