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Partial Derivatives14

So far we have dealt with the calculus of functions of a single variable. But, in the real world, physical
quantities often depend on two or more variables, so in this chapter we turn our attention to functions of
several variables and extend the basic ideas of differential calculus to such functions.

901

Photo by Stan Wagon, Macalester College

Graphs of functions of two variables are
surfaces that can take a variety of
shapes, including that of a saddle or
mountain pass. At this location in
southern Utah (Phipps Arch) you can 
see a point that is a minimum in one
direction but a maximum in another
direction. Such surfaces are discussed 
in Section 14.7.
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902 CHAPTER 14 PARTIAL DERIVATIVES

In this section we study functions of two or more variables from four points of view:

■ verbally (by a description in words)

■ numerically (by a table of values)

■ algebraically (by an explicit formula)

■ visually (by a graph or level curves)

Functions of Two Variables
The temperature at a point on the surface of the earth at any given time depends on the
longitude and latitude of the point. We can think of as being a function of the two vari-
ables and , or as a function of the pair . We indicate this functional dependence by
writing .

The volume of a circular cylinder depends on its radius and its height . In fact, we
know that . We say that is a function of and , and we write .

Definition A function of two variables is a rule that assigns to each ordered pair
of real numbers in a set a unique real number denoted by . The set

is the domain of and its range is the set of values that takes on, that is,
.

We often write to make explicit the value taken on by at the general point
. The variables and are independent variables and is the dependent variable.

[Compare this with the notation for functions of a single variable.]
A function of two variables is just a function whose domain is a subset of and whose

range is a subset of . One way of visualizing such a function is by means of an arrow dia-
gram (see Figure 1), where the domain is represented as a subset of the -plane and the
range is a set of numbers on a real line, shown as a -axis. For instance, if represents
the temperature at a point in a flat metal plate with the shape of , we can think of the
-axis as a thermometer displaying the recorded temperatures.

If a function is given by a formula and no domain is specified, then the domain of is
understood to be the set of all pairs for which the given expression is a well-defined
real number.

For each of the following functions, evaluate and find and sketch the
domain.

(a) (b) 

SOLUTION

(a)

The expression for makes sense if the denominator is not 0 and the quantity under the
square root sign is nonnegative. So the domain of is

The inequality , or , describes the points that lie on or above 
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES 903

the line , while means that the points on the line must be
excluded from the domain. (See Figure 2.)

(b)

Since is defined only when , that is, , the domain of is
. This is the set of points to the left of the parabola . (See

Figure 3.)

Not all functions can be represented by explicit formulas. The function in the next exam-
ple is described verbally and by numerical estimates of its values.

In regions with severe winter weather, the wind-chill index is often used to
describe the apparent severity of the cold. This index W is a subjective temperature that
depends on the actual temperature T and the wind speed . So W is a function of T and ,
and we can write . Table 1 records values of W compiled by the National
Weather Service of the US and the Meteorological Service of Canada.

TABLE 1 Wind-chill index as a function of air temperature and wind speed

For instance, the table shows that if the temperature is and the wind speed is
50 km�h, then subjectively it would feel as cold as a temperature of about with
no wind. So

In 1928 Charles Cobb and Paul Douglas published a study in which they
modeled the growth of the American economy during the period 1899–1922. They con-
sidered a simplified view of the economy in which production output is determined by the
amount of labor involved and the amount of capital invested. While there are many other
factors affecting economic performance, their model proved to be remarkably accurate.
The function they used to model production was of the form

where P is the total production (the monetary value of all goods produced in a year), 
L is the amount of labor (the total number of person-hours worked in a year), and K is 
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The New Wind-Chill Index
A new wind-chill index was introduced in
November of 2001 and is more accurate than
the old index for measuring how cold it feels
when it’s windy. The new index is based on a
model of how fast a human face loses heat. It
was developed through clinical trials in which
volunteers were exposed to a variety of temper-
atures and wind speeds in a refrigerated wind
tunnel.
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904 CHAPTER 14 PARTIAL DERIVATIVES

TABLE 2

. Year P L K

1899 100 100 100
1900 101 105 107
1901 112 110 114
1902 122 117 122
1903 124 122 131
1904 122 121 138
1905 143 125 149
1906 152 134 163
1907 151 140 176
1908 126 123 185
1909 155 143 198
1910 159 147 208
1911 153 148 216
1912 177 155 226
1913 184 156 236
1914 169 152 244
1915 189 156 266
1916 225 183 298
1917 227 198 335
1918 223 201 366
1919 218 196 387
1920 231 194 407
1921 179 146 417
1922 240 161 431

the amount of capital invested (the monetary worth of all machinery, equipment, and
buildings). In Section 14.3 we will show how the form of Equation 1 follows from cer-
tain economic assumptions.

Cobb and Douglas used economic data published by the government to obtain
Table 2. They took the year 1899 as a baseline and P, L, and K for 1899 were each
assigned the value 100. The values for other years were expressed as percentages of 
the 1899 figures.

Cobb and Douglas used the method of least squares to fit the data of Table 2 to the
function

(See Exercise 79 for the details.)
If we use the model given by the function in Equation 2 to compute the production in

the years 1910 and 1920, we get the values

which are quite close to the actual values, 159 and 231.
The production function has subsequently been used in many settings, ranging

from individual firms to global economics. It has become known as the Cobb-Douglas
production function. Its domain is because L and K represent
labor and capital and are therefore never negative.

Find the domain and range of .

SOLUTION The domain of is

which is the disk with center and radius 3. (See Figure 4.) The range of is

Since is a positive square root, . Also, because , we have

So the range is

Graphs
Another way of visualizing the behavior of a function of two variables is to consider its
graph.

Definition If is a function of two variables with domain D, then the graph of
is the set of all points in such that and is in D.

Just as the graph of a function of one variable is a curve with equation so
the graph of a function of two variables is a surface with equation . We can
visualize the graph of as lying directly above or below its domain in the -plane (see
Figure 5).
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES 905

Sketch the graph of the function .

SOLUTION The graph of has the equation , or ,
which represents a plane. To graph the plane we first find the intercepts. Putting

in the equation, we get as the -intercept. Similarly, the -intercept is 3
and the -intercept is 6. This helps us sketch the portion of the graph that lies in the first
octant in Figure 6.

The function in Example 5 is a special case of the function

which is called a linear function. The graph of such a function has the equation

or    

so it is a plane. In much the same way that linear functions of one variable are important in
single-variable calculus, we will see that linear functions of two variables play a central
role in multivariable calculus.

Sketch the graph of .

SOLUTION The graph has equation . We square both sides of this
equation to obtain , or , which we recognize as an
equation of the sphere with center the origin and radius 3. But, since , the graph of

is just the top half of this sphere (see Figure 7).

NOTE An entire sphere can’t be represented by a single function of and . As we saw
in Example 6, the upper hemisphere of the sphere is represented by the
function . The lower hemisphere is represented by the function

.

Use a computer to draw the graph of the Cobb-Douglas production function
.

SOLUTION Figure 8 shows the graph of P for values of the labor L and capital K that lie
between 0 and 300. The computer has drawn the surface by plotting vertical traces. We
see from these traces that the value of the production P increases as either L or K
increases, as is to be expected.

Find the domain and range and sketch the graph of .

SOLUTION Notice that is defined for all possible ordered pairs of real numbers
, so the domain is , the entire xy-plane. The range of h is the set of all non-

negative real numbers. [Notice that and , so for all x and y.]
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906 CHAPTER 14 PARTIAL DERIVATIVES

The graph of h has the equation , which is the elliptic paraboloid that
we sketched in Example 4 in Section 12.6. Horizontal traces are ellipses and vertical
traces are parabolas (see Figure 9).

Computer programs are readily available for graphing functions of two variables. In most
such programs, traces in the vertical planes and are drawn for equally spaced
values of and parts of the graph are eliminated using hidden line removal.

Fig ure 10 shows computer-generated graphs of several functions. Notice that we get an
especially good picture of a function when rotation is used to give views from different
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vantage points. In parts (a) and (b) the graph of is very flat and close to the -plane except
near the origin; this is because is very small when or is large.

Level Curves
So far we have two methods for visualizing functions: arrow diagrams and graphs. A third
method, borrowed from mapmakers, is a contour map on which points of constant elevation
are joined to form contour lines, or level curves.

Definition The level curves of a function of two variables are the curves with
equations , where is a constant (in the range of ).

A level curve is the set of all points in the domain of at which takes on
a given value . In other words, it shows where the graph of has height .

You can see from Figure 11 the relation between level curves and horizontal traces. The
level curves are just the traces of the graph of in the horizontal plane 

projected down to the -plane. So if you draw the level curves of a function and
visualize them being lifted up to the surface at the indicated height, then you can mentally
piece together a picture of the graph. The surface is steep where the level curves are close
together. It is somewhat flatter where they are farther apart.

One common example of level curves occurs in topographic maps of mountainous
regions, such as the map in Figure 12. The level curves are curves of constant elevation
above sea level. If you walk along one of these contour lines, you neither ascend nor descend.
Another common example is the temperature function introduced in the opening paragraph
of this section. Here the level curves are called isothermals and join locations with the same 
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Visual 14.1A animates Figure 11 by 
showing level curves being lifted up to graphs 
of functions.

TEC
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908 CHAPTER 14 PARTIAL DERIVATIVES

temperature. Figure 13 shows a weather map of the world indicating the average January 
temperatures. The isothermals are the curves that separate the colored bands.

A contour map for a function is shown in Figure 14. Use it to estimate the
values of and .

SOLUTION The point (1, 3) lies partway between the level curves with -values 70
and 80. We estimate that

Similarly, we estimate that

Sketch the level curves of the function for the 
values , , , .

SOLUTION The level curves are

This is a family of lines with slope . The four particular level curves with 
, , , and are , , , and

. They are sketched in Figure 15. The level curves are equally spaced
parallel lines because the graph of is a plane (see Figure 6).

FIGURE 13
World mean sea-level temperatures

in January in degrees Celsius
From Atmosphere: Introduction to Meteorology, 4th Edition, 1989. 

© 1989 Pearson Education, Inc. 
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES 909

Sketch the level curves of the function

SOLUTION The level curves are

This is a family of concentric circles with center and radius . The cases
, , , are shown in Figure 16. Try to visualize these level curves lifted up to 

form a surface and compare with the graph of (a hemisphere) in Figure 7. (See TEC
Visual 14.1A.)

Sketch some level curves of the function .

SOLUTION The level curves are

which, for , describes a family of ellipses with semiaxes and .
Figure 17(a) shows a contour map of h drawn by a computer. Figure 17(b) shows these
level curves lifted up to the graph of h (an elliptic paraboloid) where they become hori-
zontal traces. We see from Figure 17 how the graph of h is put together from the level
curves.
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Visual 14.1B demonstrates the 
connection between surfaces and their 
contour maps.
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910 CHAPTER 14 PARTIAL DERIVATIVES

Plot level curves for the Cobb-Douglas production function of Example 3.

SOLUTION In Figure 18 we use a computer to draw a contour plot for the Cobb-
Douglas production function

Level curves are labeled with the value of the production P. For instance, the level curve
labeled 140 shows all values of the labor L and capital investment K that result in a pro-
duction of . We see that, for a fixed value of P, as L increases K decreases, and
vice versa.

For some purposes, a contour map is more useful than a graph. That is certainly true in
Example 13. (Compare Figure 18 with Figure 8.) It is also true in estimating function val-
ues, as in Example 9.

Figure 19 shows some computer-generated level curves together with the corre sponding
computer-generated graphs. Notice that the level curves in part (c) crowd together near the
origin. That corresponds to the fact that the graph in part (d) is very steep near the origin.

Functions of Three or More Variables
A function of three variables, , is a rule that assigns to each ordered triple in a
domain a unique real number denoted by . For instance, the temperature

at a point on the surface of the earth depends on the longitude x and latitude y of the point
and on the time t, so we could write .

P�L, K � � 1.01L0.75K 0.25

P � 140

EXAMPLE 13

FIGURE 19

(a) Level curves of f(x, y)=_xye_≈_¥

x

y

(c) Level curves of f(x, y)=
_3y

≈+¥+1

y

x

(d) f(x, y)=
_3y

≈+¥+1

z

y

x

(b) Two views of f(x, y)=_xye_≈_¥
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FIGURE 18
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES 911

Find the domain of if

SOLUTION The expression for is defined as long as , so the domain of
is

This is a half-space consisting of all points that lie above the plane .

It’s very difficult to visualize a function of three variables by its graph, since that would
lie in a four-dimensional space. However, we do gain some insight into by examining its
level surfaces, which are the surfaces with equations , where is a constant.
If the point moves along a level surface, the value of remains fixed.

Find the level surfaces of the function

SOLUTION The level surfaces are , where . These form a family 
of concentric spheres with radius . (See Figure 20.) Thus, as varies over any
sphere with center , the value of remains fixed.

Functions of any number of variables can be considered. A function of n vari ables is a
rule that assigns a number to an -tuple of real num-
bers. We denote by the set of all such n-tuples. For example, if a company uses different
ingredients in making a food product, is the cost per unit of the ingredient, and units
of the ingredient are used, then the total cost of the ingredients is a function of the
variables :

The function is a real-valued function whose domain is a subset of . Some   times we
will use vector notation to write such functions more compactly: If , we
often write in place of . With this notation we can rewrite the function
defined in Equation 3 as

where and denotes the dot product of the vectors c and x in .
In view of the one-to-one correspondence between points in and their

position vectors in , we have three ways of looking at a function f
defined on a subset of :

1. As a function of real variables 

2. As a function of a single point variable 

3. As a function of a single vector variable 

We will see that all three points of view are useful.

f

D � ��x, y, z� � � 3 � z � y�

z � y

f
f

f �x, y, z� � k k
�x, y, z� f �x, y, z�

f �x, y, z� � x 2 � y 2 � z2

x 2 � y 2 � z2 � k k � 0
sk �x, y, z�

O f �x, y, z�

z � f �x1, x2, . . . , xn � n �x1, x2, . . . , xn �
�n n

ci ith xi

ith C n
x1, x2, . . . , xn

3 C � f �x1, x2, . . . , xn � � c1x1 � c2x2 � � � � � cn xn

f � n

x � �x1, x2, . . . , xn �
f �x� f �x1, x2, . . . , xn �

f �x� � c � x

c � �c1, c2, . . . , cn � c � x Vn

�x1, x2, . . . , xn� � n

x � �x1, x2, . . . , xn � Vn

�n

n x1, x2, . . . , xn

�x1, x2, . . . , xn �

x � �x1, x2, . . . , xn �

EXAMPLE 15

fEXAMPLE 14

f �x, y, z� � ln�z � y� � xy sin z

z � y � 0f �x, y, z�

FIGURE 20
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912 CHAPTER 14 PARTIAL DERIVATIVES

1. In Example 2 we considered the function , where
W is the wind-chill index, T is the actual temperature, and is
the wind speed. A numerical representation is given in Table 1.
(a) What is the value of ? What is its meaning?
(b) Describe in words the meaning of the question “For what

value of is ?” Then answer the question.
(c) Describe in words the meaning of the question “For what

value of T is ?” Then answer the question.
(d) What is the meaning of the function ?

Describe the behavior of this function.
(e) What is the meaning of the function ?

Describe the behavior of this function.

2. The temperature-humidity index (or humidex, for short) is the
perceived air temperature when the actual temperature is and
the relative humidity is , so we can write . The fol-
lowing table of values of is an excerpt from a table compiled
by the National Oceanic & Atmospheric Administration.

TABLE 3 Apparent temperature as a function
of temperature and humidity

(a) What is the value of ? What is its meaning?
(b) For what value of is ?
(c) For what value of is ?
(d) What are the meanings of the functions 

and ? Compare the behavior of these two
functions of .

3. A manufacturer has modeled its yearly production function
(the monetary value of its entire production in millions of 
dollars) as a Cobb-Douglas function

where is the number of labor hours (in thousands) and is
the invested capital (in millions of dollars). Find
and interpret it.

4. Verify for the Cobb-Douglas production function

W � f �T, v�
v

f ��15, 40�

v f ��20, v� � �30

f �T, 20� � �49
W � f ��5, v�

W � f �T, 50�

I
T

h I � f �T, h�
I

77

82

87

93

99

78

84

90

96

104

79

86

93

101

110

81

88

96

107

120

82

90

100

114

132

83

93

106

124

144

T
h 20 30 40 50 60 70

80

85

90

95

100

A
ct

ua
l t

em
pe

ra
tu

re
 (

°F
)

Relative humidity (%)

f �95, 70�
h f �90, h� � 100
T f �T, 50� � 88

I � f �80, h�
I � f �100, h�

h

P

P�L, K� � 1.47L 0.65K 0.35

L K
P�120, 20�

P�L, K � � 1.01L 0.75K 0.25

discussed in Example 3 that the production will be doubled 
if both the amount of labor and the amount of capital are 
doubled. Determine whether this is also true for the general
production function

5. A model for the surface area of a human body is given by the
function

where is the weight (in pounds), is the height (in inches),
and is measured in square feet.
(a) Find and interpret it.
(b) What is your own surface area?

6. The wind-chill index discussed in Example 2 has been 
modeled by the following function:

Check to see how closely this model agrees with the values in
Table 1 for a few values of and .

7. The wave heights h in the open sea depend on the speed 
of the wind and the length of time t that the wind has been
blowing at that speed. Values of the function are
recorded in feet in Table 4.
(a) What is the value of ? What is its meaning?
(b) What is the meaning of the function ? Describe

the behavior of this function.
(c) What is the meaning of the function ? Describe

the behavior of this function.

TABLE 4

8. A company makes three sizes of cardboard boxes: small,
medium, and large. It costs $2.50 to make a small box, $4.00 

P�L, K � � bL�K 1��

S � f �w, h� � 0.1091w 0.425h 0.725

w h
S

f �160, 70�

W

W�T, v� � 13.12 � 0.6215T � 11.37v 0.16 � 0.3965Tv 0.16

T v

v

h � f �v, t�

f �40, 15�
h � f �30, t�

h � f �v, 30�

2
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17

28

40

54

2

5
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14.1 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES 913

for a medium box, and $4.50 for a large box. Fixed costs 
are $8000.
(a) Express the cost of making small boxes, medium 

boxes, and large boxes as a function of three variables:
.

(b) Find and interpret it.
(c) What is the domain of ?

9. Let .
(a) Evaluate .
(b) Find the domain of .
(c) Find the range of .

10. Let .
(a) Evaluate .
(b) Find and sketch the domain of .
(c) Find the range of .

11. Let .
(a) Evaluate .
(b) Find and describe the domain of .

12. Let .
(a) Evaluate .
(b) Find and describe the domain of .

13–22 Find and sketch the domain of the function.

13. 14.

15. 16.

17.  

18.

19.

20.

21.

22.

23–31 Sketch the graph of the function.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32. Match the function with its graph (labeled I–VI). Give reasons
for your choices.

(a) (b)

(c) (d)

(e) (f )

yx
z

C � f �x, y, z�
f �3000, 5000, 4000�

f

t�x, y� � cos�x � 2y�
t�2, �1�

t

t

F �x, y� � 1 � s4 � y 2

F �3, 1�
F

F

f �x, y, z� � sx � sy � sz � ln�4 � x 2 � y 2 � z 2�
f �1, 1, 1�

f

t�x, y, z� � x 3y 2zs10 � x � y � z
t�1, 2, 3�

t

f �x, y� � sxyf �x, y� � s2x � y

f �x, y� � sx 2 � y 2f �x, y� � ln�9 � x 2 � 9y2 �

f �x, y� � s1 � x 2 � s1 � y 2  

f �x, y� � sy � s25 � x 2 � y 2 

f �x, y� �
sy � x 2 

1 � x 2

f �x, y� � arcsin�x 2 � y 2 � 2�

f �x, y, z� � s1 � x 2 � y 2 � z2 

f �x, y, z� � ln�16 � 4x 2 � 4y2 � z2 �

f �x, y� � 2 � xf �x, y� � 1 � y

f �x, y� � e�yf �x, y� � 10 � 4x � 5y

f �x, y� � 1 � 2x 2 � 2y 2f �x, y� � y 2 � 1

f �x, y� � s4x 2 � y 2 f �x, y� � 9 � x 2 � 9y 2

f �x, y� � s4 � 4x 2 � y 2 

f �x, y� � � xy �f �x, y� � � x � � � y �
f �x, y� � �x 2 � y 2 �2f �x, y� �

1

1 � x 2 � y 2

f �x, y� � sin(�x � � � y �)f �x, y� � �x � y�2

33. A contour map for a function is shown. Use it to esti mate the
values of and . What can you say about the
shape of the graph?

34. Shown is a contour map of atmospheric pressure in North
America on August 12, 2008. On the level curves (called 
isobars) the pressure is indicated in millibars (mb).
(a) Estimate the pressure at (Chicago), (Nashville), 

(San Francisco), and (Vancouver).
(b) At which of these locations were the winds strongest?
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914 CHAPTER 14 PARTIAL DERIVATIVES

35. Level curves (isothermals) are shown for the water temperature
in Long Lake (Minnesota) in 1998 as a function of

depth and time of year. Estimate the temperature in the lake on
June 9 (day 160) at a depth of 10 m and on June 29 (day 180)
at a depth of 5 m.

36. Two contour maps are shown. One is for a function whose
graph is a cone. The other is for a function t whose graph is a
paraboloid. Which is which, and why?

37. Locate the points and on the map of Lonesome Mountain
(Figure 12). How would you describe the terrain near ? 
Near ?

38. Make a rough sketch of a contour map for the function whose
graph is shown.

�in �C�

2016

15

120

10D
ep

th
 (

m
)
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8

8

121620

5

0

160 200
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240 280

f

I

x

y

II

x

y

BA
A

B

z

y

x

39–42 A contour map of a function is shown. Use it to make a
rough sketch of the graph of .

39. 40.

41. 42.

43–50 Draw a contour map of the function showing several level
curves.

43. 44.

45. 46.

47. 48.

49. 50.

51–52 Sketch both a contour map and a graph of the function and
compare them.

51. 52.

53. A thin metal plate, located in the -plane, has temperature
at the point . The level curves of are called

isothermals because at all points on such a curve the tempera-
ture is the same. Sketch some isothermals if the temperature
function is given by

54. If is the electric potential at a point in the 
-plane, then the level curves of are called equipotential

curves because at all points on such a curve the electric 
potential is the same. Sketch some equipotential curves if

, where is a positive constant.
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f �x, y� � x 3 � yf �x, y� � �y � 2x�2

f �x, y� � ln�x 2 � 4y 2�f �x, y� � sx � y

f �x, y� � y sec xf �x, y� � ye x

f �x, y� � y	�x 2 � y2�f �x, y� � sy 2 � x 2 

f �x, y� � s36 � 9x 2 � 4y 2 f �x, y� � x 2 � 9y 2

xy
T�x, y�T�x, y�

T�x, y� �
100

1 � x 2 � 2y 2

�x, y�V�x, y�
Vxy

cV�x, y� � c	sr 2 � x 2 � y 2 
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES 915

; 55–58 Use a computer to graph the function using various
domains and viewpoints. Get a printout of one that, in your opin-
ion, gives a good view. If your software also produces level
curves, then plot some contour lines of the same function and
compare with the graph.

55. (monkey saddle)

56. (dog saddle)

57.

58.

f �x, y� � xy 2 � x 3

f �x, y� � xy 3 � yx 3

f �x, y� � e��x 2�y 2�	3�sin�x 2� � cos�y 2��

f �x, y� � cos x cos y

59–64 Match the function (a) with its graph (labeled A–F below)
and (b) with its contour map (labeled I–VI). Give reasons for
your choices.

59. 60.

61. 62.

63.

64.

z � e x cos yz � sin�xy�

z � sin x � sin yz � sin�x � y�

z � �1 � x 2��1 � y 2�

z �
x � y

1 � x 2 � y 2

z

y

x

A B C z

y

x

z

yx
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916 CHAPTER 14 PARTIAL DERIVATIVES

65–68 Describe the level surfaces of the function.

65.

66.

67.

68.

69–70 Describe how the graph of is obtained from the graph 
of .

69. (a)
(b)
(c)
(d)

70. (a)
(b)
(c)

; 71–72 Use a computer to graph the function using various
domains and viewpoints. Get a printout that gives a good view of
the “peaks and valleys.” Would you say the function has a maxi-
 mum value? Can you identify any points on the graph that you
might consider to be “local maximum points”? What about “local
minimum points”?

71.

72.

; 73–74 Use a computer to graph the function using various
domains and viewpoints. Comment on the limiting behavior of 
the function. What happens as both and become large? What
happens as approaches the origin?

73. 74.

; 75. Use a computer to investigate the family of functions
. How does the shape of the graph depend 

on ?

f �x, y, z� � x � 3y � 5z

f �x, y, z� � x 2 � 3y 2 � 5z2

f �x, y, z� � y 2 � z2

f �x, y, z� � x 2 � y 2 � z2

t

f

t�x, y� � f �x, y� � 2
t�x, y� � 2 f �x, y�
t�x, y� � �f �x, y�
t�x, y� � 2 � f �x, y�

t�x, y� � f �x � 2, y�
t�x, y� � f �x, y � 2�
t�x, y� � f �x � 3, y � 4�

f �x, y� � 3x � x 4 � 4y 2 � 10xy

f �x, y� � xye�x 2�y 2

yx
�x, y�

f �x, y� �
xy

x 2 � y 2f �x, y� �
x � y

x 2 � y 2

f �x, y� � e cx2�y2

c

; 76. Use a computer to investigate the family of surfaces

How does the shape of the graph depend on the numbers
and ?

; 77. Use a computer to investigate the family of surfaces
. In particular, you should determine the

transitional values of for which the surface changes from
one type of quadric surface to another.

; 78. Graph the functions

and

In general, if t is a function of one variable, how is the graph
of 

obtained from the graph of t?

; 79. (a) Show that, by taking logarithms, the general Cobb-
Douglas function can be expressed as

(b) If we let and , the equation in
part (a) becomes the linear equation . Use
Table 2 (in Example 3) to make a table of values of

and for the years 1899–1922. Then use a
graphing calculator or computer to find the least squares
regression line through the points .

(c) Deduce that the Cobb-Douglas production function is
.

f �x, y� � lnsx 2 � y 2 

f �x, y� � sin(sx 2 � y 2 )

f �x, y� �
1

sx 2 � y 2 

f �x, y� � t(sx 2 � y 2 )

P � bL�K 1��

ln 
P

K
� ln b � � ln 

L

K

x � ln�L	K � y � ln�P	K �
y � �x � ln b

ln�L	K� ln�P	K�

�ln�L	K�, ln�P	K��

P � 1.01L0.75K 0.25

z � �ax 2 � by 2 �e�x 2�y 2

a
b

z � x 2 � y 2 � cxy
c

f �x, y� � esx2�y2 

f �x, y� � sx 2 � y 2 

Let’s compare the behavior of the functions

as x and y both approach 0 [and therefore the point approaches the origin].
Tables 1 and 2 show values of and , correct to three decimal places, for

points near the origin. (Notice that neither function is defined at the origin.) 

f �x, y� �
sin�x 2 � y 2 �

x 2 � y 2 and t�x, y� �
x 2 � y 2

x 2 � y 2

�x, y�
f �x, y� t�x, y�

�x, y�

14.2 Limits and Continuity
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SECTION 14.2 LIMITS AND CONTINUITY 917

TABLE 1 Values of TABLE 2 Values of 

It appears that as approaches (0, 0), the values of are approaching 1 whereas
the values of aren’t approaching any number. It turns out that these guesses based on
numerical evidence are correct, and we write

and    does not exist

In general, we use the notation

to indicate that the values of approach the number L as the point approaches
the point along any path that stays within the domain of . In other words, we can
make the values of as close to L as we like by taking the point sufficiently
close to the point , but not equal to . A more precise definition follows.

Definition Let be a function of two variables whose domain D includes
points arbitrarily close to . Then we say that the limit of as
approaches is and we write

if for every number there is a corresponding number such that

and then

Other notations for the limit in Definition 1 are

and    

Notice that is the distance between the numbers and , and
is the distance between the point and the point . Thus

Definition 1 says that the distance between and can be made arbitrarily small by
making the distance from to sufficiently small (but not 0). Figure 1 illustrates
Definition 1 by means of an arrow diagram. If any small interval is given 
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t�x, y�f �x, y�

�x, y� f �x, y�
t�x, y�

lim
� x, y� l �0, 0�

sin�x 2 � y 2 �
x 2 � y 2 � 1 lim

� x, y� l �0, 0�

x 2 � y 2

x 2 � y 2

lim
� x, y� l � a, b�

f �x, y� � L

f �x, y� �x, y�
�a, b� f

f �x, y� �x, y�
�a, b� �a, b�

f
�a, b� f �x, y� �x, y�

�a, b� L

lim
�x, y� l �a, b�

f �x, y� � L

	 � 0 
 � 0

if �x, y� � D 0 � s�x � a�2 � �y � b�2 � 
 � f �x, y� � L � � 	

1

lim
x l a
y l b

f �x, y� � L f �x, y� l L as  �x, y� l �a, b�

� f �x, y� � L � f �x, y� L
s�x � a� 2 � �y � b� 2 �x, y� �a, b�

f �x, y� L
�x, y� �a, b�

�L � 	, L � 	�
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918 CHAPTER 14 PARTIAL DERIVATIVES

around , then we can find a disk with center and radius such that maps
all the points in [except possibly ] into the interval .

Another illustration of Definition 1 is given in Figure 2 where the surface is the graph
of . If is given, we can find such that if is restricted to lie in the disk

and , then the corresponding part of lies between the horizontal planes
and .

For functions of a single variable, when we let approach , there are only two possible
directions of approach, from the left or from the right. We recall from Chap ter 1 that if

, then does not exist.
For functions of two variables the situation is not as simple because we can let

approach from an infinite number of directions in any manner whatsoever (see Fig-
ure 3) as long as stays within the domain of .

Definition 1 says that the distance between and L can be made arbitrarily small
by making the distance from to sufficiently small (but not 0). The definition
refers only to the distance between and . It does not refer to the direction of
approach. Therefore, if the limit exists, then must approach the same limit no mat-
ter how approaches . Thus, if we can find two different paths of approach along
which the function has different limits, then it follows that does
not exist.

If as along a path and as
along a path , where , then does 

not exist.

Show that does not exist.

SOLUTION Let . First let’s approach along the 
-axis. Then gives for all , so

We now approach along the -axis by putting . Then for 
all , so

(See Figure 4.) Since has two different limits along two different lines, the given limit 

y
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(a, b)

∂

FIGURE 1 FIGURE 2 

x
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z

0

L+∑
L

L-∑

(a, b)
D∂

S

x a

limx l a� f �x� � limx l a� f �x� limx l a f �x�
�x, y�

�a, b�
�x, y� f

f �x, y�
�x, y� �a, b�

�x, y� �a, b�
f �x, y�

�x, y� �a, b�
f �x, y� lim�x, y� l �a, b� f �x, y�

f �x, y� l L1 �x, y� l �a, b� C1 f �x, y� l L2

�x, y� l �a, b� C2 L1 � L2 lim�x, y� l �a, b� f �x, y�

lim
� x, y� l �0, 0�

x 2 � y 2

x 2 � y 2

f �x, y� � �x 2 � y 2 �	�x 2 � y 2 � �0, 0�
x y � 0 f �x, 0� � x 2	x 2 � 1 x � 0

f �x, y� l 1 as �x, y� l �0, 0� along the x-axis

S
f 	 � 0 
 � 0 �x, y�

D
 �x, y� � �a, b� S
z � L � 	 z � L � 	

v EXAMPLE 1

y x � 0 f �0, y� �
�y 2

y 2 � �1
y � 0

f �x, y� l �1 as �x, y� l �0, 0� along the y-axis

f

f
 � 0�a, b�D
L
�L � 	, L � 	��a, b�D


FIGURE 3
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SECTION 14.2 LIMITS AND CONTINUITY 919

does not exist. (This confirms the conjecture we made on the basis of numerical evi-
dence at the beginning of this section.)

If , does exist?

SOLUTION If , then . Therefore

If , then , so

Although we have obtained identical limits along the axes, that does not show that the
given limit is 0. Let’s now approach along another line, say . For all ,

Therefore

(See Figure 5.) Since we have obtained different limits along different paths, the given
limit does not exist.

Figure 6 sheds some light on Example 2. The ridge that occurs above the line cor-
responds to the fact that for all points on that line except the origin.

If , does exist?

SOLUTION With the solution of Example 2 in mind, let’s try to save time by letting
along any nonvertical line through the origin. Then , where 

is the slope, and

So

Thus has the same limiting value along every nonvertical line through the origin. But
that does not show that the given limit is 0, for if we now let along the
parabola , we have

f �x, y� � xy	�x 2 � y 2 � lim
�x, y� l �0, 0�

f �x, y�

y � 0 f �x, 0� � 0	x 2 � 0

f �x, y� l 0 as �x, y� l �0, 0� along the x-axis

x � 0 f �0, y� � 0	y 2 � 0

f �x, y� l 0 as �x, y� l �0, 0� along the y-axis

�0, 0� y � x x � 0

f �x, x� �
x 2

x 2 � x 2 �
1

2

f �x, y� l 1
2 as �x, y� l �0, 0� along y � x

EXAMPLE 2

y � x
f �x, y� � 1

2 �x, y�

FIGURE 6

f(x, y)=
xy

≈+¥

z y

x

f �x, y� �
xy 2

x 2 � y 4 lim
� x, y� l �0, 0�

f �x, y�

�x, y� l �0, 0� y � mx m

f �x, y� � f �x, mx� �
x�mx�2

x 2 � �mx�4 �
m 2x 3

x 2 � m 4x 4 �
m 2x

1 � m 4x 2

f �x, y� l 0 as �x, y� l �0, 0� along y � mx

f
�x, y� l �0, 0�

x � y 2

f �x, y� � f �y 2, y� �
y 2 � y 2

�y 2 �2 � y 4 �
y 4

2y 4 �
1

2

v EXAMPLE 3

FIGURE 5
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In Visual 14.2 a rotating line on the 
surface in Figure 6 shows different limits at 
the origin from different directions.
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Figure 7 shows the graph of the function in
Example 3. Notice the ridge above the
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920 CHAPTER 14 PARTIAL DERIVATIVES

so

Since different paths lead to different limiting values, the given limit does not exist.

Now let’s look at limits that do exist. Just as for functions of one variable, the calcula-
tion of limits for functions of two variables can be greatly simplified by the use of proper-
ties of limits. The Limit Laws listed in Section 1.6 can be extended to functions of two
variables: The limit of a sum is the sum of the limits, the limit of a product is the product
of the limits, and so on. In particular, the following equations are true.

The Squeeze Theorem also holds.

Find if it exists.

SOLUTION As in Example 3, we could show that the limit along any line through the
origin is 0. This doesn’t prove that the given limit is 0, but the limits along the parabolas

and also turn out to be 0, so we begin to suspect that the limit does exist
and is equal to 0.

Let . We want to find such that

if   

that is, if

But since , so and therefore

Thus if we choose and let , then

Hence, by Definition 1,

Continuity
Recall that evaluating limits of continuous functions of a single variable is easy. It can be
accomplished by direct substitution because the defining property of a continuous function
is . Continuous functions of two variables are also defined by the direct
substitution property.

f �x, y� l 1
2 as �x, y� l �0, 0� along x � y 2

2 lim
�x, y� l �a, b�

x � a lim
�x, y� l �a, b�

y � b lim
�x, y� l �a, b�

c � c

lim
�x, y� l �0, 0�

3x 2y

x 2 � y 2

y � x 2 x � y 2

EXAMPLE 4

� � 0 � � 0

0 � sx 2 � y 2 � � then � 3x 2y

x 2 � y 2 � 0 � � �

0 � sx 2 � y 2 � � then
3x 2� y �
x 2 � y 2 � �

x 2 � x 2 � y 2 y 2 	 0 x 2��x 2 � y 2 � � 1

3x 2� y �
x 2 � y 2 � 3 � y � � 3sy 2 � 3sx 2 � y 2 

� � ��3 0 � sx 2 � y 2 � �

� 3x 2y

x 2 � y 2 � 0 � � 3sx 2 � y 2 � 3� � 3��

3� � �

lim
�x, y� l �0, 0�

3x 2y

x 2 � y 2 � 0

3

limx l a f �x� � f �a�

Another way to do Example 4 is to use the
Squeeze Theorem instead of Definition 1. From

it follows that

and so the first inequality in shows that the
given limit is 0.

lim
�x, y� l �0, 0�

3� y � � 0

2

3
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SECTION 14.2 LIMITS AND CONTINUITY 921

Definition A function of two variables is called continuous at if

We say is continuous on if is continuous at every point in .

The intuitive meaning of continuity is that if the point changes by a small amount,
then the value of changes by a small amount. This means that a surface that is the
graph of a continuous function has no hole or break.

Using the properties of limits, you can see that sums, differences, products, and quo-
tients of continuous functions are continuous on their domains. Let’s use this fact to give
examples of continuous functions.

A polynomial function of two variables (or polynomial, for short) is a sum of terms of
the form , where is a constant and and are nonnegative integers. A rational
function is a ratio of polynomials. For instance,

is a polynomial, whereas

is a rational function.
The limits in show that the functions , , and are

continuous. Since any polynomial can be built up out of the simple functions , , and by
multiplication and addition, it follows that all polynomials are continuous on . Likewise,
any rational function is continuous on its domain because it is a quotient of continu-
ous functions.

Evaluate .

SOLUTION Since is a polynomial, it is continuous
everywhere, so we can find the limit by direct substitution:

Where is the function continuous?

SOLUTION The function is discontinuous at because it is not defined there. 
Since is a rational function, it is continuous on its domain, which is the set

.

Let

Here is defined at but is still discontinuous there because
does not exist (see Example 1).

f �a, b�

lim
�x, y� l �a, b�

f �x, y� � f �a, b�

f D f �a, b� D

�x, y�
f �x, y�

cxmyn c m n

f �x, y� � x 4 � 5x 3y 2 � 6xy 4 � 7y � 6

t�x, y� �
2xy � 1

x 2 � y 2

f �x, y� � x t�x, y� � y h�x, y� � c
f t h

� 2

lim
�x, y� l �1, 2�

�x 2y 3 � x 3y 2 � 3x � 2y�

f �x, y� � x 2y 3 � x 3y 2 � 3x � 2y

lim
�x, y� l �1, 2�

�x 2y 3 � x 3y 2 � 3x � 2y� � 12 � 23 � 13 � 22 � 3 � 1 � 2 � 2 � 11

f �x, y� �
x 2 � y 2

x 2 � y 2

f �0, 0�
f

D � 	�x, y� � �x, y� � �0, 0�


t�x, y� � �
0

x 2 � y 2

x 2 � y 2
if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

t �0, 0� t lim�x, y� l �0, 0� t�x, y�

4

2

v EXAMPLE 5

EXAMPLE 6

EXAMPLE 7
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922 CHAPTER 14 PARTIAL DERIVATIVES

Let

We know is continuous for since it is equal to a rational function there.
Also, from Example 4, we have

Therefore is continuous at , and so it is continuous on .

Just as for functions of one variable, composition is another way of combining two con-
tinuous functions to get a third. In fact, it can be shown that if is a continuous function of
two variables and is a continuous function of a single variable that is defined on the range
of , then the composite function defined by is also a contin-
uous function.

Where is the function continuous?

SOLUTION The function is a rational function and therefore continuous
except on the line . The function is continuous everywhere. So the
composite function

is continuous except where . The graph in Figure 9 shows the break in the graph of
above the -axis.

Functions of Three or More Variables
Everything that we have done in this section can be extended to functions of three or more
variables. The notation

means that the values of approach the number as the point approaches
the point along any path in the domain of . Because the distance between two
points and in is given by , we can
write the precise definition as follows: For every number there is a corresponding
number such that

if and

then  

The function f is continuous at if

For instance, the function

EXAMPLE 8

f �x, y� � �
0

3x 2y

x 2 � y 2
if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

�x, y� � �0, 0�f

lim
�x, y� l �0, 0�

f �x, y� � lim
�x, y� l �0, 0�

3x 2y

x 2 � y 2 � 0 � f �0, 0�

� 2�0, 0�f

f
t

h�x, y� � t� f �x, y��h � t � ff

h�x, y� � arctan�y�x�EXAMPLE 9

f �x, y� � y�x
t�t� � arctan tx � 0

t� f �x, y�� � arctan�y�x� � h�x, y�

x � 0
yh

lim
�x, y, z� l �a, b, c�

f �x, y, z� � L

�x, y, z�Lf �x, y, z�
f�a, b, c�

s�x � a� 2 � �y � b� 2 � �z � c� 2 � 3�a, b, c��x, y, z�
� � 0

� � 0

0 � s�x � a� 2 � �y � b� 2 � �z � c� 2 � ��x, y, z� is in the domain of f

� f �x, y, z� � L � � �

�a, b, c�

lim
�x, y, z� l �a, b, c�

f �x, y, z� � f �a, b, c�

f �x, y, z� �
1

x 2 � y 2 � z2 � 1

Figure 8 shows the graph of the continuous
function in Example 8.

FIGURE 8

z

y

x

_2

_1

0

1

2

x
_2

_1
0

1
2

y

_2

0

2

z

FIGURE 9
The function h(x, y)=arctan(y/x)
is discontinuous where x=0.
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is a rational function of three variables and so is continuous at every point in except
where . In other words, it is discontinuous on the sphere with center the
origin and radius 1.

If we use the vector notation introduced at the end of Section 14.1, then we can write the
definitions of a limit for functions of two or three variables in a single compact form as 
follows.

If is defined on a subset D of , then means that for
every number there is a corresponding number such that

if  and  then  

Notice that if , then and , and is just the definition of a limit for
functions of a single variable. For the case , we have , , 
and , so becomes Definition 1. If , then

, , and becomes the definition of a limit of a function of three
variables. In each case the definition of continuity can be written as

� 3

x 2 � y 2 � z2 � 1

f �n lim x l a f �x� � L
� � 0 � � 0

x � D 0 � � x � a � � � � f �x� � L � � �

n � 1 x � x a � a
n � 2 x � �x, y 
 a � �a, b 


�x � a � � s�x � a� 2 � �y � b� 2 n � 3
x � �x, y, z 
 a � �a, b, c 


lim
x l a

f �x� � f �a�

5

5

5
5

SECTION 14.2 LIMITS AND CONTINUITY 923

1. Suppose that . What can you say 
about the value of ? What if is continuous?

2. Explain why each function is continuous or discontinuous.
(a) The outdoor temperature as a function of longitude, 

latitude, and time
(b) Elevation (height above sea level) as a function of

longitude, latitude, and time
(c) The cost of a taxi ride as a function of distance traveled 

and time

3–4 Use a table of numerical values of for near the
origin to make a conjecture about the value of the limit of
as . Then explain why your guess is correct.

3. 4.

5–22 Find the limit, if it exists, or show that the limit does 
not exist.

5. 6.

7. 8.

9. 10.

lim�x, y� l �3, 1� f �x, y� � 6
ff �3, 1�

�x, y�f �x, y�

�x, y� l �0, 0�
f �x, y�

f �x, y� �
2xy

x 2 � 2y 2f �x, y� �
x 2y 3 � x 3y 2 � 5

2 � xy

lim
�x, y� l �1, 2�

�5x 3 � x 2y 2� lim
�x, y� l �1, �1�

e�xy cos�x � y�

lim
�x, y� l �1, 0�

ln� 1 � y 2

x 2 � xy�lim
�x, y� l �2, 1�

4 � xy

x 2 � 3y 2

lim
�x, y� l �0, 0�

x 4 � 4y 2

x 2 � 2y 2 lim
�x, y� l �0, 0�

5y 4 cos2 x

x 4 � y 4

11. 12.

13. 14.

15. 16.

17. 18.

19.

20.

21.

22.

; 23–24 Use a computer graph of the function to explain why the
limit does not exist.

23. 24.

lim
�x, y� l �0, 0�

xy

sx 2 � y 2 
lim

�x, y� l �0, 0�

x 4 � y 4

x 2 � y 2

lim
�x, y� l �0, 0�

x 2ye y

x 4 � 4y 2 lim
�x, y� l �0, 0�

x 2 sin2 y

x 2 � 2y 2

lim
�x, y� l �0, 0�

x 2 � y 2

sx 2 � y 2 � 1 � 1
lim

�x, y� l �0, 0�

xy 4

x 2 � y 8

lim
�x, y, z� l �
, 0, 1�3�

ey2

tan�xz�

lim
�x, y, z� l �0, 0, 0�

xy � yz

x 2 � y 2 � z2

lim
�x, y, z� l �0, 0, 0�

xy � yz 2 � xz2

x 2 � y 2 � z 4

lim
�x, y, z� l �0, 0, 0�

yz

x 2 � 4y 2 � 9z2

lim
�x, y� l �0, 0�

2x 2 � 3xy � 4y 2

3x 2 � 5y 2 lim
�x, y� l �0, 0�

xy 3

x 2 � y6

lim
�x, y� l �1, 0�

xy � y

�x � 1�2 � y 2lim
�x, y� l �0, 0�

y 2 sin2 x

x 4 � y 4

14.2 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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924 CHAPTER 14 PARTIAL DERIVATIVES

25–26 Find and the set on which is 
continuous.

25. ,  

26. ,  

; 27–28 Graph the function and observe where it is discontinuous.
Then use the formula to explain what you have observed.

27. 28.

29–38 Determine the set of points at which the function is 
continuous.

29. 30.

31. 32.

33.

34.

35.

36.

37.

38.

f �x, y� � e 1��x�y� f �x, y� �
1

1 � x 2 � y 2

F�x, y� �
xy

1 � e x�y F�x, y� � coss1 � x � y

F�x, y� �
1 � x 2 � y 2

1 � x 2 � y 2 H�x, y� �
e x � e y

e xy � 1

G�x, y� � ln�x 2 � y 2 � 4 �

G�x, y� � tan�1(�x � y��2)

f �x, y, z� � arcsin�x 2 � y 2 � z 2�

f �x, y, z� � sy � x 2 ln z

f �x, y� � �
1

x 2 y 3

2x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

f �x, y� � �
0

xy

x 2 � xy � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

hh�x, y� � t� f �x, y��

f �x, y� � 2x � 3y � 6t�t� � t 2 � st

f �x, y� �
1 � xy

1 � x 2 y 2t�t� � t � ln t

39–41 Use polar coordinates to find the limit. [If are 
polar coordinates of the point with , note that 
as .]

39.

40.

41.

; 42. At the beginning of this section we considered the function

and guessed that as on the basis
of numerical evidence. Use polar coordinates to confirm the
value of the limit. Then graph the function.

; 43. Graph and discuss the continuity of the function

44. Let

(a) Show that as along any path
through of the form with .

(b) Despite part (a), show that is discontinuous at .
(c) Show that is discontinuous on two entire curves.

45. Show that the function given by is continuous
on .  [Hint: Consider .]

46. If , show that the function f given by is
continuous on .

f �x, y� � �0  if y � 0  or  y 	 x 4

1  if 0 � y � x 4

f �x, y� l 0 �x, y� l �0, 0�
�0, 0� y � mx a a � 4

f �0, 0�
f

f f �x� � � x �
� n � x � a �2 � �x � a� � �x � a�

c � Vn f �x� � c � x
� n

lim
�x, y� l �0, 0�

e�x2�y2

� 1

x 2 � y 2

f �x, y� �
sin�x2 � y2 �

x2 � y2

�x, y� l �0, 0�f �x, y� l 1

f �x, y� � �
1

sin xy

xy
if

if

xy � 0

xy � 0

lim
�x, y� l �0, 0�

�x2 � y2 � ln�x2 � y2 �

�r, ��
r l 0�r 	 0�x, y�

�x, y� l �0, 0�

lim
�x, y� l �0, 0�

x3 � y3

x2 � y2

On a hot day, extreme humidity makes us think the temperature is higher than it really 
is, whereas in very dry air we perceive the temperature to be lower than the thermom-
eter indicates. The National Weather Service has devised the heat index (also called the
temperature-humidity index, or humidex, in some countries) to describe the combined
effects of temperature and humidity. The heat index I is the perceived air temperature when
the actual temperature is T and the relative humidity is H. So I is a function of T and H and
we can write The following table of values of I is an excerpt from a table com-
piled by the National Weather Service.

I � f �T, H �.

14.3 Partial Derivatives
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SECTION 14.3 PARTIAL DERIVATIVES 925

If we concentrate on the highlighted column of the table, which corresponds to a relative
humidity of H � 70%, we are considering the heat index as a function of the single vari-
able T for a fixed value of H. Let’s write . Then de scribes how the heat
index I increases as the actual temperature T increases when the relative humidity is 70%.
The derivative of t when is the rate of change of I with respect to T when

:

We can approximate using the values in Table 1 by taking and :

Averaging these values, we can say that the derivative is approximately 3.75. This
means that, when the actual temperature is and the relative humidity is 70%, the
apparent temperature (heat index) rises by about for every degree that the actual
temperature rises!

Now let’s look at the highlighted row in Table 1, which corresponds to a fixed temper-
 a ture of . The numbers in this row are values of the function ,
which describes how the heat index increases as the relative humidity H increases when the
actual temperature is . The derivative of this function when H � 70% is the rate
of change of I with respect to H when H � 70%:

By taking h � 5 and �5, we approximate using the tabular values:

T
H

Relative humidity (%)

Actual
temperature

(°F)

90

92

94

96

98

100

50 55 60 65 70 75 80 85 90

96

100

104

109

114

119

98

103

107

113

118

124

100

105

111

116

123

129

103

108

114

121

127

135

106

112

118

125

133

141

109

115

122

130

138

147

112

119

127

135

144

154

115

123

132

141

150

161

119

128

137

146

157

168

t�T� � f �T, 70� t�T�

T � 96�F
T � 96�F

t
�96� � lim
h l 0

t�96 � h� � t�96�
h

� lim
h l 0

f �96 � h, 70� � f �96, 70�
h

t
�96� h � 2 �2

t
�96� �
t�98� � t�96�

2
�

f �98, 70� � f �96, 70�
2

�
133 � 125

2
� 4

t
�96� �
t�94� � t�96�

�2
�

f �94, 70� � f �96, 70�
�2

�
118 � 125

�2
� 3.5

t
�96�
96�F

3.75�F

T � 96�F G�H � � f �96, H �

T � 96�F

G
�70� � lim
h l 0

G�70 � h� � G�70�
h

� lim
h l 0

f �96, 70 � h� � f �96, 70�
h

G
�70�

G
�70� �
G�75� � G�70�

5
�

f �96, 75� � f �96, 70�
5

�
130 � 125

5
� 1

G
�70� �
G�65� � G�70�

�5
�

f �96, 65� � f �96, 70�
�5

�
121 � 125

�5
� 0.8

TABLE 1
Heat index as a function of 

temperature and humidity
I
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926 CHAPTER 14 PARTIAL DERIVATIVES

By averaging these values we get the estimate . This says that, when the tem-
perature is and the relative humidity is 70%, the heat index rises about for every
percent that the relative humidity rises.

In general, if is a function of two variables and , suppose we let only vary while
keeping fixed, say , where is a constant. Then we are really considering a func-
tion of a single variable , namely, . If has a derivative at , then we call it
the partial derivative of with respect to x at and denote it by . Thus

By the definition of a derivative, we have

and so Equation 1 becomes

Similarly, the partial derivative of with respect to y at , denoted by , is
obtained by keeping fixed and finding the ordinary derivative at of the function

:

With this notation for partial derivatives, we can write the rates of change of the heat
index I with respect to the actual temperature T and relative humidity H when and
H � 70% as follows:

If we now let the point vary in Equations 2 and 3, and become functions of
two variables.

If is a function of two variables, its partial derivatives are the functions
and defined by

G
�70� � 0.9
96�F 0.9�F

f x y x
y y � b b

x t�x� � f �x, b� t a
f �a, b� fx�a, b�

1 fx�a, b� � t
�a� where t�x� � f �x, b�

t
�a� � lim
h l 0

t�a � h� � t�a�
h

2 fx�a, b� � lim
h l 0

f �a � h, b� � f �a, b�
h

f �a, b� fy�a, b�
x �x � a� b

G�y� � f �a, y�

3 fy�a, b� � lim
h l 0

f �a, b � h� � f �a, b�
h

T � 96�F

fT �96, 70� � 3.75 fH�96, 70� � 0.9

�a, b� fx fy

4 f fx

fy

fx�x, y� � lim
h l 0

f �x � h, y� � f �x, y�
h

fy�x, y� � lim
h l 0

f �x, y � h� � f �x, y�
h
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SECTION 14.3 PARTIAL DERIVATIVES 927

There are many alternative notations for partial derivatives. For instance, instead of 
we can write or (to indicate differentiation with respect to the first variable) or

. But here can’t be interpreted as a ratio of differentials.

Notations for Partial Derivatives If , we write

To compute partial derivatives, all we have to do is remember from Equation 1 that 
the partial derivative with respect to is just the ordinary derivative of the function of a
single variable that we get by keeping fixed. Thus we have the following rule.

Rule for Finding Partial Derivatives of z �

1. To find , regard as a constant and differentiate with respect to .

2. To find , regard as a constant and differentiate with respect to .

If , find and .

SOLUTION Holding constant and differentiating with respect to , we get

and so

Holding constant and differentiating with respect to , we get

Interpretations of Partial Derivatives
To give a geometric interpretation of partial derivatives, we recall that the equation

represents a surface (the graph of ). If , then the point
lies on . By fixing , we are restricting our attention to the curve in which the ver-
tical plane intersects S. (In other words, is the trace of in the plane .) Like-
wise, the vertical plane intersects in a curve . Both of the curves and pass
through the point . (See Figure 1.)

Notice that the curve is the graph of the function , so the slope of its tan-
gent at is . The curve is the graph of the function , so
the slope of its tangent at is .

Thus the partial derivatives and can be interpreted geometrically as the
slopes of the tangent lines at to the traces and of in the planes 
and .

�f��x
D1 ff1fx

�f��x

z � f �x, y�

fx�x, y� � fx �
�f

�x
�

�

�x
f �x, y� �

�z

�x
� f1 � D1 f � Dx f

fy�x, y� � fy �
�f

�y
�

�

�y
f �x, y� �

�z

�y
� f2 � D2 f � Dy f

tx
y

f �x, y�

xf �x, y�yfx

yf �x, y�xfy

fy�2, 1�fx�2, 1�f �x, y� � x 3 � x 2 y 3 � 2y 2EXAMPLE 1

xy

fx�x, y� � 3x 2 � 2xy 3

fx�2, 1� � 3 � 22 � 2 � 2 � 13 � 16

yx

fy�x, y� � 3x 2y 2 � 4y

fy�2, 1� � 3 � 22 � 12 � 4 � 1 � 8

P�a, b, c�f �a, b� � cfSz � f �x, y�
C1y � bS

y � bSC1y � b
C2C1C2Sx � a

P
t�x� � f �x, b�C1

G�y� � f �a, y�C2t
�a� � fx�a, b�PT1

G
�b� � fy�a, b�PT2

fy �a, b�fx�a, b�
y � bSC2C1P�a, b, c�

x � a

FIGURE 1
The partial derivatives of f at (a, b) are
the slopes of the tangents to C¡  and C™.

0

(a, b, 0)

C™

C¡

T¡

P(a, b, c)

S T™

z

yx
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928 CHAPTER 14 PARTIAL DERIVATIVES

As we have seen in the case of the heat index function, partial derivatives can also be
interpreted as rates of change. If , then represents the rate of change of
with respect to when is fixed. Similarly, represents the rate of change of with
respect to when is fixed.

If , find and and interpret these num-
bers as slopes.

SOLUTION We have

The graph of is the paraboloid and the vertical plane inter-
sects it in the parabola , . (As in the preceding discussion, we label 
it in Figure 2.) The slope of the tangent line to this parabola at the point is

. Similarly, the curve in which the plane intersects the parabo-
loid is the parabola , , and the slope of the tangent line at is

. (See Figure 3.)

Figure 4 is a computer-drawn counterpart to Figure 2. Part (a) shows the plane
intersecting the surface to form the curve and part (b) shows and . [We have used
the vector equations for and for .]
Similarly, Figure 5 corresponds to Figure 3.

z�z��xz � f �x, y�
z�z��yyx

xy

fy�1, 1�fx�1, 1�f �x, y� � 4 � x 2 � 2y 2EXAMPLE 2

fy�x, y� � �4yfx�x, y� � �2x

fy�1, 1� � �4fx�1, 1� � �2

y � 1z � 4 � x 2 � 2y 2f
y � 1z � 2 � x 2

�1, 1, 1�C1

x � 1C2fx�1, 1� � �2
�1, 1, 1�x � 1z � 3 � 2y 2

fy�1, 1� � �4

y � 1
T1C1C1

T1r�t� � �1 � t, 1, 1 � 2t 
C1r�t� � � t, 1, 2 � t 2 


FIGURE 4

FIGURE 5

1y
0

4

3

2z

1

0

2
1

x

0

(a)

1y
0

4

3

2z

1

0

2
1

x

0

(b)

1y
0

4

3

2z

1

0

2
1

x

0

1y
0

4

3

2z

1

0

2
1

x

0

FIGURE 2

(1, 1, 1) 

z=4-≈-2¥ 

(1, 1) 
2 

y=1 

C¡ 

z 

y 

x 

(1, 1, 1) 

z=4-≈-2¥ 

(1, 1) 
2 

x=1 

C™ 

FIGURE 3

z 

y 

x 
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If , calculate and .

SOLUTION Using the Chain Rule for functions of one variable, we have

Find and if is defined implicitly as a function of and by
the equation

SOLUTION To find , we differentiate implicitly with respect to , being careful to
treat as a constant:

Solving this equation for , we obtain

Similarly, implicit differentiation with respect to gives

Functions of More Than Two Variables
Partial derivatives can also be defined for functions of three or more variables. For example,
if is a function of three variables , , and , then its partial derivative with respect to is
defined as

and it is found by regarding and as constants and differentiating with respect
to . If , then can be interpreted as the rate of change of with
respect to x when y and are held fixed. But we can’t interpret it geometrically because the
graph of f lies in four-dimensional space.

In general, if is a function of variables, , its partial deriva tive
with respect to the ith variable is

f �x, y� � sin� x

1 � y� �f

�x

�f

�y

�f

�x
� cos� x

1 � y� �
�

�x � x

1 � y� � cos� x

1 � y� �
1

1 � y

�f

�y
� cos� x

1 � y� �
�

�y � x

1 � y� � �cos� x

1 � y� �
x

�1 � y�2

�z��x �z��y z x y

x 3 � y 3 � z3 � 6xyz � 1

�z��x x
y

3x 2 � 3z2 �z

�x
� 6yz � 6xy

�z

�x
� 0

�z��x

�z

�x
� �

x 2 � 2yz

z 2 � 2xy

y

�z

�y
� �

y 2 � 2xz

z 2 � 2xy

f x y z x

fx�x, y, z� � lim
h l 0

f �x � h, y, z� � f �x, y, z�
h

y z f �x, y, z�
x w � f �x, y, z� fx � �w��x w

z

u n u � f �x1, x2, . . . , xn �
xi

�u

�xi
� lim

h l 0

f �x1, . . . , xi�1, xi � h, xi�1, . . . , xn � � f �x1, . . . , xi , . . . , xn�
h

v EXAMPLE 3

v EXAMPLE 4

FIGURE 6

Some computer algebra systems can plot 
surfaces defined by implicit equations in three
variables. Figure 6 shows such a plot of the 
surface defined by the equation in Example 4.
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930 CHAPTER 14 PARTIAL DERIVATIVES

and we also write

Find , , and if .

SOLUTION Holding and constant and differentiating with respect to , we have

Similarly,

Higher Derivatives
If is a function of two variables, then its partial derivatives and are also functions of
two variables, so we can consider their partial derivatives , , , and , which
are called the second partial derivatives of . If , we use the following notation:

Thus the notation (or ) means that we first differentiate with respect to and
then with respect to , whereas in computing the order is reversed.

Find the second partial derivatives of

SOLUTION In Example 1 we found that

Therefore

�u

�xi
�

�f

�xi
� fxi � fi � Di f

fx fy fz f �x, y, z� � ex y ln z

y z x

fx � yex y ln z

fy � xex y ln z and fz �
exy

z

f fx fy

� fx �x � fx �y � fy �x � fy �y

f z � f �x, y�

� fx �x � fxx � f11 �
�

�x � �f

�x� �
�2f

�x 2 �
�2z

�x 2

� fx �y � fxy � f12 �
�

�y � �f

�x� �
�2f

�y �x
�

�2z

�y �x

� fy �x � fyx � f21 �
�

�x � �f

�y� �
�2f

�x �y
�

�2z

�x �y

� fy �y � fyy � f22 �
�

�y � �f

�y� �
�2f

�y 2 �
�2z

�y 2

fx y �2f��y �x x
y fyx

f �x, y� � x 3 � x 2y 3 � 2y 2

fx�x, y� � 3x 2 � 2xy 3 fy�x, y� � 3x 2 y 2 � 4y

fxx �
�

�x
�3x 2 � 2xy 3 � � 6x � 2y 3 fxy �

�

�y
�3x 2 � 2xy 3 � � 6xy 2

fyx �
�

�x
�3x 2 y 2 � 4y� � 6xy 2 fyy �

�

�y
�3x 2y 2 � 4y� � 6x 2y � 4

EXAMPLE 5

EXAMPLE 6
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Notice that in Example 6. This is not just a coincidence. It turns out that the
mixed partial derivatives and are equal for most functions that one meets in practice.
The following theorem, which was discovered by the French mathematician Alexis Clairaut
(1713–1765), gives conditions under which we can assert that The proof is given in
Appendix F.

Clairaut’s Theorem Suppose is defined on a disk that contains the point .
If the functions and are both continuous on , then

Partial derivatives of order 3 or higher can also be defined. For instance,

fx y � fyx

fx y fyx

fx y � fyx.

f D �a, b�
fx y fyx D

fx y�a, b� � fyx�a, b�

fx yy � � fx y �y �
�

�y � �2f

�y �x� �
�3f

�y 2 �x

_1
_2

2
1

2
_2

20

_20

_1 0 1
0

y
x

z 0

f

fxx

FIGURE 7

40

_20

0

20

_2 _1 0 1 2 2
1 0

_1
_2

y
x

z

1 0
_1

_2

22
_2

40

20

_40

_20

0

_1 0 1
y

x

z

fx

fxy�fyx

_2
_1

22
_2

40

0

20

_1 0 1
1 0

y
x

z

2 2
1 0

_1
_2

_2

40

20

_40

_20

0

_1 0 1
y

x

z

fy

fyy

z

_2

2
_2

20

_40

_20

0

_1 0 1 2
1 0

_1

y
x

Figure 7 shows the graph of the function 
in Example 6 and the graphs of its first- and 
second-order partial derivatives for ,

. Notice that these graphs are con-
sistent with our interpretations of and as
slopes of tangent lines to traces of the graph of .
For in stance, the graph of decreases if we start
at and move in the positive -direction.
This is reflected in the negative values of . You
should compare the graphs of and with the
graph of to see the relationships.fy

fyyfyx

fx

x�0, �2�
f

f
fyfx

�2 � y � 2
�2 � x � 2

f

Clairaut

Alexis Clairaut was a child prodigy in mathe-
matics: he read l’Hospital’s textbook on 
calculus when he was ten and presented a 
paper on geometry to the French Academy of 
Sciences when he was 13. At the age of 18,
Clairaut published Recherches sur les courbes à
double courbure, which was the first systematic
treatise on three-dimensional analytic geometry
and included the calculus of space curves.
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FIGURE 8

u(x, t)

x

and using Clairaut’s Theorem it can be shown that if these functions are
continuous.

Calculate if .

SOLUTION

Partial Differential Equations
Partial derivatives occur in partial differential equations that express certain physical laws.
For instance, the partial differential equation

is called Laplace’s equation after Pierre Laplace (1749–1827). Solutions of this equa  tion
are called harmonic functions; they play a role in problems of heat conduction, fluid flow,
and electric potential.

Show that the function is a solution of Laplace’s equation. 

SOLUTION We first compute the needed second-order partial derivatives:

So

Therefore satisfies Laplace’s equation.

The wave equation

describes the motion of a waveform, which could be an ocean wave, a sound wave, a light
wave, or a wave traveling along a vibrating string. For instance, if represents the dis-
placement of a vibrating violin string at time and at a distance from one end of the string
(as in Figure 8), then satisfies the wave equation. Here the constant depends on the
density of the string and on the tension in the string.

Verify that the function satisfies the wave equation.

SOLUTION

So satisfies the wave equation.

fx yy � fyx y � fyyx

fxx yz f �x, y, z� � sin�3x � yz�

fx � 3 cos�3x � yz�

fxx � �9 sin�3x � yz�

fxx y � �9z cos�3x � yz�

fxx yz � �9 cos�3x � yz� � 9yz sin�3x � yz�

�2u

�x 2 �
�2u

�y 2 � 0

u�x, y� � ex sin y

u

�2u

�t 2 � a2 �2u

�x 2

u�x, t�
t x

u�x, t� a

u�x, t� � sin�x � at�

ux � cos�x � at� ut � �a cos�x � at�

uxx � �sin�x � at� utt � �a 2 sin�x � at� � a 2uxx

v EXAMPLE 7

EXAMPLE 8

EXAMPLE 9

u

ux � ex sin y uy � ex cos y

uxx � ex sin y uyy � �ex sin y

uxx � uyy � ex sin y � ex sin y � 0
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FPO 
New Art to

come

Partial differential equations involving functions of three variables are also very impor-
tant in science and engineering. The three-dimensional Laplace equation is

and one place it occurs is in geophysics. If represents magnetic field strength at
position , then it satisfies Equation 5. The strength of the magnetic field indicates
the distribution of iron-rich minerals and reflects different rock types and the location of
faults. Figure 9 shows a contour map of the earth’s magnetic field as recorded from an air-
craft carrying a magnetometer and flying 200 m above the surface of the ground. The con-
tour map is enhanced by color-coding of the regions between the level curves.

Figure 10 shows a contour map for the second-order partial derivative of in the ver-
tical direction, that is, . It turns out that the values of the partial derivatives and
are relatively easily measured from a map of the magnetic field. Then values of can be
calculated from Laplace’s equation .

�2u

�x 2 �
�2u

�y 2 �
�2u

�z 2 � 05

u�x, y, z�
�x, y, z�

FIGURE 9
Magnetic field strength of the earth

-0.109

-0.066

-0.051

-0.037

-0.019

0.002

0.040

0.103

Nano Teslas
per meterCo

ur
te

sy
 R

og
er

 W
at

so
n

u
uzz uxx uyy

uzz

5

FIGURE 10
Second vertical derivative
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The Cobb-Douglas Production Function
In Example 3 in Section 14.1 we described the work of Cobb and Douglas in modeling the
total production of an economic system as a function of the amount of labor and the 
capital investment . Here we use partial derivatives to show how the particular form of
their model follows from certain assumptions they made about the economy.

If the production function is denoted by , then the partial derivative
is the rate at which production changes with respect to the amount of labor. Economists
call it the marginal production with respect to labor or the marginal productivity of labor.
Likewise, the partial derivative is the rate of change of production with respect to
capital and is called the marginal productivity of capital. In these terms, the assumptions
made by Cobb and Douglas can be stated as follows.

(i) If either labor or capital vanishes, then so will production.

(ii) The marginal productivity of labor is proportional to the amount of production
per unit of labor.

(iii) The marginal productivity of capital is proportional to the amount of production
per unit of capital.

Because the production per unit of labor is , assumption (ii) says that

for some constant . If we keep K constant , then this partial differential equation
becomes an ordinary differential equation:

If we solve this separable differential equation by the methods of Section 9.3 (see also Exer-
cise 85), we get

Notice that we have written the constant as a function of because it could depend on
the value of .

Similarly, assumption (iii) says that

and we can solve this differential equation to get

Comparing Equations 7 and 8, we have

P � P�L, K � �P��L

�P��K

P�L

�P

�L
� �

P

L

� �K � K0 �

6
dP

dL
� �

P

L

7 P�L, K0 � � C1�K0 �L�

C1 K0

K0

�P

�K
� �

P

K

P�L0, K � � C2�L0 �K�8

P�L, K � � bL�K�9

K
LP
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1. The temperature (in at a location in the Northern Hemi-
sphere depends on the longitude , latitude , and time , so we
can write . Let’s measure time in hours from the
beginning of January.
(a) What are the meanings of the partial derivatives

, and ?
(b) Honolulu has longitude and latitude . Sup-

pose that at 9:00 AM on January 1 the wind is blowing hot
air to the northeast, so the air to the west and south is warm
and the air to the north and east is cooler. Would you expect

, and to be posi-
tive or negative? Explain.

2. At the beginning of this section we discussed the function
, where is the heat index, is the temperature,

and is the relative humidity. Use Table 1 to estimate
and . What are the practical interpretations

of these values?

3. The wind-chill index is the perceived temperature when the
actual temperature is and the wind speed is , so we can
write . The following table of values is an excerpt
from Table 1 in Section 14.1.

(a) Estimate the values of and . What
are the practical interpretations of these values?

T
x y t

T � f �x, y, t�

�T��x,
�T��y �T��t

158	 W 21	 N

fx�158, 21, 9�, fy�158, 21, 9� ft�158, 21, 9�

I � f �T, H � I T
H

fT �92, 60� fH �92, 60�

W
T v

W � f �T, v�

�18

�24

�30

�37

�20

�26

�33

�39

�21

�27

�34

�41

�22

�29

�35

�42

�23

�30

�36

�43

T
v 20 30 40 50 60

�10

�15

�20

�25A
ct

ua
l t

em
pe

ra
tu

re
 (

°C
)

70

�23

�30

�37

�44

Wind speed (km /h)

fT ��15, 30� fv��15, 30�

	C� (b) In general, what can you say about the signs of 
and ?

(c) What appears to be the value of the following limit?

4. The wave heights in the open sea depend on the speed 
of the wind and the length of time that the wind has been
blowing at that speed. Values of the function are
recorded in feet in the following table.

(a) What are the meanings of the partial derivatives 
and ?

(b) Estimate the values of and . What are
the practical interpretations of these values?

(c) What appears to be the value of the following limit?

�W��T
�W��v

lim
v l 


�W

�v

h v
t

h � f �v, t�

2

4

5

9

14

19

24

2

4

7

13

21

29

37

2

5

8

16

25

36

47

2

5

8

17

28

40

54

2

5

9

18

31

45

62

2

5

9

19

33

48

67

2

5

9

19

33

50

69

v
t

10

15

20

30

40

50

60

Duration (hours)

W
in

d 
sp

ee
d 

(k
no

ts
)

5 10 15 20 30 40 50

�h��v
�h��t

fv�40, 15� ft�40, 15�

lim
t l 


�h

�t

14.3 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

where b is a constant that is independent of both L and K. Assumption (i) shows that
and .

Notice from Equation 9 that if labor and capital are both increased by a factor m, then

If , then , which means that production is also increased
by a factor of m. That is why Cobb and Douglas assumed that and therefore

This is the Cobb-Douglas production function that we discussed in Section 14.1.

� � 0
� � 0

P�mL, mK� � b�mL���mK �� � m���bL�K� � m���P�L, K �

� � � � 1 P�mL, mK� � mP�L, K �
� � � � 1

P�L, K � � bL�K 1��
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936 CHAPTER 14 PARTIAL DERIVATIVES

5  –8 Determine the signs of the partial derivatives for the 
function whose graph is shown.

5. (a) (b)

6. (a) (b)

7. (a) (b)

8. (a) (b)

9. The following surfaces, labeled , , and , are graphs of a
function and its partial derivatives and . Identify each
surface and give reasons for your choices.

f

1x

y

z

2

fx�1, 2� fy�1, 2�

fx��1, 2� fy��1, 2�

fxx��1, 2� fyy��1, 2�

fxy�1, 2� fxy��1, 2�

a b c
f fx fy

b_4

_3 _1 0 1 3
0

_2

y
x

z 0

2

4

2_2

a

8

_8

_4

_3 _1 0 1 3
0

_2

y
x

z 0

2

4

2_2

c

8

_8

_3 _1 0 1 3
0

_2

y
x

z 0

2

4

2_2

_4

10. A contour map is given for a function . Use it to estimate
and .

11. If , find and and inter-
pret these numbers as slopes. Illustrate with either hand-drawn
sketches or computer plots.

12. If , find and and inter-
pret these numbers as slopes. Illustrate with either hand-drawn
sketches or computer plots.

; 13–14 Find and and graph , , and with domains and 
viewpoints that enable you to see the relationships between them.

13. 14.

15–40 Find the first partial derivatives of the function.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39.

40.

41–44 Find the indicated partial derivative.

41. ;  

f
fx�2, 1� fy�2, 1�

3 x

y

3

_2
0

6 8

10

14

16

12

18

2
4

_4

1

f �x, y� � 16 � 4x 2 � y 2 fx�1, 2� fy�1, 2�

f �x, y� � s4 � x 2 � 4y 2 fx�1, 0� fy�1, 0�

fx fy f fx fy

f �x, y� � x 2y3 f �x, y� �
y

1 � x 2y2

f �x, y� � y 5 � 3xy f �x, y� � x 4y 3 � 8x 2y

f �x, t� � e�t cos �x f �x, t� � sx ln t

z � �2x � 3y�10 z � tan xy

f �x, y� �
x

y
f �x, y� �

x

�x � y�2

f �x, y� �
ax � by

cx � dy
w �

ev

u � v 2

t�u, v� � �u 2v � v 3�5 u�r, 
� � sin�r cos 
�

R�p, q� � tan�1�pq 2� f �x, y� � x y

F�x, y� � y
x

y
cos�e t� dt F��, �� � y

�

�
st 3 � 1 dt

f �x, y, z� � xz � 5x 2y 3z4 f �x, y, z� � x sin�y � z�

w � ln�x � 2y � 3z� w � ze xyz

u � xy sin�1�yz� u � x y�z

h�x, y, z, t� � x 2y cos�z�t� ��x, y, z, t� �
�x � �y 2

�z � �t 2

u � sx 2
1 � x 2

2 � � � � � x 2
n

u � sin�x1 � 2x2 � � � � � nxn �

f �x, y� � ln(x � sx 2 � y 2 ) fx �3, 4�
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70. ;  

71. If , find . [Hint: Which
order of differentiation is easiest?]

72. If , find . [Hint: Use a dif-
ferent order of differentiation for each term.]

73. Use the table of values of to estimate the values of
, , and .

74. Level curves are shown for a function . Determine whether
the following partial derivatives are positive or negative at the
point .
(a) (b) (c)
(d) (e)

75. Verify that the function is a solution of the
heat conduction equation .

76. Determine whether each of the following functions is a
solution of Laplace’s equation .
(a) (b)
(c) (d)
(e)
(f )

77. Verify that the function is a solution of
the three-dimensional Laplace equation .

78. Show that each of the following functions is a solution of the
wave equation .
(a) (b)
(c)
(d)

79. If and are twice differentiable functions of a single vari-
able, show that the function

is a solution of the wave equation given in Exercise 78.

u � x a y bz c �6u

�x �y 2 �z 3

f �x, y, z� � xy 2z3 � arcsin(xsz ) fxzy

txyz

f �x, y�
fx�3, 2� fx�3, 2.2� fx y�3, 2�

12.5

18.1

20.0

10.2

17.5

22.4

9.3

15.9

26.1

x
y

2.5

3.0

3.5

1.8 2.0 2.2

f

P
fx fy fxx

fxy fyy

10 8 6 4 2

y

x

P

u � e��2k2 t sin kx
ut � �2uxx

uxx � uyy � 0
u � x 2 � y 2 u � x 2 � y 2

u � x 3 � 3xy 2 u � ln sx 2 � y 2 

t�x, y, z� � s1 � xz � s1 � xy

u � sin x cosh y � cos x sinh y
u � e�x cos y � e�y cos x

u � 1�sx 2 � y 2 � z 2 

uxx � u yy � uzz � 0

ut t � a 2uxx

u � sin�kx� sin�akt� u � t��a 2t 2 � x 2 �
u � �x � at�6 � �x � at�6

u � sin�x � at� � ln�x � at�

f t

u�x, t� � f �x � at� � t�x � at�

42. ;  

43. ;  

44. ;  

45–46 Use the definition of partial derivatives as limits to find
and .

45. 46.

47–50 Use implicit differentiation to find and .

47. 48.

49. 50.

51–52 Find and .

51. (a) (b)

52. (a) (b)
(c)

53–58 Find all the second partial derivatives.

53. 54.

55. 56.

57. 58.

59–62 Verify that the conclusion of Clairaut’s Theorem holds, that
is, .

59. 60.

61. 62.

63–70 Find the indicated partial derivative(s).

63. ;  ,  

64. ;  

65. ;  

66. ;  

67. ;  

68. ;  

69. ;  ,  

f �x, y� � arctan�y�x� fx �2, 3�

f �x, y, z� �
y

x � y � z
fy �2, 1, �1�

fz �0, 0, ��4�f �x, y, z� � ssin2x � sin2y � sin2z

fy�x, y�fx�x, y�

f �x, y� �
x

x � y 2f �x, y� � xy 2 � x 3y

4

�z��y�z��x

x 2 � 2y 2 � 3z2 � 1

e z � xyz

x 2 � y 2 � z 2 � 2z � 4

yz � x ln y � z2

�z��y�z��x

z � f �x � y�z � f �x� � t�y�

z � f �xy�z � f �x�t�y�
z � f �x�y�

f �x, y� � sin2�mx � ny�f �x, y� � x 3y 5 � 2x 4y

v �
xy

x � y
w � su 2 � v 2 

v � e xey
z � arctan 

x � y

1 � xy

ux y � uyx

u � e xy sin yu � x 4y 3 � y 4

u � cos�x 2y� u � ln�x � 2y�

fxyxfxxxf �x, y� � x 4y 2 � x 3y

fyxyf �x, y� � sin�2x � 5y�

f �x, y, z� � exyz2

fxyz

t�r, s, t� � e r sin�st� trst

� 3u

�r 2 �

u � e r
 sin 


� 3z

�u �v �w
z � usv � w

� 3w

�x 2 �y

� 3w

�z �y �x
w �

x

y � 2z
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80. If , where , 
show that

81. Verify that the function is a solution of the 
differential equations

and

82. The temperature at a point on a flat metal plate is given
by , where is measured in C
and in meters. Find the rate of change of temper ature with
respect to distance at the point in (a) the -direction and
(b) the -direction.

83. The total resistance produced by three conductors with resis-
tances , , connected in a parallel electrical circuit is
given by the formula

Find .

84. Show that the Cobb-Douglas production function 
satisfies the equation

85. Show that the Cobb-Douglas production function satisfies
by solving the differential equation

(See Equation 6.)

86. Cobb and Douglas used the equation
to model the American economy from 1899 to 1922, where 
is the amount of labor and is the amount of capital. (See
Example 3 in Section 14.1.)
(a) Calculate and .
(b) Find the marginal productivity of labor and the marginal

productivity of capital in the year 1920, when and
(compared with the assigned values and
in 1899). Interpret the results.

(c) In the year 1920 which would have benefited production
more, an increase in capital investment or an increase in
spending on labor?

87. The van der Waals equation for moles of a gas is

where is the pressure, is the volume, and is the tempera-

u � e a1x1�a2 x2�����an xn a 2
1 � a 2

2 � � � � � a 2
n � 1

�2u

�x 2
1

�
�2u

�x 2
2

� � � � �
�2u

�x 2
n

� u

z � ln�e x � e y�

�z

�x
�

�z

�y
� 1

�x, y�
	TT�x, y� � 60��1 � x 2 � y 2 �

x, y
x�2, 1�

y

R
R3R2R1

1

R
�

1

R1
�

1

R2
�

1

R3

�R��R1

P � bL�K �

L
�P

�L
� K

�P

�K
� �� � ��P

P�L, K0 � � C1�K0 �L�

dP

dL
� �

P

L

P�L, K� � 1.01L 0.75K 0.25

L
K

PL PK

L � 194
K � 407 L � 100
K � 100

�2z

�x 2

�2z

�y 2 � � �2z

�x �y�2

� 0

n

�P �
n 2a

V 2 ��V � nb� � nRT

TVP

ture of the gas. The constant is the universal gas constant 
and and are positive constants that are characteristic of a
particular gas. Calculate and .

88. The gas law for a fixed mass of an ideal gas at absolute tem-
perature , pressure , and volume is , where is
the gas constant. Show that

89. For the ideal gas of Exercise 88, show that

90. The wind-chill index is modeled by the function

where is the temperature and is the wind speed
. When and , by how much

would you expect the apparent temperature to drop if the 
actual temperature decreases by ? What if the wind speed
increases by ?

91. The kinetic energy of a body with mass and velocity is
. Show that

92. If , , are the sides of a triangle and , , are the opposite
angles, find , , by implicit differentiation of
the Law of Cosines.

93. You are told that there is a function whose partial deriva-
tives are and . Should you
believe it?

; 94. The paraboloid intersects the plane
in a parabola. Find parametric equations for the tangent

line to this parabola at the point . Use a computer to
graph the paraboloid, the parabola, and the tangent line on the
same screen.

95. The ellipsoid intersects the plane
in an ellipse. Find parametric equations for the tangent line to
this ellipse at the point .

96. In a study of frost penetration it was found that the temperature
at time (measured in days) at a depth (measured in feet)

can be modeled by the function

where and is a positive constant.
(a) Find . What is its physical significance?
(b) Find . What is its physical significance?

R
a b

�T��P �P��V

m
T P V PV � mRT R

�P

�V

�V

�T

�T

�P
� �1

T
�P

�T

�V

�T
� mR

W � 13.12 � 0.6215T � 11.37v 0.16 � 0.3965Tv 0.16

T �	C� v
�km�h� T � �15	C v � 30 km�h

W
1	C

1 km�h

m v
K � 1

2 mv2

�K

�m

�2K

�v2 � K

a b c A B C
�A��a �A��b �A��c

f
fx�x, y� � x � 4y fy�x, y� � 3x � y

z � 6 � x � x 2 � 2y 2

x � 1
�1, 2, �4�

4x 2 � 2y 2 � z2 � 16 y � 2

�1, 2, 2�

T t x

T�x, t� � T0 � T1e��x sin��t � �x�

�� � 2��365
�T��x
�T��t
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS 939

(c) Show that satisfies the heat equation for a
certain constant .

; (d) If , , and , use a computer to 
graph .

(e) What is the physical significance of the term in the
expression ?

97. Use Clairaut’s Theorem to show that if the third-order partial
derivatives of are continuous, then

98. (a) How many th-order partial derivatives does a function
of two variables have?

(b) If these partial derivatives are all continuous, how many
of them can be distinct?

(c) Answer the question in part (a) for a function of three 
variables.

Tt � kTxxT
k

T1 � 10T0 � 0� � 0.2
T�x, t�

��x
sin��t � �x�

f

fx yy � fyx y � fyyx

n

99. If , find . 
[Hint: Instead of finding first, note that it’s easier 
to use Equation 1 or Equation 2.]

100. If , find .

101. Let

; (a) Use a computer to graph .
(b) Find and when .
(c) Find and using Equations 2 and 3.
(d) Show that and .
(e) Does the result of part (d) contradict Clairaut’s Theorem?

Use graphs of and to illustrate your answer.

fx�0, 0�f �x, y� � s
3 x 3 � y 3 

f �x, y� � �
0

x 3y � xy 3

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

f
�x, y� � �0, 0�fy�x, y�fx�x, y�

fy�0, 0�fx�0, 0�
fyx�0, 0� � 1fxy�0, 0� � �1

CAS

fyxfxy

fx�1, 0�f �x, y� � x�x 2 � y 2 ��3�2e sin�x2y�

fx�x, y�

14.4 Tangent Planes and Linear Approximations

One of the most important ideas in single-variable calculus is that as we zoom in toward 
a point on the graph of a differentiable function, the graph becomes indistinguishable 
from its tangent line and we can approximate the function by a linear function. (See Sec-
t ion 2.9.) Here we develop similar ideas in three dimensions. As we zoom in toward a point
on a surface that is the graph of a differentiable func tion of two variables, the surface looks
more and more like a plane (its tangent plane) and we can approximate the function by a
linear function of two variables. We also extend the idea of a differential to functions of
two or more variables.

Tangent Planes
Suppose a surface has equation , where has continuous first partial deriva-
tives, and let be a point on . As in the preceding section, let and be the
curves obtained by intersecting the vertical planes and with the surface .
Then the point lies on both and . Let and be the tangent lines to the curves
and at the point . Then the tangent plane to the surface at the point is defined to be
the plane that contains both tangent lines and . (See Figure 1.)

We will see in Section 14.6 that if is any other curve that lies on the surface and
passes through , then its tangent line at also lies in the tangent plane. Therefore you can
think of the tangent plane to at as consisting of all possible tangent lines at to curves
that lie on and pass through . The tangent plane at is the plane that most closely approx-
imates the surface near the point .

We know from Equation 12.5.7 that any plane passing through the point has
an equation of the form

By dividing this equation by and letting and , we can write it in
the form

S z � f �x, y� f
P�x0, y0, z0 � S C1 C2

y � y0 x � x0 S
P C1 C2 T1 T2 C1

C2 P S P
T1 T2

C S
P P

S P P
S P P

S P
P�x0, y0, z0 �

A�x � x0 � � B�y � y0 � � C�z � z0 � � 0

C a � �A�C b � �B�C

1 z � z0 � a�x � x0� � b�y � y0 �

FIGURE 1
The tangent plane contains the
tangent lines T¡TT and T™TT .

y

x

z

TTTTT¡¡¡

TTTTT™™™

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC¡¡¡¡¡¡¡

CCCCCCCCCCCCCCCCCCCCCC™™™™™™™™™™™™™
PPPPPPPPPPPPPPPPPPPPP
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940 CHAPTER 14 PARTIAL DERIVATIVES

If Equation 1 represents the tangent plane at , then its intersection with the plane
must be the tangent line . Setting in Equation 1 gives

where 

and we recognize this as the equation (in point-slope form) of a line with slope . But from
Section 14.3 we know that the slope of the tangent is . Therefore .

Similarly, putting in Equation 1, we get , which must repre-
sent the tangent line , so .

Suppose has continuous partial derivatives. An equation of the tangent
plane to the surface at the point is

Find the tangent plane to the elliptic paraboloid at the 
point .

SOLUTION Let . Then

Then gives the equation of the tangent plane at as

or

Figure 2(a) shows the elliptic paraboloid and its tangent plane at (1, 1, 3) that we found
in Example 1. In parts (b) and (c) we zoom in toward the point (1, 1, 3) by restricting the
domain of the function . Notice that the more we zoom in, the flatter the
graph appears and the more it resembles its tangent plane.

P y � y0

T1 y � y0

z � z0 � a�x � x0 � y � y0

a
T1 fx�x0, y0 � a � fx�x0, y0 �

x � x0 z � z0 � b�y � y0 �
T2 b � fy�x0, y0 �

2 f
z � f �x, y� P�x0, y0, z0 �

z � z0 � fx�x0, y0 ��x � x0 � � fy�x0, y0 ��y � y0 �

z � 2x 2 � y 2

�1, 1, 3�

f �x, y� � 2x 2 � y 2

fx�x, y� � 4x fy�x, y� � 2y

fx�1, 1� � 4  fy�1, 1� � 2

�1, 1, 3�

z � 3 � 4�x � 1� � 2�y � 1�

z � 4x � 2y � 3

f �x, y� � 2x 2 � y 2

FIGURE 2 The elliptic paraboloid z=2≈+¥ appears to coincide with its tangent plane as we zoom in toward (1, 1, 3).

(c)

2

1

0

2
1

0

40

20

0

_20

y

z

x

(b)

2

0

_2

2
0

_2

40

20

0

_20

y

z

x

(a)

40

20

0

_20

y

z

4
2

0
_2

_4

x
4

2
0

_2
_4

v EXAMPLE 1

2

Note the similarity between the equation of a
tangent plane and the equation of a tangent line:

y � y0 � f ��x0 ��x � x0 �

Visual 14.4 shows an animation 
of Figures 2 and 3.
TEC
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS 941

In Figure 3 we corroborate this impression by zooming in toward the point (1, 1) on a
contour map of the function . Notice that the more we zoom in, the more
the level curves look like equally spaced parallel lines, which is characteristic of a plane.

Linear Approximations
In Example 1 we found that an equation of the tangent plane to the graph of the function

at the point (1, 1, 3) is . Therefore, in view of the
visual evidence in Figures 2 and 3, the linear function of two variables

is a good approximation to when is near (1, 1). The function L is called the lin-
earization of f at (1, 1) and the approximation

is called the linear approximation or tangent plane approximation of f at (1, 1).
For instance, at the point (1.1, 0.95) the linear approximation gives

which is quite close to the true value of . But if
we take a point farther away from (1, 1), such as (2, 3), we no longer get a good approxi-
mation. In fact, whereas .

In general, we know from that an equation of the tangent plane to the graph of a func-
tion f of two variables at the point is

The linear function whose graph is this tangent plane, namely

is called the linearization of f at and the approximation

is called the linear approximation or the tangent plane approximation of at
We have defined tangent planes for surfaces , where has continuous first

partial derivatives. What happens if and are not continuous? Figure 4 pictures such a
function; its equation is

FIGURE 3
Zooming in toward (1, 1)

on a contour map of
f(x, y)=2≈+¥ 0.95 1.05

1.05

0.8 1.2

1.2

0.5 1.5

1.5

f �x, y� � 2x 2 � y 2

f �x, y� � 2x 2 � y 2 z � 4x � 2y � 3

L�x, y� � 4x � 2y � 3

f �x, y� �x, y�

f �x, y� � 4x � 2y � 3

f �1.1, 0.95� � 4�1.1� � 2�0.95� � 3 � 3.3

f �1.1, 0.95� � 2�1.1�2 � �0.95�2 � 3.3225

L�2, 3� � 11 f �2, 3� � 17

�a, b, f �a, b��

z � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

3 L�x, y� � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

�a, b�

4 f �x, y� � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

f �a, b�.
z � f �x, y� f

fx fy

2

f �x, y� � �
0

xy

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

z y

x

f(x, y)=
xy

≈+¥
 if (x, y)≠(0, 0),

f(0, 0)=0

FIGURE 4
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942 CHAPTER 14 PARTIAL DERIVATIVES

You can verify (see Exercise 46) that its partial derivatives exist at the origin and, in fact,
and , but and are not continuous. The linear approximation

would be , but at all points on the line . So a function of two
variables can behave badly even though both of its partial derivatives exist. To rule out such
behavior, we formulate the idea of a differentiable function of two variables.

Recall that for a function of one variable, , if x changes from a to we
defined the increment of as

In Chapter 2 we showed that if is differentiable at a, then

Now consider a function of two variables, , and suppose x changes from a to
and y changes from b to . Then the corresponding increment of is

Thus the increment represents the change in the value of when changes from
to . By analogy with we define the differentiability of a func-

tion of two variables as follows.

Definition If , then is differentiable at if can be
expressed in the form

where and as .

Definition 7 says that a differentiable function is one for which the linear approximation
is a good approximation when is near . In other words, the tangent plane

approximates the graph of f well near the point of tangency.
It’s sometimes hard to use Definition 7 directly to check the differentiability of a func-

tion, but the next theorem provides a convenient sufficient condition for differentiability.

Theorem If the partial derivatives and exist near and are continu-
ous at , then is differentiable at .

Show that is differentiable at (1, 0) and find its lineariza-
tion there. Then use it to approximate .

SOLUTION The partial derivatives are

Both and are continuous functions, so is differentiable by Theorem 8. The lin-
earization is

fx�0, 0� � 0 fy�0, 0� � 0 fx fy

f �x, y� � 0 f �x, y� � 1
2 y � x

y � f �x� a � �x,
y

�y � f �a � �x� � f �a�

f

5 �y � f ��a� �x � � �x where  � l 0  as  �x l 0

z � f �x, y�
a � �x b � �y z

6 �z � f �a � �x, b � �y� � f �a, b�

�z f �x, y�
�a, b� �a � �x, b � �y�

7 z � f �x, y� f �a, b� �z

�z � fx�a, b� �x � fy�a, b� �y � �1 �x � �2 �y

�1 �2 l 0 ��x, �y� l �0, 0�

�x, y� �a, b�

8 fx fy �a, b�
�a, b� f �a, b�

f �x, y� � xexy

f �1.1, �0.1�

fx�x, y� � exy � xyexy fy�x, y� � x 2exy

fx�1, 0� � 1 fy�1, 0� � 1

fx fy f

5

4

v EXAMPLE 2

L�x, y� � f �1, 0� � fx�1, 0��x � 1� � fy�1, 0��y � 0�

� 1 � 1�x � 1� � 1 � y � x � y

This is Equation 2.5.5.

Theorem 8 is proved in Appendix F.

FIGURE 5

1
0

_1

6

4

2

0

yx

z

1

0

Figure 5 shows the graphs of the function 
and its linearization in Example 2.L

f
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS 943

The corresponding linear approximation is

so

Compare this with the actual value of .

At the beginning of Section 14.3 we discussed the heat index (perceived
temperature) as a function of the actual temperature and the relative humidity and
gave the following table of values from the National Weather Service.

Find a linear approximation for the heat index when is near and is
near 70%. Use it to estimate the heat index when the temperature is and the relative
humidity is 72%.

SOLUTION We read from the table that . In Section 14.3 we used the tabu-
lar values to estimate that and . (See pages 925–26.)
So the linear approximation is

In particular,

Therefore, when and H � 72%, the heat index is

Differentials
For a differentiable function of one variable, , we define the differential dx to be an
independent variable; that is, dx can be given the value of any real number. The differential
of is then defined as

(See Section 2.9.) Figure 6 shows the relationship between the increment and the dif-
ferential : represents the change in height of the curve and represents the
change in height of the tangent line when changes by an amount 

For a differentiable function of two variables, , we define the differentials
and to be independent variables; that is, they can be given any values. Then the 

xe xy � x � y

f �1.1, �0.1� � 1.1 � 0.1 � 1

f �1.1, �0.1� � 1.1e�0.11 � 0.98542

EXAMPLE 3
HTI

96

100

104

109

114

119

98

103

107

113

118

124

100

105

111

116

123

129

103

108

114

121

127

135

106

112

118

125

133

141

109

115

122

130

138

147

112

119

127

135

144

154

115

123

132

141

150

161

119

128

137

146

157

168

T
H

Relative humidity (%)

Actual
temperature

(°F)

90

92

94

96

98

100

50 55 60 65 70 75 80 85 90

H96�FTI � f �T, H �
97�F

f �96, 70� � 125
fH�96, 70� � 0.9fT �96, 70� � 3.75

f �T, H � � f �96, 70� � fT�96, 70��T � 96� � fH�96, 70��H � 70�

� 125 � 3.75�T � 96� � 0.9�H � 70�

f �97, 72� � 125 � 3.75�1� � 0.9�2� � 130.55

T � 97�F

I � 131�F

y � f �x�

y

dy � f ��x� dx9

�y
dyy � f �x��ydy

dx � �x.x
z � f �x, y�

dydx

xa a+Îx

y

0

dx=Îx

y=ƒ

dy

Îy

y=f(a)+fª(a)(x-a)
tangent line

FIGURE 6
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944 CHAPTER 14 PARTIAL DERIVATIVES

differential , also called the total differential, is defined by

(Compare with Equation 9.) Sometimes the notation is used in place of .
If we take and in Equation 10, then the differential

of is

So, in the notation of differentials, the linear approximation can be written as

Figure 7 is the three-dimensional counterpart of Figure 6 and shows the geometric inter-
pretation of the differential and the increment : represents the change in height of
the tangent plane, whereas represents the change in height of the surface
when changes from to .

(a) If , find the differential .
(b) If changes from 2 to and changes from 3 to , compare the values 
of and .

SOLUTION
(a) Definition 10 gives

(b) Putting , , , and , we get

10 dz � fx�x, y� dx � fy�x, y� dy �
�z

�x
dx �

�z

�y
dy

d f dz
dx � �x � x � a dy � �y � y � b

z

dz � fx�a, b��x � a� � fy�a, b��y � b�

f �x, y� � f �a, b� � dz

dz �z dz
�z z � f �x, y�

�x, y� �a, b� �a � �x, b � �y�

y

x

z

Îx=
dx

0

{a,{{ b, f(a, b)}

(a, b, 0)

(a+Îx, b+Îy, 0)

{a+Îx, b+Îy, f (a+Îx, b+Îy)}

f(a, b)

f(a, b)

Îy=dy
tangent plane

z-f(a, b)=fxff (a, b)(x-a)+fyf (a, b)(y-b)

surface z=f(x, y)

dz

Îz

FIGURE 7

z � f �x, y� � x 2 � 3xy � y 2 dz
x 2.05 y 2.96

�z dz

dz �
�z

�x
dx �

�z

�y
dy � �2x � 3y� dx � �3x � 2y� dy

x � 2 dx � �x � 0.05 y � 3 dy � �y � �0.04

dz � �2�2� � 3�3��0.05 � �3�2� � 2�3����0.04� � 0.65

4

v EXAMPLE 4

dz

FIGURE 8
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In Example 4, is close to because 
the tangent plane is a good approximation 
to the surface near

. (See Figure 8.)�2, 3, 13�
z � x 2 � 3xy � y 2

�zdz
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS 945

The increment of is

Notice that but is easier to compute.

The base radius and height of a right circular cone are measured as 10 cm
and 25 cm, respectively, with a possible error in measurement of as much as cm in
each. Use differentials to estimate the maximum error in the calculated volume of the
cone.

SOLUTION The volume of a cone with base radius and height is . So
the differential of is

Since each error is at most cm, we have , . To estimate the
largest error in the volume we take the largest error in the measurement of and of .
Therefore we take and along with , . This gives

Thus the maximum error in the calculated volume is about cm cm.

Functions of Three or More Variables
Linear approximations, differentiability, and differentials can be defined in a similar man-
ner for functions of more than two variables. A differentiable function is defined by an
expression similar to the one in Definition 7. For such functions the linear approximation
is

and the linearization is the right side of this expression.
If , then the increment of is

The differential is defined in terms of the differentials , , and of the independ-
ent variables by

The dimensions of a rectangular box are measured to be 75 cm, 60 cm, 
and 40 cm, and each measurement is correct to within cm. Use differentials to esti-
mate the largest possible error when the volume of the box is calculated from these 
measurements.

SOLUTION If the dimensions of the box are , , and , its volume is and so

z

�z � f �2.05, 2.96� � f �2, 3�

� ��2.05�2 � 3�2.05��2.96� � �2.96�2 � � �22 � 3�2��3� � 32 �

� 0.6449

�z � dz dz

EXAMPLE 5
0.1

V r h V � 	r 2h�3
V

dV �
�V

�r
dr �

�V

�h
dh �

2	rh

3
 dr �

	r 2

3
 dh

0.1 	 �r 	 
 0.1 	 �h 	 
 0.1
r h

dr � 0.1 dh � 0.1 r � 10 h � 25

dV �
500	

3
 �0.1� �

100	

3
 �0.1� � 20	

20	 3 � 63 3

f �x, y, z� � f �a, b, c� � fx�a, b, c��x � a� � fy�a, b, c��y � b� � fz�a, b, c��z � c�

L�x, y, z�
w � f �x, y, z� w

�w � f �x � �x, y � �y, z � �z� � f �x, y, z�

dw dx dy dz

dw �
�w

�x
dx �

�w

�y
dy �

�w

�z
dz

0.2

x y z V � xyz

dV �
�V

�x
dx �

�V

�y
dy �

�V

�z
dz � yz dx � xz dy � xy dz

EXAMPLE 6
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946 CHAPTER 14 PARTIAL DERIVATIVES

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

1–6 Find an equation of the tangent plane to the given surface at
the specified point.

1. ,  

2. ,  

3. ,  

4. ,  

5. ,  

6. ,  

; 7–8 Graph the surface and the tangent plane at the given point.
(Choose the domain and viewpoint so that you get a good view
of both the surface and the tangent plane.) Then zoom in until
the surface and the tangent plane become indistinguishable.

7. ,  

8. ,  

9–10 Draw the graph of and its tangent plane at the given
point. (Use your computer algebra system both to compute the 
partial derivatives and to graph the surface and its tangent plane.)
Then zoom in until the surface and the tangent plane become 
indistinguishable.

9.

10.

11–16 Explain why the function is differentiable at the given
point. Then find the linearization of the function at 
that point.

11. ,  

12. ,  

13. ,  

14. ,  

z � 3y 2 � 2x 2 � x �2, �1, �3�

z � 3�x � 1�2 � 2�y � 3�2 � 7 �2, �2, 12�

z � sxy �1, 1, 1�

z � xe xy �2, 0, 2�

z � x sin�x � y� ��1, 1, 0�

z � ln�x � 2y� �3, 1, 0�

z � x 2 � xy � 3y 2 �1, 1, 5�

z � arctan�xy 2� �1, 1, 	�4�

CAS f

f �x, y� �
xy sin�x � y�
1 � x 2 � y 2 ,  �1, 1, 0�

f �x, y� � e�xy�10 (sx � sy � sxy ),  �1, 1, 3e�0.1�

L�x, y�

�2, 3�f �x, y� � 1 � x ln�xy � 5�

�1, 1�f �x, y� � x 3y 4

�2, 1�f �x, y� �
x

x � y

�3, 0�f �x, y� � sx � e 4y

15. ,  

16. ,  

17–18 Verify the linear approximation at .

17. 18.

19. Given that is a differentiable function with ,
, and , use a linear approximation

to estimate .

; 20. Find the linear approximation of the function
at and use it to approximate

. Illustrate by graphing and the tangent plane.

21. Find the linear approximation of the function
at and use it to 

approximate the number .

22. The wave heights in the open sea depend on the speed 
of the wind and the length of time that the wind has been
blowing at that speed. Values of the function are
recorded in feet in the following table. Use the table to find
a linear approximation to the wave height function when 
is near 40 knots and is near 20 hours. Then estimate the
wave heights when the wind has been blowing for 24 hours
at 43 knots.

f �x, y� � e�xy cos y �	, 0�

f �x, y� � y � sin�x�y� �0, 3�

�0, 0�

2x � 3

4y � 1
� 3 � 2x � 12y sy � cos2x � 1 �

1
2 y

f f �2, 5� � 6
fx �2, 5� � 1 fy �2, 5� � �1

f �2.2, 4.9�

f �x, y� � 1 � xy cos 	y �1, 1�
f �1.02, 0.97� f

f �x, y, z� � sx 2 � y 2 � z 2 �3, 2, 6�
s�3.02� 2 � �1.97� 2 � �5.99� 2 

h v
t

h � f �v, t�

v
t

5

9

14

19

24

7

13

21

29

37

8

16

25

36

47

8

17

28

40

54

9

18

31

45

62

9

19

33

48

67

9

19

33

50

69

v
t 5 10 15 20 30 40 50

20

30

40

50

60

Duration (hours)

W
in

d 
sp

ee
d 

(k
no

ts
)

14.4 Exercises

We are given that , , and . To estimate the largest error
in the volume, we therefore use , , and together with ,

, and :

Thus an error of only cm in measuring each dimension could lead to an error of
approximately 1980 cm in the calculated volume! This may seem like a large error, but
it’s only about 1% of the volume of the box.

	 �x 	 
 0.2 	 �y 	 
 0.2 	 �z 	 
 0.2
dx � 0.2 dy � 0.2 dz � 0.2 x � 75

y � 60 z � 40

�V � dV � �60��40��0.2� � �75��40��0.2� � �75��60��0.2� � 1980

0.2
3
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS 947

23. Use the table in Example 3 to find a linear approximation to
the heat index function when the temperature is near 
and the relative humidity is near 80%. Then estimate the heat
index when the temperature is and the relative humidity 
is 78%.

24. The wind-chill index is the perceived temperature when the
actual temperature is and the wind speed is , so we can
write . The following table of values is an excerpt
from Table 1 in Section 14.1. Use the table to find a linear
approximation to the wind-chill index function when is near

and is near . Then estimate the wind-chill
index when the temperature is and the wind speed 
is 55 km�h.

25–30 Find the differential of the function.

25. 26.

27. 28.

29. 30.

31. If and changes from to
compare the values of and .

32. If and changes from to
, compare the values of and .

33. The length and width of a rectangle are measured as 30 cm and
24 cm, respectively, with an error in measurement of at most

cm in each. Use differentials to estimate the maximum
error in the calculated area of the rectangle.

34. Use differentials to estimate the amount of metal in a closed
cylindrical can that is 10 cm high and 4 cm in diameter if the
metal in the top and bottom is cm thick and the metal in the
sides is cm thick.

35. Use differentials to estimate the amount of tin in a closed tin
can with diameter 8 cm and height 12 cm if the tin is cm
thick.

36. The wind-chill index is modeled by the function

where is the temperature and is the wind speed
. The wind speed is measured as , with a 

94�F

95�F

W
T v

W � f �T, v�

T
�15�C v 50 km�h

�17�C

�18

�24

�30

�37

�20

�26

�33

�39

�21

�27

�34

�41

�22

�29

�35

�42

�23

�30

�36

�43

T
v 20 30 40 50 60

�10

�15

�20

�25A
ct

ua
l t

em
pe

ra
tu

re
 (

°C
) 70

�23

�30

�37

�44

Wind speed (km/h)

z � e�2x cos 2	t u � sx 2 � 3y 2 

T �
v

1 � uvw
m � p5q3

R � �� 2 cos 
 L � xze�y2�z2

�1.05, 2.1�,�1, 2��x, y�z � 5x 2 � y 2

dz�z

�3, �1��x, y�z � x 2 � xy � 3y 2

dz�z�2.96, �0.95�

0.1

0.1
0.05

0.04

W � 13.12 � 0.6215T � 11.37v 0.16 � 0.3965Tv 0.16

v�in �C�T
26 km�h�in km�h�

possible error of , and the temperature is measured 
as , with a possible error of . Use differentials to
estimate the maximum error in the calculated value of due 
to the measurement errors in and .

37. The tension in the string of the yo-yo in the figure is

where is the mass of the yo-yo and is acceleration due to
gravity. Use differentials to estimate the change in the tension 
if is increased from 3 cm to 3.1 cm and is increased from
0.7 cm to 0.8 cm. Does the tension increase or decrease?

38. The pressure, volume, and temperature of a mole of an ideal
gas are related by the equation , where is mea-
sured in kilopascals, in liters, and in kelvins. Use differ-
entials to find the approximate change in the pressure if the
volume increases from 12 L to 12.3 L and the temperature
decreases from 310 K to 305 K.

39. If is the total resistance of three resistors, connected in par-
 al lel, with resistances , , , then

If the resistances are measured in ohms as ,
, and , with a possible error of in

each case, estimate the maximum error in the calculated value
of .

40. Four positive numbers, each less than 50, are rounded to the
first decimal place and then multiplied together. Use differen-
tials to estimate the maximum possible error in the computed
product that might result from the rounding.

41. A model for the surface area of a human body is given by
, where is the weight (in pounds), is

the height (in inches), and is measured in square feet. If the
errors in measurement of and are at most 2%, use differ-
entials to estimate the maximum percentage error in the calcu-
lated surface area.

42. Suppose you need to know an equation of the tangent plane to
a surface at the point . You don’t have an equation
for but you know that the curves

both lie on . Find an equation of the tangent plane at .

W
T v

�1�C�11�C

T

T �
mtR

2r 2 � R 2

m

R

T

r

PV � 8.31T P
V T

R
R1 R2 R3

1

R
�

1

R1
�

1

R2
�

1

R3

R1 � 25 �
R2 � 40 � R3 � 50 � 0.5%

R

S � 0.1091w 0.425h 0.725 w h
S

w h

S P�2, 1, 3�
S

r1�t� � 
2 � 3t, 1 � t 2, 3 � 4t � t 2 �

r2�u� � 
1 � u2, 2u3 � 1, 2u � 1 �

R

PS

�2 km�h

r

t
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948 CHAPTER 14 PARTIAL DERIVATIVES

43–44 Show that the function is differentiable by finding values 
of and that satisfy Definition 7.

43. 44.

45. Prove that if is a function of two variables that is differen-
tiable at , then is continuous at .  

Hint: Show that

�1 �2

f �x, y� � x 2 � y 2 f �x, y� � xy � 5y 2

f
�a, b� f �a, b�

lim
��x, �y� l �0, 0�

f �a � �x, b � �y� � f �a, b�

46. (a) The function

was graphed in Figure 4. Show that and
both exist but is not differentiable at . [Hint: Use 
the result of Exercise 45.]

(b) Explain why and are not continuous at .

f �x, y� � �
0

xy

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

fx�0, 0� fy�0, 0�
f �0, 0�

fx fy �0, 0�

Recall that the Chain Rule for functions of a single variable gives the rule for differentiating
a composite function: If and , where and are differentiable functions,
then is indirectly a differentiable function of and

For functions of more than one variable, the Chain Rule has several versions, each of
them giving a rule for differentiating a composite function. The first version (Theorem 2)
deals with the case where and each of the variables and is, in turn, a func-
tion of a variable . This means that is indirectly a function of , , and the
Chain Rule gives a formula for differentiating as a function of . We assume that is dif-
ferentiable (Definition 14.4.7). Recall that this is the case when and are continuous
(Theorem 14.4.8).

The Chain Rule (Case 1) Suppose that is a differentiable function of
and , where and are both differentiable functions of . Then

is a differentiable function of and

PROOF A change of in produces changes of in and in . These, in turn, pro-
duce a change of in , and from Definition 14.4.7 we have

where and as . [If the functions and are not
defined at , we can define them to be 0 there.] Dividing both sides of this equation
by , we have

If we now let , then because is differentiable and 

y � f �x� x � t�t� f t

y t

1
dy

dt
�

dy

dx

dx

dt

z � f �x, y� x y
t z t z � f �t�t�, h�t��

z t f
fx fy

2 z � f �x, y�
x y x � t�t� y � h�t� t z

t

dz

dt
�

�f

�x

dx

dt
�

�f

�y

dy

dt

�t t �x x �y y
�z z

�z �
�f

�x
�x �

�f

�y
�y � �1 �x � �2 �y

�2�1��x, �y� l �0, 0��2 l 0�1 l 0
�0, 0�

�t

�z

�t
�

�f

�x

�x

�t
�

�f

�y

�y

�t
� �1

�x

�t
� �2

�y

�t

t�x � t�t � �t� � t�t� l 0�t l 0

14.5 The Chain Rule
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SECTION 14.5 THE CHAIN RULE 949

therefore continuous. Similarly, . This, in turn, means that and , so

Since we often write in place of , we can rewrite the Chain Rule in the form

If , where and , find when .

SOLUTION The Chain Rule gives

It’s not necessary to substitute the expressions for and in terms of . We simply
observe that when , we have x � sin 0 � 0 and y � cos 0 � 1. Therefore

The derivative in Example 1 can be interpreted as the rate of change of with respect 
to as the point moves along the curve with parametric equations ,

. (See Figure 1.) In particular, when , the point is and
is the rate of increase as we move along the curve through . If, for instance,

represents the temperature at the point , then the compos-
ite function represents the temperature at points on and the derivative

represents the rate at which the temper ature changes along .

The pressure (in kilopascals), volume (in liters), and temperature
(in kelvins) of a mole of an ideal gas are related by the equation . Find the
rate at which the pressure is changing when the temperature is and increas ing at a
rate of and the volume is 100 L and increasing at a rate of .

SOLUTION If represents the time elapsed in seconds, then at the given instant we have
, , , . Since

�y l 0 �1 l 0 �2 l 0

dz

dt
� lim

�t l 0

�z

�t

�
�f

�x

dx

dt
�

�f

�y

dy

dt
� 0 �

dx

dt
� 0 �

dy

dt

�
�f

�x

dx

dt
�

�f

�y

dy

dt

�z��x �f��x

dz

dt
�

�z

�x

dx

dt
�

�z

�y

dy

dt

z � x 2y � 3xy4 x � sin 2t y � cos t dz�dt t � 0

dz

dt
�

�z

�x

dx

dt
�

�z

�y

dy

dt

� �2xy � 3y 4 ��2 cos 2t� � �x 2 � 12xy 3 ���sin t�

x y t
t � 0

dz

dt �
t�0

� �0 � 3��2 cos 0� � �0 � 0���sin 0� � 6

z
t �x, y� C x � sin 2t

y � cos t t � 0 �x, y� �0, 1� dz�dt � 6
C �0, 1�

z � T�x, y� � x 2y � 3xy 4 �x, y�
z � T �sin 2t, cos t� C

dz�dt C

P V T
PV � 8.31T

300 K
0.1 K�s 0.2 L�s

t
T � 300 dT�dt � 0.1 V � 100 dV�dt � 0.2

P � 8.31
T

V

�
�f

�x
lim

�t l 0

�x

�t
�

�f

�y
lim

�t l 0

�y

�t
� 
 lim

�t l 0
 �1� lim

�t l 0

�x

�t
� 
 lim

�t l 0
�2� lim

�t l 0

�y

�t

v EXAMPLE 2

EXAMPLE 1

Notice the similarity to the definition of the 
differential:

dz �
�z

�x
dx �

�z

�y
dy

FIGURE 1
The curve x=sin 2t, y=cos t

x

(0, 1)

y

C
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950 CHAPTER 14 PARTIAL DERIVATIVES

the Chain Rule gives

The pressure is decreasing at a rate of about kPa�s.

We now consider the situation where but each of and is a function of two
variables and : , . Then is indirectly a function of and and we
wish to find and . Recall that in computing we hold fixed and compute
the ordinary derivative of with respect to . Therefore we can apply Theorem 2 to obtain

A similar argument holds for and so we have proved the following version of the
Chain Rule.

The Chain Rule (Case 2) Suppose that is a differentiable function of
and , where and are differentiable functions of s and t.

Then

If , where and , find and .

SOLUTION Applying Case 2 of the Chain Rule, we get

Case 2 of the Chain Rule contains three types of variables: and are independent vari-
ables, and are called intermediate variables, and is the dependent variable. Notice that
Theorem 3 has one term for each intermediate variable and each of these terms resembles
the one-dimensional Chain Rule in Equation 1.

To remember the Chain Rule, it’s helpful to draw the tree diagram in Figure 2. We draw
branches from the dependent variable to the intermediate variables and to indicate that

is a function of and . Then we draw branches from and to the independent variables
and . On each branch we write the corresponding partial derivative. To find , we 

dP

dt
�

�P

�T

dT

dt
�

�P

�V

dV

dt
�

8.31

V

dT

dt
�

8.31T

V 2

dV

dt

�
8.31

100
 �0.1� �

8.31�300�
1002 �0.2� � �0.04155

0.042
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�z
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�
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�t

�z��s

3 z � f �x, y�
x y x � t�s, t� y � h�s, t�
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�
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z � ex sin y x � st 2 y � s 2t �z��s �z��t
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SECTION 14.5 THE CHAIN RULE 951

find the product of the partial derivatives along each path from to and then add these 
products:

Similarly, we find by using the paths from to .
Now we consider the general situation in which a dependent variable is a function of

intermediate variables , , each of which is, in turn, a function of independent
variables , . Notice that there are terms, one for each intermediate variable. The
proof is similar to that of Case 1.

The Chain Rule (General Version) Suppose that is a differentiable function of
the variables , , and each is a differentiable function of the vari-
ables , , . Then is a function of , , and

for each , , .

Write out the Chain Rule for the case where and
, , , and .

SOLUTION We apply Theorem 4 with and . Figure 3 shows the tree diagram.
Although we haven’t written the derivatives on the branches, it’s understood that if a
branch leads from to , then the partial derivative for that branch is . With the aid
of the tree diagram, we can now write the required expressions:

If , where , , and , find the
value of when , , .

SOLUTION With the help of the tree diagram in Figure 4, we have

When , , and , we have , , and , so
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952 CHAPTER 14 PARTIAL DERIVATIVES

If and is differentiable, show that satisfies
the equation

SOLUTION Let and . Then and the Chain Rule
gives

Therefore

If has continuous second-order partial derivatives and
and , find (a) and (b) .

SOLUTION
(a) The Chain Rule gives

(b) Applying the Product Rule to the expression in part (a), we get

But, using the Chain Rule again (see Figure 5), we have

Putting these expressions into Equation 5 and using the equality of the mixed second-
order derivatives, we obtain

Implicit Differentiation
The Chain Rule can be used to give a more complete description of the process of implicit
differentiation that was introduced in Sections 2.6 and 14.3. We suppose that an equa-
tion of the form defines implicitly as a differentiable function of , that is, 
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SECTION 14.5 THE CHAIN RULE 953

, where for all in the domain of . If is differentiable, we can
apply Case 1 of the Chain Rule to differentiate both sides of the equation with
respect to . Since both and are functions of , we obtain

But , so if we solve for and obtain

To derive this equation we assumed that defines implicitly as a function of
. The Implicit Function Theorem, proved in advanced calculus, gives conditions under

which this assumption is valid: It states that if is defined on a disk containing where
, , and and are continuous on the disk, then the equation
defines as a function of near the point and the derivative of this func-

tion is given by Equation 6.

Find if .

SOLUTION The given equation can be written as

so Equation 6 gives

Now we suppose that is given implicitly as a function by an equation of the
form . This means that for all in the domain 
of . If and are differentiable, then we can use the Chain Rule to differentiate the equa-
tion as follows:

But

so this equation becomes

If , we solve for and obtain the first formula in Equations 7 on page 954.
The formula for is obtained in a similar manner.

FfxF�x, f �x�� � 0y � f �x�
F�x, y� � 0

xyxx

�F

�x

dx

dx
�

�F

�y

dy

dx
� 0

dy�dx�F��y � 0dx�dx � 1

dy

dx
� �

�F

�x

�F

�y

� �
Fx

Fy
6

yF�x, y� � 0
x

�a, b�,F
FyFxFy�a, b� � 0F�a, b� � 0

�a, b�xyF�x, y� � 0

x 3 � y 3 � 6xyy�EXAMPLE 8

F�x, y� � x 3 � y 3 � 6xy � 0

dy

dx
� �

Fx

Fy
� �

3x 2 � 6y

3y 2 � 6x
� �

x 2 � 2y

y 2 � 2x

z � f �x, y�z
�x, y�F�x, y, f �x, y�� � 0F�x, y, z� � 0

fFf
F�x, y, z� � 0

�F

�x

�x

�x
�

�F

�y

�y

�x
�

�F

�z

�z

�x
� 0

�

�x
�y� � 0and

�

�x
�x� � 1

�F

�x
�

�F

�z

�z

�x
� 0

�z��x�F��z � 0
�z��y

The solution to Example 8 should be 
compared to the one in Example 2 in 
Section 2.6.
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954 CHAPTER 14 PARTIAL DERIVATIVES

1. Homework Hints available at stewartcalculus.com

1–6 Use the Chain Rule to find or .

1. ,  ,  

2. ,  ,  

3. ,  ,  

4. ,  ,  

5. ,  ,  ,  

6. ,  ,  ,  

7–12 Use the Chain Rule to find and .

7. ,  ,  

8. ,  ,  

9. ,  ,  

10. ,  ,  

11. ,  ,  

12. ,  ,  

dz�dt dw�dt

z � x 2 � y 2 � xy x � sin t y � e t

z � cos�x � 4y� x � 5t 4 y � 1�t

z � s1 � x 2 � y 2 x � ln t y � cos t

z � tan�1�y�x� x � e t y � 1 � e�t

w � xe y�z x � t 2 y � 1 � t z � 1 � 2t

w � lnsx 2 � y 2 � z2 x � sin t y � cos t z � tan t

�z��s �z��t

z � x 2y 3 x � s cos t y � s sin t

z � arcsin�x � y� x � s 2 � t 2 y � 1 � 2st

z � sin � cos � � � st 2 � � s 2t

z � e x�2y x � s�t y � t�s

z � e r cos � r � st � � ss 2 � t 2 

v � 3s � 2tu � 2s � 3tz � tan�u�v�

13. If , where is differentiable, and

find when .

14. Let , where are differen-
tiable, and

Find and .

15. Suppose is a differentiable function of and , and
. Use the table of values 

to calculate 

16. Suppose is a differentiable function of and , and
Use the table of values in

Exercise 15 to calculate and 

x � t�t� y � h�t�
t�3� � 2 h�3� � 7

t��3� � 5 h��3� � �4

fx�2, 7� � 6 fy�2, 7� � �8

dz�dt t � 3

W�s, t� � F�u�s, t�, v�s, t�� F, u, and v

u�1, 0� � 2 v�1, 0� � 3

us�1, 0� � �2 vs�1, 0� � 5

ut�1, 0� � 6 vt�1, 0� � 4

Fu�2, 3� � �1 Fv�2, 3� � 10

Ws�1, 0� Wt�1, 0�

fz � f �x, y�

yxf
t�u, v� � f �e u � sin v, e u � cos v�

tu�0, 0� and tv�0, 0�.

yxf
t�r, s� � f �2r � s, s 2 � 4r�.

ts�1, 2�.tr�1, 2�

14.5 Exercises

Again, a version of the Implicit Function Theorem stipulates conditions under which 
our assumption is valid: If is defined within a sphere containing , where

, , and , , and are continuous inside the sphere, then the
equation defines as a function of and near the point and this
function is differentiable, with partial derivatives given by .

Find and if .

SOLUTION Let . Then, from Equations 7, we have

�z

�x
� �

�F

�x

�F

�z

�z

�y
� �

�F

�y

�F

�z

F �a, b, c�
F�a, b, c� � 0 Fz�a, b, c� � 0 Fx Fy Fz

F�x, y, z� � 0 z x y �a, b, c�

�z

�x

�z

�y
x 3 � y 3 � z3 � 6xyz � 1

F�x, y, z� � x 3 � y 3 � z3 � 6xyz � 1

�z

�x
� �

Fx

Fz
� �

3x 2 � 6yz

3z2 � 6xy
� �

x 2 � 2yz

z2 � 2xy

�z

�y
� �

Fy

Fz
� �

3y 2 � 6xz

3z2 � 6xy
� �

y 2 � 2xz

z2 � 2xy

EXAMPLE 9

7

7

The solution to Example 9 should be 
compared to the one in Example 4 in 
Section 14.3.

3 6 4 8

6 3 2 5�1, 2�

�0, 0�

fyfxtf
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SECTION 14.5 THE CHAIN RULE 955

17–20 Use a tree diagram to write out the Chain Rule for the given
case. Assume all functions are differentiable.

17. ,  where , 

18. ,  where , ,
, 

19. ,  where , , 

20. ,  where , ,

21–26 Use the Chain Rule to find the indicated partial derivatives.

21. ,  ,  ;

, , when , , 

22. ,  ,  ;

, , when , , 

23. ,  ,  ,  ;

, when , 

24. ,  ,  ,  ;

, when 

25. ,  ,  ,  ;

, , when 

26. ,  ,  ,  ;

, , when , , 

27–30 Use Equation 6 to find .

27. 28.

29. 30.

31–34 Use Equations 7 to find and .

31. 32.

33. 34.

35. The temperature at a point is , measured in degrees
Celsius. A bug crawls so that its position after seconds is
given by , where and are measured
in centimeters. The temperature func tion satisfies
and . How fast is the temperature rising on the
bug’s path after 3 seconds?

36. Wheat production in a given year depends on the average
temperature and the annual rainfall . Scientists estimate 
that the average temperature is rising at a rate of 0.15°C�year

u � f �x, y� x � x�r, s, t� y � y�r, s, t�

R � f �x, y, z, t� x � x�u, v, w� y � y�u, v, w�
z � z�u, v, w� t � t�u, v, w�

w � f �r, s, t� r � r�x, y� s � s�x, y� t � t�x, y�

t � f �u, v, w� u � u�p, q, r, s� v � v�p, q, r, s�
w � w�p, q, r, s�

y � stu2x � s � 2t � uz � x 4 � x 2y

u � 1t � 2s � 4
�z

�u

�z

�t

�z

�s

v � psq ru � pqsrT �
v

2u � v

r � 4q � 1p � 2
�T

�r

�T

�q

�T

�p

w � xy � yz � zx z � r�y � r sin �x � r cos �

r � 2
�w

��

�w

�r
� � 	�2

w � e xyv � ye xu � xe yP � su 2 � v2 � w 2 

x � 0, y � 2
�P

�y

�P

�x

r � w � uvq � v � uwp � u � vwN �
p � q

p � r

u � 2, v � 3, w � 4
�N

�w

�N

�v

�N

�u

t � 
 2�y � � 2
x � � 2�u � xe ty

� � 2� � �1
�u

��

�u

��

�u

�


 � 1

x 2 � y 2 � z2 � 2z � 4x 2 � 2y 2 � 3z2 � 1

yz � x ln y � z2e z � xyz

T�x, y��x, y�
t

yxx � s1 � t , y � 2 �
1
3 t

Tx�2, 3� � 4

dy�dx

�z��x �z��y

y cos x � x 2 � y 2 cos�xy� � 1 � sin y

tan�1�x 2y� � x � xy 2 e y sin x � x � xy

Ty�2, 3� � 3

W
RT

and rainfall is decreasing at a rate of 0.1 cm�year. They also
estimate that, at current production levels, 
and .
(a) What is the significance of the signs of these partial 

derivatives?
(b) Estimate the current rate of change of wheat production,

.

37. The speed of sound traveling through ocean water with salinity
35 parts per thousand has been modeled by the equation

where is the speed of sound (in meters per second), is the
temperature (in degrees Celsius), and is the depth below the
ocean surface (in meters). A scuba diver began a leisurely dive
into the ocean water; the diver’s depth and the surrounding
water temperature over time are recorded in the following
graphs. Estimate the rate of change (with respect to time) of 
the speed of sound through the ocean water experienced by the
diver 20 minutes into the dive. What are the units?

38. The radius of a right circular cone is increasing at a rate of 
in�s while its height is decreasing at a rate of in�s. At

what rate is the volume of the cone changing when the radius
is 120 in. and the height is 140 in.?

39. The length �, width , and height of a box change with 
time. At a certain instant the dimensions are and 

m, and � and are increasing at a rate of 2 m�s
while is decreasing at a rate of 3 m�s. At that instant find the
rates at which the following quantities are changing.
(a) The volume
(b) The surface area
(c) The length of a diagonal

40. The voltage in a simple electrical circuit is slowly decreasing
as the battery wears out. The resistance is slowly increasing
as the resistor heats up. Use Ohm’s Law, , to find how
the current is changing at the moment when ,

A, V�s, and .

41. The pressure of 1 mole of an ideal gas is increasing at a rate 
of kPa�s and the temperature is increasing at a rate of 

K�s. Use the equation in Example 2 to find the rate of
change of the volume when the pressure is 20 kPa and the 
temperature is 320 K.

42. A manufacturer has modeled its yearly production function
(the value of its entire production in millions of dollars) as a
Cobb-Douglas function

where is the number of labor hours (in thousands) and is 

�W��R � 8

dW�dt

C � 1449.2 � 4.6T � 0.055T 2 � 0.00029T 3 � 0.016D

C T
D

t
(min)

T

10

12

10 20 30 40

14

16

8

t
(min)

D

5

10

10 20 30 40

15

20

1.8 2.5

w h
� � 1 m

w � h � 2 w
h

V
R

V � IR
I R � 400 


dR�dt � 0.03 
�sdV�dt � �0.01I � 0.08

0.05
0.15

P

P�L, K� � 1.47L0.65K 0.35

�W��T � �2

KL
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956 CHAPTER 14 PARTIAL DERIVATIVES

the invested capital (in millions of dollars). Suppose that when
and , the labor force is decreasing at a rate of

2000 labor hours per year and capital is increasing at a rate of
$500,000 per year. Find the rate of change of production.

43. One side of a triangle is increasing at a rate of and a
second side is decreasing at a rate of . If the area of the
triangle remains constant, at what rate does the angle between
the sides change when the first side is 20 cm long, the second
side is 30 cm, and the angle is ?

44. If a sound with frequency is produced by a source traveling
along a line with speed and an observer is traveling with
speed along the same line from the opposite direction toward
the source, then the frequency of the sound heard by the
observer is

where is the speed of sound, about . (This is the
Doppler effect.) Suppose that, at a particular moment, you 
are in a train traveling at and accelerating at .
A train is approaching you from the opposite direction on the
other track at , accelerating at , and sounds its
whistle, which has a frequency of 460 Hz. At that instant, what
is the perceived frequency that you hear and how fast is it
changing?

45–48 Assume that all the given functions are differentiable.

45. If , where and , (a) find
and and (b) show that

46. If , where and , show that

47. If , show that .

48. If , where and , show that

49–54 Assume that all the given functions have continuous 
second-order partial derivatives.

49. Show that any function of the form

is a solution of the wave equation

[Hint: Let , .]

K � 8L � 30

3 cm�s
2 cm�s

	�6

fs

vs

vo

fo � � c � vo

c � vs
� fs

332 m�sc

1.2 m�s234 m�s

1.4 m�s240 m�s

�z��ry � r sin �x � r cos �z � f �x, y�
�z���

� �z

�x�2

� � �z

�y�2

� ��z

�r�2

�
1

r 2 � �z

��
�2

y � e s sin tx � e s cos tu � f �x, y�

��u

�x�2

� ��u

�y�2

� e�2s���u

�s�2

� ��u

�t �2�
�z

�x
�

�z

�y
� 0z � f �x � y�

y � s � tx � s � tz � f �x, y�

� �z

�x�2

� � �z

�y�2

�
�z

�s

�z

�t

z � f �x � at� � t�x � at�

�2z

�t 2 � a 2 �2z

�x 2

v � x � atu � x � at

50. If , where and , show that

51. If , where and , find .
(Compare with Example 7.)

52. If , where and , find 
(a) , (b) , and (c) .

53. If , where and , show that 

54. Suppose , where and .
(a) Show that

(b) Find a similar formula for .

55. A function f is called homogeneous of degree n if it satisfies
the equation for all t, where n is a positive
integer and f has continuous second-order partial derivatives.
(a) Verify that is homogeneous 

of degree 3.
(b) Show that if is homogeneous of degree , then

[Hint: Use the Chain Rule to differentiate with
respect to t.]

56. If is homogeneous of degree , show that

57. If is homogeneous of degree , show that

58. Suppose that the equation implicitly defines each
of the three variables , , and as functions of the other two:

, , . If is differentiable and
, , and are all nonzero, show that

59. Equation 6 is a formula for the derivative of a function
defined implicitly by an equation , provided that
is differentiable and . Prove that if has continuous sec-
ond derivatives, then a formula for the second derivative of is

z � f �x, y� x � r 2 � s 2 y � 2rs �2z��r �s

z � f �x, y� x � r cos � y � r sin �
�z��r �z��� �2z��r ��

z � f �x, y� x � r cos � y � r sin �

�2z

�x 2 �
�2z

�y 2 �
�2z

�r 2 �
1

r 2

�2z

�� 2 �
1

r

�z

�r

z � f �x, y� x � t�s, t� y � h�s, t�

�2z

�t 2 �
�2z

�x 2 ��x

�t �2

� 2 
�2z

�x �y

�x

�t

�y

�t
�

�2z

�y 2 ��y

�t �2

�
�z

�x

�2x

�t 2 �
�z

�y

�2 y

�t 2

�2z��s �t

f �t x, t y� � t nf �x, y�

f �x, y� � x 2y � 2xy 2 � 5y 3

f n

x
�f

�x
� y

�f

�y
� n f �x, y�

f �tx, t y�

nf

x2 �2f

�x 2 � 2xy
�2f

�x �y
� y 2 �2f

�y 2 � n�n � 1� f �x, y�

nf

fx�t x, t y� � t n�1fx�x, y�

F�x, y, z� � 0
zyx

Fx � h�y, z�y � t�x, z�z � f �x, y�
FzFyFx

�z

�x

�x

�y

�y

�z
� �1

dy�dx
FF �x, y� � 0

FFy � 0
y

d 2y

dx 2 � �
FxxFy

2 � 2FxyFxFy � FyyFx
2

Fy
3

y � e s sin tx � e s cos tu � f �x, y�

�2u

�x 2 �
�2u

�y 2 � e�2s��2u

�s 2 �
�2u

�t 2�
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 957

The weather map in Figure 1 shows a contour map of the temperature function for
the states of California and Nevada at 3:00 PM on a day in October. The level curves, or
isothermals, join locations with the same temperature. The partial derivative at a location
such as Reno is the rate of change of temperature with respect to distance if we travel east
from Reno; is the rate of change of temperature if we travel north. But what if we want
to know the rate of change of temperature when we travel southeast (toward Las Vegas), or
in some other direction? In this section we introduce a type of derivative, called a direc-
tional derivative, that enables us to find the rate of change of a function of two or more
variables in any direction.

Directional Derivatives
Recall that if , then the partial derivatives and are defined as

and represent the rates of change of in the - and -directions, that is, in the directions of
the unit vectors and .

Suppose that we now wish to find the rate of change of at in the direction of an
arbitrary unit vector . (See Figure 2.) To do this we consider the surface with
the equation (the graph of ) and we let . Then the point

lies on . The vertical plane that passes through in the direction of inter-
sects in a curve . (See Figure 3.) The slope of the tangent line to at the point is the
rate of change of in the direction of .

T�x, y�

Tx

Ty

z � f �x, y� fx fy

1

fx�x0, y0 � � lim
h l 0

f �x0 � h, y0 � � f �x0, y0 �
h

fy�x0, y0 � � lim
h l 0

f �x0, y0 � h� � f �x0, y0 �
h

z x y
i j

z �x0, y0 �
u � 	a, b 
 S

z � f �x, y� f z0 � f �x0, y0 �
P�x0, y0, z0 � S P u

S C T C P
z u

FIGURE 3
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958 CHAPTER 14 PARTIAL DERIVATIVES

If is another point on and , are the projections of , onto the -plane,
then the vectorB is parallel to and so

B

for some scalar . Therefore , , so , ,
and

If we take the limit as , we obtain the rate of change of (with respect to distance) in
the direction of , which is called the directional derivative of in the direction of .

Definition The directional derivative of at in the direction of a unit
vector is

if this limit exists.

By comparing Definition 2 with Equations , we see that if , then
and if , then . In other words, the partial derivatives of

with respect to and are just special cases of the directional derivative.

Use the weather map in Figure 1 to estimate the value of the directional
derivative of the temperature function at Reno in the southeasterly direction.

SOLUTION The unit vector directed toward the southeast is , but we
won’t need to use this expression. We start by drawing a line through Reno toward the
southeast (see Figure 4).

We approximate the directional derivative by the average rate of change of the
temperature between the points where this line intersects the isothermals and 

Q�x, y, z� C P� Q� P Q xy
u

h x � x0 � ha y � y0 � hb x � x0 � ha y � y0 � hb

�z

h
�

z � z0

h
�

f �x0 � ha, y0 � hb� � f �x0, y0 �
h

h l 0 z
u f u

2 f �x0, y0 �
u � 	a, b 


Du f �x0, y0 � � lim
h l 0

f �x0 � ha, y0 � hb� � f �x0, y0 �
h

P�Q� � hu � 	ha, hb 


P�Q�

u � i � 	1, 0 

Di f � fx Dj f � fyu � j � 	0, 1 


yx
f

u � �i � j��s2

FIGURE 4
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 959

. The temperature at the point southeast of Reno is and the temperature
at the point northwest of Reno is . The distance between these points looks to
be about 75 miles. So the rate of change of the temperature in the southeasterly direction
is

When we compute the directional derivative of a function defined by a formula, we gen-
erally use the following theorem.

Theorem If is a differentiable function of and , then has a directional
derivative in the direction of any unit vector and

PROOF If we define a function of the single variable by

then, by the definition of a derivative, we have

On the other hand, we can write , where , , so the
Chain Rule (Theorem 14.5.2) gives

If we now put , then , , and

Comparing Equations 4 and 5, we see that

If the unit vector makes an angle with the positive -axis (as in Figure 2), then we
can write and the formula in Theorem 3 becomes

Find the directional derivative if

and is the unit vector given by angle . What is ?

T � 60 �F
T � 50 �F

Du T �
60 � 50

75
�

10

75
� 0.13�F�mi

3 f x y f
u � 	a, b 


Du f �x, y� � fx�x, y� a � fy�x, y� b

t h

t�h� � f �x0 � ha, y0 � hb�

4 t��0� � lim
h l 0

t�h� � t�0�
h

� lim
h l 0

f �x0 � ha, y0 � hb� � f �x0, y0 �
h

� Du f �x0, y0 �

t�h� � f �x, y� x � x0 � ha y � y0 � hb

t��h� �
�f

�x

dx

dh
�

�f

�y

dy

dh
� fx�x, y� a � fy�x, y� b

h � 0 x � x0 y � y0

5 t��0� � fx�x0, y0 � a � fy�x0, y0 � b

Du f �x0, y0 � � fx�x0, y0 � a � fy�x0, y0 � b

u � x
u � 	cos �, sin � 


6 Du f �x, y� � fx�x, y� cos � � fy�x, y� sin �

Du f �x, y�

f �x, y� � x 3 � 3xy � 4y 2

u � � 	�6 Du f �1, 2�

T � 60

EXAMPLE 2
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960 CHAPTER 14 PARTIAL DERIVATIVES

SOLUTION Formula 6 gives

Therefore

The Gradient Vector
Notice from Theorem 3 that the directional derivative of a differentiable function can be
written as the dot product of two vectors:

The first vector in this dot product occurs not only in computing directional deriv atives but
in many other contexts as well. So we give it a special name (the gradient of ) and a spe-
cial notation (grad or , which is read “del ”).

Definition If is a function of two variables and , then the gradient of is
the vector function defined by

If , then

and

With this notation for the gradient vector, we can rewrite Equation 7 for the directional
derivative of a differentiable function as

This expresses the directional derivative in the direction of a unit vector as the scalar 
projection of the gradient vector onto .

Du f �x, y� � fx�x, y� cos 
�

6
� fy�x, y� sin 

�

6

� �3x 2 � 3y�
s3

2
� ��3x � 8y� 1

2

� 1
2 [3 s3 x 2 � 3x � (8 � 3s3 )y]

Du f �1, 2� � 1
2 [3s3 �1�2 � 3�1� � (8 � 3s3 )�2�] �

13 � 3s3

2

7 Du f �x, y� � fx�x, y� a � fy�x, y� b

� � fx�x, y�, fy�x, y�� � �a, b �

� � fx�x, y�, fy�x, y�� � u

f
f � f f

8 f x y f
� f

� f �x, y� � � fx�x, y�, fy�x, y�� �
�f

�x
i �

�f

�y
j

f �x, y� � sin x � ex y

� f �x, y� � � fx , fy � � �cos x � yex y, xex y �

� f �0, 1� � �2, 0 �

9 Du f �x, y� � � f �x, y� � u

u
u

EXAMPLE 3

The directional derivative in 
Example 2 represents the rate of change of in
the direction of . This is the slope of the tan-
gent line to the curve of intersection of the 
surface and the vertical
plane through in the direction of 
shown in Figure 5.

u�1, 2, 0�
z � x 3 � 3xy � 4y2
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 961

Find the directional derivative of the function at the
point in the direction of the vector .

SOLUTION We first compute the gradient vector at :

Note that is not a unit vector, but since , the unit vector in the direction 
of is

Therefore, by Equation 9, we have

Functions of Three Variables
For functions of three variables we can define directional derivatives in a similar manner.
Again can be interpreted as the rate of change of the function in the direction
of a unit vector .

Definition The directional derivative of at in the direction of a
unit vector is

if this limit exists.

If we use vector notation, then we can write both definitions (2 and 10) of the direc-
tional derivative in the compact form

where if and if . This is reasonable because 
the vector equation of the line through in the direction of the vector is given by

(Equation 12.5.1) and so represents the value of at a point on
this line.

f �x, y� � x 2 y 3 � 4y
�2, �1� v � 2 i � 5 j

�2, �1�

� f �x, y� � 2xy 3 i � �3x 2y 2 � 4�j

� f �2, �1� � �4 i � 8 j

v � v � � s29
v

u �
v

� v � �
2

s29
i �

5

s29
j

Du f �2, �1� � � f �2, �1� � u � ��4 i � 8 j� � � 2

s29
i �

5

s29
j�

�
�4 � 2 � 8 � 5

s29
�

32

s29

Du f �x, y, z�
u

10 f �x0, y0, z0 �
u � �a, b, c �

Du f �x0, y0, z0 � � lim
h l 0

f �x0 � ha, y0 � hb, z0 � hc� � f �x0, y0, z0 �
h

11 Du f �x0 � � lim
h l 0

f �x0 � hu� � f �x0 �
h

x0 � �x0, y0 � n � 2 x0 � �x0, y0, z0 � n � 3
x0 u

x � x0 � tu f �x0 � hu� f

EXAMPLE 4vThe gradient vector in Example 4 is
shown in Figure 6 with initial point .
Also shown is the vector that gives the direc-
tion of the directional derivative. Both of these
vectors are superimposed on a contour plot of
the graph of .f

v
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962 CHAPTER 14 PARTIAL DERIVATIVES

If is differentiable and , then the same method that was used to
prove Theorem 3 can be used to show that

For a function of three variables, the gradient vector, denoted by or grad , is

or, for short,

Then, just as with functions of two variables, Formula 12 for the directional derivative can
be rewritten as

If , (a) find the gradient of and (b) find the direc-
tional derivative of at in the direction of .

SOLUTION
(a) The gradient of is 

(b) At we have . The unit vector in the direction of
is

Therefore Equation 14 gives

Maximizing the Directional Derivative
Suppose we have a function of two or three variables and we consider all possible direc-
tional derivatives of at a given point. These give the rates of change of in all possible
directions. We can then ask the questions: In which of these directions does change 
fastest and what is the maximum rate of change? The answers are provided by the follow-
ing theorem.

f �x, y, z� u � �a, b, c �

12 Du f �x, y, z� � fx�x, y, z� a � fy�x, y, z� b � fz�x, y, z� c

f � f f

� f �x, y, z� � � fx�x, y, z�, fy�x, y, z�, fz�x, y, z��

13 � f � � fx, fy, fz � �
�f

�x
i �

�f

�y
j �

�f

�z
k

14 Du f �x, y, z� � � f �x, y, z� � u

f �x, y, z� � x sin yz f
f �1, 3, 0� v � i � 2 j � k

f

� f �x, y, z� � � fx�x, y, z�, fy�x, y, z�, fz�x, y, z��

� �sin yz, xz cos yz, xy cos yz �

�1, 3, 0� � f �1, 3, 0� � �0, 0, 3 �
v � i � 2 j � k

u �
1

s6
i �

2

s6
j �

1

s6
k

Du f �1, 3, 0� � � f �1, 3, 0� � u

� 3k � � 1

s6
i �

2

s6
j �

1

s6
k�

� 3��
1

s6 � � �	3
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f
f f
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 963

Theorem Suppose is a differentiable function of two or three variables. The
maximum value of the directional derivative is and it occurs when

has the same direction as the gradient vector .

PROOF From Equation 9 or 14 we have

where is the angle between and . The maximum value of is 1 and this occurs
when . Therefore the maximum value of is and it occurs when ,
that is, when has the same direction as .

(a) If , find the rate of change of at the point in the direction from
to .

(b) In what direction does have the maximum rate of change? What is this maximum
rate of change?

SOLUTION
(a) We first compute the gradient vector:

The unit vector in the direction of is , so the rate of change
of in the direction from to is

(b) According to Theorem 15, increases fastest in the direction of the gradient vector
. The maximum rate of change is

Suppose that the temperature at a point in space is given by
, where is measured in degrees Celsius and 

, , in meters. In which direction does the temperature increase fastest at the point
? What is the maximum rate of increase?

SOLUTION The gradient of is

f15

� � f �x� �Du f �x�
� f �x�u

Du f � � f � u � � � f �� u � cos � � � � f � cos �

cos �u� f�
� � 0� � f �Du f� � 0

� fu

EXAMPLE 6
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l
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QPf
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� 1(� 3
5 ) � 2(4

5 ) � 1

f
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�x, y, z�EXAMPLE 7
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zyx
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160x
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Visual 14.6B provides visual 
confirmation of Theorem 15.
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At the function in Example 6 increases
fastest in the direction of the gradient vector

. Notice from Figure 7 that
this vector appears to be perpendicular to the
level curve through . Figure 8 shows the
graph of and the gradient vector.f
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964 CHAPTER 14 PARTIAL DERIVATIVES

At the point the gradient vector is

By Theorem 15 the temperature increases fastest in the direction of the gradient vector
or, equivalently, in the direction of or

the unit vector . The maximum rate of increase is the length of the
gradient vector:

Therefore the maximum rate of increase of temperature is .

Tangent Planes to Level Surfaces
Suppose is a surface with equation , that is, it is a level surface of a func-
tion of three variables, and let be a point on . Let be any curve that lies
on the surface and passes through the point . Recall from Section 13.1 that the curve
is described by a continuous vector function . Let be the param-
eter value corresponding to ; that is, . Since lies on , any point

must satisfy the equation of , that is,

If , , and are differentiable functions of and is also differentiable, then we can use
the Chain Rule to differentiate both sides of Equation 16 as follows:

But, since and , Equation 17 can be written in
terms of a dot product as

In particular, when we have , so

Equation 18 says that the gradient vector at , , is perpendicular to the 
tangent vector to any curve on that passes through . (See Figure 9.) If

, it is therefore natural to define the tangent plane to the level surface
at as the plane that passes through and has normal vector

. Using the standard equation of a plane (Equation 12.5.7), we can write the
equation of this tangent plane as

�1, 1, �2�

�T�1, 1, �2� � 160
256 ��i � 2 j � 6 k� � 5

8 ��i � 2 j � 6 k�

�i � 2 j � 6 k�T �1, 1, �2� � 5
8 ��i � 2 j � 6 k�

��i � 2 j � 6 k�
s41

� �T �1, 1, �2� � � 5
8 � �i � 2 j � 6 k � � 5

8 s41

5
8 s41 � 4�C
m

F�x, y, z� � kS
CSP�x0, y0, z0 �F

CPS
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Ftzyx

�F

�x

dx

dt
�
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dy

dt
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�F

�z

dz

dt
� 017
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 965

The normal line to at is the line passing through and perpendicular to the tan-
gent plane. The direction of the normal line is therefore given by the gradient vector

and so, by Equation 12.5.3, its symmetric equations are

In the special case in which the equation of a surface is of the form (that is,
is the graph of a function of two variables), we can rewrite the equation as

and regard as a level surface (with ) of . Then

so Equation 19 becomes

which is equivalent to Equation 14.4.2. Thus our new, more general, definition of a tangent
plane is consistent with the definition that was given for the special case of Section 14.4.

Find the equations of the tangent plane and normal line at the point
to the ellipsoid

SOLUTION The ellipsoid is the level surface (with ) of the function

Therefore we have

Then Equation 19 gives the equation of the tangent plane at as

which simplifies to .
By Equation 20, symmetric equations of the normal line are

PPS

�F�x0, y0, z0 �

x � x0

Fx�x0, y0, z0 �
�

y � y0

Fy�x0, y0, z0 �
�

z � z0

Fz�x0, y0, z0 �
20

S
z � f �x, y�S

f

F�x, y, z� � f �x, y� � z � 0

Fk � 0S

Fx�x0, y0, z0 � � fx�x0, y0 �

Fy�x0, y0, z0 � � fy�x0, y0 �

Fz�x0, y0, z0 � � �1 

fx�x0, y0 ��x � x0 � � fy�x0, y0 ��y � y0 � � �z � z0 � � 0

EXAMPLE 8v
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Figure 10 shows the ellipsoid, tangent plane, 
and normal line in Example 8.
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966 CHAPTER 14 PARTIAL DERIVATIVES

Significance of the Gradient Vector
We now summarize the ways in which the gradient vector is significant. We first consider
a function of three variables and a point in its domain. On the one hand, we
know from Theorem 15 that the gradient vector gives the direction of fastest
increase of . On the other hand, we know that is orthogonal to the level sur-
face of through . (Refer to Figure 9.) These two properties are quite compatible intu-
itively because as we move away from on the level surface , the value of does not
change at all. So it seems reasonable that if we move in the perpendicular direction, we get
the maximum increase.

In like manner we consider a function of two variables and a point in its
domain. Again the gradient vector gives the direction of fastest increase of .
Also, by considerations similar to our discussion of tangent planes, it can be shown that

is perpendicular to the level curve that passes through . Again this
is intuitively plausible because the values of remain constant as we move along the curve.
(See Figure 11.)

If we consider a topographical map of a hill and let represent the height above sea
level at a point with coordinates , then a curve of steepest ascent can be drawn as in
Figure 12 by making it perpendicular to all of the contour lines. This phenomenon can also
be noticed in Figure 12 in Section 14.1, where Lonesome Creek follows a curve of steep-
est descent.

Computer algebra systems have commands that plot sample gradient vectors. Each gra-
dient vector is plotted starting at the point . Figure 13 shows such a plot
(called a gradient vector field ) for the function superimposed on a con-
tour map of f. As expected, the gradient vectors point “uphill” and are perpendicular to the
level curves.
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f � f �x0, y0, z0 �
S f P

P S f

f P�x0, y0 �
� f �x0, y0 � f

� f �x0, y0 � f �x, y� � k P
f

y

0 x
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1. Level curves for barometric pressure (in millibars) are shown
for 6:00 AM on November 10, 1998. A deep low with pressure
972 mb is moving over northeast Iowa. The distance along the
red line from K (Kearney, Nebraska) to S (Sioux City, Iowa) is
300 km. Estimate the value of the directional derivative of the
pressure function at Kearney in the direction of Sioux City.
What are the units of the directional derivative?

2. The contour map shows the average maximum temperature for
November 2004 (in ). Estimate the value of the directional
derivative of this temperature function at Dubbo, New South
Wales, in the direction of Sydney. What are the units?

3. A table of values for the wind-chill index is given
in Exercise 3 on page 935. Use the table to estimate the value
of , where .

4–6 Find the directional derivative of at the given point in the
direction indicated by the angle .

4. ,  ,  

5. ,  ,  

6. ,  ,  
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W � f �T, v�

Du f ��20, 30� u � �i � j�
s2

f
�

f �x, y� � x 3y 4 � x 4y 3 �1, 1� � � �
6

f �x, y� � ye�x �0, 4� � � 2�
3

f �x, y� � e x cos y �0, 0� � � �
4

7–10
(a) Find the gradient of .
(b) Evaluate the gradient at the point .
(c) Find the rate of change of at in the direction of the 

vector .

7. ,  ,  

8. ,  ,  

9. ,  ,  

10. ,  ,  

11–17 Find the directional derivative of the function at the given
point in the direction of the vector .

11. ,  ,  

12. ,  ,  

13. ,  ,  

14. ,  ,  

15. ,  ,  

16. ,  ,  

17. ,  ,  

18. Use the figure to estimate .

19. Find the directional derivative of at in
the direction of .

20. Find the directional derivative of at
in the direction of .

21–26 Find the maximum rate of change of at the given point and
the direction in which it occurs.

21. ,  

22. ,  

23. ,  

24. ,  

25. ,  

26. ,  

f
P

f P
u

f �x, y� � sin�2x � 3y� P��6, 4� u � 1
2 (s3 i � j)

f �x, y� � y 2
x P�1, 2� u � 1
3 (2 i � s5 j)

f �x, y, z� � x 2yz � xyz 3 P�2, �1, 1� u � �0, 4
5 , �3

5 �
f �x, y, z� � y 2e xyz P�0, 1, �1� u � � 3

13 , 4
13 , 12

13 �

v

f �x, y� � e x sin y �0, �
3� v � ��6, 8 �

f �x, y� �
x

x 2 � y 2 �1, 2� v � �3, 5 �

t�p, q� � p4 � p2q3 �2, 1� v � i � 3 j

t�r, s� � tan�1�rs� �1, 2� v � 5 i � 10 j

f �x, y, z� � xe y � ye z � ze x �0, 0, 0� v � �5, 1, �2 �

f �x, y, z� � sxyz �3, 2, 6� v � ��1, �2, 2 �

h�r, s, t� � ln�3r � 6s � 9t� �1, 1, 1� v � 4 i � 12 j � 6k

Du f �2, 2�
y

x0

(2, 2)

±f(2, 2)

u

f �x, y� � sxy P�2, 8�
Q�5, 4�

f �x, y, z� � xy � yz � zx
P�1, �1, 3� Q�2, 4, 5�

f

f �x, y� � 4ysx �4, 1�

f �s, t� � te st �0, 2�

f �x, y� � sin�xy� �1, 0�

f �x, y, z� � �x � y�
z �1, 1, �1�

f �x, y, z� � sx 2 � y 2 � z 2 �3, 6, �2�

f �p, q, r� � arctan�pqr� �1, 2, 1�

14.6 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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968 CHAPTER 14 PARTIAL DERIVATIVES

27. (a) Show that a differentiable function decreases most
rapidly at in the direction opposite to the gradient vector,
that is, in the direction of .

(b) Use the result of part (a) to find the direction in which the
function decreases fastest at the 
point .

28. Find the directions in which the directional derivative of
at the point has the value 1.

29. Find all points at which the direction of fastest change of the
function is .

30. Near a buoy, the depth of a lake at the point with coordi nates
is , where , , and are

measured in meters. A fisherman in a small boat starts at the
point and moves toward the buoy, which is located at

. Is the water under the boat getting deeper or shallower
when he departs? Explain.

31. The temperature in a metal ball is inversely proportional to
the distance from the center of the ball, which we take to be the
origin. The temperature at the point is .
(a) Find the rate of change of at in the direction

toward the point .
(b) Show that at any point in the ball the direction of greatest

increase in temperature is given by a vector that points
toward the origin.

32. The temperature at a point is given by 

where is measured in and , , in meters.
(a) Find the rate of change of temperature at the point

in the direction toward the point .
(b) In which direction does the temperature increase fastest 

at ?
(c) Find the maximum rate of increase at .

33. Suppose that over a certain region of space the electrical poten-
tial is given by .
(a) Find the rate of change of the potential at in the

direction of the vector .
(b) In which direction does change most rapidly at ?
(c) What is the maximum rate of change at ?

34. Suppose you are climbing a hill whose shape is given by the
equation , where , , and are
measured in meters, and you are standing at a point with coor-
dinates . The positive -axis points east and the
positive -axis points north.
(a) If you walk due south, will you start to ascend or descend?

At what rate?
(b) If you walk northwest, will you start to ascend or descend?

At what rate?
(c) In which direction is the slope largest? What is the rate of

ascent in that direction? At what angle above the horizontal
does the path in that direction begin?

f
x

�� f �x�

f �x, y� � x 4y � x 2 y 3

�2, �3�

f �x, y� � ye�xy �0, 2�

f �x, y� � x 2 � y 2 � 2x � 4y i � j

�x, y� z � 200 � 0.02x 2 � 0.001y 3 x y z

�80, 60�
�0, 0�

T

�1, 2, 2� 120�
T �1, 2, 2�

�2, 1, 3�

�x, y, z�

T�x, y, z� � 200e�x 2�3y 2�9z 2

T �C x y z

P�2, �1, 2� �3, �3, 3�

P
P

V V�x, y, z� � 5x 2 � 3xy � xyz
P�3, 4, 5�

v � i � j � k
V P

P

z � 1000 � 0.005x 2 � 0.01y 2 x y z

�60, 40, 966� x
y

35. Let be a function of two variables that has continuous 
partial derivatives and consider the points , ,

, and . The directional derivative of at in
the direction of the vector is 3 and the directional deriva-
tive at in the direction of is 26. Find the directional
derivative of at in the direction of the vector .

36. Shown is a topographic map of Blue River Pine Provincial
Park in British Columbia. Draw curves of steepest descent
from point (descending to Mud Lake) and from point .

37. Show that the operation of taking the gradient of a function has
the given property. Assume that and are differen tiable func-
tions of and and that , are constants.

(a) (b) 

(c) (d) 

38. Sketch the gradient vector for the function whose
level curves are shown. Explain how you chose the direction
and length of this vector.

39. The second directional derivative of is

If and , calculate
.

f
A�1, 3� B�3, 3�

C�1, 7� D�6, 15� f A
AB
l

A AC
l

f A AD
l

A B

2000 m
2200 m

2200 m

2200 m

Blue RiverBlue River

Smoke CreekSmoke Creek

North Thompson RiverNorth Thompson River

Mud LakeMud Lake

Mud CreekMud Creek

Blue River

Blue River Pine Provincial Park

A

B
1000 m

Reproduced with the permission of Natural Resources Canada 2009,  
courtesy of the Centre of Topographic Information.

u v
x y a b

��au � bv� � a �u � b �v ��uv� � u �v � v �u

��u

v� �
v �u � u �v

v 2 �un � nu n�1 �u

� f �4, 6� f

20

2

4

6

4 6 x

y

_1

0
1 3 5

_3

_5

(4, 6)

f �x, y�

Du
2 f �x, y� � Du�Du f �x, y�


u � � 3
5 , 45 �f �x, y� � x 3 � 5x 2y � y 3

Du
2 f �2, 1�
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 969

40. (a) If is a unit vector and has continuous
second partial derivatives, show that

(b) Find the second directional derivative of in
the direction of .

41–46 Find equations of (a) the tangent plane and (b) the normal
line to the given surface at the specified point.

41. ,  

42. ,  

43. ,  

44. ,  

45. ,  

46.  ,  

; 47–48 Use a computer to graph the surface, the tangent plane, and
the normal line on the same screen. Choose the domain carefully
so that you avoid extraneous vertical planes. Choose the
viewpoint so that you get a good view of all three objects.

47. ,  48. ,  

49. If , find the gradient vector and use it 
to find the tangent line to the level curve at the
point . Sketch the level curve, the tangent line, and the
gradient vector.

50. If , find the gradient vector
and use it to find the tangent line to the level curve

at the point . Sketch the level curve, the tan-
gent line, and the gradient vector.

51. Show that the equation of the tangent plane to the ellipsoid
at the point can be 

written as

52. Find the equation of the tangent plane to the hyperboloid
at and express it in a

form similar to the one in Exercise 51.

53. Show that the equation of the tangent plane to the elliptic
paraboloid at the point can
be written as

54. At what point on the paraboloid is the tangent
plane parallel to the plane ?

55. Are there any points on the hyperboloid
where the tangent plane is parallel to the plane ?

fu � �a, b �

Du
2 f � fxx a 2 � 2 fxy ab � fyy b2

f �x, y� � xe 2y

v � �4, 6 �

�3, 3, 5�2�x � 2�2 � �y � 1�2 � �z � 3�2 � 10

�4, 7, 3�y � x 2 � z 2

�3, 2, 1�xyz 2 � 6

�1, 2, 1�xy � yz � zx � 5

�0, 0, 1�x � y � z � e xyz

�1, 1, 1�x 4 � y 4 � z 4 � 3x 2y 2z 2

�1, 2, 3�xyz � 6�1, 1, 1�xy � yz � zx � 3

� f �3, 2�f �x, y� � xy
f �x, y� � 6

�3, 2�

�t�1, 2�t�x, y� � x 2 � y 2 � 4x

�1, 2�t�x, y� � 1

�x0, y0, z0 �x 2
a 2 � y 2
b 2 � z2
c 2 � 1

xx0

a 2 �
yy0

b 2 �
zz0

c 2 � 1

�x0, y0, z0 �x 2
a 2 � y 2
b 2 � z2
c 2 � 1

�x0, y0, z0 �z
c � x 2
a 2 � y 2
b 2

2xx0

a 2 �
2yy0

b 2 �
z � z0

c

y � x 2 � z2

x � 2y � 3z � 1

x 2 � y 2 � z2 � 1
z � x � y

56. Show that the ellipsoid and the sphere
are tangent to each

other at the point . (This means that they have a com-
mon tangent plane at the point.)

57. Show that every plane that is tangent to the cone
passes through the origin.

58. Show that every normal line to the sphere
passes through the center of the sphere.

59. Where does the normal line to the paraboloid at
the point intersect the paraboloid a second time?

60. At what points does the normal line through the point
on the ellipsoid intersect the

sphere ?

61. Show that the sum of the -, -, and -intercepts of any 
tangent plane to the surface is a 
constant.

62. Show that the pyramids cut off from the first octant by any
tangent planes to the surface at points in the first
octant must all have the same volume.

63. Find parametric equations for the tangent line to the curve of
intersection of the paraboloid and the ellipsoid

at the point .

64. (a) The plane intersects the cylinder 
in an ellipse. Find parametric equations for the tangent
line to this ellipse at the point .

; (b) Graph the cylinder, the plane, and the tangent line on the
same screen.

65. (a) Two surfaces are called orthogonal at a point of inter-
section if their normal lines are perpendicular at that
point. Show that surfaces with equations 
and are orthogonal at a point where

and if and only if

at 

(b) Use part (a) to show that the surfaces and
are orthogonal at every point of 

intersection. Can you see why this is true without using 
calculus?

66. (a) Show that the function is continuous and
the partial derivatives and exist at the origin but the
directional derivatives in all other directions do not exist.

; (b) Graph near the origin and comment on how the graph
confirms part (a).

67. Suppose that the directional derivatives of are known 
at a given point in two nonparallel directions given by unit 
vectors and . Is it possible to find at this point? If so,
how would you do it?

68. Show that if is differentiable at then

[Hint: Use Definition 14.4.7 directly.]

x 2 � y 2 � z2 � 8x � 6y � 8z � 24 � 0
�1, 1, 2�

x 2 � y 2 � z2

x 2 � y 2 � z2 � r 2

z � x 2 � y 2

�1, 1, 2�

�1, 2, 1� 4x 2 � y 2 � 4z 2 � 12
x 2 � y 2 � z 2 � 102

x y z
sx � sy � sz � sc

xyz � 1

z � x 2 � y 2

4x 2 � y 2 � z2 � 9 ��1, 1, 2�

y � z � 3 x 2 � y 2 � 5

�1, 2, 1�

F�x, y, z� � 0
G�x, y, z� � 0 P

�F � 0 �G � 0

Fx Gx � FyGy � FzGz � 0 P

z2 � x 2 � y 2

x 2 � y 2 � z2 � r 2

f �x, y� � s
3 xy

fx fy

f

f �x, y�

u v � f

z � f �x, y� x0 � �x0, y0 �,

lim
x l x 0

f �x� � f �x0 � � � f �x0 � � �x � x0 �

� x � x0 � � 0

3x 2 � 2y 2 � z2 � 9
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970 CHAPTER 14 PARTIAL DERIVATIVES

As we saw in Chapter 3, one of the main uses of ordinary derivatives is in finding maxi-
mum and minimum values (extreme values). In this section we see how to use partial 
derivatives to locate maxima and minima of functions of two variables. In particular, in
Example 6 we will see how to maximize the volume of a box without a lid if we have a fixed
amount of cardboard to work with.

Look at the hills and valleys in the graph of shown in Figure 1. There are two points
where has a local maximum, that is, where is larger than nearby values of
. The larger of these two values is the absolute maximum. Likewise, has two local

minima, where is smaller than nearby values. The smaller of these two values is the
absolute minimum.

Definition A function of two variables has a local maximum at if
when is near . [This means that for

all points in some disk with center .] The number is called a
local maximum value. If when is near , then has a
local minimum at and is a local minimum value.

If the inequalities in Definition 1 hold for all points in the domain of , then has
an absolute maximum (or absolute minimum) at .

Theorem If has a local maximum or minimum at and the first-order
partial derivatives of exist there, then and .

PROOF Let . If has a local maximum (or minimum) at , then has a
local maximum (or minimum) at , so by Fermat’s Theorem (see Theorem 3.1.4).
But (see Equation 14.3.1) and so . Similarly, by applying Fer-
mat’s Theorem to the function , we obtain .

If we put and in the equation of a tangent plane (Equation
14.4.2), we get . Thus the geometric interpretation of Theorem 2 is that if the graph
of has a tangent plane at a local maximum or minimum, then the tangent plane must be
horizontal.

A point is called a critical point (or stationary point) of if and
, or if one of these partial derivatives does not exist. Theorem 2 says that if

has a local maximum or minimum at , then is a critical point of . However, as
in single-variable calculus, not all critical points give rise to maxima or minima. At a criti-
cal point, a function could have a local maximum or a local minimum or neither.

Let . Then

These partial derivatives are equal to 0 when and , so the only critical point
is . By completing the square, we find that

Since and , we have for all values of and .
Therefore is a local minimum, and in fact it is the absolute minimum of . 

f
�a, b� f f �a, b�
f �x, y� f

f �a, b�

1 �a, b�
f �x, y� � f �a, b� �x, y� �a, b� f �x, y� � f �a, b�

�x, y� �a, b� f �a, b�
f �x, y� � f �a, b� �x, y� �a, b� f

�a, b� f �a, b�

�x, y� f f
�a, b�

2 f �a, b�
f fx�a, b� � 0 fy�a, b� � 0

t�x� � f �x, b� f �a, b� t

a t��a� � 0
t��a� � fx�a, b� fx�a, b� � 0

G�y� � f �a, y� fy�a, b� � 0

fx�a, b� � 0 fy�a, b� � 0
z � z0

f

�a, b� f fx�a, b� � 0
fy�a, b� � 0 f

�a, b� �a, b� f

f �x, y� � x 2 � y 2 � 2x � 6y � 14

fx�x, y� � 2x � 2 fy�x, y� � 2y � 6

x � 1 y � 3
�1, 3�

f �x, y� � 4 � �x � 1�2 � �y � 3�2

EXAMPLE 1

yxf �x, y� � 4�y � 3�2 � 0�x � 1�2 � 0
ff �1, 3� � 4

14.7 Maximum and Minimum Values
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Notice that the conclusion of Theorem 2 can 
be stated in the notation of gradient vectors 
as .�f �a, b� � 0

y 
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES 971

This can be confirmed geometrically from the graph of which is the elliptic paraboloid
with vertex shown in Figure 2.

Find the extreme values of .

SOLUTION Since and , the only critical point is . Notice that 
for points on the -axis we have , so (if ). However, for
points on the -axis we have , so (if ). Thus every disk 
with center contains points where takes positive values as well as points where 

takes negative values. Therefore can’t be an extreme value for , so has
no extreme value.

Example 2 illustrates the fact that a function need not have a maximum or minimum
value at a critical point. Figure 3 shows how this is possible. The graph of is the hyper-
bolic paraboloid , which has a horizontal tangent plane ( ) at the origin.
You can see that is a maximum in the direction of the -axis but a minimum in
the direction of the -axis. Near the origin the graph has the shape of a saddle and so
is called a saddle point of .

A mountain pass also has the shape of a saddle. As the photograph of the geological for-
mation illustrates, for people hiking in one direction the saddle point is the lowest point on
their route, while for those traveling in a different direction the saddle point is the highest
point.

We need to be able to determine whether or not a function has an extreme value at a crit-
ical point. The following test, which is proved at the end of this section, is analogous to the
Second Derivative Test for functions of one variable.

Second Derivatives Test Suppose the second partial derivatives of are con tin -
uous on a disk with center , and suppose that and
[that is, is a critical point of ]. Let

(a) If and , then is a local minimum.

(b) If and , then is a local maximum.

(c) If , then is not a local maximum or minimum.

NOTE 1 In case (c) the point is called a saddle point of and the graph of 
crosses its tangent plane at .

NOTE 2 If , the test gives no information: could have a local maximum or local
minimum at , or could be a saddle point of .

NOTE 3 To remember the formula for , it’s helpful to write it as a determinant:

Find the local maximum and minimum values and saddle points of
.

SOLUTION We first locate the critical points:

Setting these partial derivatives equal to 0, we obtain the equations

f,
�1, 3, 4�

f �x, y� � y 2 � x 2EXAMPLE 2

�0, 0�fy � 2yfx � �2x
x � 0f �x, y� � �x 2 � 0y � 0x

y � 0f �x, y� � y 2 	 0x � 0y
f�0, 0�

fff �0, 0� � 0f

f
z � 0z � y 2 � x 2

xf �0, 0� � 0
�0, 0�y

f

f3
fy�a, b� � 0fx�a, b� � 0�a, b�

f�a, b�

D � D�a, b� � fxx�a, b� fyy�a, b� � � fx y �a, b��2

f �a, b�fxx�a, b� 	 0D 	 0

f �a, b�fxx�a, b� � 0D 	 0

f �a, b�D � 0

ff�a, b�
�a, b�

fD � 0
f�a, b��a, b�

D

D � � fxx

fyx

fx y

fyy
� � fxx fyy � � fx y �2

EXAMPLE 3v
f �x, y� � x 4 � y 4 � 4xy � 1

fy � 4y 3 � 4xfx � 4x 3 � 4y

y 3 � x � 0andx 3 � y � 0
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972 CHAPTER 14 PARTIAL DERIVATIVES

To solve these equations we substitute from the first equation into the second
one. This gives

so there are three real roots: , , . The three critical points are , , 
and .

Next we calculate the second partial derivatives and :

Since , it follows from case (c) of the Second Derivatives Test that
the origin is a saddle point; that is, has no local maximum or minimum at . 
Since and , we see from case (a) of the test that

is a local minimum. Similarly, we have and
, so is also a local minimum.

The graph of is shown in Figure 4.

Find and classify the critical points of the function

Also find the highest point on the graph of .

SOLUTION The first-order partial derivatives are

So to find the critical points we need to solve the equations

From Equation 4 we see that either

y � x 3

0 � x 9 � x � x�x 8 � 1� � x�x 4 � 1��x 4 � 1� � x�x 2 � 1��x 2 � 1��x 4 � 1�

�1, 1��0, 0��11x � 0
��1, �1�

D�x, y�

fyy � 12y 2fx y � �4fxx � 12x 2

D�x, y� � fxx fyy � � fx y�2 � 144x 2y 2 � 16

D�0, 0� � �16 � 0
�0, 0�f

fxx�1, 1� � 12 	 0D�1, 1� � 128 	 0
D��1, �1� � 128 	 0f �1, 1� � �1

f ��1, �1� � �1fxx��1, �1� � 12 	 0
f

FIGURE 5

y

x
1
0.9

0.5
0
_0.5

1.1
1.5

2

3

EXAMPLE 4

f �x, y� � 10x 2 y � 5x 2 � 4y 2 � x 4 � 2y 4

f

fy � 10x 2 � 8y � 8y 3fx � 20xy � 10x � 4x 3

2x�10y � 5 � 2x 2 � � 04

5x 2 � 4y � 4y 3 � 05

10y � 5 � 2x 2 � 0orx � 0

x

y

z

FIGURE 4
z=x$+y$-4xy+1

A contour map of the function in Example 3 is
shown in Figure 5. The level curves near 
and are oval in shape and indicate
that as we move away from or 
in any direction the values of are increasing.
The level curves near , on the other hand,
resemble hyper bolas. They reveal that as we
move away from the origin (where the value of 
is ), the values of decrease in some directions
but increase in other directions. Thus the contour
map suggests the presence of the minima and
saddle point that we found in Example 3.

f1
f

�0, 0�
f

��1, �1��1, 1�
��1, �1�

�1, 1�
f

In Module 14.7 you can use contour maps
to estimate the locations of critical points.
TEC
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES 973

In the first case ( ), Equation 5 becomes , so and we
have the critical point .

In the second case , we get

and, putting this in Equation 5, we have . So we have to
solve the cubic equation

Using a graphing calculator or computer to graph the function

as in Figure 6, we see that Equation 7 has three real roots. By zooming in, we can find
the roots to four decimal places:

(Alternatively, we could have used Newton’s method or a rootfinder to locate these
roots.) From Equation 6, the corresponding -values are given by

If , then x has no corresponding real values. If , then
. If , then . So we have a total of five critical

points, which are analyzed in the following chart. All quantities are rounded to two 
decimal places.

Figures 7 and 8 give two views of the graph of and we see that the surface opens
downward. [This can also be seen from the expression for : The dominant terms
are when and are large.] Comparing the values of at its local maxi-
mum points, we see that the absolute maximum value of is . In
other words, the highest points on the graph of are .

y � 0�4y�1 � y 2 � � 0x � 0
�0, 0�
�10y � 5 � 2x 2 � 0�

x 2 � 5y � 2.56

25y � 12.5 � 4y � 4y 3 � 0

4y 3 � 21y � 12.5 � 07

t�y� � 4y 3 � 21y � 12.5

y � 1.8984y � 0.6468y � �2.5452

x

x � 
s5y � 2.5

y � 0.6468y � �2.5452
x � 
2.6442y � 1.8984x � 
0.8567

f
f �x, y�

f� y �� x ��x 4 � 2y 4

f �
2.64, 1.90� � 8.50f
�
2.64, 1.90, 8.50�f

FIGURE 7 FIGURE 8

y
x

z

y

z

x

FIGURE 6

_3 2.7

Critical point Value of D Conclusion

0.00 �10.00 80.00 local maximum

8.50 �55.93 2488.72 local maximum

�1.48 �5.87 �187.64 saddle point

f

�
0.86, 0.65�

�
2.64, 1.90�

�0, 0�

fxx

Visual 14.7 shows several families 
of surfaces. The surface in Figures 7 and 8 
is a member of one of these families.

TEC
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974 CHAPTER 14 PARTIAL DERIVATIVES

Find the shortest distance from the point to the plane
.

SOLUTION The distance from any point to the point is

but if lies on the plane , then and so we have
. We can minimize by minimizing the simpler

expression

By solving the equations

we find that the only critical point is . Since , , and , we
have and , so by the Second Derivatives Test

has a local minimum at . Intuitively, we can see that this local minimum is actu-
ally an absolute minimum because there must be a point on the given plane that is clos-
est to . If and , then

The shortest distance from to the plane is .

A rectangular box without a lid is to be made from 12 m of cardboard.
Find the maximum volume of such a box.

SOLUTION Let the length, width, and height of the box (in meters) be , , and , as shown
in Figure 10. Then the volume of the box is

We can express as a function of just two variables and by using the fact that the
area of the four sides and the bottom of the box is

�1, 0, �2�
x � 2y � z � 4

�x, y, z� �1, 0, �2�

d � s�x � 1�2 � y 2 � �z � 2�2 

�x, y, z� x � 2y � z � 4 z � 4 � x � 2y
d � s�x � 1�2 � y 2 � �6 � x � 2y�2 d

d 2 � f �x, y� � �x � 1�2 � y 2 � �6 � x � 2y�2

fx � 2�x � 1� � 2�6 � x � 2y� � 4x � 4y � 14 � 0

fy � 2y � 4�6 � x � 2y� � 4x � 10y � 24 � 0

(11
6 , 53 ) fxx � 4 fx y � 4 fyy � 10

D�x, y� � fxx fy y � � fx y�2 � 24 	 0 fxx 	 0
f ( 11

6 , 53 )

�1, 0, �2� x � 11
6 y � 5

3

d � s�x � 1�2 � y 2 � �6 � x � 2y�2 � s(5
6)2 � (5

3)2 � (5
6)2 � 5

6 s6

�1, 0, �2� x � 2y � z � 4 5
6 s6

2

x y z

V � xyz

V x y

2xz � 2yz � xy � 12

FIGURE 9

3 x

1

_1

2

y

_3

_10 _20_30

3
7

_1.48
_0.8

_3

v EXAMPLE 5

v EXAMPLE 6

The five critical points of the function in 
Example 4 are shown in red in the contour 
map of in Figure 9.f

f

Example 5 could also be solved using 
vectors. Compare with the methods of 
Section 12.5.

FIGURE 10

y

x

z
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES 975

Solving this equation for , we get , so the expression for
becomes

We compute the partial derivatives:

If is a maximum, then , but or gives , so we
must solve the equations

These imply that and so . (Note that and must both be positive in this
problem.) If we put in either equation we get , which gives ,

, and .
We could use the Second Derivatives Test to show that this gives a local maximum 

of , or we could simply argue from the physical nature of this problem that there must
be an absolute maximum volume, which has to occur at a critical point of , so it must
occur when , , . Then , so the maximum volume of
the box is 4 m .

Absolute Maximum and Minimum Values
For a function of one variable, the Extreme Value Theorem says that if is continuous on
a closed interval , then has an absolute minimum value and an absolute maximum
value. According to the Closed Interval Method in Section 3.1, we found these by evalu-
ating not only at the critical numbers but also at the endpoints and .

There is a similar situation for functions of two variables. Just as a closed interval con-
tains its endpoints, a closed set in is one that contains all its boundary points. [A bound-
ary point of D is a point such that every disk with center contains points in D
and also points not in D.] For instance, the disk

which consists of all points on and inside the circle , is a closed set because it
contains all of its boundary points (which are the points on the circle ). But if
even one point on the boundary curve were omitted, the set would not be closed. (See 
Figure 11.)

A bounded set in is one that is contained within some disk. In other words, it is finite
in extent. Then, in terms of closed and bounded sets, we can state the following counterpart
of the Extreme Value Theorem in two dimensions.

Extreme Value Theorem for Functions of Two Variables If is continuous on a 
closed, bounded set in , then attains an absolute maximum value
and an absolute minimum value at some points and in .

z z � �12 � xy�	�2�x � y�� V

V � xy
12 � xy

2�x � y�
�

12xy � x 2y 2

2�x � y�

�V

�x
�

y 2�12 � 2xy � x 2 �
2�x � y�2

�V

�y
�

x 2�12 � 2xy � y 2 �
2�x � y�2

V �V	�x � �V	�y � 0 x � 0 y � 0 V � 0

12 � 2xy � x 2 � 0 12 � 2xy � y 2 � 0

x 2 � y 2 x � y x y
x � y 12 � 3x 2 � 0 x � 2

y � 2 z � �12 � 2 � 2�	�2�2 � 2�� � 1

V
V

x � 2 y � 2 z � 1 V � 2 � 2 � 1 � 4
3

f f
�a, b� f

f a b

� 2

�a, b� �a, b�

D � 
�x, y� � x 2 � y 2 � 1�

x 2 � y 2 � 1
x 2 � y 2 � 1

� 2

8 f
D � 2 f f �x1, y1�

f �x2, y2 � �x1, y1� �x2, y2� D

(a) Closed sets

(b) Sets that are not closed

FIGURE 11
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976 CHAPTER 14 PARTIAL DERIVATIVES

To find the extreme values guaranteed by Theorem 8, we note that, by Theorem 2, if
has an extreme value at , then is either a critical point of or a boundary
point of . Thus we have the following extension of the Closed Interval Method.

To find the absolute maximum and minimum values of a continuous function 
on a closed, bounded set :

1. Find the values of at the critical points of in .

2. Find the extreme values of on the boundary of .

3. The largest of the values from steps 1 and 2 is the absolute maximum value; 
the smallest of these values is the absolute minimum value.

Find the absolute maximum and minimum values of the function
on the rectangle .

SOLUTION Since is a polynomial, it is continuous on the closed, bounded rectangle , 
so Theorem 8 tells us there is both an absolute maximum and an absolute minimum.
According to step 1 in , we first find the critical points. These occur when

so the only critical point is , and the value of there is .
In step 2 we look at the values of on the boundary of , which consists of the four

line segments , , , shown in Figure 12. On we have and

This is an increasing function of , so its minimum value is and its maxi-
mum value is . On we have and

This is a decreasing function of , so its maximum value is and its minimum
value is . On we have and

By the methods of Chapter 3, or simply by observing that , we see
that the minimum value of this function is and the maximum value is

. Finally, on we have and

with maximum value and minimum value . Thus, on the bound-
ary, the minimum value of is 0 and the maximum is 9.

In step 3 we compare these values with the value at the critical point and
conclude that the absolute maximum value of on is and the absolute
minimum value is . Figure 13 shows the graph of .

f
�x1, y1� �x1, y1� f

D

9
f D

f f D

f D

f �x, y� � x 2 � 2xy � 2y D � 
�x, y� � 0 � x � 3, 0 � y � 2�

f D

fx � 2x � 2y � 0 fy � �2x � 2 � 0

�1, 1� f f �1, 1� � 1
f D

L1 L 2 L3 L 4 L1 y � 0

f �x, 0� � x 2 0 � x � 3

x f �0, 0� � 0
f �3, 0� � 9 L 2 x � 3

f �3, y� � 9 � 4y 0 � y � 2

y f �3, 0� � 9
f �3, 2� � 1 L3 y � 2

f �x, 2� � x 2 � 4x � 4 0 � x � 3

f �x, 2� � �x � 2�2

f �2, 2� � 0
f �0, 2� � 4 L4 x � 0

f �0, y� � 2y 0 � y � 2

f �0, 2� � 4 f �0, 0� � 0
f

f �1, 1� � 1
f D f �3, 0� � 9

f �0, 0� � f �2, 2� � 0 f

EXAMPLE 7

9

y

x(0, 0)

(0, 2)
(2, 2)

(3, 2)

(3, 0)L¡

L¢ L™

L£

FIGURE 12

9

0

0
2

3

L¡

L™

D

FIGURE 13
f(x, y)=≈-2xy+2y
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We close this section by giving a proof of the first part of the Second Derivatives Test.
Part (b) has a similar proof.

PROOF OF THEOREM 3, PART (a) We compute the second-order directional derivative of
in the direction of . The first-order derivative is given by Theorem 14.6.3:

Applying this theorem a second time, we have

(by Clairaut’s Theorem)

If we complete the square in this expression, we obtain

We are given that and . But and are con-
tinuous functions, so there is a disk with center and radius such that

and whenever is in . Therefore, by looking at Equation
10, we see that whenever is in . This means that if is the curve
obtained by intersecting the graph of with the vertical plane through in
the direction of , then is concave upward on an interval of length . This is true in
the direction of every vector , so if we restrict to lie in , the graph of lies above
its horizontal tangent plane at . Thus whenever is in . This
shows that is a local minimum.

u � �h, k 


Du f � fxh � fyk

D 2
u f � Du�Du f � �

�

�x
�Du f �h �

�

�y
�Du f �k

� � fxx h � fyx k�h � � fxy h � fyy k�k

� fxx h2 � 2 fxy hk � fyy k 2

D 2
u f � fxx�h �

fx y

fxx
k�2

�
k 2

fxx
� fxx fyy � f 2

xy �

fxx�a, b� 	 0 D�a, b� 	 0 fxx D � fxx fyy � fx y
2

B �a, b� � 	 0
fxx�x, y� 	 0 D�x, y� 	 0 �x, y� B

Du
2 f �x, y� 	 0 �x, y� B C

f P�a, b, f �a, b��
u C 2�

u �x, y� B f
P f �x, y� � f �a, b� �x, y� B

f �a, b�

f

10

1. Suppose is a critical point of a function with contin-
uous second derivatives. In each case, what can you say 
about ?

(a)

(b)

2. Suppose (0, 2) is a critical point of a function t with contin-
uous second derivatives. In each case, what can you say 
about t?

(a)

(b)

(c)

3–4 Use the level curves in the figure to predict the location of 
the critical points of and whether has a saddle point or a 
local maximum or minimum at each critical point. Explain your 

�1, 1� f

f

fxx�1, 1� � 4, fx y�1, 1� � 1, fyy�1, 1� � 2

fxx�1, 1� � 4, fx y�1, 1� � 3, fyy�1, 1� � 2

txx�0, 2� � �1, tx y�0, 2� � 6, tyy�0, 2� � 1

txx�0, 2� � �1, tx y�0, 2� � 2, tyy�0, 2� � �8

txx�0, 2� � 4, tx y�0, 2� � 6, tyy�0, 2� � 9

f f

reasoning. Then use the Second Derivatives Test to confirm your
predictions.

3. f �x, y� � 4 � x 3 � y 3 � 3xy

x

y

4
4.2

5
6

1

1

3.7

3.7

3.2

3.2
2

1
0

_1

_1

14.7 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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4.

5–18 Find the local maximum and minimum values and saddle
point(s) of the function. If you have three-dimensional graphing
software, graph the function with a domain and viewpoint that
reveal all the important aspects of the function.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17. ,  

18. ,  ,  

19. Show that has an infinite
number of critical points and that at each one. Then
show that has a local (and absolute) minimum at each criti-
cal point.

20. Show that has maximum values at
and minimum values at . Show 

also that has infinitely many other critical points and 
at each of them. Which of them give rise to maximum
values? Minimum values? Saddle points?

; 21–24 Use a graph or level curves or both to estimate the local 
maximum and minimum values and saddle point(s) of the func-
tion. Then use calculus to find these values precisely.

21.

f �x, y� � 3x � x 3 � 2y 2 � y 4

y

x

_2.5

_2.9
_2.7

_
1

_
1.

5

1.9
1.7
1.5

1.5

10.
5

0

_
2

1

1

_1

_1

f �x, y� � x 2 � xy � y 2 � y

f �x, y� � xy � 2x � 2y � x 2 � y 2

f �x, y� � �x � y��1 � xy�

f �x, y� � xe�2x2�2y2

f �x, y� � y 3 � 3x 2y � 6x 2 � 6y 2 � 2

f �x, y� � xy�1 � x � y�

f �x, y� � x 3 � 12xy � 8y 3

f �x, y� � xy �
1

x
�

1

y

f �x, y� � e x cos y

f �x, y� � y cos x

f �x, y� � �x 2 � y 2�e y2�x2

f �x, y� � e y�y 2 � x 2�

�1 � x � 7f �x, y� � y 2 � 2y cos x

�
 � y � 
�
 � x � 
f �x, y� � sin x sin y

f �x, y� � x 2 � 4y 2 � 4xy � 2
D � 0

f

f �x, y� � x 2ye�x2�y2

(
1, �1	s2 )(
1, 1	s2 )
D � 0f

f �x, y� � x 2 � y 2 � x�2y�2

22.

23. ,
, 

24. ,
, 

; 25–28 Use a graphing device as in Example 4 (or Newton’s
method or a rootfinder) to find the critical points of correct to
three decimal places. Then classify the critical points and find the
highest or lowest points on the graph, if any.

25.

26.

27.

28. ,  ,  

29–36 Find the absolute maximum and minimum values of on
the set .

29. , is the closed triangular region
with vertices , , and 

30. , is the closed triangular region
with vertices , , and 

31. ,

32. ,

33. ,

34. ,  

35. ,  

36. ,  is the quadrilateral
whose vertices are , , , and .

; 37. For functions of one variable it is impossible for a con tinuous
function to have two local maxima and no local minimum.
But for functions of two variables such functions exist. Show
that the function

has only two critical points, but has local maxima at both of
them. Then use a computer to produce a graph with a care-
fully chosen domain and viewpoint to see how this is
possible.

; 38. If a function of one variable is continuous on an interval and
has only one critical number, then a local maximum has to be 

f �x, y� � xye�x2�y2

f �x, y� � sin x � sin y � sin�x � y�
0 � x � 2
 0 � y � 2


f �x, y� � sin x � sin y � cos�x � y�
0 � x � 
	4 0 � y � 
	4

f

f �x, y� � x 4 � y 4 � 4x 2y � 2y

f �x, y� � y 6 � 2y 4 � x 2 � y 2 � y

f �x, y� � x 4 � y 3 � 3x 2 � y 2 � x � 2y � 1

f �x, y� � 20e�x2�y2

sin 3x cos 3y � x � � 1 � y � � 1

f
D

f �x, y� � x 2 � y 2 � 2x D
�2, 0� �0, 2� �0, �2�

f �x, y� � x � y � xy D
�0, 0� �0, 2� �4, 0�

f �x, y� � x 2 � y 2 � x 2 y � 4
D � 
�x, y� � � x � � 1, � y � � 1�

f �x, y� � 4x � 6y � x 2 � y 2

D � 
�x, y� � 0 � x � 4, 0 � y � 5�

f �x, y� � x 4 � y 4 � 4xy � 2
D � 
�x, y� � 0 � x � 3, 0 � y � 2�

f �x, y� � xy 2 D � 
�x, y� � x � 0, y � 0, x 2 � y 2 � 3�

f �x, y� � 2x 3 � y 4 D � 
�x, y� � x 2 � y 2 � 1�

f �x, y� � x 3 � 3x � y 3 � 12y D
��2, 3� �2, 3� �2, 2� ��2, �2�

f �x, y� � ��x 2 � 1�2 � �x 2 y � x � 1�2
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES 979

an absolute maximum. But this is not true for functions of two
variables. Show that the function

has exactly one critical point, and that has a local maxi mum
there that is not an absolute maximum. Then use a computer to
produce a graph with a carefully chosen domain and viewpoint
to see how this is possible.

39. Find the shortest distance from the point to the plane
.

40. Find the point on the plane that is closest to
the point .

41. Find the points on the cone that are closest to the
point .

42. Find the points on the surface that are closest to
the origin.

43. Find three positive numbers whose sum is 100 and whose 
product is a maximum.

44. Find three positive numbers whose sum is 12 and the sum of
whose squares is as small as possible.

45. Find the maximum volume of a rectangular box that is
inscribed in a sphere of radius .

46. Find the dimensions of the box with volume that has
minimal surface area.

47. Find the volume of the largest rectangular box in the first
octant with three faces in the coordinate planes and one 
vertex in the plane .

48. Find the dimensions of the rectangular box with largest 
volume if the total surface area is given as 64 cm .

49. Find the dimensions of a rectangular box of maximum volume
such that the sum of the lengths of its 12 edges is a constant .

50. The base of an aquarium with given volume is made of slate
and the sides are made of glass. If slate costs five times as
much (per unit area) as glass, find the dimensions of the aquar-
ium that minimize the cost of the materials.

51. A cardboard box without a lid is to have a volume of
32,000 cm Find the dimensions that minimize the amount 
of cardboard used.

52. A rectangular building is being designed to minimize 
heat loss. The east and west walls lose heat at a rate of

per day, the north and south walls at a rate of
per day, the floor at a rate of per day, and

the roof at a rate of per day. Each wall must be at
least 30 m long, the height must be at least 4 m, and the
volume must be exactly .
(a) Find and sketch the domain of the heat loss as a function of

the lengths of the sides.

f �x, y� � 3xe y � x 3 � e 3y

f

�2, 0, �3�
x � y � z � 1

x � 2y � 3z � 6
�0, 1, 1�

z 2 � x 2 � y 2

�4, 2, 0�

y 2 � 9 � xz

r

1000 cm3

x � 2y � 3z � 6

2

c

V

3.

10 units	m2

1 unit	m28 units	m2

5 units	m2

4000 m3

(b) Find the dimensions that minimize heat loss. (Check both
the critical points and the points on the boundary of the
domain.)

(c) Could you design a building with even less heat loss 
if the restrictions on the lengths of the walls were removed?

53. If the length of the diagonal of a rectangular box must be ,
what is the largest possible volume?

54. Three alleles (alternative versions of a gene) A, B, and O 
determine the four blood types A (AA or AO), B (BB or BO),
O (OO), and AB. The Hardy-Weinberg Law states that the pro-
portion of individuals in a population who carry two different
alleles is

where , , and are the proportions of A, B, and O in the 
population. Use the fact that to show that is
at most .

55. Suppose that a scientist has reason to believe that two quan ti-
ties and are related linearly, that is, , at least
approximately, for some values of and . The scientist
performs an experiment and collects data in the form of points

, , , and then plots these points. The
points don’t lie exactly on a straight line, so the scientist wants
to find constants and so that the line “fits” the
points as well as possible (see the figure).

Let be the vertical deviation of the point
from the line. The method of least squares determines

and so as to minimize , the sum of the squares of
these deviations. Show that, according to this method, the line
of best fit is obtained when

Thus the line is found by solving these two equations in the
two unknowns and . (See Section 1.2 for a further discus-
sion and applications of the method of least squares.)

56. Find an equation of the plane that passes through the point
and cuts off the smallest volume in the first octant.

L

P � 2pq � 2pr � 2rq

p q r
p � q � r � 1 P

2
3

x y y � mx � b
m b

�x1, y1� �x2, y2 � . . . , �xn, yn �

m b y � mx � b

(⁄, ›)

(xi, yi)

mxi+b

di

y

x0

di � yi � �mxi � b�
�xi, yi�
m b �n

i�1 di
2

m �
n

i�1
xi � bn � �

n

i�1
yi

m �
n

i�1
xi

2 � b �
n

i�1
xi � �

n

i�1
xi yi

m b

�1, 2, 3�
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980 CHAPTER 14 PARTIAL DERIVATIVES

A P P L I E D  P R O J E C T DESIGNING A DUMPSTER

For this project we locate a rectangular trash Dumpster in order to study its shape and construc-
tion. We then attempt to determine the dimensions of a container of similar design that minimize 
con struction cost.

1. First locate a trash Dumpster in your area. Carefully study and describe all details of its
construction, and determine its volume. Include a sketch of the container.

2. While maintaining the general shape and method of construction, determine the dimensions
such a container of the same volume should have in order to minimize the cost of construc-
tion. Use the following assumptions in your analysis:

■ The sides, back, and front are to be made from 12-gauge (0.1046 inch thick) steel sheets,
which cost $0.70 per square foot (including any required cuts or bends).

■ The base is to be made from a 10-gauge (0.1345 inch thick) steel sheet, which costs $0.90
per square foot.

■ Lids cost approximately $50.00 each, regardless of dimensions.

■ Welding costs approximately $0.18 per foot for material and labor combined.

Give justification of any further assumptions or simplifications made of the details of 
construction.

3. Describe how any of your assumptions or simplifications may affect the final result.

4. If you were hired as a consultant on this investigation, what would your conclusions be?
Would you recommend altering the design of the Dumpster? If so, describe the savings that
would result.

D I S C O V E R Y  P R O J E C T QUADRATIC APPROXIMATIONS AND CRITICAL POINTS

The Taylor polynomial approximation to functions of one variable that we discussed in Chapter 11
can be extended to functions of two or more variables. Here we investigate qua dratic approxima-
tions to functions of two variables and use them to give insight into the Second Derivatives Test
for classifying critical points.

In Section 14.4 we discussed the linearization of a function of two variables at a point :

Recall that the graph of is the tangent plane to the surface at and the
corresponding linear approximation is . The linearization is also called the
first-degree Taylor polynomial of at .

1. If has continuous second-order partial derivatives at , then the second-degree 
Taylor polynomial of at is

and the approximation is called the quadratic approximation to at
. Verify that has the same first- and second-order partial derivatives as at 

�a, b�f

L�x, y� � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

�a, b, f �a, b��z � f �x, y�L
Lf �x, y� � L�x, y�

�a, b�f

�a, b�f
�a, b�f

Q�x, y� � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

�
1
2 fxx�a, b��x � a�2 � fx y�a, b��x � a��y � b� �

1
2 fyy�a, b��y � b�2

ff �x, y� � Q�x, y�
Q�a, b� �a, b�.f
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SECTION 14.8 LAGRANGE MULTIPLIERS 981

2. (a) Find the first- and second-degree Taylor polynomials and of 
at (0, 0).

; (b) Graph , , and . Comment on how well and approximate .

3. (a) Find the first- and second-degree Taylor polynomials and for 
at (1, 0).

(b) Compare the values of , , and at (0.9, 0.1).

; (c) Graph , , and . Comment on how well and approximate .

4. In this problem we analyze the behavior of the polynomial 
(without using the Second Derivatives Test) by identifying the graph as a paraboloid.
(a) By completing the square, show that if , then

(b) Let . Show that if and , then has a local minimum 
at (0, 0).

(c) Show that if and , then has a local maximum at (0, 0).
(d) Show that if , then (0, 0) is a saddle point.

5. (a) Suppose is any function with continuous second-order partial derivatives such that
and (0, 0) is a critical point of . Write an expression for the second-

degree Taylor polynomial, , of at (0, 0).
(b) What can you conclude about from Problem 4?
(c) In view of the quadratic approximation , what does part (b) suggest 

about ?

f L Q L Q f

L Q f �x, y� � xe y

L Q f
f L Q L Q f

f �x, y� � ax 2 � bxy � cy 2

a � 0

f �x, y� � ax 2 � bxy � cy 2 � a��x �
b

2a
y�2

� �4ac � b 2

4a 2 �y 2�
D � 4ac � b 2 D � 0 a � 0 f

D � 0 a � 0 f
D � 0

f
f �0, 0� � 0 f

Q f
Q

f �x, y� � Q�x, y�
f

L Q f �x, y� � e�x2�y2

; Graphing calculator or computer required

In Example 6 in Section 14.7 we maximized a volume function subject to the con-
straint , which expressed the side condition that the surface area was
12 m . In this section we present Lagrange’s method for maximizing or minimizing a gen-
eral function subject to a constraint (or side condition) of the form .

It’s easier to explain the geometric basis of Lagrange’s method for functions of two vari-
ables. So we start by trying to find the extreme values of subject to a constraint of
the form . In other words, we seek the extreme values of when the point

is restricted to lie on the level curve . Figure 1 shows this curve together
with several level curves of . These have the equations where , , , ,

. To maximize subject to is to find the largest value of such that the
level curve intersects . It appears from Figure 1 that this happens
when these curves just touch each other, that is, when they have a common tangent line.
(Otherwise, the value of c could be increased further.) This means that the normal lines at
the point where they touch are identical. So the gradient vectors are parallel; that is,

for some scalar .
This kind of argument also applies to the problem of finding the extreme values of

subject to the constraint . Thus the point is restricted to lie
on the level surface with equation . Instead of the level curves in Figure 1,

V � xyz
2xz � 2yz � xy � 12

2

f �x, y, z� t�x, y, z� � k

f �x, y�
t�x, y� � k f �x, y�

�x, y� t�x, y� � k
f f �x, y� � c, c � 7 8 9 10

11 f �x, y� t�x, y� � k c
f �x, y� � c t�x, y� � k

�x0, y0 �
� f �x0, y0 � � � �t�x0, y0 � �

�x, y, z�t�x, y, z� � kf �x, y, z�
t�x, y, z� � kS

14.8 Lagrange Multipliers

f(x, y)=11

f(x, y)=10

f(x, y)=9

f(x, y)=8

f(x, y)=7

x

y

0

g(x, y)=k

FIGURE 1

Visual 14.8 animates Figure 1 for both
level curves and level surfaces.
TEC
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982 CHAPTER 14 PARTIAL DERIVATIVES

we consider the level surfaces and argue that if the maximum value of 
is , then the level surface is tangent to the level surface

and so the corresponding gradient vectors are parallel.
This intuitive argument can be made precise as follows. Suppose that a function has

an extreme value at a point on the surface and let be a curve with vector
equation that lies on and passes through . If is the parameter
value corresponding to the point , then . The composite function

represents the values that takes on the curve . Since has an
extreme value at , it follows that has an extreme value at , so . But
if is differentiable, we can use the Chain Rule to write

This shows that the gradient vector is orthogonal to the tangent vector
to every such curve . But we already know from Section 14.6 that the gradient vector 
of , , is also orthogonal to for every such curve. (See Equation 14.6.18.)
This means that the gradient vectors and must be parallel. There  -
fore, if , there is a number such that

The number in Equation 1 is called a Lagrange multiplier. The procedure based on
Equation 1 is as follows.

Method of Lagrange Multipliers To find the maximum and minimum values of
subject to the constraint [assuming that these extreme val-

ues exist and on the surface ]:

(a) Find all values of , , , and such that

and

(b) Evaluate at all the points that result from step (a). The largest of
these values is the maximum value of ; the smallest is the minimum value 
of .

If we write the vector equation in terms of components, then the equations in
step (a) become

This is a system of four equations in the four unknowns , , , and , but it is not neces  sary
to find explicit values for .

f �x0, y0, z0 � � c f �x, y, z� � c
t�x, y, z� � k

f
P�x0, y0, z0 � S C

r�t� � 	x�t�, y�t�, z�t�
 S P t0

P r�t0� � 	x0, y0, z0 

h�t� � f �x�t�, y�t�, z�t�� f C f

�x0, y0, z0 � h t0 h��t0� � 0
f

0 � h��t0�

� fx�x0, y0, z0 �x��t0 � � fy�x0, y0, z0 �y��t0 � � fz�x0, y0, z0 �z��t0 �

� � f �x0, y0, z0 � � r��t0 �

� f �x0, y0, z0 � r��t0 �
C

t �t�x0, y0, z0 � r��t0 �
� f �x0, y0, z0 � �t�x0, y0, z0 �

�t�x0, y0, z0 � � 0 �

1 � f �x0, y0, z0 � � � �t�x0, y0, z0 �

�

f �x, y, z� t�x, y, z� � k
�t � 0 t�x, y, z� � k

x y z �

� f �x, y, z� � � �t�x, y, z�

t�x, y, z� � k

f �x, y, z�
f

f

� f � � �t

fx � �tx fy � �ty fz � �tz t�x, y, z� � k

ff �x, y, z� � c

�zyx
�

Lagrange multipliers are named after the
French-Italian mathematician Joseph-Louis
Lagrange (1736–1813). See page 210 for a 
biographical sketch of Lagrange.

In deriving Lagrange’s method we assumed 
that . In each of our examples you
can check that at all points where

. See Exercise 23 for what can 
go wrong if .�t � 0
t�x, y, z� � k

�t � 0
�t � 0
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SECTION 14.8 LAGRANGE MULTIPLIERS 983

For functions of two variables the method of Lagrange multipliers is similar to the
method just described. To find the extreme values of subject to the constraint

, we look for values of , , and such that

This amounts to solving three equations in three unknowns:

Our first illustration of Lagrange’s method is to reconsider the problem given in Exam-
ple 6 in Section 14.7.

A rectangular box without a lid is to be made from 12 m of cardboard.
Find the maximum volume of such a box.

SOLUTION As in Example 6 in Section 14.7, we let , , and be the length, width, and
height, respectively, of the box in meters. Then we wish to maximize

subject to the constraint

Using the method of Lagrange multipliers, we look for values of , , , and such that
and . This gives the equations

which become

There are no general rules for solving systems of equations. Sometimes some ingenuity is
required. In the present example you might notice that if we multiply by by ,
and by , then the left sides of these equations will be identical. Doing this, we have

We observe that because would imply from , ,
and and this would contradict . Therefore, from and , we have

f �x, y�
t�x, y� � k x y �

� f �x, y� � � �t�x, y� and t�x, y� � k

fx � �tx fy � �ty t�x, y� � k

2

x y z

V � xyz

t�x, y, z� � 2xz � 2yz � xy � 12

x y z �
�V � � �t t�x, y, z� � 12

Vx � �tx

Vy � �ty

Vz � �tz

2xz � 2yz � xy � 12

v EXAMPLE 1

2 yz � ��2z � y�

3 xz � ��2z � x�

4 xy � ��2x � 2y�

5 2xz � 2yz � xy � 12

x, y
z

6 xyz � ��2xz � xy�

7 xyz � ��2yz � xy�

8 xyz � ��2xz � 2yz�

� � 0 � � 0 yz � xz � xy � 0

2 3
4

2 3
4 5 6 7

2xz � xy � 2yz � xy

Another method for solving the system of equa-
tions (2 –5) is to solve each of Equations 2, 3,
and 4 for and then to equate the resulting
expressions.

�
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984 CHAPTER 14 PARTIAL DERIVATIVES

which gives . But (since would give ), so . From
and we have

which gives and so (since ) . If we now put in ,
we get

Since , , and are all positive, we therefore have and so and . This
agrees with our answer in Section 14.7.

Find the extreme values of the function on the 
circle .

SOLUTION We are asked for the extreme values of subject to the constraint
. Using Lagrange multipliers, we solve the equations

and , which can be written as

or as

From we have or . If , then gives . If , then
from , so then gives . Therefore has possible extreme values 

at the points , , , and . Evaluating at these four points, we
find that

Therefore the maximum value of on the circle is and the
minimum value is . Checking with Figure 2, we see that these values look
reasonable.

Find the extreme values of on the disk .

SOLUTION According to the procedure in (14.7.9), we compare the values of at the criti-
cal points with values at the points on the boundary. Since and , the only
critical point is . We compare the value of at that point with the extreme values on
the boundary from Example 2:

Therefore the maximum value of on the disk is and the
minimum value is .

Find the points on the sphere that are closest to and 
farthest from the point .

SOLUTION The distance from a point to the point is

2yz � xy � 2xz � 2yz

2xz � xy x � 0 y � 2z x � y � 2z

4z2 � 4z2 � 4z2 � 12

x y z z � 1 x � 2 y � 2

8

5

f �x, y� � x 2 � 2y 2

x 2 � y 2 � 1

f
t�x, y� � x 2 � y 2 � 1 � f � � �t

t�x, y� � 1

fx � �tx fy � �ty t�x, y� � 1

9 2x � 2x�

10 4y � 2y�

11 x 2 � y 2 � 1

x � 0 � � 1 x � 0 y � 	1 � � 1
y � 0 x � 	1 f

�0, 1� �0, �1� �1, 0� ��1, 0� f

f �0, 1� � 2 f �0, �1� � 2 f �1, 0� � 1 f ��1, 0� � 1

f x 2 � y 2 � 1 f �0, 	1� � 2
f �	1, 0� � 1

v EXAMPLE 2

9
10

11
11

f �x, y� � x 2 � 2y 2 x 2 � y 2 
 1

f
fx � 2x fy � 4y

�0, 0� f

f �0, 0� � 0 f �	1, 0� � 1 f �0, 	1� � 2

f x 2 � y 2 
 1 f �0, 	1� � 2
f �0, 0� � 0

x 2 � y 2 � z2 � 4
�3, 1, �1�

�x, y, z� �3, 1, �1�

EXAMPLE 3

EXAMPLE 4

7x � yV � 0z � 0z � 0xz � yz

d � s�x � 3�2 � �y � 1�2 � �z � 1�2 

FIGURE 2

z

x
y

 ≈+¥=1

z=≈+2¥

C

In geometric terms, Example 2 asks for 
the highest and lowest points on the curve 

in Figure 2 that lie on the paraboloid
and directly above the con-

straint circle .x2 � y2 � 1
z � x2 � 2y2

C

The geometry behind the use of Lagrange 
multipliers in Example 2 is shown in Figure 3.
The extreme values of 
correspond to the level curves that touch the 
circle .x 2 � y 2 � 1

f �x, y� � x 2 � 2y 2

FIGURE 3

x

y

0

≈+2¥=1

≈+2¥=2
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but the algebra is simpler if we instead maximize and minimize the square of the 
distance:

The constraint is that the point lies on the sphere, that is,

According to the method of Lagrange multipliers, we solve , . This gives

The simplest way to solve these equations is to solve for , , and in terms of from
, , and , and then substitute these values into . From we have

[Note that because is impossible from .] Similarly, and give

Therefore, from , we have

which gives , , so

These values of then give the corresponding points :

and    

It’s easy to see that has a smaller value at the first of these points, so the closest point
is and the farthest is .

Two Constraints
Suppose now that we want to find the maximum and minimum values of a function
subject to two constraints (side conditions) of the form and .
Geometrically, this means that we are looking for the extreme values of when is
restricted to lie on the curve of intersection of the level surfaces and

. (See Figure 5.) Suppose has such an extreme value at a point .

d 2 � f �x, y, z� � �x � 3�2 � �y � 1�2 � �z � 1�2

�x, y, z�

t�x, y, z� � x 2 � y 2 � z2 � 4

� f � � �t t � 4

12 2�x � 3� � 2x�

13 2�y � 1� � 2y�

14 2�z � 1� � 2z�

15 x 2 � y 2 � z2 � 4

x y z �

x � 3 � x� or x�1 � �� � 3 or x �
3

1 � �

1 � � � 0 � � 1

y �
1

1 � �
z � �

1

1 � �

32

�1 � ��2 �
12

�1 � ��2 �
��1�2

�1 � ��2 � 4

�1 � ��2 � 11
4 1 � � � 	s11�2

� � 1 	
s11

2

� �x, y, z�

� 6

s11
, 

2

s11
, �

2

s11� ��
6

s11
, �

2

s11
, 

2

s11�
f

(6�s11, 2�s11, �2�s11) (�6�s11, �2�s11, 2�s11)

12 13 14 15 12

12 13 14

15

f �x, y, z�
t�x, y, z� � k h�x, y, z� � c

�x, y, z�f
t�x, y, z� � kC

P�x0, y0, z0�fh�x, y, z� � c

Figure 4 shows the sphere and the nearest point
in Example 4. Can you see how to find the

coordinates of without using calculus?P
P

FIGURE 4
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986 CHAPTER 14 PARTIAL DERIVATIVES

We know from the beginning of this section that is orthogonal to at . But we also
know that is orthogonal to and is orthogonal to , so
and are both orthogonal to . This means that the gradient vector is in the
plane determined by and . (We assume that these gradient vec-
tors are not zero and not parallel.) So there are numbers and (called Lagrange multi-
pliers) such that

In this case Lagrange’s method is to look for extreme values by solving five equations in
the five unknowns , , , , and . These equations are obtained by writing Equa tion 16
in terms of its components and using the constraint equations:

Find the maximum value of the function on the
curve of intersection of the plane and the cylinder .

SOLUTION We maximize the function subject to the constraints
and . The Lagrange condition is

, so we solve the equations

Putting [from ] in , we get , so . Similarly, gives
. Substitution in then gives

and so , . Then , , and, from ,
. The corresponding values of are

Therefore the maximum value of on the given curve is .

�t t�x, y, z� � k �h h�x, y, z� � c �t

�h C � f �x0, y0, z0 �
�t�x0, y0, z0 � �h�x0, y0, z0 �

� �

16 � f �x0, y0, z0 � � � �t�x0, y0, z0 � � � �h�x0, y0, z0 �

x y z � �

fx � �tx � �hx

fy � �ty � �hy

fz � �tz � �hz

t�x, y, z� � k

h�x, y, z� � c

f �x, y, z� � x � 2y � 3z
x � y � z � 1 x 2 � y 2 � 1

f �x, y, z� � x � 2y � 3z
t�x, y, z� � x � y � z � 1 h�x, y, z� � x 2 � y 2 � 1
� f � � �t � � �h

17 1 � � � 2x�

18 2 � �� � 2y�

19 3 � �

20 x � y � z � 1

21 x 2 � y 2 � 1

� � 3 2x� � �2 x � �1��
y � 5��2��

1

�2 �
25

4�2 � 1

�2 � 29
4 � � 	s29�2 x � �2�s29 y � 	5�s29

z � 1 � x � y � 1 	 7�s29 f

�
2

s29
� 2�	

5

s29
� � 3�1 	

7

s29
� � 3 	 s29

f 3 � s29

v EXAMPLE 5

19 17 18
21

20

PC� f

The cylinder intersects the 
plane in an ellipse (Figure 6).
Example 5 asks for the maximum value of 
when is restricted to lie on the ellipse.�x, y, z�

f
x � y � z � 1

x 2 � y 2 � 1

FIGURE 6

0
y

z

_1
_2

_1

0

1

2

3

4

1

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 14.8 LAGRANGE MULTIPLIERS 987

1. Pictured are a contour map of and a curve with equation
. Estimate the maximum and minimum values 

of subject to the constraint that . Explain your
reasoning.

; 2. (a) Use a graphing calculator or computer to graph the circle
. On the same screen, graph several curves of

the form until you find two that just touch the
circle. What is the significance of the values of for these
two curves?

(b) Use Lagrange multipliers to find the extreme values of
subject to the constraint .

Compare your answers with those in part (a).

3–14 Use Lagrange multipliers to find the maximum and mini-
mum values of the function subject to the given constraint.

3. ;  

4. ;  

5. ;  

6. ;  

7. ;  

8. ;  

9. ;  

10. ;  

11. ;  

12. ;  

13. ;  

14. ;

15–18 Find the extreme values of subject to both constraints.

15. ;  ,  

f
t�x, y� � 8

f t�x, y� � 8

y

x0

70
60

50
40

30

20

10

g(x, y)=8

x 2 � y 2 � 1
x 2 � y � c

c

f �x, y� � x 2 � y x 2 � y 2 � 1

f �x, y� � x 2 � y 2 xy � 1

f �x, y� � 3x � y x 2 � y 2 � 10

f �x, y� � y 2 � x 2 1
4 x 2 � y 2 � 1

f �x, y� � e xy x 3 � y 3 � 16

f �x, y, z� � 2x � 2y � z x 2 � y 2 � z 2 � 9

f �x, y, z� � x 2 � y 2 � z 2

f �x, y, z� � xyz x 2 � 2y 2 � 3z2 � 6

f �x, y, z� � x 2 y 2z2 x 2 � y 2 � z2 � 1

f �x, y, z� � x 2 � y 2 � z2 x 4 � y 4 � z4 � 1

f �x, y, z� � x 4 � y 4 � z4 x 2 � y 2 � z2 � 1

f �x, y, z, t� � x � y � z � t x 2 � y 2 � z2 � t 2 � 1

f �x1, x2, . . . , xn� � x1 � x2 � 
 
 
 � xn

x 2
1 � x 2

2 � 
 
 
 � x 2
n � 1

f

f �x, y, z� � x � 2y x � y � z � 1 y 2 � z2 � 4

x � y � z � 12

16. ;
,  

17. ;  ,  

18. ;  ,  

19–21 Find the extreme values of on the region described by
the inequality.

19. ,  

20. ,  

21. ,  

22. Consider the problem of maximizing the function
subject to the constraint .

(a) Try using Lagrange multipliers to solve the problem.
(b) Does give a larger value than the one in part (a)?

; (c) Solve the problem by graphing the constraint equation
and several level curves of .

(d) Explain why the method of Lagrange multipliers fails to
solve the problem.

(e) What is the significance of ?

23. Consider the problem of minimizing the function
on the curve (a piriform).
(a) Try using Lagrange multipliers to solve the problem.
(b) Show that the minimum value is but the

Lagrange condition is not satisfied
for any value of .

(c) Explain why Lagrange multipliers fail to find the mini-
mum value in this case.

24. (a) If your computer algebra system plots implicitly defined
curves, use it to estimate the minimum and maximum
values of subject to the con -
straint by graphical methods.

(b) Solve the problem in part (a) with the aid of Lagrange 
multipliers. Use your CAS to solve the equations numeri-
cally. Compare your answers with those in part (a).

25. The total production of a certain product depends on the
amount of labor used and the amount of capital invest-
ment. In Sections 14.1 and 14.3 we discussed how the Cobb-
Douglas model follows from certain economic
assumptions, where and are positive constants and 

. If the cost of a unit of labor is and the cost of a unit
of capital is , and the company can spend only dollars as
its total budget, then maximizing the production is subject
to the constraint . Show that the maximum
production occurs when

x � y � z � 0 x 2 � 2z2 � 1

f �x, y, z� � yz � xy xy � 1 y 2 � z2 � 1

f �x, y, z� � x 2 � y 2 � z 2 x � y � 1 y 2 � z 2 � 1

f

f �x, y� � x 2 � y 2 � 4x � 4y x 2 � y 2 
 9

f �x, y� � 2x 2 � 3y 2 � 4x � 5 x 2 � y 2 
 16

f �x, y� � e �xy x 2 � 4y 2 
 1

f �x, y� � 2x � 3y sx � sy � 5

f �25, 0�

f

f �9, 4�

f �x, y� � x
y 2 � x 4 � x 3 � 0

f �0, 0� � 0
� f �0, 0� � ��t�0, 0�

�

CAS

f �x, y� � x 3 � y 3 � 3xy
�x � 3�2 � �y � 3�2 � 9

P
L K

P � bL�K 1��

b �
� � 1 m

n p
P

mL � nK � p

f �x, y, z� � 3x � y � 3z

K �
�1 � ��p

n
andL �

�p

m

14.8 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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988 CHAPTER 14 PARTIAL DERIVATIVES

26. Referring to Exercise 25, we now suppose that the pro-
duction is fixed at , where is a constant.
What values of and minimize the cost function

?

27. Use Lagrange multipliers to prove that the rectangle with 
maximum area that has a given perimeter is a square.

28. Use Lagrange multipliers to prove that the triangle with 
maximum area that has a given perimeter is equilateral.

Hint: Use Heron’s formula for the area:

where and , , are the lengths of the sides.

29–41 Use Lagrange multipliers to give an alternate solution to
the indicated exercise in Section 14.7.

29. Exercise 39 30. Exercise 40

31. Exercise 41 32. Exercise 42

33. Exercise 43 34. Exercise 44

35. Exercise 45 36. Exercise 46

37. Exercise 47 38. Exercise 48

39. Exercise 49 40. Exercise 50

41. Exercise 53

42. Find the maximum and minimum volumes of a rectangular
box whose surface area is 1500 cm and whose total edge
length is 200 cm.

43. The plane intersects the paraboloid
in an ellipse. Find the points on this ellipse 

that are nearest to and farthest from the origin.

44. The plane intersects the cone
in an ellipse.

; (a) Graph the cone, the plane, and the ellipse.

bL�K 1�� � Q Q
KL

C�L, K � � mL � nK

p

p

A � ss�s � x��s � y��s � z�

zyxs � p�2

2

x � y � 2z � 2
z � x 2 � y 2

4x � 3y � 8z � 5
z2 � x 2 � y 2

(b) Use Lagrange multipliers to find the highest and lowest
points on the ellipse.

45 –46 Find the maximum and minimum values of subject to
the given constraints. Use a computer algebra system to solve 
the system of equations that arises in using Lagrange multipliers.
(If your CAS finds only one solution, you may need to use addi-
tional commands.)

45. ;  , 

46. ;  , 

47. (a) Find the maximum value of 

given that are positive numbers and
, where is a constant.

(b) Deduce from part (a) that if are positive
numbers, then

This inequality says that the geometric mean of 
numbers is no larger than the arithmetic mean of the
numbers. Under what circumstances are these two means
equal?

48. (a) Maximize subject to the constraints
and .

(b) Put

to show that

for any numbers . This inequality is
known as the Cauchy-Schwarz Inequality.

x1 � x2 � 
 
 
 � xn � c c
x1, x2, . . . , xn

s
n x1 x2 
 
 
 xn 


x1 � x2 � 
 
 
 � xn

n

n

�n
i�1 xi yi �n

i�1 xi
2 � 1

�n
i�1 yi

2 � 1

xi �
ai

s� a 2
j

and    yi �
bi

s� b 2
j


 ai bi 
 s� a 2
j s� b 2

j

a1, . . . , an, b1, . . . , bn

f

xy � yz � 19x 2 � 4y 2 � 36z2 � 36f �x, y, z� � ye x�z

x 2 � z2 � 4x 2 � y 2 � zf �x, y, z� � x � y � z

f �x1, x2, . . . , xn � � s
n x1 x2 
 
 
 xn

x1, x2, . . . , xn

CAS

A P P L I E D  P R O J E C T ROCKET SCIENCE

Many rockets, such as the Pegasus XL currently used to launch satellites and the Saturn V that first
put men on the moon, are designed to use three stages in their ascent into space. A large first stage
initially propels the rocket until its fuel is consumed, at which point the stage is jettisoned to 
reduce the mass of the rocket. The smaller second and third stages function similarly in order to
place the rocket’s payload into orbit about the earth. (With this design, at least two stages are
required in order to reach the necessary velocities, and using three stages has proven to be a good
compromise between cost and performance.) Our goal here is to determine the individual masses 
of the three stages, which are to be designed in such a way as to minimize the total mass of the
rocket while enabling it to reach a desired velocity.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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For a single-stage rocket consuming fuel at a constant rate, the change in velocity resulting
from the acceleration of the rocket vehicle has been modeled by

where is the mass of the rocket engine including initial fuel, is the mass of the payload, 
is a structural factor determined by the design of the rocket (specifically, it is the ratio of the

mass of the rocket vehicle without fuel to the total mass of the rocket with payload), and is the
(constant) speed of exhaust relative to the rocket.

Now consider a rocket with three stages and a payload of mass . Assume that outside forces
are negligible and that and remain constant for each stage. If is the mass of the stage, 
we can initially consider the rocket engine to have mass and its payload to have mass

; the second and third stages can be handled similarly.

1. Show that the velocity attained after all three stages have been jettisoned is given by

2. We wish to minimize the total mass of the rocket engine subject 
to the constraint that the desired velocity from Problem 1 is attained. The method of
Lagrange multipliers is appropriate here, but difficult to implement using the current expres-
sions. To simplify, we define variables so that the constraint equation may be expressed as

. Since is now difficult to express in terms of the ’s, we
wish to use a simpler function that will be minimized at the same place as . Show that

and conclude that

3. Verify that is minimized at the same location as ; use Lagrange multipliers
and the results of Problem 2 to find expressions for the values of where the minimum
occurs subject to the constraint . [Hint: Use properties of 
logarithms to help simplify the expressions.]

4. Find an expression for the minimum value of as a function of .

5. If we want to put a three-stage rocket into orbit 100 miles above the earth’s surface, a final
velocity of approximately is required. Suppose that each stage is built with a
structural factor and an exhaust speed of .
(a) Find the minimum total mass of the rocket engines as a function of .
(b) Find the mass of each individual stage as a function of . (They are not equally sized!)

6. The same rocket would require a final velocity of approximately in order to
escape earth’s gravity. Find the mass of each individual stage that would minimize the total
mass of the rocket engines and allow the rocket to propel a 500-pound probe into deep space.

�V � �c ln�1 �
�1 � S�Mr

P � Mr
�

Mr P
S

c

A
c S Mi ith

M1

M2 � M3 � A

vf � c�ln� M1 � M2 � M3 � A

SM1 � M2 � M3 � A� � ln� M2 � M3 � A

SM2 � M3 � A� � ln� M3 � A

SM3 � A��
M � M1 � M2 � M3

vf

Ni

vf � c�ln N1 � ln N2 � ln N3 � M Ni

M

M1 � M2 � M3 � A

M2 � M3 � A
�

�1 � S �N1

1 � SN1

M2 � M3 � A

M3 � A
�

�1 � S �N2

1 � SN2

M3 � A

A
�

�1 � S �N3

1 � SN3

M � A

A
�

�1 � S �3N1N2N3

�1 � SN1��1 � SN2 ��1 � SN3 �

ln��M � A��A� M
Ni

vf � c�ln N1 � ln N2 � ln N3 �

M vf
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A P P L I E D  P R O J E C T HYDRO-TURBINE OPTIMIZATION

The Katahdin Paper Company in Millinocket, Maine, operates a hydroelectric generating station
on the Penobscot River. Water is piped from a dam to the power station. The rate at which the
water flows through the pipe varies, depending on external conditions.

The power station has three different hydroelectric turbines, each with a known (and unique)
power function that gives the amount of electric power generated as a function of the water flow
arriving at the turbine. The incoming water can be apportioned in different volumes to each
turbine, so the goal is to determine how to distribute water among the turbines to give the maxi-
mum total energy production for any rate of flow.

Using experimental evidence and Bernoulli’s equation, the following quadratic models were
determined for the power output of each turbine, along with the allowable flows of operation:

,  ,  

where

1. If all three turbines are being used, we wish to determine the flow to each turbine that will
give the maximum total energy production. Our limitations are that the flows must sum to 
the total incoming flow and the given domain restrictions must be observed. Consequently,
use Lagrange multipliers to find the values for the individual flows (as functions of ) that
maximize the total energy production subject to the constraints

and the domain restrictions on each .

2. For which values of is your result valid?

3. For an incoming flow of , determine the distribution to the turbines and verify 
(by trying some nearby distributions) that your result is indeed a maximum.

4. Until now we have assumed that all three turbines are operating; is it possible in some situa-
tions that more power could be produced by using only one turbine? Make a graph of the
three power functions and use it to help decide if an incoming flow of should be
distributed to all three turbines or routed to just one. (If you determine that only one turbine
should be used, which one would it be?) What if the flow is only ?

5. Perhaps for some flow levels it would be advantageous to use two turbines. If the incoming
flow is , which two turbines would you recommend using? Use Lagrange multi-
pliers to determine how the flow should be distributed between the two turbines to maxi-
mize the energy produced. For this flow, is using two turbines more efficient than using all
three?

6. If the incoming flow is , what would you recommend to the company?

KW1 � ��18.89 � 0.1277Q1 � 4.08 � 10�5Q 2
1 ��170 � 1.6 � 10�6Q 2

T �

KW2 � ��24.51 � 0.1358Q2 � 4.69 � 10�5Q 2
2 ��170 � 1.6 � 10�6Q 2

T �

KW3 � ��27.02 � 0.1380Q3 � 3.84 � 10�5Q 2
3 ��170 � 1.6 � 10�6Q 2

T �

250 � Q1 � 1110 250 � Q2 � 1110 250 � Q3 � 1225

Qi � flow through turbine i in cubic feet per second

KWi � power generated by turbine i in kilowatts

QT � total flow through the station in cubic feet per second

Qi

QT

KW1 � KW2 � KW3

Q1 � Q2 � Q3 � QT Qi

QT

2500 ft3�s

1000 ft3�s

600 ft3�s

1500 ft3�s

3400 ft3�s
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14 Review

1. (a) What is a function of two variables?
(b) Describe three methods for visualizing a function of two

variables.

2. What is a function of three variables? How can you visualize
such a function?

3. What does

mean? How can you show that such a limit does not exist?

4. (a) What does it mean to say that is continuous at ?
(b) If is continuous on , what can you say about its graph?

5. (a) Write expressions for the partial derivatives and
as limits.

(b) How do you interpret and geometrically?
How do you interpret them as rates of change?

(c) If is given by a formula, how do you calculate
and 

6. What does Clairaut’s Theorem say?

7. How do you find a tangent plane to each of the following types
of surfaces?
(a) A graph of a function of two variables, 
(b) A level surface of a function of three variables,

8. Define the linearization of at . What is the corre spond-
ing linear approximation? What is the geometric interpretation
of the linear approximation?

9. (a) What does it mean to say that is differentiable at ?
(b) How do you usually verify that is differentiable?

10. If , what are the differentials , , and ?

lim
�x, y� l �a, b�

f �x, y� � L

f �a, b�
f �2

fx�a, b�
fy�a, b�

fy�a, b�fx�a, b�

fxf �x, y�
fy ?

z � f �x, y�

F�x, y, z� � k

�a, b�f

�a, b�f
f

dzdydxz � f �x, y�

11. State the Chain Rule for the case where and and
are functions of one variable. What if and are functions of
two variables?

12. If is defined implicitly as a function of and by an equation
of the form , how do you find and ?

13. (a) Write an expression as a limit for the directional derivative
of at in the direction of a unit vector .
How do you interpret it as a rate? How do you interpret it
geometrically?

(b) If is differentiable, write an expression for in
terms of and .

14. (a) Define the gradient vector for a function of two or
three variables.

(b) Express in terms of .
(c) Explain the geometric significance of the gradient.

15. What do the following statements mean?
(a) has a local maximum at .
(b) has an absolute maximum at .
(c) has a local minimum at .
(d) has an absolute minimum at .
(e) has a saddle point at .

16. (a) If has a local maximum at , what can you say about
its partial derivatives at ?

(b) What is a critical point of ?

17. State the Second Derivatives Test.

18. (a) What is a closed set in ? What is a bounded set?
(b) State the Extreme Value Theorem for functions of two 

variables.
(c) How do you find the values that the Extreme Value 

Theorem guarantees?

19. Explain how the method of Lagrange multipliers works 
in finding the extreme values of subject to the
constraint . What if there is a second constraint

?

z x y
F�x, y, z� � 0 �z��x �z��y

f �x0, y0 � u � �a, b �

f Du f �x0, y0 �
fx fy

� f f

Du f � f

f �a, b�
f �a, b�
f �a, b�
f �a, b�
f �a, b�

f �a, b�
�a, b�

f

� 2

f �x, y, z�
t�x, y, z� � k

h�x, y, z� � c

yxz � f �x, y�
yx

Concept Check

Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1.

2. There exists a function with continuous second-order 
partial derivatives such that and

.

3.

4.

fy�a, b� � lim
y l b

f �a, y� � f �a, b�
y � b

f
fx�x, y� � x � y 2

fy�x, y� � x � y 2

fxy �
�2f

�x �y

Dk f �x, y, z� � fz�x, y, z�

5. If as along every straight line
through , then .

6. If and both exist, then is differentiable 
at .

7. If has a local minimum at and is differentiable at
, then .

8. If is a function, then

9. If , then .

f �x, y� l L �x, y� l �a, b�
�a, b� lim�x, y� l �a, b� f �x, y� � L

fx�a, b� fy�a, b� f
�a, b�

f �a, b� f
�a, b� � f �a, b� � 0

f

lim
�x, y� l �2, 5�

f �x, y� � f �2, 5�

� f �x, y� � 1�yf �x, y� � ln y

True-False Quiz
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10. If is a critical point of and 

then has a saddle point at .

�2, 1� f

fxx�2, 1� fyy�2, 1� � � fx y�2, 1�� 2

f �2, 1�

11. If , then .

12. If has two local maxima, then must have a local 
minimum.

f �x, y� � sin x � sin y �s2 � Du f �x, y� � s2

f �x, y� f

; Graphing calculator or computer required

1–2 Find and sketch the domain of the function.

1.

2.

3–4 Sketch the graph of the function.

3.

4.

5–6 Sketch several level curves of the function.

5. 6.

7. Make a rough sketch of a contour map for the function whose
graph is shown.

8. A contour map of a function is shown. Use it to make a
rough sketch of the graph of .

9–10 Evaluate the limit or show that it does not exist.

9. 10.

11. A metal plate is situated in the -plane and occupies the 
rectangle , , where and are measured
in meters. The temperature at the point in the plate is

, where is measured in degrees Celsius. Temperatures

f �x, y� � ln�x � y � 1�

f �x, y� � s4 � x 2 � y 2 � s1 � x 2

f �x, y� � 1 � y 2

f �x, y� � x 2 � �y � 2�2

f �x, y� � s4x 2 � y 2  f �x, y� � e x � y

2
x

z

2
y

f
f

y

x

1

1.5

2

4

lim
�x, y� l �1, 1�

2xy

x 2 � 2y 2 lim
�x, y� l �0, 0�

2xy

x 2 � 2y 2

xy
0 � x � 10 0 � y � 8 x y

�x, y�
T �x, y� T

at equally spaced points were measured and recorded in the
table.
(a) Estimate the values of the partial derivatives 

and . What are the units?
(b) Estimate the value of , where .

Interpret your result.
(c) Estimate the value of .

12. Find a linear approximation to the temperature function
in Exercise 11 near the point (6, 4). Then use it to estimate the
temperature at the point (5, 3.8).

13–17 Find the first partial derivatives.

13. 14.

15. 16.

17.

18. The speed of sound traveling through ocean water is a function
of temperature, salinity, and pressure. It has been modeled by
the function

where is the speed of sound (in meters per second), is the
temperature (in degrees Celsius), is the salinity (the concen-
tration of salts in parts per thousand, which means the number
of grams of dissolved solids per 1000 g of water), and is the
depth below the ocean surface (in meters). Compute ,

, and when , parts per thousand,
and m. Explain the physical significance of these 
partial derivatives.

Tx�6, 4�
Ty�6, 4�

Du T �6, 4� u � �i � j��s2

Txy�6, 4�

30

52

78

98

96

92

38

56

74

87

90

92

45

60

72

80

86

91

51

62

68

75

80

87

55

61

66

71

75

78

x
y

0

2

4

6

8

10

0 2 4 6 8

T �x, y�

f �x, y� � �5y 3 � 2x 2y�8
t�u, v� �

u � 2v

u 2 � v 2

F ��, 	� � � 2 ln�� 2 � 	 2� G�x, y, z� � e xz sin�y�z�

C � 1449.2 � 4.6T � 0.055T 2 � 0.00029T 3

� �1.34 � 0.01T ��S � 35� � 0.016D

C T
S

D
�C��T

�C��S �C��D T � 10
C S � 35
D � 100

S�u, v, w� � u arctan(vsw )

Exercises
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CHAPTER 14 REVIEW 993

19–22 Find all second partial derivatives of .

19. 20.

21. 22.

23. If , show that .

24. If , show that

25–29 Find equations of (a) the tangent plane and (b) the normal
line to the given surface at the specified point.

25. ,  

26. ,  

27. ,  

28. ,  

29. ,  

; 30. Use a computer to graph the surface and its 
tangent plane and normal line at on the same screen.
Choose the domain and viewpoint so that you get a good
view of all three objects.

31. Find the points on the hyperboloid where
the tangent plane is parallel to the plane .

32. Find if .

33. Find the linear approximation of the function
at the point (2, 3, 4) and use it 

to estimate the number .

34. The two legs of a right triangle are measured as 5 m and
12 m with a possible error in measurement of at most cm
in each. Use differentials to estimate the maximum error in
the calculated value of (a) the area of the triangle and (b) the
length of the hypotenuse.

35. If , where , , and 
, use the Chain Rule to find .

36. If , where and , use the
Chain Rule to find and when and .

37. Suppose , where , ,
, , , ,

, , , and .
Find and when and .

38. Use a tree diagram to write out the Chain Rule for the case
where , , and

are all differentiable functions.

39. If , where is differentiable, show that

f

f �x, y� � 4x 3 � xy 2 z � xe�2y

f �x, y, z� � x k y lz m v � r cos�s � 2t�

z � xy � xe y�x x
�z

�x
� y

�z

�y
� xy � z

z � sin�x � sin t�

�z

�x

�2z

�x �t
�

�z

�t

�2z

�x 2

z � 3x 2 � y 2 � 2x �1, �2, 1�

z � e x cos y �0, 0, 1�

x 2 � 2y 2 � 3z 2 � 3 �2, �1, 1�

xy � yz � zx � 3 �1, 1, 1�

z � x 2 � y 4

�1, 1, 2�

x 2 � 4y 2 � z2 � 4
2x � 2y � z � 5

u � ln�1 � se 2 t �du

f �x, y, z� � x 3
sy 2 � z 2 

�1.98�3
s�3.01� 2 � �3.97� 2 

0.2

y � pe px � p � 3p2u � x 2y3 � z4

du�dpz � p sin p

y � stx � s � 2tv � x 2 sin y � ye xy

t � 1s � 0�v��t�v��s

y � h�s, t�x � t�s, t�z � f �x, y�
h�1, 2� � 6tt�1, 2� � 4ts�1, 2� � �1t�1, 2� � 3

fy�3, 6� � 8fx�3, 6� � 7ht�1, 2� � 10hs�1, 2� � �5
t � 2s � 1�z��t�z��s

u � u� p, q, r, s�w � f �t, u, v�, t � t� p, q, r, s�
v � v� p, q, r, s�

fz � y � f �x 2 � y 2 �

y
�z

�x
� x

�z

�y
� x

sin�xyz� � x � 2y � 3z �2, �1, 0�

40. The length of a side of a triangle is increasing at a rate of
3 in�s, the length of another side is decreasing at a rate of
2 in�s, and the contained angle is increasing at a rate of 

radian�s. How fast is the area of the triangle changing
when in, in, and ?

41. If , where , , and has continuous
second partial derivatives, show that

42. If , find and .

43. Find the gradient of the function .

44. (a) When is the directional derivative of a maximum?
(b) When is it a minimum?
(c) When is it 0?
(d) When is it half of its maximum value?

45–46 Find the directional derivative of at the given point in
the indicated direction.

45. ,  , 
in the direction toward the point 

46. ,  , 
in the direction of 

47. Find the maximum rate of change of 
at the point . In which direction does it occur?

48. Find the direction in which increases most
rapidly at the point . What is the maximum rate of
increase?

49. The contour map shows wind speed in knots during Hurri-
cane Andrew on August 24, 1992. Use it to estimate the
value of the directional derivative of the wind speed at
Homestead, Florida, in the direction of the eye of the 
hurricane.

y
�

0.05
x � 40 y � 50 � � ��6

z � f �u, v� u � xy v � y�x f

x 2 �2z

�x 2 � y 2 �2z

�y 2 � �4uv
�2z

�u �v
� 2v

�z

�v

cos�xyz� � 1 � x 2y 2 � z 2 �z

�x

�z

�y

f �x, y, z� � x 2e yz 2

f

f

f �x, y� � x 2e�y ��2, 0�
�2, �3�

f �x, y, z� � x 2 y � xs1 � z �1, 2, 3�
v � 2 i � j � 2k

f �x, y� � x 2 y � sy
�2, 1�

f �x, y, z� � ze x y

�0, 1, 2�

Key West
30

35
40

45

55
60

60 65
65

70

75

70 80

50

55

0
(Distance in miles)

10 20 30 40

Homestead

x
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994 CHAPTER 14 PARTIAL DERIVATIVES

50. Find parametric equations of the tangent line at the point
to the curve of intersection of the surface

and the plane .

51–54 Find the local maximum and minimum values and saddle
points of the function. If you have three-dimensional graphing
software, graph the function with a domain and viewpoint that
reveal all the important aspects of the function.

51.

52.

53.

54.

55–56 Find the absolute maximum and minimum values of on
the set .

55. ;  is the closed triangular
region in the -plane with vertices , , and 

56. ;  is the disk 

; 57. Use a graph or level curves or both to estimate the local 
maximum and minimum values and saddle points of

. Then use calculus to find 
these values precisely.

; 58. Use a graphing calculator or computer (or Newton’s method 
or a computer algebra system) to find the critical points of

correct to three 
decimal places. Then classify the critical points and find 
the highest point on the graph.

59–62 Use Lagrange multipliers to find the maximum and mini-
mum values of subject to the given constraint(s).

59. ;  

��2, 2, 4�
z � 2x 2 � y 2 z � 4

f �x, y� � x 2 � xy � y 2 � 9x � 6y � 10

f �x, y� � x 3 � 6xy � 8y 3

f �x, y� � 3xy � x 2 y � xy 2

f �x, y� � �x 2 � y�e y�2

f
D

f �x, y� � 4xy 2 � x 2 y 2 � xy 3 D
xy �0, 0� �0, 6� �6, 0�

f �x, y� � e�x2�y2

�x 2 � 2y 2 � D x 2 � y 2 � 4

f �x, y� � x 3 � 3x � y 4 � 2y 2

f �x, y� � 12 � 10y � 2x 2 � 8xy � y 4

f

x 2 � y 2 � 1f �x, y� � x 2 y

60. ;  

61. ;  

62. ;
,

63. Find the points on the surface that are closest to 
the origin.

64. A package in the shape of a rectangular box can be mailed by
the US Postal Service if the sum of its length and girth (the
perimeter of a cross-section perpendicular to the length) is at
most 108 in. Find the dimensions of the package with largest
volume that can be mailed.

65. A pentagon is formed by placing an isosceles triangle on a 
rectangle, as shown in the figure. If the pentagon has fixed 
perimeter , find the lengths of the sides of the pentagon that
maximize the area of the pentagon.

66. A particle of mass moves on the surface . Let
and be the - and -coordinates of the 

particle at time .
(a) Find the velocity vector and the kinetic energy

of the particle.
(b) Determine the acceleration vector .
(c) Let and , . Find 

the velocity vector, the kinetic energy, and the accelera-
tion vector.

P

=

=

¨

m z � f �x, y�
x � x�t� y � y�t� x y

t
v

K � 1
2 m 	 v 	2

a
z � x 2 � y 2 x�t� � t cos t y�t� � t sin t

1

x 2 �
1

y 2 � 1f �x, y� �
1

x
�

1

y

x 2 � y 2 � z 2 � 3f �x, y, z� � xyz

f �x, y, z� � x 2 � 2y 2 � 3z2

x � y � 2z � 2x � y � z � 1

xy 2z3 � 2
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1. A rectangle with length and width is cut into four smaller rectangles by two lines paral-
lel to the sides. Find the maximum and minimum values of the sum of the squares of the
areas of the smaller rectangles.

2. Marine biologists have determined that when a shark detects the presence of blood in the
water, it will swim in the direction in which the concentration of the blood increases most
rapidly. Based on certain tests, the concentration of blood (in parts per million) at a point

on the surface of seawater is approximated by

where and are measured in meters in a rectangular coordinate system with the blood
source at the origin.
(a) Identify the level curves of the concentration function and sketch several members of this

family together with a path that a shark will follow to the source.
(b) Suppose a shark is at the point when it first detects the presence of blood in 

the water. Find an equation of the shark’s path by setting up and solving a differential
equation.

3. A long piece of galvanized sheet metal with width is to be bent into a symmetric form with
three straight sides to make a rain gutter. A cross-section is shown in the figure.
(a) Determine the dimensions that allow the maximum possible flow; that is, find the dimen-

sions that give the maximum possible cross-sectional area.
(b) Would it be better to bend the metal into a gutter with a semicircular cross-section?

4. For what values of the number is the function

continuous on ?

5. Suppose is a differentiable function of one variable. Show that all tangent planes to the
surface intersect in a common point.

6. (a) Newton’s method for approximating a root of an equation (see Section 4.8)
can be adapted to approximating a solution of a system of equations and

. The surfaces and intersect in a curve that intersects
the -plane at the point , which is the solution of the system. If an initial approxi-
mation is close to this point, then the tangent planes to the surfaces at
intersect in a straight line that intersects the -plane in a point , which should be
closer to . (Compare with Figure 2 in Section 3.8.) Show that

where , , and their partial derivatives are evaluated at . If we continue this pro-
cedure, we obtain successive approximations .

L W

P�x, y�

C�x, y� � e��x2�2y2 ��104

x y

�x0, y0 �

w

¨¨
x x

w-2x

r

f �x, y, z� � 

0

�x � y � z�r

x 2 � y 2 � z 2 if

if

�x, y, z� � �0, 0, 0�

�x, y, z� � �0, 0, 0�

� 3

f
z � x f �y�x�

f �x� � 0
f �x, y� � 0

t�x, y� � 0 z � f �x, y� z � t�x, y�
xy �r, s�

�x1, y1� �x1, y1�
xy �x2, y2 �

�r, s�

x2 � x1 �
fty � fy t

fx ty � fy tx
and y2 � y1 �

fx t � ftx

fx ty � fy tx

f t �x1, y1�
�xn, yn �

Problems Plus
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(b) It was Thomas Simpson (1710–1761) who formulated Newton’s method as we know it
today and who extended it to functions of two variables as in part (a). (See the biography
of Simpson on page 537.) The example that he gave to illustrate the method was to solve
the system of equations

In other words, he found the points of intersection of the curves in the figure. Use the
method of part (a) to find the coordinates of the points of intersection correct to six deci-
mal places.

7. If the ellipse is to enclose the circle , what values of and
minimize the area of the ellipse?

8. Among all planes that are tangent to the surface , find the ones that are farthest
from the origin.

x x � y y � 1000 x y � y x � 100

y

4

2

0 2 4 x

xx+yy=1000

xy+yx=100x

x 2�a 2 � y 2�b 2 � 1 x 2 � y 2 � 2y a b

xy 2z 2 � 1
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