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Differential Equations9

Perhaps the most important of all the applications of calculus is to differential equations. When physical
scientists or social scientists use calculus, more often than not it is to analyze a differential equation that
has arisen in the process of modeling some phenomenon that they are studying. Although it is often
impossible to find an explicit formula for the solution of a differential equation, we will see that graphical
and numerical approaches provide the needed information.

603

© Ciurzynski / Shutterstock

The relationship between populations of predators and prey (sharks
and food fish, ladybugs and aphids, wolves and rabbits) is explored
using pairs of differential equations in the last section of this chapter.
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604 CHAPTER 9 DIFFERENTIAL EQUATIONS

In describing the process of modeling in Section 1.2, we talked about formulating a math-
ematical model of a real-world problem either through intuitive reasoning about the phe-
nomenon or from a physical law based on evidence from experiments. The mathematical
model often takes the form of a differential equation, that is, an equation that contains an
unknown function and some of its derivatives. This is not surprising because in a real-
world problem we often notice that changes occur and we want to predict future behavior
on the basis of how current values change. Let’s begin by examining several examples of
how differential equations arise when we model physical phenomena.

Models of Population Growth
One model for the growth of a population is based on the assumption that the population
grows at a rate proportional to the size of the population. That is a reasonable assumption
for a population of bacteria or animals under ideal conditions (unlimited environment, ade-
quate nutrition, absence of predators, immunity from disease).

Let’s identify and name the variables in this model:

The rate of growth of the population is the derivative . So our assumption that the 
rate of growth of the population is proportional to the population size is written as the 
equation

where k is the proportionality constant. Equation 1 is our first model for population 
growth; it is a differential equation because it contains an unknown function P and its 
derivative .

Having formulated a model, let’s look at its consequences. If we rule out a population 
of 0, then for all t. So, if , then Equation 1 shows that for all t. 
This means that the population is always increasing. In fact, as increases, Equation 1
shows that becomes larger. In other words, the growth rate increases as the popula-
tion increases.

Let’s try to think of a solution of Equation 1. This equation asks us to find a function 
whose derivative is a constant multiple of itself. We know from Chapter 6 that exponential
functions have that property. In fact, if we let , then

Thus any exponential function of the form is a solution of Equation 1. In Sec-
tion 9.4, we will see that there is no other solution.

Allowing C to vary through all the real numbers, we get the family of solutions
whose graphs are shown in Figure 1. But populations have only positive 

values and so we are interested only in the solutions with . And we are probably con-

t � time �the independent variable�

P � the number of individuals in the population �the dependent variable�

dP�dt

dP

dt
� kP1

dP�dt

P��t� � 0k � 0P�t� � 0
P�t�

dP�dt

P�t� � Ce kt

P��t� � C�kekt� � k�Cekt� � kP�t�

P�t� � Cekt

P�t� � Cekt

C � 0

9.1 Modeling with Differential Equations

Now is a good time to read (or reread) the dis-
cussion of mathematical modeling on page 23.

t

P

FIGURE 1
The family of solutions of dP/dt=kP
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SECTION 9.1 MODELING WITH DIFFERENTIAL EQUATIONS 605

cerned only with values of t greater than the initial time . Figure 2 shows the physi-
cally meaningful solutions. Putting , we get , so the constant C
turns out to be the initial population, .

Equation 1 is appropriate for modeling population growth under ideal conditions, but
we have to recognize that a more realistic model must reflect the fact that a given environ-
ment has limited resources. Many populations start by increasing in an exponential man-
ner, but the population levels off when it approaches its carrying capacity M (or decreases
toward if it ever exceeds ). For a model to take into account both trends, we make two
assumptions:

■ if P is small (Initially, the growth rate is proportional to P.)

■ if (P decreases if it ever exceeds M.)

A simple expression that incorporates both assumptions is given by the equation 

Notice that if P is small compared with M, then is close to 0 and so . If
, then is negative and so .

Equation 2 is called the logistic differential equation and was proposed by the Dutch
mathematical biologist Pierre-François Verhulst in the 1840s as a model for world popula-
tion growth. We will develop techniques that enable us to find explicit solutions of the 
logistic equation in Section 9.4, but for now we can deduce qualitative characteristics of 
the solutions directly from Equation 2. We first observe that the constant functions 

and are solutions because, in either case, one of the factors on the right
side of Equation 2 is zero. (This certainly makes physical sense: If the population is ever
either 0 or at the carrying capacity, it stays that way.) These two constant solutions are 
called equilibrium solutions.

If the initial population lies between 0 and M, then the right side of Equation 2 is 
positive, so and the population increases. But if the population exceeds the carry-
ing capacity , then is negative, so and the population
decreases. Notice that, in either case, if the population approaches the carrying capacity

, then , which means the population levels off. So we expect that the
solutions of the logistic differential equation have graphs that look something like the ones
in Figure 3. Notice that the graphs move away from the equilibrium solution and
move toward the equilibrium solution .

t � 0
P�0� � Cek�0� � Ct � 0

P�0�

MM

dP

dt
� kP

P � M
dP

dt
� 0

dP

dt
� kP�1 �

P

M�2

dP�dt � kPP�M
dP�dt � 01 � P�MP � M

P�t� � MP�t� � 0

P�0�
dP�dt � 0

dP�dt � 01 � P�M�P � M �

dP�dt l 0�P l M �

P � 0
P � M

FIGURE 3
Solutions of the logistic equation

t

P

0

P=M

P =0

equilibrium
solutions

0 t

P

FIGURE 2
The family of solutions P(t)=Cekt

with C>0 and t˘0
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606 CHAPTER 9 DIFFERENTIAL EQUATIONS

A Model for the Motion of a Spring
Let’s now look at an example of a model from the physical sciences. We consider the 
motion of an object with mass m at the end of a vertical spring (as in Figure 4). In Sec-
 tion 5.4 we discussed Hooke’s Law, which says that if the spring is stretched (or com-
pressed) x units from its natural length, then it exerts a force that is proportional to x :

where k is a positive constant (called the spring constant). If we ignore any external resist-
ing forces (due to air resistance or friction) then, by Newton’s Second Law (force equals
mass times acceleration), we have

This is an example of what is called a second-order differential equation because it 
involves second derivatives. Let’s see what we can guess about the form of the solution
directly from the equation. We can rewrite Equation 3 in the form

which says that the second derivative of x is proportional to x but has the opposite sign. We
know two functions with this property, the sine and cosine functions. In fact, it turns 
out that all solutions of Equation 3 can be written as combinations of certain sine 
and cosine functions (see Exercise 4). This is not surprising; we expect the spring to oscil-
late about its equilibrium position and so it is natural to think that trigonometric functions
are involved.

General Differential Equations
In general, a differential equation is an equation that contains an unknown function and 
one or more of its derivatives. The order of a differential equation is the order of the high-
est derivative that occurs in the equation. Thus Equations 1 and 2 are first-order equations
and Equation 3 is a second-order equation. In all three of those equations the independent
variable is called t and represents time, but in general the independent variable doesn’t 
have to represent time. For example, when we consider the differential equation

it is understood that y is an unknown function of x.
A function is called a solution of a differential equation if the equation is satisfied

when and its derivatives are substituted into the equation. Thus is a solution of
Equation 4 if

for all values of x in some interval.
When we are asked to solve a differential equation we are expected to find all possible

solutions of the equation. We have already solved some particularly simple differential 
equations, namely, those of the form

restoring force � �kx

m
d 2x

dt 2 � �kx3

d 2x

dt 2 � �
k

m
x

y� � xy4

f
y � f �x� f

f ��x� � xf �x�

y� � f �x�

FIGURE 4

m

x

0

x m

equilibrium
position
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SECTION 9.1 MODELING WITH DIFFERENTIAL EQUATIONS 607

For instance, we know that the general solution of the differential equation

is given by

where C is an arbitrary constant.
But, in general, solving a differential equation is not an easy matter. There is no sys-

tematic technique that enables us to solve all differential equations. In Section 9.2, how-
ever, we will see how to draw rough graphs of solutions even when we have no explicit
formula. We will also learn how to find numerical approximations to solutions.

Show that every member of the family of functions

is a solution of the differential equation .

SOLUTION We use the Quotient Rule to differentiate the expression for y:

The right side of the differential equation becomes

Therefore, for every value of c, the given function is a solution of the differential 
equation.

When applying differential equations, we are usually not as interested in finding a 
family of solutions (the general solution) as we are in finding a solution that satisfies some
additional requirement. In many physical problems we need to find the particular solution
that satisfies a condition of the form . This is called an initial condition, and the
problem of finding a solution of the differential equation that satisfies the initial condition
is called an initial-value problem.

Geometrically, when we impose an initial condition, we look at the family of solution
curves and pick the one that passes through the point . Physically, this corresponds
to measuring the state of a system at time and using the solution of the initial-value prob-
lem to predict the future behavior of the system.

y� � x 3

y �
x 4

4
� C

EXAMPLE 1v

y �
1 � ce t

1 � ce t

y� � 1
2 �y 2 � 1�

y� �
�1 � ce t��ce t� � �1 � ce t���ce t�

�1 � ce t�2

�
ce t � c 2e 2t � ce t � c 2e 2t

�1 � ce t�2 �
2ce t

�1 � ce t�2

1
2 �y 2 � 1� �

1

2
 �� 1 � ce t

1 � ce t�2

� 1	
�

1

2
 ��1 � ce t�2 � �1 � ce t�2

�1 � ce t�2 	
�

1

2
 

4cet

�1 � cet�2 �
2cet

�1 � cet�2

y�t0 � � y0

�t0, y0 �
t0

5

_5

_5 5

FIGURE 5

Figure 5 shows graphs of seven members of
the family in Example 1. The differential equa-
tion shows that if , then . That
is borne out by the flatness of the graphs near

and .

y� � 0y � �1

y � �1y � 1
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608 CHAPTER 9 DIFFERENTIAL EQUATIONS

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

1. Show that is a solution of the differential
equation .

2. Verify that is a solution of the initial-value
problem

3. (a) For what values of does the function satisfy the
differential equation ?

(b) If and are the values of that you found in part (a),
show that every member of the family of functions

is also a solution.

4. (a) For what values of does the function satisfy
the differential equation ?

(b) For those values of , verify that every member of the
family of functions is also a 
solution.

5. Which of the following functions are solutions of the differ-
ential equation ?
(a) (b)
(c) (d)

6. (a) Show that every member of the family of functions
is a solution of the differential equation

.

; (b) Illustrate part (a) by graphing several members of the
family of solutions on a common screen.

(c) Find a solution of the differential equation that satisfies
the initial condition .

(d) Find a solution of the differential equation that satisfies
the initial condition .

y � 2
3e x � e�2x

y� � 2y � 2e x

y � �t cos t � t

t
dy

dt
� y � t 2 sin t y��� � 0

r y � e rx

2y 	 � y� � y � 0
r1 r2 r

y � ae r1x � be r2x

k y � cos kt
4y	 � �25y

k
y � A sin kt � B cos kt

y	 � y � sin x
y � sin x y � cos x
y � 1

2 x sin x y � �
1
2 x cos x

y � �ln x � C��x
x 2y� � xy � 1

y�1� � 2

y�2� � 1

7. (a) What can you say about a solution of the equation
just by looking at the differential equation?

(b) Verify that all members of the family are
solutions of the equation in part (a).

(c) Can you think of a solution of the differential equation
that is not a member of the family in part (b)?

(d) Find a solution of the initial-value problem

8. (a) What can you say about the graph of a solution of the
equation when is close to 0? What if is
large?

(b) Verify that all members of the family
are solutions of the differential equation .

; (c) Graph several members of the family of solutions on a
common screen. Do the graphs confirm what you pre-
dicted in part (a)?

(d) Find a solution of the initial-value problem

9. A population is modeled by the differential equation

(a) For what values of is the population increasing?
(b) For what values of is the population decreasing?
(c) What are the equilibrium solutions?

10. A function satisfies the differential equation

(a) What are the constant solutions of the equation?

y� � �y 2

y � 1��x � C �

y� � �y 2

y� � �y 2 y�0� � 0.5

y� � xy 3 x x

y � �c � x 2 ��1�2

y� � xy 3

y� � xy 3 y�0� � 2

dP

dt
� 1.2P�1 �

P

4200�
P
P

y�t�

dy

dt
� y 4 � 6y 3 � 5y 2

9.1 Exercises

Find a solution of the differential equation that satisfies
the initial condition .

SOLUTION Substituting the values and into the formula

from Example 1, we get

Solving this equation for c, we get , which gives . So the solution
of the initial-value problem is

y� � 1
2 �y 2 � 1�

y�0� � 2

t � 0 y � 2

y �
1 � ce t

1 � ce t

2 �
1 � ce 0

1 � ce 0 �
1 � c

1 � c

2 � 2c � 1 � c c � 1
3

y �
1 �

1
3 e t

1 �
1
3 e t �

3 � e t

3 � e t

EXAMPLE 2v
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SECTION 9.2 DIRECTION FIELDS AND EULER’S METHOD 609

(b) For what values of is increasing?
(c) For what values of is decreasing?

11. Explain why the functions with the given graphs can’t be solu-
tions of the differential equation 

12. The function with the given graph is a solution of one of the
following differential equations. Decide which is the correct
equation and justify your answer.

A. B. C.

13. Match the differential equations with the solution graphs
labeled I–IV. Give reasons for your choices.

(a) (b)

(c) (d)

y y
y y

dy

dt
� e t�y � 1�2

y

t1

1

y

t1

1

(a) (b)

0 x

y

y� � 1 � xy y� � �2xy y� � 1 � 2xy

y� � 1 � x 2 � y 2 y� � xe�x 2�y 2

y� �
1

1 � e x 2�y 2 y� � sin�xy� cos�xy�

y

x

x

yI II

0

0

14. Suppose you have just poured a cup of freshly brewed coffee
with temperature in a room where the tempera ture 
is .
(a) When do you think the coffee cools most quickly? What

happens to the rate of cooling as time goes by? Explain.
(b) Newton’s Law of Cooling states that the rate of cooling 

of an object is proportional to the temperature difference
between the object and its surroundings, provided that this
difference is not too large. Write a differential equation that
expresses Newton’s Law of Cooling for this particular situ-
ation. What is the initial condition? In view of your answer
to part (a), do you think this differential equation is an
appropriate model for cooling?

(c) Make a rough sketch of the graph of the solution of the
initial-value problem in part (b).

15. Psychologists interested in learning theory study learning
curves. A learning curve is the graph of a function , the
performance of someone learning a skill as a function of the
training time . The derivative represents the rate at
which performance improves.
(a) When do you think increases most rapidly? What

happens to as increases? Explain.
(b) If is the maximum level of performance of which the

learner is capable, explain why the differential equation

is a reasonable model for learning.
(c) Make a rough sketch of a possible solution of this differen-

tial equation.

x

y

x

yIII IV

0 0

95
C
20
C

P�t�

t dP�dt

P
dP�dt t

M

dP

dt
� k�M � P� k a positive constant

Unfortunately, it’s impossible to solve most differential equations in the sense of obtaining
an explicit formula for the solution. In this section we show that, despite the absence of an
explicit solution, we can still learn a lot about the solution through a graphical approach
(direction fields) or a numerical approach (Euler’s method).

Direction Fields
Suppose we are asked to sketch the graph of the solution of the initial-value problem 

y� � x � y y�0� � 1

9.2 Direction Fields and Euler’s Method
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610 CHAPTER 9 DIFFERENTIAL EQUATIONS

We don’t know a formula for the solution, so how can we possibly sketch its graph? Let’s
think about what the differential equation means. The equation tells us that the
slope at any point on the graph (called the solution curve) is equal to the sum of the
x- and y-coordinates of the point (see Figure 1). In particular, because the curve passes
through the point , its slope there must be . So a small portion of the solu-
tion curve near the point looks like a short line segment through with slope 1.
(See Figure 2.)

As a guide to sketching the rest of the curve, let’s draw short line segments at a num-
ber of points with slope . The result is called a direction field and is shown in
Figure 3. For instance, the line segment at the point has slope . The direc-
tion field allows us to visualize the general shape of the solution curves by indicating the
direction in which the curves proceed at each point.

Now we can sketch the solution curve through the point by following the direc-
tion field as in Figure 4. Notice that we have drawn the curve so that it is parallel to near-
by line segments.

In general, suppose we have a first-order differential equation of the form

where is some expression in and . The differential equation says that the slope 
of a solution curve at a point on the curve is . If we draw short line segments
with slope at several points , the result is called a direction field (or slope
field). These line segments indicate the direction in which a solution curve is heading, so
the direction field helps us visualize the general shape of these curves.

y� � x � y
�x, y�

�0, 1� 0 � 1 � 1
�0, 1� �0, 1�

Slope at
(¤, fi) is
¤+fi.

Slope at
(⁄, ›) is
⁄+›.

0 x

y

FIGURE 1
A solution of yª=x+y

0 x

y

(0, 1) Slope at (0, 1)
is 0+1=1. 

FIGURE 2
Beginning of the solution curve through (0, 1)

�x, y� x � y
�1, 2� 1 � 2 � 3

0 x21

y

FIGURE 3
Direction field for yª=x+y

0 x21

y

FIGURE 4
The solution curve through (0, 1)

(0, 1)

�0, 1�

y� � F�x, y�

F�x, y� x y
�x, y� F�x, y�

F�x, y� �x, y�
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SECTION 9.2 DIRECTION FIELDS AND EULER’S METHOD 611

(a) Sketch the direction field for the differential equation .
(b) Use part (a) to sketch the solution curve that passes through the origin.

SOLUTION
(a) We start by computing the slope at several points in the following chart:

Now we draw short line segments with these slopes at these points. The result is the
direction field shown in Figure 5.

(b) We start at the origin and move to the right in the direction of the line segment
(which has slope ). We continue to draw the solution curve so that it moves parallel
to the nearby line segments. The resulting solution curve is shown in Figure 6. Returning
to the origin, we draw the solution curve to the left as well.

The more line segments we draw in a direction field, the clearer the picture becomes. 
Of course, it’s tedious to compute slopes and draw line segments for a huge number of
points by hand, but computers are well suited for this task. Figure 7 shows a more detailed,
computer-drawn direction field for the differential equation in Example 1. It enables us to
draw, with reasonable accuracy, the solution curves shown in Figure 8 with -intercepts 

, , , , and .

Now let’s see how direction fields give insight into physical situations. The simple elec-
tric circuit shown in Figure 9 contains an electromotive force (usually a battery or gener-
ator) that produces a voltage of volts (V) and a current of amperes (A) at time t. 
The circuit also contains a resistor with a resistance of R ohms ( ) and an inductor with an
inductance of L henries (H).

Ohm’s Law gives the drop in voltage due to the resistor as RI. The voltage drop due to
the inductor is . One of Kirchhoff’s laws says that the sum of the voltage drops is
equal to the supplied voltage . Thus we have

which is a first-order differential equation that models the current at time .

y� � x 2 � y 2 � 1

�1

y
�2 �1 0 1 2

FIGURE 7

3

_3

_3 3

FIGURE 8

3

_3

_3 3

E�t� I�t�
�

L�dI�dt�
E�t�

1 L
dI

dt
� RI � E�t�

I t

EXAMPLE 1v

Module 9.2A shows direction fields 
and solution curves for a variety of differential
equations.

TEC

0 x

y

1_1_2

1

2

-1

_2

FIGURE 5

2

0 x

y

1 2_1_2

1

2

-1

_2

FIGURE 6

R

E

switch

L

FIGURE 9

x �2 �1 0 1 2 �2 �1 0 1 2 . . .

y 0 0 0 0 0 1 1 1 1 1 . . .

3 0 �1 0 3 4 1 0 1 4 . . .y� � x 2 � y 2 � 1
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612 CHAPTER 9 DIFFERENTIAL EQUATIONS

Suppose that in the simple circuit of Figure 9 the resistance is , the
inductance is 4 H, and a battery gives a constant voltage of 60 V.
(a) Draw a direction field for Equation 1 with these values.
(b) What can you say about the limiting value of the current?
(c) Identify any equilibrium solutions.
(d) If the switch is closed when so the current starts with , use the direc-
tion field to sketch the solution curve.

SOLUTION
(a) If we put , , and in Equation 1, we get

The direction field for this differential equation is shown in Figure 10.

(b) It appears from the direction field that all solutions approach the value 5 A, that is,

(c) It appears that the constant function is an equilibrium solution. Indeed, we
can verify this directly from the differential equation . If , then
the left side is and the right side is .

(d) We use the direction field to sketch the solution curve that passes through , as
shown in red in Figure 11.

Notice from Figure 10 that the line segments along any horizontal line are parallel. 
That is because the independent variable t does not occur on the right side of the equation

t � 0 I�0� � 0

L � 4 R � 12 E�t� � 60

4
dI

dt
� 12I � 60 or

dI

dt
� 15 � 3I

FIGURE 10
0 t1

I

2 3

2

4

6

lim
t l �

I�t� � 5

I�t� � 5
dI�dt � 15 � 3I I�t� � 5

dI�dt � 0 15 � 3�5� � 0

�0, 0�

FIGURE 11
0 t1

I

2 3

2

4

6

12 �EXAMPLE 2v
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. In general, a differential equation of the form

in which the independent variable is missing from the right side, is called autonomous.
For such an equation, the slopes corresponding to two different points with the same 
-coordinate must be equal. This means that if we know one solution to an autonomous 

differential equation, then we can obtain infinitely many others just by shifting the graph 
of the known solution to the right or left. In Figure 11 we have shown the solutions 
that result from shifting the solution curve of Example 2 one and two time units (namely,
seconds) to the right. They correspond to closing the switch when or .

Euler’s Method
The basic idea behind direction fields can be used to find numerical approximations to 
solutions of differential equations. We illustrate the method on the initial-value problem
that we used to introduce direction fields:

The differential equation tells us that , so the solution curve has slope 1
at the point . As a first approximation to the solution we could use the linear approx-
imation . In other words, we could use the tangent line at as a rough
approximation to the solution curve (see Figure 12).

Euler’s idea was to improve on this approximation by proceeding only a short distance
along this tangent line and then making a midcourse correction by changing direction as
indicated by the direction field. Figure 13 shows what happens if we start out along the 
tangent line but stop when . (This horizontal distance traveled is called the step
size.) Since , we have and we take as the starting point
for a new line segment. The differential equation tells us that , so
we use the linear function

as an approximation to the solution for (the green segment in Figure 13). If we
decrease the step size from to , we get the better Euler approximation shown in 
Figure 14.

In general, Euler’s method says to start at the point given by the initial value and pro-
ceed in the direction indicated by the direction field. Stop after a short time, look at the
slope at the new location, and proceed in that direction. Keep stopping and changing direc-
tion according to the direction field. Euler’s method does not produce the exact solution to
an initial-value problem—it gives approximations. But by decreasing the step size (and
therefore increasing the number of midcourse corrections), we obtain successively better
approximations to the exact solution. (Compare Figures 12, 13, and 14.)

y

t � 1 t � 2

y� � x � y y�0� � 1

y��0� � 0 � 1 � 1
�0, 1�

L�x� � x � 1 �0, 1�

x � 0.5
L�0.5� � 1.5 y�0.5� � 1.5 �0.5, 1.5�

y��0.5� � 0.5 � 1.5 � 2

y � 1.5 � 2�x � 0.5� � 2x � 0.5

x � 0.5
0.5 0.25

y

x0 1

1

0.5

1.5

FIGURE 13
Euler approximation with step size 0.5

y

x0 1

1

0.25

FIGURE 14
Euler approximation with step size 0.25

y� � f �y�

I� � 15 � 3I
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y

x0 1

1
y=L(x)

solution curve

FIGURE 12
First Euler approximation

Euler

Leonhard Euler (1707–1783) was the leading
mathematician of the mid-18th century and the
most prolific mathematician of all time. He was
born in Switzerland but spent most of his career
at the academies of science supported by
Catherine the Great in St. Petersburg and 
Frederick the Great in Berlin. The collected
works of Euler (pronounced Oiler ) fill about 100
large volumes. As the French physicist Arago
said, “Euler calculated without apparent effort,
as men breathe or as eagles sustain themselves
in the air.” Euler’s calculations and writings
were not diminished by raising 13 children or
being totally blind for the last 17 years of his
life. In fact, when blind, he dictated his discov-
eries to his helpers from his prodigious memory
and imagination. His treatises on calculus and
most other mathematical subjects became the
standard for mathematics instruction and the
equation that he discovered
brings together the five most famous numbers
in all of mathematics.

e i� � 1 � 0
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614 CHAPTER 9 DIFFERENTIAL EQUATIONS

For the general first-order initial-value problem , , our aim is 
to find approximate values for the solution at equally spaced numbers , ,

, . . . , where is the step size. The differential equation tells us that the slope
at is , so Figure 15 shows that the approximate value of the solution
when is

Similarly,

In general,

Euler’s Method Approximate values for the solution of the initial-value problem
, , with step size , at , are

Use Euler’s method with step size to construct a table of approximate
values for the solution of the initial-value problem

SOLUTION We are given that , , , and . So we have

This means that if is the exact solution, then .
Proceeding with similar calculations, we get the values in the table:

For a more accurate table of values in Example 3 we could decrease the step size. But
for a large number of small steps the amount of computation is considerable and so we
need to program a calculator or computer to carry out these calculations. The following
table shows the results of applying Euler’s method with decreasing step size to the initial-
value problem of Example 3.

y� � F�x, y� y�x0� � y0

x0 x1 � x0 � h
x2 � x1 � h h

�x0, y0 � y� � F�x0, y0 �
x � x1

y1 � y0 � hF�x0, y0 �

y2 � y1 � hF�x1, y1�

yn � yn�1 � hF�xn�1, yn�1�

y� � F�x, y� y�x0� � y0 h xn � xn�1 � h

yn � yn�1 � hF�xn�1, yn�1� n � 1, 2, 3, . . .

0.1

y� � x � y y�0� � 1

h � 0.1 x0 � 0 y0 � 1 F�x, y� � x � y

y1 � y0 � hF�x0, y0 � � 1 � 0.1�0 � 1� � 1.1

y2 � y1 � hF�x1, y1� � 1.1 � 0.1�0.1 � 1.1� � 1.22

y3 � y2 � hF�x2, y2 � � 1.22 � 0.1�0.2 � 1.22� � 1.362

y�x� y�0.3� � 1.362

EXAMPLE 3

y

x⁄x¸0

y¸

h

h F(x¸, y¸)

(⁄, ›)

slope=F(x¸, y¸)

FIGURE 15

Module 9.2B shows how Euler’s method
works numerically and visually for a variety of dif-
ferential equations and step sizes.

TEC

Computer software packages that produce
numerical approximations to solutions of 
differential equations use methods that are
refinements of Euler’s method. Although Euler’s
method is simple and not as accurate, it is 
the basic idea on which the more accurate 
methods are based.

n n

1 0.1 1.100000 6 0.6 1.943122
2 0.2 1.220000 7 0.7 2.197434
3 0.3 1.362000 8 0.8 2.487178
4 0.4 1.528200 9 0.9 2.815895
5 0.5 1.721020 10 1.0 3.187485

ynxnynxn

Step size Euler estimate of Euler estimate of 

0.500 1.500000 2.500000
0.250 1.625000 2.882813
0.100 1.721020 3.187485
0.050 1.757789 3.306595
0.020 1.781212 3.383176
0.010 1.789264 3.409628
0.005 1.793337 3.423034
0.001 1.796619 3.433848

y�1�y�0.5�
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SECTION 9.2 DIRECTION FIELDS AND EULER’S METHOD 615

Notice that the Euler estimates in the table seem to be approaching limits, namely, the
true values of and . Figure 16 shows graphs of the Euler approximations with step
sizes 0.5, 0.25, 0.1, 0.05, 0.02, 0.01, and 0.005. They are approaching the exact solution
curve as the step size h approaches 0.

In Example 2 we discussed a simple electric circuit with resistance 
, inductance 4 H, and a battery with voltage 60 V. If the switch is closed when ,

we modeled the current I at time t by the initial-value problem

Estimate the current in the circuit half a second after the switch is closed.

SOLUTION We use Euler’s method with , and step size
second:

So the current after 0.5 s is

y�0.5� y�1�

0 x

y

0.5 1

1

FIGURE 16
Euler approximations

approaching the exact solution

12 � t � 0

dI

dt
� 15 � 3I I�0� � 0

F�t, I� � 15 � 3I, t0 � 0, I0 � 0
h � 0.1

I1 � 0 � 0.1�15 � 3 � 0� � 1.5

I2 � 1.5 � 0.1�15 � 3 � 1.5� � 2.55

I3 � 2.55 � 0.1�15 � 3 � 2.55� � 3.285

I4 � 3.285 � 0.1�15 � 3 � 3.285� � 3.7995

I5 � 3.7995 � 0.1�15 � 3 � 3.7995� � 4.15965

I�0.5� � 4.16 A

v EXAMPLE 4
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616 CHAPTER 9 DIFFERENTIAL EQUATIONS

1. A direction field for the differential equation is
shown.
(a) Sketch the graphs of the solutions that satisfy the given 

initial conditions.
(i) (ii)

(iii) (iv)

(b) Find all the equilibrium solutions.

2. A direction field for the differential equation is
shown.
(a) Sketch the graphs of the solutions that satisfy the given 

initial conditions.
(i) (ii)

(iii) (iv)

(b) Find all the equilibrium solutions.

3–6 Match the differential equation with its direction field (labeled
I–IV). Give reasons for your answer.

3. 4.

y� � x cos �y

y�0� � 0 y�0� � 0.5

y�0� � 1 y�0� � 1.6

x

y

0.5

1.0

1.5

2.0

_1_2 210

y� � tan(1
2�y)

y�0� � 1 y�0� � 0.2

y�0� � 2 y�1� � 3

x

y

1

2

3

4

_1_2 210

y� � 2 � y y� � x�2 � y�

5. 6.

7. Use the direction field labeled II (above) to sketch the graphs
of the solutions that satisfy the given initial conditions.
(a) (b) (c) 

8. Use the direction field labeled IV (above) to sketch the graphs
of the solutions that satisfy the given initial conditions.
(a) (b) (c) 

9–10 Sketch a direction field for the differential equation. Then use
it to sketch three solution curves.

9. 10.

11–14 Sketch the direction field of the differential equa tion. Then
use it to sketch a solution curve that passes through the given 
point.

11. ,  12. ,  

13. ,  14. ,  

15–16 Use a computer algebra system to draw a direction field for
the given differential equation. Get a printout and sketch on it the
solution curve that passes through . Then use the CAS to
draw the solution curve and compare it with your sketch.

15. 16.

y� � x � y � 1 y� � sin x sin y

y

0 x

4

2_2

2

y

0 x2_2

2

_2

y

0 x

4

2_2

2

y

0 x2_2

2

_2

I II

III IV

y�0� � 1 y�0� � 2 y�0� � �1

y�0� � �1 y�0� � 0 y�0� � 1

y� � 1
2 y y� � x � y � 1

y� � y � 2x �1, 0� y� � xy � x 2 �0, 1�

y� � y � xy �0, 1� y� � x � y 2 �0, 0�

CAS

�0, 1�

y� � x 2 sin y y� � x�y 2 � 4�

9.2 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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SECTION 9.2 DIRECTION FIELDS AND EULER’S METHOD 617

17. Use a computer algebra system to draw a direction field for
the differential equation . Get a printout and
sketch on it solutions that satisfy the initial condition

for various values of . For what values of does
exist? What are the possible values for this limit?

18. Make a rough sketch of a direction field for the autonomous
differential equation , where the graph of is as
shown. How does the limiting behavior of solutions depend 
on the value of ?

19. (a) Use Euler’s method with each of the following step sizes
to estimate the value of , where is the solution of
the initial-value problem .
(i) (ii) (iii)

(b) We know that the exact solution of the initial-value 
problem in part (a) is . Draw, as accurately as you
can, the graph of , together with the
Euler approximations using the step sizes in part (a). 
(Your sketches should resemble Figures 12, 13, and 14.)
Use your sketches to decide whether your estimates in
part (a) are underestimates or overestimates.

(c) The error in Euler’s method is the difference between 
the exact value and the approximate value. Find the
errors made in part (a) in using Euler’s method to esti-
mate the true value of , namely . What happens
to the error each time the step size is halved?

20. A direction field for a differential equation is shown. Draw,
with a ruler, the graphs of the Euler approximations to the 
solution curve that passes through the origin. Use step sizes

and . Will the Euler estimates be under -
estimates or overestimates? Explain.

CAS

y� � y 3 � 4y

y�0� � c c c
lim t l � y�t�

y� � f �y� f

y�0�

0 y21_1_2

f(y)

y�0.4� y
y� � y, y�0� � 1

h � 0.4 h � 0.2 h � 0.1

y � e x

y � e x, 0 � x � 0.4

y�0.4� e 0.4

h � 1 h � 0.5

y

2

1

1 2 x0

21. Use Euler’s method with step size to compute the
approximate -values of the solution of the
initial-value problem , .

22. Use Euler’s method with step size to estimate ,
where is the solution of the initial-value problem

, .

23. Use Euler’s method with step size to estimate ,
where is the solution of the initial-value problem

, .

24. (a) Use Euler’s method with step size to estimate ,
where is the solution of the initial-value problem

, .
(b) Repeat part (a) with step size .

; 25. (a) Program a calculator or computer to use Euler’s method
to compute , where is the solution of the initial-
value problem

(i) (ii)
(iii) (iv)

(b) Verify that is the exact solution of the dif-
ferential equation.

(c) Find the errors in using Euler’s method to compute
with the step sizes in part (a). What happens to the error
when the step size is divided by 10?

26. (a) Program your computer algebra system, using Euler’s
method with step size 0.01, to calculate , where 
is the solution of the initial-value problem

(b) Check your work by using the CAS to draw the solution
curve.

27. The figure shows a circuit containing an electromotive force,
a capacitor with a capacitance of farads (F), and a resistor
with a resistance of ohms ( ). The voltage drop across the
capacitor is , where is the charge (in cou lombs, C), so
in this case Kirchhoff’s Law gives

But , so we have

Suppose the resistance is , the capacitance is F, and
a battery gives a constant voltage of 60 V.
(a) Draw a direction field for this differential equation.
(b) What is the limiting value of the charge?
(c) Is there an equilibrium solution?
(d) If the initial charge is , use the direction field

to sketch the solution curve.

0.5
y y1, y2, y3, and y4

y� � y � 2x y�1� � 0

0.2 y�1�
y�x�

y� � xy � x 2 y�0� � 1

0.1 y�0.5�
y�x�

y� � y � xy y�0� � 1

0.2 y�0.4�
y�x�

y� � x � y 2 y�0� � 0
0.1

y�1� y�x�

dy

dx
� 3x 2 y � 6x 2 y�0� � 3

h � 1 h � 0.1
h � 0.01 h � 0.001

y � 2 � e�x3

y�1�

CAS

y�2� y

y� � x 3 � y 3 y�0� � 1

C
R �

Q�C Q

RI �
Q

C
� E�t�

I � dQ�dt

R
dQ

dt
�

1

C
Q � E�t�

5 � 0.05

Q�0� � 0 C
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618 CHAPTER 9 DIFFERENTIAL EQUATIONS

(e) If the initial charge is , use Euler’s method with
step size 0.1 to estimate the charge after half a second.

Q�0� � 0 C

C

E R

28. In Exercise 14 in Section 9.1 we considered a cup of cof-
fee in a room. Suppose it is known that the coffee cools
at a rate of per minute when its temperature is .
(a) What does the differential equation become in this case?
(b) Sketch a direction field and use it to sketch the solution

curve for the initial-value problem. What is the limiting
value of the temperature?

(c) Use Euler’s method with step size minutes to
estimate the temperature of the coffee after 10 minutes.

95	C
20	C

1	C 70	C

h � 2

We have looked at first-order differential equations from a geometric point of view (direc-
tion fields) and from a numerical point of view (Euler’s method). What about the symbolic
point of view? It would be nice to have an explicit formula for a solution of a differential
equation. Unfortunately, that is not always possible. But in this section we examine a cer-
tain type of differential equation that can be solved explicitly.

A separable equation is a first-order differential equation in which the expression for
can be factored as a function of x times a function of y. In other words, it can be

written in the form

The name separable comes from the fact that the expression on the right side can be “sep-
arated” into a function of and a function of . Equivalently, if , we could write

where . To solve this equation we rewrite it in the differential form

so that all ’s are on one side of the equation and all ’s are on the other side. Then we inte-
grate both sides of the equation:

Equation 2 defines implicitly as a function of . In some cases we may be able to solve
for in terms of .

We use the Chain Rule to justify this procedure: If and satisfy , then

so

and

Thus Equation 1 is satisfied.

dy�dx

dy

dx
� t�x� f �y�

x y f �y� � 0

1
dy

dx
�

t�x�
h�y�

h�y� � 1�f �y�

h�y� dy � t�x� dx

y x

2 y h�y� dy � y t�x� dx

y x
y x

h t

d

dx �y h�y� dy� �
d

dx �y t�x� dx�
d

dy �y h�y� dy� dy

dx
� t�x�

h�y�
dy

dx
� t�x�

2

9.3 Separable Equations

The technique for solving separable differential
equations was first used by James Bernoulli 
(in 1690) in solving a problem about pendulums
and by Leibniz (in a letter to Huygens in 1691).
John Bernoulli explained the general method in
a paper published in 1694.
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SECTION 9.3 SEPARABLE EQUATIONS 619

(a) Solve the differential equation .

(b) Find the solution of this equation that satisfies the initial condition .

SOLUTION
(a) We write the equation in terms of differentials and integrate both sides:

where is an arbitrary constant. (We could have used a constant on the left side and
another constant on the right side. But then we could combine these constants by
writing .)

Solving for , we get

We could leave the solution like this or we could write it in the form

where . (Since is an arbitrary constant, so is .)

(b) If we put in the general solution in part (a), we get . To satisfy the
initial condition , we must have and so . Thus the solution of
the initial-value problem is

Solve the differential equation .

SOLUTION Writing the equation in differential form and integrating both sides, we have

where is a constant. Equation 3 gives the general solution implicitly. In this case it’s
impossible to solve the equation to express explicitly as a function of .

Solve the equation .

SOLUTION First we rewrite the equation using Leibniz notation: 

dy

dx
�

x 2

y 2

y�0� � 2

y 2dy � x 2dx

y y 2dy � y x 2dx

1
3 y 3 � 1

3 x 3 � C

C C1

C2

C � C2 � C1

y

y � s
3 x 3 � 3C

y � s
3 x 3 � K

K � 3C C K

x � 0 y �0� � s
3 K

y�0� � 2 s
3 K � 2 K � 8

y � s
3 x 3 � 8

dy

dx
�

6x 2

2y � cos y

�2y � cos y�dy � 6x 2 dx

y �2y � cos y�dy � y 6x 2 dx

3 y 2 � sin y � 2x 3 � C

C
y x

y� � x 2y

dy

dx
� x 2y

EXAMPLE 1

v EXAMPLE 2

EXAMPLE 3

Figure 1 shows graphs of several members 
of the family of solutions of the differential 
equation in Example 1. The solution of the 
initial-value problem in part (b) is shown in red.

3

_3

_3 3

FIGURE 1

Some computer algebra systems can plot curves
defined by implicit equations. Figure 2 shows
the graphs of several members of the family 
of solutions of the differential equation in
Example 2. As we look at the curves from 
left to right, the values of are , , , , ,

, and .
0123

�3�2
�1C

4

_4

_2 2

FIGURE 2
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620 CHAPTER 9 DIFFERENTIAL EQUATIONS

If , we can rewrite it in differential notation and integrate:

This equation defines implicitly as a function of . But in this case we can solve
explicitly for as follows:

so

We can easily verify that the function is also a solution of the given differential
equation. So we can write the general solution in the form

where is an arbitrary constant ( , or , or ).

In Section 9.2 we modeled the current in the electric circuit shown in
Figure 5 by the differential equation

Find an expression for the current in a circuit where the resistance is , the induc-
tance is 4 H, a battery gives a constant voltage of 60 V, and the switch is turned on when

. What is the limiting value of the current?

SOLUTION With L � 4, R � 12, and , the equation becomes

or    

y
dy

y
� y x 2 dx

ln � y � �
x 3

3
� C

y x
y

� y � � e ln � y � � e �x3�3��C � eCex3�3

y � 
eCex3�3

y � 0

y � Aex 3�3

A A � eC A � �eC A � 0

FIGURE 3

2
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FIGURE 4

6

_6

_2 2

I�t�

L
dI

dt
� RI � E�t�

12 �

t � 0

E�t� � 60

4 
dI

dt
� 12I � 60

dI

dt
� 15 � 3I

y � 0

v EXAMPLE 4

dy

y
� x 2 dx y � 0

If a solution is a function that satisfies
for some , it follows from a 

uniqueness theorem for solutions of differential
equations that for all .xy�x� � 0

xy�x� � 0
y

Figure 3 shows a direction field for the differ-
ential equation in Example 3. Compare it 
with Figure 4, in which we use the equation

to graph solutions for several val-
ues of . If you use the direction field to sketch 
solution curves with -intercepts , , , ,
and , they will resemble the curves in
Figure 4.

125
�2

�1y
A

y � Ae x 3�3

R

E

switch

L

FIGURE 5
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SECTION 9.3 SEPARABLE EQUATIONS 621

and the initial-value problem is

We recognize this equation as being separable, and we solve it as follows:

Since , we have , so A � 15 and the solution is

The limiting current, in amperes, is

Orthogonal Trajectories
An orthogonal trajectory of a family of curves is a curve that intersects each curve of the
family orthogonally, that is, at right angles (see Figure 7). For instance, each member of
the family of straight lines through the origin is an orthogonal trajectory of the
family of concentric circles with center the origin (see Figure 8). We say that
the two families are orthogonal trajectories of each other.

Find the orthogonal trajectories of the family of curves , where 
is an arbitrary constant.

SOLUTION The curves form a family of parabolas whose axis of symmetry is 
the -axis. The first step is to find a single differential equation that is satisfied by all 

dI

dt
� 15 � 3I I�0� � 0

y
dI

15 � 3I
� y dt �15 � 3I � 0�

�
1
3 ln � 15 � 3I � � t � C

� 15 � 3I � � e�3�t�C�

15 � 3I � 
e�3Ce�3t � Ae�3t

I � 5 �
1
3 Ae�3t

I�0� � 0 5 �
1
3 A � 0

I�t� � 5 � 5e�3t

lim
t l �

I�t� � lim
t l �

�5 � 5e�3t � � 5 � 5 lim
t l �

e�3t � 5 � 0 � 5

y � mx
x 2 � y 2 � r 2

x

y

FIGURE 8

orthogonal
trajectory

FIGURE 7

x � ky 2

k

x � ky 2

x

v EXAMPLE 5

Figure 6 shows how the solution in Example 4
(the current) approaches its limiting value. Com-
parison with Figure 11 in Section 9.2 shows that
we were able to draw a fairly accurate solution
curve from the direction field.

6

0 2.5

y=5

FIGURE 6
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622 CHAPTER 9 DIFFERENTIAL EQUATIONS

members of the family. If we differentiate , we get

This differential equation depends on , but we need an equation that is valid for all
values of simultaneously. To eliminate we note that, from the equation of the given
general parabola , we have and so the differential equation can be 
written as

or

This means that the slope of the tangent line at any point on one of the parabolas is
. On an orthogonal trajectory the slope of the tangent line must be the nega-

tive reciprocal of this slope. Therefore the orthogonal trajectories must satisfy the differ-
ential equation

This differential equation is separable, and we solve it as follows:

where is an arbitrary positive constant. Thus the orthogonal trajectories are the family
of ellipses given by Equation 4 and sketched in Figure 9.

Orthogonal trajectories occur in various branches of physics. For example, in an elec-
trostatic field the lines of force are orthogonal to the lines of constant potential. Also, 
the streamlines in aerodynamics are orthogonal trajectories of the velocity-equipotential
curves.

Mixing Problems
A typical mixing problem involves a tank of fixed capacity filled with a thoroughly mixed
solution of some substance, such as salt. A solution of a given concentration enters the tank
at a fixed rate and the mixture, thoroughly stirred, leaves at a fixed rate, which may differ
from the entering rate. If denotes the amount of substance in the tank at time t, then

is the rate at which the substance is being added minus the rate at which it is being
removed. The mathematical description of this situation often leads to a first-order sepa -
rable differential equation. We can use the same type of reasoning to model a variety of
phenomena: chemical reactions, discharge of pollutants into a lake, injection of a drug into
the bloodstream.

x � ky 2

1 � 2ky
dy

dx
or

dy

dx
�

1

2ky

k
k k

x � ky 2 k � x�y 2

dy

dx
�

1

2ky
�

1

2 
x

y 2 y

dy

dx
�

y

2x

�x, y�
y� � y��2x�

dy

dx
� �

2x

y

y y dy � �y 2x dx

y 2

2
� �x 2 � C

4 x 2 �
y 2

2
� C

C

y�t�
y��t�

x

y

FIGURE 9
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SECTION 9.3 SEPARABLE EQUATIONS 623

A tank contains 20 kg of salt dissolved in 5000 L of water. Brine that con-
tains 0.03 kg of salt per liter of water enters the tank at a rate of . The solution is
kept thoroughly mixed and drains from the tank at the same rate. How much salt remains
in the tank after half an hour?

SOLUTION Let be the amount of salt (in kilograms) after minutes. We are given that
and we want to find . We do this by finding a differential equation satis-

fied by . Note that is the rate of change of the amount of salt, so

where (rate in) is the rate at which salt enters the tank and (rate out) is the rate at which
salt leaves the tank. We have

The tank always contains 5000 L of liquid, so the concentration at time is
(measured in kilograms per liter). Since the brine flows out at a rate of 25 L�min, we
have

Thus, from Equation 5, we get

Solving this separable differential equation, we obtain

Since , we have , so

Therefore

Since is continuous and and the right side is never 0, we deduce that
is always positive. Thus and so

The amount of salt after 30 min is

25 L�min

y�t� t
y�0� � 20 y�30�

y�t� dy�dt

5
dy

dt
� �rate in� � �rate out�

rate in � �0.03 
kg

L ��25 
L

min� � 0.75 
kg

min

t y�t��5000

rate out � � y�t�
5000

 
kg

L ��25 
L

min� �
y�t�
200

 
kg

min

dy

dt
� 0.75 �

y�t�
200

�
150 � y�t�

200

y
dy

150 � y
� y

dt

200

�ln � 150 � y � �
t

200
� C

y�0� � 20 �ln 130 � C

�ln � 150 � y � �
t

200
� ln 130

� 150 � y � � 130e�t�200

y�t� y�0� � 20
150 � y�t� � 150 � y � � 150 � y

y�t� � 150 � 130e�t�200

y�30� � 150 � 130e�30�200 � 38.1 kg

EXAMPLE 6

Figure 10 shows the graph of the function 
of Example 6. Notice that, as time goes by, the
amount of salt approaches 150 kg.
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y
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624 CHAPTER 9 DIFFERENTIAL EQUATIONS

1–10 Solve the differential equation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11–18 Find the solution of the differential equation that satisfies
the given initial condition.

11. ,  

12. ,  

13. ,  

14. ,  

15. ,  

16. ,  

17. ,  ,  

18. ,  

19. Find an equation of the curve that passes through the point
and whose slope at is .

20. Find the function such that and
.

21. Solve the differential equation by making the
change of variable .

22. Solve the differential equation by making 
the change of variable .

dy

dx
� xy 2 dy

dx
� xe�y

xy 2y� � x � 1 �y 2 � xy 2�y� � 1

�y � sin y�y� � x � x 3 dv

ds
�

s � 1

sv � s

dy

dt
�

t

ye y�t 2

dy

d�
�

e y sin2�

y sec �

dp

dt
� t 2p � p � t 2 � 1

dz

dt
� e t�z � 0

dy

dx
�

x

y
y�0� � �3

dy

dx
�

ln x

xy
y�1� � 2

du

dt
�

2t � sec2t

2u
u�0� � �5

y� �
xy sin x

y � 1
y�0� � 1

x ln x � y(1 � s3 � y 2 )y� y�1� � 1

dP

dt
� sPt P�1� � 2

y� tan x � a � y y���3� � a 0 � x � ��2

dL

dt
� kL2 ln t L�1� � �1

�0, 1� �x, y� xy

f f ��x� � f �x��1 � f �x��
f �0� � 1

2

y� � x � y
u � x � y

xy� � y � xe y�x

v � y�x

23. (a) Solve the differential equation .

; (b) Solve the initial-value problem ,
, and graph the solution.

(c) Does the initial-value problem ,
, have a solution? Explain.

; 24. Solve the equation and graph several
members of the family of solutions. How does the solution
curve change as the constant varies?

25. Solve the initial-value problem ,
, and graph the solution (if your CAS does

implicit plots).

26. Solve the equation and graph several
members of the family of solutions (if your CAS does
implicit plots). How does the solution curve change as the
constant varies?

27–28
(a) Use a computer algebra system to draw a direction field 

for the differential equation. Get a printout and use it to
sketch some solution curves without solving the differential
equation.

(b) Solve the differential equation.
(c) Use the CAS to draw several members of the family of solu-

 tions obtained in part (b). Compare with the curves from 
part (a).

27. 28.

; 29–32 Find the orthogonal trajectories of the family of curves.
Use a graphing device to draw several members of each family
on a common screen.

29. 30.

31. 32.

33–35 An integral equation is an equation that contains an
unknown function and an integral that involves . Solve
the given integral equation. [Hint: Use an initial condition
obtained from the integral equation.]

33.

34. ,  

35.

y� � 2xs1 � y 2 

y� � 2xs1 � y 2 

y�0� � 0
y� � 2xs1 � y 2 

y�0� � 2

e�yy� � cos x � 0

C

CAS y� � �sin x��sin y
y�0� � ��2

CAS y� � xsx 2 � 1��ye y �

C

CAS

y� � y 2 y� � xy

x 2 � 2y 2 � k 2 y 2 � kx 3

y �
k

x
y �

x

1 � kx

y�x� y�x�

y�x� � 2 � y
x

2
�t � ty�t�� dt

y�x� � 2 � y
x

1

dt

ty �t�
x � 0

y�x� � 4 � y
x

0
2tsy �t� dt

9.3 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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SECTION 9.3 SEPARABLE EQUATIONS 625

36. Find a function such that and 

[Hint: Use the addition formula for on Reference
Page 2.]

37. Solve the initial-value problem in Exercise 27 in Section 9.2
to find an expression for the charge at time . Find the limit-
ing value of the charge.

38. In Exercise 28 in Section 9.2 we discussed a differential
equation that models the temperature of a cup of cof-
fee in a room. Solve the differential equation to find an
expression for the temperature of the coffee at time .

39. In Exercise 15 in Section 9.1 we formulated a model for
learning in the form of the differential equation

where measures the performance of someone learning a
skill after a training time , is the maximum level of per-
 formance, and is a positive constant. Solve this differential
equation to find an expression for . What is the limit of
this expression?

40. In an elementary chemical reaction, single molecules of 
two reactants A and B form a molecule of the product C:

. The law of mass action states that the rate 
of reaction is proportional to the product of the concentra-
tions of A and B: 

(See Example 4 in Section 2.7.) Thus, if the initial concen-
trations are A moles�L and B moles�L and we
write C , then we have

(a) Assuming that , find as a function of . Use the
fact that the initial concentration of C is 0.

(b) Find assuming that . How does this expres-
 sion for simplify if it is known that after 
20 seconds?

41. In contrast to the situation of Exercise 40, experiments show
that the reaction satisfies the rate law

and so for this reaction the differential equation becomes

where and and are the initial concentrations
of hydrogen and bromine.
(a) Find as a function of in the case where . Use

the fact that .

f f �3� � 2

�t 2 � 1� f ��t� � � f �t�� 2 � 1 � 0 t � 1

tan�x � y�

t

95	C
20	C

t

dP

dt
� k�M � P�

P�t�
t M

k
P�t�

A � B l C

d �C�
dt

� k �A� �B�

� � � a � � � b
x � � �

dx

dt
� k�a � x��b � x�

a � b x t

x �t� a � b
x �t� �C� � 1

2 a

H2 � Br2  l 2HBr

d �HBr�
dt

� k �H 2� �Br2�1�2

dx

dt
� k�a � x��b � x�1�2

x � �HBr� a b

x t a � b
x�0� � 0

(b) If , find as a function of . Hint: In performing
the integration, make the substitution 

42. A sphere with radius 1 m has temperature . It lies inside
a concentric sphere with radius 2 m and temperature .
The temperature at a distance from the common cen-
ter of the spheres satisfies the differential equation

If we let , then satisfies a first-order differential
equation. Solve it to find an expression for the temperature

between the spheres.

43. A glucose solution is administered intravenously into the
bloodstream at a constant rate . As the glucose is added, it
is converted into other substances and removed from the
bloodstream at a rate that is proportional to the concen-
tration at that time. Thus a model for the concentration

of the glucose solution in the bloodstream is

where is a positive constant.
(a) Suppose that the concentration at time is .

Determine the concentration at any time by solving the
differential equation.

(b) Assuming that , find and interpret
your answer.

44. A certain small country has $10 billion in paper currency 
in circulation, and each day $50 million comes into the 
country’s banks. The government decides to introduce new
currency by having the banks replace old bills with new
ones whenever old currency comes into the banks. Let

denote the amount of new currency in circulation 
at time , with .
(a) Formulate a mathematical model in the form of an 

initial-value problem that represents the “flow” of the 
new currency into circulation.

(b) Solve the initial-value problem found in part (a).
(c) How long will it take for the new bills to account for

of the currency in circulation?

45. A tank contains 1000 L of brine with 15 kg of dissolved salt.
Pure water enters the tank at a rate of 10 L�min. The solu-
tion is kept thoroughly mixed and drains from the tank at the
same rate. How much salt is in the tank (a) after minutes
and (b) after 20 minutes?

46. The air in a room with volume contains car-
bon dioxide initially. Fresher air with only 0.05% carbon
dioxide flows into the room at a rate of and the
mixed air flows out at the same rate. Find the percentage of
carbon dioxide in the room as a function of time. What hap-
pens in the long run?

47. A vat with 500 gallons of beer contains 4% alcohol (by 
volume). Beer with 6% alcohol is pumped into the vat at a
rate of and the mixture is pumped out at the same
rate. What is the percentage of alcohol after an hour?

a � b t x [
u � sb � x .]
15 	C

25 	C
T �r� r

d 2T

dr 2 �
2

r

dT

dr
� 0

S � dT�dr S

T �r�

r

C � C�t�

dC

dt
� r � kC

k
t � 0 C0

t

C0 � r�k lim t l 
 C�t�

x � x �t�
t x �0� � 0

90%

t

180 m3 0.15%

2 m3�min

5 gal�min
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48. A tank contains 1000 L of pure water. Brine that contains
0.05 kg of salt per liter of water enters the tank at a rate of
5 L�min. Brine that contains 0.04 kg of salt per liter of 
water enters the tank at a rate of 10 L�min. The solution is 
kept thoroughly mixed and drains from the tank at a rate of 
15 L�min. How much salt is in the tank (a) after minutes and
(b) after one hour?

49. When a raindrop falls, it increases in size and so its mass at
time is a function of , namely . The rate of growth of the
mass is for some positive constant . When we apply
New ton’s Law of Motion to the raindrop, we get ,
where is the velocity of the raindrop (directed downward) and

is the acceleration due to gravity. The terminal velocity of the
raindrop is . Find an expression for the terminal
velocity in terms of and .

50. An object of mass is moving horizontally through a medium
which resists the motion with a force that is a function of the
velocity; that is,

where and represent the velocity and position
of the object at time , respectively. For example, think of a
boat moving through the water.
(a) Suppose that the resisting force is proportional to the veloc-

ity, that is, , a positive constant. (This model
is appropriate for small values of .) Let and

be the initial values of and . Determine and 
at any time . What is the total distance that the object

travels from time ?
(b) For larger values of a better model is obtained by sup-

posing that the resisting force is proportional to the square
of the velocity, that is, , . (This model
was first proposed by Newton.) Let and be the initial
values of and . Determine and at any time . What is
the total distance that the object travels in this case?

51. Allometric growth in biology refers to relationships between
sizes of parts of an organism (skull length and body length, for
instance). If and are the sizes of two organs in an
organism of age , then and satisfy an allometric law if
their specific growth rates are proportional:

where is a constant.
(a) Use the allometric law to write a differential equation 

relating and and solve it to express as a function 
of .

(b) In a study of several species of unicellular algae, the
proportionality constant in the allometric law relating 

(cell biomass) and (cell volume) was found to be
. Write as a function of .

t

t t m�t�
km�t� k

�mv�� � tm
v

t

lim t l 
 v�t�
t k

m

m
d 2s

dt 2 � m
dv

dt
� f �v�

v � v�t� s � s�t�
t

f �v� � �kv k
v v�0� � v0

s�0� � s0 v s v
s t

t � 0
v

f �v� � �kv2 k � 0
v0 s0

v s v s t

L1�t� L2�t�
t L1 L2

1

L1

dL1

dt
� k

1

L2

dL2

dt

k

L1 L2 L1

L2

B V
k � 0.0794 B V

52. Homeostasis refers to a state in which the nutrient content of a
consumer is independent of the nutrient content of its food. In
the absence of homeostasis, a model proposed by Sterner and
Elser is given by

where and represent the nutrient content of the food and the
consumer, respectively, and is a constant with .
(a) Solve the differential equation.
(b) What happens when ? What happens when ?

53. Let be the area of a tissue culture at time and let be
the final area of the tissue when growth is complete. Most cell
divisions occur on the periphery of the tissue and the number
of cells on the periphery is proportional to . So a reason-
able model for the growth of tissue is obtained by assuming
that the rate of growth of the area is jointly proportional to

and .
(a) Formulate a differential equation and use it to show that 

the tissue grows fastest when .
(b) Solve the differential equation to find an expression 

for . Use a computer algebra system to perform the
integration.

54. According to Newton’s Law of Universal Gravitation, the 
gravitational force on an object of mass that has been
projected vertically upward from the earth’s surface is 

where is the object’s distance above the surface at
time , is the earth’s radius, and is the acceleration due to
gravity. Also, by Newton’s Second Law, 
and so

(a) Suppose a rocket is fired vertically upward with an initial
velocity . Let be the maximum height above the surface
reached by the object. Show that

[Hint: By the Chain Rule, .]
(b) Calculate . This limit is called the escape

velocity for the earth.
(c) Use mi and ft�s to calculate in 

feet per second and in miles per second.

dy

dx
�

1

�

y

x

x y
� � � 1

� � 1 � l 


A�t� t M

sA�t�

sA�t� M � A�t�

A�t� � 1
3 M

CAS

A�t�

m

F �
mtR 2

�x � R�2

x � x�t�
t R t

F � ma � m �dv�dt�

m
dv

dt
� �

mtR 2

�x � R�2

v0 h

v0 � � 2tRh

R � h

m �dv�dt� � mv �dv�dx�
ve � lim h l 
 v0

R � 3960 t � 32 2 ve
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A P P L I E D  P R O J E C T HOW FAST DOES A TANK DRAIN?

If water (or other liquid) drains from a tank, we expect that the flow will be greatest at first (when
the water depth is greatest) and will gradually decrease as the water level decreases. But we need 
a more precise mathematical description of how the flow decreases in order to answer the kinds 
of questions that engineers ask: How long does it take for a tank to drain completely? How much
water should a tank hold in order to guarantee a certain minimum water pressure for a sprinkler
system?

Let and be the height and volume of water in a tank at time . If water drains through a
hole with area at the bottom of the tank, then Torricelli’s Law says that

where is the acceleration due to gravity. So the rate at which water flows from the tank is propor-
tional to the square root of the water height.

1. (a) Suppose the tank is cylindrical with height 6 ft and radius 2 ft and the hole is circular
with radius 1 inch. If we take ft�s , show that satisfies the differential equation

(b) Solve this equation to find the height of the water at time , assuming the tank is full at 
time .

(c) How long will it take for the water to drain completely?

2. Because of the rotation and viscosity of the liquid, the theoretical model given by Equa-
tion 1 isn’t quite accurate. Instead, the model

is often used and the constant (which depends on the physical properties of the liquid) is
determined from data concerning the draining of the tank.
(a) Suppose that a hole is drilled in the side of a cylindrical bottle and the height of the

water (above the hole) decreases from 10 cm to 3 cm in 68 seconds. Use Equation 2 to
find an expression for . Evaluate for .

(b) Drill a 4-mm hole near the bottom of the cylindrical part of a two-liter plastic soft-drink
bottle. Attach a strip of masking tape marked in centimeters from 0 to 10, with 0 corre-
sponding to the top of the hole. With one finger over the hole, fill the bottle with water
to the 10-cm mark. Then take your finger off the hole and record the values of for

seconds. (You will probably find that it takes 68 seconds for
the level to decrease to .) Compare your data with the values of from
part (a). How well did the model predict the actual values?

3. In many parts of the world, the water for sprinkler systems in large hotels and hospitals is 
supplied by gravity from cylindrical tanks on or near the roofs of the buildings. Suppose 
such a tank has radius 10 ft and the diameter of the outlet is 2.5 inches. An engineer has to
guarantee that the water pressure will be at least 2160 for a period of 10 minutes.
(When a fire happens, the electrical system might fail and it could take up to 10 minutes for
the emergency generator and fire pump to be activated.) What height should the engineer
specify for the tank in order to make such a guarantee? (Use the fact that the water pressure
at a depth of feet is . See Section 8.3.)

h�t� V�t� t
a

1
dV

dt
� �as2th

t

t � 32 2 h

dh

dt
� �

1

72
 sh

t
t � 0

2
dh

dt
� ksh

k

h

h�t� h�t� t � 10, 20, 30, 40, 50, 60

h�t�
t � 10, 20, 30, 40, 50, 60

h � 3 cm h�t�

lb�ft 2

d P � 62.5d

Problem 2(b) is best done as a classroom
demonstration or as a group project with three
students in each group: a timekeeper to call
out seconds, a bottle keeper to estimate the
height every 10 seconds, and a record keeper
to record these values.

© Richard Le Borne, Dept. Mathematics,
Tennessee Technological University
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628 CHAPTER 9 DIFFERENTIAL EQUATIONS

4. Not all water tanks are shaped like cylinders. Suppose a tank has cross-sectional area at
height . Then the volume of water up to height is and so the Funda mental
Theorem of Calculus gives . It follows that

and so Torricelli’s Law becomes

(a) Suppose the tank has the shape of a sphere with radius 2 m and is initially half full of
water. If the radius of the circular hole is 1 cm and we take m�s , show that 
satisfies the differential equation

(b) How long will it take for the water to drain completely?

A�h�
h h V � x

h
0 A�u� du

dV�dh � A�h�

dV

dt
�

dV

dh

dh

dt
� A�h�

dh

dt

A�h�
dh

dt
� �as2th

t � 10 2 h

�4h � h2 �
dh

dt
� �0.0001s20h

A P P L I E D  P R O J E C T WHICH IS FASTER, GOING UP OR COMING DOWN?

Suppose you throw a ball into the air. Do you think it takes longer to reach its maximum height 
or to fall back to earth from its maximum height? We will solve the problem in this project but,
before getting started, think about that situation and make a guess based on your physical 
intuition.

1. A ball with mass is projected vertically upward from the earth’s surface with a positive
initial velocity . We assume the forces acting on the ball are the force of gravity and a
retarding force of air resistance with direction opposite to the direction of motion and with
magnitude , where is a positive constant and is the velocity of the ball at time .
In both the ascent and the descent, the total force acting on the ball is . [During
ascent, is positive and the resistance acts downward; during descent, is negative and
the resistance acts upward.] So, by Newton’s Second Law, the equation of motion is

Solve this differential equation to show that the velocity is

2. Show that the height of the ball, until it hits the ground, is

m
v0

p� v�t� � p v�t� t
�pv � mt

v�t� v�t�

mv� � �pv � mt

v�t� � �v0 �
mt

p �e�pt�m �
mt

p

y�t� � �v0 �
mt

p � m

p
�1 � e�pt�m � �

mtt

p

In modeling force due to air resistance, 
various functions have been used, depending
on the physical characteristics and speed of the
ball. Here we use a linear model, , but a
quadratic model ( on the way up and 
on the way down) is another possibility for
higher speeds (see Exercise 50 in Section 9.3).
For a golf ball, experiments have shown that a
good model is going up and 
coming down. But no matter which force func-
tion is used [where for 
and for ], the answer to the
question remains the same. See F. Brauer,
“What Goes Up Must Come Down, Eventually,”
Amer. Math. Monthly 108 (2001), pp. 437–440.

v � 0f �v� � 0
v � 0f �v� � 0�f �v�

p� v �1.3�pv 1.3

pv2�pv 2

�pv

; Graphing calculator or computer required
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SECTION 9.4 MODELS FOR POPULATION GROWTH 629

3. Let be the time that the ball takes to reach its maximum height. Show that

Find this time for a ball with mass 1 kg and initial velocity 20 m�s. Assume the air
resistance is of the speed.

; 4. Let be the time at which the ball falls back to earth. For the particular ball in Prob lem 3,
estimate by using a graph of the height function . Which is faster, going up or com-
ing down?

5. In general, it’s not easy to find because it’s impossible to solve the equation
explicitly. We can, however, use an indirect method to determine whether ascent or
descent is faster: we determine whether is positive or negative. Show that

where . Then show that and the function

is increasing for . Use this result to decide whether is positive or negative. 
What can you conclude? Is ascent or descent faster?

1
10

t2

t2 y�t�

t2 y�t� � 0

y�2t1�

y�2t1� �
m 2

t

p 2 �x �
1

x
� 2 ln x�

x � ept1�m x � 1

f �x� � x �
1

x
� 2 ln x

x � 1 y�2t1�

t1

t1 �
m

p
ln�mt � pv0

mt
�

In this section we investigate differential equations that are used to model population
growth: the law of natural growth, the logistic equation, and several others.

The Law of Natural Growth
One of the models for population growth that we considered in Section 9.1 was based 
on the assumption that the population grows at a rate proportional to the size of the 
population:

Is that a reasonable assumption? Suppose we have a population (of bacteria, for instance)
with size and at a certain time it is growing at a rate of bacteria per
hour. Now let’s take another 1000 bacteria of the same type and put them with the first pop-
ulation. Each half of the combined population was previously growing at a rate of 300 bac-
teria per hour. We would expect the total population of 2000 to increase at a rate of 
600 bacteria per hour initially (provided there’s enough room and nutrition). So if we double
the size, we double the growth rate. It seems reasonable that the growth rate should be pro-
portional to the size.

In general, if is the value of a quantity at time and if the rate of change of with
respect to is proportional to its size at any time, then

dP

dt
� kP

P � 1000 P� � 300

P�t� y t P
t P�t�

dP

dt
� kP1

9.4 Models for Population Growth
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630 CHAPTER 9 DIFFERENTIAL EQUATIONS

where is a constant. Equation 1 is sometimes called the law of natural growth. If is pos-
itive, then the population increases; if is negative, it decreases.

Because Equation 1 is a separable differential equation, we can solve it by the methods
of Section 9.3:

where A ( or 0) is an arbitrary constant. To see the significance of the constant A, 
we observe that

Therefore A is the initial value of the function.

The solution of the initial-value problem

is

Another way of writing Equation 1 is

which says that the relative growth rate (the growth rate divided by the population size)
is constant. Then says that a population with constant relative growth rate must grow
exponentially.

We can account for emigration (or “harvesting”) from a population by modifying Equa-
tion 1: If the rate of emigration is a constant , then the rate of change of the population 
is modeled by the differential equation

See Exercise 15 for the solution and consequences of Equation 3.

The Logistic Model
As we discussed in Section 9.1, a population often increases exponentially in its early 
stages but levels off eventually and approaches its carrying capacity because of limited
resources. If is the size of the population at time t, we assume that

k k
k

y
dP

P
� y k dt

ln � P � � kt � C

� P � � ekt�C � eCekt

P � Aekt

� �eC

P�0� � Aek � 0 � A

dP

dt
� kP P�0� � P0

P�t� � P0ekt

2

1

P

dP

dt
� k

m

dP

dt
� kP � m3

P�t�

2

if P is small
dP

dt
� kP

Examples and exercises on the use of are
given in Section 6.5.

2
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SECTION 9.4 MODELS FOR POPULATION GROWTH 631

This says that the growth rate is initially close to being proportional to size. In other words,
the relative growth rate is almost constant when the population is small. But we also want
to reflect the fact that the relative growth rate decreases as the population P increases and
becomes negative if P ever exceeds its carrying capacity , the maximum population that
the environment is capable of sustaining in the long run. The simplest expression for the 
relative growth rate that incorporates these assumptions is

Multiplying by P, we obtain the model for population growth known as the logistic differ-
ential equation:

Notice from Equation 4 that if P is small compared with , then is close to 0 and so
. However, if (the population approaches its carrying capacity), then

, so . We can deduce information about whether solutions increase or
decrease directly from Equation 4. If the population P lies between 0 and , then the right
side of the equation is positive, so and the population increases. But if the pop-
ulation exceeds the carrying capacity , then is negative, so
and the population decreases.

Let’s start our more detailed analysis of the logistic differential equation by looking at a
direction field.

Draw a direction field for the logistic equation with and carry-
ing capacity . What can you deduce about the solutions?

SOLUTION In this case the logistic differential equation is

A direction field for this equation is shown in Figure 1. We show only the first quadrant
because negative populations aren’t meaningful and we are interested only in what hap-
pens after .

1

P

dP

dt
� k�1 �

P

M�

4
dP

dt
� kP�1 �

P

M�
P�MM

P l MdP�dt � kP
dP�dt l 0P�M l 1

M
dP�dt � 0

dP�dt � 01 � P�M�P � M �

k � 0.08EXAMPLE 1v
M � 1000

dP

dt
� 0.08P�1 �

P

1000�

t � 0

M

0 t

P

80

1400

604020

1200

1000

800

600

400

200

FIGURE 1
Direction field for the logistic

equation in Example 1
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632 CHAPTER 9 DIFFERENTIAL EQUATIONS

The logistic equation is autonomous ( depends only on P, not on t), so the
slopes are the same along any horizontal line. As expected, the slopes are positive for

and negative for .
The slopes are small when P is close to 0 or 1000 (the carrying capacity). Notice that

the solutions move away from the equilibrium solution and move toward the
equilibrium solution .

In Figure 2 we use the direction field to sketch solution curves with initial populations
, , and . Notice that solution curves that start below

are increasing and those that start above are decreasing. The slopes
are greatest when and therefore the solution curves that start below
have inflection points when . In fact we can prove that all solution curves that
start below have an inflection point when P is exactly 500. (See Exercise 11.)

The logistic equation is separable and so we can solve it explicitly using the method
of Section 9.3. Since

we have

To evaluate the integral on the left side, we write

Using partial fractions (see Section 7.4), we get

P�0� � 100 P�0� � 400 P�0� � 1300
P � 1000P � 1000

P � 1000P � 500
P � 500

P � 500

0 t

P

80

1400

604020

1200

1000

800

600

400

200

FIGURE 2
Solution curves for the logistic

equation in Example 1
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� y k dt5
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SECTION 9.4 MODELS FOR POPULATION GROWTH 633

This enables us to rewrite Equation 5:

where . Solving Equation 6 for P, we get

so

We find the value of A by putting in Equation 6. If , then (the initial
population), so

Thus the solution to the logistic equation is

Using the expression for in Equation 7, we see that

which is to be expected.

Write the solution of the initial-value problem

and use it to find the population sizes and . At what time does the population
reach 900?

SOLUTION The differential equation is a logistic equation with , carrying 
capacity , and initial population . So Equation 7 gives the 

ln � P � � ln � M � P � � kt � C

ln � M � P

P � � �kt � C

� M � P

P � � e�kt�C � e�Ce�kt

6
M � P

P
� Ae�kt

y � 1

P
�

1

M � P� dP � y k dt

A � �e�C

M

P
� 1 � Ae�kt ?

P

M
�

1

1 � Ae�kt

P �
M

1 � Ae�kt

t � 0 t � 0 P � P0

M � P0

P0
� Ae 0 � A

7 P�t� �
M

1 � Ae�kt where A �
M � P0

P0

P�t�

lim
t l �

P�t� � M

dP

dt
� 0.08P�1 �

P

1000� P�0� � 100

P�40� P�80�

k � 0.08
M � 1000 P0 � 100

EXAMPLE 2
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population at time t as

Thus

So the population sizes when and 80 are

The population reaches 900 when

Solving this equation for t, we get

So the population reaches 900 when t is approximately 55. As a check on our work, we
graph the population curve in Figure 3 and observe where it intersects the line .
The cursor indicates that .

Comparison of the Natural Growth and Logistic Models
In the 1930s the biologist G. F. Gause conducted an experiment with the protozoan Para-
 mecium and used a logistic equation to model his data. The table gives his daily count of the
population of protozoa. He estimated the initial relative growth rate to be 0.7944 and the car-
rying capacity to be 64.

Find the exponential and logistic models for Gause’s data. Compare the 
predicted values with the observed values and comment on the fit.

SOLUTION Given the relative growth rate and the initial population
the exponential model is

P�t� �
1000

1 � Ae�0.08t where A �
1000 � 100

100
� 9

P�t� �
1000

1 � 9e�0.08t

t � 40

P�40� �
1000

1 � 9e�3.2 � 731.6 P�80� �
1000

1 � 9e�6.4 � 985.3

1000

1 � 9e�0.08t � 900

1 � 9e�0.08t � 10
9

e�0.08t � 1
81

�0.08t � ln 1
81 � �ln 81

t �
ln 81

0.08
� 54.9

P � 900
t � 55

k � 0.7944 P0 � 2,

P�t� � P0ekt � 2e 0.7944t

v EXAMPLE 3
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Compare the solution curve in Figure 3 with
the lowest solution curve we drew from the
direction field in Figure 2.

1000

0 80

P=
1000

1+9e_0.08t

P=900

FIGURE 3

t (days) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P (observed) 2 3 22 16 39 52 54 47 50 76 69 51 57 70 53 59 57
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SECTION 9.4 MODELS FOR POPULATION GROWTH 635

Gause used the same value of k for his logistic model. [This is reasonable because
is small compared with the carrying capacity ( ). The equation

shows that the value of k for the logistic model is very close to the value for the expo-
nential model.]

Then the solution of the logistic equation in Equation 7 gives

where

So

We use these equations to calculate the predicted values (rounded to the nearest integer)
and compare them in the following table.

We notice from the table and from the graph in Figure 4 that for the first three or four
days the exponential model gives results comparable to those of the more sophisticated
logistic model. For , however, the exponential model is hopelessly inaccurate, but
the logistic model fits the observations reasonably well.

Many countries that formerly experienced exponential growth are now finding that their
rates of population growth are declining and the logistic model provides a better model. 

M � 64P0 � 2

1

P0

dP

dt �
t�0

� k�1 �
2

64� � k

P�t� �
M

1 � Ae�kt �
64

1 � Ae�0.7944t

A �
M � P0

P0
�

64 � 2

2
� 31

P�t� �
64

1 � 31e�0.7944t

t � 5

FIGURE 4
The exponential and logistic

models for the Paramecium data
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161284
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20
P=
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1+31e_0.7944t

P=2e0.7944t

t (days) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P (observed) 2 3 22 16 39 52 54 47 50 76 69 51 57 70 53 59 57

P (logistic model) 2 4 9 17 28 40 51 57 61 62 63 64 64 64 64 64 64

P (exponential model) 2 4 10 22 48 106 . . .
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The table in the margin shows midyear values of , the population of Belgium, in thou-
sands, at time , from 1980 to 2000. Figure 5 shows these data points together with a shift-
ed logistic function obtained from a calculator with the ability to fit a logistic function to
these points by regression. We see that the logistic model provides a very good fit.

Other Models for Population Growth
The Law of Natural Growth and the logistic differential equation are not the only equa-
tions that have been proposed to model population growth. In Exercise 20 we look at the
Gompertz growth function and in Exercises 21 and 22 we investigate seasonal-growth 
models.

Two of the other models are modifications of the logistic model. The differential 
equation

has been used to model populations that are subject to harvesting of one sort or another.
(Think of a population of fish being caught at a constant rate.) This equation is explored 
in Exercises 17 and 18.

For some species there is a minimum population level m below which the species tends
to become extinct. (Adults may not be able to find suitable mates.) Such populations have
been modeled by the differential equation

where the extra factor, , takes into account the consequences of a sparse popula-
tion (see Exercise 19).

B�t�
t

FIGURE 5
Logistic model for

the population of Belgium

0 t

P
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P=9840+
350

1+2.05e_0.48(t-1990)
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dt
� kP�1 �

P

M� � c

dP
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� kP�1 �

P

M��1 �
m

P�
1 � m�P

t t

1980 9,847 1992 10,036
1982 9,856 1994 10,109
1984 9,855 1996 10,152
1986 9,862 1998 10,175
1988 9,884 2000 10,186
1990 9,962

B�t�B�t�
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1. Suppose that a population develops according to the logistic
equation

where is measured in weeks.
(a) What is the carrying capacity? What is the value of ?
(b) A direction field for this equation is shown. Where are 

the slopes close to 0? Where are they largest? Which 
solutions are increasing? Which solutions are decreasing?

(c) Use the direction field to sketch solutions for initial pop-
ulations of 20, 40, 60, 80, 120, and 140. What do these
solutions have in common? How do they differ? Which
solutions have inflection points? At what population 
levels do they occur?

(d) What are the equilibrium solutions? How are the other
solutions related to these solutions?

; 2. Suppose that a population grows according to a logistic
model with carrying capacity 6000 and per year.
(a) Write the logistic differential equation for these data.
(b) Draw a direction field (either by hand or with a com puter

algebra system). What does it tell you about the solution
curves?

(c) Use the direction field to sketch the solution curves for 
initial populations of 1000, 2000, 4000, and 8000. What
can you say about the concavity of these curves? What is
the significance of the inflection points?

(d) Program a calculator or computer to use Euler’s method
with step size to estimate the population after
50 years if the initial population is 1000.

(e) If the initial population is 1000, write a formula for the
population after years. Use it to find the population after
50 years and compare with your estimate in part (d).

(f ) Graph the solution in part (e) and compare with the solu-
tion curve you sketched in part (c).

3. The Pacific halibut fishery has been modeled by the differen-
tial equation

dP

dt
� 0.05P � 0.0005P 2

t
k

0 t

P

604020

150

100

50

k � 0.0015

h � 1

t

dy

dt
� ky�1 �

y

M�

where is the biomass (the total mass of the members of 
the population) in kilograms at time (measured in years), 
the carrying capacity is estimated to be , and

per year.
(a) If , find the biomass a year later.
(b) How long will it take for the biomass to reach ?

4. Suppose a population satisfies

where is measured in years.
(a) What is the carrying capacity?
(b) What is ?
(c) When will the population reach 50% of the carrying

capacity?

5. Suppose a population grows according to a logistic model
with initial population 1000 and carrying capacity 10,000. If
the population grows to 2500 after one year, what will the
population be after another three years?

6. The table gives the number of yeast cells in a new labora tory
culture.

(a) Plot the data and use the plot to estimate the carrying
capacity for the yeast population.

(b) Use the data to estimate the initial relative growth rate.
(c) Find both an exponential model and a logistic model for

these data.
(d) Compare the predicted values with the observed values,

both in a table and with graphs. Comment on how well
your models fit the data.

(e) Use your logistic model to estimate the number of yeast
cells after 7 hours.

7. The population of the world was about 5.3 billion in 1990.
Birth rates in the 1990s ranged from 35 to 40 million per 
year and death rates ranged from 15 to 20 million per year.
Let’s assume that the carrying capacity for world population
is 100 billion.
(a) Write the logistic differential equation for these data.

(Because the initial population is small compared to the 

y�t�
t

M � 8 � 107 kg
k � 0.71

y�0� � 2 � 107 kg
4 � 107 kg

P�t�

dP

dt
� 0.4P � 0.001P 2 P�0� � 50

t

P��0�

9.4 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

Time (hours) Yeast cells Time (hours) Yeast cells

0 18 10 509
2 39 12 597
4 80 14 640
6 171 16 664
8 336 18 672
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638 CHAPTER 9 DIFFERENTIAL EQUATIONS

carrying capacity, you can take to be an estimate of 
the initial relative growth rate.)

(b) Use the logistic model to estimate the world population 
in the year 2000 and compare with the actual population
of 6.1 billion.

(c) Use the logistic model to predict the world population in
the years 2100 and 2500.

(d) What are your predictions if the carrying capacity is 
50 billion?

8. (a) Make a guess as to the carrying capacity for the US 
population. Use it and the fact that the population was 
250 million in 1990 to formulate a logistic model for the
US population.

(b) Determine the value of in your model by using the 
fact that the population in 2000 was 275 million.

(c) Use your model to predict the US population in the years
2100 and 2200.

(d) Use your model to predict the year in which the US 
population will exceed 350 million.

9. One model for the spread of a rumor is that the rate of spread
is proportional to the product of the fraction of the popula-
 tion who have heard the rumor and the fraction who have not
heard the rumor.
(a) Write a differential equation that is satisfied by .
(b) Solve the differential equation.
(c) A small town has 1000 inhabitants. At 8 AM, 80 people

have heard a rumor. By noon half the town has heard it.
At what time will of the population have heard the
rumor?

10. Biologists stocked a lake with 400 fish and estimated the 
carrying capacity (the maximal population for the fish of that
species in that lake) to be 10,000. The number of fish tripled
in the first year.
(a) Assuming that the size of the fish population satisfies the

logistic equation, find an expression for the size of the
population after years.

(b) How long will it take for the population to increase 
to 5000?

11. (a) Show that if satisfies the logistic equation , then

(b) Deduce that a population grows fastest when it reaches
half its carrying capacity.

; 12. For a fixed value of (say ), the family of logistic
functions given by Equation 7 depends on the initial value 

and the proportionality constant . Graph several members
of this family. How does the graph change when varies?
How does it change when varies?

k

k

y

y

90%

t

P

d 2P

dt 2 � k 2P�1 �
P

M��1 �
2P

M �

M M � 10

P0 k
P0

k

4

; 13. The table gives the midyear population of Japan, in
thousands, from 1960 to 2005.

Use a graphing calculator to fit both an exponential function
and a logistic function to these data. Graph the data points
and both functions, and comment on the accuracy of the 
models. [Hint: Subtract 94,000 from each of the population
figures. Then, after obtaining a model from your calculator,
add 94,000 to get your final model. It might be helpful to
choose to correspond to 1960 or 1980.]

; 14. The table gives the midyear population of Spain, in thou-
sands, from 1955 to 2000.

Use a graphing calculator to fit both an exponential function
and a logistic function to these data. Graph the data points
and both functions, and comment on the accuracy of the 
models. [Hint: Subtract 29,000 from each of the population
figures. Then, after obtaining a model from your calculator,
add 29,000 to get your final model. It might be helpful to
choose to correspond to 1955 or 1975.]

15. Consider a population with constant relative birth
and death rates and , respectively, and a constant emi gra-
 tion rate , where , , and are positive constants. Assume
that . Then the rate of change of the population at time

is modeled by the differential equation

where 

(a) Find the solution of this equation that satisfies the initial
condition 

(b) What condition on will lead to an exponential expan-
sion of the population?

(c) What condition on will result in a constant popula tion? 
A population decline?

(d) In 1847, the population of Ireland was about 8 million
and the difference between the relative birth and death
rates was 1.6% of the population. Because of the potato
famine in the 1840s and 1850s, about 210,000 inhabi tants

t � 0

t � 0

P � P�t�
� �

m � � m
� 	 �

t

dP

dt
� kP � m k � � � �

P�0� � P0.
m

m

Year Population Year Population

1960 94,092 1985 120,754
1965 98,883 1990 123,537
1970 104,345 1995 125,341
1975 111,573 2000 126,700
1980 116,807 2005 127,417

Year Population Year Population

1955 29,319 1980 37,488
1960 30,641 1985 38,535
1965 32,085 1990 39,351
1970 33,876 1995 39,750
1975 35,564 2000 40,016
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SECTION 9.4 MODELS FOR POPULATION GROWTH 639

per year emigrated from Ireland. Was the population
expanding or declining at that time?

16. Let be a positive number. A differential equation of the
form

where is a positive constant, is called a doomsday equation
because the exponent in the expression is larger than
the exponent 1 for natural growth.
(a) Determine the solution that satisfies the initial condition

(b) Show that there is a finite time (doomsday) such
that .

(c) An especially prolific breed of rabbits has the growth
term . If 2 such rabbits breed initially and the war-
ren has 16 rabbits after three months, then when is
doomsday?

17. Let’s modify the logistic differential equation of Example 1
as follows:

(a) Suppose represents a fish population at time , 
where is measured in weeks. Explain the meaning of the
final term in the equation .

(b) Draw a direction field for this differential equation.
(c) What are the equilibrium solutions?
(d) Use the direction field to sketch several solution curves.

Describe what happens to the fish population for various
initial populations.

(e) Solve this differential equation explicitly, either by using
partial fractions or with a computer algebra system. Use
the initial populations 200 and 300. Graph the solutions
and compare with your sketches in part (d).

18. Consider the differential equation

as a model for a fish population, where is measured in
weeks and is a constant.
(a) Use a CAS to draw direction fields for various values 

of .
(b) From your direction fields in part (a), determine the 

values of for which there is at least one equilibrium 
sol ution. For what values of does the fish population
always die out?

(c) Use the differential equation to prove what you dis cov-
ered graphically in part (b).  

(d) What would you recommend for a limit to the weekly
catch of this fish population?

c

dy

dt
� ky 1�c

k
ky 1�c

y�0� � y0.
t � T

lim t l T � y�t� � 


My 1.01

dP

dt
� 0.08P�1 �

P

1000� � 15

tP�t�
t

��15�

CAS

CAS

dP

dt
� 0.08P�1 �

P

1000� � c

t
c

c

c
c

19. There is considerable evidence to support the theory that for
some species there is a minimum population such that the
species will become extinct if the size of the population falls
below . This condition can be incorporated into the logistic
equation by introducing the factor . Thus the mod-
ified logistic model is given by the differential equation

(a) Use the differential equation to show that any solution is
increasing if and decreasing if .

(b) For the case where , , and ,
draw a direction field and use it to sketch several solu-
tion curves. Describe what happens to the population for
various initial populations. What are the equilibrium 
solutions?

(c) Solve the differential equation explicitly, either by using
partial fractions or with a computer algebra system. Use
the initial population .

(d) Use the solution in part (c) to show that if , then
the species will become extinct. [Hint: Show that the
numerator in your expression for is 0 for some
value of .]

20. Another model for a growth function for a limited popu-
lation is given by the Gompertz function, which is a 
solution of the differential equation 

where is a constant and is the carrying capacity.
(a) Solve this differential equation.
(b) Compute .
(c) Graph the Gompertz growth function for ,

, and , and compare it with the logistic
function in Example 2. What are the similarities? What
are the differences?

(d) We know from Exercise 11 that the logistic function
grows fastest when . Use the Gompertz differ-
ential equation to show that the Gompertz function
grows fastest when .

21. In a seasonal-growth model, a periodic function of time is
introduced to account for seasonal variations in the rate of
growth. Such variations could, for example, be caused by 
seasonal changes in the availability of food.
(a) Find the solution of the seasonal-growth model

where , , and are positive constants.

; (b) By graphing the solution for several values of , , and 
, explain how the values of , , and affect the solu-

tion. What can you say about ?

dP

dt
� kP�1 �

P

M��1 �
m

P�
m � P � M 0 � P � m

k � 0.08 M � 1000 m � 200

P0

P0 � m

P�t�
t

dP

dt
� c ln�M

P �P

c M

lim t l 
 P�t�
M � 1000

P0 � 100 c � 0.05

P � M�2

P � M�e

dP

dt
� kP cos�rt � �� P�0� � P0

k r �

�1 � m�P�

m

m

rk
�rk�

lim t l 
 P�t�
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640 CHAPTER 9 DIFFERENTIAL EQUATIONS

22. Suppose we alter the differential equation in Exercise 21 as 
follows:

(a) Solve this differential equation with the help of a table of
integrals or a CAS.

; (b) Graph the solution for several values of , , and . How
do the values of , , and affect the solution? What can
you say about in this case?

dP

dt
� kP cos2�rt � �� P�0� � P0

�rk
�rk

lim t l 
 P�t�

23. Graphs of logistic functions (Figures 2 and 3) look suspi-
ciously similar to the graph of the hyperbolic tangent
function (Figure 3 in Section 6.7). Explain the similarity by
showing that the logistic function given by Equation 7 can be
written as 

where .  Thus the logistic function is really just
a shifted hyperbolic tangent.

P�t� � 1
2 M [1 � tanh(1

2 k� t � c�)]

c � �ln A��k

A first-order linear differential equation is one that can be put into the form

where and are continuous functions on a given interval. This type of equation occurs
frequently in various sciences, as we will see.

An example of a linear equation is because, for , it can be written
in the form

Notice that this differential equation is not separable because it’s impossible to factor the
expression for as a function of x times a function of y. But we can still solve the equa-
tion by noticing, by the Product Rule, that

and so we can rewrite the equation as

If we now integrate both sides of this equation, we get

or    

If we had been given the differential equation in the form of Equation 2, we would have
had to take the preliminary step of multiplying each side of the equation by x.

It turns out that every first-order linear differential equation can be solved in a similar
fashion by multiplying both sides of Equation 1 by a suitable function called an 
integrating factor. We try to find so that the left side of Equation 1, when multiplied by

, becomes the derivative of the product :

If we can find such a function , then Equation 1 becomes

dy

dx
� P�x�y � Q�x�

P Q

xy� � y � 2x x � 0

y� �
1

x
y � 2

y�

xy� � y � �xy��

�xy�� � 2x

xy � x 2 � C y � x �
C

x

I�x�
I

I�x� I�x�y

I�x�(y� � P�x�y) � (I�x�y)�

I

1

2

3

(I�x�y)� � I�x� Q�x�

9.5 Linear Equations
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SECTION 9.5 LINEAR EQUATIONS 641

Integrating both sides, we would have

so the solution would be

To find such an , we expand Equation 3 and cancel terms:

This is a separable differential equation for , which we solve as follows:

where . We are looking for a particular integrating factor, not the most general
one, so we take and use

Thus a formula for the general solution to Equation 1 is provided by Equation 4, where
is given by Equation 5. Instead of memorizing this formula, however, we just remember
the form of the integrating factor.

To solve the linear differential equation , multiply both sides by
the integrating factor and integrate both sides.

Solve the differential equation .

SOLUTION The given equation is linear since it has the form of Equation 1 with
and . An integrating factor is

Multiplying both sides of the differential equation by , we get

or

I�x�y � y I�x� Q�x� dx � C

y�x� �
1

I�x� 	y I�x� Q�x� dx � C

I

I�x�y� � I�x� P�x�y � (I�x�y)� � I��x�y � I�x�y�

I�x� P�x� � I��x�

I

y
dI

I
� y P�x� dx

ln � I � � y P�x� dx

I � Ae x P�x� dx

A � 
eC

A � 1

I�x� � e x P�x� dx

I

y� � P�x�y � Q�x�
I�x� � e x P�x� dx

dy

dx
� 3x 2 y � 6x 2

P�x� � 3x 2 Q�x� � 6x 2

I�x� � e x 3x 2 dx � ex3

ex3

ex3 dy

dx
� 3x 2ex3

y � 6x 2ex3

d

dx
�e x3

y� � 6x 2ex3

4

5

v EXAMPLE 1
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642 CHAPTER 9 DIFFERENTIAL EQUATIONS

Integrating both sides, we have

Find the solution of the initial-value problem

SOLUTION We must first divide both sides by the coefficient of to put the differential
equation into standard form:

The integrating factor is

Multiplication of Equation 6 by gives

Then

and so

Since , we have

Therefore the solution to the initial-value problem is

Solve .

SOLUTION The given equation is in the standard form for a linear equation. Multiplying
by the integrating factor

we get

or

Therefore

ex3

y � y 6x 2ex3

dx � 2ex3

� C

y � 2 � Ce�x3

x 2y� � xy � 1 x 	 0 y�1� � 2

y�

y� �
1

x
y �

1

x 2 x 	 0

I�x� � e x �1�x� dx � e ln x � x

x

xy� � y �
1

x
or �xy�� �

1

x

xy � y
1

x
dx � ln x � C

y �
ln x � C

x

y�1� � 2

2 �
ln 1 � C

1
� C

y �
ln x � 2

x

y� � 2xy � 1

e x 2x dx � ex2

ex2

y� � 2xe x2

y � ex2

(ex2

y)� � ex2

ex2

y � y ex2

dx � C

v EXAMPLE 2

6

EXAMPLE 3

The solution of the initial-value problem in 
Example 2 is shown in Figure 2.

FIGURE 2

(1, 2)

5

_5

0 4

FIGURE 1 

6

_3

_1.5 1.8

C=2

C=1

C=_2

C=_1

C=0

Figure 1 shows the graphs of several members of
the family of solutions in Example 1. Notice that
they all approach as .x l 
2
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SECTION 9.5 LINEAR EQUATIONS 643

Recall from Section 7.5 that can’t be expressed in terms of elementary functions.
Nonetheless, it’s a perfectly good function and we can leave the answer as 

Another way of writing the solution is

(Any number can be chosen for the lower limit of integration.)

Application to Electric Circuits
In Section 9.2 we considered the simple electric circuit shown in Figure 4: An electro -
motive force (usually a battery or generator) produces a voltage of volts (V) and a
current of amperes (A) at time . The circuit also contains a resistor with a resistance
of ohms ( ) and an inductor with an inductance of henries (H).

Ohm’s Law gives the drop in voltage due to the resistor as . The voltage drop due to
the inductor is . One of Kirchhoff’s laws says that the sum of the voltage drops is
equal to the supplied voltage . Thus we have

which is a first-order linear differential equation. The solution gives the current at time .

Suppose that in the simple circuit of Figure 4 the resistance is and
the inductance is 4 H. If a battery gives a constant voltage of 60 V and the switch is
closed when so the current starts with , find (a) , (b) the current after
1 s, and (c) the limiting value of the current.

SOLUTION
(a) If we put , , and in Equation 7, we obtain the initial-value
problem

or

Multiplying by the integrating factor , we get

x ex2

dx

y � e�x2

y ex2

dx � Ce�x2

y � e�x2

y
x

0
e t 2

dt � Ce�x2

E�t�
I�t� t

R � L
RI

L�dI�dt�
E�t�

L
dI

dt
� RI � E�t�

I t

12 �

t � 0 I�0� � 0 I�t�

L � 4 R � 12 E�t� � 60

4 
dI

dt
� 12I � 60 I�0� � 0

dI

dt
� 3I � 15 I�0� � 0

e x 3 dt � e 3t

e 3t dI

dt
� 3e 3tI � 15e 3t

d

dt
�e 3tI� � 15e 3t

e 3tI � y 15e 3t dt � 5e 3t � C

I�t� � 5 � Ce�3t

7

v EXAMPLE 4

Even though the solutions of the differential
equation in Example 3 are expressed in terms of
an integral, they can still be graphed by a com-
puter algebra system (Figure 3).

FIGURE 3

C=2

C=_2

2.5

_2.5

_2.5 2.5

FIGURE 4

R

E

switch

L

The differential equation in Exam ple 4 is both
linear and separable, so an alternative method is
to solve it as a separable equation (Example 4 in
Section 9.3). If we replace the battery by a gen-
erator, however, we get an equation that is lin-
ear but not sepa rable (Example 5).
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644 CHAPTER 9 DIFFERENTIAL EQUATIONS

Since , we have , so and

(b) After 1 second the current is

(c) The limiting value of the current is given by

Suppose that the resistance and inductance remain as in Example 4 
but, instead of the battery, we use a generator that produces a variable voltage of

volts. Find .

SOLUTION This time the differential equation becomes

The same integrating factor gives

Using Formula 98 in the Table of Integrals, we have

Since , we get

so

I�0� � 0 5 � C � 0 C � �5

I�t� � 5�1 � e�3t �

I�1� � 5�1 � e�3� � 4.75 A

lim
t l �

I�t� � lim
t l �

5�1 � e�3t � � 5 � 5 lim
t l �

e�3t � 5 � 0 � 5

E�t� � 60 sin 30t I�t�

4
dI

dt
� 12I � 60 sin 30t or

dI

dt
� 3I � 15 sin 30t

e 3t

d

dt
�e 3tI � � e 3t dI

dt
� 3e 3tI � 15e 3t sin 30t

e 3tI � y 15e 3t sin 30t dt � 15 
e 3t

909
 �3 sin 30t � 30 cos 30t� � C

I � 5
101 �sin 30t � 10 cos 30t� � Ce�3t

I�0� � 0

�
50
101 � C � 0

I�t� � 5
101 �sin 30t � 10 cos 30t� �

50
101 e�3t

EXAMPLE 5
FIGURE 5

6

0 2.5

y=5

Figure 5 shows how the current in Example 4
approaches its limiting value.

Figure 6 shows the graph of the current 
when the battery is replaced by a generator.

FIGURE 6

2

_2

2.50

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

1–4 Determine whether the differential equation is linear.

1. 2.

3. 4.

5–14 Solve the differential equation.

5. 6.

7. 8.

9. 10.

x � y� � xy y� � xy 2 � sx

y� �
1

x
�

1

y
y sin x � x 2y� � x

y� � y � 1 y� � y � e x

y� � x � y 4x 3y � x 4y� � sin3x

xy� � y � sx y� � y � sin�e x�

11. 12.

13. ,  

14.

15–20 Solve the initial-value problem.

15. ,  

sin x
dy

dx
� �cos x�y � sin�x 2� x

dy

dx
� 4y � x 4e x

�1 � t�
du

dt
� u � 1 � t t � 0

t ln t
dr

dt
� r � te t

x 2y� � 2xy � ln x y�1� � 2

9.5 Exercises
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SECTION 9.5 LINEAR EQUATIONS 645

16. ,  

17. ,  ,  

18. ,  ,  

19. ,  

20. ,  

; 21–22 Solve the differential equation and use a graphing cal cula-
tor or computer to graph several members of the family of solu-
tions. How does the solution curve change as varies?

21. 22.

23. A Bernoulli differential equation (named after James
Bernoulli) is of the form

Observe that, if or , the Bernoulli equation is linear. 
For other values of , show that the substitution
transforms the Bernoulli equation into the linear equation

24–25 Use the method of Exercise 23 to solve the differential
equation.

24. 25.

26. Solve the second-order equation by 
making the substitution .

27. In the circuit shown in Figure 4, a battery supplies a constant
voltage of 40 V, the inductance is 2 H, the resistance is ,
and .
(a) Find .
(b) Find the current after s.

28. In the circuit shown in Figure 4, a generator supplies a volt-
age of volts, the inductance is H, the
resistance is , and A.
(a) Find .
(b) Find the current after s.

; (c) Use a graphing device to draw the graph of the current
function.

29. The figure shows a circuit containing an electromotive force, 
a capacitor with a capacitance of farads (F), and a resistor
with a resistance of ohms ( ). The voltage drop across the
capacitor is , where is the charge (in coulombs), so in 

t 3 dy

dt
� 3t 2y � cos t y��� � 0

t
du

dt
� t 2 � 3u u�2� � 4

2xy� � y � 6x x � 0 y�4� � 20

xy� � y � x 2 sin x y��� � 0

�x 2 � 1�
dy

dx
� 3x�y � 1� � 0 y�0� � 2

C

xy� � 2y � e x xy� � x 2 � 2y

t � 0

dy

dx
� P�x�y � Q�x�y n

n � 0 1
n u � y 1�n

du

dx
� �1 � n�P�x�u � �1 � n�Q�x�

xy� � y � �xy 2 y� �
2

x
y �

y 3

x 2

xy� � 2y� � 12x 2

u � y�

10 	
I�0� � 0

I�t�
0.1

E�t� � 40 sin 60t 1
20 	 I�0� � 1

I�t�
0.1

C
R 	

Q�C Q

this case Kirchhoff’s Law gives

But (see Example 3 in Section 2.7), so we have

Suppose the resistance is , the capacitance is F, a 
battery gives a constant voltage of 60 V, and the initial charge
is C. Find the charge and the current at time .

30. In the circuit of Exercise 29, , , 
, and . Find the charge and the 

current at time .

31. Let be the performance level of someone learning a skill 
as a function of the training time . The graph of is called a
learning curve. In Exercise 15 in Section 9.1 we proposed
the differential equation

as a reasonable model for learning, where is a positive con-
stant. Solve it as a linear differential equation and use your
solution to graph the learning curve.

32. Two new workers were hired for an assembly line. Jim pro-
cessed 25 units during the first hour and 45 units during the
second hour. Mark processed 35 units during the first hour
and 50 units the second hour. Using the model of Exercise 31
and assuming that , estimate the maximum number
of units per hour that each worker is capable of processing.

33. In Section 9.3 we looked at mixing problems in which the 
volume of fluid remained constant and saw that such prob-
lems give rise to separable equations. (See Example 6 in that
section.) If the rates of flow into and out of the system are
different, then the volume is not constant and the resulting
differential equation is linear but not separable.

A tank contains 100 L of water. A solution with a salt con-
centration of is added at a rate of . The 
solution is kept mixed and is drained from the tank at a rate 
of . If is the amount of salt (in kilograms) after 

minutes, show that satisfies the differential equation

Solve this equation and find the concentration after 
20 minutes.

34. A tank with a capacity of 400 L is full of a mixture of water
and chlorine with a concentration of 0.05 g of chlorine per 

RI �
Q

C
� E�t�

I � dQ�dt

R
dQ

dt
�

1

C
Q � E�t�

5 	 0.05

Q�0� � 0 t

C

E R

R � 2 	 C � 0.01 F
Q�0� � 0 E�t� � 10 sin 60t

t

P�t�
t P

dP

dt
� k�M � P�t��

k

P�0� � 0

0.4 kg�L 5 L�min

3 L�min y�t�
t y

dy

dt
� 2 �

3y

100 � 2t
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646 CHAPTER 9 DIFFERENTIAL EQUATIONS

liter. In order to reduce the concentration of chlorine, fresh
water is pumped into the tank at a rate of . The mixture is
kept stirred and is pumped out at a rate of . Find the
amount of chlorine in the tank as a function of time.

35. An object with mass is dropped from rest and we assume
that the air resistance is proportional to the speed of the object.
If is the distance dropped after seconds, then the speed is

and the acceleration is . If is the accelera-
tion due to gravity, then the downward force on the object is

, where is a positive constant, and Newton’s Second
Law gives

(a) Solve this as a linear equation to show that

(b) What is the limiting velocity?
(c) Find the distance the object has fallen after seconds.

36. If we ignore air resistance, we can conclude that heavier
objects fall no faster than lighter objects. But if we take air
resistance into account, our conclusion changes. Use the
expression for the velocity of a falling object in Exercise 35(a)
to find and show that heavier objects do fall faster than
lighter ones.

37. (a) Show that the substitution transforms the logistic
differential equation into the linear 
differential equation

4 L�s
10 L�s

m

s�t� t
v � s��t� a � v��t� t

mt � cv c

m
dv

dt
� mt � cv

v �
mt

c
�1 � e�ct�m �

t

dv�dm

z � 1�P
P� � kP�1 � P�M�

z� � kz �
k

M

(b) Solve the linear differential equation in part (a) and 
thus obtain an expression for . Compare with Equa-
tion 9.4.7.

38. To account for seasonal variation in the logistic differential
equation we could allow and to be functions of :

(a) Verify that the substitution transforms this
equation into the linear equation

(b) Write an expression for the solution of the linear equa-
tion in part (a) and use it to show that if the carrying
capacity is constant, then

Deduce that if , then .
[This will be true if with ,
which describes a positive intrinsic growth rate with a
periodic seasonal variation.]

(c) If is constant but varies, show that

and use l’Hospital’s Rule to deduce that if has a
limit as , then has the same limit.

P�t�

k M t

dP

dt
� k�t�P�1 �

P

M�t�	
z � 1�P

dz

dt
� k�t�z �

k�t�
M�t�

M

x
�

0 k�t� dt � � lim t l � P�t� � M
k�t� � k0 � a cos bt k0 � 0

k M

z�t� � e�kt
y

t

0

ke ks

M�s�
ds � Ce�kt

M�t�
tl� P�t�

P�t� �
M

1 � CMe �x k�t� dt

We have looked at a variety of models for the growth of a single species that lives alone in
an environment. In this section we consider more realistic models that take into account 
the interaction of two species in the same habitat. We will see that these models take the 
form of a pair of linked differential equations.

We first consider the situation in which one species, called the prey, has an ample food
supply and the second species, called the predators, feeds on the prey. Examples of prey 
and predators include rabbits and wolves in an isolated forest, food fish and sharks, aphids
and ladybugs, and bacteria and amoebas. Our model will have two dependent variables and
both are functions of time. We let be the number of prey (using R for rabbits) and
be the number of predators (with W for wolves) at time t.

In the absence of predators, the ample food supply would support exponential growth 
of the prey, that is,

In the absence of prey, we assume that the predator population would decline at a rate pro-

R�t� W�t�

dR

dt
� kR where k is a positive constant

9.6 Predator-Prey Systems
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SECTION 9.6 PREDATOR-PREY SYSTEMS 647

portional to itself, that is,

With both species present, however, we assume that the principal cause of death among the
prey is being eaten by a predator, and the birth and survival rates of the predators depend
on their available food supply, namely, the prey. We also assume that the two species
encounter each other at a rate that is proportional to both populations and is therefore pro-
portional to the product RW. (The more there are of either population, the more encoun-
ters there are likely to be.) A system of two differential equations that incorporates these
assumptions is as follows:

where k, r, a, and b are positive constants. Notice that the term �aRW decreases the nat-
ural growth rate of the prey and the term bRW increases the natural growth rate of the 
predators.

The equations in are known as the predator-prey equations, or the Lotka-Volterra
equations. A solution of this system of equations is a pair of functions and that
describe the populations of prey and predator as functions of time. Because the system is
coupled (R and W occur in both equations), we can’t solve one equation and then the other;
we have to solve them simultaneously. Unfortunately, it is usually impossible to find 
explicit formulas for R and W as functions of t. We can, however, use graphical methods 
to analyze the equations.

Suppose that populations of rabbits and wolves are described by the
Lotka-Volterra equations with , , , and . The
time is measured in months.
(a) Find the constant solutions (called the equilibrium solutions) and interpret
the answer.
(b) Use the system of differential equations to find an expression for .
(c) Draw a direction field for the resulting differential equation in the RW-plane. Then
use that direction field to sketch some solution curves.
(d) Suppose that, at some point in time, there are 1000 rabbits and 40 wolves. Draw the
corresponding solution curve and use it to describe the changes in both population levels.
(e) Use part (d) to make sketches of R and W as functions of t.

SOLUTION
(a) With the given values of k, a, r, and b, the Lotka-Volterra equations become

Both and will be constant if both derivatives are 0, that is,

1
dR

dt
� kR � aRW

dW

dt
� �rW � bRW

R�t� W�t�

k � 0.08 a � 0.001 r � 0.02 b � 0.00002
t

dW�dR

dR

dt
� 0.08R � 0.001RW

dW

dt
� �0.02W � 0.00002RW

v EXAMPLE 1

R W

R� � R�0.08 � 0.001W� � 0

W� � W��0.02 � 0.00002R� � 0

dW

dt
� �rW where r is a positive constant

1

1

W represents the predator.

R represents the prey.

The Lotka-Volterra equations were proposed 
as a model to explain the variations in the
shark and food-fish populations in the 
Adriatic Sea by the Italian mathematician 
Vito Volterra (1860–1940).
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648 CHAPTER 9 DIFFERENTIAL EQUATIONS

One solution is given by and . (This makes sense: If there are no rabbits or
wolves, the populations are certainly not going to increase.) The other constant solution is

So the equilibrium populations consist of 80 wolves and 1000 rabbits. This means that
1000 rabbits are just enough to support a constant wolf population of 80. There are nei-
ther too many wolves (which would result in fewer rabbits) nor too few wolves (which
would result in more rabbits).

(b) We use the Chain Rule to eliminate t:

so

(c) If we think of as a function of , we have the differential equation

We draw the direction field for this differential equation in Figure 1 and we use it to
sketch several solution curves in Figure 2. If we move along a solution curve, we
observe how the relationship between R and W changes as time passes. Notice that the
curves appear to be closed in the sense that if we travel along a curve, we always return
to the same point. Notice also that the point (1000, 80) is inside all the solution curves.
That point is called an equilibrium point because it corresponds to the equilibrium solu-
tion , .

When we represent solutions of a system of differential equations as in Figure 2, we
refer to the RW-plane as the phase plane, and we call the solution curves phase trajec-
tories. So a phase trajectory is a path traced out by solutions as time goes by. A
phase portrait consists of equilibrium points and typical phase trajectories, as shown in
Figure 2.

W � 0R � 0

R �
0.02

0.00002
� 1000W �

0.08

0.001
� 80

dW

dt
�

dW

dR

dR

dt

dW

dR
�

dW

dt

dR

dt

�
�0.02W � 0.00002RW

0.08R � 0.001RW

RW

dW

dR
�

�0.02W � 0.00002RW

0.08R � 0.001RW

W � 80R � 1000

0 R

W

1000

150

100

50

2000 3000

FIGURE 1 Direction field for the predator-prey system FIGURE 2 Phase portrait of the system
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SECTION 9.6 PREDATOR-PREY SYSTEMS 649

(d) Starting with 1000 rabbits and 40 wolves corresponds to drawing the solution curve
through the point . Figure 3 shows this phase trajectory with the direction
field removed. Starting at the point at time and letting t increase, do we move
clockwise or counterclockwise around the phase trajectory? If we put and

in the first differential equation, we get

Since , we conclude that is increasing at and so we move counter-
clockwise around the phase trajectory.

We see that at  there aren’t enough wolves to maintain a balance between the popu-
lations, so the rabbit population increases. That results in more wolves and eventually
there are so many wolves that the rabbits have a hard time avoiding them. So the number
of rabbits begins to decline (at , where we estimate that R reaches its maximum popu-
lation of about 2800). This means that at some later time the wolf population starts to
fall (at , where and ). But this benefits the rabbits, so their popula-
tion later starts to increase (at , where and ). As a consequence, the
wolf population eventually starts to increase as well. This happens when the populations
return to their initial values of and , and the entire cycle begins again.

(e) From the description in part (d) of how the rabbit and wolf populations rise and fall,
we can sketch the graphs of and . Suppose the points , , and in Figure 3
are reached at times , , and . Then we can sketch graphs of and as in Figure 4.

P0�1000, 40�
t � 0P0

R � 1000
W � 40

dR

dt
� 0.08�1000� � 0.001�1000��40� � 80 � 40 � 40

P0RdR�dt � 0

FIGURE 3
Phase trajectory through (1000, 40) 
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FIGURE 4 Graphs of the rabbit and wolf populations as functions of time
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In Module 9.6 you can change the 
coefficients in the Lotka-Volterra equations and
observe the resulting changes in the phase 
trajectory and graphs of the rabbit and wolf 
populations.

TEC

650 CHAPTER 9 DIFFERENTIAL EQUATIONS

To make the graphs easier to compare, we draw the graphs on the same axes but with
different scales for and , as in Figure 5. Notice that the rabbits reach their maximum
populations about a quarter of a cycle before the wolves.

An important part of the modeling process, as we discussed in Section 1.2, is to inter-
pret our mathematical conclusions as real-world predictions and to test the predictions
against real data. The Hudson’s Bay Company, which started trading in animal furs in
Canada in 1670, has kept records that date back to the 1840s. Figure 6 shows graphs of the
number of pelts of the snowshoe hare and its predator, the Canada lynx, traded by the com-
pany over a 90-year period. You can see that the coupled oscillations in the hare and lynx
populations predicted by the Lotka-Volterra model do actually occur and the period of 
these cycles is roughly 10 years.

Although the relatively simple Lotka-Volterra model has had some success in explain-
ing and predicting coupled populations, more sophisticated models have also been pro-
posed. One way to modify the Lotka-Volterra equations is to assume that, in the absence 
of predators, the prey grow according to a logistic model with carrying capacity M. Then the
Lotka-Volterra equations are replaced by the system of differential equations

This model is investigated in Exercises 11 and 12.

R W

FIGURE 5
Comparison of the rabbi

and wolf populations
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FIGURE 6
Relative abundance of hare and lynx

from Hudson’s Bay Company records
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dt
� kR�1 �

R

M	 � aRW
dW
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SECTION 9.6 PREDATOR-PREY SYSTEMS 651

1. For each predator-prey system, determine which of the vari -
ables, or , represents the prey population and which rep-
resents the predator population. Is the growth of the prey
restricted just by the predators or by other factors as well? Do
the predators feed only on the prey or do they have additional
food sources? Explain.

(a)

(b)

2. Each system of differential equations is a model for two
species that either compete for the same resources or cooperate
for mutual benefit (flowering plants and insect pollinators, for
instance). Decide whether each system describes competition
or cooperation and explain why it is a reasonable model. (Ask
yourself what effect an increase in one species has on the
growth rate of the other.)

(a)

(b)

3. The system of differential equations

is a model for the populations of two species.
(a) Does the model describe cooperation, or competition, 

or a predator-prey relationship?
(b) Find the equilibrium solutions and explain their

significance.

4. Flies, frogs, and crocodiles coexist in an environment. To sur-
vive, frogs need to eat flies and crocodiles need to eat frogs. In

yx

dx

dt
� �0.05x � 0.0001xy

dy

dt
� 0.1y � 0.005xy

dx

dt
� 0.2x � 0.0002x 2 � 0.006xy

dy

dt
� �0.015y � 0.00008xy

dx

dt
� 0.12x � 0.0006x 2 � 0.00001xy

dy

dt
� 0.08x � 0.00004xy

dx

dt
� 0.15x � 0.0002x 2 � 0.0006xy

dy

dt
� 0.2y � 0.00008y 2 � 0.0002xy

dx

dt
� 0.5x � 0.004x 2 � 0.001xy

dy

dt
� 0.4y � 0.001y 2 � 0.002xy

the absence of frogs, the fly population will grow exponentially
and the crocodile population will decay exponentially. In the
absence of crocodiles and flies, the frog population will decay
exponentially. If , , and represent the populations
of these three species at time , write a system of differential
equations as a model for their evolution. If the constants in
your equation are all positive, explain why you have used plus
or minus signs.

5–6 A phase trajectory is shown for populations of rabbits and
foxes .
(a) Describe how each population changes as time goes by.
(b) Use your description to make a rough sketch of the graphs of R

and F as functions of time.

5.

6.

P�t� Q�t� R�t�
t

�R�
�F�

t=0

0 R

F
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800 1200 1600 2000

t=0

0 R

F

400

160

120

80

800 1200 1600

40

9.6 Exercises

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

Models have also been proposed to describe and predict population levels of two or more
species that compete for the same resources or cooperate for mutual benefit. Such models
are explored in Exercises 2–4.
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7–8 Graphs of populations of two species are shown. Use them to
sketch the corresponding phase trajectory.

7.

8.

9. In Example 1(b) we showed that the rabbit and wolf popula -
tions satisfy the differential equation

By solving this separable differential equation, show that

where is a constant.
It is impossible to solve this equation for as an explicit

function of (or vice versa). If you have a computer algebra
system that graphs implicitly defined curves, use this equation
and your CAS to draw the solution curve that passes through
the point and compare with Figure 3.

10. Populations of aphids and ladybugs are modeled by the 
equations

(a) Find the equilibrium solutions and explain their 
significance.

(b) Find an expression for .

species 1

species 2

0 t

y

200

150

1

100

50

0 t

y

800
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400
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dW

dR
�

�0.02W � 0.00002RW

0.08R � 0.001RW

R0.02W 0.08

e 0.00002Re 0.001W � C

C
W

R

�1000, 40�

dA

dt
� 2A � 0.01AL

dL

dt
� �0.5L � 0.0001AL

dL�dA

(c) The direction field for the differential equation in part (b) is
shown. Use it to sketch a phase portrait. What do the phase
trajectories have in common?

(d) Suppose that at time there are 1000 aphids and
200 ladybugs. Draw the corresponding phase trajectory and
use it to describe how both populations change.

(e) Use part (d) to make rough sketches of the aphid and lady-
bug populations as functions of . How are the graphs
related to each other?

11. In Example 1 we used Lotka-Volterra equations to model popu-
lations of rabbits and wolves. Let’s modify those equations as
follows:

(a) According to these equations, what happens to the rabbit
population in the absence of wolves?

(b) Find all the equilibrium solutions and explain their 
significance.

(c) The figure shows the phase trajectory that starts at the point
. Describe what eventually happens to the rabbit

and wolf populations.

(d) Sketch graphs of the rabbit and wolf populations as
functions of time.
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CHAPTER 9 REVIEW 653

12. In Exercise 10 we modeled populations of aphids and lady-
bugs with a Lotka-Volterra system. Suppose we modify those
equations as follows:

(a) In the absence of ladybugs, what does the model predict
about the aphids?

dA

dt
� 2A�1 � 0.0001A� � 0.01AL

CAS

dL

dt
� �0.5L � 0.0001AL

(b) Find the equilibrium solutions.
(c) Find an expression for .
(d) Use a computer algebra system to draw a direction field

for the differential equation in part (c). Then use the
direction field to sketch a phase portrait. What do the
phase trajectories have in common?

(e) Suppose that at time there are 1000 aphids and
200 ladybugs. Draw the corresponding phase trajectory
and use it to describe how both populations change.

(f ) Use part (e) to make rough sketches of the aphid and 
ladybug populations as functions of . How are the
graphs related to each other?

dL�dA

t � 0

t

9 Review

1. (a) What is a differential equation?
(b) What is the order of a differential equation?
(c) What is an initial condition?

2. What can you say about the solutions of the equation
just by looking at the differential equation?

3. What is a direction field for the differential equation
?

4. Explain how Euler’s method works.

5. What is a separable differential equation? How do you solve it?

6. What is a first-order linear differential equation? How do you
solve it?

y� � x 2 � y 2

y� � F�x, y�

7. (a) Write a differential equation that expresses the law of natural
growth. What does it say in terms of relative growth rate?

(b) Under what circumstances is this an appropriate model for
population growth?

(c) What are the solutions of this equation?

8. (a) Write the logistic equation.
(b) Under what circumstances is this an appropriate model for

population growth?

9. (a) Write Lotka-Volterra equations to model populations of
food fish and sharks .

(b) What do these equations say about each population in the
absence of the other?

�F� �S�

Concept Check

Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1. All solutions of the differential equation are
decreasing functions.

2. The function is a solution of the differential
equation .

3. The equation is separable.

4. The equation is separable.

y� � �1 � y 4

f �x� � �ln x��x
x 2 y� � xy � 1

y� � x � y

y� � 3y � 2x � 6xy � 1

5. The equation is linear.

6. The equation is linear.

7. If is the solution of the initial-value problem

then .

dy

dt
� 2y�1 �

y

5	 y�0� � 1

lim t l � y � 5

y� � xy � e y

y

e xy� � y

True-False Quiz
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; Graphing calculator or computer required

1. (a) A direction field for the differential equation
is shown. Sketch the graphs of the

solutions that satisfy the given initial conditions.
(i) (ii)

(iii) (iv)
(b) If the initial condition is , for what values of 

is finite? What are the equilibrium solutions?

2. (a) Sketch a direction field for the differential equation
. Then use it to sketch the four solutions that 

satisfy the initial conditions , , 
, and .

(b) Check your work in part (a) by solving the differential
equation explicitly. What type of curve is each solution
curve?

3. (a) A direction field for the differential equation 
is shown. Sketch the solution of the 

initial-value problem

Use your graph to estimate the value of .

y� � y�y � 2��y � 4�

y�0� � �0.3 y�0� � 1
y�0� � 3 y�0� � 4.3

y�0� � c
c lim t l � y�t�

0 x

y

1 2

2

4

6

y� � x�y
y�0� � 1 y�0� � �1

y�2� � 1 y��2� � 1

y� � x 2 � y 2

y� � x 2 � y 2 y�0� � 1

y�0.3�

0 x

y

1 2_1_2

1

2

_1

_2

3_3

3

_3

(b) Use Euler’s method with step size 0.1 to estimate ,
where is the solution of the initial-value problem in
part (a). Compare with your estimate from part (a).

(c) On what lines are the centers of the horizontal line
segments of the direction field in part (a) located? What
happens when a solution curve crosses these lines?

4. (a) Use Euler’s method with step size 0.2 to estimate ,
where is the solution of the initial-value problem

(b) Repeat part (a) with step size 0.1.
(c) Find the exact solution of the differential equation and

compare the value at 0.4 with the approximations in
parts (a) and (b).

5–8 Solve the differential equation.

5. 6.

7. 8.

9–11 Solve the initial-value problem.

9. ,  

10. ,  

11. ,  

; 12. Solve the initial-value problem , , and
graph the solution.

13–14 Find the orthogonal trajectories of the family of curves.

13. 14.

15. (a) Write the solution of the initial-value problem

and use it to find the population when .
(b) When does the population reach 1200?

16. (a) The population of the world was 5.28 billion in 1990 and
6.07 billion in 2000. Find an exponential model for these
data and use the model to predict the world population in
the year 2020.

(b) According to the model in part (a), when will the world
population exceed 10 billion?

(c) Use the data in part (a) to find a logistic model for the pop-
ulation. Assume a carrying capacity of 100 billion. Then

y�0.3�
y�x�

y�0.4�
y�x�

y� � 2xy 2 y�0� � 1

y� � xe�sin x � y cos x
dx

dt
� 1 � t � x � tx

2ye y2

y� � 2x � 3sx x 2y� � y � 2x 3e�1�x

dr

dt
� 2tr � r r�0� � 5

�1 � cos x�y� � �1 � e�y�sin x y�0� � 0

xy� � y � x ln x y�1� � 2

y� � 3x 2e y y�0� � 1

y � ke x y � e kx

dP

dt
� 0.1P�1 �

P

2000� P�0� � 100

t � 20
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CHAPTER 9 REVIEW 655

use the logistic model to predict the population in 2020.
Compare with your prediction from the exponential model.

(d) According to the logistic model, when will the world popu-
lation exceed 10 billion? Compare with your prediction in
part (b).

17. The von Bertalanffy growth model is used to predict the length
of a fish over a period of time. If is the largest length

for a species, then the hypothesis is that the rate of growth in
length is proportional to , the length yet to be achieved.
(a) Formulate and solve a differential equation to find an

expression for .
(b) For the North Sea haddock it has been determined that

, cm, and the constant of propor tion-
ality is . What does the expression for become with
these data?

18. A tank contains 100 L of pure water. Brine that contains 
0.1 kg of salt per liter enters the tank at a rate of 10 L�min. 
The solution is kept thoroughly mixed and drains from the 
tank at the same rate. How much salt is in the tank after 
6 minutes?

19. One model for the spread of an epidemic is that the rate of
spread is jointly proportional to the number of infected 
people and the number of uninfected people. In an isolated
town of 5000 inhabitants, 160 people have a disease at the
beginning of the week and 1200 have it at the end of the week.
How long does it take for of the population to become
infected?

20. The Brentano-Stevens Law in psychology models the way that
a subject reacts to a stimulus. It states that if represents the
reaction to an amount of stimulus, then the relative rates of
increase are proportional:

where is a positive constant. Find as a function of .

21. The transport of a substance across a capillary wall in lung
physiology has been modeled by the differential equation

where is the hormone concentration in the bloodstream, is
time, is the maximum transport rate, is the volume of the
capillary, and is a positive constant that measures the affinity
between the hormones and the enzymes that assist the process.
Solve this differential equation to find a rela tionship between 

and .

22. Populations of birds and insects are modeled by the equations

(a) Which of the variables, or , represents the bird popula-
tion and which represents the insect population? Explain.

L�t� L�

L� � L

L�t�

L� � 53 cm L�0� � 10
0.2 L�t�

80%

R
S

1

R

dR

dt
�

k

S

dS

dt

SRk

dh

dt
� �

R

V � h

k � h�
th

VR
k

th

dx

dt
� 0.4x � 0.002xy

dy

dt
� �0.2y � 0.000008xy

yx

(b) Find the equilibrium solutions and explain their 
significance.

(c) Find an expression for .
(d) The direction field for the differential equation in part (c) is

shown. Use it to sketch the phase trajectory corresponding
to initial populations of 100 birds and 40,000 insects. Then
use the phase trajectory to describe how both populations
change.

(e) Use part (d) to make rough sketches of the bird and insect
populations as functions of time. How are these graphs
related to each other?

23. Suppose the model of Exercise 22 is replaced by the equations

(a) According to these equations, what happens to the insect
population in the absence of birds?

(b) Find the equilibrium solutions and explain their 
significance.

(c) The figure shows the phase trajectory that starts with
100 birds and 40,000 insects. Describe what eventually
happens to the bird and insect populations.

(d) Sketch graphs of the bird and insect populations as
functions of time.
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656 CHAPTER 9 DIFFERENTIAL EQUATIONS

24. Barbara weighs 60 kg and is on a diet of 1600 calories per day,
of which 850 are used automatically by basal metabolism. She
spends about 15 cal�kg�day times her weight doing exercise. If
1 kg of fat contains 10,000 cal and we assume that the storage
of calories in the form of fat is efficient, formulate a dif-
ferential equation and solve it to find her weight as a function
of time. Does her weight ultimately approach an equilibrium
weight?

25. When a flexible cable of uniform density is suspended between
two fixed points and hangs of its own weight, the shape

of the cable must satisfy a differential equation of the
form

100%

y � f �x�

d 2y

dx 2 � k�1 � � dy

dx�2 

where is a positive constant. Consider the cable shown in the
figure.
(a) Let in the differential equation. Solve the result-

ing first-order differential equation (in ), and then integrate
to find .

(b) Determine the length of the cable.

z � dy�dx
z

y

xb0

y

_b

(0, a)

(b, h)(_b, h)

k
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1. Find all functions such that is continuous and

2. A student forgot the Product Rule for differentiation and made the mistake of thinking 
that . However, he was lucky and got the correct answer. The function that he
used was and the domain of his problem was the interval . What was the
function ?

3. Let be a function with the property that , , and 
for all real numbers and . Show that for all and deduce that .

4. Find all functions that satisfy the equation

5. Find the curve such that , , , and the area under the graph
of from to is proportional to the power of .

6. A subtangent is a portion of the -axis that lies directly beneath the segment of a tangent line
from the point of contact to the -axis. Find the curves that pass through the point and
whose subtangents all have length .

7. A peach pie is taken out of the oven at 5:00 PM. At that time it is piping hot, . 
At 5:10 PM its temperature is ; at 5:20 PM it is . What is the temperature of the
room?

8. Snow began to fall during the morning of February 2 and continued steadily into the after-
noon. At noon a snowplow began removing snow from a road at a constant rate. The plow
traveled 6 km from noon to 1 PM but only 3 km from 1 PM to 2 PM. When did the snow begin
to fall? [Hints: To get started, let be the time measured in hours after noon; let be the
distance traveled by the plow at time ; then the speed of the plow is . Let be the
number of hours before noon that it began to snow. Find an expression for the height of the
snow at time . Then use the given information that the rate of removal (in ) is 
constant.]

9. A dog sees a rabbit running in a straight line across an open field and gives chase. In a rect-
angular coordinate system (as shown in the figure), assume:

(i) The rabbit is at the origin and the dog is at the point at the instant the dog first
sees the rabbit.

(ii) The rabbit runs up the -axis and the dog always runs straight for the rabbit.

(iii) The dog runs at the same speed as the rabbit.

(a) Show that the dog’s path is the graph of the function , where satisfies the dif-
ferential equation 

(b) Determine the solution of the equation in part (a) that satisfies the initial conditions
when . [Hint: Let in the differential equation and solve the

resulting first-order equation to find ; then integrate to find .]
(c) Does the dog ever catch the rabbit?
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FIGURE FOR PROBLEM 9
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; Graphing calculator or computer required
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10. (a) Suppose that the dog in Problem 9 runs twice as fast as the rabbit. Find a differential
equation for the path of the dog. Then solve it to find the point where the dog catches the
rabbit.

(b) Suppose the dog runs half as fast as the rabbit. How close does the dog get to the rabbit?
What are their positions when they are closest?

11. A planning engineer for a new alum plant must present some estimates to his company
regarding the capacity of a silo designed to contain bauxite ore until it is processed into alum.
The ore resembles pink talcum powder and is poured from a conveyor at the top of the silo.
The silo is a cylinder 100 ft high with a radius of 200 ft. The conveyor carries ore at a rate of

and the ore maintains a conical shape whose radius is 1.5 times its height.
(a) If, at a certain time , the pile is 60 ft high, how long will it take for the pile to reach the

top of the silo?
(b) Management wants to know how much room will be left in the floor area of the silo when

the pile is 60 ft high. How fast is the floor area of the pile growing at that height?
(c) Suppose a loader starts removing the ore at the rate of when the height of

the pile reaches 90 ft. Suppose, also, that the pile continues to maintain its shape. How
long will it take for the pile to reach the top of the silo under these conditions?

12. Find the curve that passes through the point and has the property that if the tangent line
is drawn at any point on the curve, then the part of the tangent line that lies in the first
quadrant is bisected at .

13. Recall that the normal line to a curve at a point on the curve is the line that passes through
and is perpendicular to the tangent line at . Find the curve that passes through the point

and has the property that if the normal line is drawn at any point on the curve, then 
the -intercept of the normal line is always 6.

14. Find all curves with the property that if the normal line is drawn at any point on the curve,
then the part of the normal line between and the -axis is bisected by the -axis.

15. Find all curves with the property that if a line is drawn from the origin to any point on
the curve, and then a tangent is drawn to the curve at that point and extended to meet the 
-axis, the result is an isosceles triangle with equal sides meeting at .

16. (a) An outfielder fields a baseball 280 ft away from home plate and throws it directly to the
catcher with an initial velocity of 100 ft�s. Assume that the velocity of the ball after

seconds satisfies the differential equation because of air resistance. How
long does it take for the ball to reach home plate? (Ignore any vertical motion of the
ball.)

(b) The manager of the team wonders whether the ball will reach home plate sooner if it 
is relayed by an infielder. The shortstop can position himself directly between the out-
fielder and home plate, catch the ball thrown by the outfielder, turn, and throw the ball
to the catcher with an initial velocity of 105 ft�s. The manager clocks the relay time of
the shortstop (catching, turning, throwing) at half a second. How far from home plate
should the shortstop position himself to minimize the total time for the ball to reach
home plate? Should the manager encourage a direct throw or a relayed throw? What if
the shortstop can throw at 115 ft�s?

; (c) For what throwing velocity of the shortstop does a relayed throw take the same time 
as a direct throw?
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