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Further Applications of
Integration

8

We looked at some applications of integrals in Chapter 5: areas, volumes, work, and average values. Here

we explore some of the many other geometric applications of integration—the length of a curve, the area

of a surface—as well as quantities of interest in physics, engineering, biology, economics, and statistics.

For instance, we will investigate the center of gravity of a plate, the force exerted by water pressure on a

dam, the flow of blood from the human heart, and the average time spent on hold during a customer

support telephone call.

561

© iofoto / Shutterstock

Hoover Dam spans the Colorado River between Nevada and Arizona. Constructed from 1931 to
1936, it is 726 ft high and provides irrigation, flood control, and hydro-electric power generation.
In Section 8.3 you will learn how to set up and evaluate an integral to calculate the force on a
dam exerted by water pressure.
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562 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

What do we mean by the length of a curve? We might think of fitting a piece of string to the
curve in Figure 1 and then measuring the string against a ruler. But that might be difficult
to do with much accuracy if we have a complicated curve. We need a precise definition for
the length of an arc of a curve, in the same spirit as the definitions we developed for the con-
cepts of area and volume.

If the curve is a polygon, we can easily find its length; we just add the lengths of the line
segments that form the polygon. (We can use the distance formula to find the distance 
between the endpoints of each segment.) We are going to define the length of a general curve
by first approximating it by a polygon and then taking a limit as the number of segments of
the polygon is increased. This process is familiar for the case of a circle, where the cir-
cumference is the limit of lengths of inscribed polygons (see Figure 2).

Now suppose that a curve is defined by the equation , where f is continuous
and . We obtain a polygonal approximation to by dividing the interval
into n subintervals with endpoints and equal width . If , then 
the point lies on and the polygon with vertices , , . . . , , illustrated in Fig-
ure 3, is an approximation to .

The length L of is approximately the length of this polygon and the approximation
gets better as we let n increase. (See Figure 4, where the arc of the curve between and

has been magnified and approximations with successively smaller values of are
shown.) Therefore we define the length of the curve with equation , 

, as the limit of the lengths of these inscribed polygons ( if the limit exists):

Notice that the procedure for defining arc length is very similar to the procedure we used
for defining area and volume: We divided the curve into a large number of small parts. We
then found the approximate lengths of the small parts and added them. Finally, we took the
limit as .

The definition of arc length given by Equation 1 is not very convenient for computational
purposes, but we can derive an integral formula for in the case where has a contin-
uous derivative. [Such a function is called smooth because a small change in produces
a small change in .]

If we let , then

C y � f �x�
a � x � b C �a, b�

x0, x1, . . . , xn �x yi � f �xi�
Pi�xi, yi� C P0 P1 Pn

C
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SECTION 8.1 ARC LENGTH 563

By applying the Mean Value Theorem to on the interval , we find that there is a
number between and such that

that is,

Thus we have

(since )

Therefore, by Definition 1,

We recognize this expression as being equal to

by the definition of a definite integral. This integral exists because the function
is continuous. Thus we have proved the following theorem:

The Arc Length Formula If is continuous on , then the length of the
curve , , is

If we use Leibniz notation for derivatives, we can write the arc length formula as follows:

Find the length of the arc of the semicubical parabola between the
points and . (See Figure 5.)

SOLUTION For the top half of the curve we have

and so the arc length formula gives

If we substitute , then . When , ; when , . 

f �xi�1, xi �
xi* xi�1 xi

f �xi� � f �xi�1 � � f ��xi*��xi � xi�1 �

�yi � f ��xi*� �x

� Pi�1Pi � � s��x�2 � ��yi�2 � s��x�2 � � f ��xi*� �x�2 

� s1 � [ f ��xi*��2 
s��x�2 � s1 � � f ��xi*��2 �x �x � 0

L � lim
n l �

�
n

i�1
� Pi�1Pi � � lim

n l �
�
n

i�1
s1 � � f ��xi*�� 2 

�x

y
b

a
s1 � � f ��x��2 dx

t�x� � s1 � � f ��x��2 

f � �a, b�
y � f �x� a � x � b

L � y
b

a
s1 � � f ��x��2 dx

L � y
b

a
�1 � 	dy

dx
2 

dx

2

3

y 2 � x 3

�1, 1� �4, 8�

y � x 3�2 dy

dx
� 3

2 x 1�2

EXAMPLE 1

L � y
4

1
�1 � 	dy

dx
2 

dx � y
4

1
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4 x dx

u � 10x � 4u � 13
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564 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

Therefore

If a curve has the equation , , and is continuous, then by inter-
changing the roles of and in Formula 2 or Equation 3, we obtain the following formula
for its length:

Find the length of the arc of the parabola from to .

SOLUTION Since , we have , and Formula 4 gives

We make the trigonometric substitution , which gives and
. When , , so ; when ,

, so , say. Thus

(from Example 8 in Section 7.2)

(We could have used Formula 21 in the Table of Integrals.) Since , we have
, so and

L � 4
9 y

10

13�4
su du � 4

9 � 2
3 u 3�2]13�4

10

� 8
27 [103�2 � ( 13

4 )3�2 ] � 1
27 (80s10 � 13s13 )

x � t�y� c � y � d t��y�
x y

L � y
d

c
s1 � �t��y��2 dy � y

d

c
�1 � 	dx

dy
2 

dy4

y 2 � x �0, 0� �1, 1�

x � y2 dx�dy � 2y

L � y
1

0
�1 � 	dx

dy
2 

dy � y
1

0
s1 � 4y 2 dy
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2 tan 	 dy � 1

2 sec2	 d	
s1 � 4y 2 � s1 � tan2	 � sec 	 y � 0 tan 	 � 0 	 � 0 y � 1
tan 	 � 2 	 � tan�1 2 � 


L � y



0
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2 y




0
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� 1
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�
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As a check on our answer to Example 1, notice
from Figure 5 that the arc length ought to be
slightly larger than the distance from to

, which is

According to our calculation in Example 1, we
have

Sure enough, this is a bit greater than the length
of the line segment.

L � 1
27 (80s10 � 13s13 ) � 7.633705

s58 � 7.615773

�4, 8�
�1, 1�

Figure 6 shows the arc of the parabola whose
length is computed in Example 2, together with
polygonal approximations having and

line segments, respectively. For 
the approximate length is , the diago-
nal of a square. The table shows the approxima-
tions that we get by dividing into 
equal subintervals. Notice that each time we
double the number of sides of the polygon, we
get closer to the exact length, which is

L �
s5

2
�

ln(s5 � 2)
4

� 1.478943

n�0, 1�Ln

L1 � s2
n � 1n � 2

n � 1

n

1 1.414
2 1.445
4 1.464
8 1.472

16 1.476
32 1.478
64 1.479

Ln
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SECTION 8.1 ARC LENGTH 565

Because of the presence of the square root sign in Formulas 2 and 4, the calculation of
an arc length often leads to an integral that is very difficult or even impossible to evaluate
explicitly. Thus we sometimes have to be content with finding an approximation to the
length of a curve, as in the following example.

(a) Set up an integral for the length of the arc of the hyperbola from the
point to the point .
(b) Use Simpson’s Rule with to estimate the arc length.

SOLUTION
(a) We have

and so the arc length is

(b) Using Simpson’s Rule (see Section 7.7) with , , , , and
, we have

The Arc Length Function
We will find it useful to have a function that measures the arc length of a curve from a par-
ticular starting point to any other point on the curve. Thus if a smooth curve has the
equation , , let be the distance along from the initial point

to the point . Then is a function, called the arc length function, and,
by Formula 2,

(We have replaced the variable of integration by so that does not have two meanings.)
We can use Part 1 of the Fundamental Theorem of Calculus to differentiate Equation 5 (since
the integrand is continuous):

xy � 1
�1, 1� (2, 12 )

n � 10

y �
1

x

dy

dx
� �

1

x 2

L � y
2

1
�1 � 	 dy

dx
2 

dx � y
2

1
�1 �

1

x 4
 dx � y

2

1

sx 4 � 1

x 2 dx

a � 1 b � 2 n � 10 �x � 0.1
f �x� � s1 � 1�x 4 

L � y
2

1
�1 �

1

x 4
 dx

�
�x

3
 � f �1� � 4 f �1.1� � 2 f �1.2� � 4 f �1.3� � � � � � 2 f �1.8� � 4 f �1.9� � f �2��

� 1.1321

v EXAMPLE 3

C
Cs�x�a � x � by � f �x�

sQ�x, f �x��P0�a, f �a��

s�x� � y
x

a
s1 � � f ��t��2 dt5

xt

ds

dx
� s1 � � f ��x��2 � �1 � 	dy

dx
2 

6

Checking the value of the definite integral with
a more accurate approximation produced by a
computer algebra system, we see that the
approximation using Simpson’s Rule is accurate
to four decimal places.
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566 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

FIGURE 7 
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Equation 6 shows that the rate of change of with respect to is always at least 1 and is
equal to 1 when , the slope of the curve, is 0. The differential of arc length is

and this equation is sometimes written in the symmetric form

The geometric interpretation of Equation 8 is shown in Figure 7. It can be used as a
mnemonic device for remembering both of the Formulas 3 and 4. If we write , then
from Equation 8 either we can solve to get , which gives , or we can solve to get

which gives .

Find the arc length function for the curve taking 
as the starting point.

SOLUTION If , then

Thus the arc length function is given by

For instance, the arc length along the curve from to is

xs
f ��x�

ds � �1 � 	 dy

dx
2
 dx7

�ds�2 � �dx�2 � �dy�28

L � x ds

ds � �1 � 	dx

dy
2
 dy

P0�1, 1�y � x 2 �
1
8 ln xEXAMPLE 4v

f �x� � x 2 �
1
8 ln x

f ��x� � 2x �
1

8x

1 � � f ��x��2 � 1 � 	2x �
1

8x
2

� 1 � 4x 2 �
1

2
�

1

64x 2

� 4x 2 �
1

2
�

1

64x 2 � 	2x �
1

8x
2

s1 � � f ��x��2 � 2x �
1

8x

s�x� � y
x

1
s1 � � f ��t��2 dt

� y
x

1
	2t �

1

8t
 dt � t 2 �
1
8 ln t]1

x

� x 2 �
1
8 ln x � 1

�3, f �3���1, 1�

s�3� � 32 �
1
8 ln 3 � 1 � 8 �

ln 3

8
� 8.1373

7 3
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SECTION 8.1 ARC LENGTH 567

FIGURE 9 FIGURE 8 
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Figure 8 shows the interpretation of the arc
length function in Example 4. Figure 9 shows the
graph of this arc length function. Why is 
negative when is less than ?1x

s�x�

1. Use the arc length formula to find the length of the curve
, . Check your answer by noting that

the curve is a line segment and calculating its length by the 
distance formula.

2. Use the arc length formula to find the length of the curve
, . Check your answer by noting that

the curve is part of a circle.

3–6 Set up an integral that represents the length of the curve. Then
use your calculator to find the length correct to four decimal places.

3. ,  

4. ,  

5. ,  

6. ,  

7–18 Find the exact length of the curve.

7. ,  

8. ,  ,

9. ,  

10. ,  

11. ,  

12. ,

13. ,  

14. ,  

15. ,  

16.

y � 2x � 5 �1 � x � 3

y � s2 � x 2 0 � x � 1

y � sin x 0 � x � �

y � xe �x 0 � x � 2

x � sy � y 1 � y � 4

x � y 2 � 2y 0 � y � 2

y � 1 � 6x 3�2 0 � x � 1

y 2 � 4�x � 4�3 0 � x � 2 y � 0

y �
x 3

3
�

1

4x
1 � x � 2

x �
y 4

8
�

1

4y 2 1 � y � 2

x � 1
3 sy �y � 3� 1 � y � 9

y � ln�cos x� 0 � x � ��3

y � ln�sec x� 0 � x � ��4

y � 3 �
1
2 cosh 2x 0 � x � 1

y � 1
4 x 2 �

1
2 ln x 1 � x � 2

y � sx � x 2 � sin�1(sx )

3 17. ,  

18. ,  

; 19–20 Find the length of the arc of the curve from point to 
point .

19. ,  ,  

20. ,  ,  

; 21–22 Graph the curve and visually estimate its length. Then use
your calculator to find the length correct to four decimal places.

21. ,  

22. ,  

23–26 Use Simpson’s Rule with to estimate the arc length
of the curve. Compare your answer with the value of the integral
produced by your calculator.

23. ,  

24. ,  

25. ,  

26. ,  

; 27. (a) Graph the curve , .
(b) Compute the lengths of inscribed polygons with , ,

and sides. (Divide the interval into equal subintervals.)
Illustrate by sketching these polygons (as in Figure 6).

(c) Set up an integral for the length of the curve.
(d) Use your calculator to find the length of the curve to four

decimal places. Compare with the approximations in
part (b).

y � ln�1 � x 2� 0 � x �
1
2

y � 1 � e �x 0 � x � 2

P
Q

y � 1
2 x 2 P(�1, 1

2) Q(1, 1
2)

x 2 � �y � 4�3 P�1, 5� Q�8, 8�

y � x 2 � x 3

y � x � cos x 0 � x � ��2

1 � x � 2

n � 10

y � x sin x 0 � x � 2�

y � s
3 x 1 � x � 6

y � ln�1 � x 3� 0 � x � 5

y � e�x2

0 � x � 2

y � x s
3 4 � x 0 � x � 4

n � 1 2
4

8.1 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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568 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

; 28. Repeat Exercise 27 for the curve

29. Use either a computer algebra system or a table of integrals
to find the exact length of the arc of the curve that
lies between the points and .

30. Use either a computer algebra system or a table of integrals
to find the exact length of the arc of the curve that
lies between the points and . If your CAS has
trouble evaluating the integral, make a substitution that
changes the integral into one that the CAS can evaluate.

31. Sketch the curve with equation and use
symmetry to find its length.

32. (a) Sketch the curve .
(b) Use Formulas 3 and 4 to set up two integrals for the arc

length from to . Observe that one of these is 
an improper integral and evaluate both of them.

(c) Find the length of the arc of this curve from 
to .

33. Find the arc length function for the curve with
starting point .

34. (a) Find the arc length function for the curve ,
, with starting point .

; (b) Graph both the curve and its arc length function on the
same screen.

35. Find the arc length function for the curve
with starting point .

36. A steady wind blows a kite due west. The kite’s height
above ground from horizontal position to is
given by . Find the distance traveled
by the kite.

37. A hawk flying at at an altitude of 180 m accidentally
drops its prey. The parabolic trajectory of the falling prey is
described by the equation

until it hits the ground, where is its height above the
ground and is the horizontal distance traveled in meters.
Calculate the distance traveled by the prey from the time it
is dropped until the time it hits the ground. Express your
answer correct to the nearest tenth of a meter.

y � x � sin x 0 � x � 2�

y � ln x
�1, 0� �2, ln 2�

y � x 4�3

�0, 0� �1, 1�

x 2�3 � y 2�3 � 1

y 3 � x 2

�0, 0� �1, 1�

��1, 1�
�8, 4�

y � 2x 3�2

P0�1, 2�

CAS

CAS

y � ln�sin x�
0 
 x 
 � ���2, 0�

y � sin�1 x � s1 � x 2 �0, 1�

x � 0 x � 80 ft
y � 150 �

1
40 �x � 50�2

15 m�s

y � 180 �
x 2

45

y
x

38. The Gateway Arch in St. Louis (see the photo on page 463)
was constructed using the equation

for the central curve of the arch, where and are measured
in meters and . Set up an integral for the length
of the arch and use your calculator to estimate the length 
correct to the nearest meter.

39. A manufacturer of corrugated metal roofing wants to produce
panels that are 28 in. wide and 2 in. thick by processing flat
sheets of metal as shown in the figure. The profile of the
roofing takes the shape of a sine wave. Verify that the sine
curve has equation and find the width of a
flat metal sheet that is needed to make a 28-inch panel. (Use
your calculator to evaluate the integral correct to four signifi-
cant digits.)

40. (a) The figure shows a telephone wire hanging between 
two poles at and . It takes the shape of a
catenary with equation . Find the
length of the wire.

; (b) Suppose two telephone poles are 50 ft apart and the
length of the wire between the poles is 51 ft. If the lowest
point of the wire must be 20 ft above the ground, how
high up on each pole should the wire be attached?

41. Find the length of the curve

; 42. The curves with equations , , , , . . . , are
called fat circles. Graph the curves with , , , , and

to see why. Set up an integral for the length of the fat
circle with . Without attempting to evaluate this inte-
gral, state the value of .

y � sin��x�7� w

28 in
2 inw

x � �b x � b
y � c � a cosh�x�a�

y

0 x_b b

y � y
x

1
st 3 � 1 dt 1 � x � 4

xn � yn � 1 n � 4 6 8
n � 2 4 6 8

10 L2k

n � 2k
limk l � L 2k

x y

� x � � 91.20

y � 211.49 � 20.96 cosh 0.03291765x
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SECTION 8.2 AREA OF A SURFACE OF REVOLUTION 569

D I S C O V E R Y  P R O J E C T ARC LENGTH CONTEST

The curves shown are all examples of graphs of continuous functions that have the following
properties.

1.

2.

3. The area under the graph of from 0 to 1 is equal to 1.

The lengths of these curves, however, are different.

Try to discover formulas for two functions that satisfy the given conditions 1, 2, and 3. (Your
graphs might be similar to the ones shown or could look quite different.) Then calculate the arc
length of each graph. The winning entry will be the one with the smallest arc length.

f

f �0� � 0 and f �1� � 0

f �x� � 0 for 0 � x � 1

f

L

LÅ3.249

x

y

0 1

1

LÅ2.919

x

y

0 1

1

LÅ3.152

x

y

0 1

1

LÅ3.213

x

y

0 1

1

A surface of revolution is formed when a curve is rotated about a line. Such a surface is the
lateral boundary of a solid of revolution of the type discussed in Sections 5.2 and 5.3.

We want to define the area of a surface of revolution in such a way that it corresponds
to our intuition. If the surface area is , we can imagine that painting the surface would
require the same amount of paint as does a flat region with area .

Let’s start with some simple surfaces. The lateral surface area of a circular cylinder with
radius and height is taken to be because we can imagine cutting the cylinder
and unrolling it (as in Figure 1) to obtain a rectangle with dimensions and .

Likewise, we can take a circular cone with base radius and slant height , cut it along
the dashed line in Figure 2, and flatten it to form a sector of a circle with radius and central

A
A

r h A � 2�rh
2�r h

r l
l

FIGURE 2 

l¨

2πr

l

r

cut

8.2 Area of a Surface of Revolution

h

r

cut

h

2πr
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570 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

angle . We know that, in general, the area of a sector of a circle with radius and
angle is (see Exercise 35 in Section 7.3) and so in this case the area is

Therefore we define the lateral surface area of a cone to be .
What about more complicated surfaces of revolution? If we follow the strategy we used

with arc length, we can approximate the original curve by a polygon. When this polygon is
rotated about an axis, it creates a simpler surface whose surface area approximates the 
actual surface area. By taking a limit, we can determine the exact surface area.

The approximating surface, then, consists of a number of bands, each formed by rotat-
ing a line segment about an axis. To find the surface area, each of these bands can be 
considered a portion of a circular cone, as shown in Figure 3. The area of the band (or frus-
tum of a cone) with slant height and upper and lower radii and is found by sub-
tracting the areas of two cones:

From similar triangles we have

which gives

or    

Putting this in Equation 1, we get

or

where is the average radius of the band.
Now we apply this formula to our strategy. Consider the surface shown in Figure 4,

which is obtained by rotating the curve , , about the -axis, where is
positive and has a continuous derivative. In order to define its surface area, we divide the
interval into n subintervals with endpoints and equal width , as we
did in determining arc length. If , then the point lies on the curve. The
part of the surface between and is approximated by taking the line segment
and rotating it about the -axis. The result is a band with slant height and aver-
age radius so, by Formula 2, its surface area is

As in the proof of Theorem 8.1.2, we have

l	 � 2�r�l
1
2 l 2		

A � 1
2 l 2	 � 1

2 l 2	2�r

l 
 � �rl

A � �rl

r2r1l

A � �r2�l1 � l � � �r1l1 � � ��r2 � r1�l1 � r2l �1

l1

r1
�

l1 � l

r2

�r2 � r1�l1 � r1lr2l1 � r1l1 � r1l
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A � 2�rl2
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fxa � x � by � f �x�
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Pi�xi, yi �yi � f �xi �

Pi�1Pixixi�1

l � � Pi�1Pi �x
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SECTION 8.2 AREA OF A SURFACE OF REVOLUTION 571

where is some number in . When is small, we have and
also , since is continuous. Therefore

and so an approximation to what we think of as the area of the complete surface of revolu-
tion is

This approximation appears to become better as and, recognizing as a Riemann
sum for the function , we have

Therefore, in the case where is positive and has a continuous derivative, we define the 
surface area of the surface obtained by rotating the curve , , about 
the -axis as

With the Leibniz notation for derivatives, this formula becomes

If the curve is described as , , then the formula for surface area becomes

and both Formulas 5 and 6 can be summarized symbolically, using the notation for arc
length given in Section 8.1, as

yi � f �xi� � f �xi*��x�xi�1, xi�xi*
fyi�1 � f �xi�1� � f �xi*�

2�
yi�1 � yi

2
 � Pi�1Pi � � 2� f �xi*� s1 � � f ��xi*��2 �x

�
n

i�1
2� f �xi*� s1 � � f ��xi*��2 �x3

3n l �
t�x� � 2� f �x� s1 � � f ��x��2 

lim
n l �

�
n

i�1
2� f �xi*� s1 � � f ��xi*��2 �x � y

b

a
2� f �x� s1 � � f ��x��2 dx

f
a � x � by � f �x�

x

S � y
b

a
2� f �x� s1 � � f ��x��2 dx4

S � y
b

a
2�y�1 � 	dy

dx
2 

dx5

c � y � dx � t�y�

S � y
d

c
2�y�1 � 	dx

dy
2 

dy6

S � y 2�y ds7
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572 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

For rotation about the -axis, the surface area formula becomes

where, as before, we can use either

or    

These formulas can be remembered by thinking of or as the circumference of a
circle traced out by the point on the curve as it is rotated about the -axis or -axis,
respectively (see Figure 5).

The curve , , is an arc of the circle .
Find the area of the surface obtained by rotating this arc about the -axis. (The surface is
a portion of a sphere of radius 2. See Figure 6.)

SOLUTION We have

and so, by Formula 5, the surface area is

ds � �1 � �dy

dx�2 

dx ds � �1 � �dx

dy�2 

dy

2�y 2�x
�x, y� x y

FIGURE 5 (a) Rotation about x-axis: S=j 2πy ds

(x, y)

y

circumference=2πy

x0

y

(b) Rotation about y-axis: S=j 2πx ds

(x, y)
x

circumference=2πx

x0

y

y � s4 � x 2 �1 � x � 1 x 2 � y 2 � 4
x

dy

dx
� 1

2 �4 � x 2 ��1�2��2x� �
�x

s4 � x 2 

S � y
1

�1
2�y�1 � �dy

dx�2 

dx

� 2� y
1

�1
s4 � x 2 �1 �

x 2

4 � x 2
 dx

� 2� y
1

�1
s4 � x 2 

2

s4 � x 2 
dx

v EXAMPLE 1

y

8 S � y 2�x ds

� 4� y
1

�1
1 dx � 4� �2� � 8�

Figure 6 shows the portion of the sphere whose
surface area is computed in Example 1.

1 x

y

FIGURE 6
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SECTION 8.2 AREA OF A SURFACE OF REVOLUTION 573

The arc of the parabola from to is rotated about the 
-axis. Find the area of the resulting surface.

SOLUTION 1 Using

and    

we have, from Formula 8,

Substituting , we have . Remembering to change the limits of
integration, we have

SOLUTION 2 Using

and    

we have

(where )

(as in Solution 1)

Find the area of the surface generated by rotating the curve ,
, about the -axis.

SOLUTION Using Formula 5 with

and    

S � y 2�x ds

� y
2

1
2�x�1 � �dy

dx�2 

dx

� 2� y
2

1
x s1 � 4x 2 dx

u � 1 � 4x 2 du � 8x dx

S �
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4
 y

17

5
su du �

�

4
 [ 2

3 u 3�2]5

17

�
�

6
 (17s17 � 5s5 )

x � sy
dx

dy
�
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2sy

S � y 2�x ds � y
4

1
2�x�1 � �dx

dy�2 

dy

� 2� y
4

1
sy �1 �

1

4y
dy � � y

4

1
s4y � 1 dy

�
�

4
 y

17

5
su du u � 1 � 4y

�
�

6
 (17s17 � 5s5 )
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y � x 2 �1, 1� �2, 4�
y
v EXAMPLE 2

y � exEXAMPLE 3v
x0 � x � 1

dy

dx
� exy � ex

(2, 4)

y=≈

x0

y

1 2

FIGURE 7

Figure 7 shows the surface of revolution whose
area is computed in Example 2.

As a check on our answer to Example 2, 
notice from Figure 7 that the surface area 
should be close to that of a circular cylinder with
the same height and radius halfway between 
the upper and lower radius of the surface:

. We computed that 
the surface area was

which seems reasonable. Alternatively, the sur-
face area should be slightly larger than the area
of a frustum of a cone with the same top and
bottom edges. From Equation 2, this is

.2� �1.5�(s10 ) � 29.80

�

6
 (17s17 � 5s5 ) � 30.85

2� �1.5��3� � 28.27

Another method: Use Formula 6 with 
.x � ln y
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17–20 Use Simpson’s Rule with to approximate the area 
of the surface obtained by rotating the curve about the -axis.
Compare your answer with the value of the integral produced by
your calculator.

17. ,  18. ,  

19. ,  20. ,  

21–22 Use either a CAS or a table of integrals to find the exact 
area of the surface obtained by rotating the given curve about the 
-axis.

21. ,  22. ,  

23–24 Use a CAS to find the exact area of the surface obtained by
rotating the curve about the -axis. If your CAS has trouble evalu-
ating the integral, express the surface area as an integral in the
other variable.

23. ,  24. ,  

25. If the region is rotated 
about the -axis, the volume of the resulting solid is finite (see
Exercise 63 in Section 7.8). Show that the surface area is infi-
nite. (The surface is shown in the figure and is known as 
Gabriel’s horn.)

n � 10
x

0 � x � 1y � x � x 20 � x � 5y � 1
5 x 5

1 � x � 2y � x ln x0 � x � 1y � xe x

CAS

x

0 � x � 3y � sx 2 � 11 � x � 2y � 1�x

CAS

y

0 � x � 1y � ln�x � 1�0 � y � 1y � x 3

� � 	�x, y� 
 x � 1, 0 � y � 1�x�
x

0 1

1
xy=

y

x
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we have

(where )

(where and )

(by Example 8 in Section 7.2)

Since , we have and

� 2� y
�

��4
sec3� d� u � tan � � � tan�1e

� 2� � 1
2 [sec � tan � � ln 
 sec � � tan � 
]��4

�

� � [sec � tan � � ln�sec � � tan �� � s2 � ln(s2 � 1)]
tan � � e sec2� � 1 � tan2� � 1 � e 2

S � � [es1 � e 2 � ln(e � s1 � e 2 ) � s2 � ln(s2 � 1)]

u � e x� 2� y
e

1
s1 � u2 du

S � y
1

0
2�y�1 � �dy

dx�2 

dx � 2� y
1

0
ex

s1 � e 2x dx

Or use Formula 21 in the Table of Integrals.

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

1–4
(a) Set up an integral for the area of the surface obtained by rotat-

ing the curve about (i) the -axis and (ii) the -axis.
(b) Use the numerical integration capability of your calculator to

evaluate the surface areas correct to four decimal places.

1. ,  2. ,  

3. ,  4. ,  

5–12 Find the exact area of the surface obtained by rotating the
curve about the -axis.

5. ,  

6. ,  

7. ,  

8. ,  

9. ,  

10. ,

11. ,  

12. ,  

13–16 The given curve is rotated about the -axis. Find the area of
the resulting surface.

13. ,  

14. ,  

15. ,  

16. ,  

yx

1 � x � 2y � x�20 � x � ��3y � tan x

�1 � x � 1y � e�x2

0 � y � 1x � ln�2y � 1�

x

0 � x � 2y � x 3

2 � x � 69x � y 2 � 18

1 � x � 5y � s1 � 4x

0 � x � 1y � s1 � e x

0 � x � 1y � sin �x

1
2 � x � 1y �

x 3

6
�

1

2x

1 � y � 2x � 1
3 �y 2 � 2�3�2

1 � y � 2x � 1 � 2y 2

y

1 � y � 2y � s
3 x

0 � x � 1y � 1 � x 2

0 � y � a�2x � sa 2 � y 2 

1 � x � 2y � 1
4x 2 �

1
2 ln x

8.2 Exercises
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DISCOVERY PROJECT ROTATING ON A SLANT 575

26. If the infinite curve , , is rotated about the 
-axis, find the area of the resulting surface.

27. (a) If , find the area of the surface generated by rotating
the loop of the curve about the -axis.

(b) Find the surface area if the loop is rotated about the -axis.

28. A group of engineers is building a parabolic satellite dish
whose shape will be formed by rotating the curve
about the -axis. If the dish is to have a 10-ft diameter and a
maximum depth of 2 ft, find the value of and the surface area
of the dish.

29. (a) The ellipse

is rotated about the -axis to form a surface called an ellip-
soid, or prolate spheroid. Find the surface area of this 
ellipsoid.

(b) If the ellipse in part (a) is rotated about its minor axis (the 
-axis), the resulting ellipsoid is called an oblate spheroid.

Find the surface area of this ellipsoid.

30. Find the surface area of the torus in Exercise 61 in 
Section 5.2.

31. If the curve , , is rotated about the horizon-
tal line , where , find a formula for the area of
the resulting surface.

x � 0y � e�x

x

a 	 0
x3ay 2 � x�a � x�2

y

y � ax 2

y
a

a 	 b
x 2

a 2 �
y 2

b 2 � 1

x

y

a � x � by � f �x�
f �x� � cy � c

32. Use the result of Exercise 31 to set up an integral to find the
area of the surface generated by rotating the curve ,

, about the line . Then use a CAS to evaluate
the integral.

33. Find the area of the surface obtained by rotating the circle
about the line .

34. (a) Show that the surface area of a zone of a sphere that lies
between two parallel planes is , where is the
radius of the sphere and is the distance between the
planes. (Notice that depends only on the distance between
the planes and not on their location, provided that both
planes intersect the sphere.)

(b) Show that the surface area of a zone of a cylinder with
radius and height is the same as the surface area of the
zone of a sphere in part (a).

35. Formula 4 is valid only when . Show that when 
is not necessarily positive, the formula for surface area

becomes

36. Let be the length of the curve , , where 
is positive and has a continuous derivative. Let be the sur-

face area generated by rotating the curve about the -axis. If
is a positive constant, define and let be the
corresponding surface area generated by the curve ,

. Express in terms of and .

x c
t�x� � f �x� � c St

y � t�x�
a � x � b St Sf L

y � rx 2 � y 2 � r 2

S � 2�Rh R
h

S

R h

f �x� � 0
f �x�

S � y
b

a
2� 
 f �x� 
s1 � � f 
�x�
2 dx

a � x � by � f �x�L
Sff

y � sx
y � 40 � x � 4

CAS

D I S C O V E R Y  P R O J E C T ROTATING ON A SLANT

We know how to find the volume of a solid of revolution obtained by rotating a region about a
horizontal or vertical line (see Section 5.2). We also know how to find the surface area of a surface
of revolution if we rotate a curve about a horizontal or vertical line (see Section 8.2). But what if
we rotate about a slanted line, that is, a line that is neither horizontal nor vertical? In this project
you are asked to discover formulas for the volume of a solid of revolution and for the area of a
surface of revolution when the axis of rotation is a slanted line.

Let be the arc of the curve between the points and and let
be the region bounded by , by the line (which lies entirely below ), and by the
perpendiculars to the line from and .

C y � f �x� P�p, f �p�� Q�q, f �q�� �
C y � mx � b C

P Q

P

0 x

y

qp

�

C

Q

y=ƒ

y=mx+b

Îu
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576 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

1. Show that the area of is

[Hint: This formula can be verified by subtracting areas, but it will be helpful throughout the
project to derive it by first approximating the area using rectangles perpendicular to the line,
as shown in the following figure. Use the figure to help express in terms of .]

2. Find the area of the region shown in the figure at the left.

3. Find a formula (similar to the one in Problem 1) for the volume of the solid obtained by 
rotating about the line .

4. Find the volume of the solid obtained by rotating the region of Problem 2 about the 
line .

5. Find a formula for the area of the surface obtained by rotating about the line .

6. Use a computer algebra system to find the exact area of the surface obtained by rotating the
curve , , about the line . Then approximate your result to three
decimal places.

1

1 � m 2 y
q

p
� f �x� � mx � b
�1 � mf 
�x�
 dx

�u �x

y=mx+b

Îu

å

tangent to C
at { x i, f(xi)}

xi ∫

?

Îx

?

� y � mx � b

y � x � 2

C y � mx � b

y � sx 0 � x � 4 y � 1
2 x

CAS

�

Among the many applications of integral calculus to physics and engineering, we consider
two here: force due to water pressure and centers of mass. As with our previous applications
to geometry (areas, volumes, and lengths) and to work, our strategy is to break up the phys-
ical quantity into a large number of small parts, approximate each small part, add the results,
take the limit, and then evaluate the resulting integral.

Hydrostatic Pressure and Force
Deep-sea divers realize that water pressure increases as they dive deeper. This is because the
weight of the water above them increases.

In general, suppose that a thin horizontal plate with area square meters is submerged
in a fluid of density kilograms per cubic meter at a depth meters below the surface of
the fluid as in Figure 1. The fluid directly above the plate has volume , so its mass 
is . The force exerted by the fluid on the plate is therefore

A
� d

V � Ad
m � �V � �Ad

F � mt � �tAd

8.3 Applications to Physics and Engineering

surface of fluid

FIGURE 1

Computer algebra system requiredCAS

y

x0

(2π, 2π)

y=x+sin x

y=x-2
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SECTION 8.3 APPLICATIONS TO PHYSICS AND ENGINEERING 577

where is the acceleration due to gravity. The pressure on the plate is defined to be the
force per unit area:

The SI unit for measuring pressure is newtons per square meter, which is called a pascal
(abbreviation: 1 N�m Pa). Since this is a small unit, the kilopascal (kPa) is often used.
For instance, because the density of water is kg�m , the pressure at the bottom
of a swimming pool 2 m deep is

An important principle of fluid pressure is the experimentally verified fact that at any
point in a liquid the pressure is the same in all directions. (A diver feels the same pressure
on nose and both ears.) Thus the pressure in any direction at a depth in a fluid with mass
density is given by

This helps us determine the hydrostatic force against a vertical plate or wall or dam in a fluid.
This is not a straightforward problem because the pressure is not constant but increases as
the depth increases.

A dam has the shape of the trapezoid shown in Figure 2. The height is
20 m and the width is 50 m at the top and 30 m at the bottom. Find the force on the dam
due to hydrostatic pressure if the water level is 4 m from the top of the dam.

SOLUTION We choose a vertical -axis with origin at the surface of the water and
directed downward as in Figure 3(a). The depth of the water is 16 m, so we divide the
interval into sub intervals of equal length with endpoints and we choose

. The horizontal strip of the dam is approximated by a rectangle with
height and width , where, from similar triangles in Figure 3(b),

or    

and so

If is the area of the strip, then

If is small, then the pressure on the strip is almost constant and we can use
Equation 1 to write

The hydrostatic force acting on the strip is the product of the pressure and the area:

t P

P �
F

A
� �td

2 � 1
� � 1000 3

P � �td � 1000 kg�m3 
 9.8 m�s2 
 2 m

� 19,600 Pa � 19.6 kPa

d
�

1 P � �td � �d

x

�0, 16
 xi

xi* � �xi�1, xi
 ith
�x wi

a

16 � xi*
�

10

20
a �

16 � xi*

2
� 8 �

xi*

2

wi � 2�15 � a� � 2(15 � 8 �
1
2 xi*) � 46 � xi*

Ai ith

Ai � wi �x � �46 � xi*� �x

�x Pi ith

Pi � 1000txi*

Fi ith

Fi � Pi Ai � 1000txi*�46 � xi*� �x

v EXAMPLE 1

When using US Customary units, we write
, where is the

weight density (as opposed to , which is the
mass density ). For in stance, the weight den-
sity of water is .� � 62.5 lb�ft3

�
� � �tP � �td � �d

50 m

20 m

30 m

FIGURE 2

FIGURE 3
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a
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578 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

Adding these forces and taking the limit as , we obtain the total hydrostatic force
on the dam:

Find the hydrostatic force on one end of a cylindrical drum with radius 3 ft if
the drum is submerged in water 10 ft deep.

SOLUTION In this example it is convenient to choose the axes as in Figure 4 so that the 
origin is placed at the center of the drum. Then the circle has a simple equation,

. As in Example 1 we divide the circular region into horizontal strips of 
equal width. From the equation of the circle, we see that the length of the strip is

and so its area is

The pressure on this strip is approximately

and so the force on the strip is approximately

The total force is obtained by adding the forces on all the strips and taking the limit:

The second integral is 0 because the integrand is an odd function (see Theorem 4.5.6).
The first integral can be evaluated using the trigonometric substitution , but
it’s simpler to observe that it is the area of a semicircular disk with radius 3. Thus

Moments and Centers of Mass
Our main objective here is to find the point on which a thin plate of any given shape bal-
ances horizontally as in Figure 5. This point is called the center of mass (or center of grav-
ity) of the plate.

n l �

� y
16

0
1000tx�46 � x� dxF � lim

n l �
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i�1
1000txi*�46 � xi*� �x
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� 1000�9.8� y
16

0
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SECTION 8.3 APPLICATIONS TO PHYSICS AND ENGINEERING 579

We first consider the simpler situation illustrated in Figure 6, where two masses and
are attached to a rod of negligible mass on opposite sides of a fulcrum and at distances
and from the fulcrum. The rod will balance if

This is an experimental fact discovered by Archimedes and called the Law of the Lever.
(Think of a lighter person balancing a heavier one on a seesaw by sitting farther away from
the center.)

Now suppose that the rod lies along the -axis with at and at and the center
of mass at . If we compare Figures 6 and 7, we see that and and
so Equation 2 gives

The numbers and are called the moments of the masses and (with respect
to the origin), and Equation 3 says that the center of mass is obtained by adding the
moments of the masses and dividing by the total mass .

In general, if we have a system of particles with masses , . . . , located at the
points , . . . , on the -axis, it can be shown similarly that the center of mass of the
system is located at

where is the total mass of the system, and the sum of the individual moments

is called the moment of the system about the origin. Then Equation 4 could be rewritten
as , which says that if the total mass were considered as being concentrated at the
center of mass , then its moment would be the same as the moment of the system.

Now we consider a system of particles with masses , . . . , located at the points
, , . . . , in the -plane as shown in Figure 8. By analogy with the

one-dimensional case, we define the moment of the system about the y-axis to be

m2
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580 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

and the moment of the system about the x-axis as

Then measures the tendency of the system to rotate about the -axis and measures
the tendency to rotate about the -axis.

As in the one-dimensional case, the coordinates of the center of mass are given in
terms of the moments by the formulas

where is the total mass. Since and , the center of mass
is the point where a single particle of mass would have the same moments as the system.

Find the moments and center of mass of the system of objects that have
masses 3, 4, and 8 at the points , , and , respectively.

SOLUTION We use Equations 5 and 6 to compute the moments:

Since , we use Equations 7 to obtain

Thus the center of mass is . (See Figure 9.)

Next we consider a flat plate (called a lamina) with uniform density that occupies a 
region of the plane. We wish to locate the center of mass of the plate, which is called 
the centroid of . In doing so we use the following physical principles: The symmetry
principle says that if is symmetric about a line , then the centroid of lies on . (If
is reflected about , then remains the same so its centroid remains fixed. But the only
fixed points lie on .) Thus the centroid of a rectangle is its center. Moments should be 
defined so that if the entire mass of a region is concentrated at the center of mass, then its
moments remain unchanged. Also, the moment of the union of two nonoverlapping regions
should be the sum of the moments of the individual regions.

Suppose that the region is of the type shown in Figure 10(a); that is, lies between
the lines and , above the -axis, and beneath the graph of , where is a 
continuous function. We divide the interval into n subintervals with endpoints

and equal width . We choose the sample point to be the midpoint of the
subinterval, that is, . This determines the polygonal approximation to
shown in Figure 10(b). The centroid of the approximating rectangle is its center

. Its area is , so its mass is

The moment of about the -axis is the product of its mass and the distance from to the
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SECTION 8.3 APPLICATIONS TO PHYSICS AND ENGINEERING 581

-axis, which is 

Adding these moments, we obtain the moment of the polygonal approximation to , and
then by taking the limit as we obtain the moment of itself about the -axis:

In a similar fashion we compute the moment of about the -axis as the product of its
mass and the distance from to the -axis:

Again we add these moments and take the limit to obtain the moment of about the 
-axis:

Just as for systems of particles, the center of mass of the plate is defined so that
and . But the mass of the plate is the product of its density and its area:

and so

Notice the cancellation of the ’s. The location of the center of mass is independent of the
density.

In summary, the center of mass of the plate (or the centroid of ) is located at the point
, where

Find the center of mass of a semicircular plate of radius .

SOLUTION In order to use we place the semicircle as in Figure 11 so that
and , . Here there is no need to use the formula to calcu-

late because, by the symmetry principle, the center of mass must lie on the -axis, 
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582 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

so . The area of the semicircle is , so

The center of mass is located at the point .

Find the centroid of the region bounded by the curves , ,
, and .

SOLUTION The area of the region is

so Formulas 8 give

(by integration by parts)

The centroid is and is shown in Figure 12.

If the region lies between two curves and , where , as
illustrated in Figure 13, then the same sort of argument that led to Formulas 8 can be used
to show that the centroid of is , where

(See Exercise 47.)
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SECTION 8.3 APPLICATIONS TO PHYSICS AND ENGINEERING 583

Find the centroid of the region bounded by the line and the 
parabola .

SOLUTION The region is sketched in Figure 14. We take , , , and
in Formulas 9. First we note that the area of the region is

Therefore

The centroid is .

We end this section by showing a surprising connection between centroids and volumes
of revolution.

Theorem of Pappus Let be a plane region that lies entirely on one side of a line
in the plane. If is rotated about , then the volume of the resulting solid is the
product of the area of and the distance traveled by the centroid of .

PROOF We give the proof for the special case in which the region lies between and
as in Figure 13 and the line is the -axis. Using the method of cylindrical shells

(see Section 5.3), we have

(by Formulas 9)

where is the distance traveled by the centroid during one rotation about the 
-axis.
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584 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

1. An aquarium 5 ft long, 2 ft wide, and 3 ft deep is full of 
water. Find (a) the hydrostatic pressure on the bottom of the
aquarium, (b) the hydrostatic force on the bottom, and (c) the
hydrostatic force on one end of the aquarium.

2. A tank is 8 m long, 4 m wide, 2 m high, and contains kerosene
with density to a depth of 1.5 m. Find (a) the hydro-
static pressure on the bottom of the tank, (b) the hydrostatic
force on the bottom, and (c) the hydrostatic force on one end 
of the tank.

3–11 A vertical plate is submerged (or partially submerged) in
water and has the indicated shape. Explain how to approximate the
hydrostatic force against one side of the plate by a Riemann sum.
Then express the force as an integral and evaluate it.

3. 4.

5. 6.

7. 8.

820 kg�m3

6 m6 m
1 m

2 m 4 m

1 m

9. 10.

11.

12. A milk truck carries milk with density in a horizon-
tal cylindrical tank with diameter 6 ft.
(a) Find the force exerted by the milk on one end of the tank

when the tank is full.
(b) What if the tank is half full?

13. A trough is filled with a liquid of density 840 kg�m . The ends
of the trough are equilateral triangles with sides 8 m long and
vertex at the bottom. Find the hydrostatic force on one end of
the trough.

14. A vertical dam has a semicircular gate as shown in the figure.
Find the hydrostatic force against the gate.

2a

64.6 lb�ft3

3

12 m

2 m

4 m

water level

8.3 Exercises

A torus is formed by rotating a circle of radius about a line in the plane
of the circle that is a distance from the center of the circle. Find the volume of the
torus.

SOLUTION The circle has area . By the symmetry principle, its centroid is its cen-
ter and so the distance traveled by the centroid during a rotation is . Therefore,
by the Theorem of Pappus, the volume of the torus is

The method of Example 7 should be compared with the method of Exercise 61 in 
Section 5.2.

R �� r�

A � �r 2

d � 2�R

V � Ad � �2�R���r 2 � � 2� 2r 2R

rEXAMPLE 7v
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SECTION 8.3 APPLICATIONS TO PHYSICS AND ENGINEERING 585

15. A cube with 20-cm-long sides is sitting on the bottom of an
aquarium in which the water is one meter deep. Estimate the
hydrostatic force on (a) the top of the cube and (b) one of the
sides of the cube.

16. A dam is inclined at an angle of from the vertical and has
the shape of an isosceles trapezoid 100 ft wide at the top and
50 ft wide at the bottom and with a slant height of 70 ft. Find
the hydrostatic force on the dam when it is full of water.

17. A swimming pool is 20 ft wide and 40 ft long and its bottom is
an inclined plane, the shallow end having a depth of 3 ft and
the deep end, 9 ft. If the pool is full of water, estimate the
hydro static force on (a) the shallow end, (b) the deep end, 
(c) one of the sides, and (d) the bottom of the pool.

18. Suppose that a plate is immersed vertically in a fluid with den-
sity and the width of the plate is at a depth of meters
beneath the surface of the fluid. If the top of the plate is at
depth and the bottom is at depth , show that the hydrostatic
force on one side of the plate is

19. A metal plate was found submerged vertically in sea water,
which has density . Measurements of the width of the
plate were taken at the indicated depths. Use Simpson’s Rule 
to estimate the force of the water against the plate.

20. (a) Use the formula of Exercise 18 to show that

where is the -coordinate of the centroid of the plate and
is its area. This equation shows that the hydrostatic force

against a vertical plane region is the same as if the region
were horizontal at the depth of the centroid of the region.

(b) Use the result of part (a) to give another solution to 
Exercise 10.

21–22 Point-masses are located on the -axis as shown. Find the
moment of the system about the origin and the center of mass .

21.

22.

30�

xw�x��

ba

F � y
b

a
�txw�x� dx

64 lb�ft3

F � ��tx �A

xx
A

xmi

xM

x0 3010

m¡=6 m™=9

x0 82

m™=15 m£=20

_3

m¡=12

23–24 The masses are located at the points . Find the moments
and and the center of mass of the system.

23. , , ;

, , 

24. , , , ;

, , , 

25–28 Sketch the region bounded by the curves, and visually esti-
mate the location of the centroid. Then find the exact coordi nates of
the centroid.

25. ,  ,  

26. ,  ,  

27. ,  ,  ,  

28. ,  ,  

29–33 Find the centroid of the region bounded by the given curves.

29. ,  

30. ,  

31. ,  ,  ,  

32. ,  ,  

33. ,  

34 –35 Calculate the moments and and the center of mass of
a lamina with the given density and shape.

34. 35.

36. Use Simpson’s Rule to estimate the centroid of the region
shown.

m4 � 6m3 � 3m2 � 4m1 � 5

P4�1, �2�P3�3, 2�P2�0, 5�P1��4, 2�

x � 1y � 0y � 2x

x � 4y � 0y � sx

x � 1x � 0y � 0y � e x

0 	 x 	 �y � 0y � sin x

x � y 2y � x 2

y � xy � 2 � x 2

x � ��4x � 0y � cos xy � sin x

y � 0x � y � 2y � x 3

x � y 2x � y � 2

MyMx

� � 10� � 3

x

(4, 3)
y

0
x

y

0 1

_1

1

2

4

x

y

0 8642

m3 � 4m2 � 2m1 � 4

P3�3, 5�P2��3, 1�P1�2, �3�

Pimi

MyMx

Depth (m) 7.0 7.4 7.8 8.2 8.6 9.0 9.4

Plate width (m) 1.2 1.8 2.9 3.8 3.6 4.2 4.4

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



586 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

37. Find the centroid of the region bounded by the curves
and . Sketch the region and plot the

centroid to see if your answer is reasonable.

; 38. Use a graph to find approximate -coordinates of the points
of intersection of the curves and . Then
find (approximately) the centroid of the region bounded by
these curves.

39. Prove that the centroid of any triangle is located at the point 
of intersection of the medians. [Hints: Place the axes so that
the vertices are , , and . Recall that a median 
is a line segment from a vertex to the midpoint of the oppo-
site side. Recall also that the medians intersect at a point two-
thirds of the way from each vertex (along the median) to the
opposite side.]

40–41 Find the centroid of the region shown, not by integration,
but by locating the centroids of the rectangles and triangles (from
Exercise 39) and using additivity of moments.

40. 41.

42. A rectangle with sides and is divided into two parts 
and by an arc of a parabola that has its vertex at one 

�c, 0��0, b��a, 0�

x

y

0 1_1

_1

2

1

2

_2x

y

0 1_1 2

1

2

baR
R2R1

x
y � 2 � x 2y � e x

y � x 2 � 1y � x 3 � x
corner of and passes through the opposite corner. Find the
centroids of both and .

43. If is the -coordinate of the centroid of the region that lies
under the graph of a continuous function , where ,
show that

44 –46 Use the Theorem of Pappus to find the volume of the
given solid.

44. A sphere of radius (Use Example 4.)

45. A cone with height and base radius 

46. The solid obtained by rotating the triangle with vertices 
, , and about the -axis

47. Prove Formulas 9.

48. Let be the region that lies between the curves 
and , , where and are integers with

.
(a) Sketch the region .
(b) Find the coordinates of the centroid of .
(c) Try to find values of and such that the centroid lies

outside .
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a
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y
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R¡

b
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R

D I S C O V E R Y  P R O J E C T COMPLEMENTARY COFFEE CUPS

Suppose you have a choice of two coffee cups of the type shown, one that bends outward and one
inward, and you notice that they have the same height and their shapes fit together snugly. You
wonder which cup holds more coffee. Of course you could fill one cup with water and pour it 
into the other one but, being a calculus student, you decide on a more mathematical approach.
Ignoring the handles, you observe that both cups are surfaces of revolution, so you can think of the
coffee as a volume of revolution.

x

y

0

h

k

x=k

A¡

x=f(y)

A™

Cup A Cup B
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SECTION 8.4 APPLICATIONS TO ECONOMICS AND BIOLOGY 587

1. Suppose the cups have height , cup A is formed by rotating the curve about the 
-axis, and cup B is formed by rotating the same curve about the line . Find the value 

of such that the two cups hold the same amount of coffee.

2. What does your result from Problem 1 say about the areas and shown in the figure?

3. Use Pappus’s Theorem to explain your result in Problems 1 and 2.

4. Based on your own measurements and observations, suggest a value for and an equation
for and calculate the amount of coffee that each cup holds.

h x � f �y�
y x � k

k

A1 A2

h
x � f �y�

In this section we consider some applications of integration to economics (consumer sur-
plus) and biology (blood flow, cardiac output). Others are described in the exercises.

Consumer Surplus
Recall from Section 3.7 that the demand function is the price that a company has to
charge in order to sell units of a commodity. Usually, selling larger quantities requires
lowering prices, so the demand function is a decreasing function. The graph of a typical
demand function, called a demand curve, is shown in Figure 1. If is the amount of the
commodity that is currently available, then is the current selling price.

We divide the interval into subintervals, each of length , and let
be the right endpoint of the th subinterval, as in Figure 2. If, after the first units

were sold, a total of only units had been available and the price per unit had been set at
dollars, then the additional units could have been sold (but no more). The con-

sumers who would have paid dollars placed a high value on the product; they would
have paid what it was worth to them. So in paying only dollars they have saved an amount
of

Considering similar groups of willing consumers for each of the subintervals and adding the
savings, we get the total savings:

(This sum corresponds to the area enclosed by the rectangles in Figure 2.) If we let ,

p�x�
x

X
P � p�X �

0 x

p

P

X

(X, P)

p=p(x)

FIGURE 1
A typical demand curve

�0, X � n �x � X�n
xi* � xi i xi�1

xi

p�xi� �x
p�xi�

P

�savings per unit��number of units� � �p�xi� � P� �x

�
n

i�1
�p�xi� � P� �x

n l �

8.4 Applications to Economics and Biology

0 x

p

P

⁄ xi X
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FIGURE 2
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588 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

this Riemann sum approaches the integral

which economists call the consumer surplus for the commodity.
The consumer surplus represents the amount of money saved by consumers in pur-

chasing the commodity at price , corresponding to an amount demanded of . Figure 3
shows the interpretation of the consumer surplus as the area under the demand curve and
above the line .

The demand for a product, in dollars, is

Find the consumer surplus when the sales level is 500.

SOLUTION Since the number of products sold is , the corresponding price is

Therefore, from Definition 1, the consumer surplus is

Blood Flow
In Example 7 in Section 2.7 we discussed the law of laminar flow:

which gives the velocity of blood that flows along a blood vessel with radius and length
at a distance from the central axis, where is the pressure difference between the ends

of the vessel and is the viscosity of the blood. Now, in order to compute the rate of blood
flow, or flux (volume per unit time), we consider smaller, equally spaced radii . . . . The
approximate area of the ring (or washer) with inner radius and outer radius is

where  

(See Figure 4.) If is small, then the velocity is almost constant throughout this ring and
can be approximated by . Thus the volume of blood per unit time that flows across the
ring is approximately

1 y
X

0
�p�x� � P� dx

P X

p � P

p � 1200 � 0.2x � 0.0001x 2

X � 500

P � 1200 � �0.2��500� � �0.0001��500�2 � 1075

y
500

0
�p�x� � P� dx � y

500

0
�1200 � 0.2x � 0.0001x 2 � 1075� dx

� y
500

0
�125 � 0.2x � 0.0001x 2 � dx

� 125x � 0.1x 2 � �0.0001�� x 3

3 
�0

500

� �125��500� � �0.1��500�2 �
�0.0001��500�3

3

� $33,333.33

v�r� �
P

4
l
�R2 � r 2 �

v R
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ri�1 ri
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v EXAMPLE 1
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0 x
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(X, P)
P

X

p=p(x)

p=P

consumer
surplus

FIGURE 3
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SECTION 8.4 APPLICATIONS TO ECONOMICS AND BIOLOGY 589

and the total volume of blood that flows across a cross-section per unit time is about

This approximation is illustrated in Figure 5. Notice that the velocity (and hence the volume
per unit time) increases toward the center of the blood vessel. The approximation gets bet-
ter as increases. When we take the limit we get the exact value of the flux (or discharge),
which is the volume of blood that passes a cross-section per unit time:

The resulting equation

is called Poiseuille’s Law; it shows that the flux is proportional to the fourth power of the
radius of the blood vessel.

Cardiac Output
Figure 6 shows the human cardiovascular system. Blood returns from the body through the
veins, enters the right atrium of the heart, and is pumped to the lungs through the pulmonary
arteries for oxygenation. It then flows back into the left atrium through the pulmo nary veins
and then out to the rest of the body through the aorta. The cardiac output of the heart is the
volume of blood pumped by the heart per unit time, that is, the rate of flow into the aorta.

The dye dilution method is used to measure the cardiac output. Dye is injected into the
right atrium and flows through the heart into the aorta. A probe inserted into the aorta mea-
sures the concentration of the dye leaving the heart at equally spaced times over a time 
interval until the dye has cleared. Let be the concentration of the dye at time If
we divide into subintervals of equal length , then the amount of dye that flows past
the measuring point during the subinterval from to is approximately

where is the rate of flow that we are trying to determine. Thus the total amount of dye is
approximately

and, letting , we find that the amount of dye is

�
n

i�1
2�ri v�ri� �r

n

F � lim
n l �

�
n

i�1
2�ri v�ri� �r � y

R

0
2�r v�r� dr

� y
R

0
2�r

P

4
l
�R2 � r 2 � dr

�
�P

2
l y
R

0
�R2r � r 3 � dr �

�P

2
l �R2 r 2

2
�

r 4

4 �r�0

r�R

�
�P

2
l �R4

2
�

R4

4 � �
�PR4

8
l

2 F �
�PR4

8
l

�0, T � c�t� t.
�0, T � �t

t � ti�1 t � ti

�concentration��volume� � c�ti��F �t�

F

�
n

i�1
c�ti �F �t � F �

n

i�1
c�ti� �t

n l �

A � F y
T

0
c�t� dt

FIGURE 5

FIGURE 6

aorta
vein

right
atrium

pulmonary
arteries

left
atrium

pulmonary
veins

pulmonary
veins

vein

pulmonary
arteries

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



590 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

Thus the cardiac output is given by

where the amount of dye is known and the integral can be approximated from the con-
centration readings.

A 5-mg bolus of dye is injected into a right atrium. The concentration of
the dye ( in milligrams per liter) is measured in the aorta at one-second intervals as shown
in the chart. Estimate the cardiac output.

SOLUTION Here , , and . We use Simpson’s Rule to approximate the
integral of the concentration:

Thus Formula 3 gives the cardiac output to be

3 F �
A

y
T

0
c�t� dt

A

A � 5 �t � 1 T � 10

y
10

0
c�t� dt � 1

3 �0 � 4�0.4� � 2�2.8� � 4�6.5� � 2�9.8� � 4�8.9�

� � 2�6.1� � 4�4.0� � 2�2.3� � 4�1.1� � 0�

� 41.87

F �
A

y
10

0
c�t� dt

�
5

41.87
� 0.12 L�s � 7.2 L�min

v EXAMPLE 2
t t

0 0 6 6.1
1 0.4 7 4.0
2 2.8 8 2.3
3 6.5 9 1.1
4 9.8 10 0
5 8.9

c�t�c�t�

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

1. The marginal cost function was defined to be the 
derivative of the cost function. (See Sections 2.7 and 3.7.) 
The marginal cost of producing gallons of orange juice is

(measured in
dollars per gallon). The fixed start-up cost is .
Use the Net Change Theorem to find the cost of producing the
first 4000 gallons of juice.

2. A company estimates that the marginal revenue ( in dollars per
unit) realized by selling units of a product is .
Assuming the estimate is accurate, find the increase in revenue
if sales increase from 5000 units to 10,000 units.

3. A mining company estimates that the marginal cost of extract-
ing tons of copper ore from a mine is , mea-
sured in thousands of dollars per ton. Start-up costs are
$100,000. What is the cost of extracting the first 50 tons of
copper? What about the next 50 tons?

4. The demand function for a certain commodity is
. Find the consumer surplus when the sales

level is 300. Illustrate by drawing the demand curve and identi-
fying the consumer surplus as an area.

5. A demand curve is given by . Find the con-
 sumer surplus when the selling price is .

C��x�

x
C��x� � 0.82 � 0.00003x � 0.000000003x 2

C�0� � $18,000

x 48 � 0.0012x

x 0.6 � 0.008x

p � 20 � 0.05x

p � 450��x � 8�
$10

6. The supply function for a commodity gives the rela-
tion between the selling price and the number of units that 
manufacturers will produce at that price. For a higher price, 
manufacturers will produce more units, so is an increasing
function of . Let be the amount of the commodity currently
produced and let be the current price. Some pro-
 ducers would be willing to make and sell the commodity for a
lower selling price and are therefore receiving more than their
minimal price. The excess is called the producer surplus. An
argument similar to that for consumer surplus shows that the
surplus is given by the integral

Calculate the producer surplus for the supply function
at the sales level . Illustrate by

drawing the supply curve and identifying the producer surplus
as an area.

7. If a supply curve is modeled by the equation ,
find the producer surplus when the selling price is $400.

8. For a given commodity and pure competition, the number of
units produced and the price per unit are determined as the
coordinates of the point of intersection of the supply and

pS

x X
P � pS�X �

y
X

0
�P � pS�x�� dx

pS�x� � 3 � 0.01x 2 X � 10

p � 200 � 0.2x 3 / 2

pS�x�

8.4 Exercises
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15. Use Poiseuille’s Law to calculate the rate of flow in a small
human artery where we can take , cm,

cm, and dynes�cm .

16. High blood pressure results from constriction of the arteries. 
To maintain a normal flow rate (flux), the heart has to pump
harder, thus increasing the blood pressure. Use Poiseuille’s
Law to show that if and are normal values of the radius
and pressure in an artery and the constricted values are and 

, then for the flux to remain constant, and are related by
the equation

Deduce that if the radius of an artery is reduced to three-
fourths of its former value, then the pressure is more than
tripled.

17. The dye dilution method is used to measure cardiac output
with 6 mg of dye. The dye concentrations, in , are
modeled by , , where is measured
in seconds. Find the cardiac output.

18. After a 5.5-mg injection of dye, the readings of dye concen-
 tra tion, in , at two-second intervals are as shown in the
table. Use Simpson’s Rule to estimate the cardiac output.

19. The graph of the concentration function is shown after a 
7-mg injection of dye into a heart. Use Simpson’s Rule to
estimate the cardiac output.

P

P0
� �R0

R 
4

mg�L
c�t� � 20te�0.6 t 0 	 t 	 10 t

mg�L

c� t�

0

y
(mg/L)

t (seconds)

4

6

2

4 102 8 14126

RPP
R

R � 0.008
 � 0.027
2P � 4000l � 2

P0R0
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demand curves. Given the demand curve and
the supply curve , find the consumer surplus
and the producer surplus. Illustrate by sketching the supply
and demand curves and identifying the surpluses as areas.

; 9. A company modeled the demand curve for its product 
( in dollars) by the equation

Use a graph to estimate the sales level when the selling price
is $16. Then find (approximately) the consumer surplus for
this sales level.

10. A movie theater has been charging $10.00 per person and
selling about 500 tickets on a typical weeknight. After sur-
veying their customers, the theater management estimates
that for every 50 cents that they lower the price, the number
of movie goers will increase by 50 per night. Find the demand
function and calculate the consumer surplus when the tickets
are priced at $8.00.

11. If the amount of capital that a company has at time is ,
then the derivative, , is called the net investment flow.
Suppose that the net investment flow is million dollars
per year (where is measured in years). Find the increase in
capital (the capital formation) from the fourth year to the
eighth year. 

12. If revenue flows into a company at a rate of
, where is measured in years and

is measured in dollars per year, find the total revenue
obtained in the first four years.

13. Pareto’s Law of Income states that the number of people with
incomes between and is , where

and are constants with and . The average
income of these people is

Calculate .

14. A hot, wet summer is causing a mosquito population explo-
sion in a lake resort area. The number of mosquitos is
increasing at an estimated rate of per week
(where is measured in weeks). By how much does the
mosquito population increase between the fifth and ninth
weeks of summer?

p � 20 �
1

10 x

p �
800,000e�x�5000

x � 20,000

f �t�t
f ��t�

st
t

f �t�tf �t� � 9000s1 � 2t

N � x
b
a Ax�k dxx � bx � a

k � 1A � 0kA

x �
1

N y
b

a
Ax 1�k dx

x

2200 � 10e0.8 t

t

p � 50 �
1
20 x

t t

0 0.0 10 4.3

2 4.1 12 2.5

4 8.9 14 1.2

6 8.5 16 0.2

8 6.7

c�t�c�t�
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592 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

Calculus plays a role in the analysis of random behavior. Suppose we consider the choles-
terol level of a person chosen at random from a certain age group, or the height of an adult
female chosen at random, or the lifetime of a randomly chosen battery of a certain type.
Such quantities are called continuous random variables because their values actually range
over an interval of real numbers, although they might be measured or recorded only to the
nearest integer. We might want to know the probability that a blood cholesterol level is
greater than 250, or the probability that the height of an adult female is between 60 and 70
inches, or the probability that the battery we are buying lasts between 100 and 200 hours.
If X represents the lifetime of that type of battery, we denote this last probability as follows:

According to the frequency interpretation of probability, this number is the long-run pro-
portion of all batteries of the specified type whose lifetimes are between 100 and 200 hours.
Since it represents a proportion, the probability naturally falls between 0 and 1.

Every continuous random variable X has a probability density function . This means
that the probability that X lies between a and b is found by integrating from a to b:

For example, Figure 1 shows the graph of a model for the probability density function
for a random variable X defined to be the height in inches of an adult female in the United
States (according to data from the National Health Survey). The probability that the height
of a woman chosen at random from this population is between 60 and 70 inches is equal to
the area under the graph of from 60 to 70.

In general, the probability density function of a random variable X satisfies the con di-
tion for all x. Because probabilities are measured on a scale from 0 to 1, it follows
that

Let for and for all other 
values of .
(a) Verify that is a probability density function.
(b) Find .

P�100 � X � 200�

f
f

1 P�a � X � b� � y
b

a
f �x� dx

f

f

x

y

0 6560 70

y=ƒ

area=probability that the
height of a woman
is between 60 and
70 inches

Probability density function
for the height of an adult female

FIGURE 1
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8.5 Probability
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SECTION 8.5 PROBABILITY 593

SOLUTION
(a) For we have , so for all . We also need to
check that Equation 2 is satisfied:

Therefore is a probability density function.

(b) The probability that lies between 4 and 8 is 

 

Phenomena such as waiting times and equipment failure times are com-
monly modeled by exponentially decreasing probability density functions. Find the exact
form of such a function.

SOLUTION Think of the random variable as being the time you wait on hold before an 
agent of a company you’re telephoning answers your call. So instead of x, let’s use t to
represent time, in minutes. If is the probability density function and you call at time

, then, from Definition 1, represents the probability that an agent answers
within the first two minutes and is the probability that your call is answered dur-
ing the fifth minute.

It’s clear that for (the agent can’t answer before you place the call).
For we are told to use an exponentially decreasing function, that is, a function of
the form , where A and c are positive constants. Thus

We use Equation 2 to determine the value of A:

Therefore and so . Thus every exponential density function has the form

A typical graph is shown in Figure 2.

xf �x� � 00.006x�10 � x� � 00 � x � 10
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f �x� dx � y
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0
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� 0.006[5x 2 �
1
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An exponential density function
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594 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

Average Values
Suppose you’re waiting for a company to answer your phone call and you wonder how long,
on average, you can expect to wait. Let be the corresponding density function, where t
is measured in minutes, and think of a sample of N people who have called this company.
Most likely, none of them had to wait more than an hour, so let’s restrict our attention to the
interval . Let’s divide that interval into n intervals of length and endpoints

. . ., . (Think of as lasting a minute, or half a minute, or 10 seconds, or even a
second.) The probability that somebody’s call gets answered during the time period from
to is the area under the curve from to , which is approximately equal to

. (This is the area of the approximating rectangle in Fig ure 3, where is the midpoint
of the interval.)

Since the long-run proportion of calls that get answered in the time period from to
is , we expect that, out of our sample of N callers, the number whose call was
answered in that time period is approximately and the time that each waited is
about . Therefore the total time they waited is the product of these numbers: approximately

. Adding over all such intervals, we get the approximate total of everybody’s
waiting times:

If we now divide by the number of callers N, we get the approximate average waiting time:

We recognize this as a Riemann sum for the function . As the time interval shrinks (that
is, and ), this Riemann sum approaches the integral

This integral is called the mean waiting time.
In general, the mean of any probability density function is defined to be

The mean can be interpreted as the long-run average value of the random variable X. It can
also be interpreted as a measure of centrality of the probability density function.

The expression for the mean resembles an integral we have seen before. If is the 
region that lies under the graph of , we know from Formula 8.3.8 that the x-coordinate of
the centroid of is

because of Equation 2. So a thin plate in the shape of balances at a point on the vertical
line . (See Figure 4.)
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It is traditional to denote the mean by the Greek
letter (mu).
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SECTION 8.5 PROBABILITY 595

Find the mean of the exponential distribution of Example 2:

SOLUTION According to the definition of a mean, we have

To evaluate this integral we use integration by parts, with and :

The mean is , so we can rewrite the probability density function as

Suppose the average waiting time for a customer’s call to be answered 
by a company representative is five minutes.
(a) Find the probability that a call is answered during the first minute.
(b) Find the probability that a customer waits more than five minutes to be answered.

SOLUTION
(a) We are given that the mean of the exponential distribution is min and so,
from the result of Example 3, we know that the probability density function is 

Thus the probability that a call is answered during the first minute is

So about 18% of customers’ calls are answered during the first minute.

(b) The probability that a customer waits more than five minutes is

About 37% of customers wait more than five minutes before their calls are answered.

EXAMPLE 3

f �t� � �0
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if t � 0

if t � 0


 � y
�

��
t f �t� dt � y

�

0
tce�ct dt

dv � ce�ct dtu � t

y
�

0
tce�ct dt � lim

x l �
y

x

0
tce�ct dt � lim

x l �
��te�ct]x

0 � y
x

0
e�ct dt�

� lim
x l �

��xe�cx �
1

c
�

e�cx

c � �
1

c


 � 1�c

f �t� � �0


�1e�t�


if t � 0

if t � 0

EXAMPLE 4v


 � 5

f �t� � �0

0.2e�t�5

if t � 0

if t � 0

P�0 � T � 1� � y
1

0
f �t� dt

� 0.2��5�e�t�5]0

1
� y

1

0
0.2e�t�5 dt

� 1 � e�1�5 
 0.1813

P�T � 5� � y
�

5
f �t� dt � y

�

5
0.2e�t�5 dt

� lim
x l �

y
x

5
0.2e�t�5 dt � lim

x l �
�e�1 � e�x�5�

�
1

e

 0.368

The limit of the first term is by 
l’Hospital’s Rule.

0
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596 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

Notice the result of Example 4(b): Even though the mean waiting time is 5 minutes, only
37% of callers wait more than 5 minutes. The reason is that some callers have to wait much
longer (maybe 10 or 15 minutes), and this brings up the average.

Another measure of centrality of a probability density function is the median. That is a
number m such that half the callers have a waiting time less than m and the other callers have
a waiting time longer than m. In general, the median of a probability density function is the
number m such that

This means that half the area under the graph of lies to the right of m. In Exercise 9 you
are asked to show that the median waiting time for the company described in Example 4 is
approximately 3.5 minutes.

Normal Distributions
Many important random phenomena—such as test scores on aptitude tests, heights and
weights of individuals from a homogeneous population, annual rainfall in a given loca-
tion—are modeled by a normal distribution. This means that the probability density func-
tion of the random variable X is a member of the family of functions

You can verify that the mean for this function is . The positive constant is called the stan-
dard deviation; it measures how spread out the values of X are. From the bell-shaped graphs
of members of the family in Figure 5, we see that for small values of the values of X are
clustered about the mean, whereas for larger values of the values of X are more spread out.
Statisticians have methods for using sets of data to estimate and .

The factor is needed to make a probability density function. In fact, it can
be verified using the methods of multivariable calculus that

Intelligence Quotient (IQ) scores are distributed normally with mean 
100 and standard deviation 15. (Figure 6 shows the corresponding probability density
function.)
(a) What percentage of the population has an IQ score between 85 and 115?
(b) What percentage of the population has an IQ above 140?
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m
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FIGURE 5
Normal distributions
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EXAMPLE 5v

The standard deviation is denoted by the 
lowercase Greek letter (sigma).�

FIGURE 6
Distribution of IQ scores
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SECTION 8.5 PROBABILITY 597

SOLUTION
(a) Since IQ scores are normally distributed, we use the probability density function
given by Equation 3 with and :

Recall from Section 7.5 that the function doesn’t have an elementary anti-
derivative, so we can’t evaluate the integral exactly. But we can use the numerical 
integration capability of a calculator or computer (or the Midpoint Rule or Simpson’s
Rule) to estimate the integral. Doing so, we find that

So about 68% of the population has an IQ between 85 and 115, that is, within one stan-
dard deviation of the mean.

(b) The probability that the IQ score of a person chosen at random is more than 140 is

To avoid the improper integral we could approximate it by the integral from 140 to 200.
(It’s quite safe to say that people with an IQ over 200 are extremely rare.) Then

Therefore about 0.4% of the population has an IQ over 140.


 � 100 � � 15

P�85 � X � 115� � y
115

85

1

15s2�
e��x�100�2��2�152� dx

y � e�x2

P�85 � X � 115� 
 0.68

P�X � 140� � y
�

140

1

15s2�
e��x�100�2�450 dx

P�X � 140� 
 y
200

140

1

15s2�
e��x�100�2�450 dx 
 0.0038

1. Let be the probability density function for the lifetime of a
manufacturer’s highest quality car tire, where is measured in
miles. Explain the meaning of each integral.

(a) (b)

2. Let be the probability density function for the time it takes
you to drive to school in the morning, where is measured in
minutes. Express the following probabilities as integrals.
(a) The probability that you drive to school in less than 

15 minutes
(b) The probability that it takes you more than half an hour to

get to school

3. Let for and for all
other values of .
(a) Verify that is a probability density function.
(b) Find .

4. Let if and if .
(a) Verify that is a probability density function.
(b) Find .

f �x�
x

y
40,000

30,000
f �x� dx y

�

25,000
f �x� dx

f �t�
t

f �x� � 30x 2�1 � x�2 0 � x � 1 f �x� � 0
x
f

P(X �
1
3)

f �x� � xe�x x � 0 f �x� � 0 x � 0
f

P�1 � X � 2�

5. Let .
(a) For what value of is a probability density function?
(b) For that value of , find .

6. Let if and if 
or .
(a) For what value of is a probability density function?
(b) For that value of , find .
(c) Find the mean.

7. A spinner from a board game randomly indicates a real number
between 0 and 10. The spinner is fair in the sense that it indi-
cates a number in a given interval with the same probability as
it indicates a number in any other interval of the same length.
(a) Explain why the function

is a probability density function for the spinner’s values.
(b) What does your intuition tell you about the value of the

mean? Check your guess by evaluating an integral.

f �x� � c��1 � x 2�
c f

c P��1 � X � 1�

f �x� � k�3x � x 2� 0 � x � 3 f �x� � 0 x � 0
x � 3

k f
k P�X � 1�

f �x� � �0.1

0

if 0 � x � 10

if x � 0 or x � 10

8.5 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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598 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

8. (a) Explain why the function whose graph is shown is a proba-
bility density function.

(b) Use the graph to find the following probabilities:
(i) (ii)

(c) Calculate the mean.

9. Show that the median waiting time for a phone call to the com-
pany described in Example 4 is about 3.5 minutes.

10. (a) A type of lightbulb is labeled as having an average lifetime
of 1000 hours. It’s reasonable to model the probability of
failure of these bulbs by an exponential density function
with mean . Use this model to find the probability
that a bulb
(i) fails within the first 200 hours,

(ii) burns for more than 800 hours.
(b) What is the median lifetime of these lightbulbs?

11. The manager of a fast-food restaurant determines that the 
average time that her customers wait for service is 2.5 minutes.
(a) Find the probability that a customer has to wait more than

4 minutes.
(b) Find the probability that a customer is served within the

first 2 minutes.
(c) The manager wants to advertise that anybody who isn’t

served within a certain number of minutes gets a free ham-
burger. But she doesn’t want to give away free hamburgers
to more than 2% of her customers. What should the adver-
tisement say?

12. According to the National Health Survey, the heights of adult
males in the United States are normally distributed with mean
69.0 inches and standard deviation 2.8 inches.
(a) What is the probability that an adult male chosen at random

is between 65 inches and 73 inches tall?
(b) What percentage of the adult male population is more than

6 feet tall?

13. The “Garbage Project” at the University of Arizona reports 
that the amount of paper discarded by households per week is
normally distributed with mean 9.4 lb and standard deviation
4.2 lb. What percentage of households throw out at least 10 lb
of paper a week?

14. Boxes are labeled as containing 500 g of cereal. The machine
filling the boxes produces weights that are nor mally distributed
with standard deviation 12 g.
(a) If the target weight is 500 g, what is the probability that the

machine produces a box with less than 480 g of cereal?
(b) Suppose a law states that no more than 5% of a manufac-

turer’s cereal boxes can contain less than the stated weight

P�X � 3� P�3 � X � 8�

y=ƒ

4 6 8 10 x

y

0 2

0.1

0.2


 � 1000

of 500 g. At what target weight should the manufacturer set
its filling machine?

15. The speeds of vehicles on a highway with speed limit
are normally distributed with mean and

standard deviation .
(a) What is the probability that a randomly chosen vehicle is

traveling at a legal speed?
(b) If police are instructed to ticket motorists driving

or more, what percentage of motorists are targeted?

16. Show that the probability density function for a normally dis-
tributed random variable has inflection points at .

17. For any normal distribution, find the probability that the
random variable lies within two standard deviations of the
mean.

18. The standard deviation for a random variable with probability
density function and mean is defined by

Find the standard deviation for an exponential density function
with mean .

19. The hydrogen atom is composed of one proton in the nucleus
and one electron, which moves about the nucleus. In the quan-
tum theory of atomic structure, it is assumed that the electron
does not move in a well-defined orbit. Instead, it occupies a
state known as an orbital, which may be thought of as a
“cloud” of negative charge surrounding the nucleus. At the
state of lowest energy, called the ground state, or 1s-orbital,
the shape of this cloud is assumed to be a sphere centered at
the nucleus. This sphere is described in terms of the probability
density function

where is the Bohr radius . The 
integral

gives the probability that the electron will be found within the
sphere of radius meters centered at the nucleus.
(a) Verify that is a probability density function.
(b) Find . For what value of does have its

maximum value?

; (c) Graph the density function.
(d) Find the probability that the electron will be within the

sphere of radius centered at the nucleus.
(e) Calculate the mean distance of the electron from the

nucleus in the ground state of the hydrogen atom.
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CHAPTER 8 REVIEW 599

8 Review

1. (a) How is the length of a curve defined?
(b) Write an expression for the length of a smooth curve given

by , .
(c) What if is given as a function of ?

2. (a) Write an expression for the surface area of the surface
obtained by rotating the curve , , about
the -axis.

(b) What if is given as a function of ?
(c) What if the curve is rotated about the -axis?

3. Describe how we can find the hydrostatic force against a verti-
cal wall submersed in a fluid.

4. (a) What is the physical significance of the center of mass of a
thin plate?

(b) If the plate lies between and , where
, write expressions for the coordinates of the

center of mass.

5. What does the Theorem of Pappus say?

y � f �x� a � x � b
x y

y � f �x� a � x � b
x

x y
y

y � f �x� y � 0
a � x � b

6. Given a demand function , explain what is meant by the
consumer surplus when the amount of a commodity currently
available is and the current selling price is . Illustrate with 
a sketch.

7. (a) What is the cardiac output of the heart?
(b) Explain how the cardiac output can be measured by the dye

dilution method.

8. What is a probability density function? What properties does
such a function have?

9. Suppose is the probability density function for the weight
of a female college student, where is measured in pounds.
(a) What is the meaning of the integral ?
(b) Write an expression for the mean of this density function.
(c) How can we find the median of this density function?

10. What is a normal distribution? What is the significance of the
standard deviation?

p�x�

X P

f �x�
x

x
130
0 f �x� dx

Concept Check

1–2 Find the length of the curve.

1. ,  

2. ,  

3. (a) Find the length of the curve

(b) Find the area of the surface obtained by rotating the curve
in part (a) about the -axis.

4. (a) The curve , , is rotated about the -axis.
Find the area of the resulting surface.

(b) Find the area of the surface obtained by rotating the curve
in part (a) about the -axis.

5. Use Simpson’s Rule with to estimate the length of the
sine curve , .

6. Use Simpson’s Rule with to estimate the area of the 
surface obtained by rotating the sine curve in Exercise 5 about
the -axis.

7. Find the length of the curve

8. Find the area of the surface obtained by rotating the curve in
Exercise 7 about the -axis.

y � 1
6�x 2 � 4�3�2 0 � x � 3

y � 2 ln(sin 1
2 x) ��3 � x � �

y �
x 4

16
�

1

2x 2 1 � x � 2

y

y � x 2 0 � x � 1 y

x

n � 10
y � sin x 0 � x � �

n � 10

x

y � y
x

1
sst � 1 dt 1 � x � 16

y

9. A gate in an irrigation canal is constructed in the form of a
trapezoid 3 ft wide at the bottom, 5 ft wide at the top, and 2 ft
high. It is placed vertically in the canal so that the water just
covers the gate. Find the hydrostatic force on one side of the
gate.

10. A trough is filled with water and its vertical ends have the
shape of the parabolic region in the figure. Find the hydro static
force on one end of the trough.

11–12 Find the centroid of the region bounded by the given curves.

11. ,  

12. ,  ,  ,  

13–14 Find the centroid of the region shown

13. 14.

4 ft

8 ft

y � 1
2 x y � sx

y � sin x y � 0 x � ��4 x � 3��4

x

y

0

1

2

3

3_2

(3, 2)

x

y

0

Exercises
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600 CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

15. Find the volume obtained when the circle of radius 1 with 
center is rotated about the -axis.

16. Use the Theorem of Pappus and the fact that the volume of 
a sphere of radius is to find the centroid of the semi -
circular region bounded by the curve and 
the -axis.

17. The demand function for a commodity is given by

Find the consumer surplus when the sales level is 100.

18. After a 6-mg injection of dye into a heart, the readings of 
dye concentration at two-second intervals are as shown in 
the table. Use Simpson’s Rule to estimate the cardiac output.

�1, 0� y

r 4
3 �r 3

y � sr 2 � x 2 

x

p � 2000 � 0.1x � 0.01x 2

19. (a) Explain why the function

is a probability density function.
(b) Find .
(c) Calculate the mean. Is the value what you would expect?

20. Lengths of human pregnancies are normally distributed with
mean 268 days and standard deviation 15 days. What per cen t-
age of pregnancies last between 250 days and 280 days?

21. The length of time spent waiting in line at a certain bank is 
modeled by an exponential density function with mean 
8 minutes.
(a) What is the probability that a customer is served in the first

3 minutes?
(b) What is the probability that a customer has to wait more

than 10 minutes?
(c) What is the median waiting time?

f �x� � �
0

�

20
 sin��x

10 � if

if

0 � x � 10

x � 0 or x � 10

P�X � 4�

t t

0 0 14 4.7
2 1.9 16 3.3
4 3.3 18 2.1
6 5.1 20 1.1
8 7.6 22 0.5

10 7.1 24 0
12 5.8

c�t�c�t�
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1. Find the area of the region .

2. Find the centroid of the region enclosed by the loop of the curve .

3. If a sphere of radius is sliced by a plane whose distance from the center of the sphere is ,
then the sphere is divided into two pieces called segments of one base. The corresponding
surfaces are called spherical zones of one base.
(a) Determine the surface areas of the two spherical zones indicated in the figure.
(b) Determine the approximate area of the Arctic Ocean by assuming that it is approximately

circular in shape, with center at the North Pole and “circumference” at north latitude.
Use mi for the radius of the earth.

(c) A sphere of radius is inscribed in a right circular cylinder of radius . Two planes perpen-
dicular to the central axis of the cylinder and a distance apart cut off a spherical zone 
of two bases on the sphere. Show that the surface area of the spherical zone equals the
surface area of the region that the two planes cut off on the cylinder.

(d) The Torrid Zone is the region on the surface of the earth that is between the Tropic of
Cancer ( north latitude) and the Tropic of Capricorn ( south latitude). What
is the area of the Torrid Zone?

4. (a) Show that an observer at height above the north pole of a sphere of radius can see a
part of the sphere that has area

(b) Two spheres with radii and are placed so that the distance between their centers is ,
where . Where should a light be placed on the line joining the centers of the
spheres in order to illuminate the largest total surface?

5. Suppose that the density of seawater, , varies with the depth below the surface.
(a) Show that the hydrostatic pressure is governed by the differential equation

where is the acceleration due to gravity. Let and be the pressure and density at
. Express the pressure at depth as an integral.

(b) Suppose the density of seawater at depth is given by , where is a positive
constant. Find the total force, expressed as an integral, exerted on a vertical circular
porthole of radius whose center is located at a distance below the surface.

6. The figure shows a semicircle with radius 1, horizontal diameter , and tangent lines at
and . At what height above the diameter should the horizontal line be placed so as to mini-
mize the shaded area?

7. Let be a pyramid with a square base of side and suppose that is a sphere with its
center on the base of and is tangent to all eight edges of . Find the height of . Then find
the volume of the intersection of and . 
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8. Consider a flat metal plate to be placed vertically under water with its top 2 m below the
surface of the water. Determine a shape for the plate so that if the plate is divided into any
number of horizontal strips of equal height, the hydrostatic force on each strip is the same.

9. A uniform disk with radius 1 m is to be cut by a line so that the center of mass of the smaller
piece lies halfway along a radius. How close to the center of the disk should the cut be made?
(Express your answer correct to two decimal places.)

10. A triangle with area is cut from a corner of a square with side 10 cm, as shown in the
figure. If the centroid of the remaining region is 4 cm from the right side of the square, how
far is it from the bottom of the square?

11. In a famous 18th-century problem, known as Buffon’s needle problem, a needle of length is
dropped onto a flat surface (for example, a table) on which parallel lines units apart, ,
have been drawn. The problem is to determine the probability that the needle will come to
rest intersecting one of the lines. Assume that the lines run east-west, parallel to the -axis in
a rectangular coordinate system (as in the figure). Let be the distance from the “southern”
end of the needle to the nearest line to the north. (If the needle’s southern end lies on a line,
let . If the needle happens to lie east-west, let the “western” end be the “southern” end.)
Let be the angle that the needle makes with a ray extending eastward from the “southern”
end. Then and . Note that the needle intersects one of the lines only
when . The total set of possibilities for the needle can be identified with the rect-
angular region , , and the proportion of times that the needle intersects
a line is the ratio

This ratio is the probability that the needle intersects a line. Find the probability that the 
needle will intersect a line if . What if ?

12. If the needle in Problem 11 has length , it’s possible for the needle to intersect more
than one line.
(a) If , find the probability that a needle of length 7 will intersect at least one line.

[Hint: Proceed as in Problem 11. Define as before; then the total set of possibilities for
the needle can be identified with the same rectangular region , .
What portion of the rectangle corresponds to the needle intersecting a line?]

(b) If , find the probability that a needle of length 7 will intersect two lines.
(c) If , find a general formula for the probability that the needle intersects 

three lines.

13. Find the centroid of the region enclosed by the ellipse .
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