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Middle school, college algebra, calculus, and linear algebra teachers can all benefit

from this book. Becoming proficient with algebra is a complex task—much more so

than it appears to those who were successful the first time around. Furthermore,

according to neuroscience studies, manipulating symbolic expressions requires

considerable cognitive effort even for those who are proficient. In addition,

“met-befores” in the form of prior arithmetic thinking can thwart algebraic think-

ing. All this, and more, is considered in a readable way in this book.
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Foreword

The mathematics education community has had a keen interest in students’ learning

of algebra, especially since the “Algebra for All” movement began in the 1990s.

The great bulk of research on students’ algebra, however, focuses on students’

development of algebraic thinking in the early grades, on obstacles students must

overcome to reason algebraically, and on knowledge required of teachers to teach

algebra well. That is, the vast majority of research on students’ algebra has focused

on learning and teaching algebra. Very little research has focused on the various

consequences for students’ later mathematical learning of the algebra that they

actually learn. This book picks up that focus. It addresses the consequences of the

algebra students learn in school for their mathematical learning in college. It also

addresses a problem created for students by college instructors’ attitude that, in

solving mathematical problems or proving theorems, “We’ve done the hard, stra-

tegic part. The rest is just algebra.” It turns out that “the rest,” for students, is not
just algebra. It too often is an abyss they fall into with great apprehension and

anxiety, an abyss that distracts them from strategy and meaning and obstructs their

insight into larger themes.

Actually, this book does more than trace consequences of students’ difficulties

with school algebra. Chapters in it offer new insights into

• Sources of students’ difficulties in algebra (e.g., impoverished understandings of

fraction and proportion)

• The interplay between affect and mathematical understanding

• The role of reflection in students’ successful algebra learning

• Alternative conceptions of algebra (e.g., emphasis on functions and modeling)

• The centrality of generalizing and particularizing in algebraic thinking

• Critical ways of thinking that curricula and instruction fail to foster (e.g., vari-

ables vary and expressions have numerical values)

• Uses of computer algebra systems to help students develop symbol sense and

structure sense while, ironically, removing any need that they engage directly in

algebraic manipulations
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• New ways to think about linear algebra that both deepen and broaden students’

school algebra.

Put another way, this book contains a collection of chapters that put past research

on students’ algebra in a new light. It also offers new ways to think about addressing

students’ difficulties in school algebra while at the same time offering ways to

envision how we might support students’meaningful uses of algebra beyond school

mathematics.

Tempe, AZ Patrick W. Thompson

June 2016
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Introduction

In solving mathematics problems in college level, very often one reaches a point

where certain algebraic manipulation is a required and unavoidable part of the

procedure. Once a mathematician reaches this point the rest is trivial, straightfor-

ward, and in some sense a pleasant completion to a long process. Namely, the real

mathematics part is taken care of “and the rest is just algebra,” an expression

commonly used by many mathematics instructors. On the contrary, many college

students undergo an entirely different experience. These students often halfheart-

edly apply the more advanced theories and make some progress in a problem-

solving situation; however, the algebra portions which are initially hidden or mixed

in with other contexts create an enormous obstacle. The unresolved high school

algebra knowledge is analogous to a tornado wrapped in rain, appearing in so many

courses where outwardly seem far removed from high school algebra. In college as

the complexity of mathematical ideas increases rapidly, the unresolved high school

algebra problems mount up progressively and continue to create further distress.

While assessing students’ work, it is often difficult to unravel their thought pro-

cesses and the convoluted algebraic errors which are challenging to accurately

categorize or justify.

Many college instructors are facing this dilemma every day. Students who

seemingly follow more complex mathematical concepts are unable to proceed as

problems, for example involving fractions, will soon let them down. In college
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level, students who cannot perform what is known as “basic algebraic manipula-

tions,” or do not possess adequate “assumed algebra knowledge” readily available,

face significant disadvantages. This cohort of students are often not able to follow

the instructors’ problem-solving steps and easily get lost if any steps are skipped.

They are often unable to successfully reach a desired solution on their own, causing

frustrations for themselves, their instructors, and consequently raising many con-

cerns for the institution and the country as a whole.

This book is a coordinated collection of chapters written by several experts in the

field that addresses one of the most persistent mathematics pedagogy challenges of

this century. The authors, who have critically examined students’ difficulties from

their areas of research, emphasize that these difficulties are more complex than just

forgotten rules and offer strategic approaches that hold promise of greater success

for more college students. Their research and discussion will raise awareness on the

complexity and challenges facing the mathematics community. Mathematics

instructors who are frustrated with their students’ lack of skills and knowledge

will find this volume helpful, as the authors confront the question of why students

have difficulties with algebra and reveal how to improve their long-term under-

standing and success.

The first part of the book brings issues regarding the current state of students’

inadequacies and fluency of algebra in the US colleges and is divided into two

chapters.

In the first chapter, Stewart and Reeder set the scene by showing how the

unresolved high school algebra misconceptions and shortcomings create major

complications in college mathematics courses. The examples that are illustrated

in this chapter are the tip of the iceberg, showing the types that most instructors will

frequently come across in assessing students’ work. The consequences of lacking

solid algebra in college level are devastating and deserve to be addressed

appropriately.

The second chapter by McGowen shows how the problematic nature of prior

knowledge hinders students’ success in college-level mathematics. She cites the

need to improve the effectiveness of teaching and calls for teachers to be aware of

students’ problematic met-befores, providing guidance accordingly, in order to help

students develop deeper understanding of mathematics and promote mathematical

thinking.

The second part of the book, devoted to algebra in a broader context, is divided

into three chapters.

In the first chapter, Tall offers a combined framework for mathematics in general

and algebra in particular and contemplates why some students find algebra plea-

surable whereas others find it a source of anxiety. In his view, many students are

affected by problematic aspects that have accumulated over many years and

become more difficult to address as the ideas become deeply ingrained. Tall

suggests a significant re-think in how we view the development of mathematical

thinking that promotes flexible thinking on the one hand and impedes long-term

learning on the other.
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The second chapter presented by Booth, McGinn, Barbieri, and Young is

concerned about students’ common misconceptions. The authors believe that tra-

ditional instruction will not remedy the problem. Drawing from a wealth of

mathematics education and educational psychology literature, the authors offer a

number of interventions to address these misconceptions. Furthermore, they discuss

ways of preventing them from developing.

The third chapter by Reeder highlights the significance of mathematics teachers’

content and pedagogical knowledge. In her views, to prepare successful students

who are able to contribute to the global economy, we must insist that the mastry of

basic skills is not suffecient. In her views, the process of preparing students well is

challenging and requires a holistic approach, but can be met.

The third part of the book, devoted to positive approaches to the teaching of

algebra, is divided into two chapters.

Drawing on years of experience working with many students from all ages,

Mason believes that once the learner appreciates where the algebraic expressions

come from, manipulating them is a straightforward task. This chapter offers well-

thought out pedagogical strategies, didactic tactics, and specifically designed tasks

and offers ways forward on how to succeed in learning algebra.

Fey and Smith suggest a bold curriculum change, centering on functions. They

assert that the current US high school curriculum has no room for more applied

mathematics. Topics such as probability, statistics, modern discrete mathematics,

and mathematical modeling must be included to prepare our students to solve real

life problems. In this chapter, the authors assess their proposed curriculum by

carefully considering the challenges and responding to them.

Combining historical and current didactical ideas, Nataraj and Thomas reveal

fresh approaches to the understanding of algebra. The authors discuss the various

uses of letters and the concept of exponentiation and emphasize that in order to

prepare students for long-term understanding and success, much groundwork needs

to be established in the middle and lower secondary years of schooling.

The fourth part of the book proposes future developments and is divided into two

chapters.

Drawing from studies in mathematics educational neuroscience, Kieran reveals

new findings offering different insights into how we think about the so-called just

algebra part of a mathematical problem. Kieran encourages the mathematics com-

munity to reflect and question their traditional beliefs that assume algebraic activ-

ities are straightforward algorithmic procedures.

The second chapter presented by Thomas examines how particular tasks, includ-

ing some that integrate digital technology into student activity, could be used to

re-think the algebra curriculum content with a view to motivating students and

promoting versatile thinking. Thomas finds the underlying principles of Framework

of Advanced Mathematical Thinking (FAMT) prove to be useful in school level

mathematics.

The last part of the book, dedicated to teaching higher algebra, is divided into

two chapters.
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To prepare students to embrace abstraction, Hannah recommends allowing

linear algebra to evolve naturally from students’ experiences. He believes provok-

ing a need for definitions and theorems is a far better approach than presenting a set

of predetermined fully formed axioms.

Stewart believes that the sudden and to some degree unexpected entry into more

formal thinking in linear algebra causes difficulties for many undergraduates who

do not have a prior background. Based on the FAMT, Stewart demonstrates the type

of thinking that is expected and required in college level in order to succeed. She

recommends these types of thinking ought to be introduced and encouraged in high

school.

The purpose of this book is not to offer a magic remedy or a set of polished

guidelines to quickly resolve a deeply rooted problem. The intention of this book is

to reach out to the mathematics community and encourage every person to take a

bold step toward changing how we teach and learn algebra. Talking about what our

college students are not capable of doing and essentially sitting on the fence and

watching it all go by is no longer an option. We all have some appreciation of what

our students can or cannot do. The question is what are our responsibilities in regard

to college students’ poor algebra knowledge?

Department of Mathematics

University of Oklahoma

Norman, OK

USA

Sepideh Stewart
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Part I

Current State of Students’
Inadequacies, Conceptions and

Fluency of Algebra in the US Colleges



Chapter 1

Algebra Underperformances at College
Level: What Are the Consequences?

Sepideh Stewart and Stacy Reeder

. . .Although I couldn’t really prove a lot on the exams, I did
learn how to solve calculus problems, unfortunately what
held me back was the algebra.

—Calculus I Student

Abstract Many college instructors consider the final problem-solving steps in

their respective disciplines as “just algebra”; however, for many college students,

a weak foundation in algebra seems to be a source of significant struggle with

solving a variety of mathematics problems. The purpose of this chapter is to reveal

some typical algebra errors that subsequently plague students’ abilities to succeed

in higher-level mathematics courses. The early detection and mindfulness of these

errors will aid in the creation of a model for intervention that is specifically

designed for students’ needs in each course.

Keywords Algebra • Common errors • Undergraduate mathematics • Student

difficulties, calculus, college mathematics

1.1 Introduction

As mathematics instructors we deal with students’ algebra shortcomings on a day-

to-day basis. In reality, in many problem-solving scenarios, after applying a new

theory, algebra takes over the rest of the process. While many students seemingly

follow the theories that are introduced in mathematics lectures in college-level

courses, in many cases not having a rich algebra machinery, including some level of

the mastery of the algebraic symbols and expressions, prevents them from

S. Stewart (*)
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completing basic tasks. The hierarchical nature of mathematics becomes particu-

larly apparent when the algebra component gets in the way and does not play the

role in the manner it should. Many students become particularly frustrated as they

soon discover that the fast pace of college mathematics lectures and new material is

not going to wait for them to catch up. On the other hand, the instructors become

disappointed with students’ performances as they see instances of algebra errors

that should not have entered with students into the university and should have been

resolved years ago in high school. Astonishingly, some students proceed to their

senior year, still not fully grasping the fundamental aspects of mathematics.

This chapter exposes a sample of students’ algebra misconceptions and their

consequences, illustrating how these seemingly trivial common errors are causing

significant disruption in solving problems in a variety of mathematics courses. The

examples will show how algebra errors can rapidly terminate the flow of the

problem-solving sequence for students and result in incorrect solutions or no

solutions at all.

1.2 Research on Students’ Difficulties with Algebra

Algebra is often referred to as a gateway course because it is foundational and

fundamental to success in STEM subjects (Adelman, 2006), and with increased

expectations on what students complete in high school, more students are taking

algebra now than ever before (Stein, Kaufman, Sherman, & Hillen, 2011). Tradi-

tionally, in college, algebra content is considered as assumed knowledge, and

professors are not expected to, nor have time to, reteach it. Needless to say, calculus

curricula are demanding and fast moving leaving no extra time to resolve basic

algebra issues.

Regrettably, research and the scores on international tests reveal that the USA

has been steadily falling behind many of the other industrialized nations in terms of

mathematics and science education and the production of STEM graduates. Stu-

dents who lack a solid understanding of high school algebra tend to struggle in

college-level calculus courses and may subsequently be deterred from pursuing

STEM field degrees. A survey published by the National Center for Education

Statistics reported that nationwide, in 2000, 28% of incoming freshmen took a

remedial mathematics class (US Department of Education, National Center for

Education Statistics (NCES), 2004). Beyond those who find themselves underpre-

pared for college-level mathematics coursework, the majority of students struggle

in many of their college-level mathematics coursework due to incomplete or

insecure understandings of many important algebraic topics. The impact of weak

or incomplete mathematical understanding and algebra in particular, at the middle

school and high school level, has a profound impact on the future mathematical

success of students and their educational possibilities (Booth & Newton, 2012;

Brown & Quinn, 2007; Wu, 2001).
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More than a century ago, De Morgan (1910) wrote about the difficulties students

face in learning mathematics noting common errors related to arithmetic and

rational number computation. Since that time, other researchers have catalogued

common errors in computation and algebra (Ashlock, 2010; Benander & Clement,

1985; Booth, Barbieri, Eyer, & Paré-Blagoev, 2014). Benander and Clement (1985)

catalogued errors students made in basic arithmetic and algebra courses. Their work

involved classroom observations and resulted in 11 categories of common errors

including basic problem-solving skills, averages, whole numbers, fractions, deci-

mals, percents, integers, exponents, simple equations, ratios and proportions, geom-

etry and graphing. Ashlock’s (2010) work published as a book focused on the

mathematics work of school-aged children and on helping instructors thoughtfully

analyse their students’ work in order to discover patterns in their errors for the

purpose of improving instruction. Ashlock suggests that as students learn about

mathematical operations and methods of computation, they often develop and adopt

misconceptions and procedural errors. Teachers who understand that this occurs

and are able to identify these problems in their students’ work can develop

strategies to help students. In a more recent study, Booth et al. (2014) focused on

the errors in algebra with school-aged students and identified errors that were

“persistent and pernicious” given their predictive ability for student difficulty on

standardized test items. Their study involved an in-depth analysis of students’
errors during problem-solving at different points during the year and resulted in

the classification of these errors which include variable errors, negative sign errors,
equality/inequality errors, operation errors, mathematical properties errors and

fraction errors.

Rather than classifying types of errors, Drouhard and Teppo’s (2004) work

focuses on the idea of denotation and suggests that it is a developed sense about

what one is writing and a lack of sense regarding denotation creates significant

problems for students. They note “that students with poor capabilities to recognize

this aspect of the meaning of an expression often make endless calculations because

they do not know in what direction to go and when to stop” (p. 235). Harel, Fuller

and Rabin (2008) further comment on the idea of meaning and denotation indicat-

ing that students often cancel within problems without attending to the quantitative

meaning of their action. For example, Harel et al. (2008) state “it is not uncommon

for students to manipulate symbols without a meaningful basis that is grounded in

the context in which the symbols arise; for instance a student might write: (log

aþ log b)/log c¼ (aþ b)/c” (p. 116). In this case, students may be overgeneralizing

their use of the distributive property and cancel “log” without considering the

quantitative meaning of their action. Harel (2007) suggests that the lack of empha-

sis on mathematical meaning that students, and perhaps their teachers, apply to

mathematical symbols creates what is referred to as a non-referential symbolic way
of thinking and that this way of thinking can be tied to a myriad of algebra errors.

Sfard and Linchevski (1994) believe that students must be motivated “to actively

struggle for meaning at every stage of learning” (p. 225). They are concerned that

“if not challenged, the pupil may soon reach the point of no return, beyond which

what is acceptable only as a temporary way of looking at things will freeze into a
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permanent perspective” (p. 225). Mason (2002) in his framework, Manipulating-
Getting-a-sense-of-Articulating (Fig. 1.1), emphasizes that students must be given

opportunities to make sense of situations. He believes that “students want, indeed

need, confidence-inspiring familiar objects to manipulate and on which to try out

new ideas so that they can literally ‘make sense’ of them” (p. 187). In Harel and

Sowder’s (2005) opinion, “instruction (or curriculum) that ignores sense-making,

for example, can scarcely be expected to produce sense-making students” (p. 46).

Research in the area of student errors expresses the common belief that these

errors exist in students’ mathematical work and that understanding these errors and

developing the ability to identify them hold promise for helping students succeed in

mathematics and have implications for teaching. Further, specific interventions and

strategies can be developed to help students overcome and perhaps avoid the

misconceptions that underlie the errors. Booth et al. (2014) suggests that “the

misconceptions underlying specific persistent errors are not corrected through

typical instruction and may require additional intervention in order for students to

learn correct strategies” (p. 21). Unfortunately, if these errors are not addressed and

persist with students into their university-level courses, they have the potential to

create significant challenges and barriers for students. Although, research on stu-

dents’ difficulties with algebra in school has been well documented (e.g. Hoch &

Dreyfus, 2004; Kieran, 1992), in our knowledge methodical studies on the presence

of these difficulties and their impact at university level are scarce. In their edited

book entitled The Future of the Teaching and Learning Algebra, Stacey, Chick and
Kendal (2004) discussed the main problems of algebra in school algebra, but again,

very little was mentioned in the way of consequences for college-level

mathematics.

Fig. 1.1 Manipulating-
Getting-a-sense-of-
Articulating framework

(Mason, 2002, p. 187)
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1.3 Some Common Algebra Errors in College Mathematics
Topics

1.3.1 Finding the Absolute Maximum and Minimum of a
Function

Finding the absolute maximum and minimum of a function is a typical question in a

first year calculus course. Stewart (2014) in his textbook, Calculus (8th ed.),

describes the procedure as follows and ensures that the following three-step proce-

dure will always work.

The Closed Interval Method

To find the absolute maximum and minimum values of a continuous function

f on a closed interval [a,b]:

1. Find the values of f at the critical numbers of f in (a,b).
2. Find the values of f at the endpoints of the interval.
3. The largest of the values from steps 1 and 2 is the absolute maximum

value; the smallest of these values is the absolute minimum value (p. 209).

The following example (see Fig. 1.2) demonstrates the above procedure by

finding the derivative of the function f(x) first. Many students are capable of

applying the product rule and finding the derivative correctly. However, their

struggles with algebra may prevent them from proceeding beyond this first step,

as they face the challenge of simplifying the derivative function which will enable

them to work with an easier form of the function. Furthermore, adding two fractions

involving square roots will add to the complexity of this problem. Step 3 will also

have its own challenges as it requires setting the fraction equal to zero and solving

for x. Step 4 will only become possible, if the x values were deduced successfully

from the previous steps.

The following examples of work by students show common errors among many

(see Table 1.1). Although, the work by students varies, typically they all have one

thing in common, lack of fluency with algebra. Students (1) and (2) tried to avoid

fractions and dealing with square roots. Although student (2) had some knowledge

of the calculus and managed to write the algorithm in a box as a reminder, her lack

of fluency with algebra eventually let her down. Her work revealed that she was

guessing solutions for x and got wrong critical numbers. Although, both students

(3) and (4) tried to work with the fractions, small errors along the way slowly crept

in, and they too ended up with incorrect critical numbers.
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1.3.2 Dealing with Algebra While Solving Limits

Research in mathematics education reveals that students frequently struggle dealing

with limits (Cornu, 1991; Oehrtman, 2002; Williams, 1991). The concept is often

taught graphically as well as numerically using tables. In the meantime, the

discussions of limit laws and definitions related to the left and right hand limit

are also introduced. Moreover, some instructors teach the precise definition of the

limit using the epsilon and delta notions. However, in many problem-solving

situations where limits are present, algebraic manipulations are often requested

and preferred by the instructor. A sample of common errors from first year calculus

students is shown in Table 1.2. The examples reveal numerous errors especially

with fractions (students (5) and (7)). Student (6) avoided dealing with the square

root by unsuccessfully using the numerical method.

Fig. 1.2 Finding the absolute maximum and minimum of a function
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1.3.3 Cancellation of Symbols

Cancellation creates numerous problems in many different mathematics courses.

The following table illustrates a range of student works from carelessly cancelling

coefficients and symbols to cancelling almost everything (student (12)). The exam-

ples reveal interruptions in many situations involving implicit differentiations,

finding the domain or integrating the function (Table 1.3).

Table 1.1 Calculus students’ work on finding the absolute maximum and minimum of the above

function

Student (1) Student (2)

Student (3) Student (4)
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1.3.4 Other Algebra Errors

While looking over students’ work from a first year calculus course, we noticed that

one of the students (see Fig. 1.3) by default was including x¼ 0 in every case as she

was going through the problems.

1.3.5 Algebra Errors in Linear Algebra

Based on the definition, a subspace is a subset of a larger space that has the

following properties: (a) includes the zero vector, (b) is closed under addition and

(c) is closed under scalar multiplication. For example, the vector (a,b,1) for a,
b belonging to any real numbers is not a subspace since it does not include the zero

vector.

The following example (Fig. 1.4) is similar to examples of its kind but involves a

small twist.

Each time the first author poses this question in a test, half the class loses points

because of this small algebra mistake that enters into the calculation. Many students

make the classic mistake of putting (aþ c)2¼ a2þ c2. Here is a sample of correct

(Fig. 1.5a) and incorrect (Fig. 1.5b) responses to this question.

Table 1.2 Students’ difficulties with algebra while solving limit problems

Student (5) Student (6)

Student (7)
Student (8)

Student (9) Student (10)
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Table 1.3 Sample of students’ common errors with cancelling algebraic expressions in fractions

causing significant disruption in solving problems in variety of calculus courses

Student (11) Student (12)

Student (13) Student (14)

Student (15) Student (16)

Fig. 1.3 Student’s
difficulties with solving

for x
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Fig. 1.4 Determining if W is a subspace of R3

Fig. 1.5 Linear algebra students’ incorrect (a) and correct (b) responses to the question related to
subspaces
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1.3.6 Algebra Errors in Statistics

The algebra errors not only can occur in the lower mathematics courses, they can

follow students into their later years of college. The following (see Fig. 1.6) is an

example from a final exam in a senior-level statistics course.

To find the mean E(Y), the student (see Fig. 1.7) used the correct formula and

successfully substituted the limits for the integration and progressed well up to the

second line. At the third line, a minus sign was incorrectly introduced (first error),

either as he was working or was introduced later in the process. At the fourth line, a

number of algebraic errors were made as the student tried to force the situation to

arrive at the given result. He seemed to have attempted factoring�1 out of (b2� a2)
to arrive at (b2þ a2). While not factoring the difference in squares, he made the

Fig. 1.6 A typical question in finding the mean and the variance in statistics
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classic error of cancelling (bþ a) with (b2þ a2), assuming (b2þ a2)¼ (bþ a)
(bþ a), and hence forced his way to the correct result.

In finding the variance, he did not start the calculations with the correct formula

Var Yð Þ ¼ E Y � E Yð Þð Þ2
h i

and carried out on the wrong path for a while and made

sign errors while multiplying �(aþ b)(b� a) before giving up simplifying the

fraction (Fig. 1.7).

1.4 Textbooks and Algebra Fluency Assumptions

It seems that the same mindset that algebra is a trivial part of a computation is also

apparent in some college-level textbooks. For example, Fig. 1.8 illustrates a

symbolic proof of a statistical theorem where the author has left the algebra

Fig. 1.7 Student’s algebra errors and its consequences in the statistics final exam

Fig. 1.8 The algebra was left to the reader to complete (Rice, 2007, p. 208)
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(shown in the right) part of the proof to the reader to perform. Although, in this case

it is assumed that the reader is capable of doing the algebra, many students may not

make an attempt in doing the extra work and show the desired result.

1.5 Discussion

As college instructors, we encounter algebra shortcomings in our everyday inter-

actions with students. We may express some frustration to our colleagues, at times

we may feel amused as we assess students’ work, and we may even blame the high

school teachers or the system or the testing instrument and think to ourselves that

“these students shouldn’t be in my class” or, even worse, “how did they get here?”

Regrettably, after a while we get used to the frequent algebra errors that our

students make, and our students’ challenges with algebra simply become a natural

part of the landscape of our teaching. We seem to be aware of the algebra errors,

even at times anticipate them, without knowing how to deal with them. It appears

that saying “the rest is just algebra”, habitually and unconsciously, gives us a way

out in facing what is likely a complex and layered problem. Common belief among

many instructors is that it is not our job to teach or reteach school algebra in our

college-level courses. Realistically, going over algebra misconceptions is not a

possibility, and we have no time to repair students’ algebra misconceptions. Unfor-

tunately, many of the errors presented in this chapter reflect Drouhard and Teppo’s
(2004) finding that students make endless calculations when they do not know what

direction to go, Harel’s (2007) problem with a non-referential symbolic way of

thinking and the identified errors presented in Booth et al.’s (2014) study. To

borrow from Booth et al. (2014), these errors are persistent and pernicious and

certainly continue with students into their college-level courses. As Harel and

Sowder (2005) declare, “computational shortcuts like ‘move the decimal point’ or
‘cross multiply’ or ‘invert and multiply’ given as rules without any attention as to

why these work turns elementary school mathematics into what is deservedly called

a bag of tricks” (p. 46).

Teaching new material may be complex, but restoring years of algebra mis-

conceptions is multifaceted. Resolving the algebra deficiencies that students bring

with them to college-level mathematics courses is not a trivial issue. The many

connections that the students have made over the years, some based on incorrect

assumptions, combined with many holes and incomplete understandings, must be

carefully examined and then addressed. While this is a significant challenge and not

an easy issue to address, it cannot be simply ignored and remain as an everyday

accepted or out of our hands part of teaching university-level mathematics courses.

This chapter does not deal with the question of why students are making such

errors and continue to make them, but rather reveals the type of errors and their

consequences as well as the disruption in the flow of problem-solving actions that

they cause for students. Most instructors have seen these before and in some

respects nothing is new to them; however, our intention was to reveal the alarming
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impacts of these errors on many mathematics courses in college. We also believe

that some of the problems that we observed in this chapter are more than just some

forgotten rules. It is important that we as the mathematics community acknowledge

the fact that these problems exist and face the challenge to seek out remedies to help

the situation. The problem is complex and layered and finding a remedy cannot be

achieved by looking for a temporary and quick solution. Understanding the problem

and working for long-term change in the way we think, learn and teach mathematics

hold promise for successfully addressing our students’ challenges with algebra that
plague their work, and ours, in college-level mathematics courses.

In light of the common algebra errors presented in this chapter and those

documented in the literature (e.g. Booth et al., 2014) and based on our experience

as mathematics instructors, we simply cannot assume our students are entering

college with sufficient algebra skills and abilities. Given that we understand the

devastating effect of students’ weaknesses in algebra on the successful learning of

college-level mathematics, it behoves us to have strategic plans to provide support

and triage for them. A short-term goal would be, instead of testing students upon

arrival, to provide them with a no-stake, or low-stake, formative assessment so they

can assess for themselves where their weaknesses are with algebra. Tied to this

assessment could be practice sets or websites with tutorials for students to review or

to refresh particular concepts that will support their efforts tailored specifically for

each course. Additionally, this same formative assessment could be followed up by

tutoring sessions offered by the mathematics department ideally at the beginning of

each semester. For example, in a college algebra or calculus course, there are

always students who do not remember how to accurately factor trinomials. Students

who recognize this problem via the formative assessment could attend a session to

be refreshed on this topic or could work with a tutor to strengthen their problem

areas early in the semester. Regardless of what intervention is developed, whether

extensive or small in scope, creating an opportunity for students and their instruc-

tors to better understand the challenges students bring with them to college-level

mathematics classes will help inform instruction and has the potential to help

students be successful. We are aware that these short-term remedies may not be

helpful to all students; however, we anticipate that they could benefit many. In

Mason’s (2002) views, “when difficulty arises, it is possible to retreat back down

the helix (see Fig. 1.1), or even to leap down, and then to rebuild confidence and

understanding while working your way back up again” (p. 188).

Beyond short-term remedies, a long-term goal will be to work closely with high

school mathematics teachers as well as pre-service teacher education colleges to

more effectively address the areas of concern. Creating opportunities for these

groups to work together and communicate about the common errors that persist

with students through their high school years and into college-level mathematics

coursework will help the mathematics education community address these issues

earlier. The goal of these efforts would be to help students learn important algebra

concepts with depth and flexibility in their high school coursework so they do not

carry with them from high school problems that will plague them for years to come

and, in some cases, create barriers for pursuing careers in many STEM fields.

16 S. Stewart and S. Reeder



The authors are in the process of designing an extensive research project to

address algebra errors in a variety of college mathematics courses and ultimately

suggest interventions that identify, address and eliminate algebra errors. Together

with Julie Booth (see in this volume), we anticipate that creating a well-thought-out

model of intervention designed specifically for each course will make a positive

impact in solving the algebra difficulties in university mathematics courses and will

be a bold step in the right direction.

References

Adelman, C. (2006). The toolbox revisited: Paths to degree completion from high school through
college. Washington, DC: U.S. Department of Education.

Ashlock, R. B. (2010). Error patterns in computation: Using error patterns to improve instruction.
Boston: Allyn & Bacon.

Benander, L., & Clement, J. (1985). Catalogue of error patterns observed in courses on basic
mathematics. Working Draft. Massachusetts: (ERIC Document Reproduction Service No. ED

287 672).
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Chapter 2

Examining the Role of Prior Experience
in the Learning of Algebra

Mercedes McGowen

Abstract Widespread emphasis on developing students’ algorithmic competency

and symbol manipulation has resulted in students failing to think analytically and

critically. If students are not encouraged to think flexibly about arithmetic and

algebra in school, then this needs to be addressed by developmental courses and

tasks designed to change the procedural orientation and superficial, fragmented

knowledge of too many of our undergraduate students. Those who teach mathe-

matics at the postsecondary level often dismiss the increasing number of students

enrolled in precollege mathematics courses as “not my problem,” not realizing that

“just algebra” is the downfall for many college students. Learning “just algebra” is

a much more complex task than it appears. In this chapter, prior knowledge will be

shown to have become problematic for many students, and we provide evidence of

the need to improve the effectiveness of our own teaching and that of our future

teachers in ways that help students develop deeper understanding of mathematics

and promote mathematical thinking.

Keywords Flexible thinking • Prior knowledge • Problematic met-befores •

Remedial mathematics • Developmental algebra • Function machine • The minus

sign

2.1 Impact of Current Instructional Practices
on Student Learning

“The power of mathematical thinking—pattern recognition, generalization, prob-

lem solving, careful analysis, rigorous argument—is important for every citizen”

(Barker, Bressoud, Epp, Gantert, Haver, & Pollatsek, 2004, p. 4). Mathematicians

and mathematics educators claim that they want their students to think critically,

make connections, and see new relationships between mathematical ideas.

M. McGowen (*)

Department of Mathematical Sciences, William Rainey Harper College,

Palatine, IL 60067, USA

601 Pleasant PL, Streamwood, IL 60107, USA

e-mail: mercmcgowen@sbcglobal.net

© Springer International Publishing Switzerland 2017

S. Stewart (ed.), And the Rest is Just Algebra, DOI 10.1007/978-3-319-45053-7_2
19

mailto:mercmcgowen@sbcglobal.net


However, in too many classrooms, the ongoing instructional emphasis is predom-

inantly to show students how to use a rule to get the “right” answer. The focus on

mastering skills, coupled with the assumption that students understand the related

mathematical concepts and terms, has failed many students, leaving them as post-

graduates ill prepared for their future careers (Carlson, 1998; DeMarois, 1998;

McGowen, 1998; McGowen & Tall, 2010, 2013; Oehrtman, Carlson, & Thompson,

2008; Stigler, Givvin, & Thompson, 2010; Stump, 1999).

There are those who teach mathematics at colleges and universities who dismiss

the increasing numbers of students enrolled in precollege mathematics courses as

“not my problem.” Instructors may rightfully view what follows the initial step(s) in

their respective mathematics courses as “just algebra,” but in reality, “just algebra”

is the downfall for many students in secondary schools and in developmental and

college-level mathematics courses.

The increasing growth of undergraduate remedial mathematics courses reveals

critical concerns, not only for the mathematics community but for our nation at

large. Major growth in 2-year college mathematics enrollments since 1990 has been

in the precollege courses (e.g., arithmetic, pre-algebra, elementary algebra, inter-

mediate algebra, and geometry)—courses students have taken previously in ele-

mentary and high school and sometimes more than once as undergraduates. The

Conference Board of the Mathematical Sciences (CBMS) (2001) survey (Blair,

Kirkman, Maxwell, & American Mathematical Society, 2013, p. 136) reports that:

• In 2010, for the first time, enrollment in precollege courses at 2-year colleges

totaled more than one million students (1,149,740)—a 19% increase from 2005

to 2010.

• Arithmetic/basic mathematics, pre-algebra, and geometry course enrollments

have grown from 216,000 in 2000 to 378,000 in 2010 at 2-year colleges, an

increase of 75%.

• Beginning and Intermediate Algebra enrollments increased 41%, from 547,000

in 2000 to 772,000 in 2010.

• During the 5 years from 2005 to 2010, 4-year colleges and universities saw

precollege course enrollments increase—though not as dramatically as at 2-year

colleges. At 4-year colleges and universities, between 1990 and 2005, precollege

course enrollment declined by 30%.

Developmental education costs are estimated at $1 billion every year (Brothen &

Wambach, 2004). Breneman and Haarlow’s earlier study (1998) gave a conserva-

tive estimate of one to two billion dollars per year spent on remedial education

programs at public colleges and universities. Neither of these estimates takes into

account the costs incurred in time and money by students enrolled in undergraduate

remedial mathematics courses. Based on analysis of data from a nationwide study

of community colleges participating in the Achieving the Dream project, Bailey

(2009) found that student completion rates in college English and math drop with

each additional level of remedial coursework required. Only 10% of students who

placed three levels down from a college-level mathematics course pass a college-

level course. Attewell, Lavin, Domina, and Levey (2006) reported that only 28% of
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students who take at least one remedial course go on to complete a college

credential within 8.5 years. A National Council of State Legislators article by

Brenda Bautsch (2013) cites a US Department of Education study which found

that only 27% of students enrolled in remedial mathematics courses earned a

bachelor’s degree compared with 58% of students who did not need remedial

math. Simple “remediation” focusing on the need for accurate procedural compu-

tation does not work: at each stage, more and more students fail.

Increasing numbers of students who intend to become teachers begin their

postsecondary academic careers at 2-year colleges, taking the required first

2 years of their mathematics courses at a community college before transferring

to a 4-year degree program. Many preservice elementary teachers enroll in one or

more developmental mathematics courses prior to taking required math content

courses for preservice teachers at these institutions. Their attitudes to mathematics

are generally instrumental, focused on formulas and getting correct answers.

Educators of these students face a constant challenge—their students’ limited

understanding of what constitutes mathematics and a mathematical approach to

problems.

To help students gain a more flexible, deeper understanding of arithmetic and

algebra requires much more than computational or symbolic fluency. The National

Council of Teachers (1989, 1991, 2000), Cohen (1995), National Research Council

(2000, 2001), Conference Board of the Mathematical Sciences (2001), American

Mathematical Association of Two-Year Colleges (2004), and the Common Core

State Standards Initiative (2010) have all published recommendations for teachers,

whether elementary, secondary, or postsecondary, directing instructors to:

• Design and implement every instructional activity guided by informed decision-

making to actively engage students in the learning of mathematics

• Integrate technology appropriately into teaching to enhance students’ under-

standing of mathematical concepts and skills

• Use results from the ongoing assessment of student learning in mathematics to

improve curriculum, materials, and teaching methods

The Curriculum Foundations Project: Voices of the Partner Disciplines echoes
these recommendations. They advocate that all teachers at every level must be able

to “represent concepts in multiple ways, explain why procedures work, or recognize

how two ideas are related . . . be able to solve problems and to make connections

among mathematical topics. . .” in order to modify instructional strategies and place

greater emphasis on learning with understanding and focus on a thorough develop-

ment of basic mathematical ideas presented in a coherent fashion (Ganter & Barker,

2004, p. xx).

Beliefs about what constitutes mathematics, what skills should be taught, when

they should be taught, and to whom vary from individual to individual and

community to community. Unfortunately, many mathematics departments have

yet to reach a consensus acceptable to all members of the department on these

issues. In the absence of mutually agreed definitions and accepted meanings among

those who favor a “return to basics” and those who attempt to implement reforms in
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the teaching and learning of mathematics, the debate continues, with increasingly

high costs to students and to our nation. Beaton (1996) cited these conflicting

beliefs and practices, describing the current US mathematics curriculum as unfo-

cused, “a splintered vision” which is reflected in our mathematics curricular

intentions, textbooks, and teacher practices.

A common theme of programs described inModels That Work (Tucker, 1995) is
that faculty in effective programs believe in “teaching for the students one has, not

the students one wished one had.” Unfortunately, when students lack prerequisite

skills, an all-too-common reaction from instructors is “You can’t expect me to

reteach the entire prior curriculum. I have to teach the content of my course.” This

perspective serves only to block efforts to explore alternative ways of improving

mathematics teaching and student learning.

The mathematics needed by first year students enrolled in many college career

programs has been described as almost exclusively middle school mathematics—

arithmetic, ratio, proportion, expressions, and simple equations (Common Core

State Standards Initiative, 2010). Currently, instruction and learning of these topics

fall far short of the understanding and competency students will be expected to

demonstrate. A National Center on Education and the Economy empirical study

(2013) found that introductory courses (a) fail to test complex analytical skills, the

ability to synthesize materials, and solve problems not seen before as they demand

only memorization of facts and mastery of procedures and (b) are not designed to

test students’ ability to think mathematically but instead assess memorization of

facts and mastery of procedures, not the higher-order thinking skills of Bloom’s
taxonomy. The study also found that many community colleges have low expecta-

tions of their students, particularly in developmental courses.

The current focus on modifying technical and career programs that do not

require a 4-year or advanced degree cannot result in ignoring the needs of many

students who do require a deeper understanding of basic algebra concepts and skills

proficiency. These students include not only our prospective elementary, second-

ary, and postsecondary teachers who are not currently being well-enough prepared

but other non-STEM majors who also need solid foundational algebra skills for

their future careers.

Evidence of what students actually know and have little or no conceptual

understanding of has been reported in many research studies over the years. The

word “understanding” is used in the context of mathematics with two different

meanings: relational understanding, knowing both what to do and why, and instru-
mental understanding, knowing a rule and being able to use it (Skemp, 1987). He

referred to instrumental learning as “rules without reason.” It is these alternative

meanings of understanding that are at the root of many of the differing perspectives

on teaching and learning. Smith (1996) argues that an instrumental approach to

teaching mathematics provides a teacher with a robust sense of efficacy.

Many preservice teachers believe this is the only approach to teaching mathe-

matics that will provide them with a sense of competence, proficiency, and know-

how. The belief that if a student demonstrates skills proficiency and gets a correct

answer, he or she “understands” the concept is not necessarily true.
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Autobiographical descriptions of community college developmental algebra stu-

dents’ and preservice teachers’ prior instructional experiences reveal the very

different attitudes and beliefs about mathematics held by many students compared

with that of their instructors and which prove very resistant to change:

All throughout school, we have been taught that mathematics is simply plugging numbers

into a learned equation. The teacher would just show us the equation dealing with what we

were studying and we would complete the equation given different numbers because we

were shown how to do it.

My previous mathematics experience involved a teacher lecturing. Finding a formula to

solve a problem was, in reality, the answer to the problem.

I was taught “how” but not “why". I thought of math as a series of formulas, each of

which should be followed in order to find an answer.

When I took Calculus the differentials were what killed me. There were so many

equations, and the teacher would go over how to get from one to the other. I tried to go

with what I knew, and memorize them. However, that didn’t work.

Many prospective teachers have a deeply ingrained procedural orientation to

mathematics with its focus on “getting the correct answer” that they have learned to

value above all. Changing this orientation is made more difficult when instructors

fail to take into account students’ prior knowledge and underestimate what their

students are capable of. A challenge facing mathematics instructors at undergrad-

uate institutions and community colleges is how to develop a sound conceptual

grasp of foundational arithmetic and algebraic topics in these students within the

context of their course content.

2.2 The Role of Prior Learning and Its Possible
Problematic Consequences

One of the most important findings of cognitive science and brain research is that

prior knowledge is the beginning of new knowledge. Ausubel, Novak, and

Hanesian (1968) remind us, “The most important single factor influencing learning

is what the learner already knows. Ascertain this and teach accordingly.” Prior

knowledge is a fact, and it is persistent. New experiences that build on prior

experience are much better remembered, and what does not fit in prior experience

is either not learned or learned temporarily and easily forgotten.

The notion of met-before (McGowen & Tall, 2010; Nogueira, De Lima & Tall,

2008; Tall, 2004) was introduced to focus on how new learning is affected by the

learner’s previous experiences and as a way of looking at the effects of prior

learning that can support or impede new learning. Prior learning can be supportive

in those instances where old ideas can be used to make sense in new contexts and

problematic in contexts where the old understanding no longer works. Research

studies have examined students’ ability to modify their prior knowledge. Discon-

tinuities encountered were reported not only at the developmental arithmetic and
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algebra levels but also at the undergraduate college level (Davis & McGowen,

2007; McGowen, 1998; McGowen & Tall, 2013).

Prior knowledge of the minus symbol to indicate subtraction, while supportive

for whole numbers and positive fractions, becomes problematic for many students

when they encounter negative numbers. It becomes even more so in the context of

algebra to indicate the additive inverse of an unknown (�x). The belief held by

many students is that a minus sign in front of it indicates that it has a negative

value—a belief that results in increasing difficulties in subsequent mathematics

courses (Fig. 2.1).

Ideas encountered at one stage of learning may lead to ways of thinking that are

not appropriate later. Mathematics instructors need to take into account the effects

of existing knowledge—both positive and negative—that students have now as a

result of experiences they have met before, at every level of development, aware of
how earlier mathematical experiences result in students’ ideas that can become

problematic when context and/or subtle changes in meaning are encountered.

2.2.1 Prior Arithmetic Thinking

The problematic nature of prior arithmetic thinking was revealed when a majority

of 128 college freshmen, given the numbers 0, 1, x, y, and �z as marked on the

number line below (Fig. 2.2), claimed that 2y was larger than y because (a) “2y is
larger than y” or (b) “2y is larger because it has a number in front of the variable.”

Nearly one-third of the students maintained that x� y¼ y� x, stating that they

were “the same problem just switched around” or “because they are both

subtracting a variable.” One-fifth of the group wrote that xþ y¼ x� y “because

adding a positive and a negative is the same as subtracting a positive and a negative

number.” The other most common response was “because in both equations you are

really adding the numbers” (McGowen & Tall, 2010, pp. 175–176).

Fig. 2.1 Miscommunication (Thompson, 1996)
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Students’ efforts to interpret algebraic and function notation demonstrate how

very differently individual students think about notation than do mathematicians.

The conceptual requirements for understanding ambiguous expressions, both arith-

metic and functional, appear to be far more formidable in their complexity than has

generally been recognized by mathematics instructors. Sfard reminds us: “Alge-

braic symbols do not speak for themselves. What one actually sees in them depends

on the requirements of the problem to which they are applied. Not less important, it

depends on what one is able to perceive and prepared to notice” (Sfard, 1991,

p. 17).

That students have difficulties with fractions, negative numbers, decimals, and

the transition to algebra is well documented. How the changes in meaning of the

successive number systems N, F, Z, Q, and R impact individual students at the

undergraduate level—particularly where previous experiences involve some

aspects that are supportive and generalize while others are problematic and impede

new learning—has been less widely researched and reported. The multiple mean-

ings of the minus symbol and the need to interpret symbolism flexibly were

identified as major sources of difficulties for undergraduates, particularly when

the symbolism changes meaning in new contexts (Davis & McGowen, 2007;

McGowen, 1998; McGowen & Tall, 2013).

The minus symbol becomes problematic for many students when they encounter

negative numbers, the precedence of division and multiplication over addition, and

the precedence of powers over taking the additive inverse (McGowen, 1998). They

are faced with new conventions when combining two operations: (a) the minus sign

and the power operation, and (b)the order of operations of two unary processes,

squaring negative three and taking the additive inverse of the square of three. Their

prior knowledge consists of the order of binary operations and a mnemonic such as

Please Excuse My Dear Aunt Sally (PEMDAS) to indicate the order of priority of

operations (parentheses, exponent, multiply, divide, add, and subtract). Students

who focus on the qualitatively different features of �32 and (�3)2 are able to make

sense of the notation and correctly manipulate these expressions. These students

connect new knowledge with their prior knowledge in a way which results in a

reconceptualization of the two processes of squaring a negative number and finding

the opposite of a number squared. A student’s typical explanation is:

When I see the sign (�) it is a change for me to know that it means “the opposite of,” I

always though it meant a negative number or,�(�x) a positive x. The reflection assignment

enhanced my understanding of the opposite of a square by looking at it as two functions,

and then order of operations would have exponents first, then the opposite of the value . . .
Exponentiation takes precedence over oppositing in the absence of grouping symbols.

Data on students’ difficulties evaluating �32 and (�3)2 have been collected

during various research studies. Pre- and post-surveys administered over several

Fig. 2.2 Quantities on a number line (Bright & Joyner, 2003)
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years1 to 516 community college and university students enrolled in a develop-

mental algebra course showed that, at the completion of the course, 81% (418/516)

of the students correctly evaluated (�3)2, but only 49% (251/516) of the students

could correctly evaluate �32. The latter may simply relate to the way that the

symbols are read from left to right “minus” “3” “squared.” The minus and the three

are taken together as “minus three,” and the student has been told that the square of

a negative number is positive.

In an expression with more terms to put together, the problem may become more

complicated. When given f(x)¼ x2� 3xþ 5, find f(�3); a College Algebra student

explained his work as follows:

“I used up the negative sign. I have to do parentheses first” and wrote: f(�3)¼�32� 3

(�3)þ 5¼ 9þ 9þ 5¼ 23 followed by: 9þ 5. “Now I have to do this (indicates the �32),

“but I can’t remember if it’s negative nine or just nine. I never know which to use.” He wrote
down �9 and stopped. “There’s no sign in front of this (pointing at 9þ 5), so I need to
multiply,” writing �9(14)¼ 136.

2.2.2 Interpreting the Minus Sign in Linear Factors

Many students are confused as to whether the minus sign in (x� c) represents

subtraction or is the sign attached to c. An instructor who participated in a recent

formative assessment pilot study reported that many of her College Algebra

students had difficulty using the linear factors of a polynomial correctly (McGowen

& Tall, 2013). Working from a graph using the zeros of a function to determine a

quadratic function’s linear factors, several students viewed c in (x� c) as a negative

value, a belief which results in many sign errors when writing the factors and/or

zeros of a function (McGowen, 1998):

The value of c is negative because of the minus sign in front of c. c will subtract from any

number that comes before the “�” symbol.

I used up the negative sign.

Students used the subtraction operator of a linear factor as the sign of c, and
many thought the x- and y-intercepts were the coefficients in the equation of the

function. Given the graph of a line, only one in five students was able to determine

whether the slope and y-intercept should be positive or negative. Inflexible in their

thinking, they were only able to answer questions from one direction—unable to

reverse the process.

Prior experience involving the minus sign also proves problematic for under-

graduates in other contexts. Students are faced with making sense of function

notation as well as interpreting the minus symbol in expressions such as f(�x)
and �f(x). Many students believe that f(�x) represents “f of negative x” or “a

1 Portions of the collected data have been previously reported (McGowen, 1998; McGowen &

Tall, 2013), but the accumulated data of 516 students have not been reported previously.
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negative input value” and that �f(x) represents “negative f of x” or “a negative

output value.” Some students interpret�f(x) as “the entire function is negative” and
f(�x) as “only the x is negative.” There are also students who interpret function

notation as indicating multiplication: �f(x) means �f times x and f(�x) as

f times �x.

2.2.3 Understanding Basic Algebraic Terms and Concepts

A lack of understanding of basic algebraic terms contributes to students making

other errors. College Algebra students’ written comments indicate that many of

them have only a vague understanding of the meanings of foundational concepts,

such as slopes, coefficients, and intercepts. Given the graph of a line, only one in

five was able to determine whether the slope and y-intercept should be positive or

negative. Some interpreted slope as an ordered pair and plotted it as an intercept.

Other students equated the x- and y-coefficients in the equation with the intercepts

on the graph. Several students wrote that an intercept is a number value. Many of

them wrote the slope as an ordered pair and did not view slope as a ratio. Still others

used the value of the slope as the x-intercept value. They were only able to answer

questions from one direction—unable to reverse the process—indicating the inflex-

ibility of their thinking (Davis & McGowen, 2007).

In their capstone course, a class of senior mathematics majors intending to be

secondary math teachers were asked to describe what they knew about slope,

covariation, rate of change, tangent, and derivative and which, if any of these

ideas, are related. Only one student identified covariation as the fundamental link

among the five ideas. Many made no attempt to provide any meaning for covari-

ation as it was not a recognizable term in the curriculum. Rate of change was

connected to derivative only because derivative is an instant rate of change and only

a few students explicitly mentioned what changed.

2.3 Identifying and Addressing Problematic Prior
Met-Befores

Black and William (1998) examined approximately 250 studies and found that

gains in student learning resulted from a variety of methods all of which had a

common feature: formative assessment (assessment that uses the data acquired to

adapt instruction to better meet student need). They found that when teachers

understand what students know and how they think and then use that knowledge

to make more effective instructional decisions, significant increases in student

learning occur. For instructors at all levels unaware of the knowledge and under-

standing of basic mathematical concepts and terms students lack when they enter
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our courses, Krutetskii’s advice is appropriate: “Don’t make a hasty conclusion

about the incapacity of children in mathematics on the basis of the fact that they are

not successful in this subject. First, clarify the reason for their lack of success”
(Krutetskii, 1969, p. 122).

Clarifying the reasons for a student’s previous lack of success—identifying what
precisely is lacking in an individual student’s development—is a challenge facing

mathematics instructors. If students’ prior knowledge (met-befores) impedes new

learning and has resulted in misconceptions, instructors need to adapt instructional

strategies that overcome and transform students’ problematic met-befores. Some

classroom assessment strategies that have proven effective in identifying what

students understand and useful in addressing problematic met-befores are:

• Explicitly discussing prior understandings and how it changes in a different

context

• Asking basic questions that instructors assume students know the answers

• Comparing students’ written responses to two or more questions dealing the

same concept or with related concepts, revealing of their ability to think flexibly

• Pre- and posttesting that offers a measure of individual student growth over time

• Using a function machine representation and the graphing calculator to make

sense of notation and a deeper understanding of binary and unary arithmetic

operations

• Identifying one’s own met-befores and examining how they impact one’s teach-
ing and beliefs about curriculum and students

As Thompson (1994) reminds us:

An instructor who fails to understand how students are thinking about a situation will

probably speak past their difficulties. Students need a different kind of remediation, a

remediation that orients them to construct the situation in a mathematically more

appropriate way.

2.3.1 Asking Basic Questions

Asking questions about basic mathematical concepts and terms of which one

assumes students have good understanding often reveals problematic knowledge

which interferes with new learning. A lack of understanding of basic mathematical

terms like “solve” and “evaluate” is often not recognized. Many students believe

that they “solve an equation” whenever “x” is part of an expression. As part of a

formative assessment pilot project at a local community college, undergraduates

were asked to complete the following:

A. Finding the output when the input is known is the process of:

(a) simplifying (b) evaluating (c) factoring (d) solving
B. Finding the input when the output is known is the process of:

(a) simplifying (b) evaluating (c) factoring (d) solving
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Only nine of 75 (13%) Introductory Algebra students and 15 of 114 (12%)

College Algebra students selected (b) evaluating as the correct response to question
A. On question B, less than 19% of Introductory Algebra students and only 31% of

College Algebra students chose option (d) solving.
Developmental algebra students at a community college participating in a recent

online survey were asked, “What does it mean to solve an equation?” The response

“to get a variable by itself” was given by 35% of the participating students. A

second question asked “Is x¼ y an equation: Why or why not?” The most common

student responses were as follows: “No, because you need a number”; “No, because

there are no known numbers on both sides”; and “No, because x and y are

variables.”

It is not only developmental algebra students enrolled in precollege courses that

lack understanding of basic mathematical concepts and processes. A Ph.D. student

completing his doctorate in mathematics and working as an online tutor for a

textbook company when asked to explain the difference between solving an

equation and evaluating an expression replied:

If a book asks you to evaluate x2� 2xþ 1, what they are asking for is a simplified version of

this polynomial, which would be (x� 1)2.

Solving an equation or expression is actually plugging in a particular value to come up

with a solution.

For example:

F(x)¼ x2� 2xþ 1 Solve for f(4).

F(4)¼ 42� 2(4)þ 1¼ 16� 8þ 1¼ 9

Is this helping you feel a little bit better about the difference between the two?

(McGowen, 2006, p. 25)

2.3.2 Comparing Responses to Two or More Questions

The inability of students to correctly answer two or more questions on related

content suggests that students do not see the questions as being intimately

connected. One indication that what students have learned and remembered is

fragmented and unconnected is that they are unable to apply what they know

when confronted with a different context. Noticeable differences in students’
responses to related questions dealing with slopes of linear equations were reported

in a study by Davis and McGowen (2007).

The questions and responses of 92 community college students enrolled in an

Introductory Algebra course are shown below (Table 2.1). Note that only 20 of the

92 students were able to answer three of the five questions correctly, suggesting

these students lack robust understanding of the mathematics they are learning

(p. 24).
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2.3.3 Comparing Pre- and Posttest Responses

A visual analysis comparing individual students’ pre- and posttest responses to

related questions is informative for students as well as for their instructor. Shown in

Fig. 2.3 is an example of an analysis of students’ responses to questions on various

representations of function composition. An analysis of all pretest responses is

shared with each student, identified by the column number which corresponds with

a number on the individual student’s returned test. Each student receives an analysis
comparing all pretest responses to all posttest responses near the end of the course.

Each column represents an individual student’s responses, and each row represents

the responses to a given question. A black cell indicates a correct response, a striped

cell indicates an incorrect response, and a blank cell indicates no attempt to answer

the question.

Table 2.1 Related responses to questions on linear equations, slopes, and intercepts

Question n¼ 92 Correct (%)

7. Given slope �3 and y-intercept 5, select linear equation 65 71

4. Determine the x-intercept of the equation 2x� 7y¼ 12 38 41

5. What is the vertical intercept of y¼mxþ b? 37 40

3. What is the slope of AxþBy¼C? 24 26

9. Given the view window and graph, what is the equation? 13 14

Three of five questions answered correctly 20 22

Four of five questions answered correctly 6 7

All five questions answered correctly 1 1

Fig. 2.3 Pre- and posttest responses on various representations of function composition
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2.4 Function as an Organizing Lens: A Function Machine
Representation and Technology

A NSF-funded developmental algebra curriculum (DeMarois, McGowen &

Whitkanack, 1996a) has been shown to deepen developmental algebra students’
understanding of mathematics, make sense of mathematical notation that increase

skills proficiency, and provide them with opportunities to examine and reconstruct

problematic prior learning (Davis & McGowen, 2002; DeMarois, 1998; DeMarois

& McGowen, 1996b; McGowen, 1998; McGowen, DeMarois, & Tall, 2000; Tall,

McGowen, & DeMarois, 2000). The unifying concept of function and difference

equations facilitated students’ ability to see connections and link fundamental

ideas. Constant finite differences and ratios were used to develop sequences as

functions, determine parameters, and develop models of linear, exponential, and

polynomial functions.

A significant finding from this research on Introductory and Intermediate Alge-

bra students is that initially there was a spectrum of interpretations from students

who saw only a process, such as 2þ 4 meaning “two is added to four,” to those who

could view notation flexibly, seeing the expression 2þ 4 not only as a process but as

the concept, “a sum,” and 2xþ 5 not only as the process of addition but also as the

concept “expression.” Students who successfully completed the course were found

to be prepared for continued study of increasingly sophisticated mathematical ideas

in both STEM and non-STEM courses.

Using the function concept and the graphing calculator results in a coherent

sequence different from the traditional ordering of algebraic topics as shown below

in Fig. 2.4. Developmental algebra students were able to make connections and

generalize algebraic linear, exponential, and quadratic models from data. They

gained a deeper understanding of parameters and increased flexibility of thinking.

Basic Statistic: input is a list of data; output is a statistic

Sequence: input is position; output is sequence element

Whole
Number
Domain

Arithmetic
Constant Rate

of change

Geometric
Percent rate
of change

Sequence of
partial sums: second
finite differences in
output are constant

Real
Number
Domain

Linear
function

Exponential
function

Quadratic
function

Data Linear Regress Exponential Regress Quadratic Regress

Fig. 2.4 Intermediate algebra course sequence
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Functions viewed as input-output machines were studied in mathematics edu-

cation as far back as 1965 by Peter Braunfeld. The function machine representation

shown in Fig. 2.5, introduced as a visual representation for the concept of function

seen as an input/output process, was found to be an accessible starting point for

many developmental students (Davis & McGowen, 2002; DeMarois, 1998;

McGowen, 1998; McGowen, 2006; McGowen, DeMarois & Tall, 2000). The

function machine representation becomes a meaningful unit of core knowledge

leading to more meaningful understanding of function, domain, range, and notation

and was found to be a supportive met-before (McGowen & Tall, 2010; Tall,

McGowen & DeMarois, 2000).

2.4.1 Understanding Binary and Unary Arithmetic Processes

The function machine representation in Fig. 2.6 is an effective visual means of

distinguishing between binary and unary arithmetic operations (DeMarois,

McGowen, & Whitkanack, 1996a, p. 23).

Students also find the function machine representation, together with the

graphing calculator, helpful when reexamining their prior understanding of the

minus sign and how meaning changes in different contexts. In their text, DeMarois,

INPUT

PROCESS

OUTPUT

Fig. 2.5 Function machine

representation

Fig. 2.6 Function machine representations: binary and unary processes
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McGowen, and Whitkanack (1996a) discuss three distinct meanings of the minus

sign: a binary arithmetic function requiring two inputs (subtraction), an object

(a negative number), and a unary function requiring a single input (the “opposite

of x” denoted by �x). Two different calculator keys input the minus sign: one

indicating a binary operation, subtraction, and the other signifying a negative

number or a unary operation, the additive inverse. Together with the function

machine representation, students investigate three tasks: (1) subtract three;

(2) type in the opposite of three; and (3) compare the results of entering �32

without using brackets and with brackets, typing (3)2 (Fig. 2.7).

Pre- and posttests which ask students to evaluate (5)2 and�52 were administered

to two cohorts of students: 121 community college Intermediate Algebra students

using the function machine approach and 140 university students using a traditional

textbook. The responses of both cohorts were reported by McGowen and Tall

(2013). Overall, both sets of students perform poorly in solving both questions

correctly on the pretest. Both groups improved from pretest to posttest, with the

community college students who had experienced the function machine strategy

and the graphic calculator, improving more.

2.4.2 Clarifying Understanding of Terms

Students’ understandings of “evaluating an expression” and “solving an equation”

are clarified by examining them as functional processes, shown in Fig. 2.8.

In a preservice elementary teacher content course, an initial focus on building

connections between different representations of a problem of binary choice led to

students describing connections between building towers, grid walks, and binomial

expansions. Followed by investigations of sequences as functions similar to those in

the developmental algebra course, the prospective elementary teachers demon-

strated deeper understanding of content, improved ability to generalize various

arithmetic and geometric sequences, and improved skill competency, as well as

changed attitudes and beliefs about mathematics (Davis & McGowen, 2002).

Fig. 2.7 TI-83 view screen of binary and unary operations
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2.5 An Open Question: Which Computational Skills Are
Essential with Today’s Technology?

The effective utilization of graphing calculators in the teaching and learning of

mathematics has not yet been incorporated into the classroom by many instructors

of developmental mathematics. Which pencil and paper skills students in a given

course must be able to demonstrate remains an open and divisive question in

mathematics departments, given the technology available today. Instructors,

depending upon their beliefs and assumptions, have different orientations about

the purpose and use of graphing calculators. Some instructors consider graphing

calculators only useful as a means to check homework and do not permit their use

on exams, fearing students’ computational skills will deteriorate. Some use them to

teach traditional mathematics topics sequenced in the traditional order with a more

efficient, dynamic, or appealing presentation. Still others realize that using the

graphing calculator effectively transforms the curriculum, necessarily altering the

character of knowledge as well as the sequence and content of the curriculum, thus

raising questions as to which computational skills are essential.

Heated exchanges still occur among instructors who hold differing beliefs about

what students should know. At a university faculty workshop, participants were

provided with the work of a developmental algebra student on the following

problem and asked how they would evaluate the student’s work:

A toy rocket is projected into the air at an angle. After 6 seconds, the rocket is 87 feet high.

After 10 seconds, the rocket is 123 feet high. After one-half minute, the rocket is

63 feet high.

(a) The model for the rocket’s motion is h(t)¼ at2þ btþ c where h is the height in feet of
the rocket after t seconds. Using the given information, find the values for a, b, and c,
so the function models the situation. Briefly explain what you did.

(b) Approximate how long it will take for the rocket to hit the ground. Explain how you

arrived at your answer.

The student set up a linear system in three variables by creating an input/output

list on his calculator and used quadratic regression to find the parameter values. He

Fig. 2.8 Comparing the

processes of evaluating

vs. solving
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then wrote the equation that models the situation, describing how far the rocket

would rise before it began its descent and when it would hit the ground. His work is

shown below (Fig. 2.9).

Faculty participants discussed how they would grade this work. Some instructors

maintained that they would give the students no credit because he hadn’t solved the
linear system algebraically. Other instructors argued that the student should receive

full credit as the response demonstrated very good understanding of the problem

and his responses were correct. When the workshop facilitator asked participants:

“Given the technology available today when will students be asked to solve a 3� 3

linear system using pencil and paper outside of the classroom?” No one provided an

answer to the question.

2.6 Conclusion

Teachers at all levels are faced with the result of the accumulated detritus of

students’ fragmented prior knowledge as a result of their earlier mathematical

experiences. Though teachers cannot be expected to deal with all the problems

that arise from previous learning, at each stage they need to be aware of the

problematic met-befores of their individual students and counsel them accordingly.

The failure to understand how students are thinking results in speaking past their

Fig. 2.9 Intermediate algebra student’s work
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difficulties and increasing disaffection on the part of students. Effective instruction

is dependent on how students use what they have learned before and how what is

taught will affect what the students learn later.
The problematic met-befores discussed in this chapter, including prior learning

of arithmetic and the ambiguous minus symbol when faced with changes in

meaning in algebraic and function notation, illustrate some of the complex aspects

of learning algebra. A lack of conceptual understanding of the meaning of “solving

an equation” compared with “evaluating an expression” and the failure to distin-

guish slope from x- and y-intercepts or coefficients contribute to the lack of success.
These problematic aspects of learning algebra generally go undiagnosed and

unaddressed by instructors and curriculum developers at all levels.

Explicit rethinking and reflecting on the longer-term effects of learning are

essential if we are to improve student learning and success at every level—from

the elementary grades through college and university. A focus on the specific

changes in meaning as mathematics becomes more sophisticated and contexts

change the meaning of what has been learned previously is a critical component

in these efforts. Incorporating the use of formative assessment is essential in order

to clarify students’ difficulties at each stage of their development and adapt

instruction to better meet their needs.

Following the Curriculum Foundations report, several alternative innovative

courses designed to better meet the needs of students in technical and non-STEM

career programs have been developed and adopted in many undergraduate and

community college programs. A similar initiative is required to address the critical

mathematical needs of our many future teachers and non-STEM students who will

be required to have a much more solid mathematical foundation in arithmetic and

algebra than they graduate with currently. As Einstein is reported to have said:

Insanity is doing the same thing over and over again and expecting different results.

We can’t solve problems by using the same kind of thinking we used when we

created them.

Currently lacking for students who need a deeper understanding of arithmetic

and algebra are developmental courses and tasks designed to change the procedural

orientation and superficial, fragmented knowledge of too many of our students. The

curriculum, particularly for non-STEM undergraduate students along with those

who intend to become teachers of mathematics, whether at the elementary, high

school, or college level, should include a course that requires students to examine

the long-term cognitive development of mathematical thinking and understanding

of foundational arithmetic and algebraic concepts. Such a course would provide

experiences in which students identify and analyze prior experiences that support

new learning and identify situations in which prior learning can become problem-

atic or be supportive.

Changing students’ beliefs about the nature of mathematics and what it means to

learn mathematics remains as much of a challenge today as it was more than

500 years ago when Robert Record (1543), in The Grounde of Artes, described
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the danger of rote learning and the resulting conflicting perspectives of teachers and

students:

Master: . . .I wil propounde here ii examples to you whiche if you often doo practice, you

shall be rype and perfect to subtract any other summe lightly. . .
Scholar: Sir, I thanke you, but I thynke I might the better doo it, if you did showe me the

workinge of it.

Master: Yes, but you muste prove yourselfe to doo som thnges that you were never

taught, or els you shall not be able to doo any more than you were taught, and were rather to

learne by rote (as they cal it) than by reason.

Mathematicians and mathematics educators must be willing to adjust their

beliefs and assumptions about students’ learning and incorporate what is known

about the long-term cognitive development of mathematical thinking into their

instructional practices. As Stephen Crane (1972) wrote: “The wayfarer, perceiving

the pathway to truth, was struck with astonishment. It was thickly grown with

weeds. . . Later he saw that each weed was a singular knife. ‘Well,’ he mumbled at

last, ‘Doubtless there are other roads’.”
Complaining about what students can’t do is no longer an option. Too many

students are failing. Our challenge is to provide tasks and opportunities for students

to engage in explicit examination of their prior knowledge when confronted with

new situations and contexts. Recognizing that learning “just algebra” is a much

more complex task than it appears. Incorporating what is known about the long-

term cognitive development of mathematical thinking into instruction can result in

changing how and what is taught so that more students who need to learn algebra

can do so meaningfully and effectively.
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Part II

College Algebra in a Broader Context



Chapter 3

Long-Term Effects of Sense Making
and Anxiety in Algebra

David Tall

Abstract This chapter offers a framework for the long-term development of sense

making and anxiety for mathematics in general and algebra in particular. While

many may see the development of algebra building from the basic ideas of

arithmetic and generalizing to algebraic techniques for formulating and solving

problems, over the long-term increasingly subtle changes of meaning may give

pleasure to some yet become problematic for others. The symbol “�2” starts off as

an operation “take away 2” but later represents the concept of a negative number,

“minus 2.” The algebraic symbol “�x” however only represents a negative number

if x is positive, and takes on the new meaning as the “additive inverse” of x. While

some students find algebra a source of pleasure and delight as it grows in sophis-

tication, others find it problematic and seek to rote-learn techniques in ways that

lack meaning in more sophisticated contexts. Here we consider how successive

experiences that individuals encounter effect long-term learning. Sometimes expe-

riences that are supportive in one context may become problematic, leading to

negative emotional reactions. The chapter considers how various visual and sym-

bolic approaches involve specific supportive and problematic aspects. Sometimes

curriculum design that reduces the level of difficulty can give short-term success yet

inhibit long-term sense making. On the other hand, by reflecting on profound

underlying structures (“crystalline concepts”), mathematical ideas may be

constructed and connected in ways that offer long-term flexibility.

Keywords Sense making • Anxiety • Supportive met-befores • Problematic

met-befores • Level reduction • Crystalline concepts

For some students, algebra involves pleasurable activities in seeing patterns and

building the foundations for more advanced mathematics. For others it is a source of

anxiety with little use in everyday life. This chapter offers a “joined up” framework

for mathematics in general, and algebra in particular, to help understand the reality
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of the full range of experience of the whole population, in particular, why some find

algebra a pleasurable activity, while others find it a source of anxiety.

Personally I am committed to see algebra introduced in a meaningful and

positive manner. However, this has yet to be achieved in the wider population

despite many years of seeking ways of improving sense making in algebra all over

the world.

Research has shown that, as individuals attempt to make sense of increasingly

sophisticated ideas over the longer term, new ways of thinking are required that

may be enlightening for some and problematic for others. These have a long-term

cumulative effect that widens the gap between those who are successful and enjoy

the mathematics, those who are determined to cope with new ideas that they may

not fully understand, and those who become increasingly disaffected. While cur-

riculum designers may focus on the positive sequence of achievement that is

desired, the implementation of the curriculum depends not only on the teacher’s
understanding of mathematics but also on how individual learners attempt to make

sense of the new ideas and how teachers can mentor them to develop more powerful

understanding.

3.1 Long-Term Sense Making

While mathematics may be seen to be coherent from an expert viewpoint, this is not

true over the longer term for most learners, nor is it true at the boundaries of

mathematical research where mathematicians are grappling with new ideas. It is a

salutary fact that all mathematicians enter the world as newborn children with

brains as yet not sufficiently formed to make subtle connections. So everyone

goes through a long-term process of making sense of increasingly subtle ideas.

At each stage, new mathematical ideas often require more sophisticated ways of

thinking. In considering how we may make algebra more meaningful, it is not

sufficient just to look at the status quo. It is essential to see how different individuals

make sense of mathematics over the longer term. What is learnt at earlier stages and

how it is interpreted by learners at each successive stage continually build up a

broader spectrum of different ways of working that affect the attitudes and under-

standings of new ideas as they are encountered.

For example, in early arithmetic, the process of addition becomes more com-

pressed, starting from three counting processes (count one set, count the other, put

them together and “count all”) to a single counting process (“count on” the second

number after the first), then to a known fact that can then be used as part of a flexible

knowledge structure to derive new facts from known facts. This produces a long-

term bifurcation in performance as some students continue to use less sophisticated

counting procedures that become more complicated, while others benefit from the

flexible use of more sophisticated ways of thinking that are more productive (Gray

& Tall, 1994).
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This bifurcation continues as whole number arithmetic develops through more

sophisticated topics: making sense of place value, multi-digit addition, subtraction,

multiplication, long division of whole numbers, introducing fractions and decimals,

negative numbers, and so on. As number systems become more sophisticated, the

generalized properties of the operations are seen first as generalized arithmetic and

then as manipulation of variables in algebra, combining operations with symbols,

and visualization using graphs.

It is inevitable that long-term learning involves successive encounters with new

ideas that behave differently from previous experience. This involves not just what

the teacher intends to teach but also what the learner senses in the ideas encoun-

tered. These ideas may not be explicitly taught, but they may have a profound effect

in the learner’s sense of security in handling new experiences. For example, taking

away a whole number always gives a smaller result, but this is not always true for

signed numbers. Multiplication of whole numbers gives a bigger result, but this

doesn’t always happen with fractions. In each case, the operations become more

complicated and may cause uneasy feelings as the nature of number is generalized.

How can taking something away give more? How can “two minuses make a plus?”

The square of a nonzero number is always positive, so how can there be a number

i such that i2¼�1?

When mathematics is extended to new situations, research tells us that students

often have “misconceptions.” The literature is so vast that it would be invidious to

give a single reference. However, the same data may be analyzed in a new way to

find that the “misconceptions” often involve using methods that worked perfectly

well at one stage, yet, without reconstruction, fail in a more sophisticated situation.

For instance, the difference between two single-digit numbers effectively means

“take the smaller one from the larger,” but when a child meets two-digit subtraction

written in columns, taking the smaller from the larger in each column may lead to

an erroneous answer such as concluding that 43� 27 is 24 because the difference

between 4 and 2 is 2 and the difference between 3 and 7 is 4. In such a situation, it

seems evident that the learner needs to be taught to use the correct procedure, but is

this sufficient to deal with successively more sophisticated procedures? Simply

being taught how to perform an appropriate procedure without understanding may

lead to greater difficulties being encountered at a later stage, causing even greater

confusion over the longer term.

Subtle changes in meaning occur throughout the mathematics curriculum. For

example, in shifting from arithmetic to algebra, a sum such as 2þ 3 always has an

answer (in this case 5), but in algebra, an expression involving letters as variables

such as 2þ 3x does not. Here it is possible that a particular learner who has not yet

made sense of the meaning of algebraic notation may look at 2þ 3x and recognize

the first part 2þ 3 as an arithmetic operation that can be performed to give 5, but

then the remaining x cannot be incorporated, so the learner leaves the answer as 5x.
In attempting to help learners make sense of new ideas, it is important for the

teacher, as mentor, to be aware of the possible effects of previous learning. For

instance, the famous “students and professors problem” (Clement, Lochhead, &

Monk, 1981)—in which the number of students is S, the number of professors is P,
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and there are 6 students for each professor—is often written as 6S¼ 1P. This

provoked a whole array of research papers to analyze what is happening and how

to deal with it, when the main reason is there for all to see. Letters are often used as

units, for example,

1m ¼ 100cm

to represent 1 m is 100 cm. Interpreting S as “students” and P as “professors”, it is

evident that 6 students correspond to 1 professor, so this leads to

6S ¼ 1P:

Often letters are used as objects to introduce students tomanipulation of expressions,

so 6aþ 3b is 6 apples and 3 bananas, which allows an expression such as

6aþ 3bþ 2a to be simplified to 8 apples and 3 bananas or 8aþ 3b. The student

now seems to be able to manipulate algebraic expressions in simple cases and may

use this interpretation to have initial success in manipulating algebra. However, in

the longer term, this is likely to sow problematic seeds that can grow into the student-

professor problem.

This is a recurring phenomenon throughout the curriculum as each individual

interprets new ideas in terms of previous experiences that are sometimes support-

ive, giving increasing mathematical power, and sometimes problematic, causing

increasing difficulty.

3.2 Supportive and Problematic Met-Befores

As we build on our previous experience, we use ideas that are familiar to interpret

new experiences. Having developed language to describe certain familiar circum-

stances, the same language is available to describe similar ideas in new contexts.

This has led to a range of theories in which human thinking is expressed in terms of

metaphor (e.g., Lakoff & Johnson, 1980; Sfard, 2008).

The theory of metaphor can be very helpful in gaining insight into puzzling

situations in mathematics learning. However, it has an Achilles heel: it is often used

to consider the problem from the sophisticated viewpoint of the expert, and this may

be very different from the wide range of thinking of different learners.

As I sought to understand what was happening from the viewpoint of the learner

who has yet to develop the sophistication of an expert, I played with the sound of

the word “metaphor” and invented the new word “met-afore” using the old English

word “afore” to refer to ideas that the learner had met before. Then I replaced “met-

afore” by the new term “met-before” which distinguished “metaphor” and “met-

before” in sound as “metAphor” and “metBefore.” It can be formulated as follows:

A met-before is a mental construct that an individual uses at a given time based on

experiences they have met before. (Lima & Tall, 2008)
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The first publication using the term met-before (Tall, 2004) focused mainly on

met-befores that cause difficulty, giving the limited impression that they simply

refer to misconceptions. However, it is important to balance the positive and

negative aspects to give a balanced view of how we use previous experience in

new situations. I defined a supportive met-before to be a previous experience that

supports learning in a new situation and a problematic met-before as a previous

experience that causes difficulties. It is essential to see the met-before operating in a

specific new context, as a particular previous experience may be supportive in one

context and problematic in another. For instance, “take away gives less” is sup-

portive in whole numbers and fractions (without sign), but problematic in signed

numbers and much later in handling infinite cardinal numbers. The way in which a

learner copes with a met-before can cause very different emotional reactions and

consequent differences in future progress.

This phenomenon is not just restricted only to students, it occurs in experts too,

as can be seen throughout history when firmly held beliefs are challenged by new

possibilities that prove difficult to grasp. Our language is littered with terminology

that reveals these transitions, from natural numbers to introduce negative numbers,

from rational numbers to introduce irrational numbers, from real numbers to

complex numbers that have real and imaginary parts.
As we consider the long-term sense making of our students, we need to be aware

that the same mechanisms operate at different levels in the minds of all of us,

including teachers, curriculum designers, and expert mathematicians. Moreover,

the fact that we have each had our own personal developments in different com-

munities means that we may see the learning of mathematics from very different

perspectives and the way in which one community interprets mathematics may be

appropriate or entirely unsuitable for another.

Mathematicians who have reorganized their thinking to a powerful expert level

may have ways of operating that are good for them yet prove to be problematic for

learners, while educators and teachers who present mathematical ideas to learners

at a given stage may be unaware of the later consequences of their teaching. It is

therefore important to develop an overall picture of mathematical development so

that those in different communities of practice can be sensitive to both the long-

term goals of learning and using mathematics and also to the personal development

of the individual.

3.3 Long-Term Development of Mathematical Thinking

As mathematics grows in sophistication, both corporately in history and individu-

ally in each one of us, changes of meaning occur to deal with new situations. To

understand how individuals cope with such changes, it is necessary to consider:

• The increasing sophistication of mathematics

• The personal interpretations of the individual

• The long-term effects of sense making in increasingly sophisticated contexts
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Long-term development of mathematical thinking begins with practical

experiences that develop into more theoretical ways of reasoning. As

learners meet new ideas, their personal interpretations are affected by a succes-

sion of previous supportive and problematic met-befores that subtly affect their

thinking.

Problematic ideas in algebra may have their origins in early arithmetic and

accumulate through successive experiences over the years. If the problematic

aspects remain unresolved, the spectrum of difficulties may become so complicated

that it may no longer be easy to resolve problems arising in a particular topic

because their origins are so deeply embedded in the subconscious mind of the

learner.

For example, McGowen and Tall (2010, 2013) reveal how the minus sign

changes its meaning as the curriculum advances through the years, first as an

operation of subtraction, then as a sign to denote a negative number such as �3,

then as a sign to denote the additive inverse�x which could have a positive value if
x is negative. Combine this with another operation, such as squaring, then “�3

squared” may be “the square of �3” or “the additive inverse of 3 squared” which is

resolved by an appropriate use of brackets, but may, in practice, be confused by

students struggling with college algebra (see McGowen, Chap. 2, this volume.)

This general phenomenon occurs throughout learning. At any stage, a given

group of learners will contain individuals at different stages of development, so

what some may grasp easily will be difficult or even impossible for others. Over

time, as new challenges are encountered in new contexts, the spectrum of possibil-

ities may become more diverse, and the teacher’s task in helping students make

sense of new ideas becomes more complicated.

3.4 Visualizing and Symbolizing

Manipulating objects to “see” relationships is a powerful way of getting a sense of

more general properties in arithmetic such as commutativity of addition and

multiplication. However, some visual ways of symbolizing algebraic relationships

may be supportive at one stage but become problematic in more sophisticated

situations.

Tall (2013), Chap. 7, considers the case of the algebraic identity

a2 � b2 ¼ ða� bÞðaþ bÞ:

This can be represented visually as a large square side a taking away a smaller

square side b to see the relationship perceptually (Fig. 3.1).

This picture of the difference between two squares can be used to visualize the

meaning of the equation. However, implicitly, the values of a and b are positive.

What happens if one or both of a and b are negative or if a is less than b?
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In this case, it is possible to “see” a change in sign as “turning over” the square to

see the other side, interpreting one side as positive and the other as negative. We can

now see that the operation of turning it over changes the sign, then turning it again

returns to the original sign, so “two minuses make a plus” (Fig. 3.2).

When we shift from the difference of two squares in two dimensions to the

difference between two cubes a3� b3 in three dimensions, we can still see what

happens when a smaller cube b3 is removed from a larger cube a3 (for a and b both
positive) (Fig. 3.3).

b a–b

a–b

a+ba–b

a

a
–b2

can be
rearranged as

b

Fig. 3.1 Rearranging the difference between two squares a2� b2

+ – +
turn
over

turn
over

Fig. 3.2 Changing signs by turning over to see the reverse side

(a–b)b2

four base blocks make (a–b)a2

a–b

a

a–b

b

b

a

a–b
a

b
one front top block is

(a–b)abtwo top blocks at back make

Fig. 3.3 a3� b3¼ (a� b) abþ (a� b) b2þ (a� b) a2¼ (a� b)(abþ b2þ a2)
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This allows us to visualize the formula a3� b3¼ (a� b) (abþ b2þ a2) which
can also be found easily using symbolic algebra. But if we attempt to “see” the

formula when a or b is negative or when b> a, then the idea of seeing the minus

sign as “turning over” involves reflecting a cube in a mirror which can no longer be

performed by a physical movement in space. When we generalize further the

difference between two fourth powers a4� b4 in four dimensions, this is even

more problematic for creatures living in three-dimensional space.

As we generalize, the picture becomes more difficult to see. Yet if we focus on

factorizing algebraically, it is possible to factorize

a3 � b3 ¼ ða� bÞða2 þ b2Þ,

and to factorize a4� b4 is even easier because it can be rewritten as

ða2Þ2 � ðb2Þ2

and we can reuse the formula for the difference of two squares to get

a4 � b4 ¼ ða2Þ2 � ðb2Þ2
¼ ða2 � b2Þða2 þ b2Þ
¼ ða� bÞðaþ bÞða2 þ b2Þ:

So now, symbolic operations seem to be more appropriate than visual

representations.

However, the advantage of symbolization over visualization is short-lived.

When we consider a5� b5, the factorization turns out to be

a5 � b5 ¼ ða� bÞ
�
a2 � 2cos ð72∘Þabþ b2

��
a2 � 2cos ð144∘Þabþ b2

�
:

This factorization is unlikely to be found by manipulating algebraic symbols.

At a much later stage, when we have complex numbers at our disposal, we can

“see” the complex roots of zn¼ 1 which turn out to be the complex roots of unity

of the form e2πi/n. In the case of n¼ 5, this is where the values cos(72�) and cos

(144�) arise as the values of 2π/5 and 4π/5 expressed in degrees (Tall, 2013,

pp. 168–171).

The moral of this story is that in the long-term development of sophistication in

mathematics, visual ideas can give insight, while symbolic ideas give increasing

power that take us beyond our original perceptions. In later contexts, new kinds of

visualization may give insights that shift us onto higher levels of operation.
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3.5 Embodied, Symbolic, and Formal Development

So far, our analysis has been expressed in terms of visualization and symbolization,

growing from practical activities in arithmetic where we can “see” more general

relationships, then onto generalized arithmetic that can be symbolized using algebra

and visualized using pictorial representations. However, these mathematical activ-

ities involve other forms of human perception and action than just visualization.

They are based not only on our physical senses and actions but also our mental

imagination. I use the term conceptual embodiment to include the full range of

physical and mental conception and action (Tall, 2004). The inclusion of mental

imagination in our embodied thought is essential to take us from our perception and

actions in the actual world to more sophisticated mathematical concepts. For

example, it includes the way in which we sense general properties of arithmetic

operating on objects that form a basis for properties in algebra.

For instance, by acting on a set of, say, six objects physically or mentally, we

may see that 4þ 2, 2þ 4, 2� 3, 3� 2 are precisely one and the same number. This

allows us to sense that the results of addition and multiplication are unaffected by

changing the order.

Embodied operations on objects such as counting, adding, subtracting, and so on

may then be symbolized to develop a distinct form of mathematical thinking.

Instead of imagining objects being moved around, the focus of attention switches

to operating with the symbols themselves. This gives a new way of thinking that

may be termed operational symbolism.
Here, the focus of attention changes from physical perception and operation on

objects to operating with the symbols themselves. The symbols then may be

conceived as mental objects that may be operated upon, and these new operations

become mental entities that can be operated upon, and so on. Counting becomes

number, addition of numbers becomes sum, repeated addition becomes multiplica-

tion, and generalized operations become algebraic expressions.

Initially, an equation of the form 3xþ 1¼ 7 may be seen as an operation “3 times

a number plus one is 7.” This may be “undone,” first by taking off the 1 to get “3

times the number is 6” from which we can see that the number x must be 2. It only

involves operations on numbers, taking 1 from 7 to get 6, then dividing by 3 to get

the answer 2. It can be solved because there is a single algebraic operation “3xþ 1”

which has a numerical result, and the solution can be found purely in terms of the

operations of arithmetic.

However, an equation such as 3x þ1¼ 2x þ3 involves different operations on

the two sides, and the arithmetical operation of “undoing” cannot be applied in such

a simple way. On the other hand, we may embody this equation as a physical or

mental “balance” where x is a quantity and 3 lots of x plus 1 balances 2 lots of x plus
3 (Fig. 3.4).

It is then possible to “do the same thing to both sides,” first taking off 2 lots of

x from both sides to get xþ 1 balancing 3, then taking off 1 from both sides to get

x¼ 2.
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This seems to support the idea that an embodied approach using a balance is

more general than a symbolic approach because it can enable the learner to cope

with more general equations. However this is not so because an equation such as

2x� 1¼ 5 cannot easily be represented as a physical balance as it has 2x� 1 on the

left, and we cannot take away the 1 from 2x as a physical move when we don’t yet
know what x is as a number.

As a consequence, we see that symbolic undoing and embodied balance are each

supportive for some types of equation but problematic for others. Furthermore,

there are some equations such as

3x� 1 ¼ 2xþ 1

which are not suitable for either symbolic undoing (it has expressions on both sides)

or a balance model (it has a minus sign on the left).

A more sophisticated technique is the principle of “doing the same thing to both

sides.” First “add 1 to both sides” to get

3x ¼ 2xþ 2

then “take 2x from both sides” to get

x ¼ 2:

A student who grasps this principle is likely to have an all-inclusive strategy to

solve more general equations. However, it turns out that this more general approach

is problematic for many students. When three classes of teenage students had been

taught to find the solution by “doing the same thing to both sides,” Lima (2007)

found that none of them mentioned the general principle when interviewed at a later

stage. Instead, many referred to the use of specific rules such as “change sides,

change signs.” The equation “3x� 1¼ 5þ x” was solved by shifting the “�1” to

the right-hand side to get “3x¼ 5þ xþ 1,” rearranging it to get “3x¼ xþ 6,” then

after shifting the x to the right and simplifying to get “2x¼ 6,” using a second rule:

x
x

x x x

Fig. 3.4 Embodying the equation 3xþ 1¼ 2xþ 3 as a balance
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“shift the number 2 over the other side and put it underneath” to get “x¼ 6/2¼ 3.”

Common errors included misremembering the rules and mixing them up, such as

solving 2x¼ 6 by “moving the number underneath and changing its sign” leading to

the error x¼ 6/�3¼�2.

This symbol shifting involving rules that may or may not be understood is

termed “procedural embodiment.” It is a procedure that is embodied by using the

mental action of shifting symbols. If used correctly, procedural embodiment will

lead to correct solutions. However, it can also break down and lead to error.

Procedural embodiment causes even more complicated difficulties at the next

stage. For example, when the students in this study moved on to solve quadratic

equations, the teachers, aware of the students’ difficulties, focused mainly on

giving them an apparently guaranteed solution by solving an equation in standard

form ax2þ bxþ c¼ 0 using the formula

�b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
:

This failed because most of the students could not cope with the algebraic manip-

ulation required to transform a quadratic equation into standard form (Tall, Lima, &

Healy, 2014). The failure to make sense of symbol manipulation in linear equations

has even more serious consequences in quadratic equations.

3.6 Level Reduction

We have seen how students encounter new situations that are either too complicated

for them to make sense of the new ideas or where they learn a technique that works

at one level but becomes problematic at the next. Concerned teachers, who wish to

help their students reach attainment levels, may turn to routine practice of test items

to encourage them to pass the next test. This may succeed in the short-term but in

the long-term successive focus on procedural learning may prove increasingly

problematic.

In his book Structure and Insight, Pierre Van Hiele (1986, p. 39) formulated the

notion of successive levels of thinking:

You can say someone has entered a higher level of thinking when a new order of thinking

enables him, with regard to certain operations, to apply these operations to new objects.

(translated from the Dutch original in Van Hiele, 1955, p. 289)

His work is usually associated with geometry where he introduced five levels,

but in Structure and Insight, he was well aware that his broad framework of levels

applies widely throughout mathematics and in other domains of knowledge. He

declared that the number of levels was not important. What matters are the changes

that occur in the shift in level from a familiar situation to a new level of thought. He

settled on three basic levels: visual, descriptive, and theoretical. First situations are
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seen as a whole, then their properties are described, and then definitions are

formulated in ways that can be used to build a theory deduced from those

definitions.

This can be applied more generally by broadening the notion of visualization to

incorporate the full range of embodiment using perception and action. In the

development of arithmetic and algebra, the first basic level starts with practical

arithmetic operating on physical objects in which we build the operations of

arithmetic. In terms of the properties of arithmetic, we first recognize fundamental

underlying properties, at the next level we describe those properties, and then we

move to a theoretical level of definition of properties that are used to deduce a

theory.

Practical examples may have limitations that are not found at the theoretical

level. For example, temperatures above and below zero or as heights above and

below sea level may be represented as signed numbers. In these practical examples,

we can perform various operations. For example, we can shift up or down by a

certain amount, but we do not actually add temperatures or elevations. We certainly

do not multiply them. As a consequence, the theoretical level may involve new

ideas that may not be represented in specific examples. On the other hand, the

practical level may have differences that do not occur at the theoretical level. For

example, in practice, three lots of two may be different from two lots of three (think,

for example, of three ducks with two legs or two ducks with three legs). The shift

from the practical to the theoretical involves various subtleties that may be prob-

lematic. But at the theoretical level, as pure numbers, 2� 3 is precisely the same as

3� 2. Hence if thinking operates at this higher level, the ideas are simpler than at

the practical level. Students adhering to the specifics of practical examples there-

fore may find it problematic to shift to the theoretical level, while those who achieve

the shift have a more flexible way of operating mathematically.

Van Hiele (1986, p. 53) used the term “level reduction” to describe how “it is

possible to transform structures of the theoretical level with the help of a system of

signs, by which they become visible” (Van Hiele, 1986, p. 53). By this statement, he

refers to the possibility of manipulating symbols in a way that can be seen but not

necessarily understood. For example, a student may learn to reproduce a geometric

theorem by rote learning without grasping the underlying structure of the proof. In

arithmetic or algebra, level reduction occurs when learning a procedure to carry out

an operation or solve an equation without understanding what it means or why it

works. A typical example is the use of procedural embodiment in solving equations.

The literature has long debated the distinction between different forms of

knowledge and understanding, such as instrumental and relational understanding

(Skemp, 1976) or between procedural and conceptual learning (Hiebert & Lefevre,

1986). Both types of learning and understanding play important roles in mathemat-

ics. Procedural learning is important to develop the necessary skills, while concep-

tual understanding provides a grasp of the bigger picture in formulating and solving

problems.

If level reduction occurs at successive levels, the difficulties may be

compounded. While learning procedures may give short-term success in passing
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the next test, the cumulative effect of several stages of level reduction may have

more serious effects in subsequent learning. The short-term success focusing on

procedural learning may lead to teachers and students changing their goals to the

immediate priority to pass the test. In the longer term, it may become the default

goal, with successive level reductions leading inevitably to a form of mathematics

that is less suitable for more sophisticated thinking.

This is a phenomenon that can be seen around the world as comparison of

success on various levels of testing causes the need to pay attention to achieving

the highest possible grades at each level. This pressure can have an enormous

detrimental effect on those who are not making sense of the mathematics at

successive levels and so build a sequence of short-term rote learning to pass the

test, with possible short-term success but with longer-term consequences.

3.7 Where Do We Go from Here?

Currently, governments around the world are concerned with maintaining and

raising standards in mathematics as measured in international tests. This is leading

to curriculum design formulated in terms of successive levels of subject develop-

ment that are tested to judge the apparent level of achievement of children at

various stages.

In the United States, the Executive Summary of the NCTM Standards (NCTM,

2004) presents a desired positive view of development through successive stages of

learning. However, there is no mention of the problems that students face as they

encounter new ideas in mathematics that may cause them difficulties, even in more

recent versions (e.g., NCTM, 2013). The reason for this is that the summary is

written to specify desired objectives, written by a group of experts working for the

government (NGA, 2009), who are mainly involved in the testing industry

(Schneider, 2014). The implementation of the standards is left to the professionals

in mathematics education.

The NCTM (2013) issued a statement supporting the standards while acknowl-

edging that they are “not sufficient to produce the mathematical achievement that

our country needs to be competitive in the twenty-first century.” To accommodate

the standards within a wider framework, an additional list of positive initiatives

were proposed to achieve that success. However, these initiatives again make no

explicit mention of the problematic feelings toward mathematics that are said to

affect around two thirds of the adult population (Burns, 1998). It is as if speaking

only of the positive while remaining silent on the negative aspects that affect the

majority of the population can lead to success.

History does not support this view. In recent times, there have been resounding

calls to change everything for the good: the “new math” of the 1960s promised that

if only we got the mathematics right, everything would be well. But the mathemat-

ics, as seen by experts, did not make sense to the wider population of learners. Then

the constructivism of the 1980s turned attention to the learners to encourage them to
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make sense of mathematics in their own way, but this did not produce the desired

results required in universities and in the workplace. In the new millennium—

despite repeated calls to “raise standards”—the level of performance in the United

States (and also in the United Kingdom and other Western countries) has failed to

improve in international comparisons (Pisa, 2012).

Drawing together the lessons of the past may offer a way forward to enhance the

future evolution of the teaching and learning of mathematics. While the “newmath”

focused on a modern approach to mathematics, the constructivist approach focused

on the development of the individual. Now it is time to blend both together to

develop an integrated approach by combining three aspects mentioned earlier:

• The increasing sophistication of mathematics

• The personal interpretations of the individual

• The long-term effects of sense making in increasingly sophisticated contexts

In the remainder of this chapter, we look successively at these three aspects.

First, we consider the coherent structure of mathematical concepts that evolves as

mathematics increases in sophistication in successive contexts by using the notion

of “crystalline concept” (Tall, 2011). This offers a positive overall picture of

development that will enable teachers to be aware of how their current teaching

can help the student focus on long-term learning.

Second, we consider the personal interpretations of the individual where an

awareness of supportive and problematic met-befores can assist the teacher and

learner to focus on ideas that improve insight and guard against negative effects that

impede long-term learning.

Finally, these two aspects will be blended together to suggest strategies for

encouraging long-term sense making.

3.8 The Increasing Crystalline Sophistication
of Mathematics

We have seen how arithmetic develops in sophistication and generalizes into the

study of algebra. At each stage, operations are introduced and symbolized so that

the symbols themselves can be manipulated as mental entities at a higher level. For

instance, the process of counting leads to the concept of number, and then opera-

tions can be performed on number such as addition, subtraction, multiplication, and

division to lead to new concepts of sum, difference, product, and, in the final case,

sharing in the context of whole numbers and fractions in the context of dividing

objects into smaller parts.

Gray and Tall (1994) noted that the same symbol could be used to represent both

a process and a concept: 2þ 3 as the process of addition and the concept of sum,

2� 3 as multiplication and product,
2

3
as sharing and fraction, and 2þ 3x as a
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general operation of adding 2 to 3 times x and as an expression which could itself be
manipulated. At the same time, different processes could give rise to the same

concept, for instance, 2þ 3 is the same as 3þ 2 or 1þ 4 or 6� 1. The term

“procept” was used to speak of the underlying entity that could be manipulated

flexibly in many ways.

As the curriculum progresses, procedures that are seen initially as being different

are seen as a rich blending of different processes giving the same procept. Counting

a particular set that can be performed in different ways but always gives rise to the

same number. A whole number is a procept that has a rich internal structure where a

number 5 may be seen as 3þ 2, 2þ 3, 6� 1, and so on. Algebraic expressions are

also procepts. The expressions 2(xþ 3) and 2xþ 6 involve different processes of

calculation, but they later give rise to the same function f(x)¼ 2(xþ 3)¼ 2xþ 6.

The steady progress through the curriculum in which different procedures are

seen to be “essentially the same” is dealt with mathematically by introducing the

notion of “equivalence.” Early in the curriculum, fractions that involve different

procedures giving the same final quantity such as
2

4
and

3

6
are said to be equivalent;

later, they are conceived as being the same rational number.

Reflecting on this phenomenon that arises throughout arithmetic and algebra, I

realized that even though we may distinguish between objects that are equivalent,

mentally we operate more efficiently by thinking of them as being fundamentally

the same object.

In Tall (2011), I extended the idea of flexible meaning of symbolism to the full

range of mathematics. A “crystalline concept” was given a working definition as “a

concept that has an internal structure of constrained relationships that cause it to

have a necessary property as a consequence of its context.”

In geometry, crystalline concepts include objects such as a circle which is

defined to be the locus of a point that remains a fixed distance from its center, but

has many constrained relationships (such as “the angle in a semicircle is a right

angle”). In arithmetic, procepts are special cases of crystalline concepts, including

various kinds of number such as whole numbers, fractions, signed numbers, real

numbers, complex numbers, vectors, and expressions in algebra. In axiomatic

mathematics, formal concepts defined set-theoretically are crystalline concepts

whose properties are deduced from the definitions by mathematical proof.

Mathematicians use the notion of “equivalence relation” to deal with this idea in

a technical way. For example, a fraction m/n may be considered as an ordered pair

(m,n) of whole numbers under the equivalence relation

m; nð Þ � p; qð Þ if and only if mq ¼ np:

Then a rational number can be defined as an equivalence class of such pairs. At this

stage, it is customary to agree that we can think of the equivalence class as a rational

number. The notion of crystalline concept represents how we think about such

mathematical ideas in practice, not as “equivalent” objects or as being “essentially”

the same, but as a single idea that can be imagined in different ways.
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The notion of a crystalline concept enables us to link together different kinds of

representation in a single entity. For example, the real numbers may be defined as a

complete ordered field, but it is possible to prove that two systems satisfying the

axioms for a complete ordered field must be isomorphic and that they may be

embodied (as a number line) and symbolized (as decimals). This gives the real

numbers a rich structure as a crystalline concept which can be defined formally,

visualized as points on a line, and operations can be performed using decimal

arithmetic.

In other cases, a list of axioms, such as those for a group, may apply to many

different examples, yet they all have a common structure given by the group

axioms. We can think of a group as a crystalline concept. It is possible to show

that the group structure may be embodied (as permutations of a set) or that groups

may be classified in ways that may be proved from the axioms.

More generally, formal axiomatic systems often can be proved to satisfy “struc-

ture theorems” that classify its structure in a way that may often be embodied or

symbolized in a manner that is more easily handled by the human mind. The notion

of “crystalline concept” proves to be of value throughout the whole of mathematics,

linking formal, embodied, and symbolic ways of thinking within an overall

framework.

In school mathematics, these higher-level structures are not an explicit part of

the curriculum. However, it is possible for learners to sense these structures at

successive stages of development and for the teacher as mentor to encourage the

learner to become aware of the underlying flexible structure. This includes an

awareness of the ways in which concepts that are different at one stage may be

classified at a later stage as one and the same.

In geometry, this development is formulated in terms of successive van Hiele

levels. For instance, at the first visual level, squares and rectangles are seen as being

different, but at the next level, a square is a special case of a rectangle. Likewise in

arithmetic and algebra, expressions that represent different processes are later seen

as representing the same crystalline concept. As the number systems become more

sophisticated through whole numbers, fractions, signed numbers, infinite decimals,

real numbers, and complex numbers, the crystalline structure subtly changes.

In practice, new ideas are often introduced by learning how to carry out

procedures. For example, in the United States, the acronym “FOIL” is introduced

to calculate (aþ b)(cþ d) by multiplying the first elements in the brackets a� c,
then the outside elements a� d, then the inside elements b� c, then the last

elements b� d. We also teach a more subtle technique to factorize an expression

such as x2þ 5xþ 6 by seeking two numbers whose product is 6 and sum is 5.

This may have the unintended consequence that what is happening is the

translation of one expression into a different expression, without realizing that

these are just different ways of representing the same underlying crystalline con-

cept. In this case, level reduction has occurred in which the student has learnt to

carry out the procedures without grasping the rich flexibility of the mathematical

structure.
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In the United States, there are many examples of level reduction in teaching

college algebra where textbooks are laid out using various devices such as color

coding text or placing significant statements in boxes to remind the learner what

should be remembered to be able to pass the test. As a result, there are more and

more disconnected ideas to be remembered that increase the longer-term likelihood

of overload and error.

A positive strategy is therefore to seek to make sense of the mathematics not

only in terms of specific examples in practical contexts but also to draw out the pure

thought that underlies the fundamental crystalline concepts.

This need not be a highly sophisticated activity. It simply means that the learner

is encouraged to develop a sense of the underlying structures that cause mathemat-

ics to fit together in a coherent manner.

This requires more than a simple constructivist approach that encourages chil-

dren to construct their own methods, for this may lead the learner investing effort

into a particular way of working that becomes problematic at a later stage. Instead it

requires the teacher, as mentor, to encourage the learner to seek to develop more

powerful techniques that support longer-term learning while at the same time

sensing the underlying crystalline structures that make mathematical thinking

both more powerful and at the same time more flexible.

3.9 Supportive and Problematic Aspects
of Individual Growth

Grasping the essential underlying ideas is not as simple as it sounds. While the

teacher may be focusing on supportive aspects that generalize to new situations, the

learnermay be sensing problematic aspects that impede progress. The problem is that

different students are affected in different ways by their own personal met-befores.

This requires the teacher to be sensitive to problematic met-befores that may occur in

some students but not in others so that different difficulties may be addressed in

individual students or in groups of students that share a common conception.

For instance, in learning to solve equations, more successful students may

realize that “doing the same thing to both sides” maintains the equality and so

this proves to be a successful strategy. However, we have seen that many students

are affected by problematic aspects that impede their progress. These may include

ideas that have accumulated over many years and become more difficult to address

as the ideas become deeply ingrained.

For a few students, algebra is essentially simple, even trivial. All one does is to

use letters to represent numbers and manipulate them by the same methods with the

same general properties noted in arithmetic. Others who are fixed in procedures

without a flexible sense of relationships in arithmetic are more likely to find algebra

becoming successively more complicated and even impossible, leading to a sense

of anxiety that paralyzes thought and prevents future development.
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3.10 The Long-Term Effects of Sense Making
in Mathematical Thinking

Algebraic thinking is part of a long development from practical arithmetic with

whole numbers, through more sophisticated number systems where general prop-

erties of arithmetic may be sensed and form a basis for the manipulation of symbols

in algebra. As new ideas are encountered in fractions, signed numbers, generalized

arithmetic, and algebra, the crystalline structure of the systems changes in ways that

involve supportive aspects that generalize and problematic aspects that impede

generalization.

Teaching that emphasizes the supportive ideas of generalization, as specified in

many curricula around the world, will work with learners who grasp the flexible

structure of successive contexts. These are the lucky ones who find mathematics

pleasurable and powerful. But children who are impeded by problematic

met-befores are less fortunate. If they cannot grasp the flexible structure, they

may resort to learning procedurally to gain the pleasure of passing tests. In an era

where testing at successive stages is prized, teachers and learners together may use

a form of level reduction to know how to complete a specific task without setting it

in a context that is appropriate for building meaningfully at the next stage. The

consequence is that much teaching in our mathematics classrooms may be aimed at

procedural competence rather than mathematical flexibility. In the longer term,

successive level reduction impedes the development of flexible mathematical

thinking.

However, not all individuals are the same or require the same level of mathe-

matical sophistication. Is it sensible to make all students aspire to the same

successive list of targets? If some students are finding mathematics difficult,

repeating the same materials a second time may not necessarily help them think

in the same way as those who regard mathematical ideas in more flexible ways.

Different forms of employment in society require different forms of mathematical

competence, and it is surely appropriate to teach children according to their needs

and to help them learn mathematics in a way that makes sense to them.

Current curriculum development in many countries around the world is focusing

on the introduction of problem solving and other aspects of mathematical commu-

nication, in lesson study in Japan, in realistic mathematics in the Netherlands, and

in cooperative learning in the United States. All of these encourage positive

achievement, while often remaining relatively silent on the negative.

Will the current drive to “raise standards” be successful? Time will tell. How-

ever, it is clear that teachers who have emotional difficulties with mathematics are

likely to pass on their feelings to many of their students, so the desire to improve the

positive aspects of learning for the students must be preceded by improvement of

security and confidence of teachers, and this in turn requires the understanding of

the broader aspects of mathematical thinking to be grasped by those who prepare

the curriculum and set the tests.
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The analysis of this chapter suggests that there are subtle underlying factors in

the development of mathematical thinking that promote flexible thinking on the one

hand and impede long-term learning on the other. This suggests a significant rethink

in how we view the development of mathematical thinking. While an understanding

of the increasingly sophisticated nature of crystalline concepts will help us to see

the positive growth of supportive aspects of mathematical knowledge, an awareness

of the problematic aspects carried forward from previous experience will help us

assist individuals to deal with their difficulties that may become mathematical

anxiety.

This suggests the need for mathematicians, curriculum designers, teachers, and

learners to become explicitly aware of the underlying supportive and problematic

aspects of long-term learning. It requires a global rethinking of the whole devel-

opment of mathematical sense making that balances the subtle changes of the

meaning of mathematics over the long term with the developing needs of different

learners, building from early sense making in the perception and operation of the

child and developing increasing sophistication of mathematical reasoning appro-

priate for differing roles in wider society. In particular, this suggests the develop-

ment of a whole new course in teacher preparation that addresses not only the

supportive aspects to deliver the positive objectives in long-term mathematical

sense making while becoming aware of the specific problematic met-befores that

impede student learning.
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Chapter 4

Misconceptions and Learning Algebra

Julie L. Booth, Kelly M. McGinn, Christina Barbieri, and Laura K. Young

Abstract Rather than exclusively focus on mastery of procedural skills, mathe-

matics educators are encouraged to cultivate conceptual understanding in their

classrooms. However, mathematics learners hold many faulty conceptual ideas—

or misconceptions—at various points in the learning process. In the present chapter,

we first describe the common misconceptions that students hold when learning

algebra. We then explain why these misconceptions are problematic and detail a

potential solution with the capability to help students build correct conceptual

knowledge while they are learning new procedural skills. Finally, we discuss

other potential implications from the existence of algebraic misconceptions which

require further study. In general, preventing and remediating algebraic misconcep-

tions may be necessary for increasing student success in algebra and, subsequently,

more advanced mathematics classes.

Keywords Misconceptions • Worked examples • Learning from errors •

Conceptual knowledge • Self-explanation

4.1 Common Algebraic Misconceptions

Over the past several decades, researchers in mathematics education and educa-

tional psychology have identified a number of misconceptions that students tend to

hold about algebraic content. While not an exhaustive list, a few of the most widely

studied, including those dealing with equality/inequality, negativity, variables,

fractions, order of operations, and functions, are discussed below.
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4.1.1 Equality/Inequality

Students at all levels have been found to hold misconceptions about the equal sign,

including those enrolled in college calculus (Clement, Narode, & Rosnick, 1981).

Often students have an operational understanding of the equal sign—the belief that

the equal sign indicates where the answer should go—rather than a relational

understanding, the belief that the equal sign indicates equivalence (Baroudi,

2006; Cheng-Yao, Yi-Yin, & Yu-Chun, 2014; Falkner, Levi, & Carpenter, 1999;

Kieran, 1980, 1981; Van Dooren, Verschaffel, & Onghena, 2002). For example, of

375 sixth and seventh grade students, 58% gave definitions for the equal sign that

insinuated that the equal sign connects the answer to the problem (operational

understanding), while only 29% gave definitions that insinuated that the equal sign

shows that what is to the left and the right of the sign mean the same thing

(relational understanding) (Knuth, Alibali, Hattikudur, McNeil, & Stephens,

2008). While this type of arithmetic thinking may be sufficient during the early

years, it causes major problems once students are asked to think algebraically

(Booth & Koedinger, 2008; Knuth, Stephens, McNeil, & Alibali, 2006). Having a

correct understanding of the meaning of the equal sign is imperative in order to

manipulate and solve algebraic equations (Carpenter, Franke, & Levi, 2003;

Kieran, 1981).

Some children believe that the equal sign cannot be used in an equation that does

not have an operator symbol (i.e., 3¼ 3). These same students also believe that all

operators must be on the left side of the equal sign. For instance, 5 + 2¼ 3 + 4

should be rewritten as 5 + 2¼ 7 and 3 + 4¼ 7 (Behr, Erlwanger, & Nichols, 1980).

Furthermore, younger students tend to believe that the number immediately to the

right of the equal sign must be the answer (Alibali, 1999; Falkner et al., 1999; Li,

Ding, Capraro, & Capraro, 2008). For instance, in one particular study, all 145 sixth

grade students incorrectly completed with number sentence 8 + 4¼ ____ + 5 by

filling in a 12 or 17 (Falkner et al., 1999). A second study found that about 76%

of 105 sixth graders were unable to correctly complete the first blank in the number

sentence, ____ + 3¼ 5 + 7¼ _____; however only about 13% of those students

were unable to answer the second (Li et al., 2008).

A similar misconception is one surrounding the concept of inequality. Similar to

the equal sign, students at all levels tend to have difficulties with inequalities

(Rowntree, 2009). Some students treat inequalities as equalities (Blanco & Garrote,

2007; Vaiyavutjamai & Clements, 2006). Others have a narrow understanding of

the terms more or less (Warren, 2006). Finally, some students have major difficul-

ties interpreting inequality solutions (Tsamir & Bazzini, 2004; Vaiyavutjamai &

Clements, 2006).
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4.1.2 Negativity

Another category of algebraic misconceptions is dealing with negativity. Those

with an incorrect or incomplete understanding of the negative sign are more likely

to use incorrect strategies when solving algebraic equations (Booth & Koedinger,

2008). Due to the abstract nature of negativity, this concept is especially difficult for

students moving from arithmetic to algebraic thinking (Linchevski & Williams,

1999). These students tend to only link the negative sign with the binary operation

of subtraction. For instance, Vlassis (2002, 2004) found that most eighth graders

can easily interpret the meaning of negative nine within the expression n� 9, but

have trouble when �9 is presented alone.

Difficulties with the negative sign persist into the college years. Cangelosi,

Madrid, Cooper, Olson, and Hartter (2013) found that college students have

difficulty manipulating exponential expressions when a negative sign is included

as part of the base, preceding the base, or as part of the exponent. For instance,

students often misinterpret �93/2 as (�9)3/2 (Cangelosi et al., 2013).

4.1.3 Variables

Misconceptions dealing with the use of variables are also widely studied. One of the

more common misunderstandings is the belief that the letter in a number sentence

stands for an actual object or is a label (Asquith, Stephens, Knuth, & Alibali, 2007;

Clement, 1982; MacGregor & Stacey, 1997; McNeil et al., 2010; Stacey &

MacGregor, 1997; Usiskin, 1988). This misinterpretation can be seen in the classic

error to the “student and professor” problem. When students are asked to write a

number sentence to represent the phrase, six times as many students as professors,

the most common error is 6s¼ p (Clement, Lochhead, & Monk, 1981; Rosnick,

1981). Students believe that s was a label for students, rather than a variable

representing the number of students (Rosnick, 1981).

Alternatively, some students will ignore the variables altogether. For instance,

when asked to solve (n+ 5) + 4, 20% of students incorrectly give the answer of

9, ignoring the n (Kuchemann, 1978). Others believe that the letter is associated

with its position in the alphabet (Asquith et al., 2007; Herscovics & Kieran, 1980;

MacGregor & Stacey, 1997; Watson, 1990). Furthermore, students have trouble

understanding that the same letter seen multiple times in a number sentence must

represent that same number (Kieran, 1985) or that different letters within a number

sentence can also represent the same number (Stephens, 2005; Swan, 2000). On a

similar note, students also often misunderstand the meaning of operational symbols

when paired with variables. For instance, since students are used to joining two

terms when they see the addition symbol (i.e., 2 +½¼ 2½), they will mistakenly

believe that 2 + x is the same as 2x (Booth, 1986).
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4.1.4 Fractions

While introduced before algebraic concepts, fraction misconceptions also greatly

influence students’ acquisition of algebra knowledge. The National Mathematics

Advisory Panel (2008) suggests that one of the most important types of knowledge

necessary for algebra learning is knowledge of rational numbers or fractions.

Fractions can be seen in algebra as coefficients/slope, constants, and solutions

(Wu, 2001). Brown and Quinn (2006) assessed Algebra I students’ fraction knowl-

edge and found that students have trouble writing a fraction to represent the shaped

part of a figure, simplifying fractions to lowest terms, adding and subtraction

fractions, and multiplying and dividing fractions. Specifically, students often

misused the cross multiplying algorithm when attending to multiply fractions,

failed to use the inverse operations to solve equations, and failed to even attempt

the problem.

4.1.5 Order of Operations

Another type of misconception affecting students of all ages deals with the order of

operations and use of brackets (Kieran, 1985; Pinchback, 1991). Many students do

not see the need to adhere to the order of operations rules and resort to solving the

expression from left to right (Gardella, 2009; Kieran, 1979). Furthermore, many

students fail to realize that brackets can be used to both groups together as well as

signal multiplication (i.e., (20� 7)¼ 13 and �(20� 7)¼�13; Linchevski, 1995).

4.1.6 Functions

Lastly, students often misinterpret the meaning of algebraic functions. For instance,

some students treat a graph as a picture of a given scenario (i.e., a graph comparing

speed and time) (Clement, 1989). Furthermore, both students and adults tend to

believe that a linear function must be proportional simply because it increases or

decreases at a constant rate (Pugalee, 2010; Van de Walle, Karp, & Bay-Williams,

2013); however this is only true when the function passes through the origin.

4.2 Why Should We Be Concerned About Misconceptions?

The previous section described a number of misconceptions students tend to have

when learning algebra. It is well established and documented that such misconcep-

tions exist. But why is having these misconceptions problematic? In this section, we

66 J.L. Booth et al.



describe a number of ways in which having misconceptions, or flawed conceptual

knowledge of algebra, might impact students’ performance and learning.

4.2.1 Relation to Procedural Skills

Having good procedural skills, or the ability to carry out procedures to solve

problems (Rittle-Johnson, Siegler, & Alibali, 2001), is arguably a critical compo-

nent of success in mathematics (Kilpatrick, Swafford, & Findell, 2001). It has been

well established that conceptual knowledge and procedural skill are related (Rittle-

Johnson & Siegler, 1998), and some researchers maintain that the two in fact fall on

a single continuum (Star, 2005). Though the two develop iteratively and one or the

other may come first depending on the particular content (Rittle-Johnson & Siegler,

1998), for many mathematics domains, it is necessary to have correct conceptual

knowledge in order to develop correct procedural skills.

Work in algebra has established that students with stronger conceptual knowl-

edge are better at solving equations and are able to learn new procedures more

easily than peers with flawed conceptual knowledge (e.g., Booth, Koedinger, &

Siegler, 2007; Sweller & Cooper, 1985). In particular, students who hold mis-

conceptions about the equal sign or negative signs solve fewer equations correctly

and have greater difficulty learning how to solve equations (Booth & Koedinger,

2008). Correction of these misconceptions can lead to improvements in equation-

solving skills (Booth & Koedinger, 2008).

4.2.2 Relation to Problem Encoding

The ability to correctly encode a problem, or perceptually process the important

features of the problem and create an internal representation that can be used later

(Chase & Simon, 1973), has been repeatedly shown to be important for problem-

solving success (Alibali, Phillips, & Fischer, 2009; Booth & Davenport, 2013;

Rittle-Johnson & Alibali, 1999; Siegler, 1976). Prior knowledge necessarily

impacts how a learner encodes a problem. For example, students are better at

encoding equations that are familiar and tend to misencode problem features in

unfamiliar equations as if they follow the structure of more familiar problems

(McNeil & Alibali, 2004).

Conceptual knowledge also impacts learners’ encoding of problems. Experts in a

domain encode problems more accurately than novices (Chase & Simon, 1973; Chi,

Feltovich, & Glaser, 1981), and algebra students with more correct conceptual

knowledge have been shown to have higher encoding accuracy (Booth &

Davenport, 2013). This is, perhaps, not surprising, as correct encoding requires

noticing the important features in a problem and conceptual knowledge helps

students determine what features are important (Crooks & Alibali, 2013;
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Prather, 2012; Rittle-Johnson & Alibali, 1999). In other words, when students have

flawed conceptual knowledge, they may not be able to correctly determine which

features to focus on and/or may not consider those features in a meaningful way

(Booth & Davenport, 2013).

4.2.3 Relation to Specific Problem-Solving Errors

4.2.3.1 Misconceptions and Related Errors

Algebraic misconceptions that students hold predict the types of errors students

make during problem-solving (Booth & Koedinger, 2008). Durkin and Rittle-

Johnson (2015) demonstrate that errors made with high confidence during

problem-solving are representative of strongly held misconceptions that are more

difficult to overcome with instruction. Oftentimes, these errors arise when students

are learning a new topic and attempt unsuccessfully to relate it to something they’ve
learned prior. Although this can sometimes be a useful strategy, when rules or

strategies are overgeneralized, this can lead to struggles as well (Stagylidou &

Vosniadou, 2004; Vamvakoussim & Vosniadou, 2004), making students particu-

larly resistant to conceptual change in mathematics (McNeil, 2014).

One common example of when students struggle to learn and apply altering rules

during problem-solving when moving to higher levels of mathematics is when they

transition from dealing with solely natural numbers to all rational numbers (Van

Dooren, Lehtinen, & Vershcaffel, 2015). A natural number bias can often lead

students to make errors when dealing with fractions and decimals. Another is when

students are asked to understand and use the equal sign as a symbol or equivalence

between two expressions in algebra rather than the more commonly used form of

seemingly signaling that the student should carry out an operation. This can often

lead students to making the error of performing the given operation on all given

numbers, regardless of where the numbers are located within the equation (McNeil

& Alibali, 2004).

Errors that persist are often an indication that a student holds an underdeveloped

understanding of a particular underlying concept (Cangelosi et al., 2013). Analyz-

ing errors that students make during problem-solving is one useful method for

learning more about the particular misconceptions that students hold (Clement,

1982; Corder, 1982; Liebenburg, 1997).

4.2.3.2 Persistence of Errors

Certain errors that students make in mathematics are quite persistent and lead to

troubles at different levels of mathematics. Most of the misconceptions addressed

within this chapter are expressed in algebra. It is vital to understand these mis-

conceptions as Algebra I is considered a gatekeeper course to higher-level STEM
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courses (Adelman, 2006). However, understanding of algebra is arguably built

upon early arithmetic knowledge (Bodin & Capponi, 1996), so it is important to

consider how misconceptions in earlier stages of mathematics can lead to errors

made later on in algebra. For example, Mazzocco and colleagues (Mazzocco,

Murphy, Brown, Rinne, & Herold, 2013) found that errors made in second and

third grade are predictive of not only specific types of errors made in eighth grade

but also speed during problem-solving. Specifically, students who made particular

errors in a symbolic number task in second or third grade were slower and made

more errors when completing addition and multiplication computations in eighth

grade.

Algebra I is most commonly taken in the eighth or ninth grade. However, some

errors made during secondary mathematics have been found to persist even into

postsecondary levels of mathematics. Negative sign errors have been found to be

quite common and quite persistent at varying levels of mathematics (Booth,

Barbieri, Eyer, & Paré-Blagoev, 2014; Seng, 2010). Being able to manipulate

integers is a subordinate skill in algebra and higher levels of mathematics. There-

fore, it is clear as to why misconceptions about the negative sign (as well as the

equal sign) have been found to interfere with students’ learning of how to solve

algebraic equations (Booth & Koedinger, 2008). This applies to students who may

stereotypically be considered advanced or students who manage to complete school

standards for Algebra I as well. Negative sign errors are common and interfere with

learning at varying levels of mathematics (Kieran, 2007). In a cross-sectional study,

Cangelosi and colleagues found that negative sign errors made in College Algebra

(e.g., incorrectly simplifying negative numbers with a rational exponent) persist

through Calculus II (Cangelosi et al., 2013).

4.2.3.3 Relation of Errors to Learning

Conceptual change is undoubtedly a slow and gradual process (McNeil & Alibali,

2005; Vamvakoussi & Vosniadou, 2010). While some misconceptions seem to

persist as demonstrated in the errors students make all the way through college,

other misconceptions change in prevalence and persistence based upon the content

to be learned (Booth et al., 2014). For example, Durkin and Rittle-Johnson (2015)

explored changes in misconceptions when judging the magnitude of decimals over

the course of a 1-month period of instruction.Whole number errors and role of zero
errors started off prevalent but declined over time. Whole number errors were

classified as those that indicate treating a decimal as if they are whole numbers and

believing more numbers to the right of the decimal means a larger number. The role

of zero errors were classified as those that indicate treating a decimal with a zero in

the tenths place as if the following digit is actually in the tenths place. These errors

were considered to be representations of a whole number bias (Ni & Zhou, 2005).

However, fraction errors, in which students try to relate the length of the decimal to

its magnitude, increased over time. Durkin and Rittle-Johnson suggest that this

change in prevalence of types of errors indicates change in conceptual thinking
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about number. However, how the prevalence and persistence of these errors

predicted later achievement was not addressed.

Booth and colleagues (Booth et al., 2014) conducted a similar analysis upon

errors over the course of an academic year and found that making certain types of

errors while learning particular content in algebra is indicative of detriment to

mathematics achievement. For example, students who made variable errors at the

beginning of the academic year while taking Algebra I on arguably what would be

simpler content demonstrated lower mathematics achievement scores at the end of

the academic year. Students who made more errors related to mathematical prop-

erties (i.e., inappropriately applying the distributive, commutative, or associative

properties) or who conducted the wrong operations during the beginning and

middle of the year also struggled on the end of year achievement test. Students

who made more errors involving equality and inequality at the middle and end of

year also demonstrated lower achievement. Lastly, negative sign and arithmetic

errors at the end of the year, when content was presumably most difficult, were

indicative of low mathematics achievement. Results from this study emphasize the

importance of considering how errors stemming from misconceptions align with

particular content. Understanding not only the prevalence and persistence of math-

ematical errors in relation to particular content but also what these errors indicate

about the misconceptions students hold and how these impact future learning are

vital first steps when considering designing appropriate interventions that address

student misconceptions.

4.3 How Can We Address Student Misconceptions?

A number of interventions exist which aim to improve students’ conceptual under-
standing in algebra, including those focused on reteaching fundamental concepts

and principles (Ma, 1999), having students compare multiple solution methods

(Rittle-Johnson & Star, 2007), or completely reforming mathematics curricula to

be contextualized in real-world problems (Hiebert et al., 1996) or conceptual

models (Xin, Wiles, & Lin, 2008). In this chapter, we describe one particular

method which has proved to be effective at both improving student’s conceptual
understanding and procedural skill in algebra. This approach stems from three

scientific principles on how people learn: self-explanation, worked examples, and

cognitive dissonance. Each of these three principles is described below, before we

explain how they have been combined and review findings on the effectiveness of

this combination.
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4.3.1 Self-Explanation

Self-explanation is defined as explaining information to oneself while reading or

studying (Chi, 2000). Early evidence revealed that better learners do this naturally

(Chi, Bassok, Lewis, Reimann, & Glaser, 1989), and follow-up studies examined

the effectiveness of prompting all students to explain. The self-explanation princi-

ple maintains that there are a number of benefits for learning when students are

asked to explain information to themselves while reading or studying (Chi, 2000).

Some of these benefits include improvement in the degree to which students

integrate new information with their prior knowledge, make the newly learned

knowledge explicit, and, subsequently, notice gaps in their knowledge and draw

inferences to fill those gaps (Chi, 2000; Roy & Chi, 2005).

4.3.2 Worked Examples

Traditional instruction, particularly in science, technology, engineering, and math-

ematics (STEM) domains, involves demonstrating the procedures for solving

problems (on the blackboard, on the smart board, in the textbook) and then having

students practice solving those types of problems on their own. However, a large

body of work from laboratory studies suggests that these worked examples should

not just occur at the beginning of the lesson—they should be interleaved within the

practice sessions as well (e.g., Cooper & Sweller, 1987; Sweller & Cooper, 1985;

Trafton & Reiser, 1993). The worked example principle maintains that replacing

some (or even half) of the practice problems with worked-out solutions for students

to study can increase learning of the procedures to solve problems, even though the

students have less practice solving those problems themselves (Sweller, 1999).

Benefits of focusing students’ limited cognitive capacities on understanding the

concepts and procedures necessary for problem-solving (rather than on attempting

to apply procedures by rote) include faster mastery of instructed procedures

(Clark & Mayer, 2003; Schwonke et al., 2009) and increased transfer of procedural

skills to solve more difficult problems (Catrambone, 1996, 1998; Cooper &

Sweller, 1987).

4.3.3 Cognitive Dissonance

The idea of cognitive dissonance stems from a theory purported by Festinger

(1957), which maintains that humans naturally seek consistency between their

beliefs and the reality observed in the world and that a clash between belief and

reality leads to an unpleasant feeling and a drive to resolve the discrepancy. In other

words, if one is presented with information that conflicts with their own beliefs,
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they will work to make sense of the differences so they can return to a harmonious

state. Creating such cognitive disequilibrium is thus proposed to be an effective

technique for producing change in thinking (e.g., Graesser, 2009).

One method of promoting cognitive dissonance is through the presentation of

errors for students to consider and study. Learning from errors is thought to be

effective because it prompts students to identify features of problems that make the

demonstrated procedure incorrect, which in turn can help students correct their own

misconceptions (Ohlsson, 1996). An additional benefit of studying and explaining

errors is that it may help learners acknowledge that the demonstrated procedure is

wrong and make it less likely they will utilize that procedure themselves when

solving problems (Siegler, 2002).

4.3.4 Combining Self-Explanation, Worked Examples,
and Learning from Errors

These principles, which have been well tested in laboratory settings, have been

combined into a single effective intervention: explaining correct and incorrect

worked examples during problem-solving practice. Essentially, for some of the

items in practice assignments, students are shown an example of a fictitious

learner’s problem solution—solved either correctly or incorrectly and clearly

marked as such—and asked to explain the example in response to one or

more prompts about particular features in the problems, about particular errors

made in solutions, or about how the fictitious learner might be thinking about the

problem.

Prior research had established that, compared to studying correct worked

examples, explaining correct examples increased students’ conceptual knowledge
(Hilbert, Renkl, Schworm, Kessler, & Reiss, 2008) and their ability to solve both

similar and more difficult problems (Renkl, Stark, Gruber, & Mandl, 1998).

Further research suggested that explaining correct and incorrect examples further
increased learning benefits for building correct conceptual understanding (Adams

et al., 2014; Booth et al., 2015; Booth, Lange, Koedinger, & Newton, 2013) and

decreasing student misconceptions (Durkin & Rittle-Johnson, 2012). Recently, in

a randomized controlled trial in real-world classrooms across an entire Algebra

1 curriculum, this combination led to robust improvements on conceptual and

procedural skills as well as skills specifically measured by standardized achieve-

ment tests (Booth et al., 2015); benefits for conceptual understanding were

even stronger for students who were struggling with the material (Booth,

Oyer, et al., 2015).
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4.4 Practical Implications of the Existence and Persistence
of Algebraic Misconceptions

By now, we can hopefully agree that algebraic misconceptions are a problem and

that traditional algebra instruction is not doing enough to remedy the problem. We

have offered one suggestion of how to change algebra instruction to better target

and fix student misconceptions and allow them to move forward productively with

learning more difficult algebraic content. This is certainly not the only option for

how to alter algebra instruction; any interventions geared toward improving con-

ceptual understanding (while still building procedural skill) may be good candi-

dates for instruction.

However, full remediation may require looking backward as well. Misconcep-

tions don’t typically develop out of the blue; they develop them because children

are trying to make sense of the world around them by using the information made

available (Vosniadou & Brewer, 1992). What information are we making available

in younger grades that lead to students developing algebraic misconceptions? One

line of work suggests that the way we teach earlier math can have a profound effect

on students’ understanding of algebraic concepts. For example, McNeil and Alibali

(2005) showed that elementary school students’ knowledge of arithmetic operation

patterns (e.g., operations¼ answer) hinders their ability to learn from a lesson on

solving equations; unfortunately, mathematics textbooks rarely present the equal

sign in a context that would encourage a relational understanding—most presenta-

tions are the standard operations¼ answer format (e.g., 6 + 2¼ 8) that hinders

learning (McNeil et al., 2006). Giving children more practice, solving problems

in this format also makes it less likely that they will build a correct concept of

mathematical equivalence (McNeil, 2008). One could imagine similar conse-

quences for early presentations and practice (or lack thereof) with negative signs

and variables.

How can we prevent such ingrained misconceptions from developing? One

possibility may be a combination of systemic changes to early mathematics instruc-

tion and materials and the approach described in this chapter. We must change the

way we introduce algebraic problem features and concepts in the first place. Recent

recommendations stress focusing on such concepts earlier in the mathematics

curriculum (e.g., CCSSI, 2010). We must always think about how we are presenting

information to young children and whether it will help them build a correct concept.

Second, teachers can have students explain correct and incorrect worked examples

in earlier grades to help them focus on building a correct conceptual foundation as

well as the necessary procedural skills. This may help prevent formation and

entrenchment of these misconceptions early on. By preventing and/or quickly

remediating misconceptions, we can help future generations have a smoother

transition to—and greater success in—learning algebra.
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Chapter 5

A Deep Understanding of Fractions Supports
Student Success in Algebra

Stacy Reeder

Abstract Algebra is frequently referred to as the “gateway” course for high school

mathematics in much the same way as calculus can “open” or “close” doors for

students interested in pursuing degrees in science, technology, engineering, and

mathematics (STEM) areas. This chapter presents the idea that students’ challenges
with algebra begin well before their first course in algebra and that these challenges

are embedded in a complex set of issues. Weak or incomplete mathematical

understanding of rational number concepts has a profound impact on students’
success in algebra and subsequently, courses that follow where students are

expected to confidently, competently, and efficiently address situations in which

“and the rest is just algebra” is invoked. Recognizing that developing students’ deep
understanding of rational number concepts requires years of nurturing and care by

capable, well-prepared teachers, both in terms of content and pedagogical knowl-

edge, and a discussion of issues related to teacher preparation and teacher shortages

and how these impact students’ preparedness for algebra and their success in

mathematics is presented.

Keywords Fractions • Algebra • Teacher education • Rational numbers •

Proportional reasoning • Teacher shortages
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embedded in a complex set of issues. Weak or incomplete mathematical under-

standing of rational number concepts has a profound impact on students’ success in
algebra and subsequently, courses that follow where students are expected to

confidently, competently, and efficiently address situations in which “and the
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rest is just algebra” is invoked. Recognizing that developing students’ deep

understanding of rational number concepts requires years of nurturing and care

by capable, well-prepared teachers, both in terms of content and pedagogical

knowledge, and a discussion of issues related to teacher preparation and teacher

shortages and how these impact students’ preparedness for algebra and their success
in mathematics is presented.

5.1 Introduction

Over the last two decades, numerous reports have been written that focus on the

need for improved mathematics and science teaching and learning in the United

States. The pressure for global competitiveness and ever-changing demands of the

workforce in the areas of science, technology, engineering, and mathematics

(STEM) have propelled the conversation forward with intensity regarding learn-

ing outcomes in the STEM areas. In light of increased attention on STEM learning

outcomes, the need for individuals prepared to enter the STEM fields, and, in

general, the “need for more powerful learning focused on the demands of life,

work, and citizenship in the twenty-first century” (Darling-Hammond, 2010),

more students are taking algebra courses. The link to increased educational and

economic opportunities has also been linked to the increase in the number of

students taking algebra courses (Gamoran & Hannigan, 2000; Moses & Cobb,

2001; Nord et al., 2011; Rampey, Dion, & Donahue, 2009). Further, over the past

several decades, and particularly since 2002 when the reauthorization of the

Elementary and Secondary Education Act (ESEA) of 1965 commonly known as

the “No Child Left Behind” Act attached passing exams based on algebra courses

to graduation, more states require the passing of an algebra course for all students

for graduation.

Algebra is frequently referred to as the “gateway” course for high school

mathematics in much the same way as calculus can “open” or “close” doors for

students interested in pursuing degrees in STEM areas. Stein, Kaufman, Sherman,

and Hillen (2011) state that “[h]istorically, algebra has served a gatekeeper to

advanced mathematics and science course taking and entry into high-paying,

technical careers. Increased recognition of this phenomenon has led to a growing

trend, . . . , for more students taking algebra in eighth grade” (p. 483). Their study

examines algebra enrollment trends using data from the Early Childhood Longi-

tudinal Study, Kindergarten class of 1988–99 (ECLS-K), the High School Tran-

script Study, National Assessment of Educational Progress (NAEP), NAEP Long-

Term Trends, and Trends in International Mathematics and Science Study

(TIMMS) and reveals a significant increase in algebra enrollment in eighth

grade over the past two decades. Analysis of these sources provides empirical

data that from the late 1980s to the early 1990s, enrollment in algebra for the

nation’s eighth graders had increased from 15 to 20% to around 30% in 2009.

Additionally, their study reveals consistent lower enrolment in “eighth and ninth
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grade algebra among minorities and low-income students” (p. 460). This finding,

along with an examination of policies related to who takes algebra and when

students take algebra, called into question the preparedness of the students taking

algebra. If the policies in place are universal, then it is likely many students taking

algebra may not be prepared for the rigor and abstraction required for algebra.

However, if the policies related to who takes algebra and when they take algebra

allow for selection, evidence suggests that some prepared students from tradi-

tionally marginalized groups may be excluded from taking algebra prior to high

school.

5.2 The Challenges of Algebra Preparedness

Research from various fields including mathematics education, mathematics

teacher education, and mathematics reveals there is a confluence of issues that

impact students’ preparedness for algebra (e.g., Ball, 1993; Booth & Newton,

2012; Booth & Siegler, 2006, 2008; Harvey, 2012; Lamon, 2012; Ma, 1999;

Newton, 2008; NMAP, 2008; Wu, 2001). Students’ mathematical background

and abilities, misconceptions and limitations related to their mathematical under-

standing, student self-confidence related to mathematics, policies related to the

mathematics required in school prior to the taking of algebra, and teacher prep-

aration for teaching mathematics at the elementary and middle school levels are

among the chief contributors to this problem. In keeping with the title of this

volume, “and the rest is just algebra,” this chapter will present the argument that

students’ challenges with algebra begin well before their first course in algebra

and that these challenges are embedded in a complex set of issues. While

recognizing the complexity of this problem, this chapter will specifically explore

the impact of weak or incomplete mathematical understanding of rational number

concepts on students’ success in algebra and subsequently, courses that follow.

Also, included will be a discussion of issues related to teacher preparation and

teacher shortages and how these impact students’ preparedness for algebra and

their success in mathematics.

5.3 Fraction Understanding Supports Algebra

The National Mathematics Advisory Panel (NMAP, 2008) suggests that a central

goal of student’s mathematical development is the conceptual understanding of

fractions and procedural fluency with rational numbers and further implies that

these competencies provide the critical foundation for algebra learning. Research

corroborates the suggestions made by NMAP regarding the impact of weak or

limited mathematical understanding at the elementary and middle school level and

the significant impact it has on the future mathematical success of students and their
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educational possibilities (e.g., Booth & Newton, 2012; Wu, 2001). Brown and

Quinn (2007) state that “vague fraction concepts and misunderstood fraction

algorithms will ultimately be generalised into vague algebraic concepts and pro-

cedures. The lack of precise definitions and reliance upon shortcuts that are

thoughtlessly given to students are likely to hinder performance in algebra” (p. 29).

Research has shown that much of the basis for algebraic understanding and

algebraic thinking is contingent on a clear understanding of rational number

concepts (Driscoll, 1982; Kieren, 1980; Lamon, 1999; Wu, 2001) and the ability

to manipulate common fractions. For example, Booth and Newton (2012) found

that “knowledge of fraction magnitudes—more so than whole number magnitude

. . . is related to students’ skill in early algebra” (p. 251). Beyond simply using

fractions and their related operations with fractions to solve algebraic problems

involving fractions, students depend on their understanding of rates and ratios,

often represented as fractions, to make sense of the key concepts of rate and

variability in algebra. Wu (2001) claims that since operations with fractions can

be generalized, fractions provide an opportunity to introduce students to the use of

variables. Further, fractions are found throughout algebra. From coefficients to

the slope of linear equations, from constants to solutions, from linear equations to

completing the square, from solving systems of linear equations to solving

rational equations, and from simple probabilities to the binomial theorem, algebra

is brimming with examples that are directly and indirectly related to fractions. Wu

(2001) suggests that “[w]ith proper infusion of precise definitions, clear explana-

tions, and symbolic computations, the teaching of fractions can eventually hope to

contribute to mathematics learning in general and the learning of algebra in

particular” (p. 17).

Unfortunately, rational number concepts and fractions are challenging for many

students, and students’ understanding of rational numbers, or fractions, and mis-

conceptions students might develop about fractions have a profound impact on their

ability to learn algebra. According to Lamon (2012):

Understanding fractions marks only the beginning of the journey toward rational number

understanding. By the end of the middle school years, as a result of maturation, experience,

and fraction instruction, it is assumed that students are capable of a formal thought process

called proportional reasoning. This form of reasoning opens the door to high-school

mathematics and science, and eventually, to careers in the mathematical sciences. The

losses that occur because of the gaps in conceptual understanding about fractions, ratios,

and related topics are incalculable. The consequences of doing, rather than understanding,

directly or indirectly affect a person’s attitudes towards mathematics, enjoyment and

motivation in learning, course selection in mathematics and science, achievement, career

flexibility, and even the ability to fully appreciate some of the simplest phenomena in

everyday life (p. xi).

Algebra is replete with fractions and understanding many of the concepts found

within algebra is dependent on student understanding of the multiple interpretations

of fractions.
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5.4 Deep Understanding of Fractions

Helping students develop a deep understanding and rich number sense about

fractions and rational numbers including conceptual understanding and procedural

fluency is not an easy task. It requires deep content knowledge specific to rational

numbers on behalf of the teachers and requires several years to develop in students.

Kieren (1988) reported that students in the United States rely heavily on rote

memory of rules to solve fraction problems. The 2004 National Assessment of

Educational Progress (NAEP), often referred to as the Nations Report Card,

reported that 50% of eighth grade students could not order three fractions from

least to greatest and that fewer than 30% of 17-year-olds correctly translated 0.029

as 29/1000 (Kloosterman, 2010). Further, Rittle-Johnson, Siegler, and Alibali

(2001) conducted one-on-one controlled experiments and found that when asked

which of two decimals 0.274 and 0.83 is greater, most fifth and sixth graders choose

0.274. Siegler et al. (2010) suggest that the lack of student conceptual understand-

ing includes students not viewing fractions as numbers, viewing fractions as

meaningless symbols that need to be manipulated in a variety of ways to produce

answers that satisfy a teacher, focusing on numerators and denominators as separate

numbers rather than thinking of the fraction as a single number, and confusing

properties of fractions with those of whole numbers. They go on to state that “A

high percentage of U.S. students lack conceptual understanding of fractions, even

after studying fractions for several years; this, in turn, limits students’ ability to

solve problems with fractions and to learn and apply computational procedures

involving fractions” (pp. 6–7).

The challenges are significant in the United States with regard to fraction and

rational number teaching and student understanding. In light of these and other

concerning findings, understanding this challenge and working to improve student

learning related to fractions and rational numbers have been a focus of the math-

ematics education community for several decades. In the late 1980s, the publication

of the National Council of Teachers of Mathematics (NCTM) Curriculum and

Evaluation Standards (1989) and several other NCTM publications in the decade

that followed helped drive the charge for change in fraction instruction. Since that

time, there have been continual calls for fraction instruction to move from a

procedural focus to one aimed at developing deep conceptual understanding

(Lamon, 2012; Van de Walle, 2007). Understanding fractions concepts with

depth is a complex endeavor and requires that teachers understand the work on

fraction meanings and constructs. Kieren’s work in the 1970s revealed the com-

plexity of fraction understanding suggesting that the concept of fractions consists of

several sub-constructs or meanings (1976).

In his work, Kieren suggested that one must understand each sub-construct

independently and jointly in order to have a general understanding of fractions.

Initially, Kieren identified four meanings for fractions: measure, ratio, quotient, and

operator. Originally, the notion of the part-whole relationship served as a basis for

the development of the other sub-constructs and as such was not included in the list
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as a separate construct. Kieren’s ideas were later expanded by Behr, Lesh, Post, and
Silver (1983) who recommended that the part-whole relationship as seen by Kieren

to be embedded in the four other meanings be considered a distinct sub-construct of

fractions (see Fig. 5.1). Their work connected the part-whole meaning of fractions

with the notion of portioning and establishing it as a distinct sub-construct of

fractions. Behr et al.’s (1983) work revealed that the process of partitioning and

the part-whole sub-construct of rational numbers are fundamental for developing a

deep understanding of the four other constructs of fractions. Since that time, others

(Lamon, 1999, 2012; Mack, 2001; Simon, 1993; Tobias, 2012) have suggested that

conceptualizing the whole is important for understanding many significant mathe-

matical concepts including contextualizing situations, understanding procedures,

and interpreting solutions.

The notion of part-whole as a construct for fractions and rational numbers

occupies a significant place in curricular materials for elementary children through-

out the world. This is based on the assumption that conceptualizing the whole and

understanding part-whole relationships is fundamental to many important mathe-

matical concepts including the four constructs of fractions identified by Kieren

(1976) and that operations with fractions are connected to the part-whole relation-

ship (Behr et al., 1983). Lamon (2012) discusses the idea that more emphasis should

not be placed on one sub-construct, or interpretation, of fractions and that rather,

teachers should understand that no single interpretation is a panacea. Cramer and

Whitney (2010), however, suggested that the part-whole sub-construct is a good

place for children to begin to develop an understanding of fractions.

Interpretations of 4
5

Meaning

Part-Whole Comparisons with
Unitizing

“4 parts out of 5 equal parts”

4

5
means four parts out of five equal parts of the unit, with 

equivalent fractions found by thinking of the parts in terms of 
larger or smaller chunks.

Measure

“4 (
1

5
– units )”

4

5
means a distance of 4 (

1

5
– units ) from 0 on the number line or 4 

(
1

5
– units ) of a given area.

Operator 

“
4

5
of something”

4

5
gives a rule that tells how to operate on a unit (or on the result of 

a previous operation); multiply 4 and divide your result by 5 or 
divide by 5 and multiply the result by 4.  This results in multiple 

meanings for 
4

5
;  4 (

1

5
– units ), 1 (

4

5
– units ), and 

1

5
( 4 – units ).

Quotient

“4 divided by 5”

4

5
is the amount each person receives when 5 people share a 4 – unit 

of something.

Ratios

“4 to 5”

4:5 is a relationship in which there are 4 A’s compared, in a 
multiplicative rather than an additive sense, to 5 B’s.

Fig. 5.1 Fraction interpretations and meanings (adapted from Lamon, 2012)
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Many researchers agree but also believe that while the part-whole meaning of

fractions is the most commonly relied upon interpretation in curricular materials,

placing more emphasis on other interpretations would help students gain a better

understanding of fractions (e.g., Clarke, Roche, & Mitchell, 2008; Siebert &

Gaskin, 2006). This suggests that an emphasis on the part-whole construct or

interpretation of fractions, while perhaps serving as a basis for understanding

fractions, is not sufficient by itself for deep understanding and flexibility with

fractions. Lamon (2007) believes that we have a tremendous problem related to

fraction teaching and learning due to the fact that most teachers only understand and

teach fractions from a part-whole understanding. The findings of a study conducted

by Reeder and Utley (under review) focused on prospective elementary teachers

corroborates this claim. The prospective elementary teachers in their study relied

almost exclusively on part-whole understanding of fractions as part of a whole to

answer basic questions about fractions, and when asked how they would explain the

concept of fractions to their students, the majority of the participants provided a

part-whole explanation.

5.5 The Importance of Proportional Reasoning for Algebra

While there are functional differences between each of the five sub-constructs of

fractions, they are interrelated. In addition, it is believed that, fractions should be

taught in such a way that students develop a holistic understanding of fractions that

includes the multiple perspectives of each of the sub-constructs. In this way,

students may be able to work more flexibly within varied contexts, with more

representations, and develop the higher-order thinking needed for proportional

reasoning (Lesh, Post, & Behr, 1988). However, the sub-construct of ratio and

rates is most related to proportional reasoning which makes it of paramount

importance for student success in algebra. Proportional reasoning has been referred

to as the cornerstone of higher levels of mathematics success (Kilpatrick, Swafford,

& Findell, 2001; Lamon, 1999; Lesh et al., 1988). Wright (2005) states that

proportional reasoning involves “making multiplicative comparisons between

quantities” (p. 363), and Lesh et al. (1988) add that it is “the ability to mentally

store and process several pieces of information” (p. 93). According to Lamon

(1999), “proportional reasoning is one of the best indicators that a student has

attained understanding of rational numbers” (p. 3).

The ability to reason proportionally involves a student’s ability to understand

variation and covariation and make multiple comparisons. It involves students’
abilities to differentiate between relative and absolute meanings of “more” and

determine which of these is a proportional relationship, compare ratios without

using common denominator algorithms, differentiate between additive and multi-

plicative processes and their effects on scale and proportionality, and interpret

graphs that represent proportional relationships or direct and indirect variation.

These abilities are directly related to the kind of thinking and reasoning needed for
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algebraic reasoning and developing an understanding of functions. For example,

Lobato and Thanheiser (2002) discuss the need for students to understand slope “as

a ratio that measures some attribute in a situation” (p. 174). They go on to argue that

helping students understand “the modeling and proportional reasoning aspects of

ratio-as-measure tasks, can in turn help students develop an understanding of slope

that is more general and applicable” (p. 174) and important for success in algebra.

5.6 Challenges Regarding Preparation of Teachers
of Mathematics

Research in mathematics education has also well documented the challenges of

teaching rational number concepts and the impact of teachers’ limited content

knowledge on their students’ learning (e.g., Ball, 1993; Harvey, 2012; Lamon,

2012; Ma, 1999; Newton, 2008). The Conference Board of the Mathematical

Sciences (CBMS, 2012) states that “a critical pillar of a strong PreK–12 education

is a well-qualified teacher in every classroom” (p. 14). Unfortunately, that is not

always the case with regard to teachers of mathematics at all grade levels. The paths

to teacher certification in the United States are varied allowing for significant

difference in what and how much mathematics is required for credentialing.

Many states, due to a decade’s long shortage of mathematics teachers, allow

individuals prepared to teach elementary, many of whom have had little college

level mathematics, to simply pass an exam to receive credentials to teach middle

level mathematics—in some cases up through Algebra II. Sadly, with these extreme

teacher shortages across the nation, some states are allowing significant numbers of

individuals into mathematics classrooms with little or no background in

mathematics.

In the case of teachers who have completed a teacher preparation program, the

challenges and limitations related to their content knowledge for teaching have

been a focus of the mathematics education community for decades and have been

well documented in the mathematics education literature (Ball, 1993; CBMS, 2001,

2012; Ma, 1999; Shulman, 1986). For education practice, policy, and research,

teachers’ mathematical content knowledge continues to be a major focus (CBMS,

2012; Greenberg & Walsh, 2008; National Mathematics Advisory Panel, 2008).

Despite this ongoing focus, a great number of teachers, particularly those teaching

in elementary, intermediate, and middle level mathematics, continue to be under-

prepared and uncomfortable with the mathematics content they are expected to

teach (Greenberg & Walsh, 2008). This is often due to a variety of factors

including, but not limited to, their own experiences with mathematics, their beliefs

and ideas about mathematics teaching and learning, and their preparation as

teachers related to mathematics content knowledge and pedagogical knowledge

for teaching mathematics (Reeder, Utley, & Cassel, 2009; Utley & Reeder, 2012).
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Prior to their teacher preparation coursework, most prospective teachers have

spent many years learning mathematics from teachers whose pedagogical practices

primarily reflect a traditional orientation focused on procedural understanding

rather than a balanced approach that attends to both conceptual understanding

and procedural fluency (National Research Council, 2001). When they arrive in

their undergraduate degree, they are typically engaged with mathematics similar to

their prior experiences through lecture style teaching methods and a show-and-

repeat procedures approach. Further, many teacher preparation programs require

prospective teachers to take mathematics coursework that is disconnected from the

mathematics they will teach. Prospective mathematics teachers are required in

many states to take a course in College Algebra which may extend their own

mathematical understanding but does not do much to deepen their understanding

of rational numbers, for example. This certainly shapes teachers’ attitudes about
mathematics and their ideas about what constitutes mathematics teaching and

learning (Reeder et al., 2009). Likewise, most secondary mathematics education

programs preparing teachers to teach grades 6–12 mathematics require, if not a

degree in applied mathematics, the coursework equivalent. Prospective secondary

mathematics teachers are typically required to take coursework well beyond what

many consider as necessary the strong content knowledge needed for teaching but

very well may not understand rational number concepts with depth. The CBMS

recommends more mathematics coursework specifically developed to meet the

needs of teachers and improve content knowledge specifically needed for

teaching (2012).

Specific to this chapter, existing research demonstrates that prospective and

in-service teachers’ knowledge of fractions is limited (Ball, 1990; Becker & Lin,

2005; Chinnappan & Forrester, 2014; Cramer, Post, & del Mas, 2002; Harvey,

2012; Ma, 1999; Newton, 2008; Zhou, Peverly, & Xin, 2006). Additionally,

research has documented that teaching and learning fraction concepts are a difficult

and complex undertaking (Ball, 1993; Harvey, 2012; Lamon, 2012; Ma, 1999;

Newton, 2008). Newstead and Murray (1998) purport that fractions are among the

most complex mathematical concepts that elementary students encounter, and

Charalambous and Pitta-Pantazi (2005) and Harvey (2012) assert that the teaching

and learning of fractions have traditionally been problematic. Lamon (2007)

believes that most teachers are not prepared to teach content other than the part-

whole construct of fractions which leaves their students with an incomplete and

shallow understanding of fractions and rational numbers.

5.7 The Growing Problem of Teacher Shortages

The United States is in the midst of a teacher shortage crisis. For decades there has

been a chronic shortage in particular teaching content areas such as mathematics,

science, special education, and bilingual education, but the current situation is

widespread and involves almost every state in the nation. From California to
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Oklahoma to New York, school districts are scrambling to hire teachers, and

unfortunately, in many cases this is regardless of their credentialing. In October

2015, US World and News Report reported that school districts in the state of

California were still trying to fill 21,500 vacant teaching positions. In this same

report, Partelow stated that “while it may be too early to tell whether this year’s
reported shortages are a blip or part of a long-term systemic trend, we do know that

fewer college students are enrolling in teacher training programs and surges of

teachers are retiring” (2015, para. 4). If this trend continues, it will not only lead to

greater numbers of unfilled teaching positions in the future but will also lead to

classrooms likely filled with teachers who are not as well prepared as needed.

When the school year begins each fall and there are not enough teachers to fill

the classrooms in each building, students do not sit in empty rooms. Rather, school

districts begin filling classrooms, in some cases, with anyone they can find regard-

less of the person’s credentials. This results in credentialed teachers teaching

outside of their content area, long-term substitutes filling teaching positions,

preservice teachers beginning teaching before they are fully prepared, and allow-

ances for individuals to be “emergency certified” often without any teacher prep-

aration. California, for example, has been particularly hard-hit following the loss of

more than 80,000 teaching jobs between 2008 and 2012 (Rich, 2015). Now, with a

recovering economy, there is a need for more teachers and they simply are not

enough. Rich (2015) reported that “[b]efore taking over a classroom solo in

California, a candidate typically must complete a post-baccalaureate credentialing

program, including stints as a supervised student teacher. But in 2013–2014, the last

year for which figures are available, nearly a quarter of all new teaching credentials

issued in California were for internships that allowed candidates to work full time

as teachers while simultaneously enrolling in training courses at night or on

weekends” (para. 13). Additionally, from 2012 to 2013, the number of emergency

permits issued in California to allow individuals who have no teaching credentials

to fill teaching positions jumped by more than 36%. This increase has been

unfortunately paralleled in other states in the past few years. Partelow (2015),

citing Oklahoma as an example, stated that “[u]nfortunately some states have

instead responded [to the teacher shortage] by lowering the (arguably too low

already) bar for entry into the profession. Oklahoma approved over 800 emergency

certificates in July and August allowing non-credentialed teachers to teach in

classrooms of their own” (para. 7). In October of the fall 2015 semester, over

1000 teacher vacancies remained unfilled in Oklahoma.

The teacher shortage will undoubtedly have an impact on students’ mathemat-

ical preparedness. More classrooms will be filled with teachers who do not have the

specialized content knowledge needed for teaching mathematics or the pedagogical

content knowledge to teach mathematics effectively. Without deep content knowl-

edge or sophisticated and well-developed pedagogical practices, teachers typically

resort to teaching via rote methods and memorization—methods that do not account

for a holistic approach to teaching fractions and rational number concepts with the

five sub-constructs in mind.
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5.8 Discussion

In a recent report published by the National Academy of Sciences, the author stated

that the phrase “STEM education is shorthand for an enterprise that is as compli-

cated as it is important” (Beatty, 2011, p. 1). She goes onto to say that:

what students learn about the science disciplines, technology, engineering, and mathemat-

ics during their K-12 schooling shapes their intellectual development, opportunities for

future study and work, and choices of career, as well as their capacity to make informed

decisions about political and civic issues and about their own lives. A wide array of public

and personal issues—from global warming to medical treatment to social networking to

home mortgages—involve science, technology, engineering, and mathematics (STEM).

Indeed, the solutions to some of the most daunting problems facing the national will require

not only the expertise of top STEM professionals but also the wisdom and understanding of

its citizens. (Beatty, 2011, p. 1)

Clearly, helping students succeed in STEM fields and to live and succeed in a

global economy is important, and simply engaging students in the mastery of basic

skills is not sufficient to meet this goal.

In his popular book, The Checklist Manifesto, Atul Gawande (2010) addresses

the idea that despite our modern world and tremendous advances in health care,

government, the law, and financial industry, challenges still plague us. He examines

the nature of problems we frequently face and elaborates on the nature and

complexity of said problems. Referencing the work of Glouberman and

Zimmerman (2002), Gawande presents three different kinds of problems in the

world: the simple, the complicated, and the complex. Simple problems, he notes,

“are ones like baking a cake from a mix. There is a recipe and a few basic

techniques to follow but once these are mastered, following the recipe brings a

high likelihood of success” (p. 49). Complicated problems on the other hand, are

ones like sending a rocket to the moon. “They can sometimes be broken down into a

series of simple problems but there is no straightforward recipe. Success frequently

requires multiple people, often multiple teams, and specialized expertise”

(Gawande, 2010, p. 49), but once you learn to send a rocket to the moon, you can

repeat the process with other rockets and perfect it—one rocket is typically like

another rocket. “Complex problems, however, are like raising a child. Although

raising one child may provide experience, it does not guarantee success with the

next child” (Gawande, 2010, p. 49). Expertise is valuable but likely not sufficient

because unlike rockets, every child is unique. Each child may require an entirely

different approach from the previous one. Another feature of complex problems is

that their outcomes remain highly uncertain. “Yet we all know that it is possible to

raise a child well. It’s complex, that’s all” (Gawande, 2010, p. 49). Likewise,

helping students be prepared for algebra is a complex endeavor.

Preparing students well for algebra involves many years of working with them to

develop a deep understanding of fractions and proportional reasoning and ensuring

that our teachers not only understand but are able to teach rational number concepts

holistically. The challenge is multifaceted involving policy and practice, beliefs

about mathematics teaching and learning, beliefs about what is mathematics and
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what it means to know mathematics deeply, teacher preparation, and ensuring every

classroom of students has a well-qualified teacher. The complex challenge of

helping students be prepared for algebra and the important mathematics beyond

algebra involve many years of work and development. Equally important is the

specialized content and the pedagogical knowledge of many skillful teachers who

teach mathematics.

Darling-Hammond (2010) states that we can meet the challenges of our current

education system by developing a new paradigm for national and state education

policy that is guided “by twin commitments to support meaningful learning on the

part of students, teachers, and schools and to equalize access to educational oppor-
tunity, making it possible for all students to profit from more productive schools”

(p. 278). If, as an education community, we believe in the importance of preparing

students to live happily and succeed in a global economy, then we need to insist that

the mastery of basic skills that the emphasis on accountability has brought is not

sufficient. Cortese and Ravitch (2008) noted that “[W]hat we need is an education

system that focuses on deep knowledge, that values creativity and originality, and

that values thinking skills” (p. 4). As an education community, we can advocate for

policies and practices that support the teaching of deep knowledge and support

teachers in helping students learn meaningfully. These challenges can be met and

when they are, we can be confident that students in calculus courses and beyond will

respond competently and efficiently when addressing “and the rest is just algebra.”
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Part III

Positive Approaches to the
Teaching of Algebra



Chapter 6

Overcoming the Algebra Barrier: Being
Particular About the General, and Generally
Looking Beyond the Particular, in Homage
to Mary Boole

John Mason

Algebra consists in preserving a constant, reverent, and
conscientious awareness of our own ignorance [p. 56]
Teaching involves preventing mechanicalness from reaching
a degree fatal to progress [p. 15]
The use of algebra is to free people from bondage [p. 56]
[all quotes are from Mary Boole, extracted in Tahta, 1972]

Abstract Consistent with a phenomenographic approach valuing lived experience

as the basis for future actions, a collection of pedagogic strategies for introducing

and developing algebraic thinking are exemplified and described. They are drawn

from experience over many years working with students of all ages, teachers and

other colleagues, and reading algebra texts from the fifteenth century to the present.

Attention in this chapter is mainly focused on invoking learners’ powers to express
generality, to instantiate generalities in particular cases, and to treat all generalities

as conjectures which need to be justified. Learning to manipulate algebra is actually

straightforward once you have begun to appreciate where algebraic expressions

come from.
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6.1 Introduction

That algebra is a watershed for most learners is common experience, and it has been

the case ever since algebra emerged. It has long been my claim that school algebra

is fundamentally the expression of generality in a succinct form so that it can be

manipulated (Mason, Graham, Pimm, & Gowar, 1985). The fact that almost all

books on algebra (or arithmetic with algebra) since the fifteenth century have

introduced algebra as the manipulation of letters as if they were numbers suggests
that recognition of algebra as expression of generality seems so obvious as not to

require mentioning, while what teachers want students to achieve is facility in

manipulating algebraic expressions. Consequently the usual focus is on how to

manipulate algebraic expressions. Or it could be that the constant pressure to get

learners to perform, to carry out procedures, has blinded curriculum designers to the

essence of algebra.

It seems to have been Isaac Newton (1683) who diverted attention from the

expression of generality to the nuts and bolts of algebraic manipulation, namely the

solving of equations, though some of his contemporaries questioned whether

expressing generality was as straightforward and simple as he claimed (Ward,

1706). Pushing learners immediately into solving equations (first linear, then

quadratic then perhaps factored or factorable polynomials and perhaps then into

iterative methods for approximate solutions) is a reflection of the technician’s
approach, the result of a particular transposition didactique (Chevallard, 1985):

on discovering a formula or a method, students are then faced with that method,

usually without the insight that led to it. But why would learners want to internalise

a collection of procedures involving entities that have no meaning for them? My

claim has always been that unless learners appreciate where equations come from,

unless they comprehend the origins of equations and inequalities in the expression

of generality, algebraic expressions and algebra itself will remain a mystery, and a

watershed.

That algebra as the manipulation of letters is mysterious has been attested to by

generations of learners concerning their experience at school. Many claim that they

could do what was asked, but had no idea what it was about or why they were doing

it. Recent generations have become less willing to undertake what seems to them

meaningless, resulting in algebra continuing to be one of the major watersheds of

school mathematics.

Yet there is abundant evidence that young children can cope with abstraction,

even with symbols for the as-yet-unspecified. Weakness in algebraic manipulation

comes, I claim, not from insufficient practice, but from teachers concentrating on

manipulation rather than invoking and evoking learners’ natural powers to special-

ise and to generalise, to see the general through the particular and to see the

particular in the general (Mason & Pimm, 1984).
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6.2 Methods

I am interested in what is possible, happy that others are concerned to study what is

the case currently in their situation. Furthermore, I am interested in lived experi-

ence, and as such I am committed to taking a phenomenological stance. Thus in this

chapter the reader will find numerous mathematical tasks through and by means of

which it is possible to get a taste of the more general claims that I am making. I am

convinced that this is the best way to work with learners and colleagues: to offer

experiences which can form the basis for noticing what might previously have

passed by unnoticed, thereby sensitising oneself to notice opportunities to support

and promote others becoming aware of something similar for themselves. This has

been the basis for Open University courses for teachers since 1982 (Mason,

Graham, Pimm, & Gowar 1985; Open University, 1982), and a foundation for

research as elaborated in Researching Your Own Practice: the discipline of noticing
(Mason, 2002a).

I offer no programme, no recommended or researchable sequence of tasks that

will prove to be most effective. Rather my approach is to work on developing

sensitivities to possibilities so that potential actions come to mind in the moment

(actually, come to action but are consciously considered before being enacted)

when they are needed. Thus the teacher can be attending to what learners are saying

and doing, rather than to a prepared sequence of tasks. This is in line with the notion

of teaching by listening (Davis, 1996).

6.3 Being Particular About the General

The suggestion in this section is that being particular about invoking and evoking

generality, placing the expression of generality at the heart of the curriculum (and

not simply in mathematics) would benefit many learners who for some reason or

other, seem to leave their natural powers at the classroom door. There is extensive

research backing up this proposition stretching over many years. See, for example,

Giménez, Lins, and Gómez (1996), Bednarz, Kieran, and Lee (1996), Chick,

Stacey, Vincent, and Vincent (2001), Mason and Sutherland (2002), Kaput,

Carraher, and Blanton (2008) and Cai and Knuth (2011).

6.3.1 Beginning in the Earliest Years

Mary Boole finds the origins of algebra in young children’s experience such as that
a metal teapot can be hot or cold: some of its attributes can vary (Tahta, 1972,

pp. 57–58). Notice that there is an inherent use of what has come to be called

variation theorywhich suggests that what is available to be learned is what has been

6 Overcoming the Algebra Barrier: Being Particular About the General. . . 99



experienced as varying in close proximity of time and space (Marton, 2015; Marton

& Booth, 1997). Even earlier in a child’s life, in order to recognise mother in her

various guises, with different smells and appearances, it is necessary to generalise,

to recognise that some attributes can change while others remain invariant. This

applies in the affective-emotional domain just as it does in the physical-enactive

domain, and in the cognitive-intellectual domain. Indeed, as Caleb Gattegno (1988)

claimed, the foetus in the womb already shows signs of generalising, responding to

different stimuli in particular ways.

To learn to read people’s expressions, to learn to grab and put things in your

mouth, to crawl, to stand, to walk and to talk all require extensive and wide-ranging

use of natural powers to specialise and generalise. It has often been said that, given

our success in teaching children to read and write, it is a good thing we don’t have to
teach children to talk as well. Put another way, having used and developed their

natural powers so well before they reach school, how might we call upon those

same powers to develop further, so that reading and writing, counting and arith-

metic, algebra and conceptual thinking are just as natural? Terezinha Nunes and

Peter Bryant (1996) (see also Nunes, Bryant, & Watson, 2008) show clearly how

making use of what children bring to school in the way of experience and

internalised actions can make a substantial difference to the children’s experience
and success in school.

Western approaches have been strongly influenced by the staircase metaphor for

learning, in which learners gradually ascend a staircase of ‘levels’ from the simple

to the complex, from the particular to the more general, from the specific to the

abstract. This permeates both curriculum and pedagogy. Jerome Bruner (1966)

distinguished three modes of (re)presentation (enactive, iconic and symbolic).

Considered by researchers, curriculum designers, mathematics educators, and

teachers as a sequence rather than as three worlds of experience between which

we move as we add layers of appreciation, comprehension and hence understand-

ing, learners have often been enculturated into a sequence of always building from

the simple to the complex, the particular towards the general, the concrete towards

the abstract. Because this is how we teach, many learners balk at some stage and so

do not experience the general, the abstract, the overview. They remain locked into

the specifics of procedures without appreciation of what is possible, without

comprehension of what can be achieved, and without understanding of what their

actions are all about. Mary Boole warned against this, but generations of learners

are still having the experience of ‘hopeless non-comprehension’, or even of ‘self-
protecting and contemptuous non-attention’ (Tahta, 1972, p. 51). She

recommended ‘build[ing] up good habits on a basis within which falls the centre

of gravity of the individual with whom you are dealing with’ (Tahta, 1972, p. 17).
A contrasting approach has been promoted by Vasily Davydov (1990) and taken

up by Jean Schmittau (2004) and Barbara Dougherty (2008), among others, who

have shown that young children are perfectly capable of working from abstractions

and generality to instantiation in particular situations.

An intermediate stance is both possible and desirable: sometimes starting from

particulars, sometimes from a slight or moderate generality and sometimes from an
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extremely general statement. Learners are then encouraged, whenever they are

stuck, to specialise to examples with which they are more confident, and then to

re-generalise as they begin to make sense of underlying structure. The purpose of

specialising is not to fill a notebook with examples, but rather to detect and try to

express underlying structural relationships.

This process was summarised as a pedagogic strategy and

as a learning strategy in Open University (1982); see also

Mason, 2002b or Mason & Johnston-Wilder, 2004) as a

continuing spiral of Manipulating – Getting a sense of—
Articulating—Manipulating—Getting a sense of – Artic-
ulating—. . . . This means turning to confidence-inspiring

entities, manipulating them in order to locate structural

relationships, getting a sense of what is going on, and

trying to articulate this, eventually reaching a succinct

articulation which can form the basis of confidently

manipulable objects in the future. When things get sticky,

or thinking breaks down, it is sensible to move down the

spiral to reach some confidently manipulable examples

from which to re-ascend. This is basically what Hilbert is

reported to have used as his ‘method’ (Courant, 1981)

Since encounters with number, from the earliest moments, effectively draws on

or makes use of the powers that enable abstraction and generality, working on

getting learners to express generality in words, frequently, whenever appropriate,

makes an important contribution to the developing of mathematical thinking.

Indeed, you cannot appreciate and comprehend arithmetic without encountering

the general (Hewitt, 1998).

6.3.2 Routes into Symbols

This section describes a collection of pedagogic strategies and didactic tactics

which have been used to ease learners into the use of letters to denote the as-yet-

unknown or the general. A plausible conjecture is that it is the sudden introduction

of ‘letters in place of numbers’ which, for learners unused to denoting the as-yet-

unknown or the as-yet-unspecified, triggers refusal to cooperate in algebra, or, for

many who appear to cooperate, brings down the portcullis on pursuing mathematics

because of the meaninglessness of symbol manipulation.

6.3.2.1 Watch What You Do and Say What You See

When seeking how to locate and/or extend a repeating geometrical pattern, or a

numeric pattern with some growth structure, it is often useful to ‘do an example’,
preferably a non-trivial example, or even to ‘do’ several examples. This has been
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the practice since recorded time! While drawing or calculating, it can be useful to

pay attention to what your body wants to do (I use the slogan Watch What You Do

or WWYD as a catch to remind me). For example, shown below are two configu-

rations of squares made up of sticks, the first showing three rows of four columns

and the second, four rows of six columns.

Make a copy of the second, watching how your body does the drawing. Then try

to express how your body worked as a rule for how to draw a configuration with

r rows and c columns, and how to count the number of sticks required.

The act of copying, or constructing your own instance, often leads to recognition

of structure which can then be expressed verbally. Once refined, this provides a way

to count the number of elements which can then be recorded using succinct

symbols. For example, locating features in the first diagram which relate to three-

ness and four-ness for which the same features in the second diagram relate to four-

ness and six-ness is usually an acknowledgement by cognition of bodily awareness.

Note that the two ‘examples’ provided are not sequential, and do not start at ‘the
beginning’. It tookme a long time to realise that always offering the first few terms of

a sequence as exampleswas blocking learners’ opportunities to use their ownpowers.
It is often the case that our bodies, our automatic functioning, locks into a pattern.

For example, if invited to copy and extend the following for another nine rows,

most children will quite spontaneously follow a flowing pattern downward, making

use of the natural numbers and the invariants in each column. Anne Watson (2000)

coined the expression ‘going with and across the grain’ to summarise what is made

available to be learned in such a situation. To complete the mechanical part of the

task, go with the grain, following the downward flow; to make sense of it, ask

yourself what is changing and what is invariant, and how the three statements in a

row relate to each other. This is ‘going across the grain’, revealing the structure, just
as when you saw across the grain of a log you reveal the fibrous structure of the tree

from which it came.
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The slogan Say What You See (SWYS) can serve as a reminder to get learners to

do articulate what they notice, first to a neighbour or group in which they are

working, and then in plenary, where what is noticed can be recorded and organised.

Once integrated into a learner’s functioning, SWYS and WWYD can be powerful

aides to detecting and expressing structure.

6.3.2.2 Tracking Arithmetic

Tracking Arithmetic is a label for the act of following one or more numbers through

a sequence of calculations, in order to see what their role is, their influence, their

contribution to the result. In other words, it leads directly to perceiving structural

relationships and expressing generality. An especially powerful example is given

by the following collection of tasks.

THOANs

Think of a Number ‘games’ have been played for hundreds, perhaps thousands of

years. A simple version is the following:

Think of a (positive whole) number; add two; multiply by the number you first

thought of; add one; take the (positive) square root (I can assure you that if you

started with a positive whole number you will have a whole number square root).

Subtract the number you first thought of. Your answer is 1.

Offered a sequence of these, perhaps using only addition and subtraction,

children soon want to know how it is done, and to try it themselves. Tracking

arithmetic reveals the underlying idea:

Start with 7. Add 2 to get not 9 but 7þ 2. Multiply by the number you first thought

of to get 7(7þ 2). Now add 1 to get 7(7þ 2)þ 1. I can do the arithmetic to

discover 64 whose square root is 8, but I want to see that 8 in terms of the 7, and I

can see that 7(7þ 2)þ 1¼ 7� 7þ 2� 7þ 1¼ (7þ 1)(7þ 1), so the square root

is 7þ 1. Subtracting the number first thought of yields 1 as claimed. The 7 has

been made to disappear! Now replace every instance of the starting 7 with a

cloud (it might be that 7 also shows up spontaneously in the calculation so one

has to be wary):

Using a cloud, which draws upon learners’ experience of cartoons, has in my

experience enabled algebra–refusers in secondary school both to engage and to act

algebraically, blissfully unaware that they have been ‘doing algebra’. A good deal

of the energy exhibited by learners who have chosen to become algebra–refusers

lies in their not knowing what the letters of algebra refer to. As Mary Boole put it,
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the use of algebra is to free people from bondage (Tahta, 1972, p. 55; italics in

original), by which she means bondage by and to the particular.

A particularly effective use of tracking arithmetic can be made by tracking all

numbers in the following task.

Grid Sums

Write down four numbers in a two-by-two grid (as in the example)

Record the products along the rows and the products down the columns

Now add the column sums and subtract both the row sums

The result in this case is 35þ 12 – 15 – 28¼ 4

Now choose numbers for a new grid so as to make the result equal to 3 (or any

other pre-assigned number!)

Most people start trying numbers and doing calculations. Tracking arithmetic

reveals an underlying structure:

The row sums are 5� 3 and 7� 4; the column sums are 5� 7 and 3� 4, so the

result is

5� 7þ 3� 4� 5� 3� 7� 4 ¼ 5� 7� 5� 3ð Þ þ 3� 4� 7� 4ð Þ
¼ 5� 7� 3ð Þ þ 3� 7ð Þ � 4

¼ 5� 7� 3ð Þ � 7� 3ð Þ � 4

¼ 5� 7� 3ð Þ � 4� 7� 3ð Þ ¼ 5� 4ð Þ � 7� 3ð Þ

The result is the product of the differences along the diagonals! Once that structure

is recognised, it is easy to achieve any pre-assigned result, whereas without it,

achieving a specified number can be really challenging. Of course if you are already

familiar and confident with using letters, you can do it ‘algebraically’, but Tracking
Arithmetic is available even if you do not yet have algebraic facility. Notice

however that you do need some general arithmetic facility, which is why it is

worth, early on in arithmetic, drawing attention to the properties of arithmetic such

as commutativity, associativity and distributivity.

As an extension, why does the result stay the same if I choose two additional

numbers, add the first number to the upper left and lower right cells, and subtract

the second number from the lower left and upper right numbers?

Since no task is an island complete unto itself (Mason, 2010), how might this

task be altered or extended? It turns out that it is not obvious how to extend the idea
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to a three-by-three grid. However, there is a variation which might be somewhat

surprising.

Reading clockwise from the upper left corner, form two two-digit numbers. In my

case I get 53 and 47. Do the same counterclockwise to get 57 and 43. Now form the

difference of the products: 53� 47 – 57� 43¼ 40

Adjusting the grid by subtracting say 1 from the main diagonal numbers and adding

say 2 to the off diagonal numbers gives the grid shown, and 45� 39 – 49� 35¼ 40 as

well. Could this be a coincidence?

Tracking arithmetic on the original grid shows that

53� 47� 57� 3 ¼ 50þ 3ð Þ � 40þ 7ð Þ � 50þ 7ð Þ � 40þ 3ð Þ
¼ 50� 40þ 50� 7þ 3� 40þ 3� 7ð Þ

� 50� 40þ 50� 3þ 7� 40þ 7� 3ð Þ
¼ 50� 7þ 3� 40ð Þ � 50� 3þ 7� 40ð Þ
¼ 50� 7� 3ð Þ þ 3� 7ð Þ � 40

¼ 50� 40ð Þ � 7� 3ð Þ
¼ 10� 5� 4ð Þ � 7� 3ð Þ:

It is immediately evident then that adding or subtracting the same thing to/from the

main diagonal numbers makes no difference, nor does adding or subtracting the

same number to/from the off diagonal elements. Furthermore, the result must

always be ten times the result of the previous calculation using the grid numbers.

To ‘see’ this for oneself requires only locating the 5, 4, 7 and 3 in the grid itself, and
realising (making real for oneself) that the digits are acting as placeholders and can

be changed.

Tracking arithmetic provides an intermediate stage between using arithmetic

with particular numbers and using letters for as-yet-unspecified numbers (our

ignorance). As such it is a didactic tactic (Mason, 2002b): it is particularly useful

and applicable to generating experience of algebraic thinking. I know of several

tasks which enable students to work with generality without having to call upon the

particular at all (see Sect. 6.4 for another example) and there must be many more.

6.3.2.3 Acknowledging Ignorance

Mary Boole (see Tahta, 1972, p. 55) suggested that algebra arises from ‘acknowl-
edging ignorance’. When you recognise that you do not know ‘an answer’ you can

acknowledge that fact by using a symbol (a little cloud is particularly effective) to

denote what is not (yet) known. You can then use that cloud to express what you do

know about it, and this will usually lead you to some constraints on the generality of

‘cloud’ in the form of equations or inequalities. This is what Isaac Newton (1683)
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thought was so elementary! Of course there are circumstances where this does not

help, but these are rare in school algebra examinations!

I have written down two numbers whose sum is one. I square the larger and add the

smaller; I square the smaller and add the larger. Which of my two numbers will

be the larger?

Notice that strong force to try a particular example. Choosing 0 and 1, or 1/2 and

1/2 is not very revealing. The fact that the two calculations always give the same

result is, at least at first, a little surprising. Acknowledging our ignorance and

denoting one of the numbers by and the other by is already using the

cloud to express what you know, namely that they sum to 1. Now the calculations

can be done using the cloud. If learners are not yet ready for manipulating cloud,

than tracking arithmetic can be used:

Try 7 as one number, and 1 – 7 as the other (notice that any calculation involving

7 is indicated but not carried out). Then the two calculations give

72 þ 1� 7ð Þ ¼ 72 � 7þ 1

and 1� 7ð Þ2 þ 7 ¼ 12 � 2� 1� 7þ 72 þ 7 ¼ 72 � 7þ 1

So the two calculations are equal in this instance.

Treating the 7 now as a place holder rather than as a particular number, perhaps

at first replacing it by a little cloud, confirms that the two calculations always give

the same result. It is worth pausing and contemplating the scope or range of

generality. The 7, or the cloud, can be replaced by any number you can think of,

or indeed numbers you cannot even think of or which have never previously been

thought of!

A useful task for emphasising the scope and range of generality involves variants

of the following:

Write down a number between 3 and 4.

Now write down a number between 3 and 4 but which no one else in the room will

write down.

Now write down a number between 3 and 4 but which no human being is ever likely

to have written down.

The second version draws attention to the range of possible choices. The third

version sharpens awareness that there are more numbers than human beings have

ever used! The idea is to draw attention to the range of possible variation, the scope

of generality.

Note that in a task like this there is an opportunity to get a learner to choose what

the difference will be. That way they have a sense of both the 3 and the 4 as place

holders for a dimension of variation (a generality) as well as experiencing greater

commitment to the task because they have participated in making a significant

choice.

A related tactic is to make a guess, and then check whether your guess is correct.

If you can check the correctness of a guess, then you can use tracking arithmetic to
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follow the guess through the checking process, using a little cloud or other token,

and end up with equations and inequalities which express the constraints on the

generality of your ‘guess’. The method of false position which pervades arithmetic

books up until the nineteenth century is based on a way of making use of one or

more guesses and the errors they give rise to when checking them, purely arith-

metically, in order to determine the correct answer. This only works when the

calculation is linear (one trial guess) or quadratic (two trial guesses), and rarely did

authors of textbooks give any criteria for knowing whether one guess or two were

required!

6.3.2.4 Word Problems

It has already been noted that if you can check the answer to a question, you can

usually set it out algebraically, by tracking arithmetic: following your proposed

answer through the calculations without losing track of it. Then you can set up the

constraints on it as equations or inequalities, and perhaps even solve them to find

the correct answer. This applies particularly to ‘word problems’. But asking

learners to ‘solve’ word problems is likely to be met with hostility, whether

cognitive, affective or enactive, and perhaps all three. By contrast, the notion of

‘burying the bone’ (Watson &Mason, 2005), of getting students to try to construct a

problem that they can do themselves but that will challenge colleagues, perhaps

even the teacher, can be used to increase engagement and disposition. This actually

mirrors the competitions in Italy in the sixteenth century involving Nicolo Tartaglia

and Girolamo Cardano (MacTutor Website) which brought to light the formula for

solving a cubic equation! Invoking the theme of ‘doing and undoing’, by asking

learners to construct problems ‘like these’which will challenge others, puts learners
in the role of constructors, or meaningful agents. They may even come to appreciate

the complexity of setting problems which will enable others to display their

understanding, such as examiners. The more that learners get to make significant

mathematical choices, the more likely they are to appreciate the tasks they are set,

because they know how they are constructed and for what purpose.

Word problems can also be used to challenge people to find a solution without

using algebra! Algebra becomes a backstop, a place of last resort. Meanwhile they

are exercising their mathematical thinking in trying to find a purely arithmetic

resolution. Then they can use Tracking Arithmetic to express a general formula for

all problems of ‘that type’. This is how Newton (1683) presented his solutions: he

solved a particular, then the general, and then showed that the particular was an

instance of the general.
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6.4 Reasoning Without Numbers

It is well worth while looking out for opportunities for learners to reason without

having to work with numbers, especially if some or all have already developed a

reluctance to master arithmetic.

6.4.1 Magic Square Reasoning

Imagine that the initial three-by-three square is covering up some three-by-three

magic square. It doesn’t matter which one. The fact that it is a magic square means

that the sum of the numbers in any row, any column or either diagonal is the same.

So in particular, the sum of the numbers in the cells in the first row is the same as the

sum of the numbers in the first column.

The sum of the light-shaded cells in the first grid is the same as the sum of the

dark-shaded cells in the second grid, and because these would overlap, as shown in

the third grid the sum of the dark-shaded cells must be the same as the sum of the

light-shaded cells in the third grid.

On the remaining grids, shade in sets of cells so that the sum of the dark-shaded

cells must be the same as the sum of the light-shaded cells.

In the following grids, show why the sum of the dark-shaded cells must be the

same as the sum of the light-shaded cells.

Notice that you do not need to know any of the numbers . . . the reasoning is all

about rows, columns and diagonals with overlaps removed. However, it is not

always easy to see how to achieve someone else’s configuration. Things become

even more challenging and hence interesting when you move to four-by-four or

larger magic squares.

The power of the reasoning using overlaps is that the results apply to any magic

square whatsoever, and yet numbers are not actually used. Learners find themselves

thinking structurally, algebraically. Care is needed however, that learners keep in

mind that the patterns they are using involve rows, columns and diagonals only, and
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a balance between the number of these in one colour and the number in the other

colour, because these all have the same sum. In an experiment with children aged

11 it turned out that making patterns of colours dominated attention, and they lost

the idea of using only rows, columns and diagonals and eliminating overlaps

(Mason, Oliveira, & Boavida, 2012).

6.5 Reasoning About Numbers

Getting learners to reason about numbers, rather than doing arithmetic with them

can encourage arithmetic-refusers to engage even though numbers are involved. For

example,

I am about to subtract the number represented by the cloud (it is a number that

someone is thinking about) from the number represented by the box (it is also a

number that someone else is thinking about).

However, just before I do the subtraction, someone comes along and adds 1 to both

of the numbers. How will the subtraction result change?

The invariance is both intuitive and readily justified. How can this task now be

extended and developed? What aspects could be varied? Variation theory (see

Marton, 2015; Marton & Booth, 1997) suggests that what is available to be learned

is what has been varied in recent time and space. Teaching is seen as fundamentally

about opening up dimensions of possible variation so that learners not only become

aware of possibilities, but integrate into their functioning the action of considering

what can be varied, and over what range and with what constraints (‘range of

permissible change’: see Watson & Mason, 2005).

In this task, the adjustment by 1 is a dimension of possible variation, leading to

the recognition that the same adjustment to both numbers will make no difference.

Opening up the constraint that the adjustments must be the same leads to further

insight. Note the parallel with the grid-sums task in Sect. 6.3.2.2). Altering sub-

traction to addition, to division or multiplication reveals similarities and differences

in the language and the actions that preserve an invariance.
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6.6 Generally Looking Beyond the Particular

Extending and varying, informed by variation theory are just as vital as getting

answers to some task. The learner who arrives at a test or examination and who has

treated every task as isolated has to deal with each test item in its particularity,

whereas the learner who has extended and varied, who has developed a rich space

of examples and of ways to augment and modify examples, is likely to recognise the

type of task and to have possible actions become available almost automatically. I

have long encouraged learners about to take an exam to set their own exam and send

it to the examiner, engaging in dialogue about what is reasonable and what is

challenging, and why. In that way learners become acquainted with what testing is

about, and develop their facility by extending and varying for themselves.

For example, the task One Sum presented earlier can be extended and varied in

several ways, but most easily when the situation is depicted.

As often happens in mathematics, finding two or more ways to express the same

thing can be enlightening and productive. Here the shaded area can be broken down

in two ways, and this leads to other possibilities, taking the number of numbers

adding to one as a dimension of possible variation, and taking the

two-dimensionality as a dimension of possible variation.

Use the two diagrams below to express generalisations of the one-sum

relationship.
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Working on expressing these involves both algebraic thinking, and shifting of

attention back and forth from recognising relationships in the particular diagrams,

and perceiving these as instantiations of properties (Mason, 2001).

6.7 A Word of Caution

Just because some pattern or relationship can be extended, it does not mean that it is

true. Put another way, every expression of generality starts life as a conjecture. It

must be tested and justified. Even with elementary repeating patterns, care must be

taken not to give learners the mistaken impression that whatever they think might

be true, will be true.

6.7.1 Repeating Patterns

The following pattern is made from repeating a block of letters. Extend the

sequence for yourself so that the repeating block continues to repeat.

AAABAA

Of course there are several ways: the repeating block can be any of AAAB,
AAABA, AAABAA, assuming that the generating pattern appears at least once. To

make the pattern unique, it is mathematically necessary to know that the repeating

pattern generating the sequence appears at least twice (Mason, 2014). For example,

AAABAAAABAAAA

with the claim that there are at least two copies of the repeating pattern, is uniquely

identifiable and therefore extendable.

6.7.2 Power Sums

It is well known that 32 þ 42 ¼ 52, but not so well known that 33 þ 43 þ 53 ¼ 63.

Having checked this, it is hard to resist trying extensions . . . but they don’t work!
The ‘obvious’ or ‘natural’ generalisation turns out to be false. The point is that

the first two facts are not presented in a structural form which actually extends. If

there is a suitable extension, some structural underpinning is required. That is why
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whenever learners are asked to extend a sequence, or to count the number of objects

needed to make a term in a sequence, they must first be asked to articulate what the

structural underpinning is that generates the sequence.

6.7.3 Structural Foundations

Consider, for example, the first two terms of a picture sequence:

The third term could be any of the following

not to say something completely different. Without specifying how the diagrams

are to be constructed, it is not possible to count the squares needed to make the nth
picture.

Use of pedagogic strategies such as getting learners to consider, having resolved

one problem, to consider the range of tasks they can solve similarly, and getting

them to change what is given and what is sought (a manifestation of the mathe-

matical theme of doing & undoing) not only engages learners more deeply, but also

offers them some actions to make use of for and by themselves, when studying, and

when interacting with the world generally. Thus in the study by Jo Boaler (1997)

learners at Phoenix Park, where mathematical thinking was encouraged through

work on extended tasks, recognised the role of mathematics outside of the class-

room in ways that students taught more traditionally as a sequence of procedures to

be mastered did not.

Not only does extending or varying aspects of a task, exploring possible dimen-

sions of variation, increase engagement with tasks, and not only does it provide

ways for quicker learners to remain engaged, it is the very heart of mathematics,

building up rich example spaces on which learners can draw in the future. One

important way to augment the affectivity of wanting to engage is to take every

opportunity to get students to make significant mathematical choices for them-

selves: what examples they work on, what letters they use to stand in for an as-yet-
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unknown or a yet-to be decided unknown, whether to specialise or to work with the

general, and so on.

Even when you cannot see how to extend or vary, it is worthwhile trying. For

example, I came across the following task in Pólya (1954, Ex. 7, pp. 117–118) and

included it inMason,Burton, andStacey (1982, p. 169). Pólyanoticed it in our book and

asked why we had associated his name with it, which was because we got it from him!

6.7.4 P�olya Strikes Out

Write out the natural numbers in a

sequence

Circle every other number

Form the cumulative sums of the

uncircled numbers

Not too surprisingly, we get the square numbers. If instead you begin by circling

every third number, forming cumulative sums, then circle every second number in

this, and form the cumulative sums, you get another recognisable sequence.

Repeating this sort of action continues to reveal recognisable sequences. Try as I

might I could not get beyond a simple generalisation. Then John Conway and

Richard Guy (1996, pp. 63–65) found it in a paper of Moessner (1952: see Conway

and Guy 1996, p. 89) and generalised it extensively. They noticed that if instead of

using ‘every-something’ as the circling rule, you circle each number in a triangular-

number position, repeatedly, then the first circled numbers in each row form another

familiar sequence, and that is just the beginning!

The slogans ‘be wise, generalise’ (attributed to Piccayne Sentinel: see

MAphorisms) and ‘there is always something more to discover in the way of

connections and relationships’ are part of a mathematician’s creed, though it must

also be noted that Paul Halmos (1975) decried the effect on graduate students of

using the first without also being aware of instantiations of those generalisations,

and of where in mathematics they might be relevant. William Blake also decried

generalisation, claiming that ‘to generalize is to be an idiot’. I take the more

balanced view that generalisation and instantiation in the particular are both

important, in fact are inescapably intertwined, and that to focus on one without

the other is indeed to be an idiot.
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6.8 Classroom Ethos

For mathematical thinking to take place effectively, there has to be a conjecturing
atmosphere (Mason, Burton, & Stacey, 1982/2010, pp. 64, 233). This is so much a

part of mathematicians’ practice that books often do not bother mentioning it. Yet it

is fundamental. In such a classroom ethos, those who are confident about a question

or a task listen to what others have to say, while those who are not confident try to

say what they can. Things are said (by learners, by the teacher) in order to get them

outside of the ‘tumble-dryer’ mind in which ideas get mixed up, change, and

develop, even in mid expression. Things are said as conjectures in order to consider

them dispassionately. Then, as George Pólya (1965) put it, ‘you must not believe

your conjecture’.
Instead of disagreeing with what someone says, or telling them they are wrong,

in a conjecturing atmosphere you might ask about how what was said plays out in

. . . (and here an example, perhaps a potential counter-example is offered). Learners

quickly find that asking someone to repeat what they said is less productive than

trying to say what you think you heard, and asking for validation and clarification.

6.8.1 Increasing Sums

Consider the portion of Pascal’s triangle shown below, and convince yourself you

know how to extend it to the right and down.

Now group as shown below
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Say What You See in this diagram. Take your time. It might even help to make a

copy for yourself, and Watch What You Do. Ask yourself what is invariant (not just

objects, but relationships), and what is changing and in what way(s). What is the

same and what is different about each row, about the groupings in each row, about

the groupings in a sequence of rows?

The first row groupings seem trivial, but in retrospect from the second and third

rows they make sense. But the fourth row displays a counter-example to a common

conjecture! A generalisation, an expression of generality, is always a conjecture

until it can be justified! Do the first groupings in each row continue?Why then don’t
the second groupings in each row continue?

Note the pedagogic strategies instantiated in the follow-up part of the task.

6.9 Summary

Drawing on more than 50 years of working with others to develop mathematical

thinking, it seems clear to me that there is no royal road to teaching, no single track

to pedagogy, no magic sequence of tasks that will achieve the transformation in

thinking algebraically sought after for so many centuries by so many teachers.

Quite the contrary, it is all about sensitivity to individuals and to groups of

individuals. It is all about teaching as a caring profession: caring for learners and

caring for the subject matter, which requires maintaining a balance between the two

and not going to extremes. As an old adage has it ‘every stick has two ends’. It is all
about responding to particular situations with access to a rich repertoire of peda-

gogic strategies and didactic tactics. It is about nurturing like a gardener rather than

managing an assembly line.

Developing facility in manipulating algebra is actually straightforward once

confidence and interest in working with generalities has been captured.

In this chapter I have offered some pedagogic strategies, some didactic tactics,

and some tasks through which to encounter these, which, if handled sensitively and

carefully, not as one-off events but as a classroom ethos, a way of working with

others, could make a difference to succeeding generations.
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Chapter 7

Algebra as Part of an Integrated High School
Curriculum
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Abstract Traditional high school mathematics curricula in the United States

devote 2 years almost exclusively to development of student proficiency in the

symbolic manipulations required for solving algebraic equations and generating

equivalent algebraic expressions. However, recent design experiments have shown

that a focus on functions, mathematical modeling, and computer algebra tools

enables effective integration of algebra with the other core strands of high school

mathematics.
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The figure at the left is a meme circulating on the Internet that summarizes nicely

the public perception of the importance of algebra as it is taught in most American

schools. The statement may be true of every other school subject save English, but it

gets a chuckle only for algebra.

Long-standing tradition in American education calls for organization of the high

school mathematics core curriculum in a layer cake of 3 year-long single-subject

courses—elementary algebra, geometry, and advanced algebra. The algebra

courses that dominate this curriculum emphasize training students in what Robert

Davis once characterized as a ‘dance of symbols’—a collection of procedures for

manipulating symbolic expressions, equations, and inequalities. The applications of

those symbol manipulation rules are commonly limited to an array of classic word

problems of dubious authenticity, and precious little attention is given to topics with

easily demonstrated practical importance such as probability, statistics, and modern

discrete mathematics, much less the process of mathematical modeling that is

central to contemporary applied mathematics.

This dominant structure of American high school mathematics curricula appears

to have evolved during the late nineteenth and early twentieth century as mathe-

matics courses that had been in the curricula of prominent colleges were

transformed into admission prerequisites for those institutions (Jones & Coxford,

1970; Kilpatrick & Izsak, 2008). We, the authors, were high school students in the

1950s, when it could be argued that “classical” algebra and geometry were the

subjects that could be taught in secondary schools because they could be mastered

with the tools then available: paper, pencil, ruler and compass (for geometry), and

brain power. But only a small percentage of students were highly successful in these

courses, and they tended to be “us,” the people who became college and university

faculty members in mathematics, engineering, science, or education.

Half a century later, the world is a very different place. The problems to be

solved are more challenging, our brain-extender tools are much more sophisticated,

our school and college populations are more diverse, and our knowledge-based

economy is no longer dependent primarily on agriculture and manufacturing. But in

most places our school mathematics curriculum has evolved only marginally,

“allowing” use of electronic calculators and no longer relying solely on Euclid as

the definition of geometry. While other disciplines have moved on,1 the “standard”

secondary mathematics curriculum has much in common with the Saber-Tooth

Curriculum (Benjamin, 1939/2004).

Prompted by striking findings from a series of recent international studies of

mathematics teaching and learning, American mathematics educators have

explored different ways of thinking about the high school curriculum. In particular,

efforts such as the Interactive Mathematics Project (Fendel, Resek, Alper, & Fraser,

2015) and the Core-Plus Mathematics Project (Hirsch, Fey, Schoen, Hart, &

Watkins, 2014) have developed and tested American versions of the most common

1 In the 1950s, the importance of DNA was not well known in biology, black holes were not known

to exist, and tectonic plates were still considered heresy by earth scientists.
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international model that advances student understanding of all major content

strands in each year of high school study. These so-called integrated or standards-

based2 mathematics curricula give significant attention to a broader range of

mathematical topics than traditional algebra-centric curricula, and they also pay

explicit attention to developing student understanding and skill in mathematical

processes such as problem solving, communication, reasoning, and connection of

ideas.3

Proposals to broaden and integrate topics in high school mathematics challenge

the centrality of traditional algebraic content. The focus of school algebra on formal

procedures for manipulating expressions, equations, and inequalities is also chal-

lenged by emergence of technological tools such as graphing calculators and

computer algebra systems. If every algebraic symbol manipulation can be

performed quickly and accurately by universally available computer software, is

it still important for students to spend 2 full years of high school study in pursuit of

what is inevitably incomplete and fragile mastery of those same routines? What is

the right agenda of algebra learning goals for students today?

7.1 New Perspective: Function as Fundamental Concept

One curricular approach that has shown great promise in several innovative inte-

grated curriculum projects replaces the traditional focus on formal manipulation of

symbolic expressions and equations with an emphasis on a different fundamental

mathematical idea—functions. To see what a focus on functions might look like and

how it can lead to productive development of still essential algebraic understand-

ings and skills, consider a problem that requires mathematical modeling and

reasoning:

A new professional sports league has a business problem:

What average ticket price will maximize operating profit of the league all-star
game?

The situation involves several key variables—number of tickets sold, income

from ticket sales, income from concession sales, operating costs, and operating

profits—most of which depend ultimately on average ticket price. Market research

and other business analyses could lead to function models for those dependencies.

For example, we might come up with functions such as these:

2 The term standards-based generally refers to curricula that embody recommendations of the

1989 National Council of Teachers of Mathematics Curriculum and Evaluation Standards for
Teaching Mathematics and the 2000 Principles and Standards for School Mathematics.
3 The notion that proficiency in mathematics includes certain habits of mind, as well as knowledge
of specific facts, concepts, and procedural skills, has been reflected in all professional curriculum

guidelines over the past quarter-century, most recently in the Common Core State Standards for
Mathematics.
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Demand : nðxÞ ¼ 5000 � 65x
Income : IðxÞ ¼ 5000x � 65x2

Expenses : EðnÞ ¼ 4nþ 25, 000
EðxÞ ¼ 45, 000 � 260x

Profit : PðxÞ ¼ �65x2 þ 5260x � 45, 000

Algebraic notation and symbol manipulation are very useful in expressing such

problem conditions, in calculations for finding derivatives, and in solving equations

to find specific numeric values such as optimum ticket and break-even prices. In

fact, for a conventional treatment of this problem, algebraic skills are essential.

But using the numeric, graphic, and symbolic tools provided by calculators and

computers, one has access to very effective approximation strategies for solving

equations and inequalities and even finding maximum or minimum values for

functions. Furthermore, contemporary computer algebra systems will actually

perform all required exact calculations.

d

dx
�65x2 þ 5260x� 45, 000, x
� �

5260� 130x

solve 5260� 130x ¼ 0, xð Þ x ¼ 526

13
or x ¼ 40:46

Price Income Expense Profit

0 0 45,000 –45,000

10 43,500 42,400 1100

20 74,000 39,800 34,200

30 91,500 37,200 54,300

40 96,000 34,600 61,400

50 87,500 32,000 55,500

60 66,000 29,400 36,600

70 31,500 26,800 4700

80 –16,000 24,200 –40,200

The business analysis problem posed by planning for a sports league all-star

game is typical of tasks encountered by students in calculus for the management

sciences—a course for which high school algebra is assumed to be essential

preparation. Success in the conventional version of that course certainly does

require proficiency in writing and manipulating algebraic expressions and in solv-

ing equations. But the central concepts of calculus are functions and rates of

change, and applying those concepts to realistic problems requires thinking about

variables, expressions, and equations in different ways than the traditional

approaches to elementary algebra emphasize. In applications of calculus, variables
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represent quantities that change over time or in response to change of other related

variables. Equations show how variables are related. Expressions show how to

calculate values of dependent variables. So instead of thinking about algebra as

only a collection of symbol manipulation techniques for discovering fixed but

unknown values of x, it makes sense to think of algebra as a way of expressing

and reasoning about relationships between changing quantities. Techniques for

solving equations and inequalities are helpful in finding answers to specific ques-

tions situated in the context of broader quantitative relationships.

Using functions—rather than symbolic expressions, equations, and manipula-

tion—as the central organizing concepts for high school mathematics has a number

of important payoffs.

• As the preceding example shows, viewing algebraic expressions and equations

as functions encourages use of numeric and graphic representations that provide

insight into how specific points of interest fit into the overall relationships of

variables. For example, as one examines the graph and table of values for the

profit function in a neighborhood around the maximum point, it becomes clear

that moderate changes in ticket price will have very little effect on event profit.

• The concept of function is central to calculus. So having students encounter

functions in their introduction to algebra lays important conceptual foundation

for later studies.

• Functions in algebra connect naturally and effectively to transformations in

geometry that students will use to reason about congruence and similarity.

• Statistical methods for data analysis and modeling lead naturally to functions as

representations of relationships between correlated variables.

• Iteratively defined functions play a fundamental role in many applications of

discrete mathematics to questions in finance and population dynamics.

Algebraic notation is valuable for representing what we know or what we want

to find out. Algebraic procedures for manipulating symbolic expressions and

equations into alternative equivalent forms are useful for gaining insight into

relationships between variables. But there are now many powerful tools for doing

that work. So algebra courses focused on developing skill in formal symbol

manipulation are a poor use of valuable instructional time for all but a few students.

7.2 A Conceptual Framework for School Algebra

A more useful conceptual framework for thinking about school algebra can be

expressed with a diagram that has become common in discussions of the mathe-

matics curriculum. As students explore a numeric pattern or problem, they find

ways to represent relationships between variables. They use these representations to

reason about the situation in a variety of ways—solving equations and inequalities,

understanding relationships, making predictions, and verifying patterns. Then when
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their mathematical model has suggested new insights into the problem situation,

those ideas have to be evaluated to see how they play out back in the real world.

Situations outside of mathematics

Patterns in branches of mathematics

Represent

Relationships

Interpret
Inferences

Symbol Manipulation

Create tables, graphs
and equations

Solve equations and
inequalities

Approximation

Estimate by scanning
tables and graphs

Explore rates of change

Optimize and Predict

Algebraic Reasoning

Sources of Patterns, Relationships, and Questions

To operate in this mathematical arena, students need several key dispositions,

understandings, and specific technical skills from algebra:

• Disposition to look for quantitative variables in problem situations and for

relationships among variables that reflect cause-and-effect, change over time,
or pure number patterns.

• A repertoire of significant and common patterns to look for—linear, quadratic,

exponential, inverse variation, and periodic functions.

• Ability to represent relationships between variables in words, graphs, data

tables and plots, and in appropriate symbolic expressions.
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• Ability to draw inferences from represented relationships by estimation from

tables and graphs, by exact reasoning using symbolic manipulations, and by

insightful interpretation of symbolic forms.

• Disposition to interpret mathematical deductions in the original problem situ-

ations, with sensitivity to limitations of the modeling process.

These goals suggest a presentation of school algebra that begins by drawing

students’ attention to the many interesting situations in the worlds of science,

business, engineering, and technology where quantities change naturally over time

or in response to changes in other related quantities. The symbolic notation of algebra

can be introduced naturally tomake precise and efficient representations of observed

patterns. Then students can learn, with a very modest amount of introductory

personal symbolic reasoning, how to use the widely available array of computing

tools to answer questions about the observed situations. For those students who

ultimately need sophisticated and efficient personal skills for symbolic work and

understanding of algebra that includes the formal structural aspects of the subject, we

are now in a position to provide personal skill developmentwhen it appears essential,

rather than as the first step toward proficiency in algebra-assisted reasoning.

In some sense this way of thinking about school algebra turns the traditional

sequence of mathematical ideas, skills, and applications upside down—developing

concepts and problem solving before personal symbol manipulation skills. But, in

addition to providing broadly useful mathematical understandings and technology-

assisted skills, the function-oriented development provides students with intuitions

about variables, expressions, and equations that are a very effective concrete

grounding for later development of the formal aspects of algebra. The syntactic

rules of symbolic algebra become procedures that just make sense, rather than

formal logical consequences of abstract field axioms.

7.3 A Sample Function-Oriented Curriculum

The curriculum projects mentioned above (IMP and CPMP) show how the pro-

posed development of algebra in the context of functions can be accomplished. For

example, the algebra/functions strand in Core-Plus Mathematics includes 15 units

over the course of four high school years, units that are woven together with topics

in other content strands. Each unit develops fundamental understandings and skills

in use of functions and algebraic reasoning to solve problems in mathematics and its

applications to science, business, and everyday life.

• Patterns of Change focuses on quantitative variables using data tables, coordi-

nate graphs, and symbolic expressions.

• Linear Functions focuses on relationships between variables characterized by

constant additive rate of change, straight line graphs, and equations in the

general form y¼mxþ b.
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• Exponential Functions focuses on growth and decay patterns characterized by

constant multiplicative rate of change and expressed by the general form y¼Abx.
• Quadratic Functions focuses on relations between variables expressed by the

general form y¼ ax2þ bxþ c.
• Functions, Equations, and Systems focuses on relationships between two or

more variables that can be expressed as inverse variations y¼ k
x, power functions

y¼ kxr, and systems of linear equations with two independent variables.

• Matrix Methods develops concepts and operations on matrices to represent and

solve multivariable problems in algebra, geometry, and discrete mathematics.

• Nonlinear Functions and Equations introduces and develops formal symbolic

methods for reasoning about quadratic functions, expressions, and equations, as

well as logarithms for reasoning about exponential equations.

• Inequalities and Linear Programming focuses on algebraic and graphical rea-

soning about linear inequalities and systems.

• Polynomial and Rational Functions develops familiar concepts and skills in

work with polynomials and rational expressions in the context of functions and

their graphs.

• Recursion and Iteration develops properties of sequences as iteratively defined

discrete functions, with special attention to arithmetic and geometric sequences

and their connections to linear and exponential functions.

• Inverse Functions develops the inverse concept with special attention to loga-

rithms and inverse trigonometric functions.4

• Families of Functions reviews and integrates student understanding of core

function types and their representation in symbols, data tables, and graphs

with a focus on transformation of basic function forms to model complex

scientific relationships.

• Algebraic Functions and Equations develops core results in theory of equations

and work with rational functions and equations.

• Exponential Functions and Data Modeling extends prior work with exponential

and logarithmic functions and their expressions to the case of natural exponential

and logarithmic functions, including use of logarithms for data linearization and

modeling of patterns.

• Concepts of Calculus builds on prior work with functions, graphs, and rates of

change to introduce core understandings about derivatives and integrals and

their most common applications.

Note that the earlier units in this sequence don’t attempt to teach students

everything we know about any one topic. Each topic is revisited as necessary in

later units and often in units that are not part of the algebra/functions strand.

4 The trigonometric functions are developed in an earlier geometry/trigonometry unit titled Circles
and Circular Functions. This is one example of the integration of strands in Core-Plus Mathe-

matics that are roughly categorized as algebra/functions, geometry/trigonometry, statistics/prob-

ability, and discrete mathematics.
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7.4 Challenges to the Function-Oriented Algebra Proposal

Teachers and mathematicians reacting to the proposed function-oriented view of

school algebra raise a number of plausible questions about the approach.

Challenge: This is not really algebra. So much of the traditional content of algebra

courses (such as factoring, expanding, and simplifying expressions, and solving

equations) seems to be omitted or at least moved to the background.

Response: Whether a curriculum that highlights functions and moves formal sym-

bol manipulation to the background is or is not algebra, is not the core question for
consideration in school mathematics. The heart of the matter is whether functions

make more sense as the mathematical spine of a secondary school curriculum than

the long-standing approach that emphasizes formal manipulation of abstract

expressions, equations, and inequalities.

Challenge: There are many mathematical problems and reasonings that are not well

served by the focus on functions.

Response: While we can all imagine some interesting mathematical and applied

problems that use facets of algebra not naturally developed through a focus on

functions, we think functions and mathematical modeling are the place to start with

most secondary school students. Furthermore, nothing proposed in the function-

centric development rules out training students in more standard algebraic princi-

ples and skills as an extension of the focus on functions.

Challenge: Even the impressive capabilities of computer algebra systems lack

essential symbolic flexibility capabilities like those that well-developed personal

symbol manipulation skills can provide.

Response: It is certainly true that current computer algebra systems do not include

the kind of subtle mathematician’s intuition that can tell which equivalent form of a

symbolic expression might be most useful in answering a specific algebraic ques-

tion, nor do they have the flexibility to make nuanced variations on standard

options. So relying on CAS for core symbol manipulation tasks places some

inherent limitations on student algebraic reasoning performance. The standard

response to this challenge is to argue, “Since we don’t know which students will

need highly developed symbol sense and skill, we should aim high for all students.”

However, as with all inclusion/exclusion decisions of curriculum design, there is an

important cost-benefit calculation to be made. Is the time required to develop

admittedly desirable symbol manipulation skill and intuition really time well

spent? Evidence from long experience with algebra teaching suggests that the

answer for most students is, “Probably not.”

Challenge: The concepts-before-skills developmental sequence is not an effective

learning trajectory—procedural skill takes a long time to develop, and one learns

best by acquiring procedural skills and then having the structure of that skill domain

become clear at a later point.
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Response: 25 years ago there was little evidence that a change in priorities and

developmental approaches to emphasize functions first and foremost would work

with real students and teachers. But the intervening years have yielded a great deal

of existence-proof evidence that those ideas are not so far-fetched. Furthermore, the

power, access, and ease of use of calculating and computing tools have increased in

dramatic ways from the days of the first graphing calculators and personal com-

puters, and this trajectory seems certain to only accelerate in the near future. Thus if

we aim to provide the kind of mathematical understandings and skills that will be

useful and attractive to most students, a development of algebra that emphasizes

functions and their applications can make a very strong claim for priority in school

mathematics.

Challenge: Finally, professionals with knowledge of the history of mathematics

education can argue fairly that proposals for integrated curricula and emphasis on

functions have been around for over a century, but they never seem to take hold in

practice.

Response: Even casual reading in the history of mathematics education reveals

recommendations from many individuals and professional advisory groups to

integrate topics in the high school curriculum5 and to emphasize function as a

central unifying idea.6 However, neither recommendation had much impact on

conventions in American mathematics education. The broadening of mathematical

sciences during the twentieth century, especially the growth of probability, statis-

tics, and computer science, makes the case for a broader and more unified school

curriculum with new urgency. With respect to the recommendations about central-

ity of functions, we argue that the emergence of digital technologies, especially

graphing calculators and computer algebra systems, has changed conditions for

mathematics education in ways that make teaching about functions more natural

and effective than ever before. As indicated in the ticket-price example, access to

graphing tools makes it natural and insightful to look for solutions of equations such

as 5000x� 65x2¼ 0 by scanning the graph of I(x)¼ 5000x� 65x2 for x-intercepts.
Use of computer algebra systems to find exact solutions (and other complex symbol

manipulations) should be quite appropriate skill for most students.

5 For example, in his famous 1902 retiring presidential address to the American Mathematical

Society, E. H. Moore urged schools to “abolish the ‘watertight compartments’ in which algebra,

geometry, and physics were taught.” Similar recommendations appeared in the 1912 Report of the
American Commissioners of the International Commission on the Teaching of Mathematics, the
1923 Mathematical Association of American National Committee on Mathematical Require-

ments’ The Reorganization of Mathematics in Secondary Education (Jones & Coxford Jr, 1970;

Kilpatrick & Izsak, 2008).
6 Emphasis on functions and interrelationships within mathematics had been made as early as the

middle of the nineteenth century by the distinguished German mathematician, Felix Klein. That

same thematic recommendation was picked up by curriculum advisory reports in the United States

throughout the twentieth century.
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7.5 Summary

We believe that development of important algebraic concepts and techniques

through an approach emphasizing functions offers very attractive opportunities to

provide powerful mathematical understandings and skills as part of an integrated

curriculum. The necessary tools and textbooks and teaching strategies all exist, and

we owe it to students of the twenty-first century to see that they are adequately

equipped for the world in which they live.
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Chapter 8

Teaching and Learning Middle School
Algebra: Valuable Lessons from the History
of Mathematics

Mala S. Nataraj and Mike Thomas

Abstract Algebra is often thought of as a ‘gatekeeper’ in school mathematics,

being crucial to further study in mathematics as well as to future educational and

employment opportunities. However, a large number of studies have highlighted

the difficulties and cognitive obstacles that students face when they learn algebra. In

response to growing concerns about students’ fragile understandings and prepara-

tion in algebra, recent research and reform efforts in mathematics education have

made algebra curriculum and teaching a focus of attention. Very little research,

however, has paid attention to extracting ideas from the history of algebra for

developing classroom teaching strategies. In this chapter, we examine some impor-

tant issues in the history of algebraic ideas involving variables and exponents that
can transfer well to the mathematics classroom of today.

Keywords Algebra • Learning • Variables • History of mathematics • Pedagogy •

Exponentiation

Four different perspectives on school algebra have been described (Usiskin, 1988)

as: (1) algebra as generalised arithmetic; (2) algebra as problem-solving; (3) algebra

as the study of relationships among quantities; and (4) algebra as the study of

structures. Fundamental to these conceptions are the ideas of variable, powers
involving variables, generalisation of patterns, and forming and solving equations.

This chapter will present some key issues from the history of algebra and analyse

how they may be used to enhance middle school students’ algebraic thinking and

reasoning. Some questions that will be addressed include: When and how did the

idea of different variables develop? What were the generalisations made?What was

the notation for powers? What are the implications of these historical developments
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for modern day teaching? Based on the findings from the historical

(and psychological) analysis, descriptions for teaching sequences and their

implementation in middle or lower secondary school (age 13–14 years) are

presented. The effects of this on student algebraic thinking suggest a vital role for

lessons from history in the teaching of school algebra. It is to be noted that while the

student results are from a school in New Zealand, what is discussed in this chapter is

probably valid in most countries including the USA, given that students’ difficulties

in algebra is a worldwide phenomenon, as documented in the research literature.

8.1 Learning Algebra

Algebra learning in middle and secondary school often comprises pattern generali-

sation, use of unknowns, variables and powers of variables, forming expressions and

equations, and solving equations. Students are immediately aware that algebra

involves letters but there is clear evidence in documented research that many of

them have very little grasp of what the letters mean and the reason that they are used

(e.g. Graham&Thomas, 2000;Kieran, 1992;Küchemann, 1981). Students also have

difficulties with algebraic symbolism, including exponential notation (Lee &

Wheeler, 1989; MacGregor & Stacey, 1997; Pitta-Pantazi, Christou, & Zachariades,

2007), and exhibit a lack of understanding of basic mathematical terms such as

‘solve’ and ‘evaluate’ (McGowen, this volume). Students’ difficulties in algebra are

not surprising; Kieran (this volume) discusses two studies in the area of cognitive

neuroscience and mathematics education and suggests that the findings are contrary

to the traditional belief that it is ‘just algebra’ (meaning that algebraic problem-

solving is simply amindless execution of an automatic set of procedures). She further

concludes that: (1) the algebraic symbolic method of solution is more demanding

than a model diagrammatic method and (2) greater cognitive effort is required for

achieving excellence in algebra. That is, the conclusions in the studies challenge the

thought that students who excel are naturals at it. In this section we will consider

some common misconceptions and difficulties faced by students related to variables

and exponentiation. Awareness of these obstacles will be helpful in constructing

pedagogical strategies to alleviate students’ problems and to enhance understanding.

8.2 Variable

Algebraic thinking and reasoning depends on an understanding of key ideas, of

which variable is one of the most fundamental. A large number of research studies

have documented student difficulties related to the idea of the variable. As

Schoenfeld and Arcavi (1988) point out, the variable concept is problematic for

students because it is used with different meanings (for example, specific unknown,

generalised number, variable, parameter and constant) in different situations.
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Not only that, but students have also to grapple with the meaning of two or more

different variables within an expression, such as x, y and z in 4x3y and 12x2z5.
However, these different interpretations of the literal symbols are crucial in devel-

oping algebraic thinking and in the transition from arithmetic to algebraic thinking.

In the study conducted by Küchemann, and confirmed by Malisani and Spagnolo

(2009) in their investigation of the role of variable in students’ algebraic thought,

the predominant conception seemed to be that of the unknown (when students did

progress from viewing letters as numerical placeholders) and the variable as

representing a range of values was beyond most students’ grasp. In Küchemann’s

study, students were asked ‘which is larger, 2n or nþ 2?’ and 70% of the students

gave the answer 2n, giving reasons such as ‘because it’s multiply’. In order to

answer this question correctly, students need to see n as a variable, to appreciate

that n can take range of values. Then they might see that 2n is only greater than

nþ 2whenn > 2. In addition, many students appear to think that different letters in

an expression will always take different values; that they can never be the same. In

Kuchemann’s study, for the question ‘Is LþM þ N ¼ Lþ Pþ N true always,

sometimes or never?’ 51% of the students (13–15-year-olds) responded with

‘never’.

The above response may stem from a static view of an expression such as

3xþ 4y where x and y can take one set of different values rather than the dynamic

view of x and y representing differently changing values that can sometimes be the

same. In this connection, Küchemann (1981) states that the construction of a

formula or rule seems to be built upon the notion of generalised number. In view

of this, Radford (1996) contends that the idea of generalised number is a

pre-concept to that of variable, and puts forward the view that the ways of thinking

associated with generalisation (involving generalised number, variable and param-

eter) and equation solving (involving specific unknowns) are ‘independent and

essentially irreducible, structured forms of algebraic thinking’ (Radford, 1996,

p. 111). The observation that the generalisation and equation solving approaches

seem to be mutually complementary domains in algebra instruction would imply

that, at the foundation level, students need to grasp both unknown and general/

generalised number in order to make progress in algebra. Understanding the literal

symbol as some kind of generalised number which can take a range of values is
seen by some educators to provide a channel from a view of letter as unknown to

that of letter as variable (Bednarz, Kieran, & Lee, 1996; Knuth, Alibali, McNeil,

Weinberg, & Stephens, 2005). In addition, students need to also make sense of

different variables (and powers involving variables) and parameters (or givens) in

algebra. Hence, the importance of student activity focussed on generalisation is

widely acknowledged in the research literature on the teaching and learning of

algebra (e.g. Mason, 1996; Mason, Graham, & Johnston-Wilder, 2005). Indeed,

Mason has emphasised the paramount importance of enabling students to express

generality in every mathematics lesson. He states:

Generalisation is the heartbeat of mathematics and appears in many forms. . .the heart of

teaching mathematics is the awakening of pupil sensitivity to the nature of mathematical
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generalisation and dually, to specialisation; that algebra as it is understood in school is the

language for expression and manipulation of generalities. (Mason, 1996, p. 65).

. . .. a lesson without the opportunity for learners to express a generality is not in fact a
mathematics lesson. (Mason et al., 2005, p. 297). (italics by authors)

As well as variables, students have to also grapple with expressions and equa-

tions in algebra that include exponents, and this is discussed next.

8.3 Exponents

Exponents are important mathematical concepts and central to many secondary and

tertiary mathematics courses including algebra, calculus and complex analysis. For

example,

1. Very large numbers (and very small numbers) which are ubiquitous in today’s

society are able to be expressed using exponents, including scientific notation.

2. The concept of place value is based on exponentiation and hence a good grasp of

exponents leads to a deep understanding of positional notation.

3. Algebraic expressions and equations often involve exponents.

4. Proficiency in the manipulation of algebraic expressions including exponents is

essential for students who want to enter STEM courses in tertiary education.

Even at the high school level, in New Zealand, more than half the questions in

the Year 11 (age 16 years) algebra exam (Mathematics Common Assessment Task
or MCAT) (NZQA, 2014) consisted of exponents in some form or the other, and in

the Year 12 algebra exam, all the questions involved some understanding of

exponentiation. In New Zealand, students complete schooling at Year 13, and

mathematics is a compulsory subject up to Year 11. Despite its importance, there

have been relatively few studies focused on students’ understanding of exponenti-

ation. The studies that do involve exponents have highlighted some errors that

students are prone to make, such as writing x3 instead of 3x (MacGregor & Stacey,

1997), assuming that n2 and 2n are the same (McGowen, this volume) and

expanding a2 þ b2
� �3

to a6 þ b6 (Lee & Wheeler, 1989). Hence, even at the

‘action’ stage of APOS (action, process, object and schema) theory (Arnon et al.,

2014; Dubinsky & McDonald, 2001), students experience problems. That the

negative sign and rational exponents is a problem for students is underscored in

the study by Pitta-Pantazi et al. (2007) and Fig. 8.1 shows the success rates for 5 out

of the 20 tasks given by them to 202 high school students.

Other errors that have been reported relate to operations on powers involving

positive integer exponents such as (1) 22� 23¼ 26, (2) 56� 52¼ 53, (3) 52� 32¼ 20

and (4) 23� 33¼ 66 or 69 (MARS, Shell Centre, 2015). Similar errors were noticed

by Cangelosi, Madrid, Cooper, Olson, and Hartter (2013) when they administered a

comparable assessment to 904 freshman and sophomore university students. The

researchers sought to identify persistent errors that students make when simplifying
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exponential expressions and to understand why students make these specific errors.

Among other mistakes, some of the errors that students made were:

1. Simplifying �32 to 9

2. Writing –93/2 as (–9)3/2

3. Simplifying 2–3 as 21/3 or –23 or 2/1/3 or 3/2

The authors noted that a few students used the definition a�1 ¼ 1
a to remind

themselves of a way of simplifying 2–3. Looking at the symbolisation, they wrongly

generalised the definition to the incorrect statement a�2 ¼ 2
a, concluding that the

base forms the denominator and the exponent forms the numerator. Hence, apply-

ing this erroneous generalisation, some students wrote 2�3 ¼ 3
2
. The authors

(Cangelosi et al., 2013) concluded that an inadequate understanding of the notion

of negativity as the source of most of the students’ errors in their study, and

conjectured that a deeper understanding of additive and multiplicative inverses

could alleviate the problem and aid students to develop a more abstract view of

negativity. They also suggest that the effect of language, notation and grouping

could be factors contributing to student misconceptions. If students have difficulties

with exponential numerals then it is not surprising that they struggle with expres-

sions involving powers involving variables such as k5, 7m, xy and 8p3q6. In this

context, Weber (2002a, 2002b) examined post-secondary students’ ideas about

expressions involving exponents in the context of APOS theory. He suggests that

the main difficulty for most students is that while they are able to grasp exponen-

tiation as an action, many did not understand this concept as a process, which is

necessary to comprehend exponentiation as a function, with its full range of real

number values. In turn, the ideas involving exponentiation as function play a pivotal

role in students’ deep understanding of calculus and advanced mathematics. As

seen above, many students have only a fragile understanding, even at the ‘action’

stage of exponentiation.

What is implied above is the need to provide students with more experiences in

the interpretation of exponential forms. If problematic issues are not addressed in

Compare the exponents 
using the symbols <, =, or >

Low Achievers’ 
performance (%)
(Group 1)

Average 
Achievers’ 
performance (%)
(Group 2)

High Achievers’ 
performance (%) 
(Group 3)

1. 238, ….. , 2313 97.6 97.4 99.2

2. 23-8, …..,  23-13 31.0 83.6 94.7

3. (-12)13 , ….. , (-12)17 33.3 75.4 97.4

4. (-12)-7 , ….. , (-12)-9 39.3 55.3 66.7

5. 17(-3/5) , ….. ,  15(-3/5) 21.4 59.8 84.2

Fig. 8.1 High school students’ success rates in tasks related to exponents (from Pitta-Pantazi

et al., 2007)
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time, or if students’ prior experiences are not wide-ranging, this can lead to long-

term consequences that hinder learning. Tall (2004) coined the term met-before for
key ideas that students have met before that may influence their current under-

standing, both positively and negatively. Hence, he suggests it is necessary to pay

close attention to how new learning is affected by prior experiences of students and

how these may support or hamper acquisition of new knowledge. Earlier learning

can be supportive on occasions where old ideas can be used to understand new

content, and problematic where the old understanding no longer makes sense in the

new situation. For example, in this book, McGowen discusses the minus sign as a

problematic met-before. One implication of these ideas is the need for students to

be exposed to opportunities to develop a wide conceptual base in the early and

middle grades comprising supportive met-befores. These supportive met-befores

may form a springboard for the assimilation of new ideas that students will

encounter in the future at high school and at university.

The foregoing has highlighted how research describes students’ inadequate

understanding of the variable concept and its notation, and their limited grasp of

exponential numerals and expressions. In their learning of algebra, students have to

make sense of, and to manipulate different variables and powers of variables in

order to solve problems and to progress to advanced mathematics. In an attempt to

alleviate this situation and to develop alternative/supportive approaches, we turn to

the history of mathematics.

8.4 History of Mathematics and Mathematics Education

In view of the difficulties that students face in understanding mathematics, for some

years now, educators and researchers have consulted the history of mathematics in

attempts to improve the teaching and learning of the subject (Fauvel & vanMaanen,

2000). One of the emerging aspects of such studies concerns investigations of the

historical development of mathematical ideas. The theoretical framework some-

times employed in historical inquiry is that ontogenesis recapitulates phylogenesis.
That is, the mathematical development of the individual student repeats that in the

history of mathematics (Radford, 2000; Sfard, 1995). In Piaget and Garcia (1989),

the claim is made that reconstruction of the history of science cannot be separated

from a psychological analysis, and from a Vygotsky (1978) perspective, historical

review is vital to establish what concepts it is most important to teach, and in what

order. While a strict historical parallelism is usually considered indefensible, two

possible didactic uses of history are first, to understand better the cognitive diffi-

culties experienced by our students, and second to make more enlightened decisions

concerning the knowledge being taught in the classroom. Taking into account the

order in which past conceptual developments occurred, a teacher may use their

knowledge of history to design classroom activities for enhancing the understand-

ing of mathematics in which historical ideas may be present explicitly or implicitly.
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We present here some examples of the kinds of studies in mathematics education

that have involved a historical-critical analysis related to understanding in algebra:

1. In her work on negative numbers and elementary algebra, Gallardo (2001, 2008)

reviewed a Chinese text, a medieval Italian text and a treatise from the nine-

teenth century and investigated the problems of learning and teaching negative

numbers and elementary algebra.

2. A comparative analysis of the history of algebra with students’ empirical data by

Harper (1987) found a parallelism between the evolution of algebraic symbolism

(the rhetorical, syncopated and symbolic stages) proposed by Nesselman in 1942

and the way students understand letters in algebra. Harper foregrounded the fact

that it took a long time in history to make the shift from syncopated to symbolic

algebra (including parameters or givens) and advocated the use of history in

understanding students’ difficulties and to explicitly make students aware of the

different usage of letters. Similarly, Sfard (1995) maintains that the history of

mathematics is indispensable to make teachers and educators alert to deeply

hidden obstacles concerned with new concepts such as variables and parameters.

3. Given the historical evidence that the interest in constructing general methods

for solving sets of similar problems was the basis for the development of algebra,

Ursini (2001) devised a pre-algebraic experience for primary pupils using Logo.

Ursini used students’ numeric background as a support for different uses of the

variable.

4. In her thesis, van Amerom (2002) enquired into the teaching-learning process

pertaining to the transition from arithmetical to algebraic problem-solving by

drawing on the historical development of algebra.

5. Following a historical review, Schmittau (1993) reports a study with university

students on the conception of exponentiation, beginning with the exponential

function. This approach, Schmittau suggests, allows for the full range of real

number exponents to emerge from the attempt to solve a problem in which it is

required to express mathematically (both graphically and as a function), the

situation of continuous growth.

6. Subramaniam and Banerjee (2011) review a discussion of the relation between

arithmetic and algebra in an Indian historical text from the twelfth century and

conclude that algebra is more a matter of understanding and insight than the

employment of symbols and that algebra is seen as foundational to arithmetic

rather than as a generalisation of arithmetic. The authors present a framework

that highlights the arithmetic–algebra link and report briefly on a teaching

approach that is informed by this framework.

7. From a different perspective to the above studies, Katz (2007) has argued that

besides the three stages of expression (rhetorical, syncopated and symbolic),

four conceptual stages have happened alongside the notational stages; these are

the geometric stage, the static equation-solving stage, the dynamic function stage
and finally the abstract stage. This would imply that since most algebra concepts

were represented geometrically in the initial stages in the history of mathemat-

ics, the use of geometry as a tool maybe a useful pedagogical and curricular
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approach in the teaching of algebra as demonstrated by both Tall (for a2 – b2 and
a3 – b3 in this volume) and Mason (in this volume).

Thus far we have looked at students’ difficulties, and the importance of under-

standing the concepts of, generalised numbers, variables, powers of variables, and

the use of this notation in solving problems. We have also glimpsed some ways in

which the history of mathematics has been incorporated in teaching and learning. In

the following section we place the use of variables and their powers, in a context of

the development of this symbolism in the history of mathematics, with a view to

incorporating ideas into teaching to enhance understanding of algebra.

8.5 Learning from History: Variables in Algebra

A review of historical texts shows that for a long time all equations representing

problem situations were written using only one letter. That is, only one unknown

was used in an equation and other unknowns were represented in terms of this one

unknown. Radford (1995) underscores the fact that the second unknown/variable

came relatively late in history and hence it is not surprising that students find the

idea challenging. An examination of Viete’s (1540–1603) work discloses his use of

different letters for different variables for the construction of expressions and

equations. Viete reserved x, y and z for variables and a, b and c for parameters.

Unlike his predecessors Diophantus and the Arab mathematicians, whose equations

involved only a single unknown (Van Der Waerden, 1954), Viete was able to form

and solve equations involving different unknowns/variables. However, nearly a

1000 years prior to Viete, the Indian mathematician Brahmagupta (598–670) had

employed different letters for different variables (although not literal coefficients,

the Indians had a common name for parameters), and had a terminology for powers

of variables. A study of the development of algebraic symbolism during this period

reveals some interesting ideas for the teaching and learning beginning algebra.

A historical analysis of Indian mathematics reveals that the current decimal

numeration system with place value, zero and distinct symbols for the nine digits, as

well as many algebraic ideas, originated in India (e.g. Bag & Sarma, 2003; Cajori,

1919; Datta & Singh, 2001; Eves, 1969; Joseph, 2011). For example, Puig and

Rojano (2004) cite how a Mathematical Sign System (MSS), in which the different
unknown quantities and their powers are differentiated, an important step in the

development of algebraic notation, was constructed in India by the time of

Bhaskara II in the twelfth century, or possibly even earlier in the time of

Brahmagupta’s in the seventh century (Colebrooke, 1817). However, this was

achieved by Viete only in the sixteenth century in Europe. This construction, the

chief characteristic of which is the notation of different variables and their powers,
enabled the development of general methods of solutions of equations. One spe-

cifically interesting characteristic of the MSS developed in India was that various

colours (and later their abbreviations) were used to denote different unknowns.
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Bhaskara II (1150) says: ‘yavat-tavat (so much as), kalaka (black), nilaka (blue),

pitaka (yellow), lobita (red) and other colours have been taken by the venerable

professors as notations for the measures of the unknowns, for the purpose of

calculating with them’ (Datta & Singh, 2001, p. 18). Thus Bhaskara II employed

abbreviations of the names of the unknown quantities in order to represent them in

an equation, such as ka for kalaka (black) and ni for nilaka (blue). Although yavat-
tavat (quoted above) is not a colour its inclusion shows the persistence of an ancient
symbol employed long before colours were introduced to denote unknowns.

One implication of the historical development in India is that while students can

be (and mostly are) acquainted with algebra through the solving of equations

involving specific unknown(s), they may benefit from meeting generalised numbers

and variables sooner than its present introduction into the curriculum. The need for

generalisation as a way of thinking (Mason, 1996; Radford, 1996) suggests that at

the fundamental level, students need to grasp both concepts and these have to be

explicitly taught (Harper, 1987) in the classroom. For example, students need to

understand the meaning of letter p both in expression ‘3pþ 2’ and in equation ‘

3pþ 2 ¼ 17’, namely letter as generalised/general number and letter as unknown.

Instead, most students tend to view letters only as specific unknowns particularly

due to their experiences involving substitution and equation solving, and hence

show a lack of familiarity of letters representing a range of values.

In order to test the value of lessons from Indian development of mathematical

thinking in algebra a teaching framework (see Fig. 8.2) based on these historical

ideas and recent psychological literature was developed by Nataraj (2012).

The aim of the framework was to answer the question, how can generalised

numbers be introduced to students? In this context, it was considered that the idea of

colours (as signs) in Indian history to denote different unknowns could prove

useful.

The need for improvement was clearly shown in the Concepts in Secondary

Mathematics and Science (CSMS) study (Küchemann, 1981) involving high school

students’ interpretation of literal symbols. This demonstrated that a majority of the

students—73% of 13-year-olds, 59% of 14-year-olds and 53% of 15-year-olds—

either treated letters as concrete objects or ignored them. In order to address this

deficit of understanding a teaching module for beginning algebra students based on

the abstract nature of colours (without reference to any particular object) and

pattern language (see following paragraph and Fig. 8.3) was produced. Another

beneficial feature of the use of colours in the module is that they stress the visual

aspect in recognising changing numbers.

According to the theory of the structure of attention proposed by Mason (2004)

we may focus our attention on the whole, the details, the relationships between the

parts, the properties of the whole or the parts, or deductions, becoming more aware

of what we notice. Mason also says (Mason et al., 2005) that classification is a form

of generalisation and declares that children have a natural ability to classify objects.

Thus in order to detect generalities in arithmetic patterns, he suggests guiding

students’ attention towards number patterns by asking questions such as ‘what is

the same about each row?’, ‘what is different and how is it changing’? This same
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method of guiding attention was also described by Srinivasan (1989) who advo-

cated the use of ‘pattern language’ for number patterns and ‘design language’ for
shape arrangements to concentrate students’ thinking on variation and invariants in

number and geometrical patterns. His recommended vocabulary that centres around

changing, not changing, changing in the same way and changing in different ways
in order to elicit an algebraic expression from students in the form of pattern

language, and this was used in the module developed (Nataraj, 2012) (n.b.,

Srinivasan recommends the use of a ‘wriggly’ line as a separator between number

patterns and expressions, rather than the use of the usual line segment. His reason

for this is that attention should be paid to the patterns and not to the operational

outcome).

A pedagogical aim of the module was to assist students to acquire a deeper

awareness of generalised number and then variable by combining ideas of pattern
language, and colours/signs from Indian history within a number pattern general-

isation activity. The manner in which this combination (historical and psycholog-

ical) was employed is outlined in Fig. 8.3.

The important focus here also is that, while students may understand that two

different colours/letters indicate two different sets of changing numbers, they also

Various uses of literal symbols in 
algebra

Specific unknown(s) as in equation
3p + 5 = 23
p2- 2p = 3

General/generalised number
(use of colours) 

in expressions: e.g. 2k+6, 5p + 4 - 3y, 

x+y=1 2,  m
5
, 6

k

in equations: e.g. p×1 = p, h×k = k×h

Parameters or givens in
(colours)

mk,  ap + c

g = cr + w, y = ax2 + bx + c

Variables in formula or rule
(use of colours) 

g = 2r + 5
independent variable 
dependent variable

Fig. 8.2 Nataraj’s (2012) framework for teaching the various uses of literal symbols in algebra
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The Method advocated by Srinivasan

28 –5 ×9
457 –5 ×38
3.4 –5 ×653
302 –5 ×7/8

6 –5 ×8603

Changing number Not changing
Changing 

differently to the 
first number

x –5
–

× y
or  x 5 × y

The method in the teaching module involving a combination of ideas

28 –5 ×9
457 –5 ×38
3.4 –5 ×653
302 –5 ×7/8

6 –5 ×8603

Changing 
number

Not changing Changing 
differently to the 

first number

–5
–5

–

–5
×

Red ×     Green
R ×      G

Or R 5 × G

Fig. 8.3 Pattern generalisation using a combination of historical ideas and Srinivasan’s method
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need to understand that since we are choosing from an infinite number of possibil-

ities, sometimes the letters/variables can take the same value, as outlined in Fig. 8.4.

In the first column, R and G represent generalised numbers and in the second

column that of related variables. The third and fifth lines show examples of where

the ‘Red’ and ‘Green’ variables take the same values. For ease of presentation, the

above examples are not set in context, however, students are more likely to relate to

examples of expressions and equations set in meaningful context such as ‘40% of

your pocket money + 30% of your weekly earnings’ (or 0.4� 25 + 0.3� 80) and

numerical variations of these.

These ideas were applied in a study involving 29 students (13 years of age) who

were members of one Year 9 class in a multicultural secondary school in Auckland,

New Zealand (Nataraj, 2012). A wide range of socio-economic and cultural back-

grounds was represented among the students. It was found that prior to the teaching

intervention only around 9% of the students demonstrated the ability to recognise

variation (partial understanding) or notate it using symbolic literals. In comparison,

afterwards 80.2% of the students displayed either partial or full understanding of

varying quantities. In addition, 71% of the students were able both to distinguish

between variation and invariance and also symbolise the variation using a letter.

Figure 8.5 shows an example of a student’s work where they recognise the changing

a)         4        +        12                    
0.08    +       589
6        +         6

97       +         34.9
15       +        15

306.4   +       52

4059     +         -7

b)        7         +         6     =  13
4.5       +       8.5   =  13
1         +         12   =  13

13        +        0      =  13
6.5      +       6.5    =  13
6         +        7      =  13

5.64     +       7.36   = 13

Red    +       Green
R      +       G    

Red     +   Green  =  13
R      +    G         =   13

or        R = 13 –G

Fig. 8.4 Pattern

generalisation in an

expression and in a formula

Fig. 8.5 Some of S26’s answers showing the use of colours and letters to represent variables
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nature of some values and are able to use the colour construct above to go on to

symbolise the expression. Some of the student comments following the intervention

give some idea of the students’ grasp of generalisation, variation and invariance.

S4: I think a generalisation is something like a letter or a colour that can be put in

the place of something that can represent multiple things.

S6: I notice that there are three kinds of numbers—changing, not changing and

changing but differently.

S7: I also understand the concept of generalisation is the number that is

changing. . .to group a changing number with a letter or symbol.

S13: generalisation is when you find some numbers changing like 3^1, 3^2, you first

choose any alphabet and put it as 3^b so you know those numbers are changing.

S18: what I understand about generalisation was that we put a symbol to show the

numbers that change, and we leave and use the same number if it doesn’t change.

S22: letters can take the value of any number.

S27: . . ..there had to be a letter that was the same because they represented that the

numbers were changing the same.

In the case of parameter, students’ inability to understand and use literal coef-

ficients has been described in both Küchemann’s (1981) and Harper’s (1987)

investigations, and affirmed by Sfard (1995) in her analysis of history of algebra

and psychogenesis. However, in their study involving high school and college

students’ work with algebraic expressions and problems involving parameters,

Ursini and Trigueros (2004) found that although students had difficulties in working

with parameters, their difficulties decreased when a specific referent can be given to

them. The authors recommend that parameters should be considered as generalised/

general numbers that are used to make second order generalisations.

Hence, combining the historical idea of colours along with a psychological

perspective of the notion of parameters as second order generalisations, it was

proposed (Nataraj, 2012) that the same didactic method described above can be

extended (see Fig. 8.6) to assist students to give meaning to letter as parameter. In

the first example, the specific referent is that of the straight line and y ¼ mpþ c
represents families of straight lines. Another possible approach, as outlined in the

Parameter as second order 
generalisation

General method of solution 
as a tool for understanding  

parameters or givens
y=3p+42 3p=12,     p=12/3
y=4p+16 4p=24,     p=24/4
y=2p+15 2p=25           p=25/2
y=7p+21 4.75p=9.65, p=9.65/4.75

y=maroon×p+crimson
or

y=mp+c

mp=v p=v/m

Fig. 8.6 Second order

pattern generalisation for

understanding parameter
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second example, is that of the general method of solution (Ursini, 2001) as a tool for

understanding parameter.

In summary, in order for students to be successful in algebra, they need to have a

clear understanding of:

1. Letter as unknown (3pþ 2 ¼ 14)

2. Letter as generalised/general number (3pþ 2)

3. Letters as variables (3pþ 2 ¼ y)
4. Letters as parameters (mpþ k ¼ y)

It is proposed that experiences such as the above could provide students with

supportive met-befores (Tall, 2004) that will enable them to construct a conceptual

base for a deeper understanding of algebra at senior school and at university.

8.6 Learning from History: Exponents

The discussion on student difficulties in understanding and working with exponents

related above suggests that an examination of the historical development might

assist with understanding student problems and provide ideas for the development

of appropriate didactic strategies.

The current exponential notation was developed by Chuquet (fifteenth century)

and Bombelli (sixteenth century) and the sign system of symbolic algebra that

included powers of variables was fixed by the time of Euler in the eighteenth

century (Puig & Rojano, 2004). However, this sign system for symbolic algebra

was only achieved following a long history of naming and working with large

numbers, that finally arrived at a system of notation that incorporated an adapted

positional notation system into powers to denote exponents. Hence x0 was a simple

number or constant, then x1 denoted x and x� x denoted x2, and so on. A further

study of history (e.g. Joseph, 2011) reveals that many cultures named and worked

with large numbers, including the Egyptians and Mayans of Central and South

America. For example, the Greek Archimedes, considered one of the greatest

mathematicians, defined ‘myriad’ as 10,000 in his Sand Reckoner. Using the

myriad, he expressed numbers up to a myriad-myriads which he called numbers

of the first order. This in turn was the unit for the second order of numbers and so on

to naming a number greater than the grains of sand that would fill the universe! This

may be compared with the work of Indian mathematicians, whose traditional

fascination with naming and working with large numbers allowed them to build a

spectacular tower of numbers. What were the types of numbers that they considered

in ancient times? A few examples from Indian historical texts are given below:

1. A major milestone in the development of the Hindu-Arabic place value system is

a (surprisingly very early) set of number names for powers of ten. In the

Vajasaneyi (Sukla Yajurveda) Samhita (17.2) (c. 2000 BC) of the Vedas, the

following list of arbitrary number names is given in Sanskrit verse: Eka (1),
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Dasa (10), Sata (102), Sahasra (103), Ayuta (104), Niyuta (105), Prayuta (106),

Arbuda (107), Nyarbuda (108), Samudra (109), Madhya (1010), Anta (1011),

Parardha (1012) (e.g. Bag & Sarma, 2003; Datta & Singh, 2001). They were

aptly called the dasagunottara samjna (decuple terms), confirming that there

was a definite systematic mode of arrangement in the naming of numbers.

The same list of names of powers of ten was then extended to loka (1019)

(Gupta, 1987).

2. In the Buddhist work Lalitavistara (c. 100 BCE), there are examples of series of

number names based on the centesimal scale. For example, in a test, the

mathematician Arjuna asks how the counting would go beyond koti (107) on
the centesimal scale, and Bodhisattva (Gautama Buddha) replies: Hundred kotis
are called ayuta (109), hundred ayutas is niyuta (1011), hundred niyutas is

kankara (1013), . . .and so on to sarvajna (1049), vibhutangama (1051), tallaksana
(1053). It is to be noted that there are 23 names from ayuta to tallaksana. Then
follow 8 more such series, starting with 1053 and leading to the truly enormous

number 1053þ8�46 ¼ 10421! (Menninger, 1969).

3. In the Vedic literature, time is reckoned in terms of yugas or time cycles. The

four yugas are Satya-yuga, Treta yuga, Dwapara yuga and Kali yuga. According
to Hindu cosmology, the time-span of these four yugas is said to be 1,728,000,

1,296,000, 864,000 and 432,000 years, respectively, in the ratio 4:3:2:1. The

total of these four yugaswas considered as one yuga-cycle orMahayuga and was
thus 4,320,000 years (Srinivasiengar, 1967). Moreover, it is believed that 1000

such yuga-cycles comprise one day in the life of Brahma, which is

4,320,000,000 years and one day and night period is 8.64 billion years which

was further extended to 311� 1012. As pointed out by Plofker (2009) time in the

astronomical works is bound by cosmological concepts. In one kalpa which is

4,320,000,000 years, all celestial objects are considered to complete integer
number of revolutions about the earth.

4. Like the Vedic mathematicians, the Jaina mathematicians, as part of their

philosophy took special interest in long stretches of time and space. One

example says: Consider a trough whose diameter is that of the Earth. Fill it up

with white mustard seeds counting one after another. Similarly fill up with

mustard seeds other troughs of the sizes of the various lands and seas. Still the

highest enumerable number has not been attained (Joseph, 2011).

What can be seen above is that very large numbers (leading to exponential

numerals), some of which were related to time and distance, were considered in

India and they held a special fascination for the ancients. Eventually, such consid-

erations led to a place value numeration system based on exponentiation of powers

of ten. Hence, students in the middle school may benefit from reading, writing and

naming very large numbers and working with them. The generation of problems

such as the 4 mentioned above have the potential to promote calculation and the

development of quantity sense or a sense of the size of numbers (Wagner & Davis,

2010). In addition, such numbers were employed in a practical/realistic context

(Plofker, 2009) such as astronomy, and time measures (for calendar purposes).
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Students are also often fascinated by large numbers andmay be evenmoremotivated

if a meaningful, authentic context is used (Jhagroo & Nataraj, 2015). Concepts

involving exponents are usually taught at the secondary school level by abstract

rules, which students accept and often with little or no visible authentic application.

Textbooks often move from exponential numerals to powers involving letters within

a few exercises on scientific notation. However, students’ persistent misuse of

exponents (MacGregor & Stacey, 1997) points to an insecure foundation of the

concepts of multiplication, repeated addition and repeated multiplication. Even at

the basic level of repeated multiplication, students’ responses also reflect a lack of

understanding of the nested effect of grouping of repeated multiplication such

as 3 groups of 3 groups of 3 groups of 3 in 3� 3� 3� 3, which is the same as 34.

It seems that students need such grouping experiences (involving for example

matchsticks), and work that leads to understanding of exponential concept

for positive integers, in order to appreciate the difference between 34 and 3� 4,

and, 34 and 43, and so on. However, the definition of exponentiation as repeated

multiplication alone presents other problems later on since students have to establish

some sort of meaning to non-positive and non-integral exponents. In order to

circumvent this, Schmittau (1993) suggests beginning the exponent concept with

exponential functions and allowing for the full range of real number exponents in a

problemwhere students are required to express mathematically a situation involving

continuous growth.

Out of these considerations, Schmittau designed a teaching experiment that

allowed for the emergence of non-positive and non-integer exponents (given in

Fig. 8.7).

Rather than reflecting botanical reality, Schmittau says that this task, which she

suggests introducing after powers with positive integers, entails movement between

arithmetic and geometric sequences (Day and Height axes) through the develop-

ment of the exponential function y¼ 3x, and solving for x at various intervals, not
only for positive integers, but also zero, negative, and fractional exponents are

developed. Because of the continuous nature of plant growth, heights of the plants

involving irrational exponents can be seen to be possible (see some potential results

in Fig. 8.8).

Furthermore, powers provide a crucial link between arithmetic and algebraic

notation and concepts and hence should be exploited in teaching and learning. For

example, generalising place values (involving second order generalisation in two

ways as shown in Fig. 8.9) could provide students with an opportunity to develop a

depth of understanding not only of an idea as fundamental as positional numeration

system but also a deeper awareness of key ideas in algebraic symbolism—different

symbols being for different variables, and powers of variables.

In Fig. 8.9, the top half demonstrates horizontal first order generalisation and

then vertical second order generalisation while the bottom half reverses this. Once

again the historical review presented here, along with a psychological perspective

on exponents, was used to design a teaching framework for implementation in the

middle school and lower secondary school classroom, and this is given in Fig. 8.10.

The teaching sequence has been constructed in order to enhance the conceptual
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base that students hold for understanding exponentiation in arithmetic, and subse-

quently in algebra, and for progressing to advanced mathematics. This teaching

framework was used with the same class of 29 Year 9 students described above.

Overall the students improved their test score after the intervention, with the

Meanpre¼ 4.8 and Meanpost¼ 18.34, t¼ 10.87, p< 0.0001. While there was no

evidence of exponentiation beforehand, all apart from two students (one of whom

had 5 weeks’ absence) could symbolise powers afterwards. Their use of exponen-

tiation in explaining place value may be seen in Fig. 8.11.

A few students were even able to generalise their use of exponentiation to

general positions in a place value system with a general base, as seen in Fig. 8.12.

The Task: At 8.00 Sunday morning a child notices a small plant growing near his house. He decides to 
measure it and finds that it is 3cm high. He measures it again on Monday morning at 8.00 and finds it to be 
9cm high. He decides to measure it at the same time on ensuing mornings. Tuesday’s measurement is 
27cm, and Wednesday’s is 81 cm. Assuming that this growth pattern is descriptive of the entire growth
history of the plant:

1. How tall was it on the previous Saturday morning at 8.00? Why didn’t he notice it?
2. How tall was it the previous Friday at 8.00 am? The previous Thursday at 4 am?
3. If we label Sunday as Day 1, the first day the child measured the plant, and want to be consistent 

with our numbering scheme,how should we number the following days: Saturday?, Friday? 
Thursday? If we denote the height of the plant on Sunday at 8.00 am as 31 cm, how could we 
express the heights on the other days?

4. How tall was the plant at 8.00 the previous Saturday night?  At 8.00 Sunday night?
At 4.00 pm on Saturday?(Did you happen to find the height at another day or time?)

5. When will the plant be 46.765 cm tall?
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Sun
8 AM
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8 AM

Tues
8 AM

Wed
8 AM

Fig. 8.7 The plant growth problem (Schmittau, 1993)
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8.7 Concluding Remarks

The deliberations in this chapter cover the concepts of variable and exponentiation,

along with students’ understanding of these ideas, and demonstrate in practice the

value of employing a historical perspective in teaching these ideas. However, it is

also critical that students gain fluency in algebraic procedures (Hiebert & Lefevre,

1986; Skemp, 1976) and in harmony with this the National Council of Teachers of

Mathematics Principles and Standards for School Mathematics in the USA, states:

Developing fluency requires a balance and connection between conceptual understanding

and computational proficiency. On the one hand, computational methods that are over-

practiced without understanding are often forgotten or remembered incorrectly. On the

other hand, understanding without fluency can inhibit the problem solving process. (Smith,

2014)

Proficiency in algebra may be increased when instructional practices support the

development of not only conceptual understanding in algebra but also procedural

fluency (Kilpatrick, Swafford & Findell, 2001). It is to be hoped that teaching that

Ht.

Day

(cm)

Thurs
8AM

Fri
8AM

Sat
8AM

Sat
8PM

Sun
8PM

Sun
8AM

Mon
8AM

Tues
8AM

Wed
8AM

3

–2 –1 0 1/2 3/21 2 3 4

–2 3–1 30 31/2 33/231 32 33 34

Fig. 8.8 Partial results of

plant growth problem

(Schmittau, 1993)
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provides opportunities for students to make sense of algebraic symbols and pro-

cedures will also promote procedural fluency and conceptual understanding (Smith,

2014). As we have seen this has been demonstrated on a small scale in the results

mentioned above.

Learning ‘just algebra’ is crucial to students’ transition to tertiary courses,

especially the STEM options. The two key ideas presented in this chapter are the

various uses of letters and the concept of exponentiation. We believe it is an

understatement to say that teachers need to be aware of the various meanings that

students bring to algebra. One aim of education should be to prepare students for

long-term understanding and success in algebra, and so much of the groundwork

needs to be established and strengthened in the middle and lower secondary years of

schooling. Hence, teachers have a responsibility to make sure that students’ initial

experiences of exponentiation and use of letters in algebra (including supportive

met-befores) establish the basis for as clear an algebraic understanding as possible.

It seems that combining historical ideas and current didactical constructs may

reveal fresh approaches to the understanding of, and notation for, variables and

powers in algebra.

103 102 101 100    10−1 10−2 10m

63 62 61 60        6−1 6−2 6m

73 72 71 70 7−1 7−2 7m

53 252 251 250 25−1 25−2
25m

pm

103

63

73

53

102

62

72

52

101

61

71

51

100

60

70

50

10−1

10−1

10−1

10−1

p3 p2 p1 p0 p−1 pm

Fig. 8.9 First and second

order generalisation
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1. Reading and writing powers of ten and their names in various 
ways. E.g. trillion= 1012 or 1000 000 000 000 or 10×10×10.....

Understanding
Large 

Numbers
Including 
Powers

2. Reading and writing large numbers. E.g. 532 609 418 056 or 532 
billion 609 million………………. or  5×1011 +3×1010 +2×109………………

3. Grouping experiences (with matchsticks or craftsticks) and 
exponential notation: 4+4+4+4+4=4×5 , 4×4×4×4×4=45, 
10×10×10=103

4. Working with large numbers and increasing quantity sense: How 
long does it take to count to a million, and to a billion, etc? How 
many grains of sand in all the beaches of the world?

5. Generating problems with a potential for calculation: If on 
average, a Year 9 student speaks 15000 words per day, how many 
words will be spoken by 210 students in 3 years?, How high is a 
million dollars in 1000 dollar bills? A billion dollars?

6. Calculator work: Comparing values such as 4×6 and 46, 7×6 and 76, 
and, 46 and 64, 35 and 53 . Also, evaluating 47, 49, 416, 422, 429.... and 
46, 56, 96, 156 etc. 

7. Authentic problems across content( measurement), and cross-
curricular authentic word problems (e.g. science, social studies) 
involving large (& small) numbers and powers

8. Generalisation of exponential numerals to pm

9. Opportunities to explore non-positive, and rational exponents 
such as the plant growth problem

Fig. 8.10 A framework for teaching the exponentiation concept
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Fig. 8.11 Student answers showing use of exponentiation
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Part IV

Proposed Future Developments



Chapter 9

Cognitive Neuroscience and Algebra:
Challenging Some Traditional Beliefs

Carolyn Kieran

Abstract Recent studies using neuroimaging technology with tasks touching on

various areas of mathematics are raising a great deal of excitement with their

findings. This chapter presents some key work related to higher level mathematical

reasoning and a few insights arising from these studies with respect to our current

understanding of algebra learning. After a general introduction on cognitive neu-

roscience and its recent advances relevant to mathematics education, the chapter

focuses on two studies in particular, one on the algebraic solving method and the

other on representing functions. The chapter concludes with a discussion of the

ways in which these results from the newly emerging field, which is at times

referred to as mathematics educational neuroscience, offer the potential of casting

a quite different light on how we think about students’ processing of algebra-related
material.

Keywords Cognitive neuroscience • Algebra • Functions • Symbolic method •

Model method • Excelling in algebra

9.1 Introductory Remarks

Research on the development of algebraic skills, and their underlying conceptual

foundations, has been an area of international interest since the late 1970s (see, e.g.,

Kieran, 1992, 2007). The body of research findings that has resulted from this

interest has provided valuable empirical information on the various processes

engaged in by students in their learning of algebra. It has also yielded theoretical

constructs for interpreting these processes, as well as insights into the role that

technological tools, various teaching approaches, and specific tasks can play in the

development of that learning. Despite these advances in the body of knowledge

related to algebra learning and teaching, cognitive neuroscience and neuroimaging

data provide new tools for an even better understanding of the processing of

mathematical tasks. While some of the findings of recent cognitive neuroscience
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research are corroborating what we think we already know about mathematical

learning, other findings are proving to be much more of a surprise to mathematics

teachers and mathematics education researchers. It is the surprising findings—

findings related to the processing of algebra- and function-related material by

young adults—that are the main focus of this chapter. The chapter begins with a

nontechnical introduction to the field of cognitive neuroscience and presents some

of its recent results related to the processing of mathematical tasks. The section that

follows goes into the details and findings of two cognitive neuroscience studies that

are the core of this chapter. The chapter concludes with a discussion of these

findings and relates them to the body of existing research evidence on algebra

learning.

9.2 Cognitive Neuroscience and Mathematical Reasoning

9.2.1 Cognitive Neuroscience

Cognitive neuroscience, according to Wikipedia, is an academic field concerned

with the scientific study of the biological substrates underlying cognition, with a

specific focus on the neural substrates of mental processes, and addresses the

questions of how psychological/cognitive functions are produced by neural circuits

of the brain. Cognitive neuroscience is a branch of both psychology and neurosci-

ence and relies upon theories drawn principally from cognitive science, but also

overlaps with disciplines such as physiological psychology, cognitive psychology,

and neuropsychology.

One of the main advances in this area of study occurred during the second half of

the nineteenth century with the emergence of localization theories of the brain: the

notion that different mental functions were related to specific areas of the brain. The

twentieth century brought the phenomena of memory and thought and the cognitive

revolution to the field. The demonstration that behavioral data do not provide

enough information by themselves to explain mental processes led to the investi-

gation of neural bases of behavior. Concurrent with the cognitive science move-

ment, which was born in 1956 at a meeting at MIT where Chomsky and the team of

Newell and Simon presented their work, neuroscience was established as a unified

discipline in 1971. Interactions between neuroscience and cognitive science began

to occur at the end of the 1970s and the term cognitive neuroscience was coined.

The newly developed theories of cognitive science were adopted by cognitive

neuroscience. As brain mapping technologies such as fMRI evolved, researchers

began to use these technologies and the strategies of cognitive psychology to study

brain function. The new field of cognitive neuroscience brought mind and brain

together.

Quite recently, education was added to the mix to yield “mind, brain, and

education” (Fischer, 2009). Educational neuroscience presently gathers together
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researchers in cognitive neuroscience, educational psychology, educational tech-

nology, and other related disciplines to explore the interactions between biological

processes and education. A major goal of educational neuroscience is to bridge the

gap between the two fields, with each field contributing to the other. Special Interest

Groups (SIGs) devoted to neuroscience and education have been set up within

educational research associations such as EARLI (SIG 22 met for the first time in

Zürich in 2010), AERA, and BERA. While there has existed a certain amount of

controversy as to whether cognitive neuroscience has a role to play in the broader

field of education (e.g., Bruer, 1997), cognitive neuroscience has already made

discoveries of use to education in general and to mathematics education in partic-

ular—mathematics educational neuroscience being considered a branch of educa-

tional neuroscience (see Campbell, 2010).

The two studies that are summarized in this chapter—studies where education

researchers equipped with expert knowledge of the learning of mathematics have

collaborated with cognitive science researchers—are but a few that illustrate the

potential of mathematics educational neuroscience. The year 2010 also marked the

first time that a leading mathematics education journal (ZDM: The International
Journal on Mathematics Education) published a special issue containing a collec-

tion of studies that used neuroscientific methods to examine mathematics learning

across a range of school levels (see, e.g., De Smedt & Verschaffel, 2010). A further

indication of the emergence of this field is a chapter titled Mathematics Educational

Neuroscience, which will appear in the upcoming Third Handbook of Research on
Mathematics Teaching and Learning.

9.2.2 The Methods Used in Cognitive Neuroscience Research

Cognitive neuroscience research seeks to identify the brain activations that accom-

pany elementary psychological processes. Among brain imaging methods, the

various alternatives include functional Magnetic Resonance Imaging (fMRI),

event-related potentials (ERP), electroencephalography (EEG), and near-infrared

spectroscopy (NIRS). The fMRI method (see, e.g., Hernandez-Garcı́a, Wager, &

Jonides, 2002) uses MRI technology to measure brain activity by detecting changes

in blood flow. The underlying principle is that cerebral blood flow and neural

activity are related: when an area of the brain is activated, blood flow to that region

increases. Increases in the amount of oxygenated blood are reflected in the magnetic

properties of the blood. While fMRI typically has very good spatial resolution, it is

relatively poorer with respect to temporal resolution because of the time required

for blood flow to reach its peak in response to a given task. In contrast, the ERP

method obtains reliable temporal readings of the physiological correlates of cogni-

tive activity by means of EEG, which measures electrical activity of the brain over

time using electrodes placed on the scalp. This technique allows accurate timing of

changes in brain activity during execution of a cognitive task. While ERPs provide

excellent temporal resolution, the dimension of spatial resolution is undefined.
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Nevertheless, significant changes in the electrical activity recorded at each of the

multiple electrode sites as subjects engage in a given task can yield general

indications about the location of the neural structures being activated. The NIRS

method, which has only recently begun to be used in educational settings (e.g.,

Obersteiner et al., 2010), involves placing a probe set on a participant’s head and

using near-infrared light to continuously measure changes in cerebral hemoglobin

concentration. NIRS has lower spatial resolution than FMRI and lower temporal

resolution than EEG, but higher temporal resolution than fMRI. While its portabil-

ity and less restrictive nature make NIRS a practical option for school settings, this

optical imaging technique is restricted to measuring cortical activity and not the

subcortical activity that can be detected by fMRI. In addition to the various brain

imaging technologies currently being used in cognitive neuroscience, eye-tracking

technologies are also receiving increasingly widespread attention (e.g., Susac,

Bubic, Kaponja, Planinic, & Palmovic, 2014).

Decisions regarding the appropriate imaging technology to be used in a given

study must be aligned with the specific hypotheses to be tested, the choice of tasks

to be used, the nature of the inferences to be drawn, and the suitability of various

experimental designs, including the techniques of statistical analysis that will be

applied to the data. While these various aspects are not the focus of this chapter, it is

however noted that the design of cognitive neuroscience studies almost always

provides for obtaining both neural and behavioral data. As emphasized by De

Smedt et al. (2011), “the collection and analysis of behavioral data represents a

necessary step in most fMRI experiments . . . and studies in cognitive neuroscience

are grounded in hypotheses that are derived from behavioral (cognitive) data; in

cognitive neuroscience, behavioral and neuroimaging data are considered on a level

playing field with each type of data providing information that constrains the

insights gleaned from the other, thereby becoming inextricably linked . . . an

appreciation of multiple sources of data at different levels of description is essential

to better understand a phenomenon under investigation” (p. 234). Often the behav-

ioral data of cognitive neuroscience studies comprise accuracy rates and reaction

times. While the articulation of the behavioral and neural data is central to the

analyses of cognitive neuroscience studies, it is the neural data that provide

information that is simply not discoverable by means of the behavioral data alone.

9.2.3 Cognitive Neuroscience and Arithmetic

The bulk of the recent work in cognitive neuroscience that has focused on mathe-

matical reasoning has been related to the processes involved in arithmetic problem

solving and reasoning. According to a review by Menon (2010), this research,

which has examined various aspects of arithmetic processing such as retrieval,

computation, and reasoning and decision making about arithmetic relations, has

“helped to clarify which brain areas are critically and consistently engaged during

arithmetic tasks, which regions provide a supportive role in arithmetic, and which
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brain areas contribute to arithmetic learning” (p. 515). For example, the research of

Dehaene, Piazza, Pinel, and Cohen (2003) emphasized the role of the parietal cortex

in number processing and arithmetic calculations. The parietal cortex has been

found to be involved too in more complex mathematical processing such as word

problem solving (Newman, Willoughby, & Pruce, 2011). Much of this cognitive

neuroscience research has built upon prior psychological research that has identi-

fied some of the cognitive processes involved in learning arithmetic.

An example of a study that has examined the neural bases of psychological

research findings in arithmetic is one that has been reported by Dresler et al. (2009)

and Obersteiner et al. (2010). The study was designed to investigate whether pupil

age and problem format (numeric or word format) would lead to different neural

processing. The researchers, who were also interested in testing the feasibility of

using NIRS technology with school children, conducted a school-based study

involving 90 pupils from the 4th and 8th grades. Individual participants sat in

front of a computer screen with probe sets placed on their heads. Error rates and

reaction times served as behavioral data; for the NIRS data, the researchers focused

on the oxygenated blood levels in certain regions of interest. The behavioral data

showed that error rates were low and that, although numerical tasks were solved or

read more quickly than word problems for both age groups, the difference between

word problems and numerical problems was much smaller for grade 8 than for

grade 4 students. The NIRS data revealed, as expected, that calculation resulted in

slightly greater average oxygenation than did reading in parietal and posterior

frontal regions. Surprisingly, similar brain activation patterns were found for both

age groups. In view of the fact that older children had been hypothesized to use

retrieval strategies to a greater amount and that they were more advanced in solving

word problems due to their greater experience, the researchers expected to see more

activation of brain areas associated with retrieval for the older students; but this was

not the case. Their results led to the conclusion that the similarity of the activation

patterns among 4th and 8th graders suggests that “while complex mental arithmetic

[involving two-digit addition in the arithmetic problems] may develop from pri-

mary to secondary school in terms of more speeded calculation, these processes

seem to rely on the parietal cortex in both age groups” (Obersteiner et al., 2010,

p. 548). This study, which was the first to assess such a large number of students in a

short time (14 days) within an educational setting, also illustrated the potential of

the NIRS technology for studying young children’s arithmetical activity.

9.3 Two Recent Cognitive Neuroscience Studies
on the Processing of Algebra-Related Material

Up until the last decade, the processing of algebra-related material was extremely

rare in cognitive neuroscience research. The two studies that are highlighted in this

section are not the only ones to have been conducted on algebra topics, but they
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both serve to underline a central aspect related to the learning of algebra. Algebra is

cognitively demanding! The studies provide clear evidence of the cognitive effort

involved in doing and in being successful at algebra.

9.3.1 Greater Cognitive Processing Required for Symbolic
Method Than for Model Method

In Singapore, students are taught in primary school how to solve word problems by

means of the model method. Let us take, for example, the Sharing Problem

illustrated in Fig. 9.1 (Ng, 2004), along with its solution by means of the model

method.

A central feature of the model method is that unknowns are represented by unit

rectangles. In this example, Samy’s rectangle or unit is the generator of all the

relationships presented in the problem. Raju, who has $100 more than Samy, is

represented by a unit that is identical to Samy’s, plus another different-sized

rectangle representing the relational portion of $100 more. A model representation

is formed that involves the two basic units, the $100 rectangle, and the total amount

of $410. The entire structure of the drawing is the model representation. Students

generally process such a model by undoing operations that involve subtracting

100 from 410 and then dividing 310 by 2.

The corresponding literal-symbolic formulation, taught when students are in

early secondary school, involves representing each of the units by the unknown x,
within the algebraic equation x+ x+ 100¼ 410. Generating symbolic representa-

tions for word problems, and using syntactic methods for solving with these

symbolic representations, then becomes the norm for working with algebra prob-

lems throughout the secondary school experience. However, some students seem to

prefer to use hybrid forms involving both model and symbolic methods (Khng &

Lee, 2009). The researchers whose cognitive neuroscience study is the focus of this

section of the chapter (i.e., Lee et al., 2010) were interested in whether the model

and symbolic methods draw on similar cognitive processes and impose similar

cognitive demands.

Raju

Samy

? $100

$410

Raju and Samy shared $410 between them. Raju re-
ceived $100 more than Samy. How much money did
Samy receive?
2 units = $410 - $100

1 unit  = $155
Samy received $155

= $310

Fig. 9.1 The sharing

problem and its

accompanying model

method
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Lee et al. (2010) carried out their study with 17 right-handed adults (ten of whom

were male), aged 22–29 years, who were proficient in both methods. The

researchers used functional magnetic resonance imaging (fMRI) to examine

whether the two methods involve similar cognitive processes and impose similar

demands. Even if the solving time for the two methods were the same, fMRI would

disclose whether different parts of the brain were activated by each method. In a

previous study, the researchers (Lee et al., 2007) used fMRI to study the differences

between the model and symbolic methods in the early stages of problem solving

involving the transformation from text to either the model or the symbolic repre-

sentation. They found that, while both methods were associated with activation of

the working memory and quantitative processing regions of the brain, the symbolic

method resulted in greater activity of those parts of the brain associated with

attentional requirements. The 2010 study of Lee and his collaborators focused on

the second stage of algebra word problem solving, that is, the computation of the

actual solution to the problem from either the given model or the given symbolic

representation.

While the advantages of fMRI are many, its constraints are such that the tasks

need to be of short duration and typically involve key press responses. Sample tasks

used in the Lee et al. (2010) study are shown in Fig. 9.2. It is noted that these tasks,

while appearing to be quite simple in a school math context, were actually more

complex than those typically encountered in fMRI studies. During trials involving

the Model Experimental condition (ME), participants were presented with a model

representation containing two rectangles, named J and M, with various relation-

ships between the two being indicated. For the sample task shown in Fig. 9.2, J and

M totaled 31 units, with M having 9 less than J. Participants were to find the number

of units belonging to J. Trials involving the Symbolic Experimental condition

(SE) were structurally identical to those given in the ME condition, but presented

as algebraic equations. For the sample task shown in Fig. 9.2, J and M together

added to 38, with M being 12 less than J. In order to control for processes related to

the mere perception of model and symbolic representations, two control conditions

(MC and SC) were used, with information presented in a manner that was not

mathematically meaningful; participants were asked to take note of, and remember,

the number that was in the same row as J (for the MC condition) or in the same row

as “¼J” or “J¼” (for the SC condition).

The imaging technology used by the researchers allowed them to acquire both

functional and structural brain images—the functional data yielding quite high

temporal resolution and the structural data, high spatial resolution. As is the case

with most studies of a cognitive neuroscience nature, Lee et al. (2010) present

findings related to two types of data—those related to the study’s behavioral data,
for example, the correctness of the participants’ responses, and those related to the

imaging data. From the analysis of the behavioral data, it was found that partici-

pants were less accurate in the symbolic experimental condition (89% success rate)

than in the model experimental condition (96% success rate), even though all

participants had initially been screened to ensure that they could attain more than
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90% on problems similar to those used in the study and had less that 5% difference

in accuracy when using the two methods.

The imaging data were analyzed with respect to similarities and differences

between the diagrammatic model and symbolic methods, as indicated by the areas

of the brain that were activated by the calculation with each method. With respect to

the symbolic method, greater activation was found in the middle and medial frontal

ME

MC

SE

SC

4s
9s

2s to respond Y/N

+

+

+

+

J

J

J + M = 38

J = M + 12

= 19 – JM

+ 35M = J

M

M

9

18
36

31

J = 20

J = 11

or

J = 36

J = 33

J = 25

J = 13

J = 35

J = 19

or

or

or

Fig. 9.2 Sequence of stimuli for the four conditions: model experimental (ME), model control

(MC), symbolic experimental (SE), and symbolic control (SC). Participants first saw a fixation

point for 4 s, followed by the problem, which was shown for 9 s. This was followed by the response

screen. Participants were given 2 s to validate it against their own answers. Here, the response

screen is illustrated with two alternatives (the top slide contains the correct answer). In the

experiment, participants were provided with only one response alternative. Sample tasks from

the Lee et al. (2010, p. 596) study (reprinted with permission from Springer)
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gyri, anterior cingulate, caudate, precuneus, and intraparietal sulcus (see Fig. 9.3).

The greater activation of these areas allowed the researchers to infer that additional

attentional and executive resources are required for generating a numeric solution

from an algebraic equation than from a diagrammatic model representation. The

study also suggested that “linguistic processes play a more prominent role when

processing symbolic stimuli” (Lee et al., 2010, p. 603). When the findings from this

study were compared with those from their earlier study (which required only the

translation of algebra word problems into such representations), as well as with

related results from other recent cognitive neuroscience research, the results were

consistent. The repeated finding that similar areas of the brain were differentially

activated led the researchers to conclude that the symbolic method is more demand-

ing than the diagrammatic model method. That the symbolic method is more

effortful than the model method, even for competent adult algebra-problem-solvers,

is a clear challenge to the traditional belief that algebraic methods of problem

solving are easier than other methods and that algebraic solving activity is simply

the mindless execution of an automatized set of techniques for symbol

manipulation.

9.3.2 Cognitive Effort Required for Achieving Excellence
in Algebra

A recent study by Waisman, Leikin, Shaul, and Leikin (2014) investigated the

mathematical area of translation from graphical to symbolic representations of

functions and their cerebral activation in groups of participants that differed in

Fig. 9.3 Representation of lateral surface of left hemisphere of cerebral cortex (non-copyrighted

material from the Internet)
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general giftedness and excellence in school mathematics. Two hundred right-

handed males from 10th and 11th grade (16–18 years old) participated in the

study. The results of the study are based on data from a subsample of 84 out of

the 200 for whom the collected readings were without excessive noise and who

constituted the following four main groups: 19 were generally gifted and excelling

in mathematics (G-EM group), 21 were generally gifted but did not excel in

mathematics (G-NEM group), 16 who were not identified as being generally gifted

but who excelled in mathematics (NG-EM group), and 19 who were neither gifted

nor excelling in mathematics (NG-NEM group). A special fifth group was com-

posed of 9 students with extraordinary mathematical abilities (S-MG).

The study used the ERP (event-related brain potentials) technique, which offers

high temporal resolution—electrophysical measures reflecting changes in the elec-

trical activity of the central nervous system related to perceptual and cognitive

processing before the appearance of any external response. Different ERP waves

are considered to be related to different cognitive processes occurring at different

times. Sixty tasks, all basic items of the Israeli curriculum, were presented visually

to each participant. Each task was displayed in two consecutive windows with the

graphical representation of the function followed by a suggested translation to

symbolic form, to which the participant had to press a button on a keyboard as to

whether the suggested symbolic representation was correct or not (see Fig. 9.4).

Both behavioral analyses and electrophysiological analyses were carried out.

Behavioral analyses indicated that both G-EM and NG-EM students exhibited

similar accuracy rates and reaction times. G-NEM students attained a level of

accuracy similar to that of G-EM students by means of a longer reaction time

devoted to the solving process. S-MG student were both significantly more accurate

and quicker than students in both the G-EM and NG-EM groups.

Electrophysiological analyses indicated a greater latency at the early stage of

perception for the S-MG group suggesting more complex mental activity early on

for this group, followed by faster overall processing. That this group exhibited the

highest accuracy along with the shortest reaction time is perhaps not so surprising.

What is of more interest for this chapter is the finding that, among non-gifted

students, those who excelled in mathematics achieved higher accuracy by means of

greater mental effort. That is, NG-EM students had higher electrical brain activity

than did the G-EM group across all time intervals. In fact, the mean amplitude

levels for NG-EM students were the highest among the four participant groups

(excluding the S-MG group).

S1 S2

+ ISI ISI

500 ms 2000 ms 1000 ms 5000 ms 1000 ms Time
S1 – Introducing a situation; S2 – Question presentation; + – Fixation cross; ISI –Inter stimulus Interval

y = x3

Fig. 9.4 The sequence of events and a task example from the Waisman et al. (2014, p. 676) study

(reprinted with permission from Springer)

166 C. Kieran



Waisman and her fellow researchers’ finding that the students who were not

generally gifted but who excelled in mathematics displayed the highest overall

electrical activity of the four main groups is consistent with their results from a

previous cognitive neuroscience study involving short insight-based problems

(Leikin, Waisman, Shaul, & Leikin, 2012). As well, Waisman et al. (2014) found

that only a combination of giftedness and mathematical excellence leads to lower

cortical readings that, in turn, reflect lower cognitive load. In other words, prior

expertise in problem solving does not necessarily lower the mental load. Thus, they

argue that neurocognitive efficiency “does not characterize brain activity in all

experts in problem solving and . . . that problem-solving expertise developed by

students without general giftedness is achieved by means of high cognitive effort”

(Waisman et al., 2014, pp. 689–690). The researchers suggest that this effort may

indicate that such students “allocate more mental resources for devoting their

attention to the graph, to classify stimuli features and to retrieve relevant informa-

tion (symbolic equation) from memory” (p. 690). However, the techniques and

research design employed in the previously discussed study by Lee et al. (2010)—

techniques that allowed them to confirm that additional attentional and executive

resources are required for generating a numeric solution from an algebraic equation

than from a diagrammatic model representation—suggest that it is not attention to

the graph itself, but rather to its algebraic symbolic entanglements, that is at play

here. The neural-data-based finding from the Waisman et al. study with respect to

the cognitive effort expended by those who excel clearly challenges the naive belief

that students who do well in algebra and functions are naturals at it and achieve that

excellence without a great deal of cognitive effort.

9.4 Discussion

Despite the many caveats that could be raised with respect to the methods of

cognitive neuroscience research and thus to the validity of the conclusions one

might draw from such research (Turner, 2011), there is no question as to the insights

into mathematical processing that this research provides, insights that could not

otherwise be obtainable. Brain imaging techniques are able to yield information not

discoverable by more traditional, behavioral, research methods. The limitations of

existing behavioral and subjective self-report methods highlight the problem of

using such methods to speculate about cognitive activity. As we have seen from the

two main studies described in this chapter, one of the most compelling findings to

emerge from this recent cognitive neuroscience research concerns the nature of

algebraic processing. Not only does the algebraic method of equation formulation

and equation solving require a great deal more cognitive attention than does the

diagrammatic model method (Lee et al., 2007, 2010), but also that those who are

not gifted mathematically but who excel in algebra achieve this excellence by

means of a great deal of mental effort (Waisman et al., 2014).
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These research findings that suggest that high cognitive effort is required in

order to use algebraic methods and to excel at algebra—even for competent young

adults—are so compelling because they go against the widespread view that

algebraic manipulation is simply a mindless and highly automatized activity that

involves executing algorithmic procedures for expression simplification and equa-

tion solving. Research on teachers’ knowledge of students’ algebraic thinking

indicates that teachers (and researchers too) believe that the literal symbolic

representation is much easier for students to handle than are other representations

of algebra-related problems. For example, Nathan and Koedinger (2000) asked a

group of 67 high school mathematics teachers and 35 mathematics education

researchers to rank order 12 mathematics problems from easiest to most difficult.

Four were in story-problem format (e.g., “When Ted got home from his waiter job,

he multiplied his hourly wage by the six hours he worked that day. Then he added

the $66 he made in tips and found he earned $81.90. How much per hour did Ted

make?”), four were in symbol-equation format (e.g., “Solve for x: x � 6
+ 66¼ 81.90”), and four were in word-equation format (e.g., “Starting with some

number, if I multiply it by 6 and then add 66, I get 81.90. What did I start with?”).

Teachers and researchers predicted that story problems and word-equation prob-

lems would be more difficult than symbol-equation problems.

When Koedinger and Nathan (2004) gave the same problems to a group of

76 high school students (Algebra I and post-Algebra I students), the symbol-

equation format was found to be significantly less likely to be correctly solved

than either the story-problem or word-equation formats. In a replication study

involving 171 students (all Algebra I students) solution success rates for symbol-

equation format were 25% less than for story problems and nearly 20% less than

for word equations. The finding that teachers believed that symbol-equation prob-

lems would be the easiest for students and that, in fact, students found the symbol-

equation format the most difficult is telling. Nathan and Petrosino (2003) have

provided evidence to support the argument that it is the well-developed subject-

matter knowledge of the high school teachers (i.e., the “expert blind spot” syn-

drome) that underpinned their view and that led them to inaccurately predict

students’ algebra problem-solving difficulty.

Koedinger and Nathan (2004) have emphasized that the learning of algebraic

technique and the various subtleties involved in algebraic transformational activity

takes much longer than teachers may realize. Other researchers have also noted the

many aspects of algebra that students find difficult to master. For example, Hoch

and Dreyfus (2004) observed that the 11th graders who participated in their study

on the recognition of form within algebraic expressions and equations had a very

poor sense of form, which led to inconsistent and erroneous symbol manipulation.

Bloedy-Vinner (1994, 2001) investigated Israeli matriculation students’ under-

standing of parameters and variables, as well as the notion that an algebraic letter

that starts off as a parameter might change in meaning throughout the process of

solving a problem. In understanding this difference in roles, implicit quantifiers are

involved. From a questionnaire designed to test students’ understanding of implicit

quantifier structures, she found that most of the questions yielded very low success
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rates ranging from 3 to 69%. Findings such as these have led some researchers

(e.g., Artigue, 2002; Lagrange, 2000) to suggest that, for the older student of

algebra, the use of technological tools, such as Computer Algebra Systems

(CAS), can lead to the kind of conceptual development that is needed in order to

successfully manipulate algebraic symbols—as long as the technical aspects are not

ignored. In other words, with an eye to the development of algebraic technique, as

well as an instructional practice that views the CAS not only as a utilitarian tool but

also as a pedagogical tool, the growth of the conceptual and theoretical ideas that

support algebraic technical facility can be fostered.

Past research, which has shown that students need a great deal of time in

becoming comfortable with algebraic symbols and in acquiring the fluency and

power that symbols can provide, has led to the suggestion that students ought to

begin the process at an earlier age (Cai et al., 2005) and to studies that have yielded

empirical evidence of the kinds of algebraic thinking that can be developed in

primary school children (e.g., Blanton et al., 2015; Schliemann, Carraher, &

Brizuela, 2012). While this emerging body of research illustrates children’s ability
to engage in algebraic thinking from as early as first grade (e.g., Blanton, Brizuela,

Gardiner, Sawrey, & Newman-Owens, 2015), the cognitive neuroscience study of

Lee et al. (2010) led the researchers to question whether algebraic activity is

appropriate for the younger student. From their finding that the symbolic approach

is more effortful even among competent adult problem solvers they concluded:

In relation to the teaching of algebra, the model method is thought to provide children better

access to algebra because it is less abstract and more visual than symbolic algebra. Our

findings offer new insights into the reasons why many students find the model method

easier. Contrary to expectations, we found no evidence that it relies more extensively on

visual processes than does the symbolic method. Instead, we found that [the symbolic

method] imposes greater demands on attentional resources. (p. 604)

De Smedt and Verschaffel (2010) drive home this point when they state that

recent cognitive neuroscience research shows “that some solution methods are

cognitively more demanding than others (Lee et al., 2010; Thomas, Wilson,

Corballis, Lim, & Yoon, 2010); these data suggest that it might not be appropriate

to teach these methods at young ages, when functions of working memory and

attentional control have not fully developed yet (Luna, Garver, Urban, Lazar, &

Sweeney, 2004)” (p. 651).

The two cognitive neuroscience studies that were highlighted in this chapter,

those of Lee et al. (2010) and Waisman et al. (2014), serve to raise our awareness

levels of certain cognitive constraints associated with the doing of algebra, even if

the findings do not directly provide the tools and information needed to adapt

teaching so as to take these constraints into consideration. More particularly, they

serve to dispel the notion that algebraic manipulation can be treated as a mere

postscript to the conceptual or technical lesson at hand. The finding that algebraic

excellence requires a great deal of mindful attention and cognitive effort should

obviously sensitize us teachers and researchers to the mental demands involved in

doing algebra—and the research subjects of these studies were students who were

very proficient in algebra. These findings should, at the very least, move us—we
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who are teachers of college level mathematics—to pause and reflect upon the

phenomenon of students having difficulty with performing effectively on the

algebraic components of the mathematical tasks we routinely put to them. The

neurocognitive results discussed above should lead us to realize that, after we have

presented some new higher level mathematics, which might include some “lower-

level” algebraic activity, it is far from being the case that the algebraic part is “just

algebra.” We need to start questioning our traditional beliefs about students’
algebraic activity—beliefs that include the notion that such activity is straightfor-

ward and requires nothing more than the application of well-learned algorithmic

procedures. As Will Rogers, the American humorist and social commentator, once

so famously remarked, it isn’t what we don’t know that gives us trouble, it’s what
we know that isn’t so that gives us trouble.
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Chapter 10

Rethinking Algebra: A Versatile Approach
Integrating Digital Technology

Mike Thomas

Abstract Many have thought deeply about the construction of the school algebra

curriculum, but the question remains as to why we teach the topics we do in the

manner we do, stressing manipulations of symbols, and why some other avenues

are ignored. In this chapter we consider the basic constructs in the school algebra

curriculum and the procedural approach often taken to learning them and suggest

some reasons why certain topics may be excluded. We examine how particular

tasks, including some that integrate digital technology into student activity, could

be used to rethink the algebra curriculum content with a view to motivating students

and promoting versatile thinking. Some reasons why these topics have often not yet

found their way into the curriculum are discussed.

Keywords Versatile thinking • Algebra • Tertiary • Digital technology •

Representations

The aim of this chapter is to rethink both the content of secondary school algebra

and the manner of its delivery and to ask: Should either, or both, be changed in order

to improve understanding of algebra? There seems little doubt about two crucial

statements:

• Algebra (including the school algebra of generalised arithmetic) is of funda-

mental importance in mathematics.

• Many students find most of school algebra either difficult or impossible to

comprehend.

These two statements are linked together by the fact that school algebra is a

semiotic system. It is the signs or representations of this system that at one and the

same time make algebra so useful and yet so difficult for many. Consider, for

example, the compressive power in a relatively simple symbolism
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Xi¼2

i¼0

wi

where w is a cube root of unity. Suspending for a moment the fact that this

summation comes to zero and ignoring simplifications of w2, if we fully expand

the symbolisation we get

Xi¼2

i¼0

wi ¼ 1þ wþ w2 ¼ 1þ�1þ i
ffiffiffi
3

p

2
þ �1þ i

ffiffiffi
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Mason (1987) agrees that a semiotic problem, concerning the relationship

between the sign and the signified, or the symbol and the symbolised, is at the

root of algebraic difficulties. This semiotic difficulty is not surprising when we

consider how long it took for the symbolism to settle down into our modern version.

For example, Struik (1969) gives these examples.

(a) What must be the amount of a square, which, when twenty-one dirhams are

added to it becomes equal to the equivalent of ten roots of that square?

Al-Khwarizmi ca. 825 AD

(b) cubus p : 6 rebus aequalis 20 Cardan ca. 1545 AD

(c) aaa - 3bba¼þ2ccc Harriot ca. 1610 AD

The triadic model of Peirce describes how signs, constructed through thoughts

and ideas, comprise three components: the representamen [or the external material

entity]; the object referred to; and the interpretant, or the sense made of the entity.

Unlike icons and indexes, symbols, including those used in mathematics, have

become associated with their meaning by accepted usage (Peirce, 1898). The

grouping of these symbols into systems (sometimes called a representation system),

such as the algebra of generalised arithmetic considered here, requires more than a

set of symbols; it also needs rules for their production and transformation, and a set

of relationships between the signs and their meanings (see Ernest, 2006). Student

activity, both within such a system and converting between systems (Duval, 2006),

can lead to key epistemological aspects and understanding, of mathematical

objects, contributing to the goal of helping students attain versatile thinking in

mathematics, which according to Thomas (2008a, 2008b), involves at least three

abilities:

• To switch at will in any given representational system between a perception of a

particular mathematical entity as a process and the perception of the entity as an

object
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• To exploit the power of visual schemas by linking them to relevant logico/

analytic schemas

• To work seamlessly within and between representations, and to engage in

procedural and conceptual interactions with representations

Thus a versatile view (Graham, Pfannkuch, & Thomas, 2009; Graham &

Thomas, 2000, 2005; Tall & Thomas, 1991; Thomas, 1988, 2002, 2008a, 2008b)

of the semiotic system of school algebra requires more than the ability to transform

symbols according to the rules of the system; it also means making sense of them as

processes and objects, and the ability to relate them to other systems. However,

much of what happens in school algebra comprises activity aimed at transforma-

tions according to the rules of the system with much less effort addressed to

considering sense making or conversions. Such standard manipulation algebra

(Thomas & Tall, 2001) often leads to what Skemp (1976) described as instrumental

understanding, or applying rules without clear reasons.

In order to be able to operate on an entity within a further process, such as when

manipulating symbolic literals in algebra, APOS theory (Dubinsky, 1991) tells us

that students need an object view of the symbols (although what kind of object they

perceive is often open to question—see Tall, Thomas, Davis, Gray, & Simpson,

2000). While in the higher level mathematics of formal world thinking (Tall, 2004,

2008) objects can be brought into being through a definition, which specifies their

properties, in school algebra students are often left to abstract properties of objects

such as variable, expression, equation, function and polynomial for themselves by

learning and repeating procedural actions on symbols. In this chapter I suggest that

more attention could be paid to relating the algebraic symbols to other representa-

tions and investigating the properties of the objects of algebra. I also propose ways

that this could be achieved by harnessing the investigative power of digital tech-

nology (DT).

10.1 A Theoretical Framework

In other papers we have proposed a Framework for Advanced Mathematical

Thinking (FAMT) (Stewart & Thomas, 2010; Thomas & Stewart, 2011) that

combines orthogonally elements of the action-process-object-schema (APOS)

framework for studying learning, presented by Dubinsky and others (Dubinsky,

1991; Dubinsky &McDonald, 2001) with each of Tall’s (2004, 2008) Three Worlds

of Mathematical Thinking. APOS theory describes how mental objects may be

constructed from actions and processes via reflective abstraction, while Tall’s
framework suggests that mathematical thinking can involve an embodied world,

with its visual and enactive aspects, a symbolic world of semiotic symbols, and the

formal world of axiomatic and deductive mathematics. The FAMT is based on the

principle that each mathematical concept can be examined in terms of action,

process and object types of thinking in each of the embodied and symbolic and
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formal worlds of mathematics. Hence, a matrix of cells may be produced with each

cell targeting student thinking and understanding in one area, such as an embodied

process. While we have found FAMT particularly useful for analysing student

thinking in university mathematics, namely linear algebra (see the example in

Fig. 10.1), the underlying principles may also prove useful in school level mathe-

matics and we will consider this below.

Providing tasks that enable students to engage in activity that encourages them to

think in the manner described by as many of the cells of the framework as possible

for a given mathematical construct and to construct meaningful links between them,

is one way to promote versatile thinking. This is a key tenet of the ideas

presented here.

We will now look at some of the key ideas in school algebra and ask how DT

might assist students to construct versatile thinking about them.

10.2 Variables and Expressions in School Algebra

The concept of variable is not an easy one for students to construct. Even Bertrand

Russell found the notion of variable problematic.

6. Mathematical propositions are not only characterized by the fact that they assert

implications, but also by the fact that they contain variables. The notion of the variable is

one of the most difficult with which logic has to deal. For the present, I openly wish to make

it plain that there are variables in all mathematical propositions, even where at first sight

they might seem to be absent. . .We shall find always, in all mathematical propositions, that

Fig. 10.1 The Framework for Advanced Mathematical Thinking (FAMT) applied to linear

combination
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the words any or some occur; and these words are the marks of a variable and a formal

implication. (Russell, 1903, pp. 5, 6)

It has been known for well over 35 years now that students have problems

understanding the use of symbolic literals or letters in algebra (Küchemann, 1981;

Wagner, 1981). That these problems in understanding are persistent was shown by

Küchemann’s (1981) investigation into children’s understanding of the use of

letters in algebra, as part of the wide-ranging CSMS study, with four or five years

of algebra teaching making very little difference to their understanding of the

subject. Around 30 years later in a follow-up study (Hodgen, Brown, Küchemann,

& Coe, 2010; Hodgen, Coe, Brown, & Küchemann, 2014) the group concluded that

attainment had not changed very much, and

• Algebra results show fewer students reaching the higher Levels 3 and 4, which is

the point at which students begin to understand the key algebraic concepts of

variable and generalised number (Hodgen et al., 2010, p. 6)

Rosnick and Clement (1980) too showed that even college students had similar

problems, such as confusing the use of letter as variable with the use as a label or

unit. One of the factors causing this situation is the multiplicity of uses of letters in

mathematics, with Wagner (1981) listing placeholder, index, specific unknown,

generalised number, indeterminate, independent or dependent variable, constant

and parameter as possible uses. She also pointed out that this complexity is

increased by the fact that different letters can be used to represent the same thing,

and the same letter can be used to represent different things. It still often seems to be

the case that, as Skemp (1971, p. 227) noted, ‘The idea of a variable is in fact a key
concept in algebra—although many elementary texts do not explain or even

mention it’. This omission of explaining what a variable is still extends to many

classrooms. Hence, expecting students to abstract all the subtle complexities of

symbolic literals simply from procedural use of letters appears to be a step too far.

The difficulties students experience with use of letters clearly impinges on the

way they view symbols such as ‘xþ 3’. Many will not accept this kind of expression

as an answer because they expect a number (Küchemann, 1981). To be able to cope

with such a symbol requires not only that it be given a meaning, but that the

meaning should allow the student the versatility of thought to see it as a procept,

representing both as a process (of evaluation when x is known) and also an object

that can be operated on. Often students who are used to working in the symbolic

actions and symbolic process cells of FAMT see the symbol xþ 3 solely as a

process and not as a mental object; further it is a process they cannot carry out

because they do not know what x is.
In two previous papers we have described (Graham & Thomas, 2000; Tall &

Thomas, 1991) how DT might be used to help students construct a versatile

perspective on the use of letters as generalised number. The basis of the approach

used was to use digital technology to give students a symbolisation enabling an

embodied view of the use of letter. This embodied, enactive perspective comprises

a store with a label and a value that can be changed, as seen in Fig. 10.2, which is
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taken from Tall and Thomas (1991). Here students can engage in embodied actions,

entering numbers into variable stores, predicting outcomes about algebraic objects

and testing these predictions. In a second paper (Graham & Thomas, 2000) we

changed the technology from computers to graphic calculators, which intrinsically

employ variables with a large number of inbuilt stores labelled by the use of capital

letters and where the embodied actions of storing and retrieving numbers from these

lettered stores provides a direct correspondence to letter use in early algebra. The

same basic embodied model was used here, the graphic calculator’s lettered stores

as a model of a variable. Each store is represented by a box in which changing

values of the variable come and go, and next to which sits its label. Figure 10.3

shows a brief early section from the module used.

Both controlled experiments showed that the students using the DT were more

versatile in their thinking than the students following a traditional course. They were

significantly better at interpreting symbols, demonstrated an improved understand-

ing of the use of letters as specific unknown and generalised number and were more

likely to think of expressions as objects, without losing any procedural facility.

Fig. 10.2 The embodied

symbolisation of a variable

in the ‘Maths Machine’

Fig. 10.3 An example of the layout in Graham and Thomas (2000) algebra module
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In terms of semiotics the research shows that by extending the sign or symbol

used to represent a variable, from a single letter to a box plus a letter, students can

be assisted to make improved sense of the object represented. Following from this

approach a Dynamic Algebra programme was developed that enables investigative

activity with expressions and equations based on the same mental model. In

Fig. 10.4 we see an example of how this programme employs embodied actions

such as giving the variable u a value to see the effect on two expressions 6u� 5 and

�5uþ 4, to see when they reach equality. This is an example of an approach to the

hardest type of linear equation at this level.

10.3 Equations

While the ‘¼’ sign is now ubiquitous in mathematics, making sense of the meaning

of the sign appears not to be straightforward for students, and is often context

dependent. For example, many have an operational, process-oriented perspective of

the sign as a signal to perform some action (Crowley, Thomas, & Tall, 1994;

Godfrey & Thomas, 2008; Kieran, 1981; Thomas, 1994). For these students there

is a difference between, say,

2xþ 1 ¼ 5 and 3 ¼ 5xþ 2

dy

dx
¼ 2xþ 5 and 2xþ dy

dx
¼ 3

Fig. 10.4 A screen from the Dynamic Algebra programme
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I have found that even among mathematics graduates and teachers of mathe-

matics we have some discussion in my master’s courses on what constitutes an

equation. For example, when asked whether the following are equations not all

agree.

2xþ 1

3x� 2
¼ 1, f ðxÞ ¼ 2xþ 5, 4 ¼ 4, k ¼ 5, ðx� 1Þðxþ 3Þ ¼ x2 þ 2x� 3

In their research Hansson and Grevholm (2003) found that very few pre-service

teachers considered y¼ xþ 5 to be an equation, instead tending to a numerical

interpretation of y¼ xþ 5. Others I have asked say that it’s an assignment rather

than an equation. Indeed in computer science, and other areas, the sign :¼ is

reserved for such an assignment to a function or variable, possibly removing an

overlap in meaning. We can see that some issues with equations involve whether

the statement has to be true, whether it can include an assignment, does there have

to be ‘something to do’ and can it be always true. The following set of three

examples may help to illustrate some of these issues in the mind of the reader.

x2 þ 3x� 1 ¼ x2 þ 3xþ 1, ðx� 1Þðxþ 3Þ ¼ x2 þ 3x� 3, ðx� 1Þðxþ 3Þ
¼ x2 þ 2x� 3

Addressing this the Collins mathematics dictionary (Borowski & Borwein,

1989) distinguishes between an identical equation (or identity), which is true for

any values of the variables, and a conditional equation, which is only true for

certain values of the variables. This distinction seems to be a useful one and it might

help if more use were made of the symbol for equivalence (in an identical equation,

true for all values of the variables), �, that was more commonly used years ago.

In our study on understanding of equation (Godfrey & Thomas, 2008) we found

that for Year 10 students (age 14–15 years) many appear to be using the criteria that

an equation needs an ¼ sign and an operation to carry out (see examples in

Fig. 10.5). On this basis 65.6% of them rejected k¼ 5 as an equation while

72.4% accepted 7w�w as an equation.

In this same study, for those in Year 13 (17–18 years old), the last year of school,

27.6% still accepted 7w�w as an equation, while 56.6% were unwilling to accept

a¼ 5 and 61.8% did not see a¼ a as an equation. Overall 53.9% of these students

still wanted an equation to have an operation to carry out, and 14.5% of these

Fig. 10.5 Examples of 14-year-old students criteria for an equation
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rejected anything that was an identity or an assignment. In our group of first year

university students studying Engineering Science, which has a very high entry

requirement, 20.6% still emphasised the solution aspect of an equation (e.g. ‘An
equation is a mathematical formula formed by some unknown variables and

numbers. And it is those unknown variables we are trying to find a value/answer

to it’ and ‘Statement given to solve unknown variables in order to equate the right

hand side is equal to the left hand side’). However, 60% now accepted a¼ a as an

equation, although 26.7% did not see aþ b ¼ bþ a as an equation.

Student understanding of the use of equality often appears not to be predicated

on an explicit construction of properties of equations, including the reflexive,

symmetric and transitive nature of the ‘¼’ sign, that will eventually lead to the

idea of equivalence relations. Hence, activities that might allow them to construct

some of these properties could be of value.

In addition what could we say to a student who produces this argument?

4x2 � 5x� 6 ¼ 0

4xþ 3ð Þ x� 2ð Þ ¼ 0

4xþ 3 ¼ 0, x� 2 ¼ 0

4xþ 3 ¼ x� 2 ¼ 0

4xþ 3 ¼ x� 2

3x ¼ �5

x ¼ �5

3

Here the transitive property has been applied to 4xþ 3 ¼ 0, x� 2 ¼ 0 as if it reads

4xþ 3 ¼ 0 and x� 2 ¼ 0. Compare this with a¼ b and b¼ c implies a¼ c.
However, the line actually should read 4xþ 3 ¼ 0 or x� 2 ¼ 0, and this might

give a teacher the chance to discuss the important logical difference between ‘and’
and ‘or’ in mathematical statements. In this way a crucial link between symbolic

algebra and logic using natural language could be made.

What about if we are working through an example where we are trying to find the

intersection of two graphs, whose equations are y1 ¼ xþ 6 and y2 ¼ 3xþ 1? Is it

necessary to explain how we get from line 1 to line 2 or how we have used the

symmetric property that a ¼ b ) b ¼ a to get from line 4 to 5?

y1 ¼ y2

x þ 6 ¼ 3x þ 1

6 ¼ 2x þ 1

5 ¼ 2x

2x ¼ 5

x ¼ 2
1

2
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Or when solving y2 ¼ 0 and then using 3xþ 1 ¼ 0 to do so, would we invoke the

transitive property (y2 ¼ 3xþ 1 and y2 ¼ 0 ) 3x þ 1 ¼ 0)?

Equations of the type ax þ b ¼ cx þ d have been well known to be a cut-off

point for those who will make good progress in the learning of algebra and the

obstacle has been called the didactic cut (Filloy & Rojano, 1984) or cognitive gap

(Herscovics & Linchevski, 1994). It is only at this point in the solving of equations

that one has to operate on the variable. One approach when solving

axþ b ¼ cxþ d, or similar equations such as those involving quadratic functions,

is to assist student understanding of properties of equations, such as what a solution

is and when it is invariant. For example, they might see that there is a difference

between what I have called legitimate and productive transformations of an equa-

tion (see Hong, Thomas, & Kwon, 2000; Thomas, 2008a). A legitimate transfor-

mation of a linear equation adds �k or �kx for all real k to both sides, but a

productive transformation that moves one quickly towards an algebraic solution, is

one of the type �ax, �cx, �b, and �d, taken from the infinite number of legitimate

transformations. It is important to understand that the solution remains invariant

under both types of transformations. It may be that DT could be employed to help

students see some properties of equations by linking the algebraic representation to

the graphical one. Clearly adding �k to both sides of the equation does not change

the solutions because graphically we are translating both graphs parallel to the y-
axis by�k. However, the effect of adding �kx to both sides may not be so obvious.

In Fig. 10.6a, which was constructed using GeoGebra, we can see that adding �kx
to both sides of the equation 2xþ 2 ¼ 5x� 3 appears to rotate the graphs of the

function on either side of the equation about the point of intersection with the y-
axis, although the x-value of the point of intersection, the solution of the equation,

remains invariant.

The angle a straight line y ¼ mxþ cmakes with the x-axis is given by tan θ ¼ m,

where θ is the angle with the x-axis, and adding kx will change it from θ ¼ tan �1

mð Þ to θ ¼ tan �1 mþ kð Þ, which may appear to indicate a rotational effect.

However, while the angle the line makes with the horizontal changes the individual

points do not rotate. Instead, in a move that encourages versatile thinking, we might

utilise another area of mathematics; one that is sometimes less often employed in

school mathematics, although it is essential for university studies in mathematics.

The idea of a transformation of the plane represented in matrix form is very useful

here. Linking mathematical ideas across representations in this way is very impor-

tant (Duval, 2006) and is a way to promote representational versatility (Thomas,

2002, 2008a, 2008b). In essence adding kx to f xð Þ ¼ mxþ c is a shear of the graph
of the function by a factor k parallel to the y-axis. Using matrices and vectors we can

represent this linear transformation as follows:

1 0

k 1

� �
x

f xð Þ
� �

¼ x
f xð Þ þ kx

� �
¼ x

mxþ cþ kx

� �
¼ x

mþ kð Þxþ c

� �

Now, since every point on the straight line (and in the plane), apart from those on

the y-axis, which are all invariant, is moved parallel to the y-axis (giving the
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appearance of a rotation), we can see that this is also true of the point of intersection

of two straight lines. We see this in Fig. 10.6c (we assume k> 0 here), and note that

when x< 0 the points move in the opposite direction, since for k> 0, kx< 0. Thus

the point of intersection ends up with the same x value as before, our invariant

solution to the equation. In terms of the FAMT this process has linked a symbolic

algebra process with an embodied graphical process and a symbolic matrix process.

Further, we have managed to link a pointwise approach to a translation to a global

perspective (Hong & Thomas, 2014; Vandebrouck, 2011).

Fig. 10.6 Legitimate and productive transformations of linear equations
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Having established these basic principles we could now consider what happens

with quadratic equations. Of course, the cases of adding a constant and adding a

multiple kx of x can be analysed in exactly the same way as above, although the

picture, again from GeoGebra, is quite different (see Fig. 10.7a, b). We can see that

the case of adding kx2 to both functions (see Fig. 10.7c) can be viewed in a similar

manner to that of adding kx. The translation is again parallel to the y-axis and for

k> 0, kx2> 0. Once again the point of intersection remains on each graph, the y-
translation is by the same amount and the x-value is unchanged by adding to the

value of the function. Hence, the solution is invariant.

Fig. 10.7 Invariant solution under legitimate transformations of quadratic equations
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10.4 Polynomial Functions

The concept of function, one of the most fundamental ideas in the whole of

mathematics, is often given only cursory attention in school mathematics. Hence,

it is not surprising that research has shown that students’ perspectives on function

differ considerably from those of mathematicians. For example, Williams (1998)

used function concept maps to compare conceptions of students and professors and

found that the students emphasised minor details and the idea that functions are

equations. In contrast none of the professors thought of a function as an equation,

preferring the idea of a correspondence, a mapping, a pairing or a rule. In a study

with trainee mathematics teachers Chinnappan and Thomas (2003) found the

teachers had a strong tendency to think of functions graphically and procedurally,

and often even separated algebra from functions in their thinking. In Fig. 10.8 we

see how a teacher, unable to decide on whether an ordered pair could represent a

function, moves from the ordered pair representation to a graph and then to an

explicit algebraic formula in order to say that this is a function.

The expectation that a function will have an explicit algebraic formula was

prominent in Thomas’ (2003) study. In Fig. 10.9a we see an example of how one

Fig. 10.8 A teacher’s use of a graph and an algebraic formula for a function

Fig. 10.9 Two teachers’ view that functions require an explicit algebraic formula
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teacher responded to the question of whether the given graph could represent a

function by finding the explicit algebraic formula for each straight line section of

the graph in order to be able to respond ‘yes’. The second example in Fig. 10.9b

shows the reverse. A teacher rejects the table of values as representing a

function because the value at x¼ 5 deviates from the formula y ¼ xþ 2ð Þ2 that

all the others fit.

This research suggests that for many teachers the graphical representation of

function can become so dominant in thinking about function that it could hinder a

growth in inter-representational understanding.

In terms of the FAMT framework it would appear that at least some students

have a tendency to move between the embodied and symbolic worlds with respect

to function. An emphasis on symbolic actions and processes may be behind the

desire for an explicit formula and the use of the vertical line test embodied action/

process may encourage a graphical perspective on function. This movement

between embodied actions and symbolic actions is generally to be encouraged

but abstracting the notion of a function from graphical and algebraic expressions

exemplars appears to be difficult (Akkoc & Tall, 2002). As Thompson (1994) has

pointed out, ‘the core concept of ‘function’ is not represented by any of what are

commonly called the multiple representations of function, but instead our making

connections among representational activities produces a subjective sense of invari-

ance’ (p. 39). Student (and teacher) difficulties with abstracting the invariance from
graphs and algebraic formulations implies that the idea of function may be one area

where formal actions could be added to student experiences as a means of testing

given constructs against a definition of function. Of course, simply giving students a

formal definition, such as that in Akkoc and Tall (2002)—see Fig. 10.10—and

expecting them to be able to use it will probably not work. In their study Akkoc and

Tall (2002) found that some students were unable to see and apply the fundamental

(simple) definition of function, instead relying on almost arbitrary aspects of

examples they focussed on. Hence, the simplicity of the core function concept

eluded most of their students.

Instead Akkoc and Tall used a four part colloquial definition to assist students to

focus on essential properties of a function followed by experience of functions in

different representations as set diagrams, ordered pairs, graphs and formulas.

Employing a colloquial definition, such as each and every element of one set (the

Fig. 10.10 A possible formal world definition of function
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domain) is mapped to or related to one and only one element of the second set

(or codomain) and then testing this with formal actions in the four representations

used by Akkoc and Tall along with tables of values may be a way forward.

Although as they found, this is not the complete solution.

These difficulties with thinking about the concept of function are further exem-

plified when students meet the idea of a polynomial. When asked what a polynomial

is (see Chinnappan & Thomas, 2003) some trainee teachers responded:

• An equation which has more than 1 x variable whose power is bigger than 1

• An equation that has a power of x other than 1

• An equation with a power of x greater than one

• When I am talking about functions, I am not talking about polynomials and vice

versa, I find it very difficult to um.. interchange the words

• If somebody said ‘is that straight line relation a polynomial?’, my gut reaction

would be to say no. Just because a polynomial, poly being many.

So we can see an apparently common misconception here that linear functions,

and by extension constant functions, are not polynomials and that the set of poly-

nomials is not a subset of functions. Polynomials are perceived as beginning with

the quadratic function, since that is probably where the term was first met. This

view is reinforced by the natural language prefix ‘poly’, seen in other places in

mathematics, such as polygon (where the number of sides has to be three or more).

Confirming this are the kinds of responses received to the question of whether 3� x
is a polynomial.

• No, linear

• No—The powers of x is low
• Yes—Not sure! Maybe it’s not!
• Yes—because for each value of x, there is 1 corresponding y value

Once again, the idea of a polynomial (function) may be an area where it would

be beneficial to add formal actions based on a definition to student experiences so

that carefully chosen examples and non-examples of polynomials could be used to

build the construct. For example, one could define a real polynomial of degree n as

an expression of the form p xð Þ ¼ anx
n þ an�1x

n�1 þ � � � þ a2x
2 þ a1xþ a0 where

x is a real variable, n is a non-negative integer and each ai is a real number (later we

may define polynomials, for example, over the complex numbers) with an 6¼ 0. We

can then use a formal action of testing against a definition to determine whether we

have a polynomial or not, such as: Is xþ 1 a polynomial? Is x5/2 a polynomial? Is 0 a

polynomial?

When it comes to a consideration of the properties of some low order poly-

nomials it would appear that, for cubic functions, a number of interesting areas for

study have been often overlooked and would repay attention. I suggest one or two of

these below that are accessible with DT.
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10.5 Investigating Cubic Functions

One of the reasons for deciding what polynomial properties are studied in school

algebra may be whether the properties are considered to be accessible to students

through procedural calculations. However, with the advent of DT we can now

investigate properties that may have previously been in the domain of ‘higher’
mathematics.

10.5.1 Symmetry

To simplify matters we will limit our discussion to monic cubic functions of

the form x3 þ ax2þbxþc with little loss of generality since

ax3 þ bx2 þ cxþd ¼ a x3 þ b
ax

2 þ c
axþ d

a

� �
when a 6¼ 0. For the function x3 þ ax2

þbxþ c we note without proof here that the transformation f x� a
3
Þ�
always

removes the x2 term (Why this works is an important question and CAS DT will

confirm this). For example, if we have a function f with f xð Þ ¼ x3 � 3x2 þ x� 5,

then f x� �3
3

� � ¼ f ðxþ 1Þ ¼ ðxþ 1Þ3 � 3ðxþ 1Þ2 þ ðxþ 1Þ � 5, which reduces to

x3 � 2x� 6. You might want to reach for your DT device to verify the above!

While this is an interesting property in its own right, it leads to two other interesting

ideas. Firstly, if we draw the graph of the two functions, f xð Þ ¼ x3 � 3x2 þ x� 5 and

g xð Þ ¼ x3 � 2x� 6, what do we find? Look at Fig. 10.11.

Fig. 10.11 An example of

the graphical transformation

of the cubic function for

f x� a

3

� �
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Since f
0
xð Þ ¼ 3x2 � 6xþ 11 and f

00
xð Þ ¼ 6x� 6 ¼ 6 x� 1ð Þ the cubic has a point

of inflection at x¼ 1 and since f xþ 1ð Þ represents a translation of –1 parallel to the
x-axis the point of inflection (1, –6) is mapped to (0, –6), on the y-axis. In general

the point of inflection for the function j, where j xð Þ ¼ x3 þ axþ b, will be mapped

to (0, b). Looking at this transformation in general we note that for

p xð Þ ¼ x3 þ ax2 þ bxþ c, p
00
xð Þ ¼ 2 3xþ að Þ, giving a point of inflection at

x ¼ �a
3
. Hence, all cubic graphs have a point of inflection and the translation

p x� a
3
Þ�
moves the point of inflection to the y-axis. Of course, if a¼ 0 there is

no x2 term and the point of inflection is already on the axis.

Turning back to the function f we can move the point of inflection to the origin

by adding 6 to g xð Þ ¼ x3 � 2x� 6, giving the function h, where h xð Þ ¼ x3 � 2x.
Clearly h is an odd function (since h �xð Þ ¼ �h xð Þ for all x) and hence h has

180� rotational symmetry about the origin. The point is that this whole process

generalises, so that translating j xð Þ ¼ x3 þ axþ b by a
3
parallel to the x-axis and then

by p �a
3

� � ¼ 2a3 � 9abþ 27c

27
parallel to the y-axis the graph’s point of inflection

will be moved to the origin. Hence, we always end up with the odd function

x3 � a2 � 3bð Þ
3

x, showing that all cubic polynomials have rotational symmetry of

180� about the point of inflection �a

3
,
2a3 � 9abþ 27c

27

� �
. Finding this general

property can be made accessible to some students with the assistance of DT, as seen

in Fig. 10.12, which was produced using TI-Nspire software.

Fig. 10.12 Using TI-Nspire software to show cubic symmetry

1 In this chapter we make some use of calculus differentiation techniques. While calculus is usually

not studied in school in the USA, many countries do include it in the curriculum from age 16 or 17.

Since the primary aim of school algebra is to lead to calculus some minimal use seems reasonable.
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10.5.2 Solving Equations

Interestingly the first step above, removing the term in x2, was also the first step in

the Tartaglia-Cardano method for solving cubic equations. If we then consider

solutions to equations of the form x3 þ axþ b ¼ 0, using Vieta’s substitution,

x ¼ z� a
3z enables us to solve the equation. For ease of calculation, although this

is not crucial with DT, consider the equation x3 þ 9xþ 8 ¼ 0, where a is divisible

by 3. We make the substitution x ¼ z� 3
z and this gives rise to a ‘disguised’

quadratic that can easily be solved for z and hence x is found using x ¼ z� 3
z.

Once again we show this process in Fig. 10.13, using TI-Nspire software. There are

some things to note here. In Fig. 10.14 we move representations and draw the graph

of the function f where f xð Þ ¼ x3 þ 9xþ 8, noting that the point of inflection

appears on the y-axis as expected. This enables us to ask whether there is only

one real root to the equation. We are trying to avoid calculus in this discussion

where possible, since it lies beyond the remit of school algebra in the USA

(see footnote 1), but note that since f
0
xð Þ ¼ 3x2 þ 9 > 0 for all x the function is

strictly (or monotone) increasing and so there is only one zero and hence only one

real root of our equation. Other possible questions worth considering are whether

this method always works (and if not when does it fail) and how we might find the

complex roots.

Fig. 10.13 Using TI-Nspire software to find exact solutions of cubic equations
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10.5.3 Touching Graphs

Another task involving polynomials that could be given to students is:

Can we find quadratic functions whose graphs touch at a given point ( p, q) with
gradient k? How many possible graphs are there? Is there a general solution to

the problem?

This task involves polynomials of degree 2 and links algebraic and graphical

representations. While students can relatively easily find simple solutions, such as

the graphs of polynomials x2 and�x2 thatmeet at (0, 0)with gradient 0, it is not so easy

to solve more general cases by trial and error. However, once again this task is more

approachable with DT. If we take a general quadratic function f xð Þ ¼ ax2 þ bxþ c
then we require the graph to pass through (p, q) and the gradient of the graph of the

function at that point to be k. These two conditions can be written:

f pð Þ ¼ ap2 þ bpþ c ¼ q and f
0
pð Þ ¼ 2apþ b ¼ k

In Fig. 10.15 we see the TI-Nspire software again employed to solve these

equations simultaneously. The solution here is given in terms of a parameter c and,
of course, p, q and k.

Choosing values for the point ( p, q) and the gradient k gives a and b in terms of c,
and we note that cþ kp� q 6¼ 0 (since then we don’t have a quadratic function) and
p 6¼ 0. Figure 10.16 shows some of the possible solutions for the point (2, 3) and

gradient 3 drawn using TI-Nspire. It is good practice to check these solutions, of

course. For example, withp ¼ 2, q ¼ 3, k ¼ 1 if we choose c¼ –2 then our function

Fig. 10.14 Using TI-Nspire software to graph a solution to a cubic equation
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is given by f xð Þ ¼ 1
4
x2 þ 2x� 2, which passes through (2, 3) and the gradient there is

1
2
2ð Þ þ 2 ¼ 3, as required.

A further question for investigation that arises is: does the latter condition p 6¼ 0

for the general solution mean that it is not possible to find graphs that meet on the y-
axis with the same gradient? Well we have already seen that x2 and �x2 meet at

(0, 0) with gradient 0, and in general so does kx2, k 6¼ 0, k real. But what about

other points not at the origin and whose gradient at x¼ 0 is not zero? Well it

certainly appears to be possible to find some, as Fig. 10.17 shows, but students will

have to engage with how we might find these solutions. It is hoped that ways to

structure interesting tasks for students that promote understanding of properties of

polynomials will become apparent.

Fig. 10.15 Using the TI-Nspire software to find a general solution

Fig. 10.16 Using the TI-Nspire software to show graphs of possible solution functions
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Since generalising is always a key aim in mathematics, a possible next step is to

try to extend these ideas further. One question we might ask is: Can we do the same

for cubic polynomial functions? Using the DT again, as Fig. 10.18 shows, two

parameters, c and d, are needed, where cþ kð Þpþ 2 d � qð Þ 6¼ 0 (since then we

don’t have a cubic) and p 6¼ 0, and Fig. 10.19 shows examples of the graphs of some

polynomials of degree three meeting at the point (1, 2) with gradient –1 (cþ 2d
�5 6¼ 0 here).

Fig. 10.17 Graphs of possible solution functions with p¼ 0

Fig. 10.18 Using the TI-Nspire software to find the general solution for cubic polynomials
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10.5.4 Tangents to Cubic Polynomials

If we consider a cubic polynomial with three distinct real zeros then they have an

interesting property related to their tangents that could be investigated (see de

Alwis, 2012). We will consider a particular case first. The graph of the cubic

function f where f xð Þ ¼ xþ 1ð Þ x� 1ð Þ x� 3ð Þ is shown in Fig. 10.20, which is

drawn using GeoGebra. It is reasonably clear that the graph meets the x-axis at the
three points (–1, 0), (1, 0) and (3, 0). Let’s take the point on the curve where

x ¼ 1þ3
2

¼ 2, the mean of the x values of the last two points of intersection, and find

the equation of the tangent to the graph there. We have f 2ð Þ ¼ 3ð Þ 1ð Þ �1ð Þ ¼ �3

and since

f xð Þ ¼ xþ 1ð Þ x� 1ð Þ x� 3ð Þ ¼ x2 � 1ð Þ x� 3ð Þ ¼ x3 � 3x2 � xþ 3

f
0
xð Þ ¼ 3x2 � 6x� 1

and f
0
2ð Þ ¼ �1. So the equation of the tangent isyþ 3 ¼�1 x� 2ð Þoryþ xþ 1 ¼ 0

and when y¼ 0 for this tangent x¼ –1. So the tangent at the mean value of two points

of intersection passes through the third point of intersection. Figure 10.20 also shows

the tangent at the point where x ¼ �1þ1
2

¼ 0 passing through the point (3, 0).

Of course, the tangent at the point where x ¼ �1þ3
2

¼ 1 passes through the point

(1, 0) here since it’s a special case where the zeros are equally spaced. So the

question is does this result generalise? Is it always true for cubics? One way to

investigate it using GeoGebra is to use sliders for the function coefficients.

Fig. 10.19 Using the TI-Nspire software to show graphs of possible solution functions
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Algebraically, consider the monic polynomial function f where

f xð Þ ¼ x� að Þ x� bð Þ x� cð Þ, and without loss of generality consider the tangent

at the point M where x ¼ aþb
2
. This could be done by hand but once again the

symbolic process can be left to the DT, in this with case TI-Nspire as shown in

Fig. 10.21. The function df is the derivative of f and we note that the DT does not

Fig. 10.21 Using TI-Nspire to demonstrate the generality of the tangent property of the cubic

function f xð Þ ¼ x� að Þ x� bð Þ x� cð Þ

Fig. 10.20 The graph

of the cubic function

f xð Þ ¼ xþ 1ð Þ x� 1ð Þ x� 3ð Þ
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automatically factorise the result, although this is not crucial in this example. Using

df we can find the gradient of the tangent at the point where x ¼ aþb
2

and hence the

equation of the tangent using the well-known equation y� y1 ¼ m x� x1ð Þ, where
m is the gradient and (x1, y1) a point on the line (nb y ¼ y1 þ m x� x1ð Þ is used here).
Then solving for where the tangent is zero gives x¼ c or, interestingly, a2 � 2ab

þb2 ¼ 0but then ða� bÞ2 ¼ 0, a ¼ b, which would contradict our requirement that

f have three distinct real zeros. So the tangent atx ¼ aþb
2
does indeed pass through the

point (c, 0).
Once more the DT has allowed us to make some crucial links, this time between

embodied actions and processes involving graphs and tangents and symbolic

processes in order to find a solution for the task. Often we make the link by

encouraging embodied views of symbolic expressions, so it is good to have an

example that links the representations in the other direction.

10.6 Polynomials in Two Variables

Students at school often consider Pythagoras’ theorem and its solutions, and while

the theorem does not generalise to higher powers, as Fermat’s last theorem states,

solutions to other Diophantine equations are in reach if we use DT. One of these that

can be approached, that I have described elsewhere (see Heid, Thomas, & Zbiek,

2013), is x2þ y2¼ z3, a special case of the general equation xnþ yn¼ znþ1, whose

solutions have been outlined by, for example, Hoehn (1989). As I previously

suggested, in a structured task students could be encouraged to use a DT spread-

sheet listing values of n2 and n3 to try to find two of the squares that add up to a cube
(for example, x¼ 2, y¼ 2 and z¼ 2 may be seen immediately). In this way x¼ 5,

y¼ 10 and z¼ 5 might also be found. Hence, there are solutions. Further, if we

substitute x¼ ka and y¼ kb in the equation x2þ y2¼ z3 we obtain k2 a2 þ b2
� � ¼ z3

and although this substitution is not obvious this last equation gives a big leap

forward to finding solutions, since setting k ¼ a2 þ b2 will produce a solution

z ¼ k ¼ a2 þ b2. As an example, if we let a ¼ 2, b ¼ 3 then k¼ 13 and x¼ 26,

y¼ 39 and z ¼ a2 þ b2 ¼ 262 þ 392 ¼ 2197 ¼ 133. In Fig. 10.22 we can see how

the DT might be used to investigate the problem by introducing a function of two

variables (we can also see this as a polynomial in two variables), an idea that will be

very important later in mathematics. Hence, this constitutes an example of math-

ematics at the horizon in the mathematical knowledge for teaching framework

(Ball, Hill, & Bass, 2005; Hill & Ball, 2004).

Extending the same method to a general equation xnþ yn¼ znþ1 could be too

difficult for most school students, but the method above does generalise and this can

be seen using DT, as in Fig. 10.23. Interestingly, as shown, the factorisation of

a an þ bnð Þð Þn þ b an þ bnð Þð Þn seems beyond this DT program, but those students

who have been taught to ‘see’ algebraic factors may be able to work as follows:
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a an þ bnð Þð Þn þ b an þ bnð Þð Þn ¼ an an þ bnð Þn þ bn an þ bnð Þn
¼ an þ bnð Þn an þ bnf g ¼ an þ bnð Þnþ1

and hence this leads to a solution with x ¼ a an þ bnð Þ, y ¼ b an þ bnð Þ and

z ¼ an þ bn.

10.7 Concluding Remarks

In a standard algebra curriculum students are involved in a great deal of what we

have called manipulation algebra (Thomas & Tall, 2001). The outcome of this

practice is that students may learn a lot about manipulating symbolic literals but far

less about the nature of the objects they represent, such as polynomial functions,

and their properties. Stressing the value of enactive and iconic thinking (Bruner,

1966) through visualisation encourages students to engage in the inter-

representational conversions (Duval, 2006) that are a crucial constituent of building

versatile thinking. Central to that inter-representational thinking is the DT, which, if

it is used thoughtfully, can take on the role of epistemic mediator in order to help

Fig. 10.23 Using DT to find solutions to xnþ yn¼ znþ1

Fig. 10.22 Linking representations to find solutions to x2þ y2¼ z3
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students to abstract properties of objects and the structure related to them and even

to generalise to other sets of objects.

It has to be acknowledged first that some of the examples looked at above are at

the top end of the difficulty scale for students in secondary school or college.

Further, as I have noted elsewhere (Thomas & Palmer, 2013), while DT can provide

many opportunities there are also a number of obstacles to be overcome in order to

make good use of it. A major issue surrounds the role of the teacher in using DT in

the manner described here. Some of the factors involved are extrinsic to the teacher,

such as provision of suitable hardware. However, considering intrinsic teacher

factors influencing use of DT led me (Hong & Thomas, 2006; Thomas & Hong,

2005) to propose an emerging framework for pedagogical technology knowledge
(PTK) as a construct that could be an indicator of teacher progress in implementa-

tion of technology use. A teacher’s PTK incorporates the principles, conventions,

and techniques required to teach mathematics through DT. While the teacher has to

be a proficient user of the technology she must also understand what is required to

build tasks and situations that incorporate it, in order to enable mathematical

learning through the technology. The essential teacher factors that combine to

produce PTK include: instrumental genesis; mathematical knowledge for teaching;

orientations and goals (Schoenfeld, 2011), especially beliefs about the value of

technology and the nature of learning mathematical knowledge; and other affective

aspects, such as confidence in teaching with DT.

In spite of these reservations I suggest that a rethink of the algebra curriculum

and the dominance of the symbol manipulation approach usually employed might

pay dividends in terms of stimulating versatile thinking by students and hence

improve understanding of algebra.
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Chapter 11

Why Does Linear Algebra Have
to Be So Abstract?

John Hannah

Abstract Research has shown that students struggle with the abstraction of linear

algebra and many remedies have been tried. Here I offer another idea to add to your

arsenal. Instead of presenting linear algebra as a stand-alone subject, deduced

logically from a founding set of axioms, maybe we could present it as a subject

that evolves naturally from students’ experiences, either from prior contact with

vectors in a physics course, or else from discussions and experiments designed to

provoke a need to abstract, to generalize, to define and to prove.

Keywords Vector • Linear independence • Computer-based experiments •

Concreteness • Generalizability • Necessity • Need for proof

11.1 Introduction

One website about the applications of linear algebra gives, as its first application,

Abstract Thinking and offers the following advice on the subject.

One thing you can learn from the definitions, theorems and proofs you’ll see in Linear
Algebra . . . is how to think clearly and express yourself clearly, to avoid misunderstanding
and confusion. (Khoury, 2006)

Unfortunately, research in mathematics education has found that misunderstand-

ing and confusion are often the hallmarks of students after a first course in linear

algebra; see Dorier (2000) and Thomas et al. (2015) for overviews of research into

the teaching of introductory linear algebra courses. New definitions, in particular,

are so numerous that students are essentially learning a new language. Furthermore,

this language is used to describe a world containing very few familiar points of

reference. So students end up feeling lost. This is doubly unfortunate because the

ideas of linear algebra are finding applications, not just in other branches of

mathematics, but also in such diverse areas as engineering, physics, economics,
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image processing and genetics. How can we hope to open up access to linear

algebra to students of these subjects when mathematics students struggle so much

to get started?

It is over 20 years since the Linear Algebra Curriculum Study Group (LACSG)

issued its recommendations for reforming the teaching of linear algebra (Carlson,

Johnson, Lay, & Porter, 1993) and there is no doubt that textbooks have changed

somewhat in that time, with more emphasis on matrices and applications, see Lay

(2012) and Poole (2011), for example. However, as we shall see, the traditional

exposition in terms of definitions, theorems and proofs has not changed very much

at all. In his discussion of the LACSG recommendations, Harel (2000)

recommended three principles to be taken into account when dealing with the

abstraction of linear algebra:

• (Concreteness) If students are to abstract a mathematical structure from a given

model of that structure, the elements of that model must be familiar conceptual

entities in the students’ eyes.
• (Necessity) If students are to learn something, they must see a need for what they

are being taught.

• (Generalizability) When teaching with a ‘concrete’ model, that is, a model that

satisfies the Concreteness principle, your instructional activities within this

model should allow and encourage the generalizability of concepts.

This suggests a different approach to the abstract ideas of linear algebra,

whereby concepts emerge from student experiences rather than from unmotivated

axioms and definitions. In this chapter I will offer some examples of such an

approach. The idea is that concepts and their definitions will arise naturally, as

important themes or techniques recur and ask to be named. Students will learn about

these concepts and their definitions by using them repeatedly, and will tease out

their precise meaning by seeing them used in a variety of contexts, much as we all

learned our mother tongue as children. This approach is similar in spirit to the ideas

promoted by John Mason (see Chap. 6, this volume), where he suggests that

beginners in algebra need to appreciate how equations emerge from an expression

of generality, if they are to have any chance of understanding the role that algebra

can play in solving those equations.

In Sect. 11.2 we see an example of how we can build on students’ previous
experience of vectors, usually in a physics course dealing with concepts such as

force or velocity, integrating this with a more mathematical view of vectors as

ordered n-tuples. Section 11.3 looks at how the concept of linear dependence might

emerge naturally from discussions of a geometric problem in two or three dimen-

sions. Although the limitations of two or three dimensions may restrict the gener-

alizability of this concept, we shall see how computer-based experiments can be

used break beyond those limitations and help students develop a more general

intuition for linear dependence. In Sect. 11.4 we see how such experiments can also

help students to see a need for proofs or counterexamples.
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11.2 Why Aren’t Vectors Always Arrows?

Most New Zealand students meet vectors for the first time as part of a physics

course at high school. Here vectors are quantities which have both magnitude and

direction (such as force or velocity) and can be represented by arrows (or directed

line segments) in two or three dimensions. At my university, mathematics students

(whether they are majoring in mathematics or in science or engineering) then meet

matrices as part of an approach to solving systems of linear equations, and they are

introduced to an apparently different kind of vector, namely, a matrix with just one

column (or row). Thus, solutions to a system of linear equations can be represented

in terms of such vectors, one component for each unknown, even if the system has

more than three unknowns.

It is perhaps a matter of taste whether one gives priority to the ‘physics’ idea of a
vector or to the ‘mathematics’ idea. Two recent editions of popular textbooks

illustrate the range of possible attitudes. For example, Anton’s introduction to

calculus (Anton, Bivens, & Davis, 2012, Sections 11.2–11.4) tells students that

vectors are quantities which have both magnitude and direction, represented geo-

metrically by arrows or directed line segments. The dot product u � v and cross

product u� v are then defined (‘mathematically’, we might say) in terms of the

components of the vectors u and v, with their usual ‘physics’ definitions (in terms of

|u| |v| cos θ and |u| |v| sin θ) being derived and then used to calculate physical

quantities such as components or projections, or geometric quantities such as

areas or volumes, associated with arrows or directed line segments. Then in

Anton et al. (2012, Sections 11.5 and 11.6) vectors are used to represent lines and

planes and so, indirectly at least, vectors can be viewed as points. Anton makes a

distinction between a vector with components ‹a, b, c› and the point (a, b, c) at the
end of the arrow representing that vector if we place its tail at the origin. It is not

clear whether this distinction helps students to unravel the roles of the different

vectors in his vector representation of a line (r¼ r0 + tv) where the vectors r and r0
correspond to points on the line but the vector v corresponds to a direction parallel

to the line. However, this is probably as close as Anton gets to thinking of a vector

as matrix with just one column (or as an n-tuple).
On the other hand, Lay’s introduction to linear algebra (Lay, 2012, Section 1.3)

defines a vector to be a matrix with just one column (or row). Lay says that we ‘can
identify’ such a vector with a geometric point, although this visualization ‘is often
aided by including an arrow’ from the origin to this point. This allows Lay (2012,

Section 1.5) to interpret x¼ p + tv as the equation of the line through p parallel to v.

A physics view of vectors (but just as the set of all arrows or directed line segments)

is mentioned in a footnote but not actually described until Section 4.1, when it

serves briefly as an example of a vector space. Lay does not mention the dot product

until he deals with the usual inner product in n-space (Chap. 6), while the cross

product merits mention only in Chap. 8 where it features as a (presumably already

known) trick for producing a normal vector in 3-space.
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It is worth bearing in mind that students taking a beginning course in linear

algebra will almost certainly meet both of these approaches (or minor variations of

them) and that they may perhaps struggle to reconcile the two viewpoints. The

books by Anton and Lay mentioned above suggest that mathematicians themselves

solve this problem by ignoring whichever approach does not suit their purposes, and

so we can hardly be surprised if students follow their example and keep these two

worlds of vectors separate. I would like to suggest that, instead, there is much to be

gained from discussing both viewpoints side by side.

The basic story is both an example of how mathematicians often work and an

illustration of the power of abstraction. For our purposes, vectors can be seen as an

invention of physicists, designed to solve problems about forces, velocities and so

on, in the two or three dimensions that make up the real world around us. The

mathematicians’ role has been to abstract this notion (vectors are now just ordered

pairs or triples) and to generalize it to higher dimensions. It doesn’t even matter too

much if this story is not strictly true historically, as it will almost certainly be true in

terms of the student’s own historical experience. Reconciling the different view-

points takes a little extra effort (why does the physics definition of the dot product

give the same result as the mathematical definition of the inner product?) but, as we

saw above, current texts already do this without saying that this is what they are

doing. Furthermore, by making this reconciliation of viewpoints explicit, we can

engage the students in meta-level discussions about the nature of mathematics, an

activity which some writers have suggested has the potential to deepen students’
understanding of linear algebra (Hillel, 2000, p. 206).

Such diversions can seem quite time-consuming if you are teaching to a content-

rich curriculum, but in this case you do not need to wait too long to illustrate the

benefits of abstraction with a simple example. Indeed, as Fig. 11.1 shows, the same

calculations that give us the component of a given force parallel to a given direction

(Anton et al., 2012, Section 11.3) also give us a way to find the point on a given line

which is closest to a given point (Lay, 2012, Section 6.2). Both interpretations of

this calculation are a standard part of a linear algebra course (Anton gives the point

interpretation of this calculation as an exercise at the end of Section 11.3, while Lay

mentions the decomposing forces interpretation as an aside in Section 6.2) but by

discussing the relationships between the interpretations we can open the students’
eyes to how mathematics is done (Carlson, 1993, p. 45).

11.3 Why Do We Need All the Jargon?

There is no doubt that students meeting linear algebra for the first time are faced

with a long sequence of new technical terms: linear combination, span, linear

independence, subspace, basis and dimension, just to name the most basic ideas.

Furthermore, we often use earlier terms in this sequence when defining the later

terms, and so failing to understand one term can be an obstacle to understanding

several others.
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Many recent textbooks try to ease the strain on students by pacing the introduc-

tion of these terms, giving the students time to get used to the earlier, and perhaps

simpler, new terminology. For example, Lay (2012) introduces linear combinations

and span in Section 1.3, while discussing solutions to systems of linear equations.

Linear independence is introduced in Section 1.7 (without much motivation, but

with plenty of geometric interpretations) but subspaces are not introduced until

Section 2.8 at a point in the exposition where the subspaces associated with a matrix

(column, row and null spaces) can all be introduced. Poole (2011) follows a similar

strategy, with linear combinations done early (Section 1.1) then span and linear

independence (Section 2.3) and finally the other terms in the above list

(Section 3.5).

Introducing the new terms gradually certainly gives the students more time to

become familiar with the most basic ideas but, by itself, this strategy does not

explain to the students why these ideas are important enough to warrant the

invention of new names. This importance will perhaps become more evident

when the ideas are used to solve problems or prove theorems, but relying on that

delayed gratification runs the risk that students will have got lost in the fog

(Carlson, 1993) long before they get the chance to experience some motivation.

To paraphrase John Mason in an earlier chapter of this book, unless students

appreciate where the concepts come from, linear algebra will remain a mystery.

Harel’s three principles for learning linear algebra (Harel, 2000) offer us a useful
framework when planning how to introduce this new terminology. The principle of

necessity prompts us to let students experience for themselves the need to introduce

a particular new term. Why might we need a new piece of terminology? It is

tempting to say that we need it because it will be important later on but, if we are

worried that delayed gratification is not a strong enough motivation, we may have to

settle for more immediate needs, such as the desire to abbreviate a complicated or

long-winded description. The principle of concreteness directs us to look for a

concrete context, familiar to the students, in which the students can experience this

Fig. 11.1 Depending on the interpretation of vectors, the same calculation can yield either (a) the
projection y of a vector x parallel to a vector a, or (b) the point y on the line through 0 and a which
is closest to the point x
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need and from which they can abstract the new idea. Finally, the generalizability

principle asks us to design the students’ activities in such a way that students are

able, and encouraged, to do this abstraction in a generalizable way.

If we look at recent textbooks, it seems that it is easy to follow this scheme for

the idea of a linear combination. Algebraic expressions that we now call linear

combinations

x ¼ s1 v1 þ s2 v2 þ � � � þ sn vn

can arise naturally when we write down in vector form the solution to a system of

linear equations, or when we describe points on a plane through the origin parallel

to some given vectors. They also arise when we write down the general solution to a

linear differential equation with constant coefficients, although in that case we need

to broaden our notion of what a vector is. Introducing the term ‘linear combination’
simplifies the recitation of the above equation. Incidentally, this new term also

focuses attention on the vector participants in the equation, at the expense of the

scalars. This is probably a beneficial side effect if we envisage talking about

whether these vectors form a basis, but it may be less desirable if we wish to

interpret the above vector equation as a system of linear equations with the scalars

as the unknowns.

The ideas of linear dependence and independence seem to be a bit more

complicated and are perhaps more difficult to motivate. For Lay the primary notion

is linear independence and he introduces the usual definition by connecting the

equation

s1 v1 þ s2 v2 þ � � � þ sn vn ¼ 0

with his earlier discussion about the trivial solution to a homogeneous system of

linear equations, where the vectors are the columns of the coefficient matrix and the

scalars are the unknowns (Lay, 2012, Sections 1.7 and 1.5). On the other hand,

Poole sees linear dependence as the primary concept and he defines it informally

first, saying one of these vectors is a linear combination of the others, and then gives

the usual definition, presenting it as equivalent to his informal definition but without

having to commit to which particular vector it is a linear combination of the others

(Poole, 2011, Section 2.3). These are fairly traditional approaches to linear inde-

pendence but, away from the mainstream of linear algebra texts, researchers have

tried more novel ways of following, consciously or not, Harel’s three principles. In
one interesting example, Wawro, Rasmussen, Zandieh, Sweeney, and Larson

(2012) reported positive outcomes from a series of tasks which used a very concrete

setting, journeys on a two-dimensional map using a choice of hover board or a

magic carpet each of which can only travel parallel to a given vector. Other research

teams have reported mixed results from attempts to build on students’ experiences
of geometric contexts (see Thomas et al., 2015 for an overview), citing in particular

the dangers of generalizing from experiences in only two or three dimensions. I
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have had good responses from students by introducing linear dependence and

independence through the following discussions and activities.

Firstly, we can see a need for, and then construct, the idea of linear dependence

in two or three dimensions by discussing the question of what kind of geometric

object we get if we look at all linear combinations of n vectors in 2-space, or in

3-space, where n¼ 1, 2, 3. See Fig. 11.2 for the questions you might ask in the

three-dimensional case.

Setting the questions in the context of 2-space or 3-space means that the relevant

objects (vectors, lines, planes and so on) can be represented by familiar physical

props (such as pens, rods, sheets of paper or other flat surfaces). The focus of

attention here is not so much deciding what usually happens, but rather trying to

describe all the exceptions. For example, the scalar multiples of a single vector

usually give us a line, except when that vector is zero. Similarly, students readily

see that the linear combinations of two vectors in 3-space usually give a plane, but

this time there are more exceptions. Clearly the zero vector will again cause

problems, but the two vectors will also fail to generate a plane if the vectors are

parallel. Again, it is relatively easy to see that the linear combinations of three

vectors in 3-space usually give us all of 3-space, but this time there are even more

exceptions. The exceptions that caused problems in the previous two cases will

clearly cause problems again, but students may find it harder to see another

exception, where one of the vectors lies in the plane of the other two. Initially, all

these exceptions seem quite different, but a class discussion can (perhaps with a

little guidance) home in on the fact that all the exceptions are captured by the single

idea of one vector being a linear combination of the others. This idea will eventually

get named ‘linear dependence’ but, as observed above, it is probably a good idea

first for students to see this phenomenon arise in a setting which breaks out of the

geometric confines of two or three dimensions.

One way to create such an experience is a similar exploration of homogeneous

systems of linear equations, looking for how many solutions you usually get

(exactly one, or infinitely many) when you solve m linear equations in

n unknowns (see Fig. 11.3). This is rather less concrete than the magic carpet ride

of Wawro et al. (2012) but it does have the advantages of both building on the

students’ experience of solving systems of linear equations, and preparing the

ground for what Strang (1988, Section 2.4) calls the Fundamental Theorem of

What kind of geometric object do you usually get if you take all the scalar
multiples of a given vector in 3-space? Are there any exceptions?

What kind of geometric object do you usually get if you take all the linear
combinations of two given vectors in 3-space? Are there any exceptions?

What kind of geometric object do you usually get if you take all the linear
combinations of three given vectors in 3-space? Are there any exceptions?

Fig. 11.2 Geometric questions leading to the idea of linear dependence
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Linear Algebra, or what Lay (2012, Section 4.6) and Poole (2011, Section 3.5) call

the Rank Theorem.

This time the activity is conducted in a computer lab so that students can focus

on the structure of the systems of equations and their solutions without getting

bogged down in all the details of the actual solution process. To build on the

students’ intuitions about geometric objects, the discussion can begin with systems

of equations in two or (as in Fig. 11.3) three unknowns, but once the discussion has

been started there is no bound this time on the dimension of the ‘spaces’ being
considered. The only constraint is the students’ experience of solving ‘large’
systems of linear equations, or their willingness to try something even bigger.

The simplest case is one equation in one unknown.

ax ¼ 0

This may seem too simple to be interesting, but starting here establishes an analogy

with the previous discussion about geometric objects generated by linear combina-

tions of vectors in 2- or 3-space. Thus the usual situation for this ‘system’ of

equations is that there is exactly one solution, but there is an exception: if a ¼ 0

then there are infinitely many solutions. So the zero equation ( 0x ¼ 0 ) is the

exception here.

The next simplest case is a homogeneous system of two linear equations in two

unknowns

a11x1 þ a12x2 ¼ 0

a21x1 þ a22x2 ¼ 0

and this may be best explored by using the familiar geometric interpretation of these

equations. Geometrically, each equation represents a line through the origin. Usu-

ally these lines are different and they meet at a single point (the origin). What are

the exceptions? As in the case of the single equation, there is an exception if one of

the equations is the zero equation. But there is another exception, where the two

How many solutions does a homogeneous system of three linear equations in
three unknowns usually have? Are there any exceptions?

How many solutions does a homogeneous system of two linear equations in
three unknowns usually have? Are there any exceptions?

How many solutions does a homogeneous system of four linear equations in
three unknowns usually have? Are there any exceptions?

How many solutions does a homogeneous system of m linear equations in n
unknowns usually have? Are there any exceptions?

Fig. 11.3 Questions which may lead to the idea of linear dependence among linear equations
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lines are the same, and this corresponds to the case where one equation is a

(constant or scalar) multiple of the other equation.

The situation with systems of three equations offers yet another type of excep-

tion. If there are three unknowns then the system usually has exactly one solution

but, in addition to the exceptions we have already seen, there is now the possibility

that one equation is a linear combination of the other two. Typically this will be

diagnosed by the fact that two elimination steps are needed, subtracting multiples of

two of the equations from the third one, and that this results in that third equation

becoming the zero equation. The analogy with the previous scenario (looking at

linear combinations of vectors in two or three dimensions) should be clear by now.

To understand the situation for larger systems, the students may need to review

what happens when you carry out Gaussian elimination to solve such systems. This

algorithm can be viewed either in terms of elimination operations on the actual

equations, or else in terms of elementary row operations on the corresponding

matrix of coefficients. From the equation viewpoint, the key elimination operation

is to subtract a multiple of one equation from another equation, thus getting a new

and simpler equation:

equationð Þi ! equationð Þi � s equationð Þj

Now, the symptom of all the exceptional cases is that this process eventually yields

the zero equation. In the matrix viewpoint, this means that the row echelon form of

the coefficient matrix contains a row of zeros. It’s not too hard to see that this

happens because one of the equations is a linear combination of the other equations.

However, this is probably easier to do verbally than as a written argument, where

the notational complications might be a bit off-putting.

These explorations thus reveal a similar pattern to the one observed in the case of

linear combinations of vectors in two or three dimensions. This time, however, the

linear dependence relationship applies to the equations, or to the rows of the

coefficient matrix, with the equations or rows being viewed as vectors. Notice

that in both cases linear dependence arises in the form of one vector being a linear

combination of the others. I suspect that this is an easier way to approach the idea

than via the traditional definition in terms of the more symmetrical relationship

s1 v1 þ s2 v2 þ � � � þ sn vn ¼ 0:

Poole (2011, Section 2.3) seems to agree on this point, as he mentions dependence

relations like w ¼ 3uþ 2v before using the symmetrical version in his official

definition, and then shows that a set of vectors is linearly dependent exactly when

one of them is a linear combination of the others.

The main point, though, is that the need for a definition comes from looking at

some examples. The definition doesn’t just appear out of nowhere, already fully

formed like Athena emerging from the forehead of Zeus.
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11.4 More About Experiments and Report Writing

The idea of students using software like MATLAB to explore and discuss mathe-

matical ideas has been around for a while now. Carslon, in his commentary on the

recommendations of the Linear Algebra Curriculum Study Group (Carlson, 1993,

p. 45), noted that ‘students learn best, as we do, by active involvement—solving

problems, making conjectures and communicating with others’. Such activities

were also central to reform calculus projects such as the Connected Curriculum

Project (1997–2003) where students were set ‘thought-provoking questions that

require written answers, [and] summary questions that enable students to see the

forest as well as the trees’.
An unplanned benefit of the above experimental approach to linear dependence

was the discussions which arose among students when they met an unexpected

cognitive conflict. They knew from earlier work on solving systems of linear

equations via Gaussian elimination that there are simple examples of, say, three

equations in three unknowns which have no solutions, or which have infinitely

many solutions. But, in the above experiments, computer simulations using

MATLAB and its random matrix generator only ever gave examples of three

equations in three unknowns which had exactly one solution. Unexpected behav-

iour like this is a great conversation starter. After making sure their neighbour is

getting the same strange behaviour, students look for explanations. A surprisingly

common reaction was to question the randomness of MATLAB’s random matrix

generator.

The true explanation of this phenomenon can be found by looking at systems of

linear equations from an angle that is probably unfamiliar to most students. So

maybe it deepens the students’ understanding. The underlying problem in the linear

dependence experiments is that, just as the diagonal of a square has zero area, so the

set of exceptions for systems of three equations in three unknowns (see Fig. 11.3)

has zero measure in the set of all such systems. So the chances of MATLAB

conjuring up an exceptional matrix are very, very small. One determined student

reported doing 100,000 trials without succeeding in finding an exception! Other

students struggled with the idea that an event can have probability zero but still be

possible.

Such experiments illustrate the fact that even if something never happens in

repeated computer simulations it could still be possible. If you want to be sure that

something never (or always) happens, then you need a logical proof. Experiences

like this seem to offer an opportunity for the students to experience a need, in line

with Harel’s principle of necessity, for logical proofs and counter examples.

As we have just seen, some experiments always give the same result because,

although exceptions exist, they are too rare to show up in a relatively brief lab

session. For example, almost all homogeneous systems of three linear equations in

three unknowns have exactly one solution, and so that is all that we see in the

experiments. We may need to call on other resources, such as a geometric intuition

about the intersection of three planes in 3-space, in order to determine that there are
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exceptions to the experimentally observed pattern. On the other hand, there may be

occasions where the other resource needed is a logical proof that the observed

behaviour is the only possible behaviour. This happens (to take a simple example)

when we solve a homogeneous system of three linear equations in four unknowns.

Exceptional cases in linear algebra sometimes correspond to a set of measure zero

(for example, when a determinant is zero rather than nonzero) and so such situations

will be resolved not by computer simulations but by a mathematical search for a

proof or a counterexample. I have not yet explored this idea in any systematic way,

but maybe students can be brought to an appreciation of the need for proofs by a

series of similar experiments.

11.5 Conclusion

I am conscious of the fact that, in a book mostly about high school algebra, I have

been discussing a topic which is not covered (in my country, at least) until

university level mathematics courses. However, although the gap can seem huge

in terms of the level of mathematical content, there is less of a gap in terms of

pedagogical approaches. Just as John Mason insists in an earlier chapter that

learners need to appreciate how equations emerge from an expression of generality

if they are to understand the role that algebra can play in solving those equations, so

I am suggesting that students will benefit from seeing the abstraction of linear

algebra emerge from experiments or problem solving rather than from a

predetermined set of axioms. This means that linear algebra needs to evolve from

the students’ experiences, rather than appearing out of nowhere, already fully

formed.1

In Sect. 11.2, we saw how this evolution can be based on students’ prior

experiences. Thus we can acknowledge the physicists’ view, which most students

have already met, of vectors as quantities having both magnitude and direction,

with representations as arrows or directed line segments, and build connections

between these ideas and the more abstract and more general (mathematical) idea of

a vector as an ordered n-tuple of real numbers. By connecting these two viewpoints,

students can see how the same calculation (in the example in Sect. 11.2 this was the

calculation of the projection of one vector in the direction of another vector) can

simultaneously solve two quite different-looking problems. So the effort of

abstracting can be justified from a cost-benefit point of view.

In Sect. 11.3, I suggested that some of the concepts of linear algebra could also

be allowed to emerge from carefully designed discussions or experiments experi-

enced by the students in their first linear algebra course. This need not always mean

cramming even more material into an already full course. In some cases it is simply

1 The same idea occurs in more general senses in other chapters of this book. For example,

Mercedes McGowen discusses how prior knowledge can support or impede new learning.
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a question of delaying a definition until the students can see a need for it (Harel,

2000). The experiences that may prompt such a feeling are often already in current

textbooks but placed after the definitions, as if mathematicians had actually thought

of the definition first. In my example, we saw linear dependence emerging from a

discussion of exceptions to the pattern that the linear combinations of one, two or

three vectors in 3-space produce lines, planes or all of 3-space (respectively). But

sometimes extra room may need to be made in order to develop richer experiences

for the students. For example, I suggested that MATLAB experiments on homo-

geneous systems of linear equations may help develop a deeper feeling for linear

dependence which breaks out from the confines of two or three dimensions used in

the previous example. Such experiments also have the advantage, as we saw in

Sect. 11.4, that they can naturally inspire a need for logical proof (or counter-

examples) as a way to distinguish between situations which look identical to a

computer, namely, phenomena which occur almost all the time and those which

occur always.

The general idea, both in this chapter and in Mason’s, is to give students a

context in which the importance of ideas, and the need to name them, will become

apparent in the natural course of events. By following this approach we are often

imitating the historical development of many of the abstract ideas we use in modern

mathematics. Thus we are not only teaching our students the expected new content

(in my case, linear algebra, but in Mason’s case, symbolic algebra) but we are also

showing students how mathematics is actually done by practising mathematicians.
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Chapter 12

School Algebra to Linear Algebra:
Advancing Through the Worlds
of Mathematical Thinking

Sepideh Stewart

Abstract Linear algebra is a core subject for mathematics students and is required

for many STEM majors. Research reveals that many students struggle grasping the

more theoretical aspects of linear algebra which are unavoidable features of the

course. Working with vectors and understanding new concepts through definitions,

theorems, and proofs all indicate that a sudden shift has occurred, and despite

carrying the name “algebra,” in many respects linear algebra is significantly more

complex than school algebra. In this chapter we will employ the Framework of

Advanced Mathematical Thinking (FAMT) to describe the type of thinking that is

required for linear algebra students to succeed at college level.

Keywords Advanced mathematical thinking • Linear algebra • Three worlds of

mathematical thinking • Algebra • APOS

12.1 Introduction

Many students find the sudden shift from high school to linear algebra difficult. In

an interview a group of linear algebra students were asked: Did you notice much

similarities or differences between high school algebra and linear algebra? Their

responses were:

– In high school we started with examples, we didn’t really touch on proofs. It has
been the biggest difference here. It’s probably why I’m struggling with it.

– In the beginning, yes, I thought it was identical to what I learned in high school,
was just easy and then it went a 180 degrees from simple high school stuff to
thinking of what’s the proofs and everything.

– In high school algebra obviously just the rote computation of things, it is very
difficult to convey a understanding of what this is all leading to so that can
probably be a lot more tedious and it is just like mechanical, you just need to
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learn these rules and apply them whereas in linear algebra it is certainly much
more exciting the further you go.

One student referred to the computation part of the course, for example, finding a

basis for the kernel and Range of a matrix, as “the math part.”
Most linear algebra textbooks start by introducing the systems of linear equa-

tions and move into the study of matrices. As the course progresses, the concepts

carry more theorems and with them come challenges for many students. Carlson

(1997) noticed his students were able to solve systems and handle the matrix

multiplications easily. However, he was concerned that: “when we get to subspaces,
spanning, and linear independence, my students become confused and disoriented.
It is as if a heavy fog has rolled in over them, and they cannot see where they are or
where they are going. And I, as a teacher, become disheartened, and question my
choice of profession” (p. 39).

The research on linear algebra over the past decade has revealed the nature of

students’ difficulties and thought processes (e.g., Briton & Henderson, 2009;

Hannah, Stewart, & Thomas, 2013, in press; Stewart & Thomas, 2009; Wawro,

Sweeney, & Rabin, 2011;Wawro, Zandieh, Sweeney, Larson, & Rasmussen, 2011).

Despite the fact that we now have more evidence that these problems in fact exist,

“. . . still the fog rolls in, and students feel as though they have been taken to a new
world” (Briton & Henderson, 2009, p. 963). In a linear algebra study (Stewart &

Thomas, 2009) one student made it clear that he did not know how to explain the

definitions of the given concepts, but claimed he could calculate (see Fig. 12.1).

Apparently, this is not a rare occurrence, as Day (1997) confirmed, her engineering

and scientific colleagues remembered very little about their undergraduate linear

algebra courses. Those courses had covered little about properties of matrices, and

apparently the abstract concepts that were covered did not sink in. “These colleagues
could not state sensible definitions of concepts like linear independence and span,
and their geometric understanding of such concepts was nil” (p. 71).

Dorier (1990) is concerned that teachers are emphasizing “less and less on the
most formal part of the teaching (especially at the beginning) and most of the
evaluation deals with the algorithmic tasks connected with the reduction of

Fig. 12.1 An honest linear

algebra student’s response
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matrices of linear operators”(p. 28). Carlson (1997, p. 40) agrees and adds that:

“These are concepts, not computational algorithms like Gaussian elimination and
matrix multiplication.” According to Sierpinska, Nnadozie, and Okta (2002, p. 2)

this is a “waste of students’ intellectual possibilities.” In their views “linear
algebra, with its axiomatic definitions of vector space and linear transformation,
is a highly theoretical knowledge, and its learning cannot be reduced to practicing
and mastering a set of computational procedures” (p. 1). Andre Revuz who wrote

the Preface for the book: On the Teaching of Linear Algebra (Dorier, 2000, p. xv)

reminds us of an important reality that:

A common preconception among mathematician is that in order to teach mathematics well,

all that is necessary is to know the subject well. The teaching of linear algebra provides a

striking counter example. The theory is well developed, those who teach it know it

personally well . . .yet the students do not understand.

12.2 Framework of Advanced Mathematical Thinking
(FAMT)

Over the last decade, we have employed Tall’s (2004, 2008, 2010, 2013) frame-

work of embodied, symbolic, and formal mathematical thinking along with

Dubinsky’s (Dubinsky & McDonald, 2001) Action, Process, Object, and Schema

(APOS) theory and built a framework (Stewart & Thomas, 2009), namely the

Framework of Advanced Mathematical Thinking (FAMT). This framework (see

Fig. 12.2) has enabled us to investigate students’ conceptual understanding of major

linear algebra concepts (Hannah, Stewart, & Thomas, 2013, 2014, 2015, 2016;

Stewart & Thomas, 2009, 2010; Thomas & Stewart, 2011). The natural blend of

these two learning theories provides an ideal platform to analyze students’ thinking
in the context of main concepts in linear algebra, for example, vectors, linear

combinations, linear independence, basis, span and eigenvalues and eigenvectors.

Tall (2010) defines the worlds as follows: The embodied world is based on “our
operation as biological creatures, with gestures that convey meaning, perception of
objects that recognise properties and patterns. . .and other forms of figures and
diagrams” (p. 22). Embodiment can also be perceived as giving body to an abstract

idea. The symbolic world is based on practicing sequences of actions which can be

achieved effortlessly and accurately as operations that can be expressed as manip-

ulable symbols. The formal world is based on “lists of axioms expressed formally
through sequences of theorems proved deductively with the intention of building a
coherent formal knowledge structure” (p. 22).

Dubinsky and McDonald (2001) define action, which is somewhat external and

requires either explicit or from memory, step-by-step instructions and rules on how

to perform a certain task. Once an action is repeated and it is reflected upon by the

individual, it may be interiorized into a process. The individual can successfully

think of a process as an object, when he or she is able to “reflect on operations
applied to a particular process, becomes aware of the process as a totality, realizes
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that transformations can act on it, and is able to actually construct such trans-
formations. In this case, the process has been encapsulated to an object” (Asiala

et al., 1996, p. 11).

In this chapter we employ FAMT to describe some of the complexities of

understanding linear algebra for the first year students and the types of thinking

that are required at this level.

12.3 Connecting the Core Linear Algebra Concepts

The ability to connect core ideas in linear algebra and indeed in any advanced

mathematics topics is one of the most important proficiencies that we ought to

convey to our students. Failing this objective creates major issues for many students

(a process-formal view) and impedes their growth and appreciation of concepts.

Here are some possible tasks to foster this type of thinking in the classroom.

12.3.1 Concept Maps

One way to foster students’ abilities in connecting the main ideas is by asking them

to draw a concept map of the core concepts. In a study by Stewart (2008) concept

maps were used as a tool to detect whether students could relate the main concepts

to each other. The most logical map which showed the progression of concepts and

how they were formed was drawn by a Ph.D. graduate (see Fig. 12.3a) as he placed

linear combination at the center, as he acknowledged that many concepts are built

Fig. 12.2 FAMT: Framework of Advanced Mathematical Thinking
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based on this concept. This, however, was not the case with the majority of students,

who were not thinking about the relationships in which they were linking their

concepts. It was also noted that although some students displayed an understanding

of a concept in the test and interview, they did not display them in their concept

maps. Although the Ph.D. graduate had no practice with drawing concept maps

(as this is not a common practice in mathematics courses), he was able to produce a

clear map illustrating his thoughts.

In another study by Hannah et al. (2015), students’ concept maps gave some

insight into how students were thinking about the concepts and connecting the ideas

together, with some drawing more well thought-out maps than others. Interestingly,

a number of students were unsure about where they should place the concept of

subspace and a few did not connect this concept with any other concepts and left it

on its own (see Fig. 12.3b).

As part of a recent class activity, while reflecting on the chapter on vector spaces,

one linear algebra student wrote:

Chapter 4 [The vector spaces] was like a very juicy peach on a high branch just outside of
my reach. I understood the concepts as they were explained, but the entirety of the
connections to each other and previous concepts remained elusive. The concept map
activity made me further realize how jumbled my brain is with regards to what we’ve
learned.

Meel’s (2005) investigation of the use of concept mapping in linear algebra

suggests that we cannot draw strong conclusions about students’ understanding
from this method since it may not be “reliable.” He suggests that “concept mapping
should best be used as an instructional tool rather than relied on as an assessment
tool” (p. 7). Although, we do not depend on concept maps for assessment, it is a

useful tool in inspecting students’ thought processes. As Duval (2006, p. 104)

asserts: “research about the learning of mathematics and its difficulties must be
based on what students do really by themselves, on their productions, on their own
voices.” Concept maps are ideal tasks as part of homework or class activity.

Fig. 12.3 An illustration of a concept map by a Ph.D. graduate (a) and a linear algebra student (b)
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In author’s experience, students are not pressured to look for answers elsewhere

and usually spend a considerable amount of time articulating their drawings

(see Fig. 12.4).

12.3.2 Journal Writing: Linking the Concepts for a Given
Set of Vectors

Writing and describing terms may not be as common practice in a linear algebra

classroom, but can help students to articulate their thoughts. In Duval’s (2006)

notion, it will allow students to express their voices. It also helps the instructor to

detect early signs of misconceptions. In a study by Hannah et al. (2016), the

following question was posed to a group of 162 linear algebra students at a term

test:

Question. Consider the vectors u¼ [1, 0, 0], v¼ [0, 2, 0], w¼ [3, 4, 0]. Write a

short paragraph about u, v, andw. Your paragraph should be at most 75 words long,

but should include as many as possible of the following technical terms from Linear

Algebra: basis, dimension, dependence relation, linear combination, linearly
dependent, linearly independent, span, subspace.

The results showed that most students found this question difficult (average

score was 3.8/6). Only one student drew a diagram illustrating w as a linear

combination of u and v, indicating that no embodied or geometric thinking was

necessary. While most students worked in the formal world, only seven students set

up a matrix for row reduction, indicating that the symbolic world actions and

processes were not necessary or as helpful (see Fig. 12.5).

Fig. 12.4 Student’s concept map
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12.3.3 Need for Process Level Thinking: A Shift
from Symbolic Manipulations of Matrices

The next set of examples are designed to encourage a process-formal level thinking

without a need for calculation using matrices. Needless to say that students must

know how to find the determinant of a matrix. Our main goal in the next set of

examples (see Fig. 12.6) is to train students to use the given information and relate it

to the solutions of the system or inverse of the matrix, etc. Early engagement in

these activities sets the scene for moving away from a need for just calculations.

Whole class discussions around relating the core ideas help the transition to this

type of thinking.

Some students have misconceptions regarding the above questions which endure

to the end of the course. For example, in response to Q1 in a final examination,

students wrote: “no solution,” “yes, det(A)¼ 0 therefore row equiv. to In,” “1 trivial
solution,” “Ax¼ 0 has a trivial solution, and the system Ax¼ b has a unique
solution.” The following (see Fig. 12.7) are sample students’ responses to Q2.

Fig. 12.5 Student’s
response to the test question
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12.4 Representation of Concepts and the Ability
to Transfer Between the Three Worlds

The ability to switch from one setting to another, for example, being able to see the

linear equation a11x1þ a12x2þ � � �þ a1nxn¼ 0 as the n-tuple (a11, a12, . . . , a1n), i.e.,
from the linear combination of unit vectors to the rank of a set (Dorier, 1990;

Robert, 1985, cited in Dorier, Robert, Robinet, & Rogalski, 1994) gives the students

the opportunity to see the same problem from a different angle and, as a result, they

have more control over solving the problem.

12.4.1 The Subtlety of Algebraic Representation of Vectors

Questions involving algebraic representation of arbitrary vectors are more complex

to unravel than finding whether a set of given vectors in R4 are linearly independent.

The following question (see Fig. 12.8) was designed (Hannah et al., 2016) to

examine a raft of students’ abilities in moving between the worlds (embodied,

Fig. 12.6 Final examination and test questions

Fig. 12.7 Students’ responses in a test
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symbolic, and formal) as well as their ability to think in the action, process, and

object level.

Due to themultilayered nature of this question, students did not performwell. The

mean score for this whole question was 6.55 out of 12. For example, only 67%were

able to draw a diagram illustrating an embodied-process level thinking for part (a)i.

12.4.2 The Power of Visualization and the Ability to Transfer
Between the Worlds

Although pictures are very useful, they are not always in forefront of students’
thinking (Stewart & Thomas, 2009). In a class of 28 students no one used a diagram

as part of showing the following proof (see Fig. 12.9), although a diagram was

shown in class as part of the algebraic proof. Students instinctively think that a

picture will not be sufficient and professors may not accept it as proofs, therefore it

would not be necessary to draw one.

Although many students are confident to calculate the eigenvalues and eigen-

vectors, moving between the worlds causes considerable difficulties. The idea

behind these concepts is to study equations in the form of Ax¼ λx and look for

vectors that are transformed by A into a scalar multiple of themselves. Although the

symbolic manipulations are necessary, in order to have an overall intuition for the

concept it is useful for the learner to be exposed to the geometrical side of the

concept. As Keith (2001, p. 156) describes in her book “Visualizing Linear Algebra

with Maple” eigenvalues and eigenvectors “could be said to be the culmination of a

linear algebra course, yet students frequently do not have a good understanding of

them.”

In the following question (see Fig. 12.10) students had to recognize geometri-

cally that each of the three vectors satisfied the eigenvector definition, link this to

the matrix size, and see a contradiction. A 2� 2 matrix cannot have three indepen-

dent vectors all with this property since it can only have at most two eigenvalues.

(a) Suppose that u, v, and w are nonzero vectors in such that
i. Draw a diagram to illustrate the relationship between u, v, and w.
ii. Use the appropriate technical terms from linear algebra to describe the 
relationship between u, v, and w.

(b) Decide whether the vectors [0 2 0 1], [1 3 0 0], [0 4 1 0] are linearly independent.
(c) Suppose that u, v are linearly independent vectors in .

i. Give a geometric description of the span of u and v.
ii. Which of the following sets of vectors could be a basis for ?

(α) u, v, u + 2v.
(β) u, v, u´v.
(γ) u, v, u + 2v, u´v.

R

R

R

Fig. 12.8 Question from a term test
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The ability to recognize the eigenvectors in a different representation rather than

the usual symbolic one does not occur naturally and often causes difficulties for

many students.

Of the 42 students in a case study (Stewart, 2008), 14 did not respond, and only

6 were able to justify why such diagram did not make sense in this case. Some of

their explanations are given below:

“The picture above implies A has 3 eigenvectors of different directions (but if A is 2� 2, it
has a maximum of 2 eigenvectors of different directions).” “If A is 2� 2 matrix, it can have
maximum of 2 linearly independent vectors in its basis. Therefore one of Aw, Au and Av
must be impossible.” “Diagram shows 3 eigenvalues/eigenvectors a 2� 2 matrix should
have only 2.”

Others were unable to relate the picture to the concept of eigenvector, and

instead related it to the basis for a space. They wrote comments such as “since
there are only 3 vectors it will generate a space,” “because you don’t need that
many vectors to span the plane,” and “maybe too many dimensions.”

As illustrated in Fig. 12.11a, one student performed many irrelevant calculations

in response. In the interview, when the researcher pointed to his calculations, he

said: “Yeah, I didn’t understand, I was trying to understand. . . because until now I
don’t understand what that means, I can’t understand. Those vectors look very easy
but I can’t solve it.”

So the researcher said: “So in this situation, where you have no ideas, what is
your best technique?”.

He replied: “From the basic, just like I did here, I forgot about those eigenvalues
and eigenvectors I started from the basic of basic.”

The researcher then asked: “Do you try to use numbers or symbols or do you
mainly think about the theory, where the questions come from?”.

Fig. 12.9 Test question

Fig. 12.10 A nonroutine question on eigenvalues and eigenvectors
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He replied: “Actually I use symbols, numbers are special symbols, and definition,
I can’t remember definition.”

In this case a student who cannot remember the definition (formal ideas) and has

probably never seen the eigenvectors geometrically (embodied representations) has

no choice other than to revert to symbolic manipulation (actions) of what he calls

“basic ideas” .

Duval (2006) noted that to construct a graph (see Fig. 12.12), most students have

no difficulties as they follow a certain rule, “but one has only reverse the direction

of the change of register to see this rule ceases to be operational and sufficient”

(p. 113).

12.4.3 Definitions, Theorems, and Proofs

The symbolic representations of concepts which are rooted deeply in the formal

world generate powerful definitions which play an important role in understanding

the linear algebra concepts.

The ability to apply the definitions to various problem-solving situations is

essential. In a study by Stewart (2008) in response to define the term linear

combination, 45.5% of students did not write any answer, and the remaining

Fig. 12.12 Difficulties going from one register to another

Fig. 12.11 A Ph.D. graduate (a) and a student’s (b) responses to the question on eigenvalues and

eigenvectors
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54.5% only gave procedural or incomplete responses. For example, a student said:

“something like xvþ yu x, y2R.” In an interview the same student said “linear

combination, hmm . . . I can’t quite remember the definition, I can just remember

those forms something like b ¼ x1v1 þ x2v2 and something like that and x belong to
R. I only can remember these things.” When he was asked for further explanation he

said: “Hmm . . .difficult! Linear combination is an object class in a space formed by

the two vectors and x, y are scalars, this is my understanding of linear combination.”

This clearly demonstrates his lack of knowing the definition and not having an

object view of the concept in general.

As for theorems and their proofs, most linear algebra students do not have a

complete appreciation of their roles. The traditional methods of instructions,

namely, writing the proofs on the board and students copying and later memorizing

them, has not been fruitful. In a study by Hannah et al. (2014), when a group of

linear algebra students were asked to name which of the three worlds (embodied,

symbolic, or formal) they felt most comfortable, eight of the ten students selected

the symbolic world. One student added that: “Symbolic is the easiest for me but I
enjoy formal thinking the most” (p. 246).

In a study examining students’ proving skills (see Fig. 12.13), we noted how

students (a) and (b) began their proofs by assuming what they were trying to prove.

Fig. 12.13 Students’ proofs
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Also, student (c) tried to resort to the symbolic-matrix world and made an attempt in

calculating the determinant of an arbitrary matrix.

As part of a larger study, students’ opinion regarding proofs was asked.

Although students had differing opinions and the type that they preferred, they

mostly agreed that the proofs were necessary.

– I like knowing the proof because, yeah it’s nice to have a definition or just an
example but knowing why it works, it helps you solve all those steps in between
that you solve in the proof to get to your final theorem.

– Prove that what you’re doing is not just fallacy or it’s not just something that
somebody made up. It’s real. It’s a law.

– Ideally the purpose of a proof is to show why a theorem works starting from
beginning to end and ensure that it works for all cases. To me it exists to be a
pain in the butt.

– I like proofs that use the math and not the words.
– I just like proofs that are not necessarily, one or two line proofs I always find

they are more difficult because like I said they’re either a restatement of a
theorem in a weird way or they’re just dumb and I don’t understand the point of
them but like slightly longer than that where there is stuff that you do with them.
Maybe if they involve a little bit of math too. Ones that definitely just involve
words I hate 100% hate those.

As Hannah (Chapter 11 in this volume) stresses, proofs need to be evolved

naturally. Hannah’s belief is in line with Uhlig’s (2002) idea of encouraging

students to ask appropriate questions: “What happens if? Why does it happen?

How do different cases occur? What is true here?” (p. 338). He believes if these

questions are explored appropriately the knowledge can be gained in Theorems. A

deep level of understanding can be achieved gently with the WWHWT sequence

and can prepare students mentally and emotionally for the Definition-Lemma-

Proof-Theorem-Proof-Corollary (DLPTPC) sequence. Uhlig believes that both

instructor and student will not be satisfied by an early DLPTPC approach. As

Thurston (1994, p. 163) stated: “We are not trying to meet some abstract produc-
tion quota of definitions, theorems and proofs. The measure of our success is
whether what we do enables people to understand and think more clearly and
effectively about mathematics.”

12.5 Conclusion

Research shows that for most students, the shift from school to linear algebra is not

trivial. Although a typical first year linear algebra course contains a considerable

amount of calculations, for example, finding the row echelon form of a matrix,

calculating inverses, finding eigenvalues and eigenvectors, and finding the deter-

minants, the course can get extremely sophisticated. Those students who have a
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tendency toward calculations (symbolic-matrix-action level) soon discover that

learning the concepts well requires more than just computing matrices.

The ability to think in all three worlds of mathematical thinking and at the same

time keeping up with mostly process level thinking is challenging. Furthermore,

moving between the worlds at the right moment creates difficulties, specifically,

some moves tend to be more challenging than the others (e.g., embodied to

symbolic in eigenvectors, see Fig. 12.10).

The ability to solve more conceptual questions, dealing with nonroutine prob-

lems and proving theorems, does not come naturally to most students. These skills

need to be fostered long before students arrive at college. As Harel and Sowder

(2005) declare, advanced thinking in mathematics can potentially start as early as

elementary school and must not wait until students take courses such as linear

algebra. They believe, elementary and high school mathematics are rich with

opportunities for students to develop advanced types of thinking.
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