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Vector Calculus

Parametric surfaces, which are studied in
Section 16.6, are frequently used by
programmers creating animated films. In
this scene from Antz, Princess Bala is
about to try to rescue Z, who is trapped
in a dewdrop. A parametric surface
represents the dewdrop and a family of
such surfaces depicts its motion. One of
the programmers for this film was heard
to say, “l wish | had paid more attention
in calculus class when we were studying
parametric surfaces. It would sure have
helped me today.”

© Dreamworks / Photofest

In this chapter we study the calculus of vector fields. (These are functions that assign vectors to pointsin
space.) In particular we define line integral's (which can be used to find the work done by aforce field in
moving an object along a curve). Then we define surface integrals (which can be used to find the rate

of fluid flow across a surface). The connections between these new types of integrals and the single,
double, and triple integrals that we have already met are given by the higher-dimensional versions of the
Fundamental Theorem of Calculus: Green's Theorem, Stokes' Theorem, and the Divergence Theorem.

1079
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1080 CHAPTER 16 VECTOR CALCULUS

The vectorsin Figure 1 are air velocity vectors that indicate the wind speed and direction
at points 10 m above the surface elevation in the San Francisco Bay area. We see at a
glancefrom thelargest arrowsin part (a) that the greatest wind speeds at that time occurred
as the winds entered the bay across the Golden Gate Bridge. Part (b) shows the very dif-
ferent wind pattern 12 hours earlier. Associated with every point in the air we can imagine
awind velocity vector. Thisis an example of avelocity vector field.
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FIGURE 1 Velocity vector fields showing San Francisco Bay wind patterns

Other examples of velocity vector fields are illustrated in Figure 2: ocean currents and
flow past an airfoil.
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(@) Ocean currents off the coast of Nova Scotia (b) Airflow past an inclined airfoil

FIGURE 2 Velocity vector fields
Another type of vector field, called a force field, associates a force vector with each
point in a region. An example is the gravitational force field that we will look at in
Example 4.
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SECTION 16.1 VECTOR FIELDS 1081

In general, a vector field is a function whose domain is a set of pointsin R? (or R®) and
whose range is a set of vectorsin V, (or Vs).

[1] Definition Let D beasetinR? (aplane region). A vector field on R?isa
function F that assigns to each point (X, y) in D a two-dimensional vector F(x, y).

The best way to picture a vector field is to draw the arrow representing the vector
F(x,y) starting at the paint (x, y). Of course, it'simpossible to do this for all points (x, y),
but we can gain areasonable impression of F by doing it for afew representative pointsin
D asin Figure 3. Since F(x, y) is atwo-dimensional vector, we can write it in terms of its
component functions P and Q as follows:

F(X,y) =Py i+ Qx,y)j = (P(x,y), Q(x,y))
or, for short, F=Pi+Qj

Notice that P and Q are scalar functions of two variables and are sometimes called scalar
fields to distinguish them from vector fields.

[2] Definition Let E be asubset of R A vector field on R®isafunction F that
assigns to each point (x, y, z) in E athree-dimensional vector F(X, Y, z).

A vector field F on R*is pictured in Figure 4. We can expressiit in terms of its compo-
nent functions P, Q, and R as

F(x,y,2) = P(X,y,2) i + Q(x,¥,2) ] + R(x,y,2) k

As with the vector functions in Section 13.1, we can define continuity of vector fields
and show that F is continuous if and only if its component functions P, Q, and R are
continuous.

We sometimes identify a point (x, y, z) with its position vector x = (X, y, z) and write
F(x) instead of F(x, Y, z). Then F becomes a function that assigns a vector F(x) to a vec-
tor X.

I E7XTEIEEN A vector field on R? isdefined by F(x,y) = —y i + x j. Describe F by
sketching some of the vectors F(x, y) asin Figure 3.

SOLUTION SinceF(1, 0) = j, wedraw the vector j = (0, 1) starting at the point (1, 0) in
Figure 5. Since F(0, 1) = —i, wedraw the vector (—1, 0) with starting point (0, 1). Con-
tinuing in this way, we calculate several other representative values of F(x, y) in the table
and draw the corresponding vectors to represent the vector field in Figure 5.

(x,y) F(x,y) (xy) F(x,y)
(1,0 (0, 1) (-1,0) (0, —1)
2,2 (—2,2) (=2,-2) | (2,-2)
(3,0 (0, 3) (-3,0) (0, —3)
(0,1) (—1,0) (0, -1) (1,0)
(=2,2) | (=2,-2) (2, -2 (2,2)
(0,3) (—3,0) (0, -3) (3,0)
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1082 CHAPTER 16 VECTOR CALCULUS
It appears from Figure 5 that each arrow is tangent to a circle with center the origin.
To confirm this, we take the dot product of the position vector x = x i + y j with the
vector F(x) = F(x, y):
X FX)=Xi+yj) - -(-yi+xj)=-xy+yx=0

This shows that F(x, y) is perpendicular to the position vector (x, y) and is therefore
tangent to a circle with center the origin and radius | x| = +/x? + y2. Notice aso that

[FOY) | = V(=y)? + x2 = x2 +y2 = [X]
so the magnitude of the vector F(x, y) is equal to the radius of the circle. [ |

Some computer algebra systems are capable of plotting vector fields in two or three
dimensions. They give a better impression of the vector field than is possible by hand
because the computer can plot alarge number of representative vectors. Figure 6 shows a
computer plot of the vector field in Example 1; Figures 7 and 8 show two other vector
fields. Notice that the computer scales the lengths of the vectors so they are not too long
and yet are proportional to their true lengths.
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etch the vector field on R* given by F(X,y, z) = z k.
1 EINETFE Sketchth field on R* given by F( )=:zk

SOLUTION The sketchis shown in Figure 9. Notice that all vectors are vertical and point
upward above the xy-plane or downward below it. The magnitude increases with the
distance from the xy-plane.

FIGURE 9
F(x,y,z) =zk

We were able to draw the vector field in Example 2 by hand because of its particularly
simple formula. Most three-dimensional vector fields, however, are virtually impossible to
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SECTION 16.1 VECTOR FIELDS 1083

sketch by hand and so we need to resort to a computer algebra system. Examples are
shown in Figures 10, 11, and 12. Notice that the vector fieldsin Figures 10 and 11 have simi-
lar formulas, but all the vectorsin Figure 11 point in the general direction of the negative
y-axis because their y-components are all —2. If the vector field in Figure 12 represents a
velocity field, then a particle would be swept upward and would spiral around the z-axis
in the clockwise direction as viewed from above.

FIGURE 10 FIGURE 11 FIGURE 12

Fx,y,z)=yi+zj+xk Fix,y,z)=yi—2]+xk y. x. z
6y z)=yl+z] (y,2)=y1=2] Fooys) =2 i-2j+ 2k

In Visual 16.1 you can rotate the . . . . .
vector fields in Figures 10-12 s well as SWIEEE] Imagine afluid flowing steadily along a pipe and let V(x, y, z) be the veloc-

additional fields. ity vector at apoint (x, y, z). Then V assigns a vector to each point (x, y, z) in acertain
domain E (the interior of the pipe) and so V is avector field on R* called a velocity field.
A possible velocity field isillustrated in Figure 13. The speed at any given point is indi-
cated by the length of the arrow.

Velocity fields also occur in other areas of physics. For instance, the vector field in
Example 1 could be used as the velocity field describing the counterclockwise rotation of
awheel. We have seen other examples of velocity fieldsin Figures 1 and 2. [

Newton's Law of Gravitation states that the magnitude of the gravitational
force between two objects with massesm and M is

FIGURE 13
Velocity field in fluid flow mMG

| F| = r2

where r is the distance between the objects and G is the gravitational constant. (This

is an example of an inverse square law.) Let’'s assume that the object with mass M is
located at the origin in R3. (For instance, M could be the mass of the earth and the origin
would be at its center.) Let the position vector of the object with massm be x = (X, y, z).
Thenr = | x|, sor? = | x| The gravitational force exerted on this second object acts
toward the origin, and the unit vector in this direction is

X

x|
Therefore the gravitational force acting on the object at x = (x,y, z) is

(3] F(x) = _ MG,

| x[?

[Physicists often use the notation r instead of x for the position vector, so you may see
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1084 CHAPTER 16 VECTOR CALCULUS
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Formula 3 written in the form F = —(mMG/r*)r.] The function given by Equation 3 is
an example of avector field, called the gravitational field, because it associates a vector
[the force F(x)] with every point X in space.

Formula 3 is a compact way of writing the gravitationa field, but we can aso write
it in terms of its component functions by using the factsthat x = xi +yj + zk and

IX| = VX2 T Y2+ 22

F(x,y,2) = —mMGX - —mMGy - —mMG:z
'y’Z (X2 + y2 + 22)3/2 (X2 + y2 + ZZ)S/ZJ (X2 + y2 + 22)3/2
The gravitationa field F is pictured in Figure 14. [

[E70ZT Suppose an electric charge Q is located at the origin. According to
Coulomb’s Law, the electric force F(x) exerted by this charge on a charge q located at a
point (X, y, z) with position vector x = (x,y, z) is

(4] F(x) = £9Q X

[x[?

where ¢ is a constant (that depends on the units used). For like charges, we have qQ > 0
and the force is repulsive; for unlike charges, we have qQ < 0 and the force is attractive.
Notice the similarity between Formulas 3 and 4. Both vector fields are examples of force
fields.

Instead of considering the electric force F, physicists often consider the force per unit
charge:

1 eQ
EX) =—F((X =—-—3X
g [x[?
Then E isavector field on R® called the electric field of Q. [

I Gradient Fields

If fisascaar function of two variables, recall from Section 14.6 that its gradient Vf (or
grad f) is defined by

Vf(x! y) = fX(X! y) I + fy(xa y)j

Therefore Vf isreally avector field on R? and is called agradient vector field. Likewise,
if f isascalar function of three variables, its gradient is a vector field on R? given by

Vi y,2) =Xy, 20 + (X y,2) ] + f.(xy,2) K

1 ETYTEIEE Find the gradient vector field of f(x, y) = x?y — y*. Plot the gradient
vector field together with a contour map of f. How are they related?

SOLUTION The gradient vector field is given by
of of
- 4+ —j= i + 2 2\ ;
VE(x,y) aXl ayj 2xy i+ (x* — 3y?)]

Figure 15 shows a contour map of f with the gradient vector field. Notice that the gradi-
ent vectors are perpendicular to the level curves, as we would expect from Section 14.6.
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SECTION 16.1 VECTOR FIELDS 1085

Notice also that the gradient vectors are long where the level curves are close to each
other and short where the curves are farther apart. That's because the length of the gradi-
ent vector is the value of the directional derivative of f and closely spaced level curves
indicate a steep graph. [

A vector field F is called aconservative vector field if it is the gradient of some scalar
function, that is, if there exists afunction f such that F = Vf. Inthis situation f iscalled
apotential function for F.

Not all vector fields are conservative, but such fields do arise frequently in physics. For
example, the gravitational field F in Example 4 is conservative because if we define

mMG

oy = e =

then
of of of
Vi, y,z) =—i+—j+—Kk
0y =it oyt s,
—mMGx . —mMGy . —mMG:z

1
(Xz + y2 + 22)3/2 (Xz + y2 + ZZ)S/ZJ (XZ + y2 + 22)3/2

F(x,Y,2)

In Sections 16.3 and 16.5 we will learn how to tell whether or not a given vector field is
conservative.

m Exercises

1-10 Sketch the vector field F by drawing a diagram like 13. F(x,y) = (y,y + 2)
Figure 5 or Figure 9. 14, E(x,y) = (cos(x + y), x)

1. F(x,y) = 0.3i — 0.4 2. F(x,y) =2xi+Vyj
| 3 I 3
3F(xy) =—2i+(y—xj & FKxy=yi+x+y]j FFIFAF 77N R P
VAN AV AV A VYAV, [ R T S A
5. F(x,y) yi+xj rrrrrrrrt ll\.\\«-\\.\\;
. FXY) = Tm— trororor|rrrort Loy s~ TN
VX2+y2 3r11r1rr1r13 3jll\-—r\\'\3
y| Xj 20 o e _511\‘”/‘T\§
— X)) e e VAP A |
GF(X,Y)= 2 P PO U, \lj/""/}‘T
vXEEYE e {11/’ r)/;
VLo~ f
7.FX,, =|( i i P i >
(x,y,2) - -
8 F(x,y,2) = —yk
y y 11 3 v 3
9. F(x,y,z) = xk KN N N N[N~ ~ =3 EEEINRERI
NV NN NS s - - LN N NN
i \\\\\ ~~~~~ L L LN N N N
10'F(X’y’2) J ! VL oy . ) P P2l NN
Loy [ D [ —
_311: \xx13 _3-k...~‘,,,.,.._.3
11-14 Match the vector fields F with the plots labeled [ -IV. A N i ; 2 NN M
Give reasons for your choices. N NN K NAA T PSS
R e S W N N Y AW P22/
1" F = —
x.y) = (X, =y) 5 .
12. F(x,y) = (Y, x = y)
Computer algebra system required 1. Homework Hints available at stewartcal culus.com
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1086 CHAPTER 16 VECTOR CALCULUS

15-18 Match the vector fields F on R® with the plots labeled 29-32 Match the functions f with the plots of their gradient
1-V. Give reasons for your choices. vector fields labeled 1 -1V. Give reasons for your choices.
15. F(x,y,z) =i+ 2j+ 3k 16 F(x,y,2)=i+2j+zk 29. f(x,y) = x>+ y? 30. f(x,y) =x(x+Y)
17. F(x,y,z) =xi+yj+ 3k 3. f(x,y) = (x + y)? 32. f(x,y) = sinyx? + y2
18. F(X,y,z) =Xxi+yj+:zk I 4 Il 4
N A A
\\\\‘ll//(; . N V..
NN\ Ve P P
SN N | s e e P o voropop
——— = |/ ¢ e PR LV R
_4—>/P/Pr/\\kﬂ\<—4 _4//44 /’/‘4
- A7, NN~ L . 7
A7 7 VAN P
”/‘f T\\“ P
VR 1L R W |
—4 —4
11 4 v 4
AKX A /AA ‘e Nttt
NNXNAV AT AR
PPV S o
N X Xx|[7 S PR D
Rl R L ek
X NN N L
P e IV
rerar IR T P I
L LTV N NN P Y
—4 —4

33. A particle movesin avelocity field V(x,y) = (x? x + y?).

. If itisat position (2, 1) at timet = 3, estimate its location at
19. If you have a CASthat plots vector fields (the command b @1

timet = 3.01.
isfieldplot in Maple and PlotVectorField or !
VectorPlot in Mathematica), use it to plot 34. Attimet = 1, aparticleislocated at position (1, 3). If it
2 . o moves in avelocity field
F(x,y) = (y*> — 2xy) i + (3xy — 6x7)]
Explain the appearance by finding the set of points (X, y) F(x,y) = (xy — 2,y* - 10)

such that F(x,y) = 0.

20. Let F(x) = (r> — 2r)x, wherex = (x,y) andr = | x|. Usea
CAS to plot this vector field in various domains until you can
see what is happening. Describe the appearance of the plot
and explain it by finding the points where F(x) = 0.

find its approximate location at timet = 1.05.

35. Theflow lines (or streamlines) of avector field are the
paths followed by a particle whose velocity field is the
given vector field. Thus the vectors in a vector field are tan-
gent to the flow lines.

(@) Use asketch of the vector field F(x,y) = xi —yj to

21-24 Find the gradient vector field of f. draw some flow lines. From your sketches, can you

21. f(x,y) = xe¥ 22. f(x,y) = tan(3x — 4y) guess the equations of the flow lines?
23, F(x,y,2) = X2+ y2 + 22 (b) If parametric equations of aflow lineare x = x(t),

y = y(t), explain why these functions satisfy the differ-
28. f(x,y,2) = xIn(y — 22) ential equationsdx/dt = x and dy/dt = —y. Then solve

the differential equations to find an equation of the flow
line that passes through the point (1, 1).

25-26 Find the gradient vector field Vf of f and sketch it.
g 36. (a) Sketch the vector field F(x,y) = i + x j and then sketch

25. f(x,y) =x*—y 26. f(x,y) = Vx? +y? some flow lines. What shape do these flow lines appear
to have?
(b) If parametric equations of the flow lines are x = x(t),
27-28 Plot the gradient vector field of f together with a contour y = y(t), what differential equations do these functions
map of f. Explain how they are related to each other. satisfy? Deduce that dy/dx = x.
27. f(x,y) = In(L + x2 + 2y?) 28, f(x,y) = cosx — 2siny (c) If aparticle starts at the origin in the velocity field given

by F, find an equation of the path it follows.
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SECTION 16.2 LINE INTEGRALS 1087

FIGURE 1

In this section we define an integral that is similar to a single integral except that instead
of integrating over an interval [a, b], weintegrate over acurve C. Such integrals are called
line integrals, although “ curve integrals’ would be better terminology. They were invented
in the early 19th century to solve problems involving fluid flow, forces, electricity, and
magnetism.

We start with a plane curve C given by the parametric equations

(1] x = x(t) y =y(t) as<t<b

or, equivaently, by the vector equation r(t) = x(t) i + y(t) j, and we assume that C is a
smooth curve. [This means that r’ is continuous and r'(t) # 0. See Section 13.3] If we
divide the parameter interval [a, b] into n subintervals [ti—4, ti] of equal width and we let
xi = X(ti) and yi = y(ti), then the corresponding points P, (i, yi) divide C into n subarcs
with lengths As;, As,, ..., As,. (See Figure 1.) We choose any point P (xi*, yi) in the ith
subarc. (This corresponds to a point tf in [ti-1, t;].) Now if f is any function of two vari-
ables whose domain includes the curve C, we evaluate f at the point (x*, yi), multiply by
the length As; of the subarc, and form the sum

E

f(xi, yi) As;
1

whichissimilar to a Riemann sum. Then we take the limit of these sums and make the fol-
lowing definition by analogy with a single integral .

@ Definition If f isdefined on a smooth curve C given by Equations 1, then the
line integral of f along C is

[ fouy ds = lim 3 £, y) As,
= i=1

if thislimit exists.

In Section 10.2 we found that the length of C is

b dx \? dy \?
L= — | + (=] dt
NONC
A similar type of argument can be used to show that if f isa continuous function, then the

limit in Definition 2 always exists and the following formula can be used to evaluate the
line integral:

B = Pitoso)y(G) - (5) @

The value of the line integral does not depend on the parametrization of the curve, pro-
vided that the curveis traversed exactly once ast increases from a to b.
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The arc length function s is discussed in
Section 13.3.

FIGURE 2
y
)cZ—O-y2
(y=0)
] 0 |
FIGURE 3
y c,
o
C, G
— Cl
0
FIGURE 4

A piecewise-smooth curve

If s(t) is the length of C between r(a) and r(t), then

s J(dx\, (dy)?

dt dt dt
So the way to remember Formula 3 is to express everything in terms of the parameter t:
Use the parametric equations to express x and y in terms of t and write ds as

dx \? dy \2
= _— + —
o= (5) + (&) o
In the special case where C is the line segment that joins (a, 0) to (b, 0), using x as the

parameter, we can write the parametric equations of C as follows: x =%, y =0,
a < x < bh. Formula 3 then becomes

fc f(x,y)ds = f: f(x, 0) dx

and so the line integral reduces to an ordinary single integral in this case.

Just as for an ordinary single integral, we can interpret the line integral of a positive
function as an area. In fact, if f(x,y) = 0, J‘C f(x, y) ds represents the area of one side of
the “fence” or “curtain” in Figure 2, whose base is C and whose height above the point

(x,y)is f(x,y).

[E70IEN Evaluate [ (2 + x?y) ds, where C is the upper half of the unit circle
x2+y2=1.

SOLUTION In order to use Formula 3, we first need parametric equations to represent C.
Recall that the unit circle can be parametrized by means of the equations

X = cos t y =sint

and the upper half of the circle is described by the parameter interval 0 < t < .
(See Figure 3.) Therefore Formula 3 gives

. . dx \? dy \?
2 _ 2
fC(Zery)ds—j0 (2+costsmt)\/<—dt> +<dt> dt

= [ (2 + cos°tsin t) T + cos?t

. cos’t |”
= fo (2 + cos’t sin t) dt = [Zt -5 ]
0

=27+ 3 [
Suppose now that C is a piecewise-smooth curve; that is, C is a union of a finite num-
ber of smooth curves Cy, C,, ..., C,, where, as illustrated in Figure 4, the initial point of

Ci1 is the terminal point of C;. Then we define the integral of f along C as the sum of the
integrals of f along each of the smooth pieces of C:

jc f(x,y)ds = jc f(x,y)ds + fcz f(x,y)ds + --- + Lnf(x, y) ds
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[E7YITF Evaluate [, 2x ds, where C consists of the arc C, of the parabola y = x*
from (0, 0) to (1, 1) followed by the vertical line segment C, from (1, 1) to (1, 2).

SOLUTION The curve C is shown in Figure 5. C, is the graph of a function of x, so we can
choose x as the parameter and the equations for C; become

x=x y=x*> 0sxs1

Therefore

o dx \? dy \> . 1 :
L]Zxds—JO 2x\/<&> + (&) dx—f0 2X+/1 + 4x2 dx
5,5 — 1

6

=13+ axeyfy =

On C, we choose y as the parameter, so the equations of C, are

x=1 y=y l<sy=<?2

2 dx \? dy \? 2
and Lz 2x ds = L 2(1) \/<W) + (W) dy = fl 2dy =2

5\/56—1Jr

Thus fc 2x ds = Ll 2x ds + jcz 2x ds = 2 [ |

Any physical interpretation of a line integral [_ f(x, y) ds depends on the physical inter-
pretation of the function f. Suppose that p(x, y) represents the linear density at a point
(x, y) of a thin wire shaped like a curve C. Then the mass of the part of the wire from P;_;
to P; in Figure 1 is approximately p(xi*, yi¥) As; and so the total mass of the wire is approx-
imately > p(x*, yi) As;. By taking more and more points on the curve, we obtain the mass
m of the wire as the limiting value of these approximations:

m=lim 3 p(<t, y) Asi = |_p(x ) ds
n—w 2y

[For example, if f(x,y) = 2 + x2y represents the density of a semicircular wire, then the
integral in Example 1 would represent the mass of the wire.] The center of mass of the
wire with density function p is located at the point (X, ¥), where

(2] X=%j‘CXp(X,y) ds Y=%LYP(X,Y) ds

Other physical interpretations of line integrals will be discussed later in this chapter.

7 IETYTEIEE] A wire takes the shape of the semicircle x2 + y> =1,y = 0, and is
thicker near its base than near the top. Find the center of mass of the wire if the linear
density at any point is proportional to its distance from the liney = 1.

SOLUTION As in Example 1 we use the parametrization x = cost,y = sint,0 < t < 7,
and find that ds = dt. The linear density is

p(x,y) =kl —y)
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center of
mass

-1

FIGURE 6

where k is a constant, and so the mass of the wire is
m = Lk(l —y)ds = fo k(1 —sint)dt = k[t + cost]0 = k(7 — 2)
From Equations 4 we have

1 1
V=Efcyp(x,y)d5=k(w—_2)fcyk(l —y)ds

1 ™ 1 P
Ei— fo (sint — sin?t) dt =ﬁ[—cost — 2t + %sin 2t]0
44—

2(m — 2)

By symmetry we see that X = 0, so the center of mass is

4 — 7
<O, m) ~ (0, 0.38)

See Figure 6. [ |
Two other line integrals are obtained by replacing As; by either Ax; = x; — Xj—1 or

Ayi = yi — yi-1 in Definition 2. They are called the line integrals of f along C with respect
toxandy:

5] [ foey) ax = @2 FOx, yi) Ax,
(6] Jo Fo ) dy = lim 3 €0, y7) Ay

When we want to distinguish the original line integral | f(x, y) ds from those in Equa-
tions 5 and 6, we call it the line integral with respect to arc length.

The following formulas say that line integrals with respect to x and y can also be
evaluated by expressing everything in terms of t: x = x(t), y = y(t), dx = x'(t) dt,
dy = y'(t) dt.

[ 10y dx = 7 1(x(0, y(0) x'0) ot

[ Ty dy = [T (x, y©) y'® de

It frequently happens that line integrals with respect to x and y occur together. When
this happens, it’s customary to abbreviate by writing

[_Peuy dx+ | Qi y)dy = [ P(xy) dx + Q(x,y) dy

When we are setting up a line integral, sometimes the most difficult thing is to think of
a parametric representation for a curve whose geometric description is given. In particular,
we often need to parametrize a line segment, so it’s useful to remember that a vector rep-
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resentation of the line segment that starts at ro and ends at r; is given by

r=01-trp+trn O0<t<1

(See Equation 12.5.4.)

y 1 ETNTETE Evaluate | y*dx + x dy, where (a) C = C; is the line segment from
(—5, —3) to (0, 2) and (b) C = C, is the arc of the parabola x = 4 — y? from (-5, —3)
©0.2) to (0, 2). (See Figure 7.)

G
G SOLUTION
0 / x (a) A parametric representation for the line segment is
x=4-y x=5t—5 y=5-3 0<t<1

(Use Equation 8 with ro = (=5, —3) and r; = (0, 2).) Then dx = 5 dt, dy = 5 dt, and
Formulas 7 give

FIGURE 7
fc y2dx + xdy = jol (5t — 3)%(5 dt) + (5t — 5)(5 dt)

=5 jol (25t% — 25t + 4) dt

25t  25t2 ' 5
=5 - yat| = -2
[ 3 2 ]0 6

(b) Since the parabola is given as a function of y, let’s take y as the parameter and write
C;as

x=4—-y> y=y —3=sys2

Then dx = —2y dy and by Formulas 7 we have
[ yzax + xdy = |7 y2(-2y)dy + (4 — y))dy
= |7, =2y —y* + 4y

[ vy ]2 !
- - L yay| =408 -
2 3 73 °

Notice that we got different answers in parts (a) and (b) of Example 4 even though the
two curves had the same endpoints. Thus, in general, the value of a line integral depends
not just on the endpoints of the curve but also on the path. (But see Section 16.3 for con-
ditions under which the integral is independent of the path.)

Notice also that the answers in Example 4 depend on the direction, or orientation, of the
curve. If —C; denotes the line segment from (0, 2) to (=5, —3), you can verify, using the
parametrization

x = —bt y=2-—5t 0st=1

that f—c y2dx + xdy =3
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b

FIGURE 8

In general, a given parametrization x = x(t), y = y(t), a < t < b, determines an orien-
tation of a curve C, with the positive direction corresponding to increasing values of the
parameter t. (See Figure 8, where the initial point A corresponds to the parameter value a
and the terminal point B correspondstot = b.)

If —C denotes the curve consisting of the same points as C but with the opposite ori-
entation (from initial point B to terminal point A in Figure 8), then we have

[ tooyydx=—[ foeydx [ _foxydy=—| fxydy

But if we integrate with respect to arc length, the value of the line integral does not change
when we reverse the orientation of the curve:

ch f(x,y) ds = jc f(x,y)ds

This is because As; is always positive, whereas Ax; and Ay; change sign when we reverse
the orientation of C.

I Line Integrals in Space
We now suppose that C is a smooth space curve given by the parametric equations

X = x(t) y =y(t) z=z(1) ast<b

or by a vector equation r(t) = x(t) i + y(t) j + z(t) k. If f is a function of three variables
that is continuous on some region containing C, then we define the line integral of f
along C (with respect to arc length) in a manner similar to that for plane curves:

L f(x,y,z)ds = lim X, f(xF, y& z) As;
=% j=1

We evaluate it using a formula similar to Formula 3:

o Lrean- a5 () (5]

Observe that the integrals in both Formulas 3 and 9 can be written in the more compact
vector notation

[Pt ro | dt

For the special case f(x,y, z) = 1, we get

[Lds=["Irmld=1

where L is the length of the curve C (see Formula 13.3.3).
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Line integrals along C with respect to X, y, and z can also be defined. For example,
[ f0y 2 dz = lim 310y, 29 As
=% j=1
b !
= 7 1(x(, y(t), 2(0) 20 o
Therefore, as with line integrals in the plane, we evaluate integrals of the form
L P(x,y,z) dx + Q(x,y,z) dy + R(x, Y, z) dz

by expressing everything (X, y, z, dx, dy, dz) in terms of the parameter t.

I BTN Evaluate [y sin z ds, where C is the circular helix given by the equa-
tionsx = cost,y =sint,z=1,0 < t < 2. (See Figure 9.)

SOLUTION Formula 9 gives

. 27 . dx \? dy \? dz \?
fcysmzds—f0 (smt)smt\/<a> + <E> + <E> dt

= fozr sin?ty/sin2t + cos2t + 1 dt = ﬁfozw%(l — cos 2t) dt

2 ) -
=§[t—§sm2t]§ =2 -
0 . ) .
y 0 X Evaluate |y dx + zdy + x dz, where C consists of the line segment C,
11 from (2, 0, 0) to (3, 4, 5), followed by the vertical line segment C, from (3, 4, 5) to
FIGURE 9 (3,4,0).

SOLUTION The curve C is shown in Figure 10. Using Equation 8, we write C; as
rit) = (1 —1(2,0,0) +1(3,4,5) = (2 + t, 4t, 5t)
or, in parametric form, as
Xx=2+t y = 4t z =5t O=st=1
Thus

jc ydx + zdy + xdz=j01(4t)dt+ (54 dt + (2 + )5 dt

FIGURE 10

tZ
= f: (10 + 29t) dt = 10t + 29 ?] — 245
0

Likewise, C, can be written in the form

rit) = (1 —1(3,4,5) +1(3,4,0) = (3,4,5 — 5t)

or x=3 y=4 z=5—"5t Ost=1
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* Kk _%x

FOyhzh)

FIGURE 11

Then dx = 0 = dy, so
j ydx + zdy + xdz = fl3(—5) dt = —15
C, 0

Adding the values of these integrals, we obtain

Lydx+zdy+xdz=24.5—15=9.5 -

I Line Integrals of Vector Fields

Recall from Section 5.4 that the work done by a variable force f(x) in moving a particle
from a to b along the x-axis is W = J‘:f(x) dx. Then in Section 12.3 we found that the
work done by a constant force F irinoving an object from a point P to another point Q in
space is W = F - D, where D = PQ is the displacement vector.

Now suppose that F = P i + Q j + R k is a continuous force field on R?, such as the
gravitational field of Example 4 in Section 16.1 or the electric force field of Example 5 in
Section 16.1. (A force field on R? could be regarded as a special case where R = 0 and P
and Q depend only on x and y.) We wish to compute the work done by this force in mov-
ing a particle along a smooth curve C.

We divide C into subarcs P;_;P; with lengths As; by dividing the parameter interval
[a, b] into subintervals of equal width. (See Figure 1 for the two-dimensional case or
Figure 11 for the three-dimensional case.) Choose a point P*(xi", yi*, z¥) on the ith subarc
corresponding to the parameter value t*. If As; is small, then as the particle moves from
Pi_; to P; along the curve, it proceeds approximately in the direction of T (t{), the unit tan-
gent vector at P{*. Thus the work done by the force F in moving the particle from P;_; to
P; is approximately

FOxE v, 20 - [As TE)] = [FOXE i, 25 - T(t9)] Asy

and the total work done in moving the particle along C is approximately

d 21 [FOG, v 25 - TOXE v, 2] Asi

where T (X, Y, z) is the unit tangent vector at the point (x, y, z) on C. Intuitively, we see that
these approximations ought to become better as n becomes larger. Therefore we define the
work W done by the force field F as the limit of the Riemann sums in [11], namely,

@ WZICF(X’y’Z)'T(X:y,Z)dS=fCF.TdS

Equation 12 says that work is the line integral with respect to arc length of the tangential
component of the force.

If the curve C is given by the vector equation r(t) = x(t) i + y(t) j + z(t) k, then
T(t) = r'(t)/| r'(t) |, so using Equation 9 we can rewrite Equation 12 in the form

w= [ [F(r(t) -%]w(m dt = [ F(r) - ro dt
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Figure 12 shows the force field and the curve in
Example 7. The work done is negative because
the field impedes movement along the curve.
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FIGURE 12

Figure 13 shows the twisted cubic C in
Example 8 and some typical vectors acting at
three points on C.

2

FIGURE 13
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This integral is often abbreviated as |, F - dr and occurs in other areas of physics as well.
Therefore we make the following definition for the line integral of any continuous vector
field.

13| Definition Let F be a continuous vector field defined on a smooth curve C
given by a vector function r(t), a < t < b. Then the line integral of F along C is

[Fedr=["Fe@)-ro=[F-Tds

When using Definition 13, bear in mind that F(r(t)) is just an abbreviation for
F(x(t), y(t), z(t)), so we evaluate F(r(t)) simply by putting x = x(t), y = y(t), and z = z(t)
in the expression for F(x, y, z). Notice also that we can formally write dr = r'(t) dt.

Find the work done by the force field F(x, y) = x® i — Xy j in moving a par-
ticle along the quarter-circle r(t) = costi + sintj,0 < t < /2.

SOLUTION Since x = costand y = sin t, we have
F(r(t)) = cos’ti — costsintj
and r'(t) = —sinti + costj

Therefore the work done is

jc F.dr= jo“/z F(r(t) - r'(t) dt = jo”/z(—z cos?t sin t) dt

_, cos’t ]”/2 2

== -
3 3

0

NOTE Eventhough [ F - dr = |_F - T ds and integrals with respect to arc length are
unchanged when orientation is reversed, it is still true that

[ F-dr=—[F-ar

because the unit tangent vector T is replaced by its negative when C is replaced by —C.

Evaluate | F - dr, where F(x,y,z) = xy i + yzj + zxkand C is the
twisted cubic given by

SOLUTION We have
rt) =ti +t’j + t°k

r'tt) =i+ 2tj + 3t’k

F(r(t) = t%i + t°j + t*k
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1 !
Thus [ Fedr= [ F(r) - rod

i
28

t*  5t'

I by Ar — = 4 2t
—fo(t+5t)dt Tt ] —

7

0

Finally, we note the connection between line integrals of vector fields and line integrals
of scalar fields. Suppose the vector field F on R* is given in component form by the equa-
tionF=Pi+ Qj + R k. We use Definition 13 to compute its line integral along C:

[ F-dr=[Fr®) - rod
= [{Pi+Qj+RK - (xOi+y®j+-0K)d
= " [P(x(0, y0, 20)x'®) + Q(x(®, y(t), () y'®) + R(x(0), y(), () (0] ot

But this last integral is precisely the line integral in [10]. Therefore we have

LF-dr=Lde+Qdy+Rdz where F=Pi+ Qj + Rk

For example, the integral [ y dx + zdy + xdz in Example 6 could be expressed as
| F + dr where

F(x,y,z) =yi+zj+xk

m Exercises

1-16 Evaluate the line integral, where C is the given curve. 9. fc xyz ds,
1. [y*ds, Cix=t,y=t0=<t<2 C:x=2sint,y=t z=—-2cost, 0sts<m
. . ) 10. | xyz*ds,
2 oxyds, Cix=t%y=2t0sts<1 C is the line segment from (—1, 5, 0) to (1, 6, 4)
3. [oxy*ds, Cis the right half of the circle x> + y* = 16 1. [ xe” ds,
C is the line segment from (0, 0, 0) to (1, 2, 3)
4, J‘C xsinyds, C is the line segment from (0, 3) to (4, 6) A
12. [ (X* + y? + 2%) ds,
5. l‘c(xzys _ ﬁ)dy, C:x=t, y=cos2t, z=sin2t, 0 <t<2w
C is the arc of the curve y = /x from (1, 1) to (4, 2) 13. [ xye¥dy, Cix=t, y=t4:z=t30=<t=<1
6. [, e*dx, 14. [Lydx + zdy + xdz,
C is the arc of the curve x = y® from (=1, —1) to (1, 1) Cx=Jt,y=t z=t} 1<t<4
7. fo (x + 2y) dx + x?dy, C consists of line segments from 15. [ z°dx + x*dy + y?dz, C s the line segment from (1, 0, 0)
(0,0) to (2, 1) and from (2, 1) to (3, 0) to (4,1,2)
8 |. x?dx + y2dy, C consists of the arc of the circle 16. iz (%;té)f?;m+(éxo+0§)tg)El+0(xl;—ar)1/c)i ?rzc;m C(Zlc%nsll;ttzof line
x2 + y2 = 4 from (2, 0) to (0, 2) followed by the line segment (Ogl 2) n Y n

from (0, 2) to (4, 3)

Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.com
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17. Let F be the vector field shown in the figure. 24
(@) If Cy is the vertical line segment from (=3, —3) to (=3, 3),
determine whether fcl F - dr is positive, negative, or zero.

(b) If C; is the counterclockwise-oriented circle with radius 3 25.

and center the origin, determine whether [, F - dr is posi-
tive, negative, or zero.

- Jo
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F - dr, where F(x,y,z) =ysinzi + zsinxj + xsiny k
and r(t) = costi +sintj +sin5tk, 0<t< =

‘C x sin(y + z) ds, where C has parametric equations x = t?,
y=tz=t, 0st=<5

26. | ze ™™ ds, where C has parametric equations x = t,y = t?,
y z=e0=<t<1
S ma N N\
A d W
; ; . 21 . N :? 1:’ [cAs|27-28 Use a graph of the vector field F and the curve C to guess
[ IR NN whether the line integral of F over C is positive, negative, or zero.
R N Then evaluate the line integral.
7 \
o O O { sl 4% 2. F(6Y) = (=it xyl,
Y A C is the arc of the circle x* + y* = 4 traversed counterclock-
xRN 5l - Y wise from (2, 0) to (0, —2)
NNNS = )/ X ) y ]
NN B o o ZB'F(X’y)_\/xHyZI+\/x2+yzj’
C is the parabolay = 1 + x? from (—1, 2) to (1, 2)
18. The figure shows a vector field F and two curves C; and C,.
Avre the line integrals of F over C; and C, positive, negative, 29. (a) Evaluate the line integral "C F - dr, where
or zero? Explain. F(x,y) = e*'i + xyj and C is given by
r) =t’i +t*j,0st<1
A (b) Hlustrate part (a) by using a graphing calculator or com-
puter to graph C and the vectors from the vector field
corresponding to t = 0, 1/4/2, and 1 (as in Figure 13).
30. (a) Evaluate the line integral ‘C F - dr, where
F(x,y,z) =xi—z]j +ykand C is given by
rit) =2ti +3tj — t?k, —1<t<1
AZ () Nlustrate part (a) by using a computer to graph C and
the vectors from the vector field corresponding to
= +1and + (as in Figure 13).
cAs| 31. Find the exact value of [ x*y?zds, where C is the curve with
parametric equations x = e 'cos 4t,y = e 'sin4t,z = e,
Ost<2m
19-22 Evaluate the line integral |'C F - dr, where C is given by the . . . .
. 32. (a) Find the work done by the force field F(x,y) = x*i + xyj

vector function r(t).
19. F(x,y) = xyi + 3y?j,
r(t) =11t*i + t®j, osts<1 CAS

20. F(x,y,2) = (x + y)i+ (y— 2)j + 22k,
ri) =t%i +t*j + t?’k, 0st<1

21. F(x,y,z) =sinxi+ cosyj + xzk, 33.

r)=t}i —t’j+tk, 0sts<1
22. F(X,y,z) =xi+yj+xyk,

r(t) =costi +sintj+tk, 0stsw .

23-26 Use a calculator or CAS to evaluate the line integral correct

to four decimal places.

23. [ F - dr,where F(x,y) = xyi + sinyjand
r)=eli+e’j,1<t=<2

35.

on a particle that moves once around the circle

x? 4+ y? = 4 oriented in the counter-clockwise direction.
(b) Use a computer algebra system to graph the force field and

circle on the same screen. Use the graph to explain your

answer to part (a).

A thin wire is bent into the shape of a semicircle x* + y2 = 4,
x = 0. If the linear density is a constant k, find the mass and
center of mass of the wire.

A thin wire has the shape of the first-quadrant part of the
circle with center the origin and radius a. If the density
function is p(x, y) = kxy, find the mass and center of mass
of the wire.

(a) Write the formulas similar to Equations 4 for the center of
mass (X, Y, z) of a thin wire in the shape of a space curve C
if the wire has density function p(x, y, z).
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36.

37.

38.

39.

40.

a.

42.

43.

44.

CHAPTER 16 VECTOR CALCULUS

(b) Find the center of mass of awire in the shape of the helix
X =2sint,y = 2cost, z = 3t, 0 < t < 27, if the density
is a constant k.

Find the mass and center of mass of awire in the shape of the
helix x =t,y = cost, z = sint, 0 < t < 27, if the density at
any point is equal to the square of the distance from the origin.

If awire with linear density p(x, y) lies along a plane curve C,
its moments of inertia about the x- and y-axes are defined as

I _ 2
lx—jcyp(x,y)ds Iy—chp(X,y)ds

Find the moments of inertia for the wire in Example 3.

If awire with linear density p(x, y, z) lies along a space curve
C, its moments of inertia about the x-, y-, and z-axes are
defined as

I = L (y? + z%)p(x,y, z) ds
ly= L (x% + z%)p(x,y, z) ds
L= [0+ y2)p(xy, 2) ds

Find the moments of inertia for the wire in Exercise 35.

Find the work done by the force field F(x,y) = xi + (y + 2) j
in moving an object along an arch of the cycloid
rt) = (t —sint)i + (1 — cost) j,0 <t < 27.

Find the work done by the force field F(x, y) = x?i + ye*j on
a particle that moves along the parabolax = y? + 1 from (1, 0)
to (2, 1).

Find the work done by the force field
F(x,y,z) = (x — y4y — z% z — x?) on aparticle that moves
along the line segment from (0, 0, 1) to (2, 1, 0).

The force exerted by an electric charge at the origin on a
charged particle at a point (x, y, z) with position vector
r=(x,,z)isF(r) = Kr/|r | where K is a constant. (See
Example 5 in Section 16.1.) Find the work done as the particle
moves aong a straight line from (2, 0, 0) to (2, 1, 5).

The position of an object with massm at timet is

r(t) = at?i + bt®j,0st=<1

(@) What is the force acting on the object at timet?

(b) What is the work done by the force during the time interval
0st=s1?

An object with mass m moves with position function
r(t) =asinti + bcostj + ctk, 0 <t =< #/2. Find the work
done on the object during this time period.

45,

46.

41.

48.

49

50.

51.

52.

A 160-Ib man carries a 25-1b can of paint up a helical staircase
that encircles asilo with aradius of 20 ft. If the silo is 90 ft
high and the man makes exactly three complete revolutions
climbing to the top, how much work is done by the man
against gravity?

Suppose there is a hole in the can of paint in Exercise 45 and
9 1b of paint leaks steadily out of the can during the man’s
ascent. How much work is done?

(a) Show that a constant force field does zero work on a
particle that moves once uniformly around the circle
x2+y2=1

(b) Isthisalso true for aforcefield F(x) = kx, wherek isa
constant and x = (X, y)?

The base of acircular fence with radius 10 m is given by

x = 10 cost,y = 10sint. The height of the fence at position
(x,y) isgiven by the function h(x, y) = 4 + 0.01(x? — y?), s0
the height varies from 3 m to 5 m. Suppose that 1 L of paint
covers 100 m?. Sketch the fence and determine how much paint
you will need if you paint both sides of the fence.

If C isasmooth curve given by avector function r(t),
a<t=bh,andv isaconstant vector, show that

[v-dr=v-[r() - r@]

If C isasmooth curve given by avector function r(t),
a <t < b, show that

[oredr=3[Iro)F - r@f]

An object moves along the curve C shown in the figure from
(1, 2) to (9, 8). The lengths of the vectorsin the force field F
are measured in newtons by the scales on the axes. Estimate
the work done by F on the object.

Y
(meters)
C
/ Pl
A
pd
I
EEEE
0 1 X
(meters)

Experiments show that a steady current | in along wire pro-
duces a magnetic field B that is tangent to any circle that liesin
the plane perpendicular to the wire and whose center is the axis
of the wire (asin the figure). Ampeére’s Law relates the electric
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current to its magnetic effects and states that
JC B-dr = pul

where | isthe net current that passes through any surface

bounded by a closed curve C, and w, is a constant called the

permeability of free space. By taking C to be a circle with

radius r, show that the magnitude B = | B | of the magnetic |
field at adistance r from the center of the wireis

= 2ar 3
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m The Fundamental Theorem for Line Integrals

B(xy, ¥5,25)

(b)

FIGURE 1

Recall from Section 4.3 that Part 2 of the Fundamental Theorem of Calculus can be writ-
ten as

[1] ["F0 dx = Fib) - F(@

where F’ is continuous on [a, b]. We also called Equation 1 the Net Change Theorem: The
integral of arate of change is the net change.

If we think of the gradient vector Vf of afunction f of two or three variables as a sort
of derivative of f, then the following theorem can be regarded as a version of the Funda-
mental Theorem for line integrals.

@ Theorem Let C beasmooth curve given by thevector functionr(t),a < t < b.
Let f be adifferentiable function of two or three variables whose gradient vector
Vi iscontinuous on C. Then

[ vf-dr =f(rb) — f(r@)

NOTE Theorem 2 says that we can evaluate the line integral of a conservative vector
field (the gradient vector field of the potential function f) simply by knowing the value of
f at the endpoints of C. In fact, Theorem 2 says that the line integral of Vf is the net
change in f. If f isafunction of two variables and C is a plane curve with initial point
A(X1, y1) and terminal point B(xz, y2), asin Figure 1, then Theorem 2 becomes

jc Vi dr = f(xz y2) — f(xq, Y1)

If f isafunction of three variables and C is a space curve joining the point A(X1, Y1, z1)
to the point B(x2, Y2, z2), then we have

fo VE-dr =f(xa Y, 22) — f(Xa, Y1, 21)

Let's prove Theorem 2 for this case.
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1100 CHAPTER 16 VECTOR CALCULUS
PROOF OF THEOREM 2 Using Definition 16.2.13, we have

jc Vf-dr = Lb VE(r(t) - r(t) dt

=jb a_fd_x+a_fd_y+a_f£ dt
a\ox dt gy dt oz dt

= % f(r(t)) dt  (by the Chain Rule)
= f(r(b)) — f(r(a))
The last step follows from the Fundamental Theorem of Calculus (Equation 1). [

Although we have proved Theorem 2 for smooth curves, it is also true for piecewise-
smooth curves. This can be seen by subdividing C into a finite number of smooth curves
and adding the resulting integrals.

70T Find the work done by the gravitational field

mMG
RN

in moving a particle with mass m from the point (3, 4, 12) to the point (2, 2, 0) along a
piecewise-smooth curve C. (See Example 4 in Section 16.1.)

SOLUTION From Section 16.1 we know that F is a conservative vector field and, in fact,

F = Vf, where
mMG
f X, Y, Elimee——
(.¥.2) VX2 +y2 + 22
Therefore, by Theorem 2, the work done is
W= | F-dr=| vf-dr
=1(2,2,0) — f(3,4,12)
___mMG mMG — mMG 1 1 —
V22 +22 /324 42 + 122 22 13

I Independence of Path

Suppose C; and C; are two piecewise-smooth curves (which are caled paths) that have
the same initial point A and terminal point B. We know from Example 4 in Section 16.2
that, in general, | F - dr # [ F - dr. But oneimplication of Theorem 2 is that

fClVf-dr=L2Vf-dr

whenever VT is continuous. In other words, the line integral of a conservative vector field
depends only on the initial point and terminal point of a curve.

In general, if F isa continuous vector field with domain D, we say that the line integral
J¢ F - drisindependent of path if [ F - dr = | F - dr for any two paths C; and C; in
D that have the sameinitial and terminal points. With this terminology we can say that line
integrals of conservative vector fields are independent of path.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C
FIGURE 2
A closed curve
G
B
A
G
FIGURE 3
y
0

FIGURE 4

SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS 1101

A curve is called closed if its termina point coincides with its initial point, that is,
r(b) = r(a). (See Figure 2.) If | F - dr isindependent of path in D and C is any closed
path in D, we can choose any two points A and B on C and regard C as being composed
of the path C, from A to B followed by the path C, from B to A. (See Figure 3.) Then

J‘CF-dr=L1F-dr+LQF-dr=LlF-dr—LCZF-dr=O

since C; and —C, have the same initial and terminal points.

Conversely, if it istrue that | F - dr = 0 whenever C is a closed path in D, then we
demonstrate independence of path as follows. Take any two paths C; and C, from A to B
in D and define C to be the curve consisting of C, followed by —C,. Then

0=LF-dr=J‘c1F-dr+f7c2F-dr=fC1F-dr—LZF-dr

and so | F - dr = f_ F - dr. Thus we have proved the following theorem.

(3] Theorem [_F - drisindependent of pathin D if and only if [, F - dr = Ofor
every closed path C in D.

Since we know that the line integral of any conservative vector field F is independent
of path, it followsthat | F - dr = 0 for any closed path. The physical interpretation is that
the work done by a conservative force field (such as the gravitational or electric field in
Section 16.1) as it moves an object around a closed path is 0.

The following theorem says that the only vector fields that are independent of path are
conservative. It is stated and proved for plane curves, but there is a similar version for
space curves. We assume that D is open, which means that for every point P in D thereis
a disk with center P that lies entirely in D. (So D doesn’'t contain any of its boundary
points.) In addition, we assume that D is connected: This means that any two pointsin D
can be joined by a path that liesin D.

E] Theorem Suppose F is a vector field that is continuous on an open connected
region D. If [_F - dr isindependent of path in D, then F is a conservative vector
field on D; that is, there exists afunction f such that Vf = F.

PROOF Let A(a, b) be afixed point in D. We construct the desired potential function f by
defining

(x,y)
F-

f(x,y)=j dr

(a,b)

for any point (x, y) in D. Since | F - dr isindependent of path, it does not matter

which path C from (a, b) to (x, y) isused to evaluate f(x, y). Since D is open, there exists
adisk contained in D with center (x, y). Choose any point (x4, y) in the disk with x; < x
and let C consist of any path C, from (a, b) to (x;, y) followed by the horizontal line seg-
ment C, from (x4, y) to (X, y). (See Figure 4.) Then

(X1, )

f(x,y)=LlF-dr+fczF-dr=f

(a,b)

F-dr+ f F-dr
C
Notice that thefirst of these integrals does not depend on x, so

J 0
2 =0+— | E-
Ix fxy) =0 )4 fcz dr
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0 X
FIGURE 5
simple, not simple,
not closed not closed
simple, not ssimple,
closed closed
FIGURE 6

Types of curves

simply-connected region

regions that are not simply-connected

FIGURE 7

If wewriteF =P i+ Qj, then

F-dr=Lde+Qdy

C,

On C,, yisconstant, sody = 0. Using t as the parameter, where x; < t < x, we have
d J Jd [x
0y = &LZde +Qdy = &LP(Ly) dt = P(x,y)

by Part 1 of the Fundamental Theorem of Calculus (see Section 4.3). A similar argument,
using avertical line segment (see Figure 5), shows that

9 _9 _ 9 _
a_y f(x,y) = ay Lz Pdx + Qdy ay LlQ(x, t) dt = Q(x,y)

. .oof . of .
=Pi+ =—iji+—j=
Thus F=Pi+Qj axl ayJ \2i

which saysthat F is conservative. [

The question remains: How is it possible to determine whether or not a vector field
F is conservative? Suppose it is known that F = P i + Q j is conservative, where P and
Q have continuous first-order partial derivatives. Then there is a function f such that
F = Vf, thatis,

of of
= — d _ —
X an Q ay
Therefore, by Clairaut’s Theorem,
o _ e ot
ay  dyax  oxay X

(5] Theorem If F(x,y) = P(x,y) i+ Q(X,Y)j isaconservative vector field,
where P and Q have continuous first-order partial derivatives on a domain D, then
throughout D we have

9P _ R

ay o

The converse of Theorem 5 istrue only for aspecial type of region. To explain this, we
first need the concept of asimple curve, which isa curve that doesn’t intersect itself any-
where between its endpoints. [See Figure 6; r(a) = r(b) for a simple closed curve, but
r(ty) # r(tz) whena < t; <t, <bl]

In Theorem 4 we needed an open connected region. For the next theorem we need a
stronger condition. A simply-connected region in the plane is a connected region D such
that every simple closed curvein D encloses only points that are in D. Notice from Figure
7 that, intuitively speaking, a simply-connected region contains no hole and can’'t consist
of two separate pieces.

In terms of simply-connected regions, we can now state apartial converseto Theorem 5
that gives a convenient method for verifying that a vector field on R? is conservative. The
proof will be sketched in the next section as a consequence of Green’'s Theorem.
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FIGURE 8

Figures 8 and 9 show the vector fields in
Examples 2 and 3, respectively. The vectors in
Figure 8 that start on the closed curve C all
appear to point in roughly the same direction as
C. So itlooks as if f F - dr > Oand therefore
F is not conservative. The calculation in Example
2 confirms this impression. Some of the vectors
near the curves C, and Cy in Figure 9 point in
approximately the same direction as the curves,
whereas others point in the opposite direction.
So it appears plausible that line integrals around
all closed paths are 0. Example 3 shows that F
is indeed conservative.
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@ Theorem LetF = Pi + Q j beavector field on an open simply-connected
region D. Suppose that P and Q have continuous first-order derivatives and

P _R

= throughout D
ay X

Then F is conservative.

1 IETETF Determine whether or not the vector field

Fx,y)y=x—-y)i+x—-2j
IS conservative.

SOLUTION LetP(x,y) =x —yandQ(x,y) = x — 2. Then

P J

P QL
ay X

Since dP/dy # dQ/0x, F is not conservative by Theorem 5. [

1 IEXEEE] Determine whether or not the vector field

F(x,y) = (3+ 2xy)i + (x* — 3y?)j
is conservative.

SOLUTION LetP(x,y) = 3 + 2xyand Q(x,y) = x*> — 3y% Then

aP
ay ox

Also, the domain of F is the entire plane (D = R?), which is open and simply-
connected. Therefore we can apply Theorem 6 and conclude that F is conservative. mmm

In Example 3, Theorem 6 told usthat F is conservative, but it did not tell us how to find
the (potential) function f such that F = Vf. The proof of Theorem 4 gives us aclue asto
how to find f. We use “partial integration” as in the following example.

(@ If F(x,y) = (3+ 2xy)i + (x* — 3y?)j, find afunction f such that F = Vf.

(b) Evaluate thelineintegral | F - dr, where C is the curve given by

r(t) = e'sinti + e'cost j Ostsmw
SOLUTION
(a) From Example 3 we know that F is conservative and so there exists afunction f
with Vf = F, that is,
fu(x,y) = 3 + 2xy

fy(x,y) = x? — 3y?
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Integrating | 7] with respect to x, we obtain

[9] f(x,y) = 3x + x?y + g(y)

Notice that the constant of integration is a constant with respect to x, that is, a function
of y, which we have called g(y). Next we differentiate both sides of [9] with respect to y:

f,(x,y) = x* + g'(y)
Comparing [8] and [10], we see that
g'(y) = =3y
Integrating with respect to y, we have
g(y) = —y*+K
where K is a constant. Putting thisin [9], we have
f(x,y) =3+ x’y —y*+ K

as the desired potential function.

(b) To use Theorem 2 all we have to know are the initial and terminal points of C,
namely, r(0) = (0, 1) and r(7r) = (0, —e™). In the expression for f(x,y) in part (a), any
value of the constant K will do, so let's choose K = 0. Then we have

jCF-drszVf-drzf(o, —e™) —f(0,1) =e%¥ — (1) =% + 1

This method is much shorter than the straightforward method for evaluating line inte-
grals that we learned in Section 16.2. [ |

A criterion for determining whether or not a vector field F on R® is conservative is
given in Section 16.5. Meanwhile, the next example shows that the technique for finding
the potential function is much the same as for vector fields on R

1 EOEE If F(x,y, 2) = y2i + (2xy + e¥)j + 3ye¥ kK, find afunction f such
that Vf = F.

SOLUTION If thereis such afunction f, then

[11] f(x,y,2) =y°

[12] f,(x,y,z) = 2xy + e¥

[13] f.(x,y,z) = 3ye*
Integrating [11] with respect to x, we get

f(x,y,2) = xy? + g(y, 2)

where g(y, z) is a constant with respect to x. Then differentiating [14] with respect to y,
we have

fy(X,y,2) = 2xy + gy(y, 2)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS 1105
and comparison with [12] gives
gy(y,z) = e*
Thusg(y, z) = ye¥ + h(z) and we rewrite [14] as
f(x,y,2) = xy? + ye¥ + h(2)

Finally, differentiating with respect to z and comparing with [13), we obtain h'(z) = 0 and
therefore h(z) = K, a constant. The desired function is

f(x,y,z) = xy? + ye¥ + K
Itiseasily verified that Vf = F. [

I Conservation of Energy

Let's apply the ideas of this chapter to a continuous force field F that moves an object
along apath C given by r(t), a < t < b, wherer(a) = A istheinitial point and r(b) = B
is the terminal point of C. According to Newton's Second Law of Motion (see Sec-
tion 13.4), the force F(r(t)) at a point on C isrelated to the acceleration a(t) = r”(t) by the
equation

F(r(t) = mr"(t)

So the work done by the force on the object is

b ’ _ b ” .
W= [ F-dr=["F(r®) - rodt = [ mr'@ - rod
med | ,
= L m [r'(t) - r'(t)] dt (Theorem 13.2.3, Formula 4)

— m b i ’ 2 _ m ! 2 b
= L pm ‘ r'(t) | dt = 5 [| r'(t) | ]a (Fundamental Theorem of Calculus)

m ! 2 _ ! 2
=S (Iro)F - Ir@F)
Therefore
[15] W = 3m|v(b)[2 = sm|v(a)|?

wherev = r’ isthe velocity.
The quantity 3m | v(t) |2, that is, half the mass times the square of the speed, is called the
kinetic energy of the object. Therefore we can rewrite Equation 15 as

W = K(B) — K(A)

which says that the work done by the force field along C is equal to the change in kinetic
energy at the endpoints of C.

Now let’s further assume that F is a conservative force field; that is, we can write
F = Vf. In physics, the potential energy of an object at the point (x, v, z) is defined as
P(x,y,z) = —f(X,y, z), so we have F = —VP. Then by Theorem 2 we have

W= | F-dr=—| VP-dr=—[P(r(b)) - P(r(@)] = P(A) — P(B)
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Comparing this equation with Equation 16, we see that
P(A) + K(A) = P(B) + K(B)
which saysthat if an object moves from one point A to another point B under the influence
of a conservative force field, then the sum of its potential energy and its kinetic energy

remains constant. Thisis called the Law of Conservation of Energy and it is the reason
the vector field is called conservative.

m Exercises

1. The figure shows a curve C and a contour map of afunction f 9. F(x,y) = (Iny + 2xy®) i + (3x%y? + x/y) j
whose gradient is continuous. Find |, Vf - dr.

10. F(x,y) = (xy coshxy + sinhxy) i + (x?coshxy)j

y
\60
50 O\ 11. The figure shows the vector field F(x, y) = (2xy, x?) and
C 40 \ three curves that start at (1, 2) and end at (3, 2).
30 () Explain why f_ F - dr has the same value for al three
20 curves.
10 (b) What is this common value?
\\ ,
0 > L
3 T -
2. Atable of values of afunction f with continuous gradient is co
given. Find f. Vf - dr, where C has parametric equations o
x=t*+1 y=t’+t O0stsl1
1<>
Y y 0 1 2
0 1 6 4
1 3 5 7 0 X
2 8 2 9

12-18 (@) Find afunction f suchthat F = Vf and (b) use

3-10 Determine whether or not F is a conservative vector field. part (8) to evaluate | F - dr aong the given curve C.

If itis, find afunction f such that F = Vf. 12. F(x,y) = x%i + y?j,
3 F(6Y) = (2x — 3y) i + (=3x + 4y — 8) C isthe arc of the parabolay = 2x? from (—1, 2) to (2, 8)
4. F(x,y) = e*sinyi + e*cosy j 13. F(x,y) = xy?i + x?y],

) o Cirt)=(t+sinimt t + cosimt), O<t=<1
5. F(x,y) = e*cosyi + e*siny j

. . 14. F(x,y) = (1 + xy)e¥i + x%¥j,
6. F(xy) = (3x* = %) i + (4xy + 3) ] C:( rzlt)) = (cost iy+) 2sintj Ojs t< /2

7. F(x,y) = (ye* + siny)i + (e* + xcosy) j 15 F(x,y,2) = yzi + x2j + (xy + 22 K

8 F(x,y)=2xy +y )i+ (x>—2xy®j, y>0 C isthe line segment from (1, 0, —2) to (4, 6, 3)
Computer algebra system required 1. Homework Hints available at stewartcal culus.com
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SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS 1107

16. F(x,y,2) = (Y% + 2xz%) i + 2xyzj + (xy? + 2x%) K,
C:x=t,y=t+1 =t} 0<t=<1

17. F(X,Y,z) = yze“°i + e j + xye*k,
Cri)=(rFP+1Di+t*-1Dj+{t>*—2)k, 0st=<2

18. F(X,y,z) = sinyi + (xcosy + cosz) j — ysinzKk,
C:r(t)=sdnti+tj+2tk, Ost< /2

19-20 Show that the line integral is independent of path and eval-
uate the integral.
19. [ 2xe™dx + (2y — x% ™) dy,

C isany path from (1, 0) to (2, 1)

20. [ sinydx + (xcosy — siny) dy,
C isany path from (2, 0) to (1, m)

21. Suppose you're asked to determine the curve that requires the
least work for aforce field F to move a particle from one
point to another point. You decide to check first whether F is
conservative, and indeed it turns out that it is. How would
you reply to the request?

22. Suppose an experiment determines that the amount of work
required for aforce field F to move a particle from the point
(1, 2) to the point (5, —3) along acurve C; is 1.2 Jand the
work done by F in moving the particle along another curve
C, between the same two pointsis 1.4 J. What can you say
about F? Why?

23-24 Find the work done by the force field F in moving an

object from P to Q.

2. F(x,y) = 2y¥%i + 3xvy j; P(L1), Q2,4

24. F(x,y) =eYi—xe”j; P(0,1), Q(2,0

25-26 Isthe vector field shown in the figure conservative?
Explain.

25. y 26. y
L R A P e e
L N A R S ~ = - |7 t XX
AV I N NN A L T W
NN e o X L B N 4

~N > > | 7
—— > |/

X
t
f

—a— o
—— o

cAs| 27, If F(x,y) = sinyi + (1 + x cosy) j, use aplot to guess
whether F is conservative. Then determine whether your
guess s correct.

28. Let F = Vf, where f(x,y) = sin(x — 2y). Find curves C;
and C, that are not closed and satisfy the equation.

(a)LF-dr=O (b) J;ZF~dr=1

29. Show that if the vector field F = Pi + Qj + R k is conser-
vative and P, Q, R have continuous first-order partial deriva-
tives, then

P _RQ P _ R Q_R

ay  ox az  ox az oy

30. Use Exercise 29 to show that the line integral

J’C y dx + xdy + Xyz dz is not independent of path.

31-34 Determine whether or not the given set is (a) open,
(b) connected, and (c) simply-connected.

N {(xy) | 0<y<3} 2. {xy) |1<|x| <2
3B AKXy |[1=sx*+y?’<4,y=0}

3. {(x,y) | (x,y)# (2,3)}

—-yi+Xxj
XZ + y2 "

(a) Show that 9P/ay = 9Q/ox.

(b) Show that | F - dr is not independent of path.
[Hint: Compute | F - dr and | F - dr, where C,
and C, are the upper and lower halves of the circle
x2 + y? = 1from (1, 0) to (—1, 0).] Does this contradict
Theorem 67

35. Let F(x,y) =

36. (a) Suppose that F isan inverse square force field, that is,

cr

T
for some constant ¢, wherer = xi + yj + z k. Find the
work done by F in moving an object from a point P,
along a path to a point P in terms of the distances d, and
d, from these points to the origin.

(b) An example of an inverse square field is the gravita-
tiona field F = —(MMG)r/|r|® discussed in Example 4
in Section 16.1. Use part (a) to find the work done by
the gravitational field when the earth moves from
aphelion (at a maximum distance of 1.52 X 108 km
from the sun) to perihelion (at a minimum distance of
1.47 X 10° km). (Use the valuesm = 5.97 X 10* kg,

M = 1.99 X 10* kg, and G = 6.67 X 10 * N-m?/kg?)

(c) Another example of an inverse square field is the electric
forcefield F = eqQr/| r | discussed in Example 5in
Section 16.1. Suppose that an electron with a charge of
—1.6 X 107 *° Cislocated at the origin. A positive unit
charge is positioned a distance 102 m from the electron
and moves to a position half that distance from the elec-
tron. Use part (a) to find the work done by the electric
force field. (Usethe value e = 8.985 X 10°)
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(|78 Green's Theorem

FIGURE 1

FIGURE 2

Recall that the left side of this equation
is another way of writing fc F - dr, where
F=Pi+Qj.

Green’s Theorem gives the relationship between a line integral around a simple closed
curve C and a double integral over the plane region D bounded by C. (See Figure 1. We
assume that D consists of all points inside C as well as all points on C.) In stating Green’s
Theorem we use the convention that the positive orientation of a simple closed curve C
refers to a single counterclockwise traversal of C. Thus if C is given by the vector func-
tion r(t), a < t < b, then the region D is always on the left as the point r(t) traverses C.
(See Figure 2.)

y y
c
D D
c
0 X 0 X
(a) Positive orientation (b) Negative orientation

Green's Theorem Let C be a positively oriented, piecewise-smooth, simple closed
curve in the plane and let D be the region bounded by C. If P and Q have continu-
ous partial derivatives on an open region that contains D, then

Lde+Qdy=g<%—%>dA

NOTE The notation

§Cde+Qdy or §Cde+Qdy

is sometimes used to indicate that the line integral is calculated using the positive orienta-
tion of the closed curve C. Another notation for the positively oriented boundary curve of
D is 9D, so the equation in Green’s Theorem can be written as

1] ﬂ( )dA j Pdx + Qdy

Green’s Theorem should be regarded as the counterpart of the Fundamental Theorem of
Calculus for double integrals. Compare Equation 1 with the statement of the Fundamental
Theorem of Calculus, Part 2, in the following equation:

["F0 dx = Fib) ~ F(a

In both cases there is an integral involving derivatives (F’, 9Q/ox, and oP/dy) on the left
side of the equation. And in both cases the right side involves the values of the original
functions (F, Q, and P) only on the boundary of the domain. (In the one-dimensional case,
the domain is an interval [a, b] whose boundary consists of just two points, a and b.)
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George Green

Green's Theorem is named after the self-
taught English scientist George Green
(1793-1841). He worked full-time in his father's
bakery from the age of nine and taught himself
mathematics from library books. In 1828 he
published privately An Essay on the Application
of Mathematical Analysis to the Theories of
Electricity and Magnetism, but only 100 copies
were printed and most of those went to his
friends. This pamphlet contained a theorem
that is equivalent to what we know as Green's
Theorem, but it didn't become widely known
at that time. Finally, at age 40, Green entered
Cambridge University as an undergraduate

but died four years after graduation. In 1846
William Thomson (Lord Kelvin) located a copy
of Green's essay, realized its significance, and
had it reprinted. Green was the first person to
try to formulate a mathematical theory of elec-
tricity and magnetism. His work was the basis
for the subsequent electromagnetic theories of
Thomson, Stokes, Rayleigh, and Maxwell.

Y y=9,(%)
V
Gy
C, c,
/G
y=g(x)

0 ; ;, X
FIGURE 3

SECTION 16.4 GREEN'S THEOREM 1109

Green’s Theorem is not easy to prove in general, but we can give a proof for the spe-
cial case where the region is both type | and type Il (see Section 15.3). Let’s call such
regions simple regions.

PROOF OF GREEN’S THEOREM FOR THE CASE IN WHICH D IS A SIMPLE REGION Notice that
Green’s Theorem will be proved if we can show that

2] fpdx——fj—dA

and
_ (12
3] [.Qay= jD = dA
We prove Equation 2 by expressing D as a type | region:

={xy lasx=b g(X <y =g}
where g; and g, are continuous functions. This enables us to compute the double integral

on the right side of Equation 2 as follows:

ol

where the last step follows from the Fundamental Theorem of Calculus.

Now we compute the left side of Equation 2 by breaking up C as the union of the four
curves Cy, C,, Cs, and C,4 shown in Figure 3. On C; we take x as the parameter and write
the parametric equations as x = X, y = gi(x), a < x < b. Thus

= 7 o dy dx = [P g:00) — P(x i) o

[, POy dx = [7P(x, 1) dx

Observe that C; goes from right to left but —Cs goes from left to right, so we can write
the parametric equations of —Czas x = X, y = ¢2(X), a < x < b. Therefore

j P(x,y)dx = —f P(x,y)dx = J: P(x, g2(x)) dx

On C; or C, (either of which might reduce to just a single point), x is constant, so dx = 0
and

LZ P(x,y)dx =0 = LA P(x,y) dx

Hence

fc P(x,y) dx = L P(x,y) dx + LZ P(x,y) dx + L P(x,y) dx + ch P(x,y) dx

= ["P(x, 9i00) dx = ["P(x, 9200)) dx

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1110

CHAPTER 16 VECTOR CALCULUS

y
0,1) y=1—x
-

C
D
0,0) (1,0
FIGURE 4

Instead of using polar coordinates, we could
simply use the fact that D is a disk of radius 3

and write

JJ 4dA =4 - 7(3)7 = 367

D

Comparing this expression with the one in Equation 4, we see that
P
[ POy dx= —g Sy 4A

Equation 3 can be proved in much the same way by expressing D as a type Il region (see
Exercise 30). Then, by adding Equations 2 and 3, we obtain Green’s Theorem. [ |

[ETTITER Evaluate | x*dx + xy dy, where C is the triangular curve consisting of the
line segments from (0, 0) to (1, 0), from (1, 0) to (0, 1), and from (0, 1) to (0, 0).

SOLUTION Although the given line integral could be evaluated as usual by the methods of
Section 16.2, that would involve setting up three separate integrals along the three sides
of the triangle, so let’s use Green’s Theorem instead. Notice that the region D enclosed by
C is simple and C has positive orientation (see Figure 4). If we let P(x, y) = x* and

Q(x, y) = xy, then we have

L x*dx + xydy = g <‘2—§ - %) dA = fol J’Ol_x(y — 0) dy dx
By b ax=5 7 @ - x2dx
= _%(1 - X)S]o :% L

I ETUEE# Evaluate g, (3y — e*"*) dx + (7x + 3yt + 1) dy, where C is the circle
x2+y2=0.

SOLUTION The region D bounded by C is the disk x*> + y? < 9, so let’s change to polar
coordinates after applying Green’s Theorem:

§c @By — e"™)dx + (7x + Vy* + 1)d
d dJ )
= ﬂ [5 (7x + Vy*+ 1) - a—y(sy - eS'"X)] dA
D
=["[P7-3rdrdo=4["do ['rar =367 mem

In Examples 1 and 2 we found that the double integral was easier to evaluate than the
line integral. (Try setting up the line integral in Example 2 and you’ll soon be convinced!)
But sometimes it’s easier to evaluate the line integral, and Green’s Theorem is used in the
reverse direction. For instance, if it is known that P(x, y) = Q(x, y) = 0 on the curve C,
then Green’s Theorem gives

ﬂ (Z—S gl;>dA jpdx+Qdy—o

no matter what values P and Q assume in the region D.
Another application of the reverse direction of Green’s Theorem is in computing areas.
Since the area of D is [f, 1 dA, we wish to choose P and Q so that

9Q P _
ax oy
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Wheel

Tracer arm

Tracer

FIGURE 5
A Keuffel and Esser polar planimeter

o

FIGURE 6

SECTION 16.4 GREEN'S THEOREM 1111
There are several possibilities:
P(x,y) =0 P(x,y) = -y P(x,y) = =3y
Q(x,y) = x Q(x,y) =0 Qx, y) = ;X

Then Green’s Theorem gives the following formulas for the area of D:

(5] A=§dey=—ffcydx:%ffcxdy—ydx

. X 2
[E7ETE] Find the area enclosed by the ellipse ' + % =1
SOLUTION The ellipse has parametric equations x = acos t and y = bsin t, where
0 < t < 2. Using the third formula in Equation 5, we have

A=%fcxdy—ydx

= %Lz”(a cos t)(b cos t) dt — (bsin t)(—asin t) dt

b o
=a—2dt=wab [
2 Jo

Formula 5 can be used to explain how planimeters work. A planimeter is a mechani-
cal instrument used for measuring the area of a region by tracing its boundary curve. These
devices are useful in all the sciences: in biology for measuring the area of leaves or wings,
in medicine for measuring the size of cross-sections of organs or tumors, in forestry for
estimating the size of forested regions from photographs.

Figure 5 shows the operation of a polar planimeter: The pole is fixed and, as the tracer
is moved along the boundary curve of the region, the wheel partly slides and partly rolls
perpendicular to the tracer arm. The planimeter measures the distance that the wheel rolls
and this is proportional to the area of the enclosed region. The explanation as a conse-
quence of Formula 5 can be found in the following articles:

= R. W. Gatterman, “The planimeter as an example of Green’s Theorem” Amer. Math.
Monthly, Vol. 88 (1981), pp. 701-4.

= Tanya Leise, “As the planimeter wheel turns” College Math. Journal, \Vol. 38
(2007), pp. 24 -31.

I Extended Versions of Green's Theorem

Although we have proved Green’s Theorem only for the case where D is simple, we can
now extend it to the case where D is a finite union of simple regions. For example, if D is
the region shown in Figure 6, then we can write D = D; U D,, where D, and D, are both
simple. The boundary of D; is C; U C; and the boundary of D, is C, U (—Cs) so, apply-
ing Green’s Theorem to D; and D, separately, we get

_ 9Q 9P
jclucgdejLQdy_jj(ax ay)dA
D

1

9Q  oP
+ = _— - —
szU(—Cz) P+ Qdy ﬂ ( aX ay) aA
D

2
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C
FIGURE 7
y
X2+yr=4
% y
D C
0
x4y’ =1
FIGURE 8
G,
D
G
FIGURE 9
Dl
D”
FIGURE 10

If we add these two equations, the line integrals along C; and —Cj; cancel, so we get

_ 0Q B oP
fmz Pdx + Qdy = H (—ax —ay> dA
D

which is Green’s Theorem for D = D; U Dy, since its boundary is C = C; U C,.
The same sort of argument allows us to establish Green’s Theorem for any finite union
of nonoverlapping simple regions (see Figure 7).

1 ETNETE Evaluate 4. y* dx + 3xy dy, where C is the boundary of the semiannular
region D in the upper half-plane between the circles x*> + y? = 1 and x* + y? = 4.

SOLUTION Notice that although D is not simple, the y-axis divides it into two simple
regions (see Figure 8). In polar coordinates we can write

D={(r,6))|1$r$2,0s0sw}

Therefore Green’s Theorem gives
f£ y2dx + 3xydy = ﬂ i(3xy) — i(yz) dA
c X ay
D
T (2 .
= g ydA = fo L (rsin ) rdrde
T, 2 T 2 14
= fo singde L ridr = [—cos 0]0 [%rS]l =3 -

Green’s Theorem can be extended to apply to regions with holes, that is, regions that
are not simply-connected. Observe that the boundary C of the region D in Figure 9 con-
sists of two simple closed curves C; and C,. We assume that these boundary curves are
oriented so that the region D is always on the left as the curve C is traversed. Thus the
positive direction is counterclockwise for the outer curve C; but clockwise for the inner
curve C,. If we divide D into two regions D" and D” by means of the lines shown in
Figure 10 and then apply Green’s Theorem to each of D’ and D”, we get

g<%_%>dA:g<%—%>dA+g(%—%)dA

=LD,de+Qdy+jD"de+Qdy

a
Since the line integrals along the common boundary lines are in opposite directions, they
cancel and we get

aQ oP . .
ﬁ (W—a—y>dA—Llde+Qdy+LZde+Qdy—Lde+Qdy
D

which is Green’s Theorem for the region D.
W EOEEE IfF(x,y) = (—y i+ xj)/(x* + y?), show that [ F - dr = 27 for every
positively oriented simple closed path that encloses the origin.

SOLUTION Since C is an arbitrary closed path that encloses the origin, it’s difficult to
compute the given integral directly. So let’s consider a counterclockwise-oriented circle C’
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SECTION 16.4 GREEN'S THEOREM 1113

with center the origin and radius a, where a is chosen to be small enough that C’ lies
inside C. (See Figure 11.) Let D be the region bounded by C and C’. Then its positively
oriented boundary is C U (—C’) and so the general version of Green’s Theorem gives

[ ([ (2 _ 9P
fCde+Qdy+JC,de+Qdy—ﬂ<ax ay)dA
D
B yz_xz B yz_xz B
_ﬂ[(x2+y2)2 o +yay | 9470
D
Therefore L Pdx + Qdy = for Pdx + Qdy

that is, LF-dr=J‘C,F-dr

We now easily compute this last integral using the parametrization given by
r(t) =acosti + asintj,0=<t< 27 Thus

[Frar=] F-dr=["Fr®) - rod

= (—asint)(—asint) + (acost)(acost ™
=J2( )(2 2) 5_2)( )dt=2dt=27r [ |
0 a’cos’t + a®sin’t 0
We end this section by using Green’s Theorem to discuss a result that was stated in the
preceding section.

SKETCH OF PROOF OF THEOREM 16.3.6  We’re assuming that F = P i + Q j is a vector field
on an open simply-connected region D, that P and Q have continuous first-order partial
derivatives, and that

oP d

-— = Q throughout D

ay X
If C is any simple closed path in D and R is the region that C encloses, then Green’s The-
orem gives

§CF-dr=§Cde+Qdy=ﬂ<%—%>dA=ﬂ0dA=o

A curve that is not simple crosses itself at one or more points and can be broken up

into a number of simple curves. We have shown that the line integrals of F around these
simple curves are all 0 and, adding these integrals, we see that | F - dr = 0 for any
closed curve C. Therefore | F - dr is independent of path in D by Theorem 16.3.3. It fol-
lows that F is a conservative vector field. [ |

1-4 Evaluate the line integral by two methods: (a) directly and 2. ¢ xy dx + x2dy,

(b) using Green’s Theorem.

1§ (x — y)dx + (x +y) dy,

C is the rectangle with vertices (0, 0), (3, 0), (3, 1), and (0, 1)
3. ¢ xy dx + x?y*dy,

C is the circle with center the origin and radius 2 C is the triangle with vertices (0, 0), (1, 0), and (1, 2)
Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.com
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4. ¢ x2y?dx + xy dy, C consists of the arc of the parabola 19. Use one of the formulas in [5]to find the area under one
y = x2 from (0, 0) to (1, 1) and the line segments from (1, 1) arch of the cycloid x =t — sint,y = 1 — cost.
0 (0, 1) and from (0, 1) to (0, 0) [ 20. If a circle C with radius 1 rolls along the outside of the
circle x? + y? = 16, a fixed point P on C traces out a
5-10 Use Green’s Theorem to evaluate the line integral along curve called an epicycloid, with parametric equations
the given positively oriented curve. X =5cost — cos 5t, y = 5sint — sin 5t. Graph the epi-

5. [, xy?dx + 2x?y dy, cycloid and use [5] to find the area it encloses.
C is the triangle with vertices (0, 0), (2, 2), and (2, 4) 21. (a) If C is the line segment connecting the point (x;, y;) to

the point (X2, y2), show that

6. [, cosydx + x*sinydy,
C is the rectangle with vertices (0, 0), (5, 0), (5, 2), and (0, 2) f xdy — ydx = X1Y2 — Xz Y1
C
7. . (y + e®)dx + (2x + cosy?)dy, (b) If the vertices of a polygon, in counterclockwise order,
C is the boundary of the region enclosed by the parabolas are (X3, Y1), (X2,¥2), ..., (X, ¥n), show that the area of
y =x?and x = y? the polygon is
8. [.y*dx + 2xy®dy, Cistheellipse x> + 2y* =2 A =3[(X1y2 — Xo¥1) + (Xays — Xay2) + * - -

+ (Xn-1Yn — XaYn-1) + (XnY1 — X1¥n)]

X , ) (c) Find the area of the pentagon with vertices (0, 0), (2, 1),
10. [ (1 —y®)dx + (x* +e’)dy, Cisthe boundary of the (1,3), (0,2), and (—1, 1).

region between the circles x> + y> = 4and x? + y2 =9

9. [oy*dx — x*dy, Cisthecircle x* +y> =4

22. Let D be a region bounded by a simple closed path C in the
xy-plane. Use Green’s Theorem to prove that the coordinates

11-14 Use Green’s Theorem to evaluate [, F - dr. (Check the of the centroid (X, y) of D are

orientation of the curve before applying the theorem.)

_ _ 1, _ 1,
1. F(X,y) = (ycosx — Xy sinX, Xy + X cos x), X=§§CX dy Y= 548y dx
C is the triangle from (0, 0) to (0, 4) to (2, 0) to (0, 0)
where A is the area of D.
12. F(x,y) = (e ¥+ y% e + x?),

C consists of the arc of the curve y = cos x from (— /2, 0) 23. Use Exercise 22 to find the centroid of a quarter-circular
to (/2, 0) and the line segment from (7r/2, 0) to (— /2, 0) region of radius a.
13. F(Xx,y) = (y — cosy, xsiny), 24. Use Exercise 22 to find the centroid of the triangle with
C is the circle (x — 3)> + (y + 4)? = 4 oriented clockwise vertices (0, 0), (a, 0), and (a, b), where a > 0 and b > 0.
14. F(x,y) = <\/x2 + 1, tan‘1x>, C is the triangle from (0, 0) 25. A plane lamina with constant density p(x, y) = p occupies a
to (1,1) to (0, 1) to (0, 0) region in the xy-plane bounded by a simple closed path C.
Show that its moments of inertia about the axes are
15-16 Verify Green’s Theorem by using a computer algebra sys- I = _£§ y3dx I = £§ x*dy
tem to evaluate both the line integral and the double integral. g 3Jc Y ooslk
15. P(x,y) = y%* Q(x,y) = x%?, 26. Use Exercise 25 to find the moment of inertia of a circular
C consists of the line segment from (=1, 1) to (1, 1) disk of radius a with constant density p about a diameter.
followed by the arc of the parabolay = 2 — x? from (1, 1) (Compare with Example 4 in Section 15.5.)
to(-11) 21. Use the method of Example 5 to calculate [ F - dr, where
16. P(x,y) = 2x — x%y°,  Q(x,y) = x%?, . P
Cis the ellipse 4x* + y? = 4 F(x,y) = 2xyi+ (y* = x%)j

(XZ + y2)2

and C is any positively oriented simple closed curve that

17. Use Green’s Theorem to find the work done by the force L
encloses the origin.

F(x,y) = x(x + y) i + xy?j in moving a particle from the
origin along the x-axis to (1, 0), then along the line segment 28. Calculate [ F - dr, where F(x,y) = (x* +y, 3x — y*) and
to (0, 1), and then back to the origin along the y-axis. C is the positively oriented boundary curve of a region D

. . . that has area 6.
18. A particle starts at the point (—2, 0), moves along the x-axis

to (2, 0), and then along the semicircley = /4 — x?2 to the 29. If F is the vector field of Example 5, show that [ F - dr = 0
starting point. Use Green’s Theorem to find the work done for every simple closed path that does not pass through or
on this particle by the force field F(x, y) = (x, x® + 3xy?2). enclose the origin.
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SECTION 16.5 CURL AND DIVERGENCE 1115

30. Complete the proof of the special case of Green’s Theorem Here R is the region in the xy-plane that corresponds to the

by proving Equation 3.

region S in the uv-plane under the transformation given by

31. Use Green’s Theorem to prove the change of variables X = g(u,v), y = h(u, v).

formula for a double integral (Formula 15.10.9) for the case

where f(x,y) = 1:

!f dxdy = y

m Curl and Divergence

a(x,y)
a(u, v)

[Hint: Note that the left side is A(R) and apply the first

part of Equation 5. Convert the line integral over dR to a
line integral over 9S and apply Green’s Theorem in the

‘ du do uv-plane.]

In this section we define two operations that can be performed on vector fields and that
play a basic role in the applications of vector calculus to fluid flow and electricity and mag-
netism. Each operation resembles differentiation, but one produces a vector field whereas
the other produces a scalar field.

I Curl

IfF=Pi+ Qj + Rkisa vector field on R* and the partial derivatives of P, Q, and R
all exist, then the curl of F is the vector field on R* defined by

] Cur.F=(£_£>i+(£_£>,—+<£_£)k
ay oz dz X ox ay

As an aid to our memory, let’s rewrite Equation 1 using operator notation. We intro-
duce the vector differential operator V (“del”) as

.0 .0 d
V=i—+j—+k—
ax ay az

It has meaning when it operates on a scalar function to produce the gradient of f:

f f f f f f
visi L Ly Ty
X ay 9z X ay 0z
If we think of V as a vector with components 9/0x, d/dy, and 9/dz, we can also consider
the formal cross product of V with the vector field F as follows:

ik
vxF=|2L 2 9
X dy oz
P Q R
=<£_£>i+(£_ﬁ>,—+<£_£>k
y oz dz X ax oy

= curl F

So the easiest way to remember Definition 1 is by means of the symbolic expression

(2] culF=V X F
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1116 CHAPTER 16 VECTOR CALCULUS

Most computer algebra systems have com-

mands that compute the curl and divergence of
vector fields. If you have access to a CAS, use
these commands to check the answers to the
examples and exercises in this section.

Notice the similarity to what we know
from Section 12.4: a X a = 0 for every
three-dimensional vector a.

Compare this with Exercise 29 in
Section 16.3.

EETTEEER IfFF(x, Yy, z) = xzi + xyzj — y2K, find curl F.
SOLUTION Using Equation 2, we have

ik
culF =V X F= 499
X oy oz
Xz Xyz —y?

9 2y _ 9 U BN N :
[a—y(—y) aZ(xyz)]l [ax(y) aZ(XZ)]J

d d
+ [& (xyz) — a—y(XZ):| k
=(=2y=xy)i—-0-xj+(yz-0k

=—-y2+x)i+xj+yzk [

Recall that the gradient of a function f of three variables is a vector field on R* and so
we can compute its curl. The following theorem says that the curl of a gradient vector field
is 0.

@ Theorem If f is a function of three variables that has continuous second-order
partial derivatives, then

curl(Vf) =0
PROOF We have
i j k
9 9 9
curl(Vf) =V X (Vf) =| ox ay oz
at ot ot
ox dy oz

< P2 P2 ) < 9%f P2i > ( o2 of )
= - i+ - jt - k
ayoz  azay 920X X oz axay  ayox
—0i+0j+0k=0

by Clairaut’s Theorem. [ |

Since a conservative vector field is one for which F = Vf, Theorem 3 can be rephrased
as follows:

If F is conservative, then curl F = 0.

This gives us a way of verifying that a vector field is not conservative.
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SECTION 16.5 CURL AND DIVERGENCE 1117

7 IE7XTETFA Show that the vector field F(x, y, z) = Xz i + xyzj — y?k s not
conservative.

SOLUTION In Example 1 we showed that
curlF = —-y2 +x)i +xj +yzk

This shows that curl F # 0 and so, by Theorem 3, F is not conservative. [ |

The converse of Theorem 3 is not true in general, but the following theorem says the
converse is true if F is defined everywhere. (More generally it is true if the domain is
simply-connected, that is, “has no hole.”) Theorem 4 is the three-dimensional version
of Theorem 16.3.6. Its proof requires Stokes’ Theorem and is sketched at the end of
Section 16.8.

E] Theorem If F is a vector field defined on all of R*® whose component func-
tions have continuous partial derivatives and curl F = 0, then F is a conservative
vector field.

V| EXAMPLE 3|
(a) Show that

F(x,y,2) = y22%i + 2xyz®j + 3xy?z?k
is a conservative vector field.
(b) Find a function f such that F = Vf.

SOLUTION
(a) We compute the curl of F:

i j k
curIF=V><F=i a2 2
ox ay 0z
y2z® 2xyz® 3xy?z?
= (6xyz? — 6xyz?)i — (3y%z? — 3y%%)j + (2yz® — 2yz3)k
=0
Since curl F = 0 and the domain of F is R®, F is a conservative vector field by
Theorem 4.
(b) The technique for finding f was given in Section 16.3. We have
(5] (X, y, z) = y?z°
@ fy(X, y! Z) = 2Xy23
f.(x,y, z) = 3xy?z?
Integrating | 5] with respect to x, we obtain
f(x,y,2) = xy?z° + g(y, 2)
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1118 CHAPTER 16 VECTOR CALCULUS

"”*_\\\\\ curl F(x,y,z)

\ ) yij

FIGURE 1

Differentiating [8] with respect to y, we get f,(x, y, z) = 2xyz* + g,(y, z), SO comparison
with [6] gives g,(y, z) = 0. Thusg(y, z) = h(z) and

f.(x,y, z) = 3xy%? + h'(2)
Then [7] givesh'(z) = 0. Therefore

f(x,y,z) = xy%® + K [

The reason for the name curl is that the curl vector is associated with rotations. One
connection is explained in Exercise 37. Another occurs when F represents the velocity
field in fluid flow (see Example 3 in Section 16.1). Particles near (x, Y, z) in the fluid tend
to rotate about the axis that points in the direction of curl F(x, y, z), and the length of this
curl vector is ameasure of how quickly the particles move around the axis (see Figure 1).
If curl F = 0 at apoint P, then the fluid is free from rotations at P and F is called irrota-
tional a P. In other words, there is no whirlpool or eddy at P. If curl F = 0, then a
tiny paddle wheel moves with the fluid but doesn’t rotate about its axis. If curl F # 0, the
paddle wheel rotates about its axis. We give amore detailed explanation in Section 16.8 as
a consequence of Stokes' Theorem.

I Divergence

If F=Pi+ Qj + Rkisavector field on R* and aP/dx, 9Q/ay, and aR/dz exist, then
the divergence of F is the function of three variables defined by

P 9 aR
(9] gvE=2P 9@ R
ax oy oz

Observethat curl F isavector field but div F isascalar field. In terms of the gradient oper-
ator V.= (9/0x) i + (9/dy) j + (9/9z) k, the divergence of F can be written symbolically
as the dot product of V and F:

divF=V-F

If F(X,Yy,2) = Xzi + xyzj — y2k, find div F.
SOLUTION By the definition of divergence (Equation 9 or 10) we have

J d d
iVF=V:-F=— + — +—(-y))=z+
dvF=V-F x (xz) ay (xyz) P (—y?) =z + xz [

If F isavector field on R3, then curl F is also a vector field on R3 As such, we can
compute its divergence. The next theorem shows that the result is 0.

(11] Theorem If F=Pi+ Qj + Rkisavector fieldon R®*and P, Q, and R have
continuous second-order partial derivatives, then

divecul F=0
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Note the analogy with the scalar triple
product:a - (a X b) = 0.

The reason for this interpretation of div F will
be explained at the end of Section 16.9 as a
consequence of the Divergence Theorem.

SECTION 16.5 CURL AND DIVERGENCE 1119

PROOF Using the definitions of divergence and curl, we have

diveul F=V-(V XF)

_ 9 (9R _0Q) 0 (0P 9RY) 9 (9Q 9P
ox \ ay oz ay \ 9z ox oz \ ax  ay
PR 9Q N PP R N ’Q P

OXay  IXdz  Aydz  AyoX  9zax 9z dy

=0

because the terms cancel in pairs by Clairaut’s Theorem. [ |

1 IETYTEIES Show that the vector field F(X, Y, z) = Xz i + Xxyzj — y?k can't be
written as the curl of another vector field, that is, F # curl G.

SOLUTION In Example 4 we showed that
dvF=z+xz
and therefore div F # 0. If it were true that F = curl G, then Theorem 11 would give
divF =diveurl G =0

which contradicts div F # 0. Therefore F is not the curl of another vector field. |

Again, the reason for the name divergence can be understood in the context of fluid
flow. If F(x, Y, z) isthe velocity of afluid (or gas), then div F(x, y, z) represents the net rate
of change (with respect to time) of the mass of fluid (or gas) flowing from the point (x, y, z)
per unit volume. In other words, div F(x, y, z) measures the tendency of the fluid to diverge
from the point (x, y, z). If div F = 0, then F is said to be incompressible.

Another differential operator occurs when we compute the divergence of a gradient
vector field Vf. If f isafunction of three variables, we have

o%f o%f o%f
div(Vi) =V - (Vf) = — + — + —

2 2
X2 ay?  oz?

and this expression occurs so often that we abbreviate it as V2f. The operator
Vi=V-.V
is called the Laplace operator because of its relation to Laplace’s equation

2. 2. 2.
V2f28—2+8—2+a—£=
ax2 ' ay? oz

We can also apply the Laplace operator V2 to a vector field
F=Pi+Qj+RKk
in terms of its components:

VZF=V®i+ VZQj+ VRk
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[ Vector Forms of Green's Theorem

The curl and divergence operators allow us to rewrite Green's Theorem in versions that
will be useful in our later work. We suppose that the plane region D, its boundary curve
C, and the functions P and Q satisfy the hypotheses of Green’s Theorem. Then we con-
sider the vector field F = P i + Qj. Itslineintegral is

f F-dr={ Pdx+Qdy

and, regarding F as a vector field on R® with third component 0, we have

i i k
wie—| 2 @ =(£_£>k
aX ay 0z ax ay
P(x,y) Q(x,y) O
Therefore
(Cur.F).k=<£_£)k.k=£_£
ax oy X ay

and we can now rewrite the equation in Green’'s Theorem in the vector form
[12] fCF-drzg(curlF)-de

Equation 12 expresses the line integral of the tangential component of F along C asthe
double integral of the vertical component of curl F over the region D enclosed by C. We
now derive a similar formulainvolving the normal component of F.

If C isgiven by the vector equation

rit) =xt) i +y@)j ast<b
then the unit tangent vector (see Section 13.2) is

X'(t) . y'(t) .
rol' " Tro)?

You can verify that the outward unit normal vector to C is given by

YO | X0
|r'()| |r'(t) |

(See Figure 2.) Then, from Equation 16.2.3, we have

T =

n() =

fo F:nds= Lb (F-n)®|r@]dt

_ F [P(x(t),y(t)))/'(t) _ Q(x, y) X

I o ol

a

= [7P(x(, y(®) y'® dt = Q(x(t), y(®) ¥ (0 dt

=Lde—de=ﬂ<%+%>dA
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SECTION 16.5 CURL AND DIVERGENCE 121

by Green’s Theorem. But the integrand in this double integral is just the divergence of F.
So we have a second vector form of Green's Theorem.

[13]

ﬁ;.nds=ﬁ div F(x, y) dA

This version says that the line integral of the normal component of F along C is equal to
the double integral of the divergence of F over the region D enclosed by C.

m Exercises

1-8 Find (&) the curl and (b) the divergence of the vector field.

1. Fi,y,2) =X+ yz)i+(y+xz2)j+ (+xyk
2. F(x,y,2) = xy22%i + x¥%z%j + x¥y*% k
3. F(x,y,z) = xye*i + yze*k
4. F(X,y,z) =sinyzi + sinzxj + sinxyk
1 . .
5. F(X,y,z)=ﬁ(m+yj +Zk)

6. F(x,y,z) = e¥sinzj + ytan %(x/z) k

1. F(x,y,z) = (e*siny,e’sinz,e’sinx)

_(Xxy:z
. F(x,y,z)—<y, - x>

9-11 The vector field F is shown in the xy-plane and looks the
samein al other horizontal planes. (In other words, F is independ-
ent of z and its z-component is 0.)

(@) Isdiv F positive, negative, or zero? Explain.

(b) Determine whether curl F = 0. If not, in which direction does

curl F point?
%. 0.

[/
/S S

ST

—_ — —> ——

bttt
(N B
o
IR

M. vy

12. Let f beascaar field and F avector field. State whether
each expression is meaningful. If not, explain why. If so, state
whether it isascalar field or a vector field.

(a) curl f (b) gradf
(c) divF (d) curl(grad f)
(e) grad F (f) grad(div F)

(9) div(gradf)
(i) curl(curl F)
(k) (grad f) X (div F)

(h) grad(div f)
(j) div(div F)
(1) div(curl(gradf))

13-18 Determine whether or not the vector field is conservative.
If it is conservative, find a function f such that F = Vf.

13. F(x,y,z) = y22°i + 2xyz®j + 3xy%?k

14. F(x,y,z) = xyz?i + x%yz?j + x%y%z k

15. F(X, Y, z) = 3xy%?i + 2x%yz%j + 3x%y%%k
16. F(X,y,z) =i+ sinzj + ycoszk

17. F(x,y,z) = e i + xze¥"j + xye¥" k

18. F(x,y,z) = e*sinyzi + ze*cosyz j + ye*cosyz k

1. Homework Hints available at stewartcal culus.com

19. Isthere avector field G on R® such that
curl G = (xsiny, cosy, z — xy)? Explain.

20. Isthere avector field G on R* such that
curl G = (xyz, —y?;, yz?)? Explain.

21. Show that any vector field of the form
Fx,y,2) =f(x)i+g(y)j+ h@z)k
wheref, g, h are differentiable functions, isirrotational.
22. Show that any vector field of the form
F(x,y,2z) =f(y,2)i + g(x,2) j + h(x,y) k

isincompressible.
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1122 CHAPTER 16 VECTOR CALCULUS

23-29 Prove the identity, assuming that the appropriate partia
derivatives exist and are continuous. If f isascalar fieldand F, G
are vector fields, then fF, F - G, and F X G are defined by

(FR(Xxy, 2) =f(xy,2) F(x,y,2)
(F-G)(xy,2) =F(XV,2) -GV 2)
(F X G)(x,y,2) = F(x,¥,2) X G(X,Y, 2)
23. div(F + G) =divF + divG
24. cul(F+ G) =curl F + curl G
25 div(fF) =fdivF + F - Vf
26. curl(fF) =fculF + (Vf) XF
2]. dv(F X G)=G-culF—F-curl G
28. div(Vf X Vg) =0
29. curl(curl F) = grad(div F) — V2F

30-32 Letr =xi+yj+zkandr=|r|.
30. Verify each identity.
@VvV-.-r=3
(o) V3r3=12r
31. Verify each identity.
@ Vr=r/r
© V(I/r) = —r/r?

32. If F = r/rP, find div F. Isthere avalue of p for which
divF =07

(b) V- (rr)=4r

() VXr=0
(d) Vinr=r/r?

33. Use Green’s Theorem in the form of Equation 13 to prove
Green’s first identity:

ﬂ V% dA = §C f(Vg) - nds — JJ Vf- Vg dA
D D

where D and C satisfy the hypotheses of Green’s Theorem

and the appropriate partial derivatives of f and g exist and are
continuous. (The quantity Vg - n = D, g occursin the line inte-
gral. Thisisthe directional derivative in the direction of the
normal vector n and is called the normal derivative of g.)

34. Use Green'sfirst identity (Exercise 33) to prove Green’s
second identity:

ﬂ(szg - gVZf)dA=j£C(fvg — gVf) - nds

D

where D and C satisfy the hypotheses of Green’'s Theorem
and the appropriate partial derivatives of f and g exist and are
continuous.

35. Recall from Section 14.3 that a function g is called harmonic
on D if it satisfies Laplace’s equation, that is, V29 = 0 on D.
Use Green’sfirst identity (with the same hypotheses as in

Exercise 33) to show that if g is harmonic on D, then
§. Dng ds = 0. Here D,g isthe normal derivative of g defined
in Exercise 33.

36. Use Green'sfirst identity to show that if f isharmonic
on D, and if f(x, y) = 0 on the boundary curve C, then
{5 | Vf |?dA = 0. (Assume the same hypotheses as in
Exercise 33.)

37. This exercise demonstrates a connection between the curl
vector and rotations. Let B be arigid body rotating about the
z-axis. The rotation can be described by the vector w = wk,
where w isthe angular speed of B, that is, the tangential speed
of any point P in B divided by the distance d from the axis of
rotation. Let r = (X, y, z) be the position vector of P.

(a) By considering the angle 6 in the figure, show that the
velocity field of Bisgivenby v =w X r.

(b) Show thatv = —wyi + wX].

(c) Show that curl v = 2w.

X

38. Maxwell’s equations relating the electric field E and magnetic
field H as they vary with time in aregion containing no charge
and no current can be stated as follows:

dvE=0 divH =0
curIE=—lﬁ curIH=££
c ot c at

where c is the speed of light. Use these equations to prove the
following:

1 9’E
aVX(VXE)=-—
@V X (VXE) =-S5
1 9*H
bV X (VXH)=—-——
() V X (V X H) = =5 3
1 9’E
(c) V’E = = o [Hint: Use Exercise 29.]
1 9°H
d) VH=—
@ c? ot?
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS 1123

39. We have seen that al vector fields of the form F = Vg form f = div G must satisfy? Show that the answer to
satisfy the equation curl F = 0 and that all vector fields of the this question is “No” by proving that every continuous
form F = curl G satisfy the equation div F = 0 (assuming function f on R*is the divergence of some vector field.
continuity of the appropriate partial derivatives). This suggests [Hint: Let G(x, Y, 2) = (g9(X,Y, z), 0, 0),where
the question: Are there any equations that all functions of the g(x,y,2) = fg f(t,y, z) dt]

m Parametric Surfaces and Their Areas

FIGURE 1
A parametric surface

So far we have considered special types of surfaces. cylinders, quadric surfaces, graphs of
functions of two variables, and level surfaces of functions of three variables. Here we use
vector functions to describe more general surfaces, called parametric surfaces, and com-
pute their areas. Then we take the general surface area formula and see how it applies to
special surfaces.

[ Parametric Surfaces

In much the same way that we describe a space curve by a vector function r(t) of asingle
parameter t, we can describe a surface by a vector function r(u, ») of two parameters u
and v. We suppose that

(1] r(u,») = x(u, o) i +y(u,v)j + z(u,v) k

is a vector-valued function defined on aregion D in the uy-plane. So x, y, and z, the com-
ponent functions of r, are functions of the two variables u and » with domain D. The set of
all points(x, y, z) in R® such that

(2] x = x(u, v) y =vy(u,v) z=z(u, v)

and (u, v) variesthroughout D, is called aparametric surface S and Equations 2 are called
parametric equations of S. Each choice of u and v gives a point on S; by making all
choices, we get all of S. In other words, the surface S istraced out by thetip of the position
vector r(u, v) as (u, ») moves throughout the region D. (See Figure 1.)

IE70ZTE] 1dentify and sketch the surface with vector equation
r(u,v) =2cosui+ovj+ 2sinuk

SOLUTION The parametric equations for this surface are

X = 2cosu y=v z=2s8nu
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(2,0,0)

FIGURE 2

0,3,2)

X

FIGURE 3

Visual 16.6 shows animated versions
of Figures 4 and 5, with moving grid curves, for
several parametric surfaces.

FIGURE 4

FIGURE 5

So for any point (x, y, z) on the surface, we have
X2+ z2=4cosu + 4sinu =4

This means that vertical cross-sections parallel to the xz-plane (that is, with y constant)
are all circleswith radius 2. Sincey = » and no restriction is placed on v, the surfaceisa
circular cylinder with radius 2 whose axis is the y-axis (see Figure 2). [

In Example 1 we placed no restrictions on the parameters u and » and so we obtained the
entire cylinder. If, for instance, we restrict u and » by writing the parameter domain as

Osusaw/2 Osv=<3

thenx = 0,z = 0,0 < y < 3, and we get the quarter-cylinder with length 3 illustrated in
Figure 3.

If a parametric surface S is given by a vector function r(u, »), then there are two useful
families of curvesthat lie on S, one family with u constant and the other with » constant.
These families correspond to vertical and horizontal linesin the uy-plane. If we keep u con-
stant by putting u = uo, then r(uo, ») becomes a vector function of the single parameter v
and definesa curve C; lying on S. (See Figure 4.)

Similarly, if we keep v constant by putting » = v, we get acurve C, given by r(u, vo)
that lieson S. We call these curvesgrid curves. (In Example 1, for instance, the grid curves
obtained by letting u be constant are horizontal lineswhereasthe grid curveswith » constant
arecircles.) Infact, when acomputer graphs a parametric surface, it usually depictsthe sur-
face by plotting these grid curves, as we see in the following example.

[E7EIF] Use a computer algebra system to graph the surface
r(u,») = ((2 + sinv) cosu, (2 + sinv) sinu, u + cosv)

Which grid curves have u constant? Which have v constant?

SOLUTION We graph the portion of the surface with parameter domain 0 < u < 4,
0 < v < 2win Figure 5. It has the appearance of a spira tube. To identify the grid
curves, we write the corresponding parametric equations:

X = (2 + sinv) cosu y=(2+ snv)sinu z=1U+ CoSv
If v is constant, then sin v and cos v are constant, so the parametric equations resemble

those of the helix in Example 4 in Section 13.1. Thus the grid curves with » constant are
the spiral curvesin Figure 5. We deduce that the grid curves with u constant must be
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curves that look like circles in the figure. Further evidence for this assertion isthat if u is
kept constant, u = uo, then the equation z = u, + cos v shows that the z-values vary
fromuo — 1toue + 1. [ |

In Examples 1 and 2 we were given a vector equation and asked to graph the corre-
sponding parametric surface. In the following examples, however, we are given the more
challenging problem of finding a vector function to represent a given surface. In the rest of
this chapter we will often need to do exactly that.

Find a vector function that represents the plane that passes through the point
Po with position vector ro and that contains two nonparallel vectorsa and b.

SOLUTION If P isany point in the plane, we can get from P, to P by moving a certain
distance in the direction of a and another distance in the direction of b. So there are
scalars u and » such that PTP = ua + vb. (Figure 6 illustrates how this works, by
means of the Parallelogram Law, for the case where u and » are positive. See also
Exercise 46 in Section 12.2.) If r is the position vector of P, then

—  —
r=0P; + PoP =1y + ua + vb

So the vector equation of the plane can be written as
r(u,v) =ro+ ua + vb

where u and v are real numbers.

If wewriter = (X,y,z), ro = (Xo, Yo, o), @ = (a1, @, as), and b = (by, by, bs),
then we can write the parametric equations of the plane through the point (Xo, Yo, zo) as
follows:

X:X0+Ual+1)b1 y=y0+ua2+vb2 Z:Zo+ua3+1}b3 [ ]

1 IEXEEA Find aparametric representation of the sphere
X2+ y? + 2= a?

SOLUTION The sphere has a simple representation p = a in spherical coordinates, so let’s
choose the angles ¢ and 6 in spherical coordinates as the parameters (see Section 15.9).
Then, putting p = a in the equations for conversion from spherical to rectangular coordi-
nates (Equations 15.9.1), we obtain

X=asna¢ coso y=ash¢ sin6 z = acos ¢
as the parametric equations of the sphere. The corresponding vector equation is
r(¢,0) =asing cosfi +asng snbj + acos¢k

Wehave 0 < ¢ < 7rand 0 < 0 < 277, S0 the parameter domain is the rectangle

D = [0, 7] X [0, 27]. The grid curves with ¢ constant are the circles of constant lati-
tude (including the equator). The grid curves with 6 constant are the meridians (semi-
circles), which connect the north and south poles (see Figure 7). [

NOTE We saw in Example 4 that the grid curvesfor a sphere are curves of constant lat-
itude and longitude. For a general parametric surface we are really making a map and the
grid curves are similar to lines of latitude and longitude. Describing a point on a para
metric surface (like the one in Figure 5) by giving specific values of u and v islike giving
the latitude and longitude of a point.
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1126 CHAPTER 16 VECTOR CALCULUS

One of the uses of parametric surfaces is in
computer graphics. Figure 8 shows the result of
trying to graph the sphere x? + y? + z2 =1
by solving the equation for z and graphing the
top and bottom hemispheres separately. Part
of the sphere appears to be missing because
of the rectangular grid system used by the
computer. The much better picture in Figure 9
was produced by a computer using the
parametric equations found in Example 4.

In Module 16.6 you can investigate
several families of parametric surfaces.
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2.GNIHISE| Find a parametric representation for the cylinder
x2+y?=4 0s:zs1

SOLUTION The cylinder has a simple representation r = 2 in cylindrical coordinates, so
we choose as parameters 6 and z in cylindrical coordinates. Then the parametric equa-
tions of the cylinder are

X = 2c0s 0 y=2sin6 z=7z
where0 <6 <27and0<:z=< 1 [
¥ EXEET Find avector function that representsthe elliptic paraboloid z = x? + 2y2.
SOLUTION If weregard x and y as parameters, then the parametric equations are simply
X =X y=y z=x2+ 2y?
and the vector equation is
r;x,y) =xi+vyj+ x*+ 2y9)k [

In general, asurface given as the graph of afunction of x andy, that is, with an equation
of the form z = f(x, y), can always be regarded as a parametric surface by taking x and y
as parameters and writing the parametric equations as

X =X y=y z=1(x,y)

Parametric representations (also called parametrizations) of surfaces are not unique. The
next example shows two ways to parametrize a cone.

[E7EITFA Find a parametric representation for the surface z = 24/x2 + y2, that is, the
top half of the cone z2 = 4x? + 4y2

SOLUTION 1 One possible representation is obtained by choosing x and y as parameters:
x=x y=y z=2/x2+y?
So the vector equation is
r(x,y) =xi+yj+2/x2+y2k

SOLUTION 2 Another representation results from choosing as parameters the polar
coordinates r and 6. A point (X, y, z) on the cone satisfiesx = r cos6, y = r sin 6, and
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS 1127

For some purposes the parametric representa- z = 24/Xx2 4+ y2 = 2r. So avector equation for the coneis
tions in Solutions 1 and 2 are equally good,

but Solution 2 might be preferable in certain r(r, 0) =rcosfi + rsn Gj + 2rk
situations. If we are interested only in the part
of the cone that lies below the plane z = 1, wheer=0and 0 <0 < 2. [ ]
for instance, all we have to do in Solution 2 is
change the parameter domain to B Surfaces of Revolution
0<r<i O0=<6<27

Surfaces of revolution can be represented parametrically and thus graphed using a com-
puter. For instance, let's consider the surface S obtained by rotating the curve y = f(x),
a < x < b, about the x-axis, where f(x) = 0. Let 6 bethe angle of rotation as shownin Fig-
ure 10. If (x,y, z) isapoint on S, then

(3] X =X y="f(x)cos§ z="Ff(x)sng

Therefore wetake x and 6 as parameters and regard Equations 3 as parametric equations of
S. The parameter domainisgivenbya < x<b,0 <0 < 2.

ST Find parametric equations for the surface generated by rotating the curve
y = sinx, 0 < x < 2, about the x-axis. Use these equations to graph the surface of rev-
olution.

SOLUTION From Equations 3, the parametric equations are

FIGURE 10 X =X y = sinx cos6 z=1s8nxsno
B and the parameter domainis0 < x < 2, 0 < 6 < 27. Using a computer to plot these
’ equations and rotate the image, we obtain the graph in Figure 11. [ |

We can adapt Equations 3 to represent a surface obtained through revolution about the
y- or z-axis (see Exercise 30).

FIGURE 11 I Tangent Planes
We now find the tangent plane to a parametric surface S traced out by a vector function

ru,v) = xU,v) i + y(u,v)j + z(u,v) k

at a point Py with position vector r(uo, vo). If we keep u constant by putting u = uo, then
r(uo, ») becomes a vector function of the single parameter » and defines a grid curve C;
lying on S. (See Figure 12.) The tangent vector to C, at P, is obtained by taking the partial
derivative of r with respect to »:

X . J i J
II] r, = E(Uo,vo)l + a_Z(Uo,Uo)j + a—i(Uo, Do)k

v z

(ug5 1y)
V=1,

FIGURE 12
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1128 CHAPTER 16 VECTOR CALCULUS

Figure 13 shows the self-intersecting
surface in Example 9 and its tangent plane
at (1,1, 3).

FIGURE 13

FIGURE 14
The image of the

subrectangle R;; is the patch S;;.

Similarly, if we keep » constant by putting v = vy, we get a grid curve C, given by
r(u, vp) that lies on S, and its tangent vector at Py is

X . ) . d
[5] r,= m (U, o) T + a—z(uo, vw)j + i (Uo, vo) K

If ry X r, is not 0, then the surface S is called smooth (it has no “corners”). For a smooth
surface, the tangent plane is the plane that contains the tangent vectors r, and r,, and the
vector r, X r,is a normal vector to the tangent plane.

7 [ETXTENE] Find the tangent plane to the surface with parametric equations x = u?,
y =% z = U + 2o at the point (1, 1, 3).

SOLUTION We first compute the tangent vectors:

ox . ay . d .
ru=—|+—yj+—zk=2m+k

Ju ou ou

ox . ay . d .
n=is D E—opj+2k

Jv Jv Jv

Thus a normal vector to the tangent plane is

i
rxXr,=|2u 0
0 2v

= —2vi—4uj+4duvk

N P X

Notice that the point (1, 1, 3) corresponds to the parameter valuesu = 1 and v = 1, SO
the normal vector there is
—2i—4j+4Kk

Therefore an equation of the tangent plane at (1, 1, 3) is

—2x—-1) —-4y—-1)+4z-3) =0
or X+2y—22+3=0 [

[ Surface Area

Now we define the surface area of a general parametric surface given by Equation 1. For
simplicity we start by considering a surface whose parameter domain D is a rectangle, and
we divide it into subrectangles R;;. Let’s choose (Ui, »*) to be the lower left corner of R;;.
(See Figure 14.)

U z
Ry
T
}Az: r
el
(u?’ L‘;)
0 u
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS 1129

The part S;; of the surface S that corresponds to Rj; is called a patch and has the point P;;
with position vector r(u;*, ») as one of its corners. Let

re =rJu, o)  and ry = r,(u’ o)

be the tangent vectors at Pj; as given by Equations 5 and 4.

Figure 15(a) shows how the two edges of the patch that meet at P;; can be approximated
by vectors. These vectors, in turn, can be approximated by the vectors Au r¥ and Av r¥
because partial derivatives can be approximated by difference quotients. So we approxi-
mate S;; by the parallelogram determined by the vectors Au riF and Av ri. This parallelogram
is shown in Figure 15(b) and lies in the tangent plane to S at Py;. The area of this parallelo-
gram is

[(Aurd) X (Avr¥)| = |r¥ X r¥| AuAv

and so an approximation to the area of S is

M=

n
> |rE X rF| Au Av
1j=1

Our intuition tells us that this approximation gets better as we increase the number of sub-
rectangles, and we recognize the double sum as a Riemann sum for the double integral
{f5 I're X r,| du dv. This motivates the following definition.

@ Definition If a smooth parametric surface S is given by the equation
r(u,») = x(u,v) i +y(u,v)j + z(u,v) k (u,v) €D

and S is covered just once as (u, ») ranges throughout the parameter domain D,
then the surface area of S is

AS) = [ . x r.| dA

X . ay . J ox . ay . J
where I'u=—l+—yj+—zk rv:—|+_yj+_zk
Jau au Jau Jv Jv Jv

[E7XTZEETN Find the surface area of a sphere of radius a.

SOLUTION In Example 4 we found the parametric representation
X = asin ¢ cos 0 y =asin¢ sin 6 z =acos ¢
where the parameter domain is
D={(¢0 |0<¢p<m0<6<27m}

We first compute the cross product of the tangent vectors:

i j k
ax dy oz i j k

ry X rp= ﬁ ﬁ ﬁ =| acos¢ cosh acose¢ sinh —asined
X ady 0z —asing sin6 asin¢ cos 6 0
90 a6 a0

= a?sin’} cos Ai + a’sing sin 6 + a?sin ¢ cos ¢ Kk
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1130 CHAPTER 16 VECTOR CALCULUS

Notice the similarity between the surface area
formula in Equation 9 and the arc length formula

n 2
L=Jb\/1+<dy> dx
a dx

from Section 8.1.

Thus

ry X ry| = +/a*sinp cos26 + a*sin‘g sin2 + a*sin2$ cos?¢

= Ja%sin*p + a*sin2$ cos2¢ = a2,/sin2p = a2sin ¢
sincesing = 0for 0 < ¢ < 7. Therefore, by Definition 6, the area of the sphereis
. _ 27 (' 2
A—g |rg X 1| dA fo fo a’sin¢ d¢ do
_ a2 2m T _ 2 _ 2
a fo d@fo sing d¢ = a“(2m)2 = 4ma [

I Surface Area of the Graph of a Function

For the specia case of asurface S with equationz = f(x, y), where (x, y) liesin D and f has
continuous partial derivatives, wetake x and y as parameters. The parametric equations are

x=x y=y z=f(xy)

S0 rx=i+<a—f>k ry=j+(a—f>k
aX ay

and
i j k
of of of
«Xr=|1 0 —|=—i——j+Kk
ey X ox ! ayJ
01 &
ay
Thus we have

of \? of \? 9z \? 9z \?
« X = — ) +[— | +1= 1+(—) +—
oot () () N () ()
and the surface area formulain Definition 6 becomes
9z \? 9z \?
AS) = 1+(—) +(—) dA
0 o=y (5) - (5)
D

7 XTI Find the areaof the part of the paraboloid z = x? + y? that lies under
theplanez = 9.

SOLUTION The plane intersects the paraboloid in the circle x? + y? = 9, z = 9. There-
fore the given surface lies above the disk D with center the origin and radius 3. (See
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Figure 16.) Using Formula 9, we have

A ] Vi () (2 o

= [[ viT @07+ @)7dn

= |] V140 +y?) dA
D
Converting to polar coordinates, we obtain
A= fﬂjg«/l + 47 rdrde = Fﬂdofr\/l + 4rZ dr
0 0 0 0
= 2n(3)ia + a5 = 7 (3737 — 1) —

The question remains whether our definition of surface area [6] is consistent with the
surface area formula from single-variable calculus (8.2.4).

We consider the surface S obtained by rotating the curve y = f(x), a < x < b, about
the x-axis, where f(x) = 0 and f’ is continuous. From Equations 3 we know that para-
metric equations of S are

X=X y = f(x) cos 6 z="F(x)sin@ asxs<sb 0<s0<27
To compute the surface area of S we need the tangent vectors
rn=1i+f(x)cosfj+ f'(x)sindk

ro = —f(x)sin6j + f(x) cos 6 k

Thus
i j k
Xrg=1,1 f'(x)cosd f'(x)sing
0 —f(x)sin® f(x)cos6
=fXx)f'(x)i —f(x)cosOj — f(x)sin 6k
and so

1 X 1] = VITOTLF (02 + [F(x)]2cos?6 + [ F(x)]2sin?6
= VIFOP[1 + [F(012] = f(0)v/1 + [f'(x)]?

because f(x) = 0. Therefore the areaof S is

A= ([ Irox rldA
- j(j” j:fmmdxdo
= 277Lbf(x)mdx

This s precisely the formula that was used to define the area of a surface of revolution in
single-variable calculus (8.2.4).
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m Exercises

CHAPTER 16 VECTOR CALCULUS

1-2 Determine whether the points P and Q lie on the given
surface.

1. r(u,v) = (2u+ 30,1+ 50 —v,2+ U+ v)
P(7,10, 4), Q(5,22,5)

2. r(u,0) = (u+o,u?—o,u+ 03
P@3, —1,5), Q(—1,3,49

3-6 ldentify the surface with the given vector equation.
3ruy)=U+v)i+@B—0v)j+(1+4u+5)k
4, r(u,v) =2sinui +3cosuj+ovk, Osov=<2

5. r(s,t) = (s, t, t2 — s?)

6. r(s,t) = (ssin2t, s2 s cos 2t)

7-12 Use a computer to graph the parametric surface. Get a
printout and indicate on it which grid curves have u constant and
which have » constant.

7. r(u, v) = (U% 0% u + v),
“l=su=sl -1=sv=1

8. r(u,v) = (u,v% —v),
—2<u<2 —2<p<?2

9. r(u,») = (ucoso, usino, u®),
—1lsus<11l 0<syv<27

10. r(u,v) = (u, sin(u + »), sinv),

—TsSUST, CTSUST

1. X =s8nv, y=cosusindy, z=sn2usndo,
Osu<27 —w/2<v<m/2
12. X = sinu, y = cosusiny, z= Sinv,

X
O=su<s2m0<v<27w

13-18 Match the equations with the graphs labeled |-V1 and
give reasons for your answers. Determine which families of grid
curves have u constant and which have v constant.

13. r(u,v) =ucosvi+usinvj+ vk
14. r(u,v) =ucosvi+usnevj+snuk, —w<us<m

15. r(u,v) = sinvi + cosusin2j + sinusin2v k

16. x = (1 — u)(3 + cosv) cos4mu,
y = (1 — u)(3 + cosv) sin4u,
z=3u+ (1 —u)sinv
z=sn%

17. x = cos®u cos®v, y = sin®u cos®y,

18. x = (1—|u|)cosy, y=(1—|u)sins, z=u

Graphing calculator or computer required

19-26 Find a parametric representation for the surface.

19.
20.
21.
22,
23.
24.

25.

Computer algebra system required

The plane through the origin that contains the vectorsi — j
andj — k

The plane that passes through the point (0, —1, 5) and
contains the vectors (2, 1, 4) and (—3, 2, 5)

The part of the hyperboloid 4x? — 4y? — z2 = 4 that liesin
front of the yz-plane

The part of the ellipsoid x2 + 2y2 + 3z% = 1 that lies to the
left of the xz-plane

The part of the sphere x? + y? + z? = 4 that lies above the
conez = /X2 +y?2

The part of the sphere x* + y? + z2? = 16 that lies between
theplanesz = —2andz = 2

The part of the cylinder y? + z2 = 16 that lies between the
planesx = 0andx =5

1. Homework Hints available at stewartcalculus.com
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26. The part of the plane z = x + 3 that lies inside the cylinder
x2+y2=1

SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS

27-28 Use a computer algebra system to produce a graph that

looks like the given one.
28.

29. Find parametric equations for the surface obtained by
rotating the curvey = e %, 0 < x < 3, about the x-axis and
use them to graph the surface.

{4 30. Find parametric equations for the surface obtained by
rotating the curve x = 4y? — y*, —2 < y < 2, about the
y-axis and use them to graph the surface.

A 31. (8) What happens to the spiral tube in Example 2 (see Fig-

ure 5) if we replace cosu by sinu and sinu by cosu?
(b) What happens if we replace cosu by cos2u and sinu
by sin 2u?

™ 32. The surface with parametric equations

X = 2cos 6 + rcos(0/2)
y = 2sin 6 + rcos(6/2)
z=rsin(6/2)

where —3 < r <%and 0 < 6 < 2, iscalled a M6bius

strip. Graph this surface with severa viewpoints. What is
unusual about it?

33-36 Find an equation of the tangent plane to the given
parametric surface at the specified point.

B.x=u+v, y=3u4 z=u-v; (2,30
M x=u*+1 y=2*+1 z=u+v;, (5273
35. r(u,v) =ucosvi+ usinvj+ok, u=10v=m/3

36. r(u,») =sinui + cosusinvj + sinvk;
u= /6, »v=m/6

1133

8. r(u,o)=A-u>—vd)i—-0vj—uk (-1,-1,-1

39-50 Find the area of the surface.

39. The part of the plane 3x + 2y + z = 6 that liesin the
first octant

40. The part of the plane with vector equation
r(u,v) = (u+0,2—3u,1+ u— v)thatisgiven by
Osu<2-1sv<1

4. The part of the planex + 2y + 3z = 1 that liesinside the
cylinder x> + y?2 =3

42. The part of the conez = /x2 + y2 that lies between the
planey = x and the cylinder y = x?

43. Thesurfacez = 3(x¥2 +y¥?), 0<x<1, 0=<y=<1

44. The part of the surface z = 1 + 3x + 2y?that lies above the
triangle with vertices (0, 0), (0, 1), and (2, 1)

45. The part of the surface z = xy that lies within the
cylinder x2 + y?=1

46. The part of the paraboloid x = y? + z? that lies inside the
cylindery? + z2=9

47. The part of the surface y = 4x + z? that lies between the
planesx =0,x=1,z=0,andz =1
48. The helicoid (or spiral ramp) with vector equation
r(u,p) =ucosvi+ usnvj+ok,Osu<10sv<n
49. The surface with parametric equationsx = u?,y = uw,

z=3%0<u<10<v=<2

50. The part of the sphere x? + y? + z? = b? that liesinside the
cylinder x> + y2 = a? where0 <a <b

51. If the equation of asurface Sisz = f(x, y), where
x? + y? < R? and you know that | f,| < 1and | f,| < 1,
what can you say about A(S)?

52-53 Find the area of the surface correct to four decimal places

by expressing the areain terms of a single integral and using

your calculator to estimate the integral.

52. The part of the surface z = cos(x? + y?) that lies inside the
cylinder x2 + y2=1

53. The part of the surfacez = e ¥’ that lies above the
disk x> +y>< 4

37-38 Find an equation of the tangent plane to the given

parametric surface at the specified point. Graph the surface and
the tangent plane.

37. r(u,v) = u?i+ 2usinvj +ucosvk; u=1 =0

54. Find, to four decimal places, the area of the part of the sur-

facez = (1 + x?)/(1 + y?) that lies above the square
|x| + |y| < 1. lllustrate by graphing this part of the
surface.

55. (a) Usethe Midpoint Rule for double integrals (see Sec-
tion 15.1) with six squares to estimate the area of the
surfacez = 1/(1 + x>+ y?),0=sx< 60y =< 4
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56.

57.

58.

59.

CHAPTER 16 VECTOR CALCULUS

(b) Use a computer algebra system to approximate the sur-
face areain part (a) to four decimal places. Compare
with the answer to part (a).

Find the area of the surface with vector equation

r(u, v) = (cos®u cos®, sin®u cos®, sin*),0 < u < 7,
0 < v < 2. State your answer correct to four decimal
places.

Find the exact area of the surface z = 1 + 2x + 3y + 4y?,
l=sx=40=sy=<1

(a) Set up, but do not evaluate, a double integral for the area
of the surface with parametric equations x = au cos v,
y=businy,z=u30su<20<v=<2m

(b) Eliminate the parameters to show that the surfaceis an
liptic paraboloid and set up another double integral for
the surface area.

(c) Usethe parametric equationsin part (a) with a = 2 and
b = 3 to graph the surface.

(d) Forthecasea = 2, b = 3, use acomputer algebra system
to find the surface area correct to four decimal places.

(a) Show that the parametric equations x = a sinu cos v,
y=bsnusnv,z=ccosu,0<u=<m0=<ov=<27,
represent an ellipsoid.

(b) Use the parametric equations in part (a) to graph the
ellipsoid for thecasea = 1,b = 2,¢c = 3.

(c) Set up, but do not evaluate, a double integral for the sur-
face area of the ellipsoid in part (b).

(a) Show that the parametric equations x = a cosh u cos v,
y = b coshu sinv, z = ¢ sinh u, represent a hyperboloid
of one sheet.

(b) Use the parametric equations in part (a) to graph the
hyperboloid for thecasea = 1,b = 2,¢c = 3.

(c) Set up, but do not evaluate, a double integral for the sur-
face area of the part of the hyperboloid in part (b) that
lies between the planesz = —3and z = 3.

m Surface Integrals

61.

62.

63.

64.

Find the area of the part of the sphere x? + y? + 2% = 4z
that lies inside the paraboloid z = x? + y2

The figure shows the surface created when the cylinder
y? 4+ z2 = 1lintersects the cylinder x? + z2 = 1. Find the
area of this surface.

|

Find the area of the part of the sphere x? + y? + z2 = a?
that lies inside the cylinder x* + y? = ax.

(a) Find a parametric representation for the torus obtained
by rotating about the z-axis the circle in the xz-plane
with center (b, 0, 0) and radius a < b. [Hint: Take as
parameters the angles 6 and « shown in the figure.]

(b) Use the parametric equations found in part (&) to graph
the torus for several values of a and b.

(c) Use the parametric representation from part (a) to find
the surface area of the torus.

The relationship between surface integrals and surface area is much the same as the rela-
tionship between line integrals and arc length. Suppose f is a function of three variables
whose domain includes a surface S. We will define the surface integral of f over S in such
away that, in the case where f(x, y, z) = 1, thevalue of the surface integral is equal to the
surface area of S. We start with parametric surfaces and then deal with the special case
where S isthe graph of afunction of two variables.

I Parametric Surfaces

Suppose that a surface S has a vector equation

r(u,v) = x(u,v)i +y,v)j + z(u,v) k

(u,v) €D

We first assume that the parameter domain D is a rectangle and we divide it into subrect-
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FIGURE 1

We assume that the surface is covered only
once as (U, v) ranges throughout D. The value
of the surface integral does not depend on the
parametrization that is used.

SECTION 16.7 SURFACE INTEGRALS 1135

angles R with dimensions Au and Av. Then the surface S is divided into corresponding
patches S;; asin Figure 1. We evaluate f at a point P in each patch, multiply by the area
AS;; of the patch, and form the Riemann sum

3

> f(PF) AS;
1j=1

Then we take the limit as the number of patches increases and define the surface integral
of f over the surface S as

=% =1 j=1

1] ff f(x,y,2)ds = lim S if(PH*)Asij

Notice the analogy with the definition of aline integral (16.2.2) and also the analogy with
the definition of a double integral (15.1.5).

To evaluate the surface integral in Equation 1 we approximate the patch area AS;; by the
area of an approximating parallelogram in the tangent plane. In our discussion of surface
areain Section 16.6 we made the approximation

ASij = |ry X r,|AuAv

ox . ay . J ox . ay . J
where I’u=—|+—yj+—zk ry=_|+—yj+—zk
Jau au Ju Jv Jv Jdv

are the tangent vectors at a corner of Sj;. If the components are continuous and r, and r,
are nonzero and nonparallel in the interior of D, it can be shown from Definition 1, even
when D is not arectangle, that

2] ([ £y 22 ds = [ (e, o)1 x 1. dA

This should be compared with the formula for aline integral:

jc f(x,y,z) ds = L" f(r() | r'(t) | dt
Observe also that

[[rds={[Irxr|da=A®)

S D

Formula 2 allows us to compute a surface integral by converting it into a double inte-
gral over the parameter domain D. When using this formula, remember that f(r(u, »)) is
evaluated by writing x = x(u, v), y = y(u, v), and z = z(u, ») in the formulafor f(x, y, z).

Compute the surface integral ([, x*dS, where S is the unit sphere
X2+ y2+z2=1

SOLUTION Asin Example 4 in Section 16.6, we use the parametric representation

X=8n¢ cosfd y=sndsnhd z=cos¢p O<od=<7m 0=<6O<27

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1136 CHAPTER 16 VECTOR CALCULUS

Here we use the identities
cos’6 = 3 (1 + cos 26)
sin’p = 1 — cos’p

Instead, we could use Formulas 64 and 67 in
the Table of Integrals.

that is, r(¢, ) = sing coshi + sing sinfj + cos¢ k

Asin Example 10 in Section 16.6, we can compute that

|ry X rg| =sing

Therefore, by Formula 2,
ﬂ x2dS = ﬂ (sing cosh)?|ry X ry|dA
S D
. 27 (7. 2 2 . o (2 T . 3
—fo fo sin cbcoseansdq')de—JO cos?0 dé fo sin®¢ do

= fozw%(l + c0s 26) d fow (sin¢ — sing cos’g) d¢

— o+ Lsin 20]5”[—cos¢+%cos3¢]g=4—3w —

Surface integral s have applications similar to those for the integrals we have previously
considered. For example, if athin sheet (say, of aluminum foil) has the shape of a surface
S and the density (mass per unit area) at the point (X, y, z) is p(X, Y, z), then the total mass
of the sheet is

m = H p(x,y, z)dS

and the center of mass is (X, Y, z), where
x=—[[xptyads  y=—[[yptyads 2= ([ zp(xy,2)ds
m S m S m S

Moments of inertia can also be defined as before (see Exercise 41).

I Graphs

Any surface S with equation z = g(x, y) can be regarded as a parametric surface with para-
metric equations

X=x y=y z=gXyY)

. d . d
and so we have rx=|+<—g>k ry=J+<—g>k
aX ay
Thus
dg . 9g .
X ry=—i—-——j+Kk
(3] re X ry Pl ayj

2 2
and rxxry|=\/<%> +(g—;> +1
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SECTION 16.7 SURFACE INTEGRALS 1137

Therefore, in this case, Formula 2 becomes

[4] g f(x,y,2) dS = g f(x, ¥, 9(x y) \/(%y - <2—;>2 + 1dA

Similar formulas apply when it is more convenient to project S onto the yz-plane or
xz-plane. For instance, if S is a surface with equation y = h(x, z) and D is its projection
onto the xz-plane, then

fx 2 d5 = ([ 062+ () + () + 10a
< 5 oX Jz

[E7ITF Evauate ([, y dS, whereSisthesurfacez = x + y?2,0<x<1,0<y<2
(SeeFigure 2)

SOLUTION Since

Jdz Jdz
—=1 ad —=
X ay 2

Formula 4 gives

FIGURE 2 g yds = fo y\/l + <%>2 + (2—;)2 dA

= fol fozym dy dx

~ [axvZ [FyIT 27 dy

13y2

I HERE Y =

If S is apiecewise-smooth surface, that is, afinite union of smooth surfacesS;, S, .. .,

S, that intersect only along their boundaries, then the surfaceintegral of f over S isdefined
by

ﬁf(x,y,z) ds = ﬁf(x, y,z)dS + - -+ + ﬂf(x,y,z) ds

1 TN Evaluate ([, z dS, where S is the surface whose sides S, are given by the
cylinder x? + y? = 1, whose bottom S, isthe disk x* + y? < 1intheplanez = 0, and
whose top S; isthe part of the planez = 1 + x that lies above S,.

SOLUTION The surface S is shown in Figure 3. (We have changed the usual position of
the axes to get a better look at S.) For S; we use 6 and z as parameters (see Example 5
in Section 16.6) and write its parametric equations as

X = cos6 y =sno z=7z

S, where
FIGURE 3 0<0<27m and O0ssz=<1+x=1+cosé
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Therefore
i j k
e X r,=|—sinf cosf O|=cosOi + sind]j
0 0 1

and |re X r.| =+/cos?0 + sin?6 = 1

Thus the surface integral over S; is

gzd8=gz|rgx I’Z|dA

_ 27 ("1+cos6 _ 277-; 2
L fo zdzdo fo L(1 + cosh)?de

= %f;” [1+ 2cos6 + 2(1 + cos26)] do

- . T 3
—1[20 + 2sino + tsin 20 =77T

Since S; liesin the plane z = 0, we have

gzds=ﬂ’0ds=o

Sz

The top surface S; lies above the unit disk D and is part of the planez = 1 + x. So,
taking g(x, y) = 1 + x in Formula 4 and converting to polar coordinates, we have

ffeos-ffas a1 (2] (Z) o

= fozvfol (1+rcosf)y/I+1+O0rdrdo

= \/EJ:’TJ: (r + r2cos6) dr do

= \/ELZW (3 + 3cos6) de

aft-]-a
Therefore

gzd8=gzds+gzds+gzd8

:3777+0+\/§7T=(%+\/§)7T —

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



‘\\1/
Wy

/

FIGURE 4

-

A Mobius strip
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Visual 16.7 shows a Mdbius strip
with a normal vector that can be moved along

the surface.

FIGURE 6

FIGURE 5

Constructing a Mobius strip

n,

SECTION 16.7 SURFACE INTEGRALS 1139

[ Oriented Surfaces

To define surface integrals of vector fields, we need to rule out nonorientabl e surfaces such
as the Madbius strip shown in Figure 4. [It is named after the German geometer August
Mobius (1790-1868).] You can construct one for yourself by taking a long rectangular
strip of paper, giving it a half-twist, and taping the short edges together as in Figure 5.
If an ant were to crawl along the Mdbius strip starting at a point P, it would end up on
the “other side” of the strip (that is, with its upper side pointing in the opposite direction).
Then, if the ant continued to crawl in the same direction, it would end up back at the
same point P without ever having crossed an edge. (If you have constructed a M 6bius strip,
try drawing a pencil line down the middle.) Therefore a Mébius strip realy has only
one side. You can graph the Mobius strip using the parametric equations in Exercise 32 in
Section 16.6.

B D
> <«

C
z Y

From now on we consider only orientable (two-sided) surfaces. We start with a surface
S that has atangent plane at every point (X, y, z) on S (except at any boundary point). There
are two unit normal vectorsn; and n, = —n; at (X, Y, z). (See Figure 6.)

If it is possible to choose a unit normal vector n at every such point (x, y, z) so that n
varies continuously over S, then S is called an oriented surface and the given choice of n
provides S with an orientation. There are two possible orientations for any orientable sur-
face (see Figure 7).

FIGURE 7
The two orientations
of an orientable surface

For a surface z = g(x, y) given as the graph of g, we use Equation 3 to associate with
the surface a natural orientation given by the unit normal vector

J d
- Yy

5] . X azy :
Ve () (3)
aX ay
Since the k-component is positive, this gives the upward orientation of the surface.

If S is a smooth orientable surface given in parametric form by a vector function
r(u, v), then it is automatically supplied with the orientation of the unit normal vector

(6] n

and the opposite orientation is given by —n. For instance, in Example 4 in Section 16.6 we

X,
[ro Xr,|

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1140 CHAPTER 16 VECTOR CALCULUS

X

FIGURE 10

found the parametric representation
r(¢, 0) =asing cosfi + asing sinfj + acosek
for the sphere x? + y? 4+ z? = a2 Then in Example 10 in Section 16.6 we found that
re X ry=a’sin’ cosfi + a’sin’p sinfj + a’sin¢ cos¢ k
and [ry X ry| =a’sing
So the orientation induced by r (¢, 6) is defined by the unit normal vector

re Xr . . . L 1
n=—2""""—dn¢coshi + sng sindj + cospk = =r(¢, 0)
Fe X rof a

Observe that n pointsin the same direction as the position vector, that is, outward from the
sphere (see Figure 8). The opposite (inward) orientation would have been obtained (see
Figure 9) if we had reversed the order of the parameters becauser, X ry = —ry X 1.

z

X
FIGURE 8 FIGURE 9
Positive orientation Negative orientation

For a closed surface, that is, a surface that is the boundary of a solid region E, the
convention is that the positive orientation is the one for which the normal vectors point
outward from E, and inward-pointing normals give the negative orientation (see Figures 8
and 9).

I Surface Integrals of Vector Fields

Suppose that S is an oriented surface with unit normal vector n, and imagine a fluid with
density p(x,y, z) and velocity field v(x, y, z) flowing through S. (Think of S as an imagi-
nary surface that doesn’t impede the fluid flow, like afishing net across a stream.) Then the
rate of flow (mass per unit time) per unit areais pv. If we divide S into small patches Sjj,
as in Figure 10 (compare with Figure 1), then S;; is nearly planar and so we can approxi-
mate the mass of fluid per unit time crossing S;; in the direction of the normal n by the
quantity
(pV . n)A(Si,—)

where p, v, and n are evaluated at some point on Sj;. (Recall that the component of the vec-
tor pv in the direction of the unit vector n is pv - n.) By summing these quantities and tak-
ing the limit we get, according to Definition 1, the surface integral of the function pv - n
over S:

ﬂ pv - nds = ﬂ p(X, ¥, 2)V(X, Y, 2) - n(X,y, z) dS

and thisisinterpreted physicaly as the rate of flow through S.
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Compare Equation 9 to the similar expression
for evaluating line integrals of vector fields in
Definition 16.2.13:

jc F-dr = ‘[: F(r(t) - r'(t) dt

Figure 11 shows the vector field F in Example 4
at points on the unit sphere.

NN
RN
T

FIGURE 11

SECTION 16.7 SURFACE INTEGRALS 114

If we write F = pv, then F is also a vector field on R* and the integral in Equation 7

becomes
g F-nds

A surface integral of this form occurs frequently in physics, even when F isnot pv, and is
called the surface integral (or flux integral) of F over S.

Definition If F isa continuous vector field defined on an oriented surface S
with unit normal vector n, then the surface integral of Fover Sis

ﬂF-dS=gF-ndS

S

Thisintegral is also called the flux of F across S.

In words, Definition 8 says that the surface integral of a vector field over S is equal to
the surface integral of its normal component over S (as previously defined).

If Sisgiven by avector function r (u, »), then n is given by Equation 6, and from Defi-
nition 8 and Equation 2 we have

re Xr,
F-ds— ([ F
Q jsf [Ty X r,|
re Xr,
=J.J |:F(I’(U,1))) 'W]“u X r,,| dA
5 v

where D is the parameter domain. Thus we have

ﬁF-dS=f Fe(reXr,)dA

S D

(9]

[E7YZT Find the flux of the vector field F(x, Y, z) = zi + y| + x k across the unit
sphere x? + y?2 + 22 = 1.

SOLUTION Asin Example 1, we use the parametric representation

r(¢, ) = sing cosfi + sing sin 6 + cosg k Osop=<m 0=<60=<27w

Then F(r(¢, 6)) = cos¢i + sing sinfj + sing cosh k
and, from Example 10 in Section 16.6,

re X ro=sin’p cosfi + sinp sin@j + sin¢ cos¢ k
Therefore

F(r(¢, 0)) « (ry X ry) = cos¢ sin®p cosh + sinp sin?0 + sin?p cos¢ coso
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1142 CHAPTER 16 VECTOR CALCULUS

and, by Formula 9, the flux is

ﬂF-ds=j Fe(rs X ry)dA

S D

= LZW foﬂ (2sin%} cos¢ cos@ + sin’ep sin?6) dep d6
o T .9 2 T . 3 2T . 2
= Zfo sin‘¢ cos¢ dg fo cos6do + fo sing d¢ fo sinf6de

=0+ Joﬂsinsd) d¢ LZWSMZO de (sincel‘:ﬁcosﬁdﬁ = O)

by the same calculation as in Example 1. [

If, for instance, the vector field in Example 4 is avelocity field describing the flow of a
fluid with density 1, then the answer, 4/3, represents the rate of flow through the unit
sphere in units of mass per unit time.

Inthe case of asurface S given by agraph z = g(x, y), we can think of x and y as param-
eters and use Equation 3 to write

F-(rxxry)=(Pi+Qj+Rk)-<—%i—g—§j+k>

Thus Formula 9 becomes

fF-ds=ﬂ<—P%—Qﬂ+R>dA

S D ay

This formula assumes the upward orientation of S; for a downward orientation we multi-
ply by —1. Similar formulas can be worked out if Sisgiven by y = h(x, z) or x = k(y, z).
(See Exercises 37 and 38.)

I EOUTEE] Evaluate ([ F - dS, whereF(x,y,z) =yi + xj + zk andSisthe
boundary of the solid region E enclosed by the paraboloid z = 1 — x? — y? and the
planez = 0.

SOLUTION S consists of a parabolic top surface S; and a circular bottom surface S,. (See
Figure 12.) Since S is a closed surface, we use the convention of positive (outward)
orientation. This means that S; is oriented upward and we can use Equation 10 with
D being the projection of S; onto the xy-plane, namely, the disk x? + y? < 1. Since

P(x,y,z) =y Q(x,y,z) = x RX,y,z) =z=1—x2—y?
X
onS; and %9 _ X %9 _
FIGURE 12 X ay
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SECTION 16.7 SURFACE INTEGRALS 1143

we have
d d
[[F-as= j(—P—i——Q—g+ngA
ax ay
Sy D
= || [=y(=20 = x(=2) + 1 - x* ~ y*]dA
D
= || L+ 4xy — x* — y?)dA
D
= f”jl(l + 4r2cosf sin® — r?)rdr d6
0 0
= fﬁfl (r — r®+ 4r3cos6 sin6) dr do
0 0
= |77 (3 + coso sing) do = j(2m) + 0= g
Thedisk S, is oriented downward, so its unit normal vector isn = —k and we have

ﬂF-ds=ﬁF-(—k)ds=ﬂ (—z)dA=ﬁOdA=0

sincez = 0 on S,. Finally, we compute, by definition, [, F - dS as the sum of the sur-
face integrals of F over the pieces S; and S:

ﬂF-dS=ﬂF-dS+gF-dS=g+O

S S:

T |
2

Although we motivated the surface integral of avector field using the example of fluid
flow, this concept also arises in other physical situations. For instance, if E is an electric
field (see Example 5 in Section 16.1), then the surface integral

fSJ'E-dS

is called the electric flux of E through the surface S. One of the important laws of electro-
statics is Gauss's L aw, which says that the net charge enclosed by a closed surface S is

[11] Q=2|[ E-ds

where gq isaconstant (called the permittivity of free space) that depends on the units used.
(In the SI system, g, =~ 8.8542 X 10~** C?%/N-m?) Therefore, if the vector field F in
Exarrlple 4 represents an electric field, we can conclude that the charge enclosed by S is
Q = 3meo.

Another application of surface integrals occurs in the study of heat flow. Suppose the
temperature at a point (x, y, z) in abody isu(x, y, z). Then the heat flow is defined as the
vector field

F=-KVu
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1144 CHAPTER 16 VECTOR CALCULUS

where K is an experimentally determined constant called the conductivity of the sub-
stance. The rate of heat flow across the surface S in the body is then given by the surface

integral
F-dS=—-K || Vu-dS
I ]
1 E7YTEET The temperature u in ametal ball is proportional to the square of the

distance from the center of the ball. Find the rate of heat flow across a sphere S of
radius a with center at the center of the ball.

SOLUTION Taking the center of the ball to be at the origin, we have
ux,y,z) = C(x2 + y2 + z?)
where C is the proportionality constant. Then the heat flow is
F(x,y,z) = =K Vu = —KC(2xi + 2yj + 2zk)
where K is the conductivity of the metal. Instead of using the usual parametrization of

the sphere asin Example 4, we observe that the outward unit normal to the sphere
X2+ y? + z2 = a%at the point (x, Y, z) is

n=%(xi+yj + z k)

2KC
and so F-nz—T(x2+y2+zz)

But on S we have x? + y? + z2 = a% s0 F - n = —2aKC. Therefore the rate of heat
flow across S is

gF-dS=JSfF-ndS=—2aKCJSde

= —2aKCA(S) = —2aKC(4ma?) = —8KCma® [
m Exercises
1. Let S be the boundary surface of the box enclosed by the 3. Let H be the hemisphere x? + y2 + 22 = 50, z = 0, and
planesx = 0,x =2,y = 0,y = 4,z = 0, and z = 6. Approx- suppose f is a continuous function with (3, 4, 5) = 7,
imate [f, e *****? dS by using a Riemann sum as in Defini- f(3,—4,5) = 8, f(—3,4,5 = 9, and f(—3, —4,5) = 12.
tion 1, taking the patches S;; to be the rectangles that are the By dividing H into four patches, estimate the value of
faces of the box S and the points P;} to be the centers of the “[H f(x,y, z) dS.

rectangles.

4. Suppose that f(x, Y, z) = g(\/XZ +y2+ 22), wheregisa
function of one variable such that g(2) = —5. Evaluate
ffs f(x,y,2) dS, where S isthe sphere x* + y* + z* = 4.

2. A surfaceS consists of the cylinder x2 + y? =1, -1 <z<1,
together with its top and bottom disks. Suppose you know that
f is a continuous function with

f(=1,0,0 =2 f(0,*+1,0 =3 f(0,0, 1) =4 5-20 Evaluate the surface integral.

Estimate the value of [[ f(x, y, z) dS by using a Riemann sum, 5 [[(x+y+2dS,

taking the patches S;; to be four quarter-cylinders and the top S isthe parallelogram with parametric equationsx = u + v,
and bottom disks. y=u-vz=1+20+0,0su<20=<v=<1

Computer algebra system required 1. Homework Hints available at stewartcal culus.com
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10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. [fyxyz dS,
S is the cone with parametric equations x = u cos v,
y=usny,z=u0<us<10<y<7/2

. [y y dS, Sisthe helicoid with vector equation
r(u,v) =(ucosv,usiny,v),0<us<10<v<nw
. Jfs (X2 + y?) ds,
S is the surface with vector equation
r(u,v) = (2up,u? — v}, u? + v?), U+ v¥<1
. [fs x?yz dS,
Sisthepart of the planez = 1 + 2x + 3y that lies above the
rectangle [0, 3] X [0, 2]

Hs Xz dS,
S isthe part of the plane 2x + 2y + z = 4 that liesin the first
octant

| x ds,
S isthe triangular region with vertices (1, 0, 0), (0, —2, 0),
and (0, 0, 4)

Jfsy s,

Sisthesurfacez = 5(x¥? + y¥?),0<x<1,0
ff x?z2dS,

S isthe part of the cone z2 = x? + y? that lies between the
planesz = landz = 3

‘l:"szdS,
Sisthesurfacex =y + 222,0<y<10<:<1

Jlsy as,
S isthe part of the paraboloidy = x? + z? that liesinside the
cylinder x? + 22 =4

Ifs y* ds,
S isthe part of the sphere x? + y? + z2 = 4 that lies
inside the cylinder x? + y? = 1 and above the xy-plane

sy=s1

Hs (x%z + y?z)dS,

Sisthe hemisphere x? + y?> + z2 =4,z =0

J‘s Xz dS,
S isthe boundary of the region enclosed by the cylinder
y>+ z2=9andtheplanesx = 0andx +y =5

|5 (z + x?y) dS,
S isthe part of the cylinder y? + z2 = 1 that lies between the
planesx = 0 and x = 3 in the first octant

ffs (x* + y? + 22)dS,
S isthe part of the cylinder x? + y? = 9 between the planes
z = 0andz = 2, together with its top and bottom disks

21-32 Evaluate the surface integral || F - dS for the given vector

field F and the oriented surface S. In other words, find the flux of F
across S. For closed surfaces, use the positive (outward) orientation.

21

. F(X,y,2) =z i — 3V + xyk,
S isthe parallelogram of Exercise 5 with upward orientation

22

23.

24.

25.

26.

21.

28.

29.

30.

31.

32.

SECTION 16.7 SURFACE INTEGRALS 1145
F(x,y,2) = zi +yj + xk,
S isthe helicoid of Exercise 7 with upward orientation

F(x,y,z) = xyi + yzj + zxk, Sisthe part of the
paraboloid z = 4 — x? — y? that lies above the square
0=x=1 0=y =1 and has upward orientation

F(x,y,z) = —xi —yj + 23k,
S isthe part of the cone z = /x? + y? between the planes
z = landz = 3 with downward orientation

F(x,y,z) = xi —zj + yk,
S isthe part of the sphere x? + y? + z? = 4 in the first octant,
with orientation toward the origin

F(x,y,2) = xzi + xj +yk,
S isthe hemisphere x> + y2 + z2 = 25,y = 0, oriented in the
direction of the positive y-axis

Fx,y,2) =vyj — zk,
S consists of the paraboloidy = x2 4+ z4, 0 <y < 1,
and thedisk x> + z2<1,y=1

F(x,y,z) = xyi + 4x?] + yzk, Sisthesurfacez = xe’,
0=<x=<1,0<y =<1, withupward orientation

F(x,y,z) = xi + 2yj + 3k,
S isthe cube with vertices (=1, =1, +1)

F(x,y,z) = xi +yj + 5k, Sistheboundary of the region
enclosed by the cylinder x* + z> = 1 and the planesy = 0
andx +y=2

F(x,y,z) = x?i +y? + z%k, S isthe boundary of the solid
haf-cylinder 0<z<,1-y2,0<x<2

F(x,y,2) =yi+ (z—y)] + xk,

S isthe surface of the tetrahedron with vertices (0, 0, 0),
(1,0,0),(0,1,0),and (0,0, 1)

33.
34

3.

CAS| 36.

31.

Evaluate ([, (x> + y? + z?)dS correct to four decimal places,
whereS isthesurfacez = xe’,0<x< 1,0y =<1

Find the exact value of ([, x?yz dS, where S isthe surface
z=xy,0=sx=<10=<y=<1

Find the value of ||, x*y??dS correct to four decimal places,
where S is the part of the paraboloid z = 3 — 2x* — y? that
lies above the xy-plane.

Find the flux of
F(X, Y, Z) = Sin(xyz) i+ Xzyj + z2*/5K

across the part of the cylinder 4y? + z2 = 4 that lies above
the xy-plane and between the planes x = —2 and x = 2 with
upward orientation. Illustrate by using a computer algebra sys-
tem to draw the cylinder and the vector field on the same
screen.

Find aformulafor [, F - dS similar to Formula 10 for the case
where S isgiven by y = h(x, z) and n is the unit normal that
points toward the left.
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38.

39.

40.

4.

42.

43.

m Stokes’ Theorem

FIGURE 1

CHAPTER 16 VECTOR CALCULUS

Find aformulafor |, F - dS similar to Formula 10 for the case
where S isgiven by x = k(y, z) and n is the unit normal that
points forward (that is, toward the viewer when the axes are
drawn in the usua way).

Find the center of mass of the hemisphere x? + y2 + z2 = a?
z = 0, if it has constant density.

Find the mass of athin funnel in the shape of a cone
z=4/X2+y?, 1< z<4,if itsdensity function is
p(x,y,z) =10 — z.

(8 Give anintegral expression for the moment of inertial.
about the z-axis of athin sheet in the shape of a surface S if
the density function is p.

(b) Find the moment of inertia about the z-axis of the funnel in
Exercise 40.

Let S be the part of the sphere x? + y? + 22 = 25 that lies
above the plane z = 4. If S has constant density k, find

(@) the center of mass and (b) the moment of inertia about
the z-axis.

A fluid has density 870 kg/m® and flows with velocity
v=rzi+y?] 4+ x%k,wherex, y, and z are measured in
meters and the components of v in meters per second. Find the
rate of flow outward through the cylinder x? + y2 = 4,
Osz=s1

a4

45.

46.

47.

48.

49.

Seawater has density 1025 kg/m? and flows in a velocity field
v=yi+ xj,wherex,y, and z are measured in meters and the
components of v in meters per second. Find the rate of flow
outward through the hemisphere x> + y2 + z2 =9,z = 0.

Use Gauss's Law to find the charge contained in the solid
hemisphere x? + y2 + 7> < a? z = 0, if the electric field is

E(x,y,z) =xi +yj + 2zk

Use Gauss's Law to find the charge enclosed by the cube
with vertices (=1, =1, +1) if the electric field is

E(X,y,z) =xi +yj+zk

The temperature at the point (X, y, z) in a substance with con-
ductivity K = 6.5isu(x, y, z) = 2y? + 2z Find the rate of
heat flow inward across the cylindrical surface y? + 2% = 6,
0=x=<4

The temperature at a point in a ball with conductivity K is
inversely proportional to the distance from the center of the
ball. Find the rate of heat flow across a sphere S of radius a
with center at the center of the ball.

Let F be an inverse square field, that is, F(r) = cr/|r |* for
some constant ¢, wherer = xi + yj + z k. Show that the flux
of F across a sphere S with center the origin is independent of
the radius of S.

Stokes' Theorem can be regarded as a higher-dimensional version of Green's Theorem.
Whereas Green's Theorem relates adoubleintegral over aplaneregion D to aline integral
around its plane boundary curve, Stokes' Theorem relates a surface integral over a surface
Stoalineintegral around the boundary curve of S (whichisaspace curve). Figure 1 shows
an oriented surface with unit normal vector n. The orientation of S induces the positive
orientation of the boundary curve C shown in the figure. This means that if you walk in
the positive direction around C with your head pointing in the direction of n, then the sur-
face will always be on your left.

Stokes’ Theorem Let S be an oriented piecewise-smooth surface that is bounded
by a simple, closed, piecewise-smooth boundary curve C with positive orientation.
Let F be a vector field whose components have continuous partial derivatives on
an open region in R* that contains S. Then

LF-dr=gcurlF-dS

Since

LF-dr:LF-Tds

and ﬂ curIF-dS=ﬂ curl F - ndS
S

S

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 16.8 STOKES' THEOREM 1147

George Stokes Stokes' Theorem says that the line integral around the boundary curve of S of the tangen-
Stokes' Theorem is named after the Irish mathe- 118 COMponent of F is equal to the surface integral over S of the normal component of the
matical physicist Sir George Stokes (1819-1903).  curl of F.

Stokes was a professor at Cambridge University The positively oriented boundary curve of the oriented surface S is often written as

(in fact he held the same position as Newton, S, so Stokes' Theorem can be expressed as
Lucasian Professor of Mathematics) and was

especially noted for his studies of fluid flow

and light. What we call Stokes’ Theorem was II] ﬂ curl F-dS = f F-.dr
actually discovered by the Scottish physicist S as

Sir William Thomson (1824-1907, known as
Lord Kelvin). Stokes learned of this theorem

in a letter from Thomson in 1850 and asked There is an analogy among Stokes' Theorem, Green’s Theorem, and the Fundamental
students fo prove it on an examination at Theorem of Calculus. As before, there is an integral involving derivatives on the |eft side
Cambridge University in 1854, We don'tknow ¢ 0y iaion 1 (recall that curl F is asort of derivative of F) and the right side involves the
if any of those students was able to do so.

values of F only on the boundary of S.

In fact, in the special case where the surface S is flat and lies in the xy-plane with
upward orientation, the unit normal is k, the surface integral becomes a double integral,
and Stokes' Theorem becomes

LF-dr =£f curlF-dS=£f (curl F) - k dA

Thisis precisely the vector form of Green's Theorem given in Equation 16.5.12. Thus we
see that Green’s Theorem isreally a special case of Stokes' Theorem.

Although Stokes Theorem is too difficult for us to prove in its full generality, we can
give aproof when S isagraph and F, S, and C are well behaved.

PROOF OF A SPECIAL CASE OF STOKES' THEOREM We assume that the equation of S is
z = g(x,y), (X,y) € D, where g has continuous second-order partial derivatives and D
isasimple plane region whose boundary curve C; correspondsto C. If the orientation of
S isupward, then the positive orientation of C corresponds to the positive orientation of
Ci. (SeeFigure2.)) Weareasogiventhat F = Pi + Q| + Rk, wherethe partial deriva-
tivesof P, Q, and R are continuous.

Since S isagraph of afunction, we can apply Formula 16.7.10 with F replaced by
curl F. Theresultis

N

[2] ﬂcurlF-dS
K N e
A ay 9z ) ox az  ax ) ay ax oy

where the partia derivatives of P, Q, and R are evaluated at (x, y, g(X, y)). If

FIGURE 2

X = X(t) y =y ast<b

is a parametric representation of C,, then a parametric representation of C is

x=x® y=y® z=gx®,y0) ast<b
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FIGURE 3

CHAPTER 16 VECTOR CALCULUS

This allows us, with the aid of the Chain Rule, to evaluate the line integral as follows:

b
[ F-dr= <P—+Q—+ Ra>dt

dy dz dx 9z dy
+Rl ——+ ——
[ dt R(ax dt  ay dt)] dt

f
-
(lleees)s(om5) )
[
|

(o 22)ocs (0 n )
[ (erng) 5 (eenii) o

where we have used Green’s Theorem in the last step. Then, using the Chain Rule again
and remembering that P, Q, and R are functions of x, y, and z and that z is itself a function
of x and y, we get

9 9Q 9 R o R 9z 9 9?
jp.dr=ﬂ 9Q 9Q38 R ORI 0z
c X 9z 9x  OX ay 9z IX ay aX ay
D

P 0P 9z OR 9z IR 9z oz 9%z
-4+ ——+ ——— 4R dA
oy 9z 9y 9y OX 9z dy oX ay ox

Four of the terms in this double integral cancel and the remaining six terms can be
arranged to coincide with the right side of Equation 2. Therefore

LF-dr=chrIF-dS |
S

7 [ETUTEEN Evaluate | F - dr, where F(x, y, z) = —y?i + X j + z2k and C is the
curve of intersection of the plane y + z = 2 and the cylinder x? + y? = 1. (Orient C to
be counterclockwise when viewed from above.)

SOLUTION The curve C (an ellipse) is shown in Figure 3. Although | F - dr could be
evaluated directly, it’s easier to use Stokes” Theorem. We first compute

i j k
0 d d
IF=|— — —|=01+2)k
our ox ay oz ( )
_yz X -2

Although there are many surfaces with boundary C, the most convenient choice is the
elliptical region S in the plane y + z = 2 that is bounded by C. If we orient S upward,
then C has the induced positive orientation. The projection D of S onto the xy-plane is
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FIGURE 4

SECTION 16.8 STOKES' THEOREM 1149
the disk x? + y2? < 1 and so using Equation 16.7.10 with z = g(x, y) = 2 — y, we have
ch-dr=£f curlF-dszg (1 + 2y) dA
27 (1 .
= fo fg (14 2rsin®) rdrdo
2m | r? r ' 2L o
= L [7 + 2?sm0]0d0= fo (5 + gsme) de
=i2m+0=m L

I NI Use Stokes” Theorem to compute the integral ([, curl F - dS, where
F(x,y,z) = xzi + yzj + xy kand S is the part of the sphere x> + y? + z? = 4 that
lies inside the cylinder x* + y? = 1 and above the xy-plane. (See Figure 4.)

SOLUTION To find the boundary curve C we solve the equations x*> + y? + z2 = 4 and
x2 + y? = 1. Subtracting, we get z2 = 3 and so z = /3 (since z > 0). Thus C is the
circle given by the equations x? + y2 = 1, z = /3. A vector equation of C is

rit) =costi +sintj++/3k 0<t<2nx
S0 r'(t) = —sinti + costj
Also, we have

F(r(t) = v/3costi + /3 sintj + costsintk

Therefore, by Stokes” Theorem,

[[eurtF-ds = [ F-dr=["F(r) - rd

S C 0
= foh(—\/? costsint + /3 sintcost) dt
=¢§f02”0dt=o —

Note that in Example 2 we computed a surface integral simply by knowing the values
of F on the boundary curve C. This means that if we have another oriented surface with
the same boundary curve C, then we get exactly the same value for the surface integral!

In general, if S; and S, are oriented surfaces with the same oriented boundary curve C
and both satisfy the hypotheses of Stokes’ Theorem, then

(3] ﬂcurlF-dS=LF'dr=ﬂcurlF-dS
Si S,

This fact is useful when it is difficult to integrate over one surface but easy to integrate
over the other.

We now use Stokes” Theorem to throw some light on the meaning of the curl vector.
Suppose that C is an oriented closed curve and v represents the velocity field in fluid flow.
Consider the line integral

fcv-drzfcv-Tds
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and recall that v - T is the component of v in the direction of the unit tangent vector T.
This means that the closer the direction of v is to the direction of T, the larger the value of
v+ T.Thus f.v - dris a measure of the tendency of the fluid to move around C and is
called the circulation of v around C. (See Figure 5.)

C v v

FIGURE 5 (a) [.v-dr>0, positive circulation (b) v -dr <0, negative circulation

Now let Po(Xo, Yo, zo) be a point in the fluid and let S, be a small disk with radius a and
center Po. Then (curl F)(P) = (curl F)(Po) for all points P on S, because curl F is contin-
uous. Thus, by Stokes” Theorem, we get the following approximation to the circulation
around the boundary circle C:

L v-dr=ﬂcurlv-d8=ﬂcurlv-ndS
a Sa

Sa

~ j J curl v(Po) + n(Py)dS = curl v(Po) + n(Po)ma’

Imagine a tiny paddle wheel placed in the This approximation becomes better as a — 0 and we have
fluid at a point P, as in Figure 6; the paddle
wheel rotates fastest when its axis is parallel 1
tocurl v. (4] curl v(Po) * n(Po) = !m 7 Lav -dr
curl v
Equation 4 gives the relationship between the curl and the circulation. It shows that
curl v - n is a measure of the rotating effect of the fluid about the axis n. The curling effect
( is greatest about the axis parallel to curl v.
> Finally, we mention that Stokes’ Theorem can be used to prove Theorem 16.5.4 (which
\_‘» states that if curl F = 0 on all of R®, then F is conservative). From our previous work
(Theorems 16.3.3 and 16.3.4), we know that F is conservative if fc F - dr = 0 for every

FIGURE 6

closed path C. Given C, suppose we can find an orientable surface S whose boundary is
C. (This can be done, but the proof requires advanced techniques.) Then Stokes’ Theorem
gives

LF-dr=gcurIF-dS=J!O-dS=O
A curve that is not simple can be broken into a number of simple curves, and the integrals

around these simple curves are all 0. Adding these integrals, we obtain | F - dr = 0 for
any closed curve C.
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m Exercises

SECTION 16.8 STOKES' THEOREM 1151

1. A hemisphere H and a portion P of a paraboloid are shown.
Suppose F is a vector field on R® whose components have con-
tinuous partial derivatives. Explain why

ﬂcurlF-dS=ﬂcurlF-dS
H P

\

7|

X

ASSN
RS

TR

o
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2

g
[17
[T

4 ST
H £52 S0 N
&7 ISSE
NSSS=S===Th) (N ———
SSS= s N
Y — 0 Ny
NSSS====20) N
N —— ——a NS
N ——] ——c Q=
NS AS S
X 2 2 y X 2 2 y

2-6 Use Stokes’ Theorem to evaluate |[, curl F - dS.

2. F(x,y,z) = 2ycoszi+ e*sinzj + xe'k,
S is the hemisphere x? + y? + z2 =9, z = 0, oriented
upward

3. F(x,y,2) = x22%0 + y%22j + xyz Kk,
S is the part of the paraboloid z = x2 + y? that lies inside the
cylinder x? + y? = 4, oriented upward

4. F(x, vy, z) = tan }(x2yz?) i + x%yj + x%2°k,
S is the cone x = /y2 + z2, 0 < x < 2, oriented in the direc-
tion of the positive x-axis

5. F(X,y,2) = xyzi + xyj + x?yzk,
S consists of the top and the four sides (but not the bottom)
of the cube with vertices (+1, =1, +1), oriented outward

6. F(x,y,2) =e¥i+ e“j + x%zk,
S is the half of the ellipsoid 4x? + y? 4+ 4z% = 4 that lies to

the right of the xz-plane, oriented in the direction of the
positive y-axis

7-10 Use Stokes’ Theorem to evaluate [ F - dr. In each case C is
oriented counterclockwise as viewed from above.

7. F(x, ¥, 2) = (x + y2) i+ (y + 22)j + (z + x?) K,
C is the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1)

8 F(x,y,2) =i+ (x+y)j+ (xy—vz)k

C is the boundary of the part of the plane 3x + 2y + z =1
in the first octant

9. F(x,y,2) =yzi + 2xzj + eV Kk,
Cisthecirclex? + y>=16,z=5

Graphing calculator or computer required

10. F(x,y,z) = xyi + 2zj + 3yk, Cisthe curve of intersec-
tion of the plane x + z = 5 and the cylinder x? + y?> = 9

11. (a) Use Stokes’ Theorem to evaluate J‘C F - dr, where
F(x,y,z) = x%zi + xy?j + 22k

and C is the curve of intersection of the plane
X +y + z = 1 and the cylinder x> + y2 = 9 oriented
counterclockwise as viewed from above.

A (b) Graph both the plane and the cylinder with domains

chosen so that you can see the curve C and the surface
that you used in part (a).

an (c) Find parametric equations for C and use them to graph C.

12. (a) Use Stokes’ Theorem to evaluate J‘C F - dr, where
F(x,y,z) = x2yi + :x®j + xy k and C is the curve of
intersection of the hyperbolic paraboloid z = y? — x? and

the cylinder x? 4+ y? = 1 oriented counterclockwise as
viewed from above.

A (b) Graph both the hyperbolic paraboloid and the cylinder
with domains chosen so that you can see the curve C and
the surface that you used in part (a).

A (c) Find parametric equations for C and use them to graph C.

13-15 Verify that Stokes’ Theorem is true for the given vector
field F and surface S.

13. F(X,y,z) = —yi+xj— 2k,
S is the cone z2 = x® + y?, 0 < z < 4, oriented downward
14. F(x,y,z) = —2yzi +yj + 3xKk,
S is the part of the paraboloid z = 5 — x* — y? that lies
above the plane z = 1, oriented upward

15. F(x,y,2) =vyi + zj + xk,

S is the hemisphere x* + y? + z2 = 1,y = 0, oriented in the
direction of the positive y-axis

16. Let C be a simple closed smooth curve that lies in the plane
X +y + z = 1. Show that the line integral

fozdx — 2xdy + 3ydz

depends only on the area of the region enclosed by C and not
on the shape of C or its location in the plane.

17. A particle moves along line segments from the origin to the
points (1, 0, 0), (1, 2, 1), (0, 2, 1), and back to the origin
under the influence of the force field

F(x,y,z) = z%i + 2xy j + 4y?k

Find the work done.

1. Homework Hints available at stewartcalculus.com
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1152 CHAPTER 16 VECTOR CALCULUS

18. Evaluate 20. Suppose S and C satisfy the hypotheses of Stokes” Theorem
. . ) 3 and f, g have continuous second-order partial derivatives. Use
Je(y +sinx)dx + (% + cosy) dy + x°dz Exercises 24 and 26 in Section 16.5 to show the following.
where C is the curve r(t) = (sint, cost, sin2t), 0 < t < 2. (@) [. (fVg) -dr = [, (VfXx Vg) - dS

[Hint: Observe that C lies on the surface z = 2xy.]

19. If Sis a sphere and F satisfies the hypotheses of Stokes’

(b) [, (Vf)-dr=0

Theorem, show that |, curl F - dS = 0. (€) [ (fVg+gVf)-dr=0

THREE MEN AND TWO THEOREMS

The photograph shows a stained-glass
window at Cambridge University in honor of
George Green.

Courtesy of the Masters and Fellows of Gonville and
Caius College, Cambridge University, England

Although two of the most important theorems in vector calculus are named after George Green
and George Stokes, a third man, William Thomson (also known as Lord Kelvin), played a large
role in the formulation, dissemination, and application of both of these results. All three men
were interested in how the two theorems could help to explain and predict physical phenomena
in electricity and magnetism and fluid flow. The basic facts of the story are given in the margin
notes on pages 1109 and 1147.

Write a report on the historical origins of Green’s Theorem and Stokes’ Theorem. Explain the
similarities and relationship between the theorems. Discuss the roles that Green, Thomson, and
Stokes played in discovering these theorems and making them widely known. Show how both
theorems arose from the investigation of electricity and magnetism and were later used to study a
variety of physical problems.

The dictionary edited by Gillispie [2] is a good source for both biographical and scientific
information. The book by Hutchinson [5] gives an account of Stokes’ life and the book by
Thompson [8] is a biography of Lord Kelvin. The articles by Grattan-Guinness [3] and Gray [4]
and the book by Cannell [1] give background on the extraordinary life and works of Green.
Additional historical and mathematical information is found in the books by Katz [6] and
Kline [7].

1. D. M. Cannell, George Green, Mathematician and Physicist 1793-1841: The Background to

His Life and Work (Philadelphia: Society for Industrial and Applied Mathematics, 2001).

2. C. C. Gillispie, ed., Dictionary of Scientific Biography (New York: Scribner’s, 1974). See the
article on Green by P. J. Wallis in Volume XV and the articles on Thomson by Jed Buchwald
and on Stokes by E. M. Parkinson in Volume XIII.

3. |. Grattan-Guinness, “Why did George Green write his essay of 1828 on electricity and
magnetism?” Amer. Math. Monthly, Vol. 102 (1995), pp. 387-96.

4. J. Gray, “There was a jolly miller.” The New Scientist, Vol. 139 (1993), pp. 24-27.

5. G. E. Hutchinson, The Enchanted Voyage and Other Studies (Westport, CT : Greenwood
Press, 1978).

6. Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins, 1993),
pp. 678-80.

1. Morris Kline, Mathematical Thought from Ancient to Modern Times (New York: Oxford
University Press, 1972), pp. 683-85.

8. Sylvanus P. Thompson, The Life of Lord Kelvin (New York: Chelsea, 1976).

m The Divergence Theorem

In Section 16.5 we rewrote Green’s Theorem in a vector version as

J’CF nds = ﬂ div F(x, y) dA

where C is the positively oriented boundary curve of the plane region D. If we were seek-
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The Divergence Theorem is sometimes called

Gauss's Theorem after the great German mathe-

matician Karl Friedrich Gauss (1777-1855), who
discovered this theorem during his investigation
of electrostatics. In Eastern Europe the Diver-
gence Theorem is known as Ostrogradsky's
Theorem after the Russian mathematician
Mikhail Ostrogradsky (1801-1862), who pub-
lished this result in 1826.

SECTION 16.9 THE DIVERGENCE THEOREM 1153

ing to extend this theorem to vector fields on R?3, we might make the guess that

1] ﬂF-ndS=ﬂ div F(x,y, 2) dV

S E

where S is the boundary surface of the solid region E. It turns out that Equation 1 is true,
under appropriate hypotheses, and is called the Divergence Theorem. Notice its similarity
to Green’s Theorem and Stokes’ Theorem in that it relates the integral of a derivative of a
function (div F in this case) over a region to the integral of the original function F over the
boundary of the region.

At this stage you may wish to review the various types of regions over which we were
able to evaluate triple integrals in Section 15.7. We state and prove the Divergence Theo-
rem for regions E that are simultaneously of types 1, 2, and 3 and we call such regions
simple solid regions. (For instance, regions bounded by ellipsoids or rectangular boxes
are simple solid regions.) The boundary of E is a closed surface, and we use the conven-
tion, introduced in Section 16.7, that the positive orientation is outward; that is, the unit
normal vector n is directed outward from E.

The Divergence Theorem Let E be a simple solid region and let S be the boundary
surface of E, given with positive (outward) orientation. Let F be a vector field
whose component functions have continuous partial derivatives on an open region

that contains E. Then
ﬂF-w=ﬁﬂdwa

S E

Thus the Divergence Theorem states that, under the given conditions, the flux of F
across the boundary surface of E is equal to the triple integral of the divergence of F
over E.

PROOF LetF=Pi+ Qj + Rk.Then

aP ad
divF=—+—QjLﬁ
ax a9y oz

S0 I ave o= ngm Qf%dan fg%dv

If n is the unit outward normal of S, then the surface integral on the left side of the Diver-
gence Theorem is

f F-ds=j F-ndszf (Pi+Qj+RKk) -ndS

S S S

:J!pi.nds+ng-nds+£ka-nds

Therefore, to prove the Divergence Theorem, it suffices to prove the following three
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1154 CHAPTER 16 VECTOR CALCULUS

equations:

(2] ﬂpu ndS—M—dv
3] ng-ndS=fg%dv
4] fszk.ndszyggdv

To prove Equation 4 we use the fact that E is a type 1 region:

—{xy.2) | (xy) €D, (X y) <z < ux,y)}

where D is the projection of E onto the xy-plane. By Equation 15.7.6, we have

1 av {17 o on

and therefore, by the Fundamental Theorem of Calculus,

(] M dv = ﬂ [R(x ¥, u206y) = R(x,y, us(x, )] dA

The boundary surface S consists of three pieces: the bottom surface S;, the top surface
S,, and possibly a vertical surface Sz, which lies above the boundary curve of D. (See
Figure 1. It might happen that S; doesn’t appear, as in the case of a sphere.) Notice that on
S; we have k - n = 0, because K is vertical and n is horizontal, and so

ng-ndS=£0dS=0

FIGURE 1 Thus, regardless of whether there is a vertical surface, we can write
(6] Rk-ndS=||Rk-ndS+ || Rk-ndS
[ recnes= fowcnos- |

The equation of S, is z = U,(X, y), (X, y) € D, and the outward normal n points
upward, so from Equation 16.7.10 (with F replaced by R k) we have

ﬂ Rk-ndS= ﬂ R(x, Y, Ua(X, y)) dA

On S; we have z = uy(x, y), but here the outward normal n points downward, so we mul-
tiply by —1:

f Rk-ndS= —ﬂ R(x, Y, Ux(X, y)) dA

Therefore Equation 6 gives

ﬂ Rk-ndS= ﬂ [R(x, Y, Ua(X, y)) — R(x, Y, Us(X, y))] dA
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Notice that the method of proof of the
Divergence Theorem is very similar to that

of Green’s Theorem.

The solution in Example 1 should be compared
with the solution in Example 4 in Section 16.7.

FIGURE 2

z=1—x
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Comparison with Equation 5 shows that

[[RK-nas= ] %dv

S E

Equations 2 and 3 are proved in a similar manner using the expressions for E as a type 2
or type 3 region, respectively. [ |

7 IEXYETEN Find the flux of the vector field F(x,y, z) = zi + y j + x k over the unit
sphere x? + y? + 22 = 1.
SOLUTION First we compute the divergence of F:

. d d d
dIVF_&(Z)-’_a_y(y)-’_E(X)_l

The unit sphere S is the boundary of the unit ball B given by x? + y? + z? < 1. Thus the
Divergence Theorem gives the flux as

ﬂF-dS:MdideV:ﬂ 1dV = V(B) = ‘m(1)f = 27 -

3
S B B

I IEXNTET# Evaluate | F - dS, where

F(x,y,2) =xyi+ (y2 + )j + sin(xy) k
and S is the surface of the region E bounded by the parabolic cylinder z = 1 — x? and
the planes z = 0,y = 0, and y + z = 2. (See Figure 2.)

SOLUTION It would be extremely difficult to evaluate the given surface integral directly.
(We would have to evaluate four surface integrals corresponding to the four pieces of S.)
Furthermore, the divergence of F is much less complicated than F itself:

divF=%(xy)+aiy(y2+e”2)+%(sinxy)=y+2y=3y

Therefore we use the Divergence Theorem to transform the given surface integral into a
triple integral. The easiest way to evaluate the triple integral is to express E as a type 3
region:

E={(x,y,z)]—1sx<1,0szsl—x2,0<ys2—z}

Then we have
fsf F-dS=Qf dideV=fg 3y dv

—a [ yayaac=a [ 20 D g o

—3 ' (2_2)3 e _ _1[t 2 3
ST e -

184
=—f1(x6+3x4+3x2—7)dx=— _—
0 35
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FIGURE 3

CHAPTER 16 VECTOR CALCULUS

Although we have proved the Divergence Theorem only for simple solid regions, it can
be proved for regions that are finite unions of simple solid regions. (The procedure is sim-
ilar to the one we used in Section 16.4 to extend Green’s Theorem.)

For example, let’s consider the region E that lies between the closed surfaces S; and S,
where S, lies inside S,. Let n; and n, be outward normals of S; and S,. Then the boundary
surface of Eis S = S; U S, and its normal n is givenbyn = —n;onS;andn = n,on S,.
(See Figure 3.) Applying the Divergence Theorem to S, we get

jﬂdidev=gF-ds=gF-nds
=g|=-(—n1)ds+gF-nzds
=—gF-dS+gF-dS

IE7YZTE] In Example 5 in Section 16.1 we considered the electric field
eQ

[ x[?

E(x) = X

where the electric charge Q is located at the origin and x = (X, y, z) is a position vector.
Use the Divergence Theorem to show that the electric flux of E through any closed sur-
face S, that encloses the origin is

gE- dS = 47Q

SOLUTION The difficulty is that we don’t have an explicit equation for S, because it is
any closed surface enclosing the origin. The simplest such surface would be a sphere, so
we let S; be a small sphere with radius a and center the origin. You can verify that

div E = 0. (See Exercise 23.) Therefore Equation 7 gives

QE.ds=gE-ds+j£fdivEdv=gE.ds=gE.nds

The point of this calculation is that we can compute the surface integral over S; because
S, is a sphere. The normal vector at x is x/| x |. Therefore

E.n:ﬁx. L zﬂx.xzﬂzﬁ
EESANEIVANES E
since the equation of S, is | x| = a. Thus we have
ﬂE-ds=ﬂE-nds =Z—?ﬂd8=z—?A(Sl)=z—?47ra2=47rsQ
S: S: S:

This shows that the electric flux of E is 47weQ through any closed surface S, that con-
tains the origin. [This is a special case of Gauss’s Law (Equation 16.7.11) for a single
charge. The relationship between € and gy is ¢ = 1/(47s0).] [
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FIGURE 4
The vector field F = x2i + y?j

m Exercises

SECTION 16.9 THE DIVERGENCE THEOREM 1157

Another application of the Divergence Theorem occurs in fluid flow. Let v(x, y, z) be
the velocity field of a fluid with constant density p. Then F = pv is the rate of flow per
unit area. If Po(Xo, Yo, zo) is a point in the fluid and B, is a ball with center P, and very small
radius a, then div F(P) = div F(P,) for all points in B, since div F is continuous. \We approx-
imate the flux over the boundary sphere S, as follows:

ﬁ F-dS= M divF dV =~ m div F(Po) dV = div F(Po)V(B.)

This approximation becomes better as a — 0 and suggests that

. 1 .
div F(Py) = !m V&) ﬁ F-ds

Sa

Equation 8 says that div F(Py) is the net rate of outward flux per unit volume at P,. (This
is the reason for the name divergence.) If div F(P) > 0, the net flow is outward near P and
P is called a source. If div F(P) < 0, the net flow is inward near P and P is called a sink.

For the vector field in Figure 4, it appears that the vectors that end near P; are shorter
than the vectors that start near P;. Thus the net flow is outward near P4, so div F(P;) > 0
and P, is a source. Near P, on the other hand, the incoming arrows are longer than the
outgoing arrows. Here the net flow is inward, so div F(P,) < 0 and P, is a sink. We
can use the formula for F to confirm this impression. Since F = x?i + y?j, we have
div F = 2x + 2y, which is positive when y > —x. So the points above the line y = —x
are sources and those below are sinks.

1-4 Verify that the Divergence Theorem is true for the vector field 7. F(x,y,z) = 3xy?i + xe*j + 2%k,

F on the region E.

S is the surface of the solid bounded by the cylinder
y? + z> = 1l and the planes x = —1 and x = 2

1.

F(X,y,z) = 3xi + xyj + 2xzk,
E is the cube bounded by the planesx = 0, x = 1,y = 0,
y=1:z=0andz=1

. F(x,y,2) = xX%i + xyj + zKk,

E is the solid bounded by the paraboloid z = 4 — x? — y?
and the xy-plane

. F(X,y,2) = (z¥,%),

E is the solid ball x? + y? + z*> < 16

F(X,y,2) = (X% —y, 2),

E is the solid cylinder y? + 22 < 9,0 s x < 2

5-15 Use the Divergence Theorem to calculate the surface integral
JJs F - dS; that is, calculate the flux of F across S.

5.

Computer algebra system required

F(x,y,z) = xye’i + xy*2®j — ye’k,
S is the surface of the box bounded by the coordinate planes
and the planesx = 3,y = 2,andz =1

. F(X,y,2) = X%yzi + xy%zj + xyz2 K,

S is the surface of the box enclosed by the planes x = 0,
x=ay=0y=Db,z=0,andz = c, where a, b, and c are
positive numbers

10.

CFX Y, ) =+ y)i+ (v +2)j+ @+ Xk,

S is the sphere with center the origin and radius 2

. F(X,y,2) = x%sinyi + xcosyj — xzsinyK,

S is the “fat sphere” x8 + y® + 8 =8

F(x,y,z) = zi + yj + zxk,
S is the surface of the tetrahedron enclosed by the coordinate
planes and the plane

X 'y oz

—+ -+ ==1

a b ¢

where a, b, and ¢ are positive numbers

. F(x,y,z) = (cosz + xy?)i + xe7j + (siny + x%2)k,

S is the surface of the solid bounded by the paraboloid
z = x? + y?and the plane z = 4

12. F(x,y,z) = x*i — x32%] + 4xy*Kk,
S is the surface of the solid bounded by the cylinder
x2+y?=1landtheplanesz =x + 2andz =0
13. F =|r|r,wherer =xi+yj+:zk,

S consists of the hemisphere z = \/1 — x2 — y2 and the disk
x2 + y? < 1in the xy-plane

1. Homework Hints available at stewartcalculus.com
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1158 CHAPTER 16 VECTOR CALCULUS

14. F = |r|*r,wherer = xi +yj + zk,
S isthe sphere with radius R and center the origin

cAs| 15. F(x,y,z) =e'tanzi + y4/3 — x2 j + xsinyKk,

S isthe surface of the solid that lies above the xy-plane
and below thesurfacez =2 — x* —y%, —1<sx <1,
-l=<sy=<1

CAS| 16. Use a computer algebra system to plot the vector field

F(x,y,z) = sinx cos?y i + sin®y cos*zj + sin®z cos® k
in the cube cut from the first octant by the planes x = /2,
y = m/2, and z = 7/2. Then compute the flux across the
surface of the cube.

17. Use the Divergence Theorem to evaluate [f, F - dS, where
F(X,y,2) = z°Xi + (%y3 + tanz)j + (x%2 + y?)k
and S isthe top half of the spherex? + y? + z2 = 1.
[Hint: Note that S is not a closed surface. First compute
integrals over S; and Sy, where S; isthe disk x* + y? < 1,
oriented downward, and S, = S U Si.]

18. Let F(x,y,z2) = ztan Y(y?)i + 22In(x*+ 1) j + z k.
Find the flux of F across the part of the paraboloid
X2+ y? + z = 2 that liesabove the planez = 1 and is
oriented upward.

19. A vector field F is shown. Use the interpretation of diver-
gence derived in this section to determine whether div F
is positive or negative at P, and at P».

2
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20. (a) Arethe points P, and P, sources or sinks for the vector
field F shown in the figure? Give an explanation based
solely on the picture.

(b) Given that F(x,y) = (X, y?), use the definition of diver-
gence to verify your answer to part (a).

2
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21-22 Plot the vector field and guess where div F > 0 and

where div F < 0. Then calculate div F to check your guess.
21. F(x,y) = (xy,x +y?) 22. F(x,y) = (x%y?

eQ

‘X|3 X.

23. Verify that div E = 0 for the electric field E(x) =

24. Use the Divergence Theorem to evaluate

ﬂ (2x + 2y + z?) dS

S

where S isthe sphere x? + y? + z2 = 1.

25-30 Prove each identity, assuming that S and E satisfy the
conditions of the Divergence Theorem and the scalar functions
and components of the vector fields have continuous second-
order partial derivatives.

25. ﬂ a - ndS = 0, wherea is aconstant vector
S

26. V(E) :%Jj F-dS, whereF(x,y,z) =xi+yj+zk

S

2. [ el F-ds=0 28. [ D, fds = f|] vifav

S S E

.jj(fvg)mds:m (fV% + V- Vg)dV

N
©

30. ﬂ(fvg—gi)-nds=m(fVZg—gVZf)dv

S E

31. Suppose S and E satisfy the conditions of the Divergence
Theorem and f is a scalar function with continuous partial
derivatives. Prove that

fsj’ fnds = Jg vidv

These surface and triple integrals of vector functions are
vectors defined by integrating each component function.
[Hint: Start by applying the Divergence Theoremto F = fc,
where ¢ is an arbitrary constant vector.]

32. A solid occupies aregion E with surface S and isimmersed
in aliquid with constant density p. We set up a coordinate
system so that the xy-plane coincides with the surface of the
liquid, and positive values of z are measured downward into
the liquid. Then the pressure at depth z is p = pgz, whereg
is the acceleration due to gravity (see Section 8.3). The tota
buoyant force on the solid due to the pressure distribution is
given by the surface integral

F=—ﬂ pndsS
S

where n is the outer unit normal. Use the result of Exer-
cise 31 to show that F = —WKk, where W is the weight of
the liquid displaced by the solid. (Note that F is directed
upward because z is directed downward.) The result is
Archimedes’ Principle: The buoyant force on an object
equals the weight of the displaced liquid.
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SECTION 16.10 SUMMARY 1159

The main results of this chapter are all higher-dimensional versions of the Fundamental
Theorem of Calculus. To help you remember them, we collect them together here (with-
out hypotheses) so that you can see more easily their essential similarity. Notice that in
each case we have an integral of a“derivative” over aregion on the left side, and the right
side involves the values of the original function only on the boundary of the region.

Fundamental Theorem of Calculus fb F'(x) dx = F(b) — F(a) . :
r(b)
Fundamental Theorem for Line Integrals L Vf-dr =1f(r(b)) — f(r(a)) /\\_/
r(a) ¢
C
P
Green's Theorem ﬂ <£ - a—) dA = f Pdx + Qdy
oX ay c
Stokes Theorem ﬂ curl F - dS =j F-dr
S C
Divergence Theorem dvFdv=||F-dS
ff aveav -
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n Review

Concept Check

1.

What is a vector field? Give three examples that have physical
meaning.

(c) If Fisavelocity field in fluid flow, what are the physical
interpretations of curl F and div F?

2. (8) What is a conservative vector field? 10. If F=Pi + Qj, how do you test to determine whether F is
(b) What is a potential function? conservative? What if F is a vector field on R3?
3. (8) Write the definition of the Iir_1e integral of a scalar function 1. (a) What is a parametric surface? What are its grid curves?
b I: anr:jg a smoo;lh (:tjrve ChW'It.h re_sgiect ;looarc length. (b) Write an expression for the area of a parametric surface.
() OW €0 you eévaluale such afine Integrat . (c) What is the area of a surface given by an eguation
(c) Write expressions for the mass and center of mass of a thin 2= g(x, y)?
wire shaped like a curve C if the wire has linear density g ¥
function p(x, y). 12. (a) Write the definition of the surface integral of a scalar func-
(d) Write the definitions of the line integrals along C of a scalar tion f over asurfaceS.
function f with respect to x, y, and z. (b) How do you evaluate such an integral if S is a parametric
(e) How do you evauate these line integral s? surface given by avector function r(u, v)?
4. (a) Define the line integral of a vector field F along a smooth (c) What if S is given by an equation z = g(x, Y)? )
curve C given by avector function r(t). (d) If athin sh.eet has the shape of asurface S, and the density
(b) If F isaforce field, what does this line integral represent? a (x,y, 2) isp(x,y, z), write expressions for the mass and
(c) If F= (P, Q,R), what is the connection between the line center of mass of the sheet.
iptegral of F and the line integrals of the component func- 13. (a) What is an oriented surface? Give an example of a non-
tionsP, Q, and R? orientable surface.
5. State the Fundamental Theorem for Line Integrals. (b) Define the surface integral (or flux) of avector field F over
6 What doesit ‘ thet [ F - drisind dent an oriented surface S with unit normal vector n.
- @ of path’c?)eSI mean to say Je r 1S ihdependen (c) How do you evaluate such an integral if S is a parametric
? f ; -
(b) If you know that [, F - dr is independent of path, what can surfacg gven .by avector funcFlon rlu, o) 5
you say about F? (d) What if S isgiven by an equation z = g(x, y)?
7. State Green's Theorem. 14. State Stokes Theorem.
8. Write expressions for the area enclosed by a curve C in terms 15. State the Divergence Theorem.
of line integrals around C. 16. In what ways are the Fundamental Theorem for Line Integrals,
9. Suppose F is avector field on R®, Green’'s Theorem, Stokes' Theorem, and the Divergence
(a) Define curl F. (b) Definediv F. Theorem similar?
True-False Quiz
Determine whether the statement is true or false. If it is true, explain why. 8. The work done by a conservative force field in moving a par-
If it is false, explain why or give an example that disproves the statement. ticle around a closed path is zero.
1. If Fisavector field, then div F is a vector field. 9. If F and G are vector fields, then
2. If Fisavector field, then curl F is avector field. url(F + G) = curl F + curl G
3. If f has continuous partial derivatives of all orders on R?, then
div(curl Vf) = 0. 10. If F and G are vector fields, then
4. If f has continuous partial derivatives on R*®and C is any curl(F-G) =curl F-curl G
circle, then [, Vf-dr = 0.
5 IfF=Pi+ QjandP, = Q,inanopenregion D, thenF is n. Ifaspls.zzpieroeand F is a constant vector field, then
conservative. Is - Y
6. [ f(x,y)ds=—[ f(x,y)ds 12. Thereisavector field F such that

. If F and G are vector fieldsand divF = divG, then F = G.

cul F=xi+yj+zk
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CHAPTER 16 REVIEW 1161

Exercises
1. A vector field F, acurve C, and a point P are shown.
(a) Is [ F - dr positive, negative, or zero? Explain.
(b) Isdiv F(P) positive, negative, or zero? Explain.

2-9 Evaluate the line integral.
2. | xds,
C isthe arc of the parabolay = x? from (0, 0) to (1, 1)

3. . yzcosxds,
C:x=t,y=3cost, z=3snt, 0<t=<m

4. [oydx + (x +y*dy, Cistheellipse4x?+ 9y*= 36
with counterclockwise orientation

5 f.y®dx + x*dy, Cisthearcof the parabolax = 1 — y?
from (0, —1) to (0, 1)

6. [.v/Xy dx + e’ dy + xz dz,
Cisgivenby r(t) =t*i + t?j + t*°k, 0 st <1

1. [oxydx + y*dy + yzdz,
C isthe line segment from (1, 0, —1), to (3, 4, 2)

8. [.F-dr, whereF(x,y) = xyi + x*j and C isgiven by
r) =snti+ 1 +1t)j,0st=<a

9. [(F-dr, whereF(x,y,z) =e’i +xzj + (x +y) kand
Cisgivenby r(t) = t?i + t*j —tk,0st<1

12.

F(x,y,z) =sinyi + xcosyj — sinzk

13-14 Show that F is conservative and use this fact to evaluate
J F - dr along the given curve.

13.

14.

F(x,y) = (4x%? — 2xy®) i + (2x%y — 3x%y? + 4y%)],
Cr) =(t+snat)i + (2t + coswt)j, 0st=<1

F(x,y,z) =e’i + (xe¥ + e?)j + ye‘Kk,
C isthe line segment from (0, 2, 0) to (4, 0, 3)

10. Find the work done by the force field
F(X,y,z) =zi+xj+yk

in moving a particle from the point (3, 0, 0) to the point
(0, w/2,3) dong

(a) astraight line

(b) the helix x = 3cost, y =t, z = 3sint

11-12 Show that F is a conservative vector field. Then find a func-

tion f such that F = Vf.
1. F(x,y) = (1 + xy)e¥i+ (e + x%¥)j

Graphing calculator or computer required

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

Verify that Green’s Theorem is true for the line integral

Jo xy?dx — x?y dy, where C consists of the parabolay = x*
from (—1, 1) to (1, 1) and the line segment from (1, 1)
to(—1,1).

Use Green's Theorem to evaluate
( V1 + x3dx + 2xydy
Jc

where C is the triangle with vertices (0, 0), (1, 0), and (1, 3).

Use Green's Theorem to evaluate | x°y dx — xy?dy,
where C isthe circle x2 + y? = 4 with counterclockwise
orientation.

Find curl F and div F if
F(x,y,z) =e*sinyi +eYsnzj + e sinxk
Show that thereis no vector field G such that
curl G = 2xi + 3yzj — xz%k

Show that, under conditions to be stated on the vector fields
F and G,

curl(F X G) =FdivG — GdivF + (G- V)F — (F- V)G

If C isany piecewise-smooth simple closed plane curve
and f and g are differentiable functions, show that
[ f(x) dx + g(y) dy = 0.

If f and g are twice differentiable functions, show that
V3(fg) = V% + gV2f + 2Vf - Vg

If f isaharmonic function, that is, V2f = 0, show that the line
integral [ f, dx — f, dy isindependent of path in any simple
region D.

(a) Sketch the curve C with parametric equations

z=sint ost<2rw

X = cost y =sint

(b) Find [, 2xe®dx + (2x%® + 2y cot z) dy — y?csc’z dz.

Computer algebra system required
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25.

26.

CAS

CHAPTER 16 VECTOR CALCULUS

Find the area of the part of the surface z = x* + 2y that lies
above the triangle with vertices (0, 0), (1, 0), and (1, 2).

(a) Find an equation of the tangent plane at the point
(4, —2, 1) to the parametric surface S given by

r(u,v) =v*i—uwj+u’k O0sus<3 -3sv=<3

(b) Use a computer to graph the surface S and the tangent
plane found in part (a).
(c) Set up, but do not evaluate, an integral for the surface
areaof S.
(d) If
2. X2 . y
1+x2I+ 1+y21+ 1+ 22

2

F(x,y,z2) =

find ff, F - dS correct to four decimal places.

27-30 Evauate the surface integral.

21.

28.

29.

30.

fJs 2 dS, where S isthe part of the paraboloid z = x> + y?
that lies under the planez = 4

{[ (x?z + y?2)dS, whereS isthe part of the plane
z =4+ x + y that liesinside the cylinder x? + y? = 4

[ F - dS, whereF(x,y,z) =xzi — 2yj + 3xkandSis
the sphere x? + y2 + z? = 4 with outward orientation

{[F - dS, whereF(x,y,z) = x”i + xyj + zkand S isthe
part of the paraboloid z = x? + y? below the planez = 1
with upward orientation

3.

32.

33.

34.

35.

36.

Verify that Stokes' Theorem is true for the vector field
F(x,y,z) = x%i + y?j + z°k, where S is the part of the
paraboloid z = 1 — x? — y? that lies above the xy-plane and
S has upward orientation.

Use Stokes' Theorem to evaluate |, curl F - dS, where
F(x,y,z) = Xx?yzi + yz%j + 2%V K, S isthe part of the
sphere x? + y?2 + z2 = 5 that lies above the planez = 1,
and S is oriented upward.

Use Stokes' Theorem to evaluate J’C F - dr, where
F(x,y,z) = xyi +yz]j + zxk, and C is the triangle with
vertices (1, 0, 0), (0, 1, 0), and (0, O, 1), oriented counter-
clockwise as viewed from above.

Use the Divergence Theorem to calculate the surface
integral ([, F - dS, where F(x,y, z) = x®i + y*j + z*k and
S isthe surface of the solid bounded by the cylinder
x?+y?=1andtheplanesz = 0andz = 2.

Verify that the Divergence Theorem is true for the vector
field F(x,y,z) = xi + y]j + zk, where E is the unit ball
x> +y?+2<1

Compute the outward flux of

xi+tyj+zk

FO YD = ey 4 22

through the ellipsoid 4x? + 9y? + 6z% = 36.

37. Let

F(X,y,2) = (3x%yz — 3y)i + (x32 — 3x) j + (xX®y + 22) k

Evaluate | F - dr, where C is the curve with initial point
(0, 0, 2) and terminal point (0, 3, 0) shown in the figure.

(2x3 4+ 2xy2 = 2y) i + (2y% + 2x%y + 2X) j
X2 +y?

F(x,y) =
Evaluate §,. F - dr, where C is shown in the figure.

y

e
=

39. Find [, F - ndS, whereF(x,y,z) = xi +yj + zkandSis

the outwardly oriented surface shown in the figure (the bound-
ary surface of a cube with a unit corner cube removed).

40. If the components of F have continuous second partial

a.

derivatives and S is the boundary surface of a simple solid
region, show that |[; curl F - dS = 0.

If aisaconstant vector, r = xi +yj + zk,and S isan
oriented, smooth surface with a simple, closed, smooth, pos-
itively oriented boundary curve C, show that

HZa-dS:fC(axr%dr

S
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L
sy Problems Plus s

1. Let S be a smooth parametric surface and let P be a point such that each line that starts
at P intersects S at most once. The solid angle Q(S) subtended by S at P is the set of lines
starting at P and passing through S. Let S(a) be the intersection of (2(S) with the surface of
the sphere with center P and radius a. Then the measure of the solid angle (in steradians) is
defined to be

|- T

Apply the Divergence Theorem to the part of (S) between S(a) and S to show that

r-n

|Q(S)| =

where r is the radius vector from P to any pointon S, r = | r |, and the unit normal vector n
is directed away from P.

This shows that the definition of the measure of a solid angle is independent of the radius a
of the sphere. Thus the measure of the solid angle is equal to the area subtended on a unit
sphere. (Note the analogy with the definition of radian measure.) The total solid angle sub-
tended by a sphere at its center is thus 47 steradians.

2. Find the positively oriented simple closed curve C for which the value of the line integral

|2 =y dx - 2¢dy
isamaximum.

3. Let C beasimple closed piecewise-smooth space curve that lies in a plane with unit normal
vector n = (a, b, ¢) and has positive orientation with respect to n. Show that the plane area
enclosed by C is

%fc (bz — cy) dx + (cx — az) dy + (ay — bx) dz

Y
<]
S

. Investigate the shape of the surface with parametric equationsx = sinu,y = sinu,
z = sin(u + v). Start by graphing the surface from several points of view. Explain the
appearance of the graphs by determining the traces in the horizontal planesz = 0, z = *1,
andz = "‘%

5. Prove the following identity:
VF-G)=F-V)G+ (G-V)IF+FXcurlG+ G XcurlF

Graphing calculator or computer required
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6. The figure depicts the sequence of eventsin each cylinder of afour-cylinder internal combus-

tion engine. Each piston moves up and down and is connected by a pivoted arm to a rotating
crankshaft. Let P(t) and V(t) be the pressure and volume within a cylinder at time t, where
a < t < b givesthetime required for a complete cycle. The graph shows how P and V vary
through one cycle of afour-stroke engine.

P
@
® C
®
@ @
0 1%

During the intake stroke (from @ to @) a mixture of air and gasoline at atmospheric pres-
sure is drawn into a cylinder through the intake valve as the piston moves downward. Then
the piston rapidly compresses the mix with the valves closed in the compression stroke (from
® to @) during which the pressure rises and the volume decreases. At ® the sparkplug ignites
the fuel, raising the temperature and pressure at almost constant volume to @. Then, with
valves closed, the rapid expansion forces the piston downward during the power stroke (from
@ to ®). The exhaust valve opens, temperature and pressure drop, and mechanical energy
stored in arotating flywheel pushes the piston upward, forcing the waste products out of the
exhaust valve in the exhaust stroke. The exhaust valve closes and the intake valve opens.
We're now back at @ and the cycle starts again.

(@) Show that the work done on the piston during one cycle of a four-stroke engine is
W = |_ P dV, where C isthe curve in the PV-plane shown in the figure.

[Hint: Let x(t) be the distance from the piston to the top of the cylinder and note that
the force on the piston is F = AP(t) i, where A is the area of the top of the piston. Then
W= fch - dr, where C; isgiven by r(t) = x(t) i, a < t < b. An aternative approach is
to work directly with Riemann sums.]

(b) Use Formula 16.4.5 to show that the work is the difference of the areas enclosed by the
two loops of C.
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