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Partial Derivatives

Graphs of functions of two variables are
surfaces that can take a variety of
shapes, including that of a saddle or
mountain pass. At this location in
southern Utah (Phipps Arch) you can
see a point that is a minimum in one
direction but @ maximum in another
direction. Such surfaces are discussed
in Section 14.7.

Photo by Stan Wagon, Macalester College

So far we have dealt with the calculus of functions of a single variable. But, in the real world, physical
quantities often depend on two or more variables, so in this chapter we turn our attention to functions of
several variables and extend the basic ideas of differential calculus to such functions.

901
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902 CHAPTER 14 PARTIAL DERIVATIVES

m Functions of Several Variables

In this section we study functions of two or more variables from four points of view:
= verbally (by a description in words)
= numericaly  (by atable of values)
= algebraicaly (by an explicit formula)
= visualy (by agraph or level curves)

[ Functions of Two Variables

The temperature T at a point on the surface of the earth at any given time depends on the
longitude x and latitude y of the point. We can think of T asbeing afunction of the two vari-
ables x and y, or asafunction of the pair (x, y). We indicate this functional dependence by
writing T = f(x, y).

Thevolume V of acircular cylinder depends on its radius r and its height h. In fact, we
know that V = 7r?h. We say that V isafunction of r and h, and we write V(r, h) = zrr?h.

Definition A function f of two variables is arule that assigns to each ordered pair
of real numbers (x, y) in aset D aunique real number denoted by f(x, y). The set
D isthe domain of f and its range isthe set of valuesthat f takes on, that is,
{f(x,y) | (x,y) € D}.

We often write z = f (X, y) to make explicit the value taken on by f at the general point

(X, y). The variables x and y are independent variables and z is the dependent variable.
[Compare this with the notation y = f(x) for functions of asingle variable.]

z A function of two variablesisjust afunction whose domain is a subset of R? and whose

range is asubset of R. Oneway of visualizing such afunction is by means of an arrow dia-

/_\ fy) " gram (see Figure 1), where the domain D is represented as a subset of the xy-plane and the

(x,y) rangeisaset of numberson areal line, shown asaz-axis. For instance, if f(x, y) represents

\/ the temperature at apoint (x, y) in aflat metal plate with the shape of D, we can think of the

0 x z-axis as athermometer displaying the recorded temperatures.
(a,b) f(a,b) If afunction f isgiven by aformulaand no domain is specified, then the domain of f is

understood to be the set of all pairs (x, y) for which the given expression is a well-defined
real number.

o

FIGURE 1 [E7YZTF] For each of the following functions, evaluate f(3, 2) and find and sketch the
domain.

VX +y+1
X

_—y (b) f(x,y) =xIn(y? —x)

@ fx,y) =
SOLUTION
V3+2+1 /6

@ fGa="—3—7 =75

The expression for f makes sense if the denominator is not 0 and the quantity under the
square root sign is nonnegative. So the domain of f is

D={xy) | x+y+1=0, x#1}
Theinequality x +y + 1= 0,0ry = —x — 1, describes the points that lie on or above
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FIGURE 3
Domain of f(x,y)=xIn(y*—x)

The New Wind-Chill Index

A new wind-chill index was introduced in
November of 2001 and is more accurate than
the old index for measuring how cold it feels
when it's windy. The new index is based on a
model of how fast a human face loses heat. It
was developed through clinical trials in which
volunteers were exposed to a variety of temper-
atures and wind speeds in a refrigerated wind
tunnel.

SECTION 14.1  FUNCTIONS OF SEVERAL VARIABLES 903

theliney = —x — 1, while x # 1 means that the points on the line x = 1 must be
excluded from the domain. (See Figure 2.)

(b) (3,2 =3In(22—3)=3In1=0

SinceIn(y? — x) is defined only when y? — x > 0, that is, x < y?, the domain of f is
D = {(x,y) | x < y?}. Thisisthe set of points to the l&ft of the parabolax =y (See
Figure 3.) [ |

Not all functions can be represented by explicit formulas. The function in the next exam-
pleisdescribed verbally and by numerical estimates of its values.

7T In regions with severe winter weather, the wind-chill index is often used to
describe the apparent severity of the cold. Thisindex W is a subjective temperature that
depends on the actual temperature T and the wind speed ». So W isafunction of T and v,
and we can write W = (T, »). Table 1 records values of W compiled by the National
Weather Service of the US and the Meteorological Service of Canada.

TABLE 1 Wind-chill index as afunction of air temperature and wind speed
Wind speed (km/h)

v 5 10 15 20 25 30 40 50 60 70 80

4 3 2 1 1 o -1, -1} -2| -2| -3
-2| -3| -4/ -5| -6, 6| -7, =8| -9| -9|-10

-5| -7 -9|-11|-12|-12| -13 | —-14 | —-15| -16 | —16 | —17
-10|—-13 | -15| -17 | -18| -19| -20 | —21 | —22 | —23 | —23 | —24
-15|-19 | -21| -23 | -24 | -25| -26 | —27| —-29| —30| —-30 | —31
-20| —24 | -27 | —-29 | -30| -32| -33| 34| -3 | —-36| —37| —38
—25|—-30| —-33| —-35| 37| 38| -39 | —41| —42 | 43| -44 | —-45
—30| —36| -39 | —41 | —43| —44| —46 | —48 | —49 | —50 | —51 | —52
—35| —41 | —45| —48 | —49| 51| -52 | —54 | -56 | —57 | —58 | —60
—40| —47 | —-51| —54 | -56 | —-57 | -59 | —61 | -63 | —64 | —65 | —67

Actual temperature (°C)

For instance, the table shows that if the temperature is —5°C and the wind speed is
50 km/h, then subjectively it would feel as cold as a temperature of about —15°C with
no wind. So

f(=5,50) = —15 [ |

[E7ETE] In 1928 Charles Cobb and Paul Douglas published a study in which they
modeled the growth of the American economy during the period 1899-1922. They con-
sidered asimplified view of the economy in which production output is determined by the
amount of labor involved and the amount of capital invested. While there are many other
factors affecting economic performance, their model proved to be remarkably accurate.
The function they used to model production was of the form

(1] P(L, K) = bLK*™

where P is the total production (the monetary value of all goods produced in a year),
L isthe amount of labor (the total number of person-hours worked in ayear), and K is
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904 CHAPTER 14 PARTIAL DERIVATIVES

TABLE 2
Year P L K
1899 100 100 100
1900 101 105 107
1901 112 110 114
1902 122 117 122
1903 124 122 131
1904 122 121 138
1905 143 125 149
1906 152 134 163
1907 151 140 176
1908 126 123 185
1909 155 143 198
1910 159 147 208
1911 153 148 216
1912 177 155 226
1913 184 156 236
1914 169 152 244
1915 189 156 266
1916 225 183 298
1917 227 198 335
1918 223 201 366
1919 218 196 387
1920 231 194 407
1921 179 146 417
1922 240 161 431
y
x*4+y?=9
-3 3 x
FIGURE 4

Domain of g(x,y) =9 — x> — y?

\ W

FIGURE 5

the amount of capital invested (the monetary worth of al machinery, equipment, and
buildings). In Section 14.3 we will show how the form of Equation 1 follows from cer-
tain economic assumptions.

Cobb and Douglas used economic data published by the government to obtain
Table 2. They took the year 1899 as a baseline and P, L, and K for 1899 were each
assigned the value 100. The values for other years were expressed as percentages of
the 1899 figures.

Cobb and Douglas used the method of least squares to fit the data of Table 2 to the
function

2] P(L, K) = 1.01L°7K %

(See Exercise 79 for the details.)
If we use the model given by the function in Equation 2 to compute the production in
the years 1910 and 1920, we get the values

P(147, 208) = 1.01(147)°"%(208)°* ~ 161.9
P(194, 407) = 1.01(194)°"5(407)°* =~ 235.8

which are quite close to the actual values, 159 and 231.

The production function [ 1] has subsequently been used in many settings, ranging
from individual firms to global economics. It has become known as the Cobb-Douglas
production function. Itsdomainis{(L, K) | L = 0, K = 0} because L and K represent
labor and capital and are therefore never negative. [ |

[E7YZA Find the domain and range of g(x, y) = /9 — x2 — y2.
SOLUTION The domain of g is
D={xy) | 9-x*—y*=0t={(x,y) | x* +y*< 9}
which is the disk with center (0, 0) and radius 3. (See Figure 4.) Therange of g is
{z]:=v8=x2=y2,(x,y) € D}

Since z is a positive square root, z = 0. Also, because 9 — x2 — y2 < 9, we have

N
So therangeis
{z|0<z<3}=[0,3] [
I Graphs

Another way of visualizing the behavior of a function of two variables is to consider its
graph.

Definition If f isafunction of two variables with domain D, then the graph of f
isthe set of al points (x, y, z) in R® such that z = f(x, y) and (x, y) isin D.

Just as the graph of afunction f of one variableisacurve C with equationy = f(x), so
the graph of afunction f of two variablesis a surface S with equation z = f(x, y). We can
visualizethegraph S of f aslying directly above or below itsdomain D in the xy-plane (see
Figure 5).
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FIGURE 6

X

FIGURE 7
Graph of g(x, y) = \/9 —x*—y?

FIGURE 8

SECTION 14.1  FUNCTIONS OF SEVERAL VARIABLES 905

Sketch the graph of the function f(x,y) = 6 — 3x — 2y.

SOLUTION The graph of f hastheequationz =6 — 3x — 2y,0or 3x + 2y + z = 6,
which represents a plane. To graph the plane we first find the intercepts. Putting

y = z = 0in the equation, we get X = 2 as the x-intercept. Similarly, the y-intercept is 3
and the z-intercept is 6. This helps us sketch the portion of the graph that lies in the first
octant in Figure 6. [ |

The function in Example 5 isa special case of the function
f(x,y)=ax + by +c
which iscaled alinear function. The graph of such afunction has the equation
z=ax +hy+c or ax +by—z+c=0

so it isaplane. In much the same way that linear functions of one variable are important in
single-variable calculus, we will see that linear functions of two variables play a central
rolein multivariable calculus.

7 ECUEEA Sketch the graph of g(x,y) = /9 — x? — y2.

SOLUTION The graph has equation z = /9 — x2 — y2. We square both sides of this
equation to obtain z2 = 9 — x? — y? or x2 + y? + z%> = 9, which we recognize as an
equation of the sphere with center the origin and radius 3. But, since z = 0, the graph of
g isjust the top half of this sphere (see Figure 7). [ |

NOTE An entire sphere can’t be represented by asingle function of x and y. Aswe saw
in Example 6, the upper hemisphere of the sphere x2 + y2 + 22 = 9 isrepresented by the
function g(x,y) = +/9 — x2 — y2. The lower hemisphere is represented by the function
h(x,y) = —8 — X2 — y2.

[E70EITFA Use acomputer to draw the graph of the Cobb-Douglas production function
P(L, K) = 1.01L°7K %,

SOLUTION Figure 8 shows the graph of P for values of the labor L and capital K that lie
between 0 and 300. The computer has drawn the surface by plotting vertical traces. We
see from these traces that the value of the production P increases as either L or K
increases, asis to be expected.

V| Find the domain and range and sketch the graph of h(x, y) = 4x? + y2

SOLUTION Noticethat h(x, y) isdefined for all possible ordered pairs of real numbers
(x,y), so the domain is R?, the entire xy-plane. The range of h isthe set [0, =) of al non-
negative real numbers. [Notice that x> = 0 and y? = 0, so h(x, y) = Ofor al x and y.]
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906 CHAPTER 14 PARTIAL DERIVATIVES

The graph of h has the equation z = 4x? + y?, which is the elliptic paraboloid that
we sketched in Example 4 in Section 12.6. Horizontal traces are ellipses and vertical
traces are parabolas (see Figure 9).
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FIGURE 9
Graph of h(x, y) = 4x?> + y? y .

Computer programs are readily available for graphing functions of two variables. In most
such programs, tracesin the vertical planesx = k and y = k are drawn for equally spaced
values of k and parts of the graph are eliminated using hidden line removal.

Figure 10 shows computer-generated graphs of several functions. Notice that we get an
especially good picture of a function when rotation is used to give views from different

AR
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J
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@ fle,y) = (% + 3y%)e (B) fx, y) = (62 + 3yHe "

(©) f(x,y)=sinx+siny

FIGURE 10
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FIGURE 11

Visual 14.1A animates Figure 11 by
showing level curves being lifted up to graphs
of functions.

SECTION 14.1  FUNCTIONS OF SEVERAL VARIABLES 907

vantage points. In parts (a) and (b) the graph of f isvery flat and closeto the xy-plane except
near the origin; thisis becausee ™" ¥" isvery small when x or y islarge.

[ Level Curves

So far we have two methods for visualizing functions: arrow diagrams and graphs. A third
method, borrowed from mapmakers, isacontour map on which points of constant elevation
are joined to form contour lines, or level curves.

Definition The level curves of afunction f of two variables are the curves with
equations f(x,y) = k, wherek isaconstant (in the range of f).

A level curve f(x,y) = k isthe set of all pointsin the domain of f at which f takeson
agiven valuek. In other words, it shows where the graph of f has height k.

You can see from Figure 11 the relation between level curves and horizontal traces. The
level curves f(x,y) = k are just the traces of the graph of f in the horizontal plane
z = k projected down to the xy-plane. So if you draw the level curves of a function and
visualize them being lifted up to the surface at the indicated height, then you can mentally
piece together a picture of the graph. The surface is steep where the level curves are close
together. It is somewhat flatter where they are farther apart.

FIGURE 12

One common example of level curves occurs in topographic maps of mountainous
regions, such as the map in Figure 12. The level curves are curves of constant elevation
abovesealevel. If youwalk aong one of these contour lines, you neither ascend nor descend.
Another common example is the temperature function introduced in the opening paragraph
of thissection. Herethelevel curvesare called isothermals and join locations with the same
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908 CHAPTER 14 PARTIAL DERIVATIVES

temperature. Figure 13 shows a weather map of the world indicating the average January
temperatures. The isothermals are the curves that separate the colored bands.

FIGURE 13
World mean sea-level temperatures
in January in degrees Celsius

From Atmosphere: Introduction to Me logy, 4th Edition, 1989.
© 1989 Pearson Education, Inc.

L 50— A contour map for afunction f isshown in Figure 14. Useit to estimate the
5 ] values of (1, 3) and f(4, 5).
4 /—W (—\ SOLUTION The poi i ith z-

point (1, 3) lies partway between the level curves with z-values 70
3 //f /—\\ [\\ and 80. We estimate that
VT ) 19 =73

2 80 /| 20780
) \ \70 ) ( 70 Similarly, we estimate that f(4,5) =~ 56 [

of | . 3 4 5 «x Sketch the level curves of the function f(x,y) = 6 — 3x — 2y for the
valuesk = —6, 0, 6, 12.

SOLUTION The level curves are

6-3X—-2y=k or X+2y+(k—-6)=0

FIGURE 14

Thisis afamily of lines with slope —3. The four particular level curves with
k=-6,0,6,and12ae3x + 2y — 12=0,3x + 2y —6=0,3x + 2y = 0, and

3x + 2y + 6 = 0. They are sketched in Figure 15. The level curves are equally spaced
parallel lines because the graph of f isaplane (see Figure 6).

0 X
=z [ \7 = \=
FIGURE 15 N\ N\ N\ N\
<) [on o \
Contour map of <

flx,y)=6—3x—2y
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FIGURE 16

Contour map of g(x, y) =9 — x> — y?

Visual 14.1B demonstrates the
connection between surfaces and their
contour maps.

FIGURE 17
The graph of h(x, y) = 4x*+y*+1
isformed by lifting the level curves.

SECTION 14.1  FUNCTIONS OF SEVERAL VARIABLES 909

1 IE7XTEZTERN Sketch the level curves of the function
gx,y)=v9—x2—y2  for k=0,1,23
SOLUTION The level curves are
V9—x2—yZ=k or x2+y?=9-—Kk?

Thisis afamily of concentric circles with center (0, 0) and radius /9 — k2. The cases
k= 0,1, 2, 3are shown in Figure 16. Try to visualize these level curveslifted up to
form a surface and compare with the graph of g (a hemisphere) in Figure 7. (See TEC

Visual 14.1A.)
y
k=1
/ k=0
Q |

Sketch some level curves of the function h(x, y) = 4x? + y? + 1.

SOLUTION The level curves are

2 2

X y

Z+yr+1= + =
ax* +y 1=k or k-1 k-1

1

which, for k > 1, describes a family of ellipses with semiaxes3vk — 1 and vk — 1.
Figure 17(a) shows a contour map of h drawn by a computer. Figure 17(b) shows these
level curves lifted up to the graph of h (an eliptic paraboloid) where they become hori-
zontal traces. We see from Figure 17 how the graph of h is put together from the level

curves.
7

(a) Contour map (b) Horizontal traces are raised level curves L
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K
300 T+

100 T

FIGURE 18

(a) Level curves of f(x,y) = —xye ™™’

FIGURE 19 (c) Level curvesof f(x,y) =

Plot level curves for the Cobb-Douglas production function of Example 3.

SOLUTION In Figure 18 we use a computer to draw a contour plot for the Cobb-
Douglas production function

P(L, K) = LO1L°PK®

Level curves are labeled with the value of the production P. For instance, the level curve
labeled 140 shows all values of the labor L and capital investment K that result in a pro-
duction of P = 140. We see that, for a fixed value of P, as L increases K decreases, and
vice versa. [ |

For some purposes, a contour map is more useful than agraph. That is certainly truein
Example 13. (Compare Figure 18 with Figure 8.) It is also true in estimating function val-
ues, asin Example 9.

Figure 19 shows some computer-generated level curves together with the corresponding
computer-generated graphs. Notice that the level curvesin part (¢) crowd together near the
origin. That corresponds to the fact that the graph in part (d) is very steep near the origin.

(b) Two views of f(x, y) = —xye >’

Ty
x2+y2+1

[ Functions of Three or More Variables

A function of three variables, f, isarule that assigns to each ordered triple (x, y, z) in a
domain D C R*aunique real number denoted by f(x, y, z). For instance, the temperature
T at apoint on the surface of the earth depends on the longitude x and latitudey of the point
and on thetimet, so we could write T = f(x, y, t).
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FIGURE 20

SECTION 14.1  FUNCTIONS OF SEVERAL VARIABLES AN

[T Find the domain of f if

f(X,y,2) =In(z —y) + xysinz

SOLUTION The expression for f(x, Y, z) isdefined aslong asz — y > 0, so the domain of
fis

D={xyz2) €R®| z>y}
Thisis a half-space consisting of al points that lie above the planez = y. [ |

It'svery difficult to visualize afunction f of three variables by its graph, since that would
liein afour-dimensional space. However, we do gain someinsight into f by examining its
level surfaces, which are the surfaces with equations f(x, y, z) = k, wherek is a constant.
If the point (X, y, z) moves along alevel surface, the value of f(x,y, z) remainsfixed.

[ETNEITFEE Find the level surfaces of the function
f(x,y,z) =x2+ y2 + 72

SOLUTION The level surfaces are x? + y? + z2 = k, wherek = 0. These form a family
of concentric spheres with radius vk . (See Figure 20.) Thus, as (X, y, z) varies over any
sphere with center O, the value of f(x, y, z) remains fixed. [

Functions of any number of variables can be considered. A function of n variablesisa
rule that assigns a number z = f (X4, X2, ..., Xn) to an n-tuple (xy, X2, . .., X,) of real num-
bers. We denote by R" the set of all such n-tuples. For example, if acompany usesn different
ingredientsin making afood product, ¢; isthe cost per unit of theith ingredient, and x; units
of the ith ingredient are used, then the total cost C of the ingredients is afunction of then
variables X1, X2, . . ., Xn!

(3] C =1f(Xy, X2, ..., Xn) = C1X1 + CoXo + * +* + CoXn

Thefunction f isarea-valued function whose domain is a subset of R". Sometimeswe
will use vector notation to write such functions more compactly: If X = (X1, Xz, ..., Xn), We
often write f(x) inplace of f(xy, X2, ..., X»). With this notation we can rewrite the function
defined in Equation 3 as

f(x) =c-x

wherec = (cy, Cz, ..., Cy) and ¢ - x denotes the dot product of the vectors ¢ and x in V,.

Inview of the one-to-one correspondence between points (X1, X2, . . ., X») iNR" and their
position vectors X = (X1, Xz, - .., Xa) in V,, we have three ways of looking at a function f
defined on a subset of R":

1. Asafunction of n real variables x4, X2, ..., Xn
2. Asafunction of asingle point variable (x4, X2, ..., Xn)
3. Asafunction of asingle vector variable X = (X1, X2, ..., Xn)

We will seethat all three points of view are useful.
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Exercises

1. In Example 2 we considered the function W = (T, »), where

discussed in Example 3 that the production will be doubled

W is the wind-chill index, T is the actual temperature, and v is

the wind speed. A numerical representation is given in Table 1.

(a) What isthe value of f(—15, 40)? What is its meaning?

(b) Describe in words the meaning of the question “For what
vaueof vis f(—20, ») = —307?" Then answer the question.

(c) Describe in words the meaning of the question “For what
value of Tis f(T, 20) = —497" Then answer the question.

(d) What is the meaning of the function W = f(—5, v)?
Describe the behavior of this function.

(e) What is the meaning of the function W = f (T, 50)?
Describe the behavior of this function.

2. The temperature-humidity index | (or humidex, for short) is the
perceived air temperature when the actual temperatureis T and
the relative humidity ish, so we can write | = f(T, h). The fol-
lowing table of values of | is an excerpt from atable compiled
by the National Oceanic & Atmospheric Administration.

TABLE 3 Apparent temperature as afunction
of temperature and humidity

Relative humidity (%)

h 20 30 40 50 60 70

80 7 78 79 81 82 83

85 82 84 86 88 90 93

90 87 90 93 96 100 106

95 93 96 101 107 114 124

Actual temperature (°F)

100 99 104 110 120 132 144

(8 What isthe value of (95, 70)? What is its meaning?

if both the amount of labor and the amount of capital are
doubled. Determine whether thisis aso true for the general
production function

P(L, K) = bL*K '™

. A model for the surface area of a human body is given by the

function
S = f(w, h) = 0.1091 *4*®h 72

where w is the weight (in pounds), h is the height (in inches),
and S is measured in sgquare feet.

(a) Find f(160, 70) and interpret it.

(b) What is your own surface area?

. The wind-chill index W discussed in Example 2 has been

modeled by the following function:
W(T,») = 13.12 + 0.6215T — 11.37»%% + 0.3965T»°¢

Check to see how closely this model agrees with the valuesin
Table 1 for afew values of T and v.

. The wave heights h in the open sea depend on the speed »

of the wind and the length of timet that the wind has been

blowing at that speed. Values of the function h = f (v, t) are

recorded in feet in Table 4.

(a) What isthe value of (40, 15)? What is its meaning?

(b) What is the meaning of the function h = (30, t)? Describe
the behavior of this function.

(c) What is the meaning of the function h = f (v, 30)? Describe
the behavior of this function.

TABLE 4

Duration (hours)

(b) For what value of h is (90, h) = 100?
(c) For what value of T is f(T, 50) = 88? SN 5 10 15 20 30 40 50
(d) What are the meanings of the functions | = f (80, h)
and | = (100, h)? Compare the behavior of these two 10 2 2 2 2 2 2 2
functions of h. @ 15 4 4 5 5 5 5 5
s)
3. A manufacturer has modeled its yearly production function P & 20 5 7 8 8 9 9 9
(the monetary value of its entire production in millions of §
dollars) as a Cobb-Douglas function # | 30 9 13 16 17 18 19 19
o
<
P(L, K) = 147L°%K® S| 4 | 14| 2| 25 28 3| B | 33
where L is the number of labor hours (in thousands) and K is
the invested capital (in millions of dollars). Find P(120, 20) >0 19 29 % 40 45 8 %0
and interpret it. 60 24 37 47 54 62 67 69
4, Verify for the Cobb-Douglas production function
8. A company makes three sizes of cardboard boxes: small,

P(L, K) = 1.OIL°7K 0%

Graphing calculator or computer required

medium, and large. It costs $2.50 to make a small box, $4.00

1. Homework Hints available at stewartcalculus.com
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10

1

12

for a medium box, and $4.50 for alarge box. Fixed costs

are $3000.

(a) Expressthe cost of making x small boxes, y medium
boxes, and z large boxes as a function of three variables:
C=1(xY,2).

(b) Find f (3000, 5000, 4000) and interpret it.

(c) What is the domain of f?

. Letg(x,y) = cos(x + 2y).
(a) Evaluate g(2, —1).
(b) Find the domain of g.
(c¢) Find the range of g.

. LetF(x,y) =1+ V4 — y2.
(a) Evaluate F(3, 1).
(b) Find and sketch the domain of F.
(c) Find the range of F.

CLetf(x,y,2) = VX + VY + vz +1In4 = x2—y? - z?),
(a) Evaluatef(1, 1, 1).
(b) Find and describe the domain of f.
. Letg(x,y,2) =x%%2J10 — x —y — z.
(a) Evauatey(1, 2, 3).
(b) Find and describe the domain of g.

13-22 Find and sketch the domain of the function.

13
15
17
18

19

20

21.

22.

L f(y) =V2x — y 18. f(x,y) = Vxy
CfOGY) =1n(9 — x2—9y?) 16, f(x,y) = /X2 —y2
Cfxy) =1 —x2 — /1y

L f(XY) =y + /25 — x2 — y2

.f(x,y):ly_;xxz2

. f(x,y) = arcsin(x? + y? — 2)

f(x,y,2) =1 - x2—y?— 22

f(x,y,2z) = In(16 — 4x? — 4y* — z?)

23-31 Sketch the graph of the function.

2. f(x,y)=1+y 24 f(x,y) =2—-x

25. f(x,y) = 10 — 4x — by 26. f(x,y)=¢e”

27. f(x,y) =y*+ 1 28. f(x,y) =1+ 2x> + 2y?
29. f(x,y) =9 — x? — 9y? 30. f(x,y) = V4x2 + y?

3. f(x,y) = V4 — 4x2 — y?

32. Match the function with its graph (labeled 1-V1). Give reasons

for your choices.

@ f(xy) = [x] +]y|
(©) f(xy) = Trxi1y?
@ fx,y) = (x —y?

() f(x,y) = |xy|
(d) f(x,y) = (x*2 —y?)?
(f) f(x,y) = sin(|x| + |y|)

FUNCTIONS OF SEVERAL VARIABLES 913

SECTION 14.1

33. A contour map for afunction f is shown. Use it to estimate the

values of f(—3,3) and f(3, —2). What can you say about the
shape of the graph?

B

\

\

/ \ /

VAR ER]

\ [\ I/

\ \\0/‘/ / 307 2
~ S s L /‘2077
e }0:7

34. Shown is a contour map of atmospheric pressure in North

America on August 12, 2008. On the level curves (called
isobars) the pressure is indicated in millibars (mb).
(a) Estimate the pressure at C (Chicago), N (Nashville),
S (San Francisco), and V (Vancouver).
(b) At which of these locations were the winds strongest?
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914 CHAPTER 14 PARTIAL DERIVATIVES

35. Level curves (isothermals) are shown for the water temperature 39-42 A contour map of afunction is shown. Use it to make a
(in°C) in Long Lake (Minnesota) in 1998 as a function of rough sketch of the graph of f.
depth and time of year. Estimate the temperature in the lake on

June 9 (day 160) at a depth of 10 m and on June 29 (day 180) y
at adepth of 5m. \
0 T Y
\ 1216 20
8
E°]
S 20 16
12
ra:% 10+
15+ 8 an. y
120 160 200 240 280
=3

Day of 1998

36. Two contour maps are shown. One is for afunction f whose
graph is a cone. The other isfor afunction g whose graph isa
paraboloid. Which is which, and why?

43-50 Draw a contour map of the function showing several level

curves.

43. f(x,y) = (y — 2x)? 4. f(x,y) =x>—y

85. f(x,y) =X +y 46. f(x,y) = In(x? + 4y?)
47. f(x,y) = ye* 48. f(x,y) =y secx

49, f(x,y) = yz — x2 50. f(x,y) =y/(x? + y?)

51-52 Sketch both a contour map and a graph of the function and

compare them.
2 2 — \/f
37. Locate the points A and B on the map of Lonesome Mountain 51 f(xy) =x*+ 9y 52. f(x.y) 36 — Ox2 — dy*
(Figure 12). How would you describe the terrain near A?
Near B?

53. A thin metal plate, located in the xy-plane, has temperature
T(x,y) at the point (x, y). The level curves of T are called
isothermals because at all points on such a curve the tempera-
ture is the same. Sketch some isothermals if the temperature
function is given by

38. Make arough sketch of a contour map for the function whose
graph is shown.

100
Ty = e oy
54. If V(X,y) isthe electric potential at a point (x, y) in the
xy-plane, then the level curves of V are called equipotential
curves because at al points on such a curve the electric
potential is the same. Sketch some equipotential curves if

V(x,y) = ¢/+/r2 — x2 — y2, where c is a positive constant.
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55-58 Use a computer to graph the function using various
domains and viewpoints. Get a printout of one that, in your opin-
ion, gives agood view. If your software also produces level
curves, then plot some contour lines of the same function and
compare with the graph.

55. f(x,y) = xy? — x3® (monkey saddle)
56. f(x,y) = xy® — yx® (dog saddle)
57. f(x,y) = e **3(sin(x?) + cos(y?))

58. f(X,y) = cosx cosy

SECTION 14.1  FUNCTIONS OF SEVERAL VARIABLES 915

59-64 Match the function (&) with its graph (labeled A—F below)
and (b) with its contour map (labeled 1-V1). Give reasons for
your choices.

59. z = sin(xy) 60. z = e*cosy

61. z=sin(x —y) 62. z =sinx — siny
63. z=(1—x?(1—y?

X~y

2=
: 1+ x2+y2

e
\\\\\\),7///// >

\
|

X
R

0
IR
A )*,x‘:‘f'
& IR
N

',14/ 0,

/4

C

X

)
)
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65-68 Describe the level surfaces of the function.
65. f(Xx,y,z) =x + 3y + 52

66. f(x,y,z) = x? + 3y? + 572

67. f(x,y,z) = y? + z?

68. f(x,y,z) =x>—y?—z?

69-70 Describe how the graph of g is obtained from the graph
of f.

69. (@) g(x,y) = f(x,y) + 2
() g(x,y) = 2f(x,y)
(© g(x,y) = —f(x,y)
(d) glx,y) =2 —f(x,y)
70. (@ g(x,y) =f(x — 2,y)
() gix,y) =f(x,y + 2
© glx,y) =f(x+ 3,y — 4

71-72 Use a computer to graph the function using various

domains and viewpoints. Get a printout that gives a good view of
the “peaks and valleys.” Would you say the function has a maxi-
mum value? Can you identify any points on the graph that you
might consider to be “local maximum points’? What about “local
minimum points’?

7. f(x,y) = 3x — x* — 4y? — 10xy
72. T(x,y) = xye’xz’y2

73-74 Use a computer to graph the function using various

domains and viewpoints. Comment on the limiting behavior of
the function. What happens as both x and y become large? What
happens as (X, y) approaches the origin?

ty
X2 + y?

X
78. f(x,y) = XzTyyz

3. f(x,y) =

/A4 75. Use a computer to investigate the family of functions

f(x,y) = e, How does the shape of the graph depend
onc?

m Limits and Continuity

A

A 18.

A 19

76.

Use a computer to investigate the family of surfaces
z = (ax2 + by?)e "’

How does the shape of the graph depend on the numbers a
and b?

. Use a computer to investigate the family of surfaces

z=x2+ y? + cxy. In particular, you should determine the
transitional values of ¢ for which the surface changes from
one type of quadric surface to another.

Graph the functions
fx,y) =Vx2+y?

fx,y) = 77

f(x,y) = Inyx2 + y2
f(x,y) = sin(Vx + y?)

1
and f(x,y) = Nasd

In generdl, if g isafunction of one variable, how is the graph
of

f(x,y) = g(vxz + y?)

obtained from the graph of ¢?

. (8) Show that, by taking logarithms, the general Cobb-

Douglas function P = bL*K*~* can be expressed as
P L
In—=1Inb + aln—
n K n aln K

(b) If weletx = In(L/K) andy = In(P/K), the equation in
part (a) becomes the linear equationy = ax + Inb. Use
Table 2 (in Example 3) to make atable of values of
In(L/K) and In(P/K) for the years 1899-1922. Then use a
graphing calculator or computer to find the least squares
regression line through the points (In(L/K), In(P/K)).

(c) Deduce that the Cobb-Douglas production function is
P — 1.01L0'75K0'25.

Let's compare the behavior of the functions

B i 2+y2) X2_y2

2 and g(X, y) =

X2+ y2

as x and y both approach 0 [and therefore the point (x, y) approaches the origin].
Tables 1 and 2 show values of f(x,y) and g(x, y), correct to three decimal places, for
points (X, y) near the origin. (Notice that neither function is defined at the origin.)
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TABLE 1 Vauesof f(x,Yy)

SECTION 14.2 LIMITS AND CONTINUITY 917

TABLE 2 Valuesof g(x, y)

N Y| -10 | -05 | —-02 0 0.2 0.5 1.0 N Y| -10 | —-05 | —0.2 0 0.2 0.5 1.0
—1.0 | 0455 | 0.759 | 0.829 | 0.841 | 0.829 | 0.759 | 0.455 =il{0) 0.000| 0.600| 0.923| 1.000 0.923| 0.600| 0.000
—05 | 0.759 | 0.959 | 0.986 | 0.990 | 0.986 | 0.959 | 0.759 —0.5 | —-0.600| 0.000| 0.724| 1.000 0.724| 0.000| —0.600
—0.2 | 0.829 | 0.986 | 0.999 | 1.000 | 0.999 | 0.986 | 0.829 —0.2 | —0.923 | —0.724| 0.000| 1.000 0.000 | —0.724 | —0.923
0 0.841 | 0.990 | 1.000 1.000 | 0.990 | 0.841 0 | —1.000|—1.000  —1.000 —1.000 | —1.000 | —1.000
0.2 | 0.829 | 0.986 | 0.999 | 1.000 | 0.999 | 0.986 | 0.829 0.2 | —0.923| —0.724| 0.000| 1.000 0.000 | —0.724 | —0.923
05 | 0.759 | 0.959 | 0.986 | 0.990 | 0.986 | 0.959 | 0.759 0.5 | -0.600| 0.000| 0.724| 1.000 0.724| 0.000| —0.600
1.0 | 0455 | 0.759 | 0.829 | 0.841 | 0.829 | 0.759 | 0.455 1.0 0.000| 0.600| 0.923| 1.000 0.923| 0.600| 0.000

It appearsthat as (X, y) approaches (0, 0), the values of (X, y) are approaching 1 whereas
thevalues of g(x, y) aren’t approaching any number. It turns out that these guesses based on
numerical evidence are correct, and we write

sin(x? + y?) _ and . x2 —y?

CR im ——— doesnot exist
(xy)—=00 X +Yy (xy)—0,0 X + Yy

In general, we use the notation

li f(x,y) =1L

(%, y)er(]a, b) (X y)

to indicate that the values of f(x, y) approach the number L as the point (x, y) approaches
the point (a, b) along any path that stays within the domain of f. In other words, we can
make the values of f(x,y) as close to L as we like by taking the point (x, y) sufficiently
close to the point (a, b), but not equal to (a, b). A more precise definition follows.

|I] Definition Let f be afunction of two variables whose domain D includes
points arbitrarily closeto (a, b). Then we say that the limit of f(x,y) as (x,y)
approaches (a, b) is L and we write

lim : f(x,y) =1L

(x,y)—(a,b

if for every number ¢ > 0 there is a corresponding number 6 > 0 such that

if (xy)€D and 0<.(x—a2+(y—b2<3s then |f(x,y)—L|<e

Other notations for the limit in Definition 1 are

Ln; f(x,y) =1L and f(x,y) =L as (x,y) = (a, b)

y—b

Notice that | f(x,y) — L| is the distance between the numbers f(x,y) and L, and
J(x —a)2 + (y — b)? isthe distance between the point (x, y) and the point (a, b). Thus
Definition 1 says that the distance between f(x, y) and L can be made arbitrarily small by
making the distance from (x, y) to (a, b) sufficiently small (but not 0). Figure 1 illustrates
Definition 1 by means of an arrow diagram. If any small interval (L — &, L + &) isgiven
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918 CHAPTER 14 PARTIAL DERIVATIVES

around L, then we can find adisk D with center (a, b) and radius 6 > 0 such that f maps
all the pointsin D; [except possibly (a, b)] into theinterval (L — &, L + &).

y z :
(x6,3) Lre
D }‘:\\/\ L-e S
(a,b) f f+8 m 8
0 X L—e¢ : : :
o0 / I/J ID y
X 8
(a.b)
FIGURE 1 FIGURE 2

Another illustration of Definition 1isgiven in Figure 2 where the surface S is the graph
of f.If e > Oisgiven, we can find § > 0 such that if (X, y) isrestricted to lie in the disk
Dsand (x,y) # (a, b), then the corresponding part of S lies between the horizontal planes
z=L—-—eandz=1L + &.

For functions of asingle variable, when we let x approach a, there are only two possible
directions of approach, from the left or from the right. We recall from Chapter 1 that if
limya- f(X) 7 limy_q+ f(X), thenlim,_., f(x) does not exist.

y For functions of two variables the situation is not as simple because we can let (X, y)
approach (a, b) from an infinite number of directions in any manner whatsoever (see Fig-

//\/\/m ure 3) aslong as (x, y) stays within the domain of f.
b Definition 1 says that the distance between f(x, y) and L can be made arbitrarily small
\ by making the distance from (x, y) to (a, b) sufficiently small (but not 0). The definition
0 a x refers only to the distance between (x, y) and (a, b). It does not refer to the direction of
/ approach. Therefore, if the limit exists, then f(x, y) must approach the same limit no mat-
ter how (X, y) approaches (a, b). Thus, if we can find two different paths of approach along
FIGURE 3 which the function f(x, y) has different limits, then it follows that lim y)— @b f(X, y) does

not exist.

If f(x,y) = Lias(x,y) — (a, b) dongapath C; and f(x,y) — L, as
(x,y) — (a, b) dong apath C,, where L; # L, thenlim,y)— @5 f(X, y) does
not exist.

2 2

. X? =y .
I BTN show that  lim ——— does not exist.

(xy)—0,0 X% +y

y SOLUTION Let f(x,y) = (x? — y?)/(x? + y?). First let's approach (0, 0) along the
x-axis. Theny = 0 gives f(x, 0) = x*x?> = 1foral x # 0, s0

f=-1 f(x,y)—1 a  (x,y)— (0, 0) along the x-axis

_y2

f=1 * We now approach along the y-axis by putting x = 0. Then f(0,y) = { = —1for

dly # 0,0 y

f(x,y) — -1 as (x,y) — (0, 0) along the y-axis

FIGURE 4 (See Figure 4.) Since f has two different limits along two different lines, the given limit
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SECTION 14.2 LIMITS AND CONTINUITY 919

does not exist. (This confirms the conjecture we made on the basis of numerical evi-
dence at the beginning of this section.) [

If f(x,y) = xy/(x? + y?), d0$<x,y!@o,o> f(x,y) exist?
SOLUTION If y = 0, then f(x, 0) = 0/x? = 0. Therefore

f(x,y)—0 as (x, y) — (0, 0) dong the x-axis
If x =0, then f(0,y) =0/y>=0, 0

f(x,y) —0 as (x, y) — (0, 0) dong the y-axis

Although we have obtained identical limits along the axes, that does not show that the
given limit is 0. Let's now approach (0, 0) along ancther line, say y = x. For all x # 0,

x2 1
e ="2=3
Therefore f(x,y)—3 a (xYy)— (0,0 aongy=x
FIGURE 5 (See Figure 5.) Since we have obtained different limits along different paths, the given
limit does not exist. [

Figure 6 sheds some light on Example 2. The ridge that occurs abovetheliney = x cor-
responds to the fact that f(x,y) = 3 for all points (x,y) on that line except the origin.

In Visual 14.2 a rotating line on the
surface in Figure 6 shows different limits at
the origin from different directions.

FIGURE 6

Xy
Sy = mye

1 ETEEE If f(x,y) = Y does lim ) f(x,y) exist?

X2+ y*’ (%Y)—(0,0

SOLUTION With the solution of Example 2 in mind, let’s try to save time by letting
(x,y) — (0, 0) dlong any nonvertical line through the origin. Then y = mx, where m

Figure 7 shows the graph of the function in isthe slope, and
Example 3. Notice the ridge above the
parabola x = y?.

x(mx)? m3x3 m°x
Flxy) = F0x mx) = X2+ (Mx)* X2+ mxX* 1+ mx?

So f(x,y)—0 as (x,y) — (0, 0) dongy = mx

Thus f has the same limiting value along every nonvertical line through the origin. But
that does not show that the given limit is O, for if we now let (x, y) — (0O, 0) along the
parabola x = y? we have

PYCRSD id SEN AN
FIGURE 7 f(x,y) =f(y%y) Gy 2
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920 CHAPTER 14 PARTIAL DERIVATIVES

Another way to do Example 4 is to use the

Squeeze Theorem instead of Definition 1. From

it follows that
li

im
(x,y)—(0,0)

3ly[=0

and so the first inequality in shows that the
given limit is 0.

S0 f(x,y)—3 as  (x,y)—(0,0)along x =y
Since different paths lead to different limiting values, the given limit does not exist. mmm

Now let’s look at limits that do exist. Just as for functions of one variable, the calcula-
tion of limits for functions of two variables can be greatly simplified by the use of proper-
ties of limits. The Limit Laws listed in Section 1.6 can be extended to functions of two
variables: The limit of a sum is the sum of the limits, the limit of a product is the product
of the limits, and so on. In particular, the following equations are true.

[2] lim x=a lim y=hb lim c=c

(x,y)—(a,b) (x,y)—(a,b) (x,y)—(a, b)
The Squeeze Theorem also holds.

Xy
I 2_y2 if it exists.
xy)—00 X +Yy

EXE] Find

SOLUTION As in Example 3, we could show that the limit along any line through the
origin is 0. This doesn’t prove that the given limit is 0, but the limits along the parabolas
y = x%and x = y? also turn out to be 0, so we begin to suspect that the limit does exist
and is equal to 0.

Let e > 0. We want to find 6 > 0 such that

3 2
if 0<x2+y2<§ then ‘szTyyz—O <e
: : 3x7y|
that is, if 0<x?+y2<é then ———<e

X2 + y?

But x2 < x? + y2since y? = 0, so x¥(x? + y?) < 1 and therefore

2
3 e I e o

X2 + y?
Thus if we choose 6§ = /3 and let 0 < /x? + y2 < §, then

3x%y

x2+y2_0

<3/X2FyZ<36= 3(%) —¢
Hence, by Definition 1,

3x?
m Z—yz =0 [ ]
*x =00 X + Yy

I Continuity

Recall that evaluating limits of continuous functions of a single variable is easy. It can be
accomplished by direct substitution because the defining property of a continuous function
is limy_., f(x) = f(a). Continuous functions of two variables are also defined by the direct
substitution property.
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E] Definition A function f of two variables is called continuous at (a, b) if

lim f(x,y) =f(a, b)

(x,y)—(a b)

We say f is continuous on D if f is continuous at every point (a, b) in D.

The intuitive meaning of continuity is that if the point (x, y) changes by a small amount,
then the value of f(x, y) changes by a small amount. This means that a surface that is the
graph of a continuous function has no hole or break.

Using the properties of limits, you can see that sums, differences, products, and quo-
tients of continuous functions are continuous on their domains. Let’s use this fact to give
examples of continuous functions.

A polynomial function of two variables (or polynomial, for short) is a sum of terms of
the form cx™y", where c is a constant and m and n are nonnegative integers. A rational
function is a ratio of polynomials. For instance,

f(x,y) =x*+ 5x3%? + 6xy* — 7y + 6

is a polynomial, whereas

2xy + 1
g y) = ~3 7 y?
is a rational function.

The limits in show that the functions f(x,y) = X, g(x,y) =y, and h(x, y) = c are
continuous. Since any polynomial can be built up out of the simple functions f, g, and h by
multiplication and addition, it follows that all polynomials are continuous on R?. Likewise,
any rational function is continuous on its domain because it is a quotient of continu-
ous functions.

1 ETEE Evaluate  lim (x3y® — x3y? + 3x + 2y).
6y =12
X y)—d,

SOLUTION Since f(x,y) = x?y® — x3y? + 3x + 2y is a polynomial, it is continuous
everywhere, so we can find the limit by direct substitution:

lim (x%3 —x%?+3x+2y)=12-22—-1%-224+3-1+2-2=11 mm

(xy)—(12)
x2 — y2
SCNETEE Where is the function f(x,y) = XZTyZ continuous?

SOLUTION The function f is discontinuous at (0, 0) because it is not defined there.
Since f is a rational function, it is continuous on its domain, which is the set
D ={xy) | (x,y) # (0,0} -

[ EXAMPLE 7 JRGH

X2 =¥ if (x,y) # (0, 0)
g(x,y) = x* +y?
0 if (x,y)=(0,0)

Here g is defined at (0, 0) but g is still discontinuous there because lim y)—,0) g(X, y)
does not exist (see Example 1). [ |
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Figure 8 shows the graph of the continuous
function in Example 8.

A 777
A7
AT

L7777
17777
Z

NN
AN
NN
\\S7/7)
/)]

FIGURE 8

FIGURE 9

The function A(x, y) = arctan(y/x)
is discontinuous where x = 0.

[GWIHTEY Let

XY if (x,y) # (0, 0)
X2 + y?
0 if (x,y)=1(0,0)

f(x,y) =

We know f is continuous for (x, y) # (0, 0) since it is equal to a rational function there.
Also, from Example 4, we have

2,

X7y

lim fx,y) = lim ——>=0=f(00
(x,y)—(0,0) ( y) xy)—00 X2+ yz ( )
Therefore f is continuous at (0, 0), and so it is continuous on R, —

Just as for functions of one variable, composition is another way of combining two con-
tinuous functions to get a third. In fact, it can be shown that if f is a continuous function of
two variables and g is a continuous function of a single variable that is defined on the range
of f, then the composite function h = g o f defined by h(x, y) = g(f(x, y)) is also a contin-
uous function.

IE7XTEITE] Where is the function h(x, y) = arctan(y/x) continuous?

SOLUTION The function f(x,y) = y/x is a rational function and therefore continuous
except on the line x = 0. The function g(t) = arctan t is continuous everywhere. So the
composite function

g(f(x,y)) = arctan(y/x) = h(x, y)

is continuous except where x = 0. The graph in Figure 9 shows the break in the graph of
h above the y-axis. [ |

I Functions of Three or More Variables

Everything that we have done in this section can be extended to functions of three or more
variables. The notation
lim f(x,y,z) =L
(x,y,z>L(a, b, c) (X y Z)
means that the values of f(X, y, z) approach the number L as the point (x, y, z) approaches
the point (a, b, ¢) along any path in the domain of f. Because the distance between two
points (x, Y, z) and (a, b, ¢) in R*®is given by /(x — a)2 + (y — b)2 + (z — ¢)2, we can
write the precise definition as follows: For every number ¢ > 0 there is a corresponding
number & > 0 such that

if (x,y,z)isinthedomainoff and 0<.(x—a)2+(y—b2+(z—0c2<$

then |f(x,y,2) —L|<e

The function f is continuous at (a, b, c) if
lim f(x,y,z) =f(a,b,c)

(x,y,2)—(a b, c)

For instance, the function

1
x2+y2+22—1

f(x,y,2) =
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m Exercises

1. Suppose that lim y—@ 1 f(x, y) = 6. What can you say

SECTION 14.2 LIMITS AND CONTINUITY 923
is a rational function of three variables and so is continuous at every point in R* except
where x? + y? + z2 = 1. In other words, it is discontinuous on the sphere with center the
origin and radius 1.

If we use the vector notation introduced at the end of Section 14.1, then we can write the
definitions of a limit for functions of two or three variables in a single compact form as
follows.

E] If f is defined on a subset D of R", then lim,_., f(X) = L means that for
every number & > 0 there is a corresponding number 6 > 0 such that

if xeD and 0<|x—a|<d then |[f(x)—L|<e

Notice that if n = 1, then x = x and a = a, and is just the definition of a limit for
functions of a single variable. For the case n = 2, we have x = (x,y), a= (a, b),
and [x —a|=+(x — a2+ (y —b)?, so becomes Definition 1. If n = 3, then
X =(X,Y,z),a={a, b, c),and [5] becomes the definition of a limit of a function of three
variables. In each case the definition of continuity can be written as

IiLn f(x) =f(a)

y2 sin®x Xy —y

about the value of (3, 1)? What if f is continuous? . (x,y)TJO, o X4+ y* 12 x, y!!ﬂl, 0 (x — 1)% +y2
2. Explain why each function is continuous or discontinuous. Xy x4 — y
(a) The outdoor temperature as a function of longitude 3. lim % 1" lim
. - ' xy)=0,0 /X% + y? xy)—0,0 X* +
latitude, and time o y " y
(b) Elevation (height above sea level) as a function of . x2yeY X2 sin?y
longi . . 15.  lim ———— 16. lim ———
ongitude, latitude, and time xy—00 x* + 4y (xy)—0,0 X? + 2y
(c) The cost of a taxi ride as a function of distance traveled
: . X2 + y? . xy?
and time 17.  lim 18 lim ———
=00 X2 +y2+1—-1 (xy—0.0 X +y
3-4 Use a table of numerical values of f(x,y) for (x, y) near the ) ,
origin to make a conjecture about the value of the limit of f(x, y) LI :)Em 01 e’ tan(xz)
as (x, y) — (0, 0). Then explain why your guess is correct.
2y/3 3y2 20 im _Xytyz
3. f(x,y) = Xy Xy =5 4 f(xy) = Xy " xy—0,00 X2+ y? + 22
2 —xy x® + 2y° ) )
Xy +yz© + Xz
21. vt
(xy,2—0,00 X+ Y+ z
5-22 Find the limit, if it exists, or show that the limit does yz
i 22. lim @
not exist. (xy.9—0,0,0 X + 4y? + 972
5 lim  (5x® — x%? 6. lim e ™Ycos(x +
xy)—(1,2) ( y ) xy)—(@1,-1) ( Y)
4—xy 14y 23-24 Use a computer graph of the function to explain why the
7. lim ——= 8 i — limit does not exist.
xy—@1n X*+ 3y () —(1,0) X + Xy

9.

Graphing calculator or computer required

x4 — 4y?

lim —————
=00 X2+ 2y?

10.

3

2x2 + 3xy + 4y?
3x2 + 5y?

Xy

4 a2 23. 24, lim ————
Sy“cos’x =00 X7+ y°

n - (xy)—(0,0)
xy—00 X' 4y

1. Homework Hints available at stewartcalculus.com
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924 CHAPTER 14 PARTIAL DERIVATIVES
25-26 Find h(x, y) = g(f(x, y)) and the set on which h is
continuous.
25 g)=t>+ 1, f(x,y)=2x+3y—6

1—xy

26. g(t) =t+ Int, f(xy) :szyz

{4 27-28 Graph the function and observe where it is discontinuous.

Then use the formula to explain what you have observed.

1

21. f(x,y) = eV 3

X =y

28. f(X, y) = 1_7_

29-38 Determine the set of points at which the function is
continuous.

Xy
: Y= o : Y) = + X -
29. F(x,Y) T+ o 30. F(x,y) =cosy1+x—y
M Exy = Yy ey =S
: 'y_l_xz_yz . 'y_exy_l

33 G(x,y) = In(x> +y2— 4)
3. G(x,y) = tan"H(x + y)?)
35. f(x,y, 2) = arcsin(x? + y? + z?)

36. f(X,y,2) =y —x21Inz

37 f(x,y) = { 2x% + y? if (x,y) # (0,0)
1 if (x,y)=(0,0)
Xy

38 f(x,y) = { X2+ xy + y? if (x,y) # (0,0)
0 it (x,y) =(0,0)

Partial Derivatives

39-41 Use polar coordinates to find the limit. [If (r, 6) are
polar coordinates of the point (x, y) with r = 0, note thatr — 0*
as (x,y) = (0,0).]
3 + 3
im Xz yz
(xy)—0,0 X* +Yy

39.

40. lim (24 y?) In(x® +y?
(wm,m( y*) In( y?)
e —1

M lim S
(xy)—00 X +Yy

[ 42. At the beginning of this section we considered the function

_sin(x® +y?)
f(X, y) - Xz + yz

and guessed that f(x,y) — 1 as (x, y) — (0, 0) on the basis
of numerical evidence. Use polar coordinates to confirm the
value of the limit. Then graph the function.

{4 43. Graph and discuss the continuity of the function

sinxy .
— if xy#0
f(x,y) = y

1 if xy=20

44, Let

ify<0 or y=x*

0
f(x'y)_{l if 0<y<x*

(a) Show that f(x,y) — 0 as (x, y) — (0, 0) along any path
through (0, 0) of the form y = mx® with a < 4.

(b) Despite part (a), show that f is discontinuous at (0, 0).

(c) Show that f is discontinuous on two entire curves.

45. Show that the function f given by f(x) = | x| is continuous
on R". [Hint: Consider |[x —a|>=(x —a) * (x — a)]

46. If ¢ € V,, show that the function f given by f(x) = c - x is
continuous on R".

On a hot day, extreme humidity makes us think the temperature is higher than it really
is, whereas in very dry air we perceive the temperature to be lower than the thermom-
eter indicates. The National Weather Service has devised the heat index (also called the
temperature-humidity index, or humidex, in some countries) to describe the combined
effects of temperature and humidity. The heat index | is the perceived air temperature when
the actual temperature is T and the relative humidity is H. So | is a function of T and H and
we can write | = (T, H). The following table of values of I is an excerpt from a table com-
piled by the National Weather Service.
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TABLE 1 Relative humidity (%)

Heat index | as a function of H 7 7
temperature and humidity T 50 | 55 | 60 | 65 0 5 | 8 | 8 | 90

90 96 98 | 100 | 103 | 106 | 109 | 112 | 115 | 119

92 100 | 103 | 105 | 108 | 112 | 115 | 119 | 123 | 128
Actual

temperature 94 | 104 | 107 | 111 | 114 | 118 | 122 | 127 | 132 | 137

CF) 9 | 109 | 113 | 116 | 121 | 125 | 130 | 135 | 141 | 146

98 | 114 | 118 | 123 | 127 | 133 | 138 | 144 | 150 | 157

100 | 119 | 124 | 129 | 135 | 141 | 147 | 154 | 161 | 168

If we concentrate on the highlighted column of the table, which corresponds to a relative
humidity of H = 70%, we are considering the heat index as a function of the single vari-
able T for a fixed value of H. Let’s write g(T) = f(T, 70). Then g(T) describes how the heat
index | increases as the actual temperature T increases when the relative humidity is 70%.
The derivative of g when T = 96°F is the rate of change of | with respect to T when
T = 96°F:

gwwzy%%%+2—ﬂ@®=y%H%+hj?—ﬂ%jm

We can approximate g'(96) using the values in Table 1 by taking h = 2 and —2:

9(98) — (96) _ 1(98,70) — (96,70) _ 133 — 125 _

4
2 2 2

g'(96) =

g(94) — g(96)  f(94,70) — f(96,70) 118 — 125
-2 -2 -2

4'(96) ~ 35

Averaging these values, we can say that the derivative g'(96) is approximately 3.75. This
means that, when the actual temperature is 96°F and the relative humidity is 70%, the
apparent temperature (heat index) rises by about 3.75°F for every degree that the actual
temperature rises!

Now let’s look at the highlighted row in Table 1, which corresponds to a fixed temper-
ature of T = 96°F. The numbers in this row are values of the function G(H) = (96, H),
which describes how the heat index increases as the relative humidity H increases when the
actual temperature is T = 96°F. The derivative of this function when H = 70% is the rate
of change of | with respect to H when H = 70%:

G(70 + h) — G(70) .. (96,70 + h) — (96, 70)
h = Jim h

G'(70) = rI]Er(l)

By taking h = 5 and —5, we approximate G'(70) using the tabular values:

G(75) — G(70) _ (96, 75) — f(96,70) _ 130 — 125 _

G0 ~ 5 5 5

1

G(65) — G(70) _ f(96, 65) — (96, 70) _ 121 —125

G'(70) = S S s

0.8
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By averaging these values we get the estimate G'(70) = 0.9. This says that, when the tem-
perature is 96°F and the relative humidity is 70%, the heat index rises about 0.9°F for every
percent that the relative humidity rises.

In general, if f is a function of two variables x and y, suppose we let only x vary while
keeping y fixed, say y = b, where b is a constant. Then we are really considering a func-
tion of a single variable x, namely, g(x) = f(x, b). If g has a derivative at a, then we call it
the partial derivative of f with respect to x at (a, b) and denote it by f,(a, b). Thus

(1] f.(a, b) = g'(a) where g(x) = f(x, b)

By the definition of a derivative, we have

9@+ h - g@

g'a) = lim .

and so Equation 1 becomes

f(a+ h,b) —f(ab)
h

2] fi(a,b) = lim

Similarly, the partial derivative of f with respect to y at (a, b), denoted by f,(a, b), is
obtained by keeping x fixed (x = a) and finding the ordinary derivative at b of the function

G(y) =f(a,y):

3] f,(a, b):!i_rf?, f(""*bJrf;])—f(a, b)

With this notation for partial derivatives, we can write the rates of change of the heat
index | with respect to the actual temperature T and relative humidity H when T = 96°F and
H = 70% as follows:

(96, 70) ~ 3.75 (96, 70) =~ 0.9

If we now let the point (a, b) vary in Equations 2 and 3, f, and f, become functions of
two variables.

E] If f is a function of two variables, its partial derivatives are the functions f,
and f, defined by

f(x +hy —f(xy)
h

f(x,y) = lim

f(X7y + h) - f(X1 y)
h

f(x,y) = lim
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FIGURE 1
The partial derivatives of f at (a, b) are

the slopes of the tangents to C, and G,.

SECTION 14.3 PARTIAL DERIVATIVES 927

There are many alternative notations for partial derivatives. For instance, instead of
f, we can write f; or D, f (to indicate differentiation with respect to the first variable) or
of/ax. But here 9f/dx can’t be interpreted as a ratio of differentials.

Notations for Partial Derivatives 1f z = f(X, y), we write

of d Jz
(X y) =fi = ——=—f(x,y) = — =f, = D,;f = D,
x.y) x o Y= =h=D

of d 0z
fy(X,y)nyza—yza—yf(x,y)za—yzfzzszZDyf

To compute partial derivatives, all we have to do is remember from Equation 1 that
the partial derivative with respect to x is just the ordinary derivative of the function g of a
single variable that we get by keeping y fixed. Thus we have the following rule.

Rule for Finding Partial Derivatives of z = f (X, y)
1. To find fy, regard y as a constant and differentiate f(x, y) with respect to x.
2. To find f,, regard x as a constant and differentiate f(x, y) with respect to y.

If f(x,y) = x® + x?y® — 2y? find f,(2, 1) and f,(2, 1).

SOLUTION Holding y constant and differentiating with respect to x, we get

fi(x, y) = 3x? + 2xy?3
and so f(2,1)=3-22+2-2-13=16

Holding x constant and differentiating with respect to y, we get

f,(x,y) = 3x%y? — 4y
f(2,1)=3-22-12—4-1=8 -

I Interpretations of Partial Derivatives

To give a geometric interpretation of partial derivatives, we recall that the equation
z = f(x, y) represents a surface S (the graph of f). If f(a, b) = c, then the point P(a, b, ¢)
lies on S. By fixing y = b, we are restricting our attention to the curve C; in which the ver-
tical plane y = b intersects S. (In other words, C; is the trace of S in the plane y = b.) Like-
wise, the vertical plane x = a intersects S in a curve C,. Both of the curves C, and C, pass
through the point P. (See Figure 1.)

Notice that the curve C; is the graph of the function g(x) = f(x, b), so the slope of its tan-
gent T, at Pis g'(a) = fx(a, b). The curve C, is the graph of the function G(y) = f(a, y), so
the slope of its tangent T, at P is G'(b) = f,(a, b).

Thus the partial derivatives f,(a, b) and f,(a, b) can be interpreted geometrically as the
slopes of the tangent lines at P(a, b, ¢) to the traces C; and C, of S in the planesy = b
and x = a.
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X

FIGURE 2

X

FIGURE 3

FIGURE 4

FIGURE 5

As we have seen in the case of the heat index function, partial derivatives can also be
interpreted as rates of change. If z = f(x, y), then 9z/0x represents the rate of change of z
with respect to x when vy is fixed. Similarly, dz/dy represents the rate of change of z with
respect to y when x is fixed.

ETNEE If f(x,y) = 4 — x* — 2y? find f,(1, 1) and f,(1, 1) and interpret these num-
bers as slopes.

SOLUTION We have
fu(x,y) = —2x fy(x,y) = —4dy
f(1,1) = -2 f(1,1) = —4
The graph of f is the paraboloid z = 4 — x? — 2y? and the vertical plane y = 1 inter-

sects it in the parabola z = 2 — x2, y = 1. (As in the preceding discussion, we label
it C, in Figure 2.) The slope of the tangent line to this parabola at the point (1, 1, 1) is

f«(1, 1) = —2. Similarly, the curve C, in which the plane x = 1 intersects the parabo-
loid is the parabola z = 3 — 2y?, x = 1, and the slope of the tangent line at (1, 1, 1) is
fy(1, 1) = —4. (See Figure 3.) [

Figure 4 is a computer-drawn counterpart to Figure 2. Part (a) shows the planey = 1
intersecting the surface to form the curve C; and part (b) shows C; and T;. [We have used
the vector equations r(t) = (t, 1,2 — t?) for C; and r(t) = (1 +t,1,1 — 2t) for T..]
Similarly, Figure 5 corresponds to Figure 3.

0
1
X

2
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Some computer algebra systems can plot
surfaces defined by implicit equations in three
variables. Figure 6 shows such a plot of the
surface defined by the equation in Example 4.

< 3 /

FIGURE 6

SECTION 14.3 PARTIAL DERIVATIVES 929

1+ axX
SOLUTION Using the Chain Rule for functions of one variable, we have

a—f—cos X L X = C0S X N
0X 1+y ox \1+y 1+y 1+y

a—f—cos X L9 X = —Co0S X . X ]
ay 1+y oy \1+y 1+y (1 +y)?

V| Find 9z/0x and 9z/ay if z is defined implicitly as a function of x and y by
the equation

V1 EOUEEE] Iff(x,y) = sin< X y)' calculatea—fand g—;.

X3+ y P+ 22+ 6xyz=1

SOLUTION To find dz/0x, we differentiate implicitly with respect to x, being careful to
treat y as a constant:

32 + 322z + 6yz + 6xy£= 0
X X

Solving this equation for 9z/x, we obtain

9z X2+ 2yz
X 2% + 2xy

Similarly, implicit differentiation with respect to y gives

0z _ _y2 + 2Xz
ay 2% + 2xy

I Functions of More Than Two Variables

Partial derivatives can also be defined for functions of three or more variables. For example,
if f isafunction of three variables x, y, and z, then its partial derivative with respect to x is
defined as

f(x + hy,z) — f(x,y,2)
h

f(X,y,2) = r!lil’(])

and it is found by regarding y and z as constants and differentiating f(x, y, z) with respect
to x. If w = f(x,y, z), then f, = ow/dx can be interpreted as the rate of change of w with
respect to x when y and z are held fixed. But we can’t interpret it geometrically because the
graph of f lies in four-dimensional space.

In general, if u is a function of n variables, u = f(xy, X2, ..., Xn), its partial derivative
with respect to the ith variable x; is

u lim F(Xe, ooy Xicg, Xi + Ny X, o %) — T(Xa, o, Xy o, Xn)

dX;  h—0 h
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and we also write

W =Dy
0Xi 0Xi

Find f,, f,, and f.if f(x,y,z) = e”In_.

SOLUTION Holding y and z constant and differentiating with respect to x, we have

fk=ye"Inz

Similarly, fy,=xe"Inz and f.= [

I Higher Derivatives

If f isafunction of two variables, then its partial derivatives f, and f, are also functions of
two variables, so we can consider their partial derivatives (), (fx)y, (fy)x, and (fy),, which
are caled thesecond partial derivatives of f. If z = f(x, y), we use the following notation:

9 [ of ’f 9%z
fxxzfxxzf = \ ")\ 5= 5
(%) B ax <ax> ax?  ox?

9 [ of o%f 92
(fx)y:fxy:f12:_<_> = = =

ay \ax ) ayax  ayox

9 [ of 9% 9%z
() =T = far = ax <a_y> Co9xay  axay

9 [ of % 9%z
A TR

Thus the notation f,, (or 9*f/dy 9x) means that we first differentiate with respect to x and
then with respect to y, whereasin computing f,x the order is reversed.

Find the second partial derivatives of
f(xy) = x° + x?y® — 2y?
SOLUTION In Example 1 we found that
fu(x,y) = 3x% + 2xy? fy(x,y) = 3x%y? — 4y

Therefore

ad ad
b= (3> + 2xy®) = 6x + 2y° foy = » (3x? + 2xy®) = 6xy?

i = % (3x?y* — 4y) = 6xy” by = aiy (3%y* — 4y) = 6x%y — 4 mmm
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Figure 7 shows the graph of the function f
in Example 6 and the graphs of its first- and

second-order partial derivatives for —2 < x < 2,

—2 <y < 2 Notice that these graphs are con-
sistent with our interpretations of f, and f, as
slopes of tangent lines to traces of the graph of f.
For instance, the graph of f decreases if we start
at (0, —2) and move in the positive x-direction.
This is reflected in the negative values of f. You
should compare the graphs of f,x and f,, with the
graph of f, to see the relationships.

FIGURE 7

Clairaut

Alexis Clairaut was a child prodigy in mathe-
matics: he read I'Hospital’s textbook on
calculus when he was ten and presented a
paper on geometry to the French Academy of
Sciences when he was 13. At the age of 18,
Clairaut published Recherches sur les courbes a
double courbure, which was the first systematic
treatise on three-dimensional analytic geometry
and included the calculus of space curves.

SECTION 14.3 PARTIAL DERIVATIVES 931

Notice that fy, = f,x in Example 6. Thisis not just a coincidence. It turns out that the
mixed partial derivatives fy, and f,, are equal for most functions that one meetsin practice.
The following theorem, which was discovered by the French mathematician Alexis Clairaut
(1713-1765), gives conditions under which we can assert that f,, = f,x. The proof isgivenin
Appendix F.

Clairaut's Theorem Suppose f is defined on adisk D that contains the point (a, b).
If the functions f,, and fx are both continuous on D, then

fxy(a, b) = fyx(aa b)

Partial derivatives of order 3 or higher can also be defined. For instance,

0 o%f o3f
oy = (fiy)y = — -
= (hly ay <ay ax) ay2ox
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932 CHAPTER 14 PARTIAL DERIVATIVES

}u(x, 1)

——
FIGURE 8

and using Clairaut’s Theorem it can be shown that f,, = f,xy, = f,y« if these functions are
continuous.

V| Calculate foy. if f(x,y, z) = sSin(3x + yz).
SOLUTION fy = 3cos(3x + yz)

fi = —98in(3x + yz)
= —9zcos(3x + yz)

fxxy

fyxy: = —9€0S(3x + yz) + 9yzsin(3x + yz) [ |

I Partial Differential Equations
Partial derivatives occur in partial differential equations that express certain physical laws.
For instance, the partial differential equation

ax? * ay? =0

iscalled Laplace’s equation after Pierre Laplace (1749-1827). Solutions of this equation
are called harmonic functions; they play arole in problems of heat conduction, fluid flow,
and electric potential.

Show that the function u(x, y) = e*siny isasolution of Laplace's equation.

SOLUTION We first compute the needed second-order partia derivatives:

Uy = e*siny u, = e*cosy
U = €*siny Uy = —e*siny
So U + Uy = e*siny — e*siny =0
Therefore u satisfies Laplace’s equation. [ |
The wave equation
u 9
FTER P
ot X

describes the motion of awaveform, which could be an ocean wave, a sound wave, alight
wave, or awave traveling along avibrating string. For instance, if u(x, t) representsthe dis-
placement of avibrating violin string at timet and at a distance x from one end of the string
(asin Figure 8), then u(x, t) satisfies the wave equation. Here the constant a depends on the
density of the string and on the tension in the string.

[E7TNEEE] Verify that the function u(x, t) = sin(x — at) satisfies the wave equation.

SOLUTION Uy = cos(x — at) Uy = —acos(x — at)
Uy = —Sin(x — at) Ug = —a?sin(x — at) = a%u
So u satisfies the wave equation. [ |
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Partial differential equationsinvolving functions of three variables are also very impor-
tant in science and engineering. The three-dimensional Laplace equation is

B o°u N o°u +a_2u_ 0
ax? 2 9z?

ay

and one place it occurs is in geophysics. If u(x, y, z) represents magnetic field strength at
position (x, Y, z), then it satisfies Equation 5. The strength of the magnetic field indicates
the distribution of iron-rich minerals and reflects different rock types and the location of
faults. Figure 9 shows a contour map of the earth’s magnetic field as recorded from an air-
craft carrying a magnetometer and flying 200 m above the surface of the ground. The con-
tour map is enhanced by color-coding of the regions between the level curves.

0103
0010
0002

o019

- 0037

- 0051

- 0.066

FIGURE 9
Magnetic field strength of the earth

~0.100

Courtesy Roger Watson

Nano Teslas
per meter

Figure 10 shows a contour map for the second-order partia derivative of u in the ver-
tical direction, that is, u... It turns out that the values of the partial derivatives u,x and uyy
are relatively easily measured from a map of the magnetic field. Then values of u., can be
calculated from Laplace’s equation [5].

0000117

0.000037

0.000002
~0.000017
~0.000036
~0.000064.

~0.000119

FIGURE 10
Second vertical derivative
of the magnetic field

~0.000290

Courtesy Roger Watson

Nano Teslas
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[ The Cobb-Douglas Production Function

In Example 3 in Section 14.1 we described the work of Cobb and Douglas in modeling the
total production P of an economic system as a function of the amount of labor L and the
capital investment K. Here we use partia derivatives to show how the particular form of
their model follows from certain assumptions they made about the economy.

If the production function is denoted by P = P(L, K), then the partial derivative 0P/dL
is the rate at which production changes with respect to the amount of labor. Economists
call it the marginal production with respect to labor or the marginal productivity of labor.
Likewise, the partial derivative 0P/dK is the rate of change of production with respect to
capital and is called the marginal productivity of capital. In these terms, the assumptions
made by Cobb and Douglas can be stated as follows.

(i) If either labor or capital vanishes, then so will production.

(i) The margina productivity of labor is proportional to the amount of production
per unit of labor.

(iii) The marginal productivity of capital is proportional to the amount of production
per unit of capital.

Because the production per unit of labor is P/L, assumption (ii) says that

P p
e _ P

oL YL

for some constant «. If we keep K constant (K = Kj), then this partial differential equation
becomes an ordinary differential equation:

PP

[€] F

If we solve this separabl e differential equation by the methods of Section 9.3 (see also Exer-
cise 85), we get
P(L, Ko) = Ca(Ko)L"

Notice that we have written the constant C; as afunction of K, because it could depend on
the value of Ko.
Similarly, assumption (iii) says that

P _ P
oK K

and we can solve this differential equation to get
P(Lo, K) = CaLo)K?
Comparing Equations 7 and 8, we have

[9] P(L, K) = bL°K"
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whereb isaconstant that isindependent of both L and K. Assumption (i) showsthat o« > 0
and B8 > 0.
Notice from Equation 9 that if labor and capital are both increased by afactor m, then

P(mL, mK) = b(mL)*(mK)?# = m**fhL°K? = m**PP(L, K)

If « + B = 1,thenP(mL, mK) = mP(L, K), which meansthat production isaso increased
by afactor of m. That iswhy Cobb and Douglas assumed that « + B = 1 and therefore

P(L, K) = bLeK !«

Thisis the Cobb-Douglas production function that we discussed in Section 14.1.

m Exercises

1. Thetemperature T (in °C) at alocation in the Northern Hemi- (b) In general, what can you say about the signs of dW/aT
sphere depends on the longitude x, latitude y, and time t, so we and oW/0v?
canwrite T = f(x,y, t). Let's measure time in hours from the (c) What appears to be the value of the following limit?
beginning of January. W
(8) What are the meanings of the partial derivatives 9T/dx, lim—
aT/ay, and 9T/at? v 0w
(b) Honolulu has longitude 158° W and Iatit.ude. 21° N. .Sup- 4. The wave heights h in the open sea depend on the speed v
pose that a 9:00 am on January 1 the wind is blowing hot of the wind and the length of time t that the wind has been
ar to the_northeast, so the air to _the west and south is warm blowing at that speed. Values of the function h = f (v, t) are
and the air to the north and east is cooler. Would you expect recorded in feet in the following table.
(158, 21, 9), f,(158, 21, 9), and f(158, 21, 9) to be posi-
tive or negative? Explain. Duration (hours)
2. At the beginning of this section we discussed the function t 5 10 15 20 20 40 50
I = (T, H), where | isthe heat index, T is the temperature, v
and H is the relative humidity. Use Table 1 to estimate 10 2 2 2 2 2 2 2

r(92, 60) and (92, 60). What are the practical interpretations

of these values? Z2] 15 4 4 5 5 5 5 5
C
3. The wind-chill index W is the perceived temperature when the < 20 5 7 8 8 9 9 9
actual temperatureis T and the wind speed is v, SO we can g
write W = f(T, v). The following table of valuesis an excerpt s - 9 13 16 7 18 19 1
. . c
from Table 1 in Section 14.1. g 40 14 21 25 28 31 33 33
Wind speed (km/h)
50 19 29 36 40 45 48 50
&) v 20 30 40 50 60 70
< | T 60 24 37 47 54 62 67 69
% —10 —18 —-20 —-21 —22 —23 —23
®
8| _15 | —24 | —26 | —27 | —29 | —30 | —-30 (&) What are the meanings of the partial derivatives oh/ov
& and oh/ot?
% -20 | -30 | =38 | =34 | -3 | -36 | - (b) Estimate the values of f,(40, 15) and f;(40, 15). What are
B B B B B B B the practical interpretations of these values?
< » 37 3 4 42 s a4 (c) What appears to be the value of the following limit?
(a) Estimate the values of f;(—15, 30) and f,(—15, 30). What lim oh
are the practical interpretations of these values? t—= gt

Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcal culus.com
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936 CHAPTER 14 PARTIAL DERIVATIVES

5-8 Determine the signs of the partial derivatives for the 10. A contour map is given for afunction f. Use it to estimate
function f whose graph is shown. (2, 1) and f,(2, 1).

A/NFIREY

0

I
/

Ch i
1N
HIENy/ %

5 @ L2 ®) #(1,2) 1. 1f f(x,y) = 16 — 4x? — y? find f.(1, 2) and f,(1, 2) and inter-
6. (@ f(—1,2 (b) f,(—=1,2) pret these numbers as slopes. Illustrate with either hand-drawn
sketches or computer plots.

12. 1ff(x,y) = V4 — x2 — 4y2, find f,(1, 0) and f,(1, 0) and inter-
8. (a) fy(1,2 (b) fy(—=1,2) pret these numbers as slopes. |llustrate with either hand-drawn

1. @ (=12 (b) fw(_li 2)

sketches or computer plots.

9. The following surfaces, labeled a, b, and ¢, are graphs of a 13-14 Find f, and f, and graph f, f,, and f, with domains and
function f and its partial derivatives f, and f,. Identify each viewpoints that enable you to see the relationships between them.
surface and give reasons for your choices. y

= x2y3 = —
13. f(x,y) = X%y 14. f(x,y) 1+ X3y

15-40 Find the first partial derivatives of the function.

15. f(x,y) = y° — 3xy 16. f(x,y) = x%?3 + 8x?%y
17. f(x,t) = e 'cos mx 18. f(x,t) = X Int
19. z = (2x + 3y 20. z = tanxy
X X
21. f(x,y) = — 2. f(x,y) = ——
(x,y) y (x,y) X+ )7
ax + by e’
23. f = 24 w=
3. 1) cx + dy TR
25. g(u, v) = (U% — v°%)° 26. u(r, #) = sin(r cos6)
21. R(p, q) = tan"*(pq?) 28. f(x,y) = x”

29. F(x,y) = jy cos(e!) dt 30. F(a, B) = fﬁx/ﬁ F1dt

31 f(x,y,2) = xz — 5x%y%* 32. f(x,y,z) = xsin(y — z)

33. w=In(x + 2y + 3) 34, w =z
35. u = xysin Y(yz) 36. u=x*
+ 2
37. h(x,y,zt) = x?ycos(z/t) 38 o(x,Y,z,1) = M
yz + 6t

30, U= X2+ X2+ -+ + x2

40. u = sin(xy + 2X2 + - -+ + nNXy,)

41-44 Find the indicated partial derivative.

Q. f(x,y) = In(x + Vx2+y2); £(3,4)
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42. f(x,y) = arctan(y/x); (2, 3)
_ y . _
43. f(x,Y,z) varav— v f(2,1, -1)

44. f(x,y,z) = /sin’x + sin?y + sin%; £.(0,0, m/4)

10.

SECTION 14.3 PARTIAL DERIVATIVES 937

a%u

u=x3yP°% —
y ax ay?az3

45-46 Use the definition of partial derivatives as limits[4] to find
fu(x, y) and f,(x, y).

45. f(x,y) = xy? — x% 46. f(x,y) =

X + y?

47-50 Useimplicit differentiation to find 9z/9x and dz/dy.
4. x>+ 2y + 3° =1 48. x> —y2+ 72— 2:=4

49. e° = xyz 50. yz + xIny = 22

51-52 Find dz/9x and 9z/dy.
51. (@) z = f(x) + g(y)

52. (8) z =f()g(y)
(©) z=f(x/y)

() z="f(x+y)
(b) z="f(xy)

53-58 Find all the second partia derivatives.
53. f(x,y) = x3° + 2x% 54. f(x,y) = sin’(mx + ny)
Xy
X—y

55. w = Ju? + v? 56. v =

X+y

58. v = e
1-—xy v

57. z = arctan

59-62 Verify that the conclusion of Clairaut’s Theorem holds, that
IS, Uxy = Uyx.

59, u = x4y —y*
61. u = cos(x?y)

60. u=-eYsiny
62. u=In(x + 2y)

63-70 Find the indicated partial derivative(s).
63. T(X,¥) = x%? — X%, fuxx, Tuyx

64. T(x,y) = sin(2x + 5y); fy

65. f(X,y,2) = e¥; f,.

66. g(r,s,t) = e"sin(st); grst

67. u=-¢e"sing; 873“
' ©oor2oe
68. z — uy/ 0%
. Z = vV—w, T
Ju dv dw
X 9°%w 9°%w
69. w

Ty t2: azayax'  oxZay

n.

72.

13.

14.

15.

76.

1.

18.

19.

If f(x,y, z) = xy%® + arcsin(xy/z ), find f..,. [Hint: Which
order of differentiation is easiest?)

If g(x,y,2) =1+ xz + /1 — xy, find gyy.. [Hint: Use a dif-
ferent order of differentiation for each term.]

Use the table of values of f(x, y) to estimate the values of
(3, 2), (3,2.2), and (3, 2).

Y 18 2.0 2.2
X

2.5 12.5 10.2 9.3

310 18.1 17.5 15.9

355 20.0 22.4 26.1

Level curves are shown for afunction f. Determine whether
the following partial derivatives are positive or negative at the
point P.
(@ f
(d) fy

(b) fy
(e fyy

(©) fu

&S S S

P

Verify that the function u = e "' sin kx is a solution of the
heat conduction equation u; = a’Ux.

Determine whether each of the following functionsis a
solution of Laplace’s equation Uy, + Uy, = 0.

@ u=x*+y? (b) u=x2—y?

(©) u=x®+ 3xy? (d) u=1Iny/x2+y2

() u=sinx coshy + cosx sinhy

(f)u=e*cosy — e’ cosx

Verify that the functionu = 1/4/x2 + y2 + z2 isasolution of
the three-dimensional Laplace equation uy, + Uy, + u.. = 0.

Show that each of the following functions is a solution of the
wave equation Uy, = aZUyy.

(@ u = sin(kx) sin(akt) (b) u=t/(@a%?— x?)

(©) u=(x —at)®+ (x + at)®

(d) u=sin(x — at) + In(x + at)

If f and g are twice differentiable functions of a single vari-
able, show that the function

u(x, t) = f(x + at) + g(x — at)

is a solution of the wave equation given in Exercise 78.
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80. If u = edutaxet taxs \whereg? + a2 + - -+ + a2 = 1,
show that

o°u 9°u

7 + .. + 2

X3 oXn

02U
(')X]_2

=u

81. Verify that the function z = In(e* + ¢Y) isasolution of the
differential equations

Jz Jz

—_— + —_

X ay

oo ()
x? gy? X oy
82. The temperature at a point (x, y) on aflat metal plateis given
by T(x,y) = 60/(1 + x2 + y?), where T ismeasured in °C
and x, y in meters. Find the rate of change of temperature with

respect to distance at the point (2, 1) in (a) the x-direction and
(b) the y-direction.

83. Thetotal resistance R produced by three conductors with resis-
tances Ry, Rz, R3 connected in a parallel electrical circuit is
given by the formula

=1

and

Find 9R/aR..

84. Show that the Cobb-Douglas production function P = bL*K#
satisfies the equation
JP

L—+K
aL

P

K (a + BP

85. Show that the Cobb-Douglas production function satisfies
P(L, Ko) = Ci(Ko)L* by solving the differential equation

P P
AT
(See Equation 6.)

86. Cobb and Douglas used the equation P(L, K) = 1.01L %K%
to model the American economy from 1899 to 1922, where L
is the amount of labor and K is the amount of capital. (See
Example 3 in Section 14.1.)

(a) Caculate P and Px.

(b) Find the marginal productivity of labor and the marginal
productivity of capital in the year 1920, when L = 194 and
K = 407 (compared with the assigned values L = 100 and
K = 100 in 1899). Interpret the results.

(c) Inthe year 1920 which would have benefited production
more, an increase in capital investment or an increase in
spending on labor?

87. Thevan der Waals equation for n molesof agasis

(p

where P is the pressure, V is the volume, and T is the tempera

nZa
V2

>(V — nb) = nRT

89.

90.

91.

92.

93.

4 9a.

95.

96.

ture of the gas. The constant R is the universal gas constant
and a and b are positive constants that are characteristic of a
particular gas. Calculate 9T/9P and 9P/aV.

The gas law for afixed mass m of an ideal gas at absolute tem-
perature T, pressure P, and volume V isPV = mRT, where R is
the gas constant. Show that

P OV T

oV T aP
For the ideal gas of Exercise 88, show that

P oV
- —mR
aT oT

The wind-chill index is modeled by the function
W = 13.12 + 0.6215T — 11.37»%% + 0.3965T» %

where T is the temperature (°C) and v is the wind speed
(km/h). When T = —15°C and » = 30 km/h, by how much
would you expect the apparent temperature W to drop if the
actual temperature decreases by 1°C? What if the wind speed
increases by 1 km/h?

The kinetic energy of a body with mass m and velocity v is
K = 2mv? Show that

KK
om Jv?

If a, b, c arethe sides of atriangle and A, B, C are the opposite
angles, find 0A/da, 0A/ab, 0A/ac by implicit differentiation of
the Law of Cosines.

You aretold that thereis afunction f whose partial deriva-
tivesare fx(x,y) = x + 4y and fy(x,y) = 3x — y. Should you
believe it?

The paraboloid z = 6 — x — x? — 2y? intersects the plane

x = 1in aparabola. Find parametric equations for the tangent
line to this parabola at the point (1, 2, —4). Use a computer to
graph the paraboloid, the parabola, and the tangent line on the
same screen.

The ellipsoid 4x? + 2y? + z? = 16 intersects the planey = 2
in an ellipse. Find parametric equations for the tangent line to
this éllipse at the point (1, 2, 2).

In a study of frost penetration it was found that the temperature
T at timet (measured in days) at a depth x (measured in feet)
can be modeled by the function

T(x, 1) = To + Tee ™ sin(wt — AX)
where w = 27/365 and A is a positive constant.

(& Find 9T/ox. What is its physical significance?
(b) Find 9T/0t. What is its physical significance?
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS 939

(c) Show that T satisfies the heat equation T; = kT for a 99. If f(x,y) = x(x2 + y2)"¥%5Y find f,(1, 0).
certain constant k. [Hint: Instead of finding f.(x, y) first, note that it's easier
4 (@ IfA=02To=0, and T, = 10, use acomputer to to use Equation 1 or Equation 2]
graph T(x, t). _
(e) What is the physical significance of the term —Ax in the 100. If f(x,y) = ¥/x3 + y2, find (0, 0).
essi i — ?
expression sin(wt — AX)? 101, Let
97. Use Clairaut’s Theorem to show that if the third-order partial X3y — xy®

derivatives of f are continuous, then

fryy = fyxy = fiyx

fony) =4 xtayz TV #00

0 if (x,y)=(0,0)

98. (a) How many nth-order partial derivatives does a function A (8) Use a computer to graph f.

of two variables have?

(b) Find f(x,y) and f,(x, y) when (x,y) # (0, 0).

(b) If these partia derivatives are al continuous, how many (c) Find (0, 0) and f,(0, 0) using Equations 2 and 3.
of them can be distinct? (d) Show that f,,(0, 0) = —1 and f,«(0, 0) = 1.

(c) Answer the question in part (a) for afunction of three CAS (e) Doesthe result of part (d) contradict Clairaut’s Theorem?
variables. Use graphs of fy, and fy, to illustrate your answer.

Tangent Planes and Linear Approximations

X

FIGURE 1
The tangent plane contains the
tangent lines 7, and 7.

One of the most important ideas in single-variable calculus is that as we zoom in toward
a point on the graph of a differentiable function, the graph becomes indistinguishable
from its tangent line and we can approximate the function by alinear function. (See Sec-
tion 2.9.) Here we develop similar ideasin three dimensions. Aswe zoom in toward a point
on asurface that isthe graph of a differentiable function of two variables, the surface looks
more and more like a plane (its tangent plane) and we can approximate the function by a
linear function of two variables. We aso extend the idea of a differentia to functions of
two or more variables.

I Tangent Planes

Suppose a surface S has equation z = f(x, y), where f has continuous first partial deriva
tives, and let P(Xo, Yo, zo) be apoint on S. Asin the preceding section, let C; and C, be the
curves obtained by intersecting the vertical planesy = yo and x = X, with the surface S.
Then the point P lies on both C; and C.. Let T, and T, be the tangent lines to the curves C,
and C, at the point P. Then the tangent plane to the surface S at the point P is defined to be
the plane that contains both tangent lines T, and T,. (See Figure 1.)

We will seein Section 14.6 that if C is any other curve that lies on the surface S and
passes through P, then its tangent line at P also liesin the tangent plane. Therefore you can
think of the tangent planeto S at P as consisting of al possible tangent lines at P to curves
that lieon S and pass through P. The tangent plane at P isthe plane that most closely approx-
imates the surface S near the point P.

We know from Equation 12.5.7 that any plane passing through the point P(xo, Yo, z0) has
an equation of the form

A(X — Xo) + B(y —yo) + C(z — 2z0) =0

By dividing this equation by C and lettinga = —A/C and b = —B/C, we can writeitin
the form

(1] z—zo=a(x — Xo) + b(y — yo)
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940 CHAPTER 14 PARTIAL DERIVATIVES

Note the similarity between the equation of a
tangent plane and the equation of a tangent line:

Yy — Yo = f'(Xo)(X — Xo)

Visual 14.4 shows an animation
of Figures 2 and 3.

@
FIGURE 2 Theelliptic paraboloid z = 2x? + y? appears to coincide with its tangent plane as we zoom in toward (1, 1, 3).

If Equation 1 represents the tangent plane at P, then its intersection with the planey = yo
must be the tangent line T,. Setting y = y, in Equation 1 gives

z — zo=a(X — Xo) where y = yo

and we recognize this as the equation (in point-slope form) of aline with slopea. But from
Section 14.3 we know that the slope of the tangent Ty is fx(Xo, Yo). Thereforea = fx(Xo, Yo).

Similarly, putting x = X0 in Equation 1, we get z — zo = b(y — Yo), which must repre-
sent the tangent line T2, so b = f,(Xo, Yo).

[2] Suppose f has continuous partial derivatives. An equation of the tangent
plane to the surface z = f(x, y) at the point P(Xo, Yo, zo) iS

z — zo = f(Xo, Yo)(X — Xo) + f,(Xo, Yo)(y — Yo)

I IE7XEEN Find the tangent plane to the elliptic paraboloid z = 2x? + y? at the
point (1, 1, 3).

SOLUTION Let f(x,y) = 2x2 + y2 Then
fx(xa y) = 4X fy(X1 y) = 2y
f(1,1) =4 f,(1,1) =2

Then [2] gives the equation of the tangent plane at (1, 1, 3) as

z—=3=4x—-1) +2y—-1)

or z=4x+ 2y — 3 [

Figure 2(a) shows the elliptic paraboloid and its tangent plane at (1, 1, 3) that we found
in Example 1. In parts (b) and (¢) we zoom in toward the point (1, 1, 3) by restricting the
domain of the function f(x, y) = 2x? + y2 Noticethat the more we zoom in, the flatter the
graph appears and the more it resembl es its tangent plane.

(b) ©
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS LY

In Figure 3 we corroborate this impression by zooming in toward the point (1, 1) on a
contour map of the function f(x,y) = 2x? + y2 Notice that the more we zoom in, the more
the level curves look like equally spaced parallel lines, which is characteristic of a plane.

15 12 1.05
FIGURE 3
Zooming in toward (1, 1)
on a contour map of
flr,y)=2x2+y? 05 15 08 12 095 105

I Linear Approximations

In Example 1 we found that an equation of the tangent plane to the graph of the function
f(x,y) = 2x% + y2 at the point (1, 1, 3) isz = 4x + 2y — 3. Therefore, in view of the
visual evidencein Figures 2 and 3, the linear function of two variables

L(x,y)=4x +2y — 3

isagood approximation to f(x, y) when (x, y) isnear (1, 1). Thefunction L iscalled the lin-
earization of f at (1, 1) and the approximation

f(x,y) =4x +2y — 3

is called the linear approximation or tangent plane approximation of f at (1, 1).
For instance, at the point (1.1, 0.95) the linear approximation gives

f(1.1,0.95) ~ 4(1.1) + 2(0.95) — 3 = 3.3

which is quite close to the true value of (1.1, 0.95) = 2(1.1)> + (0.95)* = 3.3225. But if
we take a point farther away from (1, 1), such as (2, 3), we no longer get a good approxi-
mation. Infact, L(2, 3) = 11 whereas f(2, 3) = 17.

In general, we know from | 2| that an equation of the tangent plane to the graph of afunc-
tion f of two variables at the point (a, b, f(a, b)) is

z="f(a,b) + f(a b)(x —a) + f,(a,b)(y — b)

The linear function whose graph is this tangent plane, namely

(3] L(x,y) = f(a, b) + f(a, b)(x — a) + fy(a, b)(y — b)
is called the linearization of f at (a, b) and the approximation
(4] f(x,y) = f(a, b) + fx(a, b)(x — a) + f,(a, b)(y — b)

is called the linear approximation or the tangent plane approximation of f at (a, b).

We have defined tangent planes for surfaces z = f(x, y), where f has continuous first
partial derivatives. What happensif f; and f, are not continuous? Figure 4 pictures such a
function; its equation is

FIGURE 4

—¥7-ﬁmw¢mm

Jwy = FEa i ey # 0.0, fovy) =4 %2
£0,0)=0 0 if (x,y)=1(0,0)
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942 CHAPTER 14 PARTIAL DERIVATIVES

This is Equation 2.5.5.

Theorem 8 is proved in Appendix F.

Figure 5 shows the graphs of the function f
and its linearization L in Example 2.

FIGURE 5

You can verify (see Exercise 46) that its partial derivatives exist at the origin and, in fact,
f(0,0) = 0 and f,(0, 0) = O, but f; and f, are not continuous. The linear approximation
would be f(x,y) = 0, but f(x,y) = 3 at al points on the liney = x. So afunction of two
variables can behave badly even though both of its partial derivativesexist. To rule out such
behavior, we formulate the idea of a differentiable function of two variables.

Recall that for afunction of one variable, y = f(x), if x changesfromatoa + Ax, we
defined the increment of y as

Ay = f(a + Ax) — f(a)
In Chapter 2 we showed that if f isdifferentiable at a, then

(5] Ay =f'(@)Ax + e Ax  where e >0 as Ax — 0

Now consider afunction of two variables, z = f(x, y), and suppose x changes from a to
a + Axandy changesfromb tob + Ay. Then the corresponding increment of z is

(6] Az =f(a+ Ax,b + Ay) — f(a, b)

Thus the increment Az represents the change in the value of f when (x, y) changes from
(a,b) to (a + Ax, b + Ay). By analogy with [5] we define the differentiability of a func-
tion of two variables as follows.

Definition If z = f(x,y), then f isdifferentiable at (a, b) if Az can be
expressed in the form

Az = fy(a, b) Ax + f,(a, b) Ay + &1 AX + &2 Ay

where g; and e, — 0 as (Ax, Ay) — (0, 0).

Definition 7 saysthat adifferentiable function is one for which the linear approximation
is a good approximation when (x, y) is near (a, b). In other words, the tangent plane
approximates the graph of f well near the point of tangency.

It's sometimes hard to use Definition 7 directly to check the differentiability of afunc-
tion, but the next theorem provides a convenient sufficient condition for differentiability.

Theorem If the partial derivatives f; and f, exist near (a, b) and are continu-
ous at (a, b), then f isdifferentiable at (a, b).

1 IET0EEF] Show that f(x, y) = xe isdifferentiable at (1, 0) and find its lineariza-
tion there. Then use it to approximate f(1.1, —0.1).

SOLUTION The partial derivatives are

fu(x, y) = e + xye¥ fy(x,y) = x%¥

(1,0 =1 (1,00 =1
Both f, and f, are continuous functions, so f is differentiable by Theorem 8. The lin-
earization is

L(x,y) = f(1,0) + f(1,0(x — 1) + (1, 0)(y — 0)

=1+1x—-1D+1l-y=x+y
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d
dx = Ax

L

0 a a+Ax
tangent line
y=fla) + f'(a)(x —a)
FIGURE 6

SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS 943

The corresponding linear approximation is

xe¥ =x+y
S] f(1.1,-01)=11-01=1
Compare this with the actual value of (1.1, —0.1) = 1.1e "°* ~ 0.98542. [ ]

[E7ETEE] At the beginning of Section 14.3 we discussed the heat index (perceived
temperature) | asafunction of the actual temperature T and the relative humidity H and
gave the following table of values from the National Weather Service.

Relative humidity (%)

T H] 50 55 60 65 70 75 80 85 90

0 96 98 | 100 | 103 | 106 | 109 | 112 | 115 | 119

92 100 103 105 108 112 115 119 123 128
Actua

temperature | 94 | 104 | 107 | 111 | 114 | 118 | 122 | 127 | 132 | 137
(°F)

9% | 109 | 113 | 116 | 121 | 125 | 130 | 135 | 141 | 146

98 | 114 | 118 | 123 | 127 | 133 | 138 | 144 | 150 | 157

100 | 119 | 124 | 129 | 135 | 141 | 147 | 154 | 161 | 168

Find alinear approximation for the heat index | = f(T, H) when T is near 96°F and H is
near 70%. Use it to estimate the heat index when the temperature is 97°F and the relative
humidity is 72%.

SOLUTION We read from the table that f(96, 70) = 125. In Section 14.3 we used the tabu-
lar values to estimate that (96, 70) = 3.75 and (96, 70) = 0.9. (See pages 925-26.)
So the linear approximation is

f(T,H) = (96, 70) + f+(96, 70)(T — 96) + f.4(96, 70)(H — 70)
~ 125 + 3.75(T — 96) + 0.9(H — 70)
In particular,
£(97, 72) =~ 125 + 3.75(1) + 0.9(2) = 130.55
Therefore, when T = 97°F and H = 72%, the heat index is

| = 131°F [

I Differentials

For adifferentiable function of onevariable, y = f(x), we define the differential dx to bean
independent variable; that is, dx can be given the value of any real number. The differential
of y isthen defined as

(9] dy = f'(x) dx

(See Section 2.9.) Figure 6 shows the relationship between the increment Ay and the dif-
ferential dy: Ay represents the change in height of the curvey = f(x) and dy representsthe
changein height of the tangent line when x changes by an amount dx = Ax.

For a differentiable function of two variables, z = f(x, y), we define the differentials
dx and dy to be independent variables; that is, they can be given any values. Then the
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FIGURE 7

In Example 4, dz is close to Az because
the tangent plane is a good approximation
to the surface z = x2 4+ 3xy — y?near
(2, 3, 13). (See Figure 8.)

FIGURE 8

CHAPTER 14 PARTIAL DERIVATIVES

differential dz, also called the total differential, is defined by

[¢) J
dz = f,(x, y) dx + f,(x, y) dy = a—idx + a—; dy

(Compare with Equation 9.) Sometimes the notation d f isused in place of dz.
If wetakedx = Ax = x — aanddy = Ay =y — bin Equation 10, then the differential
of zis

dz = fx(a, b)(x — a) + fy(a,b)(y — b)
So, in the notation of differentials, the linear approximation [4| can be written as
f(x,y) = f(a,b) + dz
Figure 7 is the three-dimensional counterpart of Figure 6 and shows the geometric inter-
pretation of the differential dz and the increment Az: dz represents the change in height of

the tangent plane, whereas Az represents the change in height of the surface z = f(x, y)
when (x, y) changesfrom (a, b) to (a + Ax, b + Ay).

(a+Ax,b+ Ay, f(a+ Ax,b+ Ay))
surface z = f(x, y)

(a,b, f(a,b))

(a+Ax,b+ Ay,0)

tangent plane
z— fla,b) = f.(a,b)(x —a) + fy(a,b)(y — b)

V|

(@ If z=f(x,y) = x? + 3xy — y?, find the differential d:.

(b) If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the values
of Az and dz.

SOLUTION
(a) Definition 10 gives
dr = Zax + gy = (2x + 3y)dx + (3x — 2) d
z ox ay y Yy y) ay

(b) Putting x = 2, dx = Ax = 0.05,y = 3, and dy = Ay = —0.04, we get
dz =[2(2) + 3(3)]0.05 + [3(2) — 2(3)](—0.04) = 0.65
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The increment of z is

Az =f(2.05,2.96) — f(2,3)
= [(2.05)? + 3(2.05)(2.96) — (2.96)*] — [22 + 3(2)(3) — 3]
= 0.6449

Notice that Az = dz but dz is easier to compute. [ |

[ETYET The base radius and height of aright circular cone are measured as 10 cm
and 25 cm, respectively, with a possible error in measurement of asmuch as 0.1 cmin
each. Use differentials to estimate the maximum error in the cal culated volume of the
cone.

SOLUTION The volumeV of a cone with base radius r and height hisV = #r?h/3. So
the differential of V is

27rh 7r?

dr +
3 73

v ="Ldr + & gh = dh
ar oh
Since each error is at most 0.1 cm, we have | Ar| < 0.1, | Ah| < 0.1. To estimate the

largest error in the volume we take the largest error in the measurement of r and of h.
Therefore we take dr = 0.1 and dh = 0.1 along with r = 10, h = 25. This gives

500 100
dv = Tﬂ 0.1) + TW (0.1) = 207

Thus the maximum error in the calculated volume is about 207 cm® = 63 cm® -

I Functions of Three or More Variables

Linear approximations, differentiability, and differentials can be defined in a similar man-
ner for functions of more than two variables. A differentiable function is defined by an
expression similar to the one in Definition 7. For such functions the linear approximation
is

f(x,y,z) = f(a,b,c) + fi(a, b, c)(x — a) + f,(a,b,c)(y — b) + f.(a, b, c)(z — ¢)

and the linearization L(x, y, z) isthe right side of this expression.
If w=f(X,y, z), thentheincrement of wis

Aw = f(x + Ax,y + Ay, z + Az) — f(X,Y, 2)

The differential dw is defined in terms of the differentials dx, dy, and dz of the independ-

ent variables by
dw=a—wdx+a—wdy+a—w
X ay 0z

dz

The dimensions of arectangular box are measured to be 75 cm, 60 cm,
and 40 cm, and each measurement is correct to within 0.2 cm. Use differentials to esti-
mate the largest possible error when the volume of the box is calculated from these
measurements.

SOLUTION If the dimensions of the box are x, y, and z, its volume isV = xyz and so

oV Y Y
=—dx+—dy+—dz = + +
dv x dx 3y dy P dz = yzdx + xzdy + xydz
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946 CHAPTER 14 PARTIAL DERIVATIVES

We are given that | Ax| < 0.2, |Ay| < 0.2, and | Az| < 0.2. To estimate the largest error
in the volume, we therefore use dx = 0.2, dy = 0.2, and dz = 0.2 together with x = 75,

y = 60, and z = 40:

AV = dV = (60)(40)(0.2) + (75)(40)(0.2) + (75)(60)(0.2) = 1980

Thus an error of only 0.2 cm in measuring each dimension could lead to an error of
approximately 1980 cm? in the calculated volume! This may seem like a large error, but

it's only about 1% of the volume of the box.

(X8 Exercises

1-6 Find an equation of the tangent plane to the given surface at
the specified point.

1. z2=3y?—2x>+x, (2,—-1,-3)
2 z=3(x—-1>%+2(y + 3?2+ 7,
3=y, (L1

(2, -2,12)

4. z =xe¥, (2,0,2
5 z=xsn(x+vy), (=1,1,0
6. z=1In(x —2y), (3,10

7-8 Graph the surface and the tangent plane at the given point.
(Choose the domain and viewpoint so that you get a good view
of both the surface and the tangent plane.) Then zoom in until
the surface and the tangent plane become indistinguishable.

7. z=x*+xy + 3y%3 (1,15

8. z = arctan(xy?), (L 1, 7/4)

9-10 Draw the graph of f and its tangent plane at the given
point. (Use your computer algebra system both to compute the
partial derivatives and to graph the surface and its tangent plane.)
Then zoom in until the surface and the tangent plane become
indistinguishable.

xy sin(x —y)
1+ x2+y?'

10. f(x,y) = e’XV/lO(ﬁ +Jy + \/ﬁ) (1,1,3e7%Y

9. f(X, y) = (1! 1! O)

11-16 Explain why the function is differentiable at the given
point. Then find the linearization L(x, y) of the function at
that point.

1. f(x,y) =1+ xIn(xy = 5), (2, 3)
12. f(x, y) = x%* (1,1
13. f(x,y) = . (2,1

X +y

18. f(x,y) = VX + e¥, (3,0

Graphing calculator or computer required

Computer algebra system required

(m,0)
(0,3

15. f(x,y) = e cosy,
16. f(x,y) =y + sin(x/y),

17-18 Verify the linear approximation at (0, 0).

2x + 3
18. \Jy + cos?x = 1+ 3y

17.
4y + 1

~3+ 2x — 12y

19. Given that f is a differentiable function with f (2, 5) = 6,
f(2,5) = 1, and f,(2, 5) = —1, use alinear approximation
to estimate f (2.2, 4.9).

S 20.

Find the linear approximation of the function
f(x,y) =1 — xy cosry at (1, 1) and use it to approximate
f(1.02, 0.97). lllustrate by graphing f and the tangent plane.

21. Find the linear approximation of the function

f(X,y,2) = VX2 +y2+ 22 a (3,2,6) anduseit to
approximate the number /(3.02)2 + (1.97)2 + (5.99)2.

22. The wave heights h in the open sea depend on the speed v
of the wind and the length of timet that the wind has been
blowing at that speed. Values of the functionh = (v, t) are
recorded in feet in the following table. Use the table to find
alinear approximation to the wave height function when »
is near 40 knots and t is near 20 hours. Then estimate the
wave heights when the wind has been blowing for 24 hours
at 43 knots.

Duration (hours)

! 5 10 15 20 30 40 50

20 5 7 8 8 9 9 9

30 9 13 16 17 18 19 19

40 14 21 25 28 31 33 33

Wind speed (knots)

50 19 29 36 40 45 48 50

60 24 37 47 54 62 67 69

1. Homework Hints available at stewartcalculus.com
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23. Use the table in Example 3 to find a linear approximation to

the heat index function when the temperature is near 94°F
and the relative humidity is near 80%. Then estimate the heat
index when the temperature is 95°F and the relative humidity
is 78%.

24. The wind-chill index W is the perceived temperature when the

actual temperatureis T and the wind speed is v, SO we can
write W = f(T, »). The following table of valuesis an excerpt
from Table 1 in Section 14.1. Use the table to find a linear
approximation to the wind-chill index function when T is near
—15°C and » is near 50 km/h. Then estimate the wind-chill
index when the temperature is —17°C and the wind speed
is55 km/h.

Wind speed (km/h)
Sl 20 | 0 | 4 | 50 | 60 | 7
% ~10 | —18 | =20 | —21 | —22 | —23 | —23
%& ~15 | —24 | =26 | =27 | —29 | =30 | —30
% —-20 | —-30 | -33 | -34 | -35 | —36 | —37
8 -5 | a7 | —39 | -m | 42| 43| —m

25-30 Find the differential of the function.

25

21.

29

26. U= /x?+ 3y?

28 T=

. z = e %cos 2wt

5

m=p¥q

3
1+ uvw

. R = aB?cosy 30. L=xzeV

31

32

33

34

35

36

. 1f z = 5x2 + y? and (x, y) changes from (1, 2) to (1.05, 2.1),
compare the values of Az and dz.

. If z =x? — xy + 3y?and (x, y) changes from (3, —1) to
(2.96, —0.95), compare the values of Az and dz.

. The length and width of arectangle are measured as 30 cm and
24 cm, respectively, with an error in measurement of at most
0.1 cmin each. Use differentias to estimate the maximum
error in the calculated area of the rectangle.

. Use differentials to estimate the amount of metal in a closed
cylindrical can that is 10 cm high and 4 cm in diameter if the
metal in the top and bottom is 0.1 cm thick and the metal in the
sidesis 0.05 cm thick.

. Use differentials to estimate the amount of tin in aclosed tin
can with diameter 8 cm and height 12 cm if the tin is 0.04 cm
thick.

. The wind-chill index is modeled by the function
W = 13.12 + 0.6215T — 11.370°%® + 0.3965T»*%*

where T is the temperature (in °C) and v is the wind speed
(in km/h). The wind speed is measured as 26 km/h, with a

SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS

31.

38.

39.

40.

a.

42.

947

possible error of =2 km/h, and the temperature is measured
as —11°C, with apossible error of =1°C. Use differentials to
estimate the maximum error in the calculated value of W due
to the measurement errorsin T and v.

Thetension T in the string of the yo-yo in the figure is

_ mgR
T=%21r?

where m is the mass of the yo-yo and g is acceleration due to
gravity. Use differentials to estimate the change in the tension
if Risincreased from 3 cmto 3.1 cmand r isincreased from
0.7 cm to 0.8 cm. Does the tension increase or decrease?

The pressure, volume, and temperature of a mole of an ideal
gas are related by the equation PV = 8.31T, where P is mea-
sured in kilopascals, V in liters, and T in kelvins. Use differ-
entials to find the approximate change in the pressure if the
volume increases from 12 L to 12.3 L and the temperature
decreases from 310 K to 305 K.

If R isthe total resistance of three resistors, connected in par-

alel, with resistances R1, Ry, R3, then
1 1 1

= +— +

Rz

_1 1
R R; Rs

If the resistances are measured in onmsas R; = 25 (),

R, = 40 (), and R; = 50 (), with a possible error of 0.5% in
each case, estimate the maximum error in the calculated value
of R.

Four positive numbers, each less than 50, are rounded to the
first decimal place and then multiplied together. Use differen-
tials to estimate the maximum possible error in the computed
product that might result from the rounding.

A model for the surface area of a human body is given by

S = 0.1091w****h°™, where w is the weight (in pounds), h is
the height (in inches), and S is measured in square feet. If the
errors in measurement of w and h are at most 2%, use differ-
entials to estimate the maximum percentage error in the calcu-
lated surface area.

Suppose you need to know an equation of the tangent plane to
asurface S at the point P(2, 1, 3). You don’t have an equation
for S but you know that the curves

ri(t) = (2 + 3t,1 — t3 3 — 4t + t?)
rp(u) = {(1+u32u®—1,2u+ 1)

both lie on S. Find an equation of the tangent plane at P.
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948 CHAPTER 14 PARTIAL DERIVATIVES

43-44 Show that the function is differentiable by finding values 46. (a) The function

of &, and e, that satisfy Definition 7.

43. f(x,y) = x> +y?

4. f(x,y) = xy — 5y? f(x,y) =14 x? +y?

Y it (v y) # (0,0

0 if (x,y)=1(0,0

45. Provethat if f isafunction of two variables that is differen-

tiable at (a, b), then f is continuous at (a, b).

was graphed in Figure 4. Show that f,(0, 0) and f,(0, 0)
both exist but f is not differentiable at (0, 0). [Hint: Use

Hint: Show that the result of Exercise 45.]
“ Ali)m(0 o f(a+ Ax,b + Ay) = f(a, b) (b) Explain why f, and f, are not continuous at (0, 0).
ax, ay)—(0,

The Chain Rule

Recall that the Chain Rule for functions of asingle variable givestherulefor differentiating
acomposite function: If y = f(x) and x = ¢(t), where f and ¢ are differentiable functions,
theny isindirectly a differentiable function of t and

dy _ dy dx
[1] dt  dx dt

For functions of more than one variable, the Chain Rule has several versions, each of
them giving arule for differentiating a composite function. The first version (Theorem 2)
deals with the case where z = f(x, y) and each of the variables x and y is, in turn, a func-
tion of avariablet This meansthat z isindirectly afunction of t, z = f(g(t), h(t)), and the
Chain Rule gives aformulafor differentiating z as afunction of t. We assume that f isdif-
ferentiable (Definition 14.4.7). Recall that this is the case when f, and f, are continuous
(Theorem 14.4.8).

(2] The Chain Rule (Case 1) Supposethat z = f(x, y) is a differentiable function of
x and y, where x = ¢(t) and y = h(t) are both differentiable functions of t. Then z
is a differentiable function of t and

d: _ ot o of oy

dt ox dt | ay dt

PROOF A change of At int produces changes of Ax inx and Ay iny. These, in turn, pro-
duce achange of Az in z, and from Definition 14.4.7 we have

of of
Az = 5Ax + a—yAy + &1 AX + g, Ay

whereeg; — 0and e, — 0 as (Ax, Ay) — (0, 0). [If the functions &; and &, are not
defined at (0, 0), we can define them to be 0 there.] Dividing both sides of this equation
by At, we have

Az of Ax ot Ay o Ax Ay

= = P
At ox At oy At TFAt  TPAt

If wenow let At — O, then Ax = g(t + At) — g(t) — 0 because g is differentiable and
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SECTION 14.5 THE CHAIN RULE 949

therefore continuous. Similarly, Ay — 0. This, inturn, meansthat e; — O0and e, — 0, SO

dt  at—o At
_8_f' £+a_f|' A_y+ li li ﬁ—k li li ﬂ
X AtIE]O At ay AIITO At (A!Toel) A!TO At (AtILnO 82) AtILnO At
af dx of dy dx dy
=——+——+0-—+0-—
ax dt gy dt dt dt
of dx  of dy
= ar T v —
ax dt gy dt

Since we often write 9z/dx in place of of/9x, we can rewrite the Chain Rule in the form

Notice the similarity to the definition of the
differential: dz 9z dx 9z dy
—_——=——} — =
dr =2 ax + 2y dt  ox dt  oay dt
ax ay

If z = x?y + 3xy*, wherex = sin 2t and y = cost, find dz/dt whent = O.
SOLUTION The Chain Rule gives

dz 9z dx 9z dy
+ —_—

dt ox dt = ay dt
= (2xy + 3y")(2cos2t) + (x? + 12xy®)(—sint)

It's not necessary to substitute the expressions for x and y in terms of t. We simply
observe that whent = 0, wehavex = sin0 = 0 andy = cos 0 = 1. Therefore

dz

i (0 + 3)(2cos0) + (0 + 0)(—sin0) = 6 [
t=0
y The derivative in Example 1 can be interpreted as the rate of change of z with respect
0,1) to t as the point (x, y) moves along the curve C with parametric equations x = sin 2t,
c y = cost. (SeeFigure 1.) In particular, whent = 0, the point (x, y) is(0, 1) and dz/dt = 6
is the rate of increase as we move along the curve C through (0, 1). If, for instance,
z=T(x,y) = x?y + 3xy* represents the temperature at the point (x, y), then the compos-
% itefunctionz = T(sin 2t, cost) represents the temperature at points on C and the derivative
dz/dt represents the rate at which the temperature changes along C.

I IETXTEZTF The pressure P (in kilopascals), volume V (in liters), and temperature T
(inkelvins) of amole of anideal gas are related by the equation PV = 8.31T. Find the
rate at which the pressure is changing when the temperature is 300 K and increasing at a
rate of 0.1 K/sand the volumeis 100 L and increasing at arate of 0.2 L /s.

FIGURE 1

The curve x = sin2t, y = cost
SOLUTION If t represents the time elapsed in seconds, then at the given instant we have
T = 300, dT/dt = 0.1, V = 100, dV/dt = 0.2. Since

T
P =83l—
\
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950 CHAPTER 14 PARTIAL DERIVATIVES

a2 oz
ax ay
x y
dx f o\ ax ay [T\ dy
as/ \at as/ \Bt
N t N t
FIGURE 2

the Chain Rule gives

dP _ P dT 9P dv _831dT 83IT dv

dt 9T dt oV dt vV odt  V? dt

8.31 8.31(300)
=——(01) - ———— (0.2 = —0.041
100 0.1 1007 (0.2 0.04155
The pressure is decreasing at a rate of about 0.042 kPa/s. [ |

We now consider the situation where z = f(X, y) but each of x and y isafunction of two
variabless and t: X = ¢(s, 1), y = h(s, t). Then z isindirectly afunction of s and t and we
wish to find 9z/ds and 9z/at. Recall that in computing dz/ot we hold s fixed and compute
the ordinary derivative of z with respect to t. Therefore we can apply Theorem 2 to obtain

gz _ oz ax oz dy
at  oax at oy ot

A similar argument holds for 9z/ds and so we have proved the following version of the
Chain Rule.

(3] The Chain Rule (Case 2) Supposethat z = f(x, y) is a differentiable function of
x andy, where x = ¢(s, t) and y = h(s, t) are differentiable functions of s and t.
Then

Jz dz oX Jdz a9y Jz dz OX dz ay

s ox s ay s ot oax ot ay ot

ETEEE] If z = e*siny, wherex = st?and y = s, find 9z/9s and 9z/t.
SOLUTION Applying Case 2 of the Chain Rule, we get

Jz dz oX dz ay
_ — + _

= = (e*siny)(t?) + (&* 2st
a5 ax as | ay os (e*siny)(t?) + (e*cosy)(2st)

=t dn(s?t) + 2ste*!” cos(s)

Jz dz OX dz ay
_ — + _

- et . ,
ot ax ot ay ot (e*siny)(2st) + (e* cosy)(s®)

— 2ste*’ sin(s%) + s%* cos(s2t) -

Case 2 of the Chain Rule contains three types of variables: s and t are independent vari-
ables, x and y are called intermediate variables, and z isthe dependent variable. Notice that
Theorem 3 has one term for each intermediate variable and each of these terms resembles
the one-dimensional Chain Rulein Equation 1.

To remember the Chain Rule, it's helpful to draw the tree diagram in Figure 2. We draw
branches from the dependent variable z to the intermediate variables x and y to indicate that
zisafunction of x andy. Then we draw branches from x and y to the independent variables
s and t. On each branch we write the corresponding partial derivative. To find 9z/ds, we
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SECTION 14.5 THE CHAIN RULE 951

find the product of the partial derivatives along each path from z to s and then add these
products:

oz _pzix bz by
9 ox s Ay 0

Similarly, we find dz/at by using the paths from z to t.

Now we consider the general situation in which a dependent variable u is a function of
n intermediate variables x4, . .., Xn, €ach of which is, in turn, a function of m independent
variablesty, ..., ty. Notice that there are n terms, one for each intermediate variable. The
proof is similar to that of Case 1.

IE] The Chain Rule (General Version) Suppose that u is a differentiable function of

the n variables x4, Xz, . . ., X, and each x; is a differentiable function of the m vari-
ablesty, tp, ..., tn. Thenu isafunction of ty, to, .. ., ty and
au ou  0Xy au Xz ou X

= ey T+
ot X1 Ot X2 Ot 0Xn Ot

foreachi=1,2,...,m.

V| Write out the Chain Rule for the case wherew = f(x, y, z, t) and
X =x(u, ),y =y(U,v),z=z(u,v),and t = t(u, v).

SOLUTION We apply Theorem 4 with n = 4 and m = 2. Figure 3 shows the tree diagram.
Although we haven't written the derivatives on the branches, it's understood that if a
branch leads from y to u, then the partial derivative for that branch is ay/ou. With the aid
of the tree diagram, we can now write the required expressions:

ow ow X Jw ay ow 9z Jw ot

au X odu ay adu dz du ot au

Jw Jw 0X ow 9y ow 0z Jw ot
=——+——=+——+

v ax av  ay v 0z dv  at av
1 ETEE If u = x* + y22% wherex = rse', y = rs% ', and z = r?%s sint, find the
valueof du/aswhenr = 2,s = 1,t = 0.
SOLUTION With the help of the tree diagram in Figure 4, we have
Jau Ju ox Ju ay Ju dz
_——_ 4 — = 4 —
as oX ds ay 0s dz 0S

= (4x3y)(re') + (x* + 2yz*)(2rse™") + (By%?)(r?sint)
Whenr =2,s=1andt =0, wehavex =2,y = 2,andz = 0, so

‘;—LS‘ — (64)(2) + (16)(4) + (0)(0) = 192 —
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952 CHAPTER 14 PARTIAL DERIVATIVES

EETTEE If g(s, t) = f(s? — t2 t% — s?) and f isdifferentiable, show that ¢ satisfies
the equation
ds ot

t =0

SOLUTION Letx =s? —t?andy = t*> — s Theng(s, t) = f(x, y) and the Chain Rule

gives
d of o of 9 of of
99 _ Xy ——y=—(23) + —(—29)
s Ox 9s Ay 0s X ay
) of o of o of
Y LR AN_T - 2t)+—(2t)
gt Iax ot gy 9t Ix
Therefore
f f f f
t%Jrsﬂ: Zst(9 —25ta + —Zsta +Zsta— =0 [
s ot aX ay X ay

If z = f(x, y) has continuous second-order partial derivativesand x = r? + s2
andy = 2rs, find (a) 9z/ar and (b) 9%/or>.

SOLUTION
(@) The Chain Rule gives

dJ dz 0X dz 0 d
_Z:_Z_+_Z_y:_2( )+_(25)
ar  ax ar  ay or

(b) Applying the Product Rule to the expression in part (a), we get
2
6_§=1<2 9\ o _>
or or X ay
2 Z (L) al(£)
X ar \ ox ar \ ay
9z But, using the Chain Rule again (see Figure 5), we have
2 2
L3222 ()T S
N y ar \ ox dX \ 9X / dr ay ar X ay 0X
/\/\ a<3z> 6(62>8X a( )ay 2 o2
r s r s = + ay

— 2r 2
ay ay ) ar oy ar 8xay() (S)

(5]

FIGURE 5 Putting these expressions into Equation 5 and using the equality of the mixed second-

order derivatives, we obtain

9%z 9? 92 0%z 0%z
—2—+2r<2r—zz+23 - >+25(2r + 2 —)
ar? X dy ox ax dy dy2

82 2, 82
— 2% a4 P g + 452 -
ox ox? ax ay ay?

BN Implicit Differentiation

The Chain Rule can be used to give a more complete description of the process of implicit
differentiation that was introduced in Sections 2.6 and 14.3. We suppose that an equa-
tion of the form F(x, y) = 0 defines y implicitly as a differentiable function of x, that is,
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The solution to Example 8 should be
compared to the one in Example 2 in
Section 2.6.

SECTION 14.5 THE CHAIN RULE 953

y = f(x), where F(x, f(x)) = O for al x in the domain of f. If F isdifferentiable, we can
apply Case 1 of the Chain Rule to differentiate both sides of the equation F(x, y) = O with
respect to x. Since both x and y are functions of x, we obtain

OF dx | oF dy _

ax dx ay dx

But dx/dx = 1, soif 9F/dy # 0 we solve for dy/dx and obtain

9F

dy  ax K

(5] dx  oF  F
ay

To derive this equation we assumed that F(x, y) = 0 definesy implicitly asafunction of
X. The Implicit Function Theorem, proved in advanced calculus, gives conditions under
which thisassumptionisvalid: It statesthat if F isdefined on adisk containing (a, b), where
F(a,b) = 0, Fy(a, b) # 0, and F, and F, are continuous on the disk, then the equation
F(x,y) = 0definesy asafunction of x near the point (a, b) and the derivative of thisfunc-
tion is given by Equation 6.

Findy’ if x3 + y* = 6xy.

SOLUTION The given equation can be written as
F(x,y)=x®+y>—6xy=0

so Equation 6 gives

dy Fy 3x2 — 6y X2 — 2y
—_— = —— = — = — -
dx Fy 3y? — 6x y2 — 2x

Now we supposethat z isgiven implicitly asafunction z = f(x, y) by an equation of the
form F(x,y,z) = 0. This means that F(x,y, f(x,y)) = 0 for al (x,y) in the domain
of f.If Fand f are differentiable, then we can use the Chain Rule to differentiate the equa-
tion F(x, y, z) = Oasfollows:

OF ax | OF By OF oz
aX 9X Ay X 9z X

J d
But a(x) =1 and a(y) =0

so this equation becomes
oF dF oz
—_ + —_—
dX dz OX

If 9F/9z # 0, we solve for 9z/dx and obtain the first formulain Equations 7 on page 954.
The formulafor 9z/dy is obtained in a similar manner.
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954 CHAPTER 14 PARTIAL DERIVATIVES

IF 9F

Jz 1) Jz ay

=
X OE o oF

0z Jz

Again, aversion of the Implicit Function Theorem stipulates conditions under which
our assumption is valid: If F is defined within a sphere containing (a, b, ¢), where
F(a, b, c) = 0,F.(a, b, ¢) # 0, and F,, Fy, and F. are continuous inside the sphere, then the
equation F(x, y, z) = 0 defines z as a function of x and y near the point (a, b, ¢) and this
function is differentiable, with partial derivatives given by [7].

9 iz
EXAMPLE 9 Fmda—ianda—; it X3+ y3 + 2% + 6xyz = 1.

SOLUTION Let F(x,Yy,z) = x4+ y3 + z* + 6xyz — 1. Then, from Equations 7, we have

oz Fy 3x? + 6yz X2+ 2yz
The solution to Example 9 should be o T £ T T a2 )
compared to the one in Example 4 in ox F 3z + bxy 2" + 2xy
Section 14.3. ) F 2 + 6x 24+ 2x
_Z:__y:_3y2 Z:_y2 z [
ay F. 3z° + 6xy z% + 2xy
Exercises
1-6 Use the Chain Rule to find dz/dt or dw/dt. 13. If z = f(x,y), where f isdifferentiable, and
1L z=x2+y>+xy, x=sint, y=¢! x = g(t) y = h(t)
g(3) =2 h(3) =7
2. z =cos(x + 4y), x= 5t4, y = 1/t g/(3) -5 h'(3) = —4
3= VITX Ty, x=Int, y=cost Mzn=6  Han--8
find dz/dt whent = 3.
4 z=tan '(y/x), x=e' y=1-¢" 14. Let W(s, t) = F(u(s, 1), v(s, t)), where F, u, and v are differen-
tiable, and
5. w=xe":, x=1t3 y=1-1 z=1+2t u(L, 0) =2 v(1,00 =3
us(1,0) = -2 (1,00 =5
= 2 2 2 — g — _
6. w =Inyx? +y*+ 272, x=sint, y=cost, z=tant u(1,0) =6 w(1,0) = 4
Fu2,3) = -1 F,(2,3) =10
7-12 Use the Chain Rule to find 9z/0s and dz/at. Find W,(1, 0) and W,(1, 0).
7.z =x%% x=scost, y=ssnt 15. Suppose f is a differentiable function of x and y, and
_ g(u,v) = f(e" + sinv, e" + cosv). Use the table of values
8 z=arcsn(x —y), x=s>+1t% y=1-2st to calculate g,(0, 0) and ¢,(0, 0).
9. z=snfcos¢, 6O=st? ¢=s% f g f, f,

0,0 3 6 4 8
1,2 6 3 2 5

10. z=¢"%, x=s/t, y=1t/s

M. z=¢e"cosh, r=st, 0=./s2+1t2

16. Suppose f isadifferentiable function of x and y, and
12 z =tan(ufy), u=2s+3t, »=23s— 2t g(r,s) =f(2r — s,s? — 4r). Use the table of valuesin
Exercise 15 to calculate ¢:(1, 2) and ¢s(1, 2).

1. Homework Hints available at stewartcalculus.com
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17-20 Use atree diagram to write out the Chain Rule for the given
case. Assume all functions are differentiable.

17. u=1f(x,y),

18. R =1(x,y,z1), wherex = x(u, v, w), y = y(U, v, w),
z = z(U, v, w), t = t(U, v, w)

where x = x(r, s, t), y = y(r,s, 1)

19. w=f(r,s,t), wherer =r(x,y), s =s(x,y), t =1t(x,y)
20. t = f(u,»,w), whereu=u(p,q,r,s), » =uv(p,q,r,s),
w=w(p,q,r,s)

21-26 Use the Chain Rule to find the indicated partial derivatives.

21 z=x*+x%, x=s+2t—u, y=stu%
d d d
iii whens=4,t=2,u=1
Js  adt au
2 T= , u= r, = r;
T pavr, »=pvq
oT  oT oT
—, —, — Wwhenp=2,qg=1r=4
ap’ aq’ ar
23 w=Xy+Yyz+2zX, X=rcosh, y=rsing, z=rob;
d d
—w,—w whenr =2, 0= 7/2
ar a0
24. P=u?+v2+w?, u=xe’, v=ye, w=eY,
oP 9P
—, — whenx =0,y =2
ox ' ay
_pb+q _ _ _ .
5. N=—— p=u+tow, q=v+ Uw, r=w+ Uv;
p+r
ON 9N 9N
—, —, — WwWhenu=2,0v=3,w=4
Ju  Jdv  Jw
2. u=1xeY, x=a’8, y=RB% t=y;
Ju du au
—, —, — Whena=-1,8=2,y=1
da’ 9B’ oy

27-30 Use Equation 6 to find dy/dx.
21. ycosx = x? + y? 28. cos(xy) = 1 + siny

29. tan"Y(x%y) = x + xy? 30. e’sinx = x + Xy

31-34 Use Equations 7 to find 9z/dx and dz/dy.
M X2+ 297+ 32=1 2. x2—y*+2-2=4
33. e = xyz 34 yz + xIny = 22

35. The temperature at a point (x, y) isT(x, y), measured in degrees
Celsius. A bug crawls so that its position after t seconds is
givenby x = /1 + t,y = 2 + it, where x and y are measured
in centimeters. The temperature function satisfies Tx(2, 3) = 4
and Ty(2, 3) = 3. How fast is the temperature rising on the
bug's path after 3 seconds?

36. Wheat production W in a given year depends on the average
temperature T and the annual rainfall R. Scientists estimate
that the average temperature isrising at arate of 0.15°C/year

31

38.

39.

40.

a.
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and rainfall is decreasing at arate of 0.1 cm/year. They aso

estimate that, at current production levels, oW/oT = —2

and oW/0R = 8.

(a) What is the significance of the signs of these partial
derivatives?

(b) Estimate the current rate of change of wheat production,
dw/dt.

The speed of sound traveling through ocean water with salinity
35 parts per thousand has been modeled by the equation

C = 1449.2 + 4.6T — 0.055T 2 + 0.00029T ® + 0.016D

where C is the speed of sound (in meters per second), T isthe
temperature (in degrees Celsius), and D is the depth below the
ocean surface (in meters). A scuba diver began aleisurely dive
into the ocean water; the diver’s depth and the surrounding
water temperature over time are recorded in the following
graphs. Estimate the rate of change (with respect to time) of
the speed of sound through the ocean water experienced by the
diver 20 minutes into the dive. What are the units?

T

b 16

N
20 o -
15 12
10 10 L

5 8

i

40 !
(min)

4 ! 10 20 30
(min)

10 20 30

The radius of aright circular coneisincreasing at a rate of
1.8in/swhileits height is decreasing at arate of 2.5in/s. At
what rate is the volume of the cone changing when the radius
is120in. and the height is 140 in.?

The length €, width w, and height h of abox change with
time. At a certain instant the dimensionsare ¢ = 1 m and
w=h=2m, and € and w are increasing at arate of 2 m/s
while h is decreasing at arate of 3 m/s. At that instant find the
rates at which the following quantities are changing.

(&) The volume

(b) The surface area

(c) The length of a diagonal

The voltage V in asimple electrical circuit is slowly decreasing
as the battery wears out. The resistance R is slowly increasing
as the resistor heats up. Use Ohm’s Law, V = IR, to find how
the current | is changing at the moment when R = 400 (),

I = 0.08A, dV/dt = —0.01V/s, and dR/dt = 0.03 Q}/s.

The pressure of 1 mole of an ideal gasisincreasing at arate
of 0.05 kPa/s and the temperature is increasing at a rate of
0.15 K /s. Use the equation in Example 2 to find the rate of
change of the volume when the pressure is 20 kPa and the
temperature is 320 K.

. A manufacturer has modeled its yearly production function P

(the value of its entire production in millions of dollars) as a
Cobb-Douglas function

P(L, K) = 1.47L°%K**
where L is the number of labor hours (in thousands) and K is
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44.
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the invested capital (in millions of dollars). Suppose that when
L = 30 and K = 8, the labor force is decreasing at arate of
2000 labor hours per year and capital isincreasing at a rate of
$500,000 per year. Find the rate of change of production.

Oneside of atriangleisincreasing at arate of 3cm/sand a
second side is decreasing at arate of 2 cm/s. If the area of the
triangle remains constant, at what rate does the angle between
the sides change when the first side is 20 cm long, the second
sideis 30 cm, and the angle is 7/67?

If asound with frequency f; is produced by a source traveling
aong aline with speed »; and an observer is traveling with
speed v, along the same line from the opposite direction toward
the source, then the frequency of the sound heard by the

observer is
+ 1o
f, = (C v >fs
c— vs

where ¢ is the speed of sound, about 332 m/s. (Thisisthe
Doppler effect.) Suppose that, at a particular moment, you
arein atrain traveling at 34 m/s and accelerating at 1.2 m/s>
A train is approaching you from the opposite direction on the
other track at 40 m/s, accelerating at 1.4 m/s?, and sounds its
whistle, which has a frequency of 460 Hz. At that instant, what
is the perceived frequency that you hear and how fast is it
changing?

45-48 Assume that all the given functions are differentiable.

45,

46.

47.

48.

If z=1(x,y), wherex =rcosfandy = rsin 6, (a) find 9z/ar
and 9z/96 and (b) show that

<az>2 <8Z>2 (82)2 1 <8Z>2
— + — — | == + — [ =
X ay ar rz\ a0

If u=f(x,y), wherex = e*costandy = e®sint, show that

(5 (5)-{(2) ()]

Ifz=f(x—y),Showthat£+—=0.
X oy

If z=1f(x,y), wherex =s + tandy = s — t, show that

oz (a2 _ e e
ax ay as ot

50.

51.

52.

53.

54.

If u="f(x,y), wherex = e*costandy = e®sint, show that

9u 2
—2s| __ ~ + —
¢ [as2 atz]
If z=f(x,y), wherex = r? + s?and y = 2rs, find 9%z/ar os.
(Compare with Example 7.)

If z=1f(x,y), wherex = rcosfandy = rsiné, find
(@ az/ar, (b) 9z/a6, and (c) 9%z/ar 6.

If z=f(x,y), wherex = rcosf andy = r sin6, show that
10
r2 962

1o
r or

0% n 0%z . 0%z

X% ay?  or?

Suppose z = f(X,y), where x = ¢(s,t) and y = h(s, 1).

(@) Show that
Pz _ 0z (ox)\ o, 9% xdy &z oy
otz ax? \ at axay at at  ay? \ at

oz x| 0z iy
ax ot

ay o2
(b) Find asimilar formula for 9%z/ds ot.

49-54 Assume that all the given functions have continuous
second-order partia derivatives.

49,

Show that any function of the form
z=f(x + at) + g(x — at)
is asolution of the wave equation
P 0
at? ox?

[Hint: Letu = x + at,» = x — at.]

55.

56.

57.

58.

59.

A function f is called homogeneous of degree n if it satisfies
the equation f(tx, ty) = t"f(x, y) for al 7, where n is a positive
integer and f has continuous second-order partial derivatives.
(a) Verify that f(x,y) = x? + 2xy? + 5y*is homogeneous
of degree 3.

(b) Show that if f is homogeneous of degree n, then

of of

—_ + [ —

Xox TV %y nf(x,y)

[Hint: Use the Chain Rule to differentiate f(tx, ty) with
respect to t.]

If f is homogeneous of degree n, show that

o
+ YZW =n(n — Df(x,y)

o%f
ax ay

o
XZW + 2xy

If f is homogeneous of degree n, show that
fi(tx, ty) = t"H(x, y)

Suppose that the equation F(x, y, z) = 0 implicitly defines each
of the three variables x, y, and z as functions of the other two:
z=1(X,¥),y = g(x z), x = h(y, z). If Fisdifferentiable and
Fy, Fy, and F. are al nonzero, show that

gz ax ay

ax dy oz

Equation 6 is aformula for the derivative dy/dx of afunction
defined implicitly by an equation F(x, y) = 0, provided that F
is differentiable and F, # 0. Prove that if F has continuous sec-
ond derivatives, then aformula for the second derivative of y is
d?%

_ FuF? = 2RyFRFy + FyF?
dx? F?
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 957

m Directional Derivatives and the Gradient Vector

S S S S—
0 50 100 150 200
(Distance in miles)

FIGURE 1

FIGURE 2
A unit vector u = {(a, by = (cos 6, sin #)

Visual 14.6A animates Figure 3 by
rotating u and therefore T.

FIGURE 3

The weather map in Figure 1 shows a contour map of the temperature function T(x, y) for
the states of California and Nevada at 3:00 Pm on a day in October. The level curves, or
isothermals, join locations with the same temperature. The partial derivative Ty at alocation
such as Reno is the rate of change of temperature with respect to distance if we travel east
from Reno; Ty is the rate of change of temperature if we travel north. But what if we want
to know the rate of change of temperature when we travel southeast (toward Las Vegas), or
in some other direction? In this section we introduce a type of derivative, caled a direc-
tional derivative, that enables us to find the rate of change of a function of two or more
variablesin any direction.

I Directional Derivatives
Recall that if z = f(x, y), then the partia derivatives f, and f, are defined as

f(xo + h, Yo) — f(Xo, Yo)
h

fi(Xo, Yo) = ||1|_|')Tc1)
[1]
f(Xo, Yo + h) — f(Xo, Yo)
h

fV(XOI yo) = !‘I_r)rg)

and represent the rates of change of z in the x- and y-directions, that is, in the directions of
the unit vectorsi and j.

Suppose that we now wish to find the rate of change of z at (xo, Yo) in the direction of an
arbitrary unit vector u = (a, b). (See Figure 2.) To do this we consider the surface S with
the equation z = f(x,y) (the graph of f) and we let zo = f(Xo, yo). Then the point
P(xo, Yo, z0) lieson S. The vertical plane that passes through P in the direction of u inter-
sectsSinacurveC. (See Figure 3.) The slope of thetangent line T to C at the point P isthe
rate of change of z in the direction of u.
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FIGURE 4

If Q(x, Y, z) isancther point on C and P’, Q" are the projections of P, Q onto the xy-plane,
then the vector P'Q’ is parallel to u and so

—>
P'Q" = hu = (ha, hb)
for some scalar h. Thereforex — xo = ha,y — yo = hb, sox = %o + ha,y =y, + hb,
and
Az z—z0  f(Xo+ ha,yo + hb) — f(Xo, Yo)

h h h

If wetakethelimit ash — 0O, we obtain the rate of change of z (with respect to distance) in
the direction of u, which is called the directional derivative of f in the direction of u.

@ Definition The directional derivative of f at (Xo, Yo) in the direction of a unit
vector u = (a, b) is

f(xo + ha, yo + hb) — f(xo, Yo)
h

Dy f(Xo, Yo) = LL”;I)

if thislimit exists.

By comparing Definition 2 with Equations [1], we see that if u = i = (1, 0), then
Dif =fiandif u = j = (0, 1), then D; f = f,. In other words, the partial derivatives of f
with respect to x and y are just specia cases of the directional derivative.

[E70EITEN Use the weather map in Figure 1 to estimate the value of the directional
derivative of the temperature function at Reno in the southeasterly direction.

SOLUTION The unit vector directed toward the southeastisu = (i — j)/v/2, but we
won't need to use this expression. We start by drawing a line through Reno toward the

southeast (see Figure 4).
Retc\/

Francisco

Sy S E— |
0 50 100 150 200
(Distance in miles)

o LosAngeles J
J

We approximate the directional derivative D, T by the average rate of change of the
temperature between the points where this line intersects the isothermals T = 50 and
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 959

T = 60. The temperature at the point southeast of Reno is T = 60°F and the temperature
at the point northwest of Reno is T = 50°F. The distance between these points looks to
be about 75 miles. So the rate of change of the temperature in the southeasterly direction
is

60—-50 10

— = 0.13°F/mi [

D.T="2¢ 75

When we compute the directional derivative of afunction defined by aformula, we gen-
eraly use the following theorem.

E] Theorem If f isadifferentiable function of x and y, then f has a directional
derivative in the direction of any unit vector u = (a, b) and

Du.f(x,y) = f(x,y)a + fy(x,y)b

PROOF If we define afunction g of the single variable h by
g(h) = f(Xo + ha., yo + hb)
then, by the definition of a derivative, we have

lim f(Xo + ha, yo + hb) — f(Xo, yo)

h—0 h

= Dy f(Xo, Yo)

On the other hand, we can write g(h) = f(x, y), wherex = X, + ha, y = yo + hb, so the
Chain Rule (Theorem 14.5.2) gives

of dx | of dy _ fx, y)a + f(x,y)b

’ — + —
90 =2 T oy o

If we now put h = 0, then x = X, y = Yo, and
[5] g'(0) = fu(Xo, Yo) @ + fy(Xo, Yo) b
Comparing Equations 4 and 5, we see that
Dy f(Xo, Yo) = fu(Xo, Yo) @ + f,(Xo, o) b —

If the unit vector u makes an angle 6 with the positive x-axis (as in Figure 2), then we
canwriteu = (cos#, sin§) and the formulain Theorem 3 becomes

(6] Duf(x,y) = f(x,y) cosé + fy(x,y) sin6
[ET0ITF Find the directional derivative D, f(x, y) if

f(x,y) = x3 — 3xy + 4y?

and u is the unit vector given by angle § = =/6. What is D, f(1, 2)?
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The directional derivative D, f (1, 2) in SOLUTION Formula6 gives
Example 2 represents the rate of change of z in

the direction of u. This is the slope of the tan-

gent line to the curve of intersection of the D, f(x,y) = fi(X,y) COSE + f,(x,y) sin T
surface z = x® — 3xy + 4y? and the vertical 6 6
plane through (1, 2, 0) in the direction of u \/§

shown in Figure 5. = (3x2 — 3y) + (=3x + By)%

2

=1[3v3x? - 3x + (8 — 3y3)y]

z

Therefore

D.f(1,2) = 3[3v3(1)2 - 3(1) + (8 - 3V3)©)] =

I The Gradient Vector

13 - 3.3
2

Notice from Theorem 3 that the directional derivative of a differentiable function can be

FIGURE 5 written as the dot product of two vectors:

Duf(x,y) = f(x,y)a + fy(x,y)b
= (fx,y), f(x,y)) - (a,b)
= (fx,y), f(x,y)) - u

Thefirst vector in this dot product occurs not only in computing directional derivatives but
in many other contexts aswell. So we give it a special name (the gradient of f ) and a spe-

cia notation (grad f or Vf, whichisread “del f").

the vector function Vf defined by

f f
VEx,y) = (fxy), (X, 9) = %i + (‘:—yj

Definition |f f isafunction of two variables x and y, then the gradient of f is

EEEES If f(x,y) = sinx + e, then
Vi(x,y) = (f,, f,) = (cosx + ye¥, xe™)
and V(0,1 = (2,0)

With this notation for the gradient vector, we can rewrite Equation 7 for the directional

derivative of adifferentiable function as

[9] Duf(x,y) = VI(x,y) - u

This expresses the directional derivative in the direction of a unit vector u as the scalar

projection of the gradient vector onto u.
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The gradient vector Vf (2, —1) in Example 4 is
shown in Figure 6 with initial point (2, —1).
Also shown is the vector v that gives the direc-
tion of the directional derivative. Both of these
vectors are superimposed on a contour plot of

the graph of f.

A

Vf(2,-1)

/)

FIGURE 6

SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 961

I BT Find the directional derivative of the function f(x, y) = x2y® — 4y at the
point (2, —1) in the direction of the vector v = 2i + 5j.

SOLUTION We first compute the gradient vector at (2, —1):
Vi(x,y) = 2xy3%i + (3x%y? — 4)j
Vi(2, —1) = —4i + 8j

Note that v is not a unit vector, but since | v| = /29, the unit vector in the direction
of vis

Therefore, by Equation 9, we have

D.f(2, —1)

%“ N
©

_|_
E“ ol
©

N
N———

Vf(2,—1) - u=(—4i+ 8j) - (

~4-2+8-5 32

NN ] -

I Functions of Three Variables

For functions of three variables we can define directional derivatives in a similar manner.
Again D, f(x, Y, z) can be interpreted as the rate of change of the function in the direction
of aunit vector u.

Definition The directional derivative of f at (xo, Yo, zo) in the direction of a
unit vector u = (a, b, c) is

f(Xo + ha, Yo + hb, zo + hC) — f(Xo, Yo, Zo)
h

Dy f(Xo, Yo, z0) = LL”(])

if thislimit exists.

If we use vector notation, then we can write both definitions (2 and 10) of the direc-
tional derivative in the compact form

f(Xo + hu) — f(Xo)
h

m Duf(xo) = lim

where Xo = (Xo, Yoy if n = 2 and Xo = (Xo, Yo, z0) if N = 3. Thisis reasonable because
the vector equation of the line through X, in the direction of the vector u is given by
X = Xo + tu (Equation 12.5.1) and so f(Xo + hu) represents the value of f at a point on
thisline.
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If f(x,y,z) isdifferentiable and u = (a, b, ¢), then the same method that was used to
prove Theorem 3 can be used to show that

[12] Duf(x,y,2) = f(x,y,2)a + f,(x,y,2)b + f.(x,y,2)C

For afunction f of three variables, the gradient vector, denoted by Vf or grad f, is

Vf(X, y, Z) = < fX(Xv y! Z), fy(X! yv Z)! fZ(X! y, Z)>

or, for short,

of of of
Vi=(f,f,f)=—i+—j+
[13] {fo by 1) ox ! ayJ 0z

Then, just aswith functions of two variables, Formula 12 for the directional derivative can
be rewritten as

D.f(x,y,z) = Vf(X,y,2) - u

V1 EAEE If f(x,y, z) = xsinyz, () find the gradient of f and (b) find the direc-
tional derivative of f at (1, 3, 0) inthedirectionof v =i + 2j — k.

SOLUTION
(@) Thegradient of f is

Vf(X, yv Z) = < fX(Xv yl Z)v fy(xv y! Z)! fZ(Xy Y- Z)>

= (sinyz, Xz COSYz, Xy COSYz)

(b) At (1, 3,0) wehave Vf(1, 3,0) = (0, 0, 3). The unit vector in the direction of

v=i+2j—Kkis

1,2 1
NN RN

u

Therefore Equation 14 gives
D.f(1,3,0) = Vf(1,3,0) -u

A48 -

I Maximizing the Directional Derivative

Suppose we have afunction f of two or three variables and we consider al possible direc-
tional derivatives of f at a given point. These give the rates of change of f in all possible
directions. We can then ask the questions: In which of these directions does f change
fastest and what is the maximum rate of change? The answers are provided by the follow-
ing theorem.
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15] Theorem Suppose f is a differentiable function of two or three variables. The
maximum value of the directional derivative D, f(x) is | Vf(x)| and it occurs when
u has the same direction as the gradient vector Vf(x).

Visual 14.6B provides visual
confirmation of Theorem 15.

PROOF From Equation 9 or 14 we have
D,f=Vf-u=|Vf|lu|cosh = |Vf|cosb

where 6 isthe angle between Vf and u. The maximum value of cos# is 1 and this occurs
when 6 = 0. Therefore the maximum value of D, f is| Vf | and it occurs when 6 = 0,

that is, when u has the same direction as Vf. [ |
g | EXAMPLE 6 |
21 (a) If f(x,y) = xe?, find the rate of change of f at the point P(2, 0) in the direction from
Pt0Q(3,2).
(b) Inwhat direction does f have the maximum rate of change? What is this maximum
T rate of change?
SOLUTION
i (a) We first compute the gradient vector:
Vi(x,y) = (&, f,) = (e’,xe¥)
FIGURE 7

Vi(2,0) =(1,2)
At (2, 0) the function in Example 6 increases .
fastest in the direction of the gradient vector  The unit vector in the direction of PQ = (—1.5,2) isu = (¢, #), so the rate of change

V#(2,0) = (1,2). Notice from Figure 7 that ot ¢ i1y the direction from P to Q is
this vector appears to be perpendicular to the

level curve through (2, 0). Figure 8 shows the B . 3 4
graph of f and the gradient vector. D.f(2,0) = Vf(2,0) -u= <1’ 2> ) <_§’ §>

— =) + ) -1

(b) According to Theorem 15, f increases fastest in the direction of the gradient vector
V{(2,0) = (1, 2). The maximum rate of changeis

|Vi(2,0)| =[(1,2)| =5 -

IE7YZTFA Suppose that the temperature at a point (X, Y, z) in spaceis given by
T(X,¥,2) = 80/(1 + x? + 2y? + 3z%), where T is measured in degrees Celsius and
FIGURE 8 X, Y, z in meters. In which direction does the temperature increase fastest at the point
(1, 1, —2)? What is the maximum rate of increase?

SOLUTION Thegradient of T is

VIi=—i+—j+—
ax - ay d
- 160x . 320y o 480z ‘
L+x2+ 22+ 322 L+ + 22+ 8220 (L+x2+ 2y + 327

_ 160 (
(14 x>+ 2y? + 3z%)?

—Xi —2yj — 3zk)
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FIGURE 9

VF (X0, ¥, Z9)

tangent plane

At the point (1, 1, —2) the gradient vector is
VT(1,1, —2) = 5(—i — 2j + 6k) = 3(—i — 2j + 6Kk)

By Theorem 15 the temperature increases fastest in the direction of the gradient vector
VT(L, 1, —2) = 2(—i — 2j + 6k) or, equivaently, in the direction of —i — 2j + 6k or
the unit vector (—i — 2j + 6k)/+/41. The maximum rate of increase is the length of the
gradient vector:

|VT(1,1,-2)| = 3| —i — 2j + 6k| =341
Therefore the maximum rate of increase of temperature is2+/41 =~ 4°C/m. -

I Tangent Planes to Level Surfaces

Suppose S is a surface with equation F(x, y, z) = k, that is, it is alevel surface of afunc-
tion F of three variables, and let P(Xo, Yo, z0) be apoint on S. Let C be any curve that lies
on the surface S and passes through the point P. Recall from Section 13.1 that the curve C
is described by a continuous vector function r(t) = (x(t), y(t), z(t)). Let t, be the param-
eter value corresponding to P; that is, r(t)) = (Xo, Yo, zo). Since C lies on S, any point
(x(V), y(1), z(t)) must satisfy the equation of S, that is,

F(x(®), y(v), () = k

If X, y, and z are differentiable functions of t and F is also differentiable, then we can use
the Chain Rule to differentiate both sides of Equation 16 as follows:

oF dx odF dy oF dz
ox dt gy dt 9z dt 0

But, since VF = (Fy, Fy, F.) and r'(t) = (x'(t), y'(t), z'(t)), Equation 17 can be written in
terms of adot product as

VF-r'(t) =0

In particular, whent = to we have r(to) = (Xo, Yo, Zo), SO

VF(Xo, Yo, 20) * F'(ty) = O

Equation 18 says that the gradient vector at P, VF(Xo, Yo, z0), iS perpendicular to the
tangent vector r'(to) to any curve C on S that passes through P. (See Figure 9.) If
VF(xo, Yo, z0) # 0, it is therefore natural to define the tangent plane to the level surface
F(x,y, z) = k at P(xo, Yo, z0) as the plane that passes through P and has normal vector
VF(Xo, Yo, z0). Using the standard equation of a plane (Equation 12.5.7), we can write the
equation of thistangent plane as

Fx(Xo, Yo, zo)(X — Xo) + Fy(Xo, Yo, zo)(Y — Yo) + F.(Xo, Yo, z0)(z — z0) = 0
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Figure 10 shows the ellipsoid, tangent plane,
and normal line in Example 8.

FIGURE 10

SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 965

The normal line to S at P is the line passing through P and perpendicular to the tan-
gent plane. The direction of the normal line is therefore given by the gradient vector
VF(Xo, Yo, zo) and so, by Equation 12.5.3, its symmetric equations are

X — Xo Y — Yo Z — Zo
— —

Fx(Xo, Yo, Zo) B Fy(Xo, Yo, Zo) B FZ(X()y Yo, Zo)

In the specia case in which the equation of asurface S isof theformz = f(x, y) (thatis,
S isthe graph of afunction f of two variables), we can rewrite the equation as

F(x,y,z) =f(x,y) —z=0
and regard S as alevel surface (with k = 0) of F. Then

Fx(Xo, Yo, 20) = f«(Xo, Yo)
Fy(Xo, Yo, zo) = fy(Xo, Yo)
Fz(Xo, Yo, Zo) = -1

so Equation 19 becomes
f(Xo, Yo) (X = Xo) + f,(Xo, Yo)(y = Yo) — (z = z0) = O

which is equivalent to Equation 14.4.2. Thus our new, more general, definition of atangent
plane is consistent with the definition that was given for the special case of Section 14.4.

V| Find the equations of the tangent plane and normal line at the point
(—=2,1, —3) totheelipsoid

x2 72

—+y*+—=3

4 YV T

SOLUTION Theéllipsoid isthe level surface (with k = 3) of the function

2 2
F(x,y,z)=%+y2+%

Therefore we have
X 2z
Fi(X,y,z) = B Fy(x,y,2) = 2y F.(X,y,z) = 9
Fu(—-2,1,-3) = -1 Fy(—2,1,-3) =2 F.(-2,1,-3) = -3

Then Equation 19 gives the equation of the tangent plane at (—2, 1, —3) as
-1x+2+2y—-1) —-5:z+3=0

which simplifiesto 3x — 6y + 2z + 18 = 0.
By Equation 20, symmetric equations of the normal line are
X+ 2 _y- 1 z+3

= |
-1 2 _

[SIIN]
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966 CHAPTER 14 PARTIAL DERIVATIVES

I Significance of the Gradient Vector

We now summarize the ways in which the gradient vector is significant. We first consider
afunction f of three variables and a point P(xo, Yo, zo) in its domain. On the one hand, we
know from Theorem 15 that the gradient vector Vf(xo, Yo, zo) gives the direction of fastest
increase of f. On the other hand, we know that V f (o, Yo, zo) is orthogonal to the level sur-
face S of f through P. (Refer to Figure 9.) These two properties are quite compatible intu-
itively because as we move away from P on the level surface S, the value of f does not
change at all. So it seems reasonable that if we move in the perpendicular direction, we get
the maximum increase.

In like manner we consider a function f of two variables and a point P(Xo, Yo) in its
domain. Again the gradient vector Vf(xo, Yo) gives the direction of fastest increase of f.
Also, by considerations similar to our discussion of tangent planes, it can be shown that
Vf(xo, Yo) is perpendicular to the level curve f(x, y) = k that passes through P. Again this
isintuitively plausible because the values of f remain constant aswe move along the curve.

(See Figure 11.)
Y V£(x4, ¥o)
P(x9, o)
level curve/
f(x,y) =k curve of
steepest
0 x ascent 100
FIGURE 11 FIGURE 12

If we consider atopographical map of ahill and let f(x, y) represent the height above sea
level at a point with coordinates (x, y), then a curve of steepest ascent can be drawn asin
Figure 12 by making it perpendicular to all of the contour lines. This phenomenon can also
be noticed in Figure 12 in Section 14.1, where Lonesome Creek follows a curve of steep-
est descent.

Computer algebra systems have commands that plot sample gradient vectors. Each gra-
dient vector Vf(a, b) is plotted starting at the point (a, b). Figure 13 shows such a plot
(called agradient vector field) for the function f(x, y) = x? — y? superimposed on a con-
tour map of f. Asexpected, the gradient vectors point “ uphill” and are perpendicular to the

level curves.
y
[,
| \—6
| -3
/ \ 0 7 g
a— - \/ T~s —s
— - - /?X
\ i
FIGURE 13 ﬁ‘ f

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 967

([N} Exercises

1. Level curves for barometric pressure (in millibars) are shown
for 6:00 AM on November 10, 1998. A deep low with pressure
972 mb is moving over northeast lowa. The distance along the
red line from K (Kearney, Nebraska) to S (Sioux City, lowa) is
300 km. Estimate the value of the directional derivative of the
pressure function at Kearney in the direction of Sioux City.
What are the units of the directional derivative?

2. The contour map shows the average maximum temperature for
November 2004 (in °C). Estimate the value of the directional
derivative of this temperature function at Dubbo, New South
Wales, in the direction of Sydney. What are the units?

J S S
0 100 200 300
(Distance in kilometers)

Reprinted by permission of the Commonwealth of Australia.

3. A table of values for the wind-chill index W = (T, ») isgiven
in Exercise 3 on page 935. Use the table to estimate the value
of D, f(—20, 30), whereu = (i + j)/+/2.

4-6 Find the directional derivative of f at the given point in the
direction indicated by the angle 6.

4. f(x,y) =x3*+x%®% (1,1, 6=mu/6

5 f(x,y)=vye™ (0,4), 6=2m/3

6. f(x,y) =e*cosy, (0,0), 6= m/4

7-10

(a) Find the gradient of f.

(b) Evaluate the gradient at the point P.

(c) Find the rate of change of f at P in the direction of the
vector u.

7. f(x,y) = sin2x + 3y), P(-6,4), u=13(/3i—]j)
8. f(x,y) =y¥x, P(LL2), u= %(Zi + \/§J)
9. f(x,y,z) = x&yz — xyz%, P2, -1,1), u=/(0¢ —2)

10. f(x,y,2) =y, P(0,1,-1), u=(3 & 2)

11-17 Find the directiona derivative of the function at the given
point in the direction of the vector v.

1. f(x,y) =e*siny, (0, 7/3), v=(—6,8)

12. f(x,y) = (1,2, v=(3,5)

13. g(p,q) =p* —p7°, (21, v=i+3j

14. g(r,s) = tan"*(rs), (1,2), v =5i+ 10j

15. f(x,y,z) = xe¥ + ye’ + z¢*, (0,0,0), v=<(51,—-2)

16. f(x,y,2) = VXyz, (3,2,6), v= (-1 -22)

17. h(r,s,t) = In(3r + 6s + 9t), (1,1,1), v =4i+ 12j + 6k

18. Usethe figure to estimate D, f (2, 2).

Y (2,2)
u

Vf(2,2)
0 \ X

19. Find the directional derivative of f(x,y) = /Xy at P(2, 8) in
the direction of Q(5, 4).

20. Find the directional derivative of f(x,y,z) = xy + yz + zx at
P(1, —1, 3) in the direction of Q(2, 4, 5).

21-26 Find the maximum rate of change of f at the given point and
the direction in which it occurs.

2. f(x,y) = 4yvX, (4, 1)

22. f(s,t) =te™, (0,2)

23. f(x,y) = sin(xy), (1,0

24. f(x,y,z2) = (x +y)/z, (1,1, -1)

2. f(x,y,2) = X2+ y2+ 22, (3,6, —2)
f(

26. f(p,q,r) = arctan(pqr), (1,2,1)

Graphing calculator or computer required

1. Homework Hints available at stewartcalculus.com
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21.

28.

29.

30.

31.

32.

33.

34.

CHAPTER 14 PARTIAL DERIVATIVES

(a) Show that a differentiable function f decreases most
rapidly at x in the direction opposite to the gradient vector,
that is, in the direction of —Vf(x).

(b) Use the result of part (a) to find the direction in which the
function f(x,y) = x%y — x?y° decreases fastest at the
point (2, —3).

Find the directions in which the directiona derivative of
f(x,y) = ye™ at the point (0, 2) has the value 1.

Find al points at which the direction of fastest change of the
function f(x,y) = x? + y? — 2x — 4yisi + j.

Near a buoy, the depth of alake at the point with coordinates
(x,y) isz = 200 + 0.02x> — 0.001y®, where x, y, and z are
measured in meters. A fisherman in a small boat starts at the
point (80, 60) and moves toward the buoy, which is located at
(0, 0). Isthe water under the boat getting deeper or shallower
when he departs? Explain.

The temperature T in ametal ball isinversely proportional to

the distance from the center of the ball, which we take to be the

origin. The temperature at the point (1, 2, 2) is 120°.

(a) Find the rate of change of T at (1, 2, 2) in the direction
toward the point (2, 1, 3).

(b) Show that at any point in the ball the direction of greatest
increase in temperature is given by a vector that points
toward the origin.

The temperature at a point (X, y, z) is given by

T(x,y, z) = 200e %" ~¥" %"

where T is measured in °C and X, Y, z in meters.
(8) Find the rate of change of temperature at the point
P(2, —1, 2) in the direction toward the paint (3, —3, 3).
(b) In which direction does the temperature increase fastest
aP?
(c) Find the maximum rate of increase at P.

Suppose that over a certain region of space the electrical poten-

tial V isgiven by V(x,y, z) = 5x> — 3xy + Xyz.

(a) Find the rate of change of the potential at P(3, 4, 5) in the
direction of thevectorv =i + j — k.

(b) In which direction does V change most rapidly at P?

(c) What is the maximum rate of change at P?

Suppose you are climbing a hill whose shape is given by the

equation z = 1000 — 0.005x* — 0.01y?, where x, y, and z are

measured in meters, and you are standing at a point with coor-

dinates (60, 40, 966). The positive x-axis points east and the

positive y-axis points north.

(a) If you walk due south, will you start to ascend or descend?
At what rate?

(b) If you walk northwest, will you start to ascend or descend?
At what rate?

(¢) Inwhich direction is the slope largest? What is the rate of
ascent in that direction? At what angle above the horizontal
does the path in that direction begin?

35. Let f be afunction of two variables that has continuous

partial derivatives and consider the points A(1, 3), B(3, 3),
C(1,7), and D(6, 15). The dlrectlonal derivative of f at Ain
the direction of the vector AB is 3 and the directional deriva-
tive at A in the direction of AC is 26. Find the di regl onal
derivative of f at A in the direction of the vector AD.

. Shown is a topographic map of Blue River Pine Provincia

Park in British Columbia. Draw curves of steepest descent
from point A (descending to Mud Lake) and from point B.

M Blue River o Blue River (,_
s iverRine'P \mul""

!!I on Rt

Reproduced with the permission of Natural Resources Canada 2009,
courtesy of the Centre of Topographic Information.

. Show that the operation of taking the gradient of afunction has

the given property. Assume that u and v are differentiable func-
tions of x and y and that a, b are constants.

@ V(@u + by)y=aVu+bVe (b) Viuy) =uVo + »Vu

© v(j) - ”V“;72“V” (d) Vu" = nu" ' vu

. Sketch the gradient vector Vf (4, 6) for the function f whose

level curves are shown. Explain how you chose the direction
and length of this vector.

39. The second directional derivative of f(x,y) is

D&f(x,y) = Du[Du f(x,y)]

Iff(x,y) = x* + 5x%y + y*andu = (2, %), calculate
D2(2, 1).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



40.
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(@ If u = (a, b) isaunit vector and f has continuous
second partial derivatives, show that

DZf = fya? + 2f, ab + f,, b2

(b) Find the second directional derivative of f(x,y) = xe? in
the direction of v = (4, 6).

41-46 Find equations of (a) the tangent plane and (b) the normal
line to the given surface at the specified point.

a.
42.
43,
44,
45,
6.

2x — 22 + (y — 1) + (z — 3)2 = 10,
4,7,3
(3,2, 1)

(3,35
y=x*—2z%
xyz? = 6,
1,2,1)
(0,0,1)
1,141

Xy +yz + zx =5,
X+y+z=¢e¥

x4+ y* 4 24 = 33Xy %2

[A4 47-48 Use acomputer to graph the surface, the tangent plane, and
the normal line on the same screen. Choose the domain carefully
so that you avoid extraneous vertical planes. Choose the
viewpoint so that you get a good view of all three objects.

47.

Xy +yz+zx=3, (1,1,1) 48. xyz =6, (1,2,3)

49

50.

51.

52.

53.

54.

55.

If f(x,y) = xy, find the gradient vector Vf (3, 2) and use it
to find the tangent line to the level curve f(x,y) = 6 at the
point (3, 2). Sketch the level curve, the tangent line, and the
gradient vector.

If g(x,y) = x* + y? — 4x, find the gradient vector Vy(1, 2)
and use it to find the tangent line to the level curve

g(x,y) = 1 at the point (1, 2). Sketch the level curve, the tan-
gent line, and the gradient vector.

Show that the equation of the tangent plane to the ellipsoid
x?/a® + y%/b? + z%/c? = 1 at the point (Xo, Yo, zo) Can be
written as
XXo YYo ZZo
PRI

=1

Find the equation of the tangent plane to the hyperboloid
x?/a? + y?/b? — z%/c? = 1 at (Xo, Yo, z0) and expressitin a
form similar to the one in Exercise 51.

Show that the equation of the tangent plane to the elliptic
paraboloid z/c = x¥a? + y?/b? at the point (Xo, Yo, z0) Can
be written as

2XXo  2YYo _zt 2

a? b2 c

At what point on the paraboloid y = x? + z? is the tangent
plane parallel to the planex + 2y + 3z = 1?

Are there any points on the hyperboloid x? — y2 — z2 =1
where the tangent plane is parallel to the planez = x + y?

56.

57.

58.

59.

60.

61.

62.

63.

64.

Y
1<

65.

66.

Y
<]

67.

68.

969

Show that the ellipsoid 3x? + 2y? + z2 = 9 and the sphere
X2+ y2+ z2 — 8x — 6y — 8z + 24 = 0 are tangent to each
other at the point (1, 1, 2). (This means that they have a com-
mon tangent plane at the point.)

Show that every plane that is tangent to the cone
x2 + y2 = 22 passes through the origin.

Show that every normal line to the sphere x2 + y2 + 2% = r?
passes through the center of the sphere.

Where does the normal line to the paraboloid z = x? + y? at
the point (1, 1, 2) intersect the paraboloid a second time?

At what points does the normal line through the point
(1,2, 1) ontheellipsoid 4x? + y2 + 4z2 = 12 intersect the
sphere x? + y? + z2 = 102?

Show that the sum of the x-, y-, and z-intercepts of any
tangent plane to the surface v/x + /y + z = J/c isa
constant.

Show that the pyramids cut off from the first octant by any
tangent planes to the surface xyz = 1 at pointsin the first
octant must all have the same volume.

Find parametric equations for the tangent line to the curve of
intersection of the paraboloid z = x2 + y? and the ellipsoid
4x? + y? + 22 = 9 at the point (—1, 1, 2).

(@ Theplaney + z = 3intersectsthe cylinder x> + y2 =5
in an ellipse. Find parametric equations for the tangent
line to this ellipse at the point (1, 2, 1).

(b) Graph the cylinder, the plane, and the tangent line on the
same screen.

(8) Two surfaces are called orthogonal at a point of inter-
section if their normal lines are perpendicular at that
point. Show that surfaces with equations F(x, y, z) = 0
and G(x, y, z) = 0 are orthogonal at a point P where
VF # 0and VG # 0 if and only if

FxGx + FyGy + F;Gz =0 aP

(b) Use part (a) to show that the surfaces z2 = x* + y2 and
x? + y? + z2 = r? are orthogonal at every point of
intersection. Can you see why thisis true without using
calculus?

(a) Show that the function f(x,y) = ¥xy is continuous and
the partial derivatives f, and f, exist at the origin but the
directional derivativesin all other directions do not exist.

(b) Graph f near the origin and comment on how the graph
confirms part ().

Suppose that the directional derivatives of f(x, y) are known
at agiven point in two nonparallel directions given by unit
vectors u and v. Isit possible to find Vf at this point? If so,
how would you do it?

Show that if z = f(x, y) is differentiable a xo = (Xo, Yo), then
f(x) — f(xo) — Vf(Xo) * (X — Xo) _
X = %o

[Hint: Use Definition 14.4.7 directly.]

lim

X—Xo

0
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970 CHAPTER 14 PARTIAL DERIVATIVES

m Maximum and Minimum Values

z absolute As we saw in Chapter 3, one of the main uses of ordinary derivatives is in finding maxi-

~ maximum  Mum and minimum values (extreme values). In this section we see how to use partial
derivatives to locate maxima and minima of functions of two variables. In particular, in
Example 6 we will see how to maximize the volume of abox without alid if we have afixed
amount of cardboard to work with.

Look at the hills and valleys in the graph of f shown in Figure 1. There are two points
(a, b) where f has alocal maximum, that is, where f(a, b) is larger than nearby values of
minimum f(x, y). Thelarger of these two valuesis the absolute maximum. Likewise, f hastwo local
minimum minima, where f(a, b) is smaller than nearby values. The smaller of these two valuesisthe

absolute minimum.

FIGURE 1

Definition A function of two variables has a local maximum at (a, b) if
f(x,y) < f(a, b) when (x,y) isnear (a, b). [Thismeansthat f(x,y) < f(a, b) for
all points (x, y) in some disk with center (a, b).] The number f(a, b) iscalled a
local maximum value. If f(x,y) = f(a, b) when (x, y) isnear (a, b), then f hasa
local minimum at (a, b) and f(a, b) isalocal minimum value.

If theinequalitiesin Definition 1 hold for all points (x, y) in the domain of f, then f has
an absolute maximum (or absolute minimum) at (a, b).

Notice that the conclusion of Theorem 2 can @ Theorem If f has alocal maximum or minimum at (a, b) and the first-order

be %t?t(ed Ibn) the notation of gradient vectors partial derivatives of f exist there, then fx(a, b) = 0 and f,(a, b) = 0.
as a,b) =0

PROOF Letg(x) = f(x, b). If f hasalocal maximum (or minimum) at (a, b), then g hasa
local maximum (or minimum) at a, so g'(a) = 0 by Fermat's Theorem (see Theorem 3.1.4).
But g'(a) = fi(a, b) (see Equation 14.3.1) and so fi(a, b) = 0. Similarly, by applying Fer-
mat’s Theorem to the function G(y) = f(a, y), we obtain f,(a, b) = 0. [ ]

If we put fi(a, b) = 0 and f,(a, b) = O in the equation of a tangent plane (Equation
14.4.2), we get z = zo. Thus the geometric interpretation of Theorem 2 isthat if the graph
of f has atangent plane at alocal maximum or minimum, then the tangent plane must be
horizontal.

A point (a, b) is called a critical point (or stationary point) of f if f.(a,b) = 0 and
fy(a, b) = O, or if one of these partial derivatives does not exist. Theorem 2 says that if f
has alocal maximum or minimum at (a, b), then (a, b) isacritical point of f. However, as
in single-variable calculus, not al critical points give rise to maximaor minima. At acriti-
cal point, a function could have alocal maximum or alocal minimum or neither.

ETETEER Let f(x,y) = x2 4+ y2 — 2x — 6y + 14. Then
f(x,y) = 2x — 2 fi(x,y) =2y — 6

These partial derivatives are equal to O when x = 1 and y = 3, so the only critical point
is (1, 3). By completing the square, we find that

fx,y) =4+ (x— 1>+ (y -3

FIGURE 2 Since (x — 1)>= 0and (y — 3)> = 0, we have f(x,y) = 4 for all valuesof x and y.
z=x>+y?—2x—6y+14 Therefore (1, 3) = 4isaloca minimum, and in fact it is the absolute minimum of f.
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FIGURE 3
Z=y2—x2

SECTION 14.7 MAXIMUM AND MINIMUM VALUES 97

This can be confirmed geometrically from the graph of f, which isthe elliptic paraboloid
with vertex (1, 3, 4) shown in Figure 2. [

[E70ZT#F Find the extreme values of f(x,y) = y? — x4

SOLUTION Since f, = —2x and f, = 2y, the only critical pointis (0, 0). Notice that

for points on the x-axiswe havey = 0, so f(x,y) = —x2 < 0 (if x % 0). However, for
points on the y-axiswe have x = 0, so f(x,y) = y2 > 0(if y # 0). Thus every disk

with center (0, 0) contains points where f takes positive values as well as points where

f takes negative values. Therefore f(0, 0) = 0 can’t be an extreme value for f, so f has
no extreme value. [ |

Example 2 illustrates the fact that a function need not have a maximum or minimum
value at acritical point. Figure 3 shows how thisis possible. The graph of f is the hyper-
bolic paraboloid z = y2 — x2, which has a horizontal tangent plane (z = 0) at the origin.
You can seethat f(0, 0) = 0isamaximum in the direction of the x-axis but aminimum in
the direction of the y-axis. Near the origin the graph has the shape of a saddle and so (0, 0)
is called asaddle point of f.

A mountain pass al so has the shape of asaddle. Asthe photograph of the geological for-
mation illustrates, for people hiking in one direction the saddle point is the lowest point on
their route, while for those traveling in a different direction the saddle point is the highest
point.

We need to be able to determine whether or not afunction has an extreme value at acrit-
ical point. Thefollowing test, which is proved at the end of this section, is analogous to the
Second Derivative Test for functions of one variable.

El Second Derivatives Test Suppose the second partia derivatives of f are contin-
uous on a disk with center (a, b), and suppose that f,(a, b) = 0 and f,(a, b) = 0
[that is, (a, b) isacritical point of f]. Let

D = D(a, b) = f(a, b) fyy(a, b) — [fy,(a, b)]?
(@) If D> 0and f«(a, b) > 0, then f(a, b) isaloca minimum.
(b) If D > 0and fx(a, b) < 0, then f(a, b) isalocal maximum.
(c) If D < 0, then f(a, b) isnot alocal maximum or minimum.

NOTE 1 In case (c) the point (a, b) is called a saddle point of f and the graph of f
crosses its tangent plane at (a, b).

NOTE 2 If D = 0, thetest givesno information: f could have alocal maximum or local
minimum at (a, b), or (a, b) could be a saddle point of f.

NOTE 3 To remember the formulafor D, it's helpful to write it as a determinant:

fxx fxy

yX Yy

D= = fxx fyy - (fxy)2

1 IETYTEEE] Find the local maximum and minimum values and saddle points of
f(x,y) = x*+y*— 4xy + 1.

SOLUTION Wefirst locate the critical points:
fy=4x3 — 4y fy = dy® — 4x
Setting these partial derivatives equal to 0, we obtain the equations
x3—y=0 and y2—x=0
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972 CHAPTER 14 PARTIAL DERIVATIVES
To solve these equations we substitute y = x* from the first equation into the second
one. This gives
0=x"—x=x(x2=—1) =x(x*—Dx*+ 1) =x(x>— D>+ D(x*+ 1)

so there are three real roots: x = 0, 1, —1. The three critical points are (0, 0), (1, 1),
and (—1, —1).
Next we calculate the second partial derivatives and D(x, y):

\“ ‘ ‘ ‘ iiManff/n
L
\\x{i\!i\!lln‘”'

fix = 12x? fiy=—4 fyy = 12y

—

D(x,y) = fix fyy — (fxy)? = 144x%y? — 16

S
=

\

W

Since D(0, 0) = —16 < 0, it follows from case (c) of the Second Derivatives Test that
the origin is a saddle point; that is, f has no local maximum or minimum at (0, 0).
Since D(1, 1) = 128 > 0 and f(1, 1) = 12 > 0, we see from case (a) of the test that

o f(1,1) = —1lisaloca minimum. Similarly, we have D(—1, —1) = 128 > 0 and
FIGURE 4 f(—1,—1) =12 > 0,0 f(—1, —1) = —1lisaso aloca minimum.
z=x*+yt—dxy+1 The graph of f isshown in Figure 4. [ |

A contour map of the function f in Example 3 is
shown in Figure 5. The level curves near (1, 1)
and (=1, —1) are oval in shape and indicate
that as we move away from (1, 1) or (=1, —1)
in any direction the values of f are increasing.
The level curves near (0, 0), on the other hand,
resemble hyperbolas. They reveal that as we
move away from the origin (where the value of f
is 1), the values of f decrease in some directions
but increase in other directions. Thus the contour
map suggests the presence of the minima and
saddle point that we found in Example 3.

FIGURE 5

In Module 14.7 you can use contour maps 209l Find and classify the critical points of the function
to estimate the locations of critical points.
f(x,y) = 10x?y — 5x2 — 4y? — x* — 2y*
Also find the highest point on the graph of f.
SOLUTION Thefirst-order partial derivatives are
f, = 20xy — 10x — 4x° f, = 10x* — 8y — 8y°
So to find the critical points we need to solve the equations
[4] 2x(10y —5—2x?) =0
[5] 5x2 — 4y — 4y® =0
From Equation 4 we see that either

x=0 or 10y —5-2x2=0
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FIGURE 6

Visual 14.7 shows several families
of surfaces. The surface in Figures 7 and 8
is a member of one of these families

2.7

SECTION 14.7 MAXIMUM AND MINIMUM VALUES 973

In the first case (x = 0), Equation 5 becomes —4y(1 + y?) = 0, soy = 0 and we
have the critical point (0, 0).

In the second case (10y — 5 — 2x2 = 0), we get

[6] x?=5y — 25

and, putting thisin Equation 5, we have 25y — 12.5 — 4y — 4y® = 0. So we have to
solve the cubic equation

4y — 21y + 125=0

Using a graphing calculator or computer to graph the function
g(y) = 4y® — 21y + 125

asin Figure 6, we see that Equation 7 has three real roots. By zooming in, we can find
the roots to four decimal places:

y ~ —2.5452 y ~ 0.6468 y ~ 1.8984

(Alternatively, we could have used Newton’s method or a rootfinder to locate these
roots.) From Equation 6, the corresponding x-values are given by

X=*y5y —25

If y = —2.5452, then x has no corresponding real values. If y = 0.6468, then

X = *£0.8567. If y = 1.8984, then x = *+2.6442. So we have atotal of five critical
points, which are analyzed in the following chart. All quantities are rounded to two
decimal places.

Critical point Value of f fux D Conclusion
(0,0 0.00 —10.00 80.00 local maximum

(+2.64, 1.90) 8.50 —55.93 2488.72 local maximum

(£0.86, 0.65) —1.48 —5.87 —187.64 saddle point

Figures 7 and 8 give two views of the graph of f and we see that the surface opens
downward. [This can also be seen from the expression for f(x, y): The dominant terms
are —x* — 2y*when | x| and | y| are large.] Comparing the values of f at its local maxi-
mum points, we see that the absolute maximum value of f is f(*+2.64, 1.90) = 8.50. In
other words, the highest points on the graph of f are (+2.64, 1.90, 8.50).

FIGURE 7

FIGURE 8
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974 CHAPTER 14 PARTIAL DERIVATIVES

The five critical points of the function f in
Example 4 are shown in red in the contour
map of f in Figure 9.

FIGURE 9

7 BT Find the shortest distance from the point (1, 0, —2) to the plane
X+2y+z=4

SOLUTION The distance from any point (x, y, z) to the point (1, 0, —2) is

d=(x—12+y2+ (z + 22

butif (x,y, z) liesontheplanex + 2y + z = 4, thenz = 4 — x — 2y and so we have
d=+(x—12+y2+ (6 — x — 2y)2. We can minimize d by minimizing the simpler

expression
d?=f(xy) = (x =D’ +y* + (6 — x — 2y)°
By solving the equations

i=2x—1) —-26-x—-2)=4x+4y —14=0

f,=2y — 46 —Xx —2y) =4x + 10y — 24 =0
we find that the only critical point is (¥, 3). Since . = 4, f,, = 4, and f,, = 10, we
have D(x, y) = fx f,y — (f,)> = 24 > 0 and f, > 0O, so by the Second Derivatives Test
f hasalocal minimum at (¥, 3). Intuitively, we can see that this local minimum is actu-
ally an absolute minimum because there must be a point on the given plane that is clos-
estto (1,0, —2). If x =% andy = 3, then

— —1)2 + v2 + v — 2 — 52 4 (2)2 - (2)2 = 5
Example 5 could also be solved using d \/(X D y 6-x-2) \/(6) (3) (6) 6 ‘/6
vectors. Compare with the methods of

Section 12.5. The shortest distance from (1, 0, —2) to theplanex + 2y + z = 4is2./6. [
7 IETXTEET A rectangular box without alid isto be made from 12 m? of cardboard.
Find the maximum volume of such a box.

SOLUTION Let the length, width, and height of the box (in meters) be x, y, and z, as shown
in Figure 10. Then the volume of the box is

z V = xyz
x We can express V as a function of just two variables x and y by using the fact that the
y area of the four sides and the bottom of the box is
FIGURE 10 2xz + 2yz + xy = 12
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(a) Closed sets
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(b) Sets that are not closed
FIGURE 11

SECTION 14.7 MAXIMUM AND MINIMUM VALUES 975

Solving this equation for z, we get z = (12 — xy)/[2(x + y)], so the expression for V
becomes

V—x 12 —xy _ 12xy — x2y?
Y2ty T 2kt y)

We compute the partial derivatives:

AV yH12 — 2xy — x?) AV x*12 — 2xy —y?)
X 2(x +y)? ay 2(x +y)?

If V isamaximum, then dV/ox = aV/dy = 0, but x = 0ory = O givesV = 0, so we
must solve the equations

12 - 2xy — x2=0 12-2xy —y?=0

These imply that x> = y? and so x = y. (Note that x and y must both be positive in this
problem.) If we put x =y in either equation we get 12 — 3x? = 0, which givesx = 2,
y=2adz=(12-2-2)/[22+ 2] =1

We could use the Second Derivatives Test to show that this gives alocal maximum
of V, or we could simply argue from the physical nature of this problem that there must
be an absolute maximum volume, which has to occur at a critical point of V, so it must
occur whenx =2,y =2,z=1.ThenV = 2+ 2+ 1 = 4, so the maximum volume of
the box is4 m®. _—

I Absolute Maximum and Minimum Values

For afunction f of onevariable, the Extreme Value Theorem saysthat if f iscontinuouson
aclosed interval [a, b], then f has an absolute minimum value and an absolute maximum
value. According to the Closed Interval Method in Section 3.1, we found these by evalu-
ating f not only at the critical numbers but also at the endpoints a and b.

Thereisasimilar situation for functions of two variables. Just as a closed interval con-
tainsits endpoints, aclosed set in R?isonethat contains all its boundary points. [A bound-
ary point of D isapoint (a, b) such that every disk with center (a, b) contains pointsin D
and also points not in D.] For instance, the disk

D—{xy|x+y’ <1

which consists of al points on and inside the circle x? + y? = 1, isaclosed set because it
contains all of its boundary points (which are the points on the circle x> + y2 = 1). But if
even one point on the boundary curve were omitted, the set would not be closed. (See
Figure 11.)

A bounded set in R?isonethat is contained within some disk. In other words, it isfinite
in extent. Then, interms of closed and bounded sets, we can state the following counterpart
of the Extreme Value Theorem in two dimensions.

Extreme Value Theorem for Functions of Two Variables |f f is continuouson a
closed, bounded set D in R?, then f attains an absolute maximum value f (x4, y1)
and an absolute minimum value f (X, y») at some points (X1, y1) and (X2, y2) in D.
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y
T R e R
L, L,
0,0) L, (3,0)
FIGURE 12

FIGURE 13
flx,y)=x*—2xy+2y

To find the extreme values guaranteed by Theorem 8, we note that, by Theorem 2, if f
has an extreme value at (X, y1), then (X, y1) is either a critical point of f or a boundary
point of D. Thus we have the following extension of the Closed Interval Method.

[9] To find the absolute maximum and minimum values of a continuous function
f on aclosed, bounded set D:

1. Find the values of f at the critical points of f in D.
2. Find the extreme values of f on the boundary of D.

3. The largest of the values from steps 1 and 2 is the absolute maximum value;
the smallest of these values is the absolute minimum value.

[E70ZTFA Find the absolute maximum and minimum values of the function
f(x,y) = x> — 2xy + 2y ontherectangleD = {(x,y) | 0= x<3,0<y =< 2}.

SOLUTION Since f isapolynomial, it is continuous on the closed, bounded rectangle D,
so Theorem 8 tells us there is both an absol ute maximum and an absol ute minimum.
According to step 1in [9], we first find the critical points. These occur when

fk=2x—-2y=0 ff=-2x+2=0

so the only critical pointis (1, 1), and the value of f thereis f(1, 1) = 1.
In step 2 we look at the values of f on the boundary of D, which consists of the four
line segments L, L,, L3, L4 shown in Figure 12. On L; we havey = 0 and

f(x, 0) = x? 0=<=x=<3

Thisis an increasing function of x, so its minimum valueis f(0, 0) = 0 and its maxi-
mum valueis f(3,0) = 9. On L, we have x = 3 and

f(3,y) =9 — 4y Osys=?2

Thisis a decreasing function of y, so its maximum valueis f(3, 0) = 9 and its minimum
valueis f(3,2) = 1. OnLs; wehavey = 2 and

f(x,2) =x2—4x + 4 0=<=x=<3

By the methods of Chapter 3, or simply by observing that f(x, 2) = (x — 2)?, we see
that the minimum value of this function is (2, 2) = 0 and the maximum valueis
(0, 2) = 4. Findly, on L, we have x = 0 and

f(0,y) =2 Osys=?2

with maximum value (0, 2) = 4 and minimum value f (0, 0) = 0. Thus, on the bound-
ary, the minimum value of f is 0 and the maximum is 9.

In step 3 we compare these values with the value f(1, 1) = 1 at the critical point and
conclude that the absolute maximum value of f on D is f(3, 0) = 9 and the absolute
minimum vaueis (0, 0) = f(2, 2) = 0. Figure 13 shows the graph of f. [ |
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We close this section by giving a proof of the first part of the Second Derivatives Test.
Part (b) has asimilar proof.

PROOF OF THEOREM 3, PART (a) We compute the second-order directional derivative of f
inthedirection of u = (h, k). Thefirst-order derivative is given by Theorem 14.6.3:

Do f = f,h + f,k

Applying this theorem a second time, we have

a9 d
Déf = Du(Duf) = — (Dy f)h + — (Du )k
(0u1) = S @D + (D)

= (fXXh + fyxk)h + (fxyh + fyyk)k

= fixh? + 2f,hk + f, k? (by Clairaut’s Theorem)

If we complete the squarein this expression, we obtain

2 2
Duzfzfxx<h+%k> +::(_(fxxfyy_f><§/)

We are given that fix(a, b) > 0and D(a, b) > 0. But fx and D = f, f,, — .5 are con-
tinuous functions, so thereis a disk B with center (a, b) and radius & > 0 such that

fu(X, y) > 0and D(x, y) > Owhenever (x, y) isin B. Therefore, by looking at Equation
10, we see that DZf(x, y) > 0 whenever (X, y) isin B. Thismeansthat if C isthe curve
obtained by intersecting the graph of f with the vertical plane through P(a, b, f(a, b)) in
the direction of u, then C is concave upward on an interval of length 26. Thisistruein
the direction of every vector u, soif werestrict (x, y) toliein B, the graph of f lies above
its horizontal tangent plane at P. Thus f(x, y) = f(a, b) whenever (x, y) isin B. This
showsthat f(a, b) isalocal minimum. [ |

1. Suppose (1, 1) isacritical point of afunction f with contin-

reasoning. Then use the Second Derivatives Test to confirm your

uous second derivatives. In each case, what can you say predictions.
about 72 3 f(x,y) =4+ x%+y*— Xy
@ fx(1,1) = 4, fiy(1,1) =2
y
(b) fxx(ln 1) = 41 fYY(lv l) =2

2. Suppose (0, 2) isacritical point of afunction g with contin-

uous second derivatives. In each case, what can you say g

(@ 9x(0,2) = -1,
(b) gxx(o, 2) = _1:

about g?

() 9(0,2) = 4,

3-4 Usethelevel curvesin the figure to predict the location of —1$
the critical points of f and whether f has a saddle point or a \\
local maximum or minimum at each critical point. Explain your

gyy(on 2) = 1

g1y(0,2) = —8 )

9yy(0,2) =9 \ 3423'7
1

Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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4. f(x,y) =3 —x>—2y*+y*

5-18 Find the local maximum and minimum values and saddle
point(s) of the function. If you have three-dimensional graphing
software, graph the function with a domain and viewpoint that
reveal al the important aspects of the function.

5 f(X,y) =x*+xy +y>+y

L f(xy) =xy —2x — 2y — x® —y?
Yy ==y = xy)

L f(x,y) = xe >

. f(x,y) =y3 + 3x% — 6x*> — 6y + 2
10. f(x,y) =xy(l —x —y)

1. f(x,y) = x® — 12xy + 8y°

1

1
. =Xy +—+=
12. f(x,y) = xy Xy

W 0 N o

13. f(x,y) = e*cosy

14. f(x,y) =y cosx

15. f(x,y) = (x2 + y2)eV

16. f(x,y) = e¥(y? — x?)

17. f(x,y) =y?—2ycosx, —l<x<7

18. f(x,y) =sinxsiny, —w<x<m —-w7<y<m

19. Show that f(x,y) = x2 + 4y? — 4xy + 2 has an infinite
number of critical points and that D = 0 at each one. Then

show that f has alocal (and absolute) minimum at each criti-

cal point.

20. Show that f(x, y) = x%ye ™" has maximum values at
(+1,1//2) and minimum values at (+1, —1/4/2 ). Show

aso that f has infinitely many other critical pointsand D = 0

at each of them. Which of them give rise to maximum
values? Minimum values? Saddle points?

21-24 Use agraph or level curves or both to estimate the local
maximum and minimum values and saddle point(s) of the func-
tion. Then use calculus to find these values precisely.

21 f(x,y) = x>+ y2+ x7?y?

22. f(x,y) = xye’xz’y2

23. f(x,y) =sinx + siny + sin(x + ),
Osx=2m 0=sy=27

24, f(x,y) =sinx + siny + cos(x +y),
Osxsmw/4, 0<sy<n/4

25-28 Use a graphing device asin Example 4 (or Newton's
method or a rootfinder) to find the critical points of f correct to
three decimal places. Then classify the critical points and find the
highest or lowest points on the graph, if any.

25 f(x,y) = x* + y* — 4x% + 2y

26. f(x,y) =y®—2y* +x2—y2+y

27. f(x,y) =x*+y =3+ y?+x—-2y+1

28. f(x,y) = 20e ¥ V'sin3xcos3y, |x|=<1, |y|=1

29-36 Find the absolute maximum and minimum values of f on
the set D.

29, f(x,y) = x?+ y? — 2x, D isthe closed triangular region
with vertices (2, 0), (0, 2), and (0, —2)

30. f(x,y) =x +y —xy, Distheclosed triangular region
with vertices (0, 0), (0, 2), and (4, 0)

31 f(X,y) = X%+ y2 + X2y + 4,
D={xy |Ix[<=1]y|=1

32. f(x,y) = 4x + 6y — x2 — y?,
D={(xy)|0<x<40<y<5}

33 f(x,y) =x*+ y* — 4xy + 2,
D={(xy)|0<=x=<30=<y=<2

3. f(x,y) =xy%, D={(xy)|x=0y=0x>+y>*<3}
3B f(x,y)=2x*+y%, D={(xy | x*+y*<1}

36. f(x,y) =x®— 3x —y®+ 12y, D isthe quadrilateral
whose vertices are (—2, 3), (2, 3), (2, 2), and (-2, —2).

37. For functions of one variable it isimpossible for a continuous
function to have two local maxima and no local minimum.
But for functions of two variables such functions exist. Show
that the function

fx,y) = =(x* = 1 = (x* — x — 1)*

has only two critical points, but has local maxima at both of
them. Then use a computer to produce a graph with a care-
fully chosen domain and viewpoint to see how thisis
possible.

/] 38. If afunction of one variable is continuous on an interval and
has only one critical number, then alocal maximum has to be
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39.

40.

a1.

42.

43.

a4

45,

46.

47.

48.

49.

50.

51.

52.

an absolute maximum. But thisis not true for functions of two
variables. Show that the function

f(x,y) = 3xe¥ — x® — ¥

has exactly one critical point, and that f has alocal maximum
there that is not an absolute maximum. Then use a computer to
produce a graph with a carefully chosen domain and viewpoint
to see how thisis possible.

Find the shortest distance from the point (2, 0, —3) to the plane
X+y+z=1

Find the point on the plane x — 2y + 3z = 6 that is closest to
the point (0, 1, 1).

Find the points on the cone z? = x? + y? that are closest to the
point (4, 2, 0).

Find the points on the surface y? = 9 + xz that are closest to
the origin.

Find three positive numbers whose sum is 100 and whose
product is a maximum.

Find three positive numbers whose sum is 12 and the sum of
whose squaresis as small as possible.

Find the maximum volume of arectangular box that is
inscribed in a sphere of radiusr.

Find the dimensions of the box with volume 1000 cm?® that has
minimal surface area.

Find the volume of the largest rectangular box in the first
octant with three faces in the coordinate planes and one
vertex inthe planex + 2y + 3z = 6.

Find the dimensions of the rectangular box with largest
volume if the total surface areais given as 64 cm?.

Find the dimensions of a rectangular box of maximum volume
such that the sum of the lengths of its 12 edgesis a constant c.

The base of an aguarium with given volume V is made of slate
and the sides are made of glass. If date costs five times as
much (per unit ared) as glass, find the dimensions of the aquar-
ium that minimize the cost of the materials.

A cardboard box without alid is to have a volume of
32,000 cm?®. Find the dimensions that minimize the amount
of cardboard used.

A rectangular building is being designed to minimize

heat loss. The east and west walls lose hezt at a rate of

10 units/m? per day, the north and south walls at a rate of

8 units/m? per day, the floor at arate of 1 unit/m? per day, and

the roof at arate of 5 units/m? per day. Each wall must be at

least 30 m long, the height must be at least 4 m, and the

volume must be exactly 4000 m?.

(a) Find and sketch the domain of the heat loss as a function of
the lengths of the sides.

53.

54.

55.

56.

SECTION 14.7 MAXIMUM AND MINIMUM VALUES 979

(b) Find the dimensions that minimize heat loss. (Check both
the critical points and the points on the boundary of the
domain.)

(c) Could you design a building with even less heat 10ss
if the restrictions on the lengths of the walls were removed?

If the length of the diagonal of arectangular box must be L,
what is the largest possible volume?

Three aleles (aternative versions of agene) A, B, and O
determine the four blood types A (AA or AO), B (BB or BO),
O (00), and AB. The Hardy-Weinberg Law states that the pro-
portion of individualsin a population who carry two different
alelesis

P =2pg + 2pr + 2rq

where p, g, and r are the proportions of A, B, and O in the
population. Usethefact that p + q + r = 1 to show that P is
at most 2.

Suppose that a scientist has reason to believe that two quanti-
tiesx and y are related linearly, that is, y = mx + b, at least
approximately, for some values of m and b. The scientist
performs an experiment and collects data in the form of points
(X1, Y1), (X2,¥2), ..., (X, ¥n), and then plots these points. The
points don't lie exactly on a straight line, so the scientist wants
to find constants m and b so that the liney = mx + b “fits’ the
points as well as possible (see the figure).

Let di = y; — (mx; + b) be the vertical deviation of the point
(xi, yi) from the line. The method of least squares determines
m and b so as to minimize =}_; d?, the sum of the squares of
these deviations. Show that, according to this method, the line
of best fit is obtained when

mExi+bn:2yi
=

i=1
mY x?+bXx=2xy
i=1 i=1 i=1

Thus the line is found by solving these two equations in the
two unknowns m and b. (See Section 1.2 for a further discus-
sion and applications of the method of least squares.)

Find an equation of the plane that passes through the point
(1, 2, 3) and cuts off the smallest volume in the first octant.
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DESIGNING A DUMPSTER

For this project we locate a rectangular trash Dumpster in order to study its shape and construc-
tion. We then attempt to determine the dimensions of a container of similar design that minimize
construction cost.

1. First locate a trash Dumpster in your area. Carefully study and describe all details of its
construction, and determine its volume. Include a sketch of the container.

2. While maintaining the general shape and method of construction, determine the dimensions
such a container of the same volume should have in order to minimize the cost of construc-
tion. Use the following assumptions in your analysis:

m The sides, back, and front are to be made from 12-gauge (0.1046 inch thick) steel sheets,
which cost $0.70 per square foot (including any required cuts or bends).

m The baseis to be made from a 10-gauge (0.1345 inch thick) steel sheet, which costs $0.90
per square foot.

= Lids cost approximately $50.00 each, regardless of dimensions.
= Welding costs approximately $0.18 per foot for material and labor combined.

Give justification of any further assumptions or simplifications made of the details of
construction.

3. Describe how any of your assumptions or simplifications may affect the final result.

4. If you were hired as a consultant on this investigation, what would your conclusions be?
Would you recommend altering the design of the Dumpster? If so, describe the savings that
would result.

QUADRATIC APPROXIMATIONS AND CRITICAL POINTS

The Taylor polynomial approximation to functions of one variable that we discussed in Chapter 11
can be extended to functions of two or more variables. Here we investigate quadratic approxima-
tions to functions of two variables and use them to give insight into the Second Derivatives Test
for classifying critical points.

In Section 14.4 we discussed the linearization of a function f of two variables at a point (a, b):

L(x,y) = f(a, b) + fx(a, b)(x — a) + f,(a, b)(y — b)

Recall that the graph of L isthe tangent plane to the surface z = f(x, y) at (a, b, f(a, b)) and the
corresponding linear approximation is f(x, y) = L(x, y). Thelinearization L is also called the
first-degree Taylor polynomial of f at (a, b).

1. If f has continuous second-order partial derivatives at (a, b), then the second-degree
Taylor polynomial of f at (a, b) is

Q(x,y) = f(a, b) + fx(a, b)(x — a) + f,(a, b)(y — b)
+ 2 fu(@ b)(x — @)? + fi,(a, b)(x — a)(y — h) + 3f,(a, b)(y — b)?

and the approximation f(x, y) = Q(x, y) is called the quadratic approximation to f at
(a, b). Verify that Q has the same first- and second-order partial derivativesas f at (a, b).
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2. (a) Find the first- and second-degree Taylor polynomials L and Q of f(x,y) = e XY
at (0, 0).
4 (b) Graph f, L, and Q. Comment on how well L and Q approximate f.

3. (a) Find the first- and second-degree Taylor polynomials L and Q for f(x,y) = xe’
at (1, 0).
(b) Comparethevauesof L, Q, and f at (0.9, 0.1).
4 (c) Graph f, L, and Q. Comment on how well L and Q approximate f.

4. In this problem we analyze the behavior of the polynomial f(x,y) = ax® + bxy + cy?
(without using the Second Derivatives Test) by identifying the graph as a paraboloid.
(8 By completing the square, show that if a # 0, then

2 )
f(x,y) = ax® + bxy + cy®> = a[(x + 2bay> + <4ailazb)y2}

(b) Let D = 4ac — b2 Show that if D > 0 and a > 0, then f has alocal minimum
at (0, 0).

(c) Show that if D > 0and a < O, then f has alocal maximum at (O, 0).

(d) Show that if D < O, then (0, 0) is a saddle point.

5. (a) Suppose f isany function with continuous second-order partial derivatives such that
f(0,0) = 0 and (0, 0) isacritical point of f. Write an expression for the second-
degree Taylor polynomial, Q, of f at (O, 0).

(b) What can you conclude about Q from Problem 4?
(c¢) Inview of the quadratic approximation f(x, y) = Q(x, y), what does part (b) suggest
about f?

Graphing calculator or computer required

Lagrange Multipliers

y
flay) =11

1 \ flx,y) =10
flay)=9

y) =k

g(x,y) floy) =8
flay) =1

0

FIGURE 1

Visual 14.8 animates Figure 1 for both
level curves and level surfaces.

In Example 6 in Section 14.7 we maximized avolumefunction V = xyz subject to the con-
straint 2xz + 2yz + xy = 12, which expressed the side condition that the surface areawas
12 m? In this section we present Lagrange’s method for maximizing or minimizing a gen-
eral function f(x, y, z) subject to aconstraint (or side condition) of theform g(x, y, z) = k.

It's easier to explain the geometric basis of Lagrange's method for functions of two vari-
ables. So we start by trying to find the extreme values of f(x, y) subject to a constraint of
the form g(x, y) = k. In other words, we seek the extreme values of f(x, y) when the point
(x, y) isrestricted to lie on the level curve g(x, y) = k. Figure 1 shows this curve together
with several level curvesof f. These havethe equations f(x, y) = ¢, wherec = 7, 8, 9, 10,
11. To maximize f(x, y) subject to g(x, y) = k isto find the largest value of ¢ such that the
level curve f(x,y) = c intersects g(x, y) = k. It appears from Figure 1 that this happens
when these curves just touch each other, that is, when they have a common tangent line.
(Otherwise, the value of ¢ could be increased further.) This means that the normal lines at
the point (xo, yo) wherethey touch areidentical. So the gradient vectors are parallel; that is,
V1(Xo, Yo) = A Vg(Xo, Yo) for some scalar A.

This kind of argument also applies to the problem of finding the extreme values of
f(x,y, z) subject to the constraint g(x, y, z) = k. Thus the point (X, y, z) is restricted to lie
on the level surface S with equation g(x, y, z) = k. Instead of the level curvesin Figure 1,
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982 CHAPTER 14 PARTIAL DERIVATIVES

we consider the level surfaces f(x,y, z) = ¢ and argue that if the maximum value of f
is f(Xo, Yo, zo) = c, then the level surface f(x,y, z) = c is tangent to the level surface
g(x,y, z) = k and so the corresponding gradient vectors are parallel.

This intuitive argument can be made precise as follows. Suppose that a function f has
an extreme value at a point P(Xo, Yo, zo) on the surface S and let C be a curve with vector
equation r(t) = (x(t), y(t), z(t)) that lieson S and passes through P. If t, is the parameter
value corresponding to the point P, then r(t)) = (Xo, Yo, zo). The composite function
h(t) = f(x(t), y(t), z(t)) represents the values that f takes on the curve C. Since f has an
extreme value at (Xo, Yo, zo), it follows that h has an extreme value at to, so h'(to) = 0. But
if fisdifferentiable, we can use the Chain Ruleto write

0= h’(to)
= fx(Xo, Yo, 20)X'(to) + f,(Xo, Yo, 20)y'(to) + (X0, Yo, 20)z'(to)

= Vf(Xo, Yo, z0) * I'(to)

This shows that the gradient vector Vf(xo, Yo, zo) is orthogonal to the tangent vector r'(to)
to every such curve C. But we already know from Section 14.6 that the gradient vector
of g, Vg(Xo, Yo, 20), isaso orthogonal to r'(t,) for every such curve, (See Equation 14.6.18.)
Thismeansthat the gradient vectors Vf (o, Yo, zo) and Vg(Xo, Yo, zo) must be paraléd. There-
fore, if Vg(Xo, Yo, zo) # 0, thereisanumber A such that

II] Vf(Xo, Yo, Zo) =A Vg(Xo, Yo, Zo)

The number A in Equation 1 is called a Lagrange multiplier. The procedure based on
Lagrange multipliers are named after the Equation 1isas follows.
French-Italian mathematician Joseph-Louis
Lagrange (1736—1813). See page 210 for a ] _ —
biographical sketch of Lagrange. Method of Lagrange Multipliers To find the maximum and minimum values of

f(x,y, z) subject to the constraint g(x, y, z) = k [assuming that these extreme val-
ues exist and Vg # 0 on the surface g(x, y, z) = K]:

(a) Find all values of X, Y, z, and A such that

In deriving Lagrange’s method we assumed
that Vg # 0. In each of our examples you

can check that Vg # 0 at all points where VIi(x,y,2) = AVg(x,y, 2)
g(x,y, z) = k. See Exercise 23 for what can
go wrong if Vg = 0. and g(x,y,2) =k

(b) Evaluate f at all the points (X, y, z) that result from step (a). The largest of
these values is the maximum value of f; the smallest is the minimum value
of f.

If we write the vector equation Vf = A Vg in terms of components, then the equationsin
step (@) become

fx = /\gx fy = Agy fl = )\gl g(X1 y! Z) =k

Thisisasystem of four equationsin the four unknownsx, vy, z, and A, but it is not necessary
to find explicit valuesfor A.
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For functions of two variables the method of Lagrange multipliers is similar to the
method just described. To find the extreme values of f(x,y) subject to the constraint
g(x,y) = k, welook for values of x, y, and A such that

Vi y) = AVg(x,y) and  g(x,y) =k
This amounts to solving three equations in three unknowns:
fe = Agx fy = Agy g(x,y) =k

Our first illustration of Lagrange's method is to reconsider the problem given in Exam-
ple 6in Section 14.7.
7 IETXTETEN A rectangular box without alid isto be made from 12 m? of cardboard.
Find the maximum volume of such a box.

SOLUTION Asin Example 6in Section 14.7, welet X, y, and z be the length, width, and
height, respectively, of the box in meters. Then we wish to maximize

V = xyz
subject to the constraint
g(X,y,2z) = 2%z + 2yz + xy = 12

Using the method of Lagrange multipliers, we look for values of X, y, z, and A such that
VV = AVgandg(x,y, z) = 12. This gives the equations

Vi = Agx
Vy = Agy
V, = Ag.

2xz + 2yz + xy =12
which become

[2] yz = A2z +Y)
(3] Xz = M2z + X)
(4] Xy = A2x + 2y)
(5] 2xz + 2yz + xy = 12

There are no general rules for solving systems of equations. Sometimes some ingenuity is
required. In the present example you might notice that if we multiply [2] by x, [3] by y,
and |4] by z, then the left sides of these equations will be identical. Doing this, we have

(6] Xyz = A(2xz + Xy)
Anather method for solving the system of equa-
tions (2-5) is to solve each of Equations 2, 3, 7 XVz = AM(2yz + X
and 4 for A and then to equate the resulting y ( y y)
expressions. Xyz = A(2Xz + 2yz)

We observe that A # 0 because A = 0 would imply yz = xz = xy = 0 from [2], [3],
and [4] and this would contradict [5]. Therefore, from [6] and [7], we have

2Xz + Xy = 2yz + Xy
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In geometric terms, Example 2 asks for
the highest and lowest points on the curve
C in Figure 2 that lie on the paraboloid
z = x? + 2y?and directly above the con-
straint circle x* + y? = 1.

FIGURE 2

The geometry behind the use of Lagrange

multipliers in Example 2 is shown in Figure 3.
The extreme values of f(x,y) = x? + 2y?
correspond to the level curves that touch the

circle x? + y2 =1

xX2+2y*=2

FIGURE 3

B
/

xX2+2y*=1

which gives xz = yz. But z # 0 (since z = O would give V = 0), so x = y. From
and [8] we have
2yz + Xy = 2xz + 2yz

which gives 2xz = xy and so (since x # 0) y = 2z. If wenow put x =y = 2zin [5],
we get
472 + 472 + 422 =12

Since x, y, and z are all positive, we thereforehavez = 1and sox = 2 andy = 2. This
agrees with our answer in Section 14.7. [ |

1 BT Find the extreme values of the function f(x, y) = x* + 2y2onthe
circlex? + y? = 1.

SOLUTION We are asked for the extreme values of f subject to the constraint
g(x,y) = x? + y? = 1. Using Lagrange multipliers, we solve the equations Vf = A Vg
and g(x, y) = 1, which can be written as

fc = Agx fy = Agy gx,y) =1
or as
(9] 2X = 2XA
dy = 2y\
[11] x2+y2=1

From [9] wehavex = 0or A = 1. If x = 0, then [11] givesy = +1.If A = 1, then
y = 0 from [10], so then [11] givesx = *1. Therefore f has possible extreme values
at the points (0, 1), (0, —1), (1, 0), and (—1, 0). Evaluating f at these four points, we
find that

f(0,1) = 2 f(0, —1) = 2 (1,00 =1 f(-1,00 =1

Therefore the maximum value of f on thecircle x® + y? = 1is f(0, +1) = 2 and the
minimum valueis f(*1, 0) = 1. Checking with Figure 2, we see that these values look
reasonable. [

[E70ZTF] Find the extreme values of f(x,y) = x? + 2y?onthedisk x> + y2 < 1.

SOLUTION According to the procedure in (14.7.9), we compare the values of f at the criti-
cal points with values at the points on the boundary. Since f, = 2x and f, = 4y, the only
critica point is (0, 0). We compare the value of f at that point with the extreme values on
the boundary from Example 2:

f(0,00=0 f(z1,0 =1 f(0, x1) =2

Therefore the maximum value of f onthedisk x? + y? < 1is f(0, +1) = 2 and the
minimum valueis (0, 0) = 0. [ |

Find the points on the sphere x> + y2 + z? = 4 that are closest to and
farthest from the point (3, 1, —1).

SOLUTION The distance from apoint (x, y, z) tothe point (3, 1, —1) is

d=V(x =32+ (y— 12+ (z + 1)2
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Figure 4 shows the sphere and the nearest point

P in Example 4. Can you see how to find the
coordinates of P without using calculus?
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but the algebrais simpler if we instead maximize and minimize the square of the

distance:
d2=fx,y,2)=(x =3+ (y — 1>+ (z + 1)?

The constraint is that the point (x, y, z) lies on the sphere, that is,
g(x,y,z) =x2+y?+z2=4

According to the method of Lagrange multipliers, we solve Vf = A Vg, g = 4. Thisgives

[12] 2(x — 3) = 2xA
[13] 2y -1 =2yr
20z + 1) = 2z
[15] X2 +y?+z2=4

The simplest way to solve these equations isto solve for x, y, and z in terms of A from
[12], 23], and [14], and then substitute these values into [15]. From [12] we have

X—3=XA or X(L—-—A) =3 or X=—-—
( ) -1

[Notethat 1 — A # O because A = 1 isimpossible from [12].] Similarly, [13] and [14] give

1 _ 1
Y T
Therefore, from [15], we have
2 2 _1\2
3 + ! + D" _ 4

L-A2 @-A2 @Q-A7
whichgives(1 — A)?=%,1—- A= +,/11/2, 0

vi

A=1=
2

These values of A then give the corresponding points (x, Y, z):

6 2 2 and 6 2 2
It's easy to see that f has a smaller value at the first of these points, so the closest point

is (6/y/11, 2/y/11, —2/y/11) and the farthest is (—6/y/11, —2/4/11, 2//11). -

I Two Constraints

Suppose now that we want to find the maximum and minimum values of afunction f(x, y, z)
subject to two constraints (side conditions) of the form g(x, y, z) = k and h(x,y, z) = c.
Geometrically, this means that we are looking for the extreme values of f when (x,y, z) is
restricted to lie on the curve of intersection C of the level surfaces g(x,y, z) = k and
h(x,y, z) = c. (See Figure 5.) Suppose f has such an extreme value at a point P(Xo, Yo, Zo).
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We know from the beginning of this section that Vf is orthogonal to C at P. But we also
know that Vg is orthogonal to g(x, y, z) = k and Vh is orthogonal to h(x, y, z) = ¢, so Vg
and Vh are both orthogonal to C. This means that the gradient vector Vf(xo, Yo, zo) isinthe
plane determined by Vg(Xo, Yo, zo) and Vh(Xo, Yo, zo). (We assume that these gradient vec-
tors are not zero and not parallel.) So there are numbers A and . (called Lagrange multi-
pliers) such that

Vi (Xo, Yo, 20) = A Vg(Xo, Yo, z0) + 1 Vh(Xo, Yo, zo)

In this case Lagrange’s method is to look for extreme values by solving five equations in
the five unknowns x, vy, z, A, and w. These equations are obtained by writing Equation 16
in terms of its components and using the constraint equations:

fx = Agx + uhy

fy = Agy + uhy

f. = Ag. + uh.
g(x,y,2) =k
h(x,y,z) =c¢

The cylinder x? + y2 = 1 intersects the 1 ETYTEET Find the maximum value of the function f(x,y, z) = x + 2y + 3z onthe

plane x —y + z = linanellipse (Figue 6. curve of intersection of the planex — y + z = 1 and the cylinder x? + y? = 1.
Example 5 asks for the maximum value of f

when (X, y, z) is restricted to lie on the ellipse. ~ SOLUTION We maximize the function f(x,y, z) = x + 2y + 3z subject to the constraints
g(x,y,z) =x —y +z=1landh(x,y, z) = x? + y? = 1. The Lagrange condition is
Vf= AVg + uVh, sowe solve the equations

N i 7] 1=+ 2

21 E::_:___;; 2=-)\A+2yu
z 1+ 3=

e @ X_y+Z=1

01
‘_::::g @ X2 + yz =1
_1 4 .
- " Putting A = 3 [from [19]] in [17], we get 2xu = —2, so X = —1/u. Similarly, [18] gives
-1 0 1 y = 5/(2u). Substitution in [21] then gives
y
FIGURE 6 1.5 _,
u? o Au?

andso u? =2, u= +29/2. Thenx = ¥2/4/29,y = +5//29, and, from [20,
z=1-x+y=1= 7/y/29. The corresponding values of f are

Therefore the maximum value of f on the given curveis 3 + 1/29. [ |

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



(%5 Exercises

SECTION 14.8 LAGRANGE MULTIPLIERS 987

1. Pictured are a contour map of f and a curve with equation
g(x,y) = 8. Estimate the maximum and minimum values
of f subject to the constraint that g(x, y) = 8. Explain your
reasoning.

T

gx,y)=38
\w\ 0
50
™ 60
i

K
Ny
&Z 0

A 2. (8) Useagraphing calculator or computer to graph the circle

16.

17.
18.

f(x,y,2) =3 —y— 3z
X+y—z=0 x*+2:°=1
f(x,y,2)=yz+xy, xy=1 y2+z2=1

f(x,y,2) =x2+y>+:z% x—y=1 y>—-z2=1

19-21 Find the extreme values of f on the region described by
the inequality.

L f(X,y) = X2+ y2 + 4x — 4y,
. f(x,y) = 2x2 4+ 3y? — 4x — 5,
fixy) =e™,

x2+y?<9
X2 +y?<16
X2+ 4dy?<1

x2 + y? = 1. On the same screen, graph several curves of

the form x2 + y = c until you find two that just touch the
circle. What is the significance of the values of ¢ for these

two curves?

(b) Use Lagrange multipliers to find the extreme values of
f(x,y) = x? + y subject to the constraint x> + y? = 1.
Compare your answers with those in part (a).

3-14 Use Lagrange multipliers to find the maximum and mini-

mum values of the function subject to the given constraint.
3. f(x,y)=x>+y% xy=1
4 f(x,y) =3 +y, x>+y>=10
5. f(x,y) =y>—x% ix2+y2=1
6. f(x,y) =e¥;, x*+y® =16

1. f(X,y,2) =2x+ 2y +z;, x*+y*+z:2=9
8

L f (XY, 2) =x2+y2+ 2% xX+y+z=12

9. f(x,y,2) =Xxyz; x>+ 2y2+3°=6

2y,2,2.

10. f(x,y,2) = x?y%? x>+y?+22=1

M f(x,y,2) =x>+y>+z% x*+y*+:4=1
12 f(x,y,2) =x*+y*+z% x2+y*+22=1
13. f(X,y,z,) =x+y+z+t xX2+y?+224+1t2=1
14. f(Xq, Xz, ...

X{+ x5+ -

JXn) = X1+ Xo oo+ X
+xf=1

15-18 Find the extreme values of f subject to both constraints.

15. f(x,y,2)=x+2y; x+y+z=1 y?>+:2=4

Graphing calculator or computer required

23.

CAS| 24.

25.

Computer algebra system required

. Consider the problem of maximizing the function

f(x,y) = 2x + 3y subject to the constraint \/x + /y = 5.

(@) Try using Lagrange multipliers to solve the problem.

(b) Does (25, 0) give alarger value than the one in part (a)?

(c) Solve the problem by graphing the constraint equation
and severa level curves of f.

(d) Explain why the method of Lagrange multipliers fails to
solve the problem.

(e) What is the significance of f(9, 4)?

Consider the problem of minimizing the function f(x, y) = x

onthecurvey? + x* — x* = 0 (apiriform).

(a) Try using Lagrange multipliers to solve the problem.

(b) Show that the minimum vaueisf(0, 0) = 0 but the
Lagrange condition Vf(0, 0) = AVg(0, 0) is not satisfied
for any value of A.

(c) Explain why Lagrange multipliers fail to find the mini-
mum value in this case.

(a) If your computer algebra system plots implicitly defined
curves, use it to estimate the minimum and maximum
values of f(x,y) = x® + y® + 3xy subject to the con-
straint (x — 3)? + (y — 3)?> = 9 by graphica methods.

(b) Solve the problem in part (&) with the aid of Lagrange
multipliers. Use your CAS to solve the equations numeri-
cally. Compare your answers with those in part ().

The total production P of a certain product depends on the
amount L of labor used and the amount K of capital invest-
ment. In Sections 14.1 and 14.3 we discussed how the Cobb-
Douglas model P = bL“K*~* follows from certain economic
assumptions, where b and « are positive constants and

a < 1. If the cost of aunit of labor ism and the cost of a unit
of capital isn, and the company can spend only p dollars as
itstotal budget, then maximizing the production P is subject
to the constraint mL + nK = p. Show that the maximum
production occurs when

ap and sz
m n

L =

1. Homework Hints available at stewartcalculus.com
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26.

2]1.

28.

CHAPTER 14 PARTIAL DERIVATIVES

Referring to Exercise 25, we now suppose that the pro-
duction is fixed at bL*K*™* = Q, where Q is a constant.
What values of L and K minimize the cost function
C(L,K)=mL + nK?

Use Lagrange multipliers to prove that the rectangle with
maximum area that has a given perimeter p is a square.

Use Lagrange multipliers to prove that the triangle with
maximum area that has a given perimeter p is equilateral.
Hint: Use Heron's formula for the area:

A= s(s =X —y)s —2)

wheres = p/2 and X, y, z are the lengths of the sides.

29-41 Use Lagrange multipliersto give an alternate solution to
the indicated exercise in Section 14.7.

29. Exercise 39 30. Exercise 40

31. Exercise 41 32. Exercise 42

33. Exercise 43 34. Exercise 44

35. Exercise 45 36. Exercise 46

37. Exercise 47 38. Exercise 48

39. Exercise 49 40. Exercise 50

41. Exercise 53

42. Find the maximum and minimum volumes of a rectangular
box whose surface area is 1500 cm? and whose total edge
length is 200 cm.

43. Theplanex + y + 2z = 2 intersects the paraboloid
z=x2+ y?inan dlipse. Find the points on this ellipse
that are nearest to and farthest from the origin.

44. The plane4x — 3y + 8z = 5intersects the cone

z2=x2+ y?inandlipse.
(a) Graph the cone, the plane, and the ellipse.

ROCKET SCIENCE

(b) Use Lagrange multipliers to find the highest and lowest
points on the ellipse.

45-46 Find the maximum and minimum values of f subject to
the given constraints. Use a computer algebra system to solve
the system of equations that arises in using Lagrange multipliers.
(If your CAS finds only one solution, you may need to use addi-

tional commands.)
45. f(x,y,2) =ye* " 9%+ 4y®>+ 36z2=36, xy +yz=1

46. f(x,y,2)=x+y+z x2—y?=z x*+22=4

47. (&) Find the maximum value of

S Xn) = YXiX2t ot Xn

given that x4, X, . . ., X, are positive numbers and
X1+ X2 + - -+ + X, = ¢, where ¢ is a constant.

(b) Deduce from part (@) that if X1, X, . . ., X, ae positive
numbers, then

(X1, X, ..

X1+ Xo+ -+ X
UXiXo s+ Xn < . o

Thisinequality says that the geometric mean of n
numbers is no larger than the arithmetic mean of the
numbers. Under what circumstances are these two means

equal?
48. (a) Maximize 31 x;Y; subject to the constraints =, x? = 1
and s\, y? = 1.
(b) Put
xi=—2— and y— b
i S ajz yl S bj2
to show that

2 aib < /= a]-2 V2 bj2

for any numbersay, ..., an, by, ..., by Thisinequality is
known as the Cauchy-Schwarz Inequality.

Many rockets, such as the Pegasus XL currently used to launch satellites and the Saturn V that first
put men on the moon, are designed to use three stagesin their ascent into space. A large first stage
initially propels the rocket until its fuel is consumed, at which point the stage is jettisoned to
reduce the mass of the rocket. The smaller second and third stages function similarly in order to
place the rocket’s payload into orbit about the earth. (With this design, at least two stages are
required in order to reach the necessary velocities, and using three stages has proven to be a good
compromise between cost and performance.) Our goal here is to determine the individual masses
of the three stages, which are to be designed in such away as to minimize the total mass of the
rocket while enabling it to reach adesired velocity.
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For a single-stage rocket consuming fuel at a constant rate, the change in velocity resulting
from the acceleration of the rocket vehicle has been modeled by

AV = —clIn|[ 1 —
( P+ M,

where M; is the mass of the rocket engine including initia fuel, P is the mass of the payload,

S isastructural factor determined by the design of the rocket (specifically, it is the ratio of the
mass of the rocket vehicle without fuel to the total mass of the rocket with payload), and ¢ is the
(constant) speed of exhaust relative to the rocket.

Now consider a rocket with three stages and a payload of mass A. Assume that outside forces
are negligible and that ¢ and S remain constant for each stage. If M; is the mass of the ith stage,
we can initially consider the rocket engine to have mass M, and its payload to have mass
M, + M3 + A; the second and third stages can be handled similarly.

1. Show that the velocity attained after all three stages have been jettisoned is given by

M; + My + Mz + A M, + Mz + A Mz + A
v;=c|In +In +In
SM; + M, + M3 + A SM, + M; + A SM; + A
2. We wish to minimize the total mass M = M; + M, + M of the rocket engine subject
to the constraint that the desired velocity v; from Problem 1 is attained. The method of
Lagrange multipliersis appropriate here, but difficult to implement using the current expres-
sions. To simplify, we define variables N; so that the constraint equation may be expressed as

vr = c(InN; + In N, + InN3). Since M is now difficult to express in terms of the N;'s, we
wish to use a simpler function that will be minimized at the same place as M. Show that

My + M+ Mg+ A (1= SNy

Mo+ Ms+A  1-SN,

Mo+ Ms+A  (1— SN,

Ms; + A 1 — SN,
Ms+ A  (1—S)Ng

A 1 — SNz

and conclude that
M+A (1 — S)N;iN,N;
A (1 — SNz)(1 — SN2)(1 — SN3)

3. Verify that In((M + A)/A) is minimized at the same location as M; use Lagrange multipliers
and the results of Problem 2 to find expressions for the values of N; where the minimum
occurs subject to the constraint »; = c(InN; + In N2 + InN3). [Hint: Use properties of
logarithms to help simplify the expressions.]

4. Find an expression for the minimum value of M as a function of v;.

5. If we want to put a three-stage rocket into orbit 100 miles above the earth’s surface, afina
velocity of approximately 17,500 mi/h is required. Suppose that each stage is built with a
structural factor S = 0.2 and an exhaust speed of ¢ = 6000 mi/h.

(@) Find the minimum total mass M of the rocket engines as a function of A.
(b) Find the mass of each individual stage as a function of A. (They are not equally sized!)

6. The same rocket would require afinal velocity of approximately 24,700 mi/hin order to
escape earth’s gravity. Find the mass of each individua stage that would minimize the total
mass of the rocket engines and allow the rocket to propel a 500-pound probe into deep space.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



990

CHAPTER 14 PARTIAL DERIVATIVES

HYDRO-TURBINE OPTIMIZATION

The Katahdin Paper Company in Millinocket, Maine, operates a hydroel ectric generating station
on the Penobscot River. Water is piped from a dam to the power station. The rate at which the
water flows through the pipe varies, depending on external conditions.

The power station has three different hydroelectric turbines, each with a known (and unique)
power function that gives the amount of electric power generated as a function of the water flow
arriving at the turbine. The incoming water can be apportioned in different volumes to each
turbine, so the goal is to determine how to distribute water among the turbines to give the maxi-
mum total energy production for any rate of flow.

Using experimental evidence and Bernoulli’s equation, the following quadratic models were
determined for the power output of each turbine, along with the allowable flows of operation:

KW; = (—18.89 + 0.1277Q, — 4.08 - 107°Q7)(170 — 1.6 - 10°Q3)
KW, = (—24.51 + 0.1358Q, — 4.69 - 107°Q%)(170 — 1.6 - 10°°Q3)
KW; = (—27.02 + 0.1380Q; — 3.84 - 107°Q%)(170 — 1.6 - 10°Q?)

250 < Q, = 1110, 250 < Q, < 1110, 250 < Q; = 1225
where

Qi = flow through turbinei in cubic feet per second
KW; = power generated by turbine i in kilowatts
Qr = total flow through the station in cubic feet per second

1. If al three turbines are being used, we wish to determine the flow Q; to each turbine that will
give the maximum total energy production. Our limitations are that the flows must sum to
the total incoming flow and the given domain restrictions must be observed. Consequently,
use Lagrange multipliers to find the values for the individual flows (as functions of Qr) that
maximize the total energy production KW; + KW, + KWj; subject to the constraints
Qi + Q2 + Q3 = Qr and the domain restrictions on each Q;.

2. For which values of Qr isyour result valid?

3. For an incoming flow of 2500 ft*/s, determine the distribution to the turbines and verify
(by trying some nearby distributions) that your result is indeed a maximum.

4. Until now we have assumed that all three turbines are operating; is it possible in some situa-
tions that more power could be produced by using only one turbine? Make a graph of the
three power functions and use it to help decide if an incoming flow of 1000 ft%/s should be
distributed to al three turbines or routed to just one. (If you determine that only one turbine
should be used, which one would it be?) What if the flow is only 600 ft3/s?

5. Perhaps for some flow levels it would be advantageous to use two turbines. If the incoming
flow is 1500 ft3/s, which two turbines would you recommend using? Use Lagrange multi-
pliers to determine how the flow should be distributed between the two turbines to maxi-
mize the energy produced. For this flow, is using two turbines more efficient than using all
three?

6. If the incoming flow is 3400 ft%/s, what would you recommend to the company?

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



n Review

CHAPTER 14 REVIEW 991

Concept Check

1. (8) What isafunction of two variables?
(b) Describe three methods for visualizing a function of two
variables.

2. What is afunction of three variables? How can you visualize
such a function?

3. What does
lim f(x,y)=L

(x,y)—(a,b)

mean? How can you show that such alimit does not exist?

4, (d) What does it mean to say that f is continuous at (a, b)?
(b) If f iscontinuous on R?, what can you say about its graph?

5. (a) Write expressions for the partial derivatives fi(a, b) and
fy(a, b) aslimits.
(b) How do you interpret f,(a, b) and f,(a, b) geometrically?
How do you interpret them as rates of change?
(c) If f(x,y) isgiven by aformula, how do you calculate f,
and f,?

6. What does Clairaut’s Theorem say?

7. How do you find a tangent plane to each of the following types
of surfaces?
(& A graph of afunction of two variables, z = f(x, y)
(b) A level surface of afunction of three variables,
F(x,y,2) =k

8. Define the linearization of f at (a, b). What is the correspond-
ing linear approximation? What is the geometric interpretation
of the linear approximation?

9. (8) What does it mean to say that f isdifferentiable at (a, b)?
(b) How do you usualy verify that f is differentiable?

10. If z = f(X, y), what are the differentials dx, dy, and dz?

11. State the Chain Rule for the case where z = f(x, y) and x and y
are functions of one variable. What if x and y are functions of
two variables?

12. If z isdefined implicitly as afunction of x and y by an equation
of the form F(x, y, z) = 0, how do you find dz/ox and 9z/dy?

13. (d) Write an expression as a limit for the directional derivative
of f at (o, Yo) in the direction of aunit vector u = (a, b).
How do you interpret it as a rate? How do you interpret it
geometrically?
(b) If f isdifferentiable, write an expression for D, f (Xo, Yo) in
terms of f, and f.

14. (a) Define the gradient vector Vf for afunction f of two or
three variables.
(b) Express D, f interms of V.
(c) Explain the geometric significance of the gradient.

15. What do the following statements mean?
(@ f hasalocal maximum at (a, b).
(b) f has an absolute maximum at (a, b).
(c) f hasalocal minimum at (a, b).
(d) f has an absolute minimum at (a, b).
(e) f hasasaddle point at (a, b).

16. (a) If f hasalocal maximum at (a, b), what can you say about
its partial derivatives at (a, b)?
(b) What isacritical point of f?

17. State the Second Derivatives Test.

18. (@) What isaclosed set in R?? What is a bounded set?
(b) State the Extreme Value Theorem for functions of two
variables.
(c) How do you find the values that the Extreme Value
Theorem guarantees?

19. Explain how the method of Lagrange multipliers works
in finding the extreme values of f(X,y, z) subject to the
constraint g(x, y, z) = k. What if there is a second constraint
h(x,y,z) =c?

True-False Quiz
Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.
fa,y) — f(a b)
y—>b
2. There exists afunction f with continuous second-order
partial derivatives such that f.(x,y) = x + y? and
fy(x,y) = x — y&
o
ox ay
4. D f(x,y,2) =Xy, 2)

1. fy(a,b) = lim

3. f,

5 If f(x,y) = Las(x,y) — (a, b) dong every straight line
through (a, b), then limy.y @ n F(X, y) = L.

6. If fi(a, b) and f,(a, b) both exist, then f is differentiable
a (a, b).

7. If f hasalocal minimum at (a, b) and f is differentiable at
(a, b), then Vf(a, b) = 0.

8. If f isafunction, then
I|rr(12 5)f(x, y) =f(2,5)

xy)—(2

9. If f(x,y) = Iny, then Vf(x,y) = 1/y.
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10. If (2,1) isacritical point of f and
fu(2, D fy(2, 1) < [fy(2, D]?

then f has asaddle point at (2, 1).

1. Iff(x,y) = sinx + siny, then —/2 < D, f(x,y) < 2.

12. If f(x, y) hastwo local maxima, then f must have alocal
minimum.

Exercises
1-2 Find and sketch the domain of the function.

1. f(x,y)=Inx +y+ 1)
2 f(x,y)=v4d—-x2—y2 +1—-x2

3-4 Sketch the graph of the function.
3. f(xy)=1-y?
4 f(x,y) =x*+ (y — 2

5-6 Sketch severa level curves of the function.

5. f(X,y) = /4x2 + y? 6. f(x,y)=e*+y

1. Make arough sketch of a contour map for the function whose
graph is shown.

8. A contour map of afunction f is shown. Useit to make a
rough sketch of the graph of f.

y

9-10 Evauate the limit or show that it does not exist.

. 2xy . 2xy
. lim —— 10. lim ———
Y= X+ 2y xy)—=00 X*+ 2y

at equally spaced points were measured and recorded in the

table.

(a) Estimate the values of the partial derivatives T,(6, 4)
and T,(6, 4). What are the units?

(b) Estimate the value of D, T(6, 4), whereu = (i + j)/v/2.
Interpret your result.

(c) Estimate the value of Ty, (6, 4).

D | o | 2 | 4 | 6 | 8
X

0 30 38 45 51 55

2 52 56 60 62 61

4 78 74 72 68 66

6 98 87 80 75 71

8 96 90 86 80 75

10 92 92 91 87 78

12. Find alinear approximation to the temperature function T (x, y)
in Exercise 11 near the point (6, 4). Then use it to estimate the
temperature at the point (5, 3.8).

13-17 Find the first partial derivatives.
u-+ 2v
u? + 2

16. G(X,y, z) = e*¥sin(y/z)

13. f(x,y) = (5y° + 2x%)® 14. g(u,v) =

15. F(a, B) = a®In(a® + B?)
17. S(u, v, w) = u arctan(v\/ﬁ)

11. A metal plate is situated in the xy-plane and occupies the
rectangle 0 < x < 10,0 < y < 8, where x and y are measured
in meters. The temperature at the point (x, y) in the plate is
T(x,y), where T is measured in degrees Celsius. Temperatures

Graphing calculator or computer required

18. The speed of sound traveling through ocean water is a function
of temperature, salinity, and pressure. It has been modeled by
the function

C = 1449.2 + 4.6T — 0.055T2 + 0.00029T *
+ (1.34 — 0.01T)(S — 35) + 0.016D

where C is the speed of sound (in meters per second), T isthe
temperature (in degrees Celsius), S is the salinity (the concen-
tration of saltsin parts per thousand, which means the number
of grams of dissolved solids per 1000 g of water), and D is the
depth below the ocean surface (in meters). Compute 9C/dT,
dC/aS, and 9C/dD when T = 10°C, S = 35 parts per thousand,
and D = 100 m. Explain the physical significance of these
partial derivatives.
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19-22 Find all second partial derivatives of f.
19. f(x,y) = 4x3 — xy? 20. z =xe ¥

21. f(x,y,z) = xky'z" 22. v = rcos(s + 2t)

J é)
23, If z = xy + xe”, show that X— + y— = xy + z.
ax 7 ay

24. If z = sin(x + sint), show that

9z oz 0

ax 9xat ot ox?

25-29 Find equations of (@) the tangent plane and (b) the normal
line to the given surface at the specified point.

25 z=3x2—-y2+2x, (1,-21)

26. z =e* cosy, (0,0,1)

2. X2+ 2y2 — 3%2=3, (2,-1,1)

28. xy +yz+:z2x=3, (1,1,1)

29. sin(xyz) = x + 2y + 3z, (2,—1,0)

{4 30. Use a computer to graph the surface z = x? + y* and its

tangent plane and normal line at (1, 1, 2) on the same screen.
Choose the domain and viewpoint so that you get a good
view of al three objects.

31. Find the points on the hyperboloid x? + 4y? — z2 = 4 where
the tangent plane is parallel to the plane 2x + 2y + z = 5.

32. Find du if u = In(1 + se?).

33. Find the linear approximation of the function
f(x,y,z) = x3/y2 + z2 at the point (2, 3, 4) and use it
to estimate the number (1.98)3,/(3.01)2 + (3.97)2.

34. Thetwo legs of aright triangle are measured as 5 m and
12 m with a possible error in measurement of at most 0.2 cm
in each. Use differentials to estimate the maximum error in
the calculated value of (a) the area of the triangle and (b) the
length of the hypotenuse.

35. If u=x%3+ 2% wherex = p + 3p? y = pe®, and
z = psinp, use the Chain Rule to find du/dp.

36. If v = x2siny + ye™, wherex = s + 2t and y = st, use the
Chain Rule to find dv/ds and dv/0t whens = Oand t = 1.

37. Suppose:z = f(x,y), wherex = ¢(s, t), y = h(s, 1),
9(1,2) = 3,:1,2) = =1, 4(1,2) = 4,h(1,2) = 6,
hs(1,2) = =5, h(1, 2) = 10, (3, 6) = 7, and f,(3, 6) = 8.
Find 9z/0s and 9z/dt whens = 1land t = 2.

38. Use atree diagram to write out the Chain Rule for the case
wherew = f(t,u,v),t =t(p,q,r,5),u=u(p,q,r,s), and
v=u0(p,q,r,s) areal differentiable functions.

39. If z =y + f(x? — y?), where f is differentiable, show that

Jdz Jdz

— 4+ x—=x
Yoox ay

CHAPTER 14 REVIEW 993

40. The length x of aside of atriangleisincreasing at a rate of
3in/s, thelength y of another side is decreasing at a rate of
2in/s, and the contained angle 6 isincreasing at arate of
0.05 radian/s. How fast is the area of the triangle changing
whenx = 40in,y = 50in, and 0 = 7/67?

M. If z=1(u,»), whereu = xy, » = y/x, and f has continuous
second partial derivatives, show that
9? 9 9? a
2%—y2%2—4UU R P
X ay Jau dv v

d J
42. If cos(xyz) = 1 + x%? + 22, finda—)z( and a—;

43. Find the gradient of the function f(x, y, z) = x%"*".

44. (a) When isthe directional derivative of f a maximum?
(b) When isit aminimum?
(c) Whenisit 0?
(d) Whenisit haf of its maximum value?

45-46 Find the directional derivative of f at the given point in
the indicated direction.
45, f(x,y) =x%", (—2,0),

in the direction toward the point (2, —3)

46. f(x,y,2) =x’y + xy1+ 2z, (1,2 3),
in the direction of v = 2i + j — 2k

47. Find the maximum rate of change of f(x,y) = x?y + vy
at the point (2, 1). In which direction does it occur?

48. Find the direction in which f(x,y, z) = ze*¥ increases most
rapidly at the point (O, 1, 2). What is the maximum rate of
increase?

49. The contour map shows wind speed in knots during Hurri-
cane Andrew on August 24, 1992. Use it to estimate the
value of the directional derivative of the wind speed at
Homestead, Florida, in the direction of the eye of the
hurricane.

=
\gﬁ\; y Homestead

!
\

0 10 20 30 40
(Distance in miles)
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50. Find parametric equations of the tangent line at the point
(=2, 2, 4) to the curve of intersection of the surface
z = 2x? — y?and the plane z = 4.

51-54 Find the local maximum and minimum values and saddle
points of the function. If you have three-dimensional graphing
software, graph the function with a domain and viewpoint that
reveal al the important aspects of the function.

51. f(x,y) =x®> —xy + y>+ 9 — 6y + 10
52. f(x,y) = x® — 6xy + 8y*

53. f(x,y) = 3xy — x%y — xy?

54. f(x,y) = (x2 + y)e¥/?

60.

61.

62.

1 1 1
f(X,y)=;+y; 2

+%=1
f(x,y,2) =xyz; x*+y?+z2=3
f(x,y,z) = x®+ 2y® + 3%
X+y+z=1 X—-y+2z=2

55-56 Find the absolute maximum and minimum values of f on
the set D.

55. f(X,y) = 4xy? — x?y? — xy% D isthe closed triangular
region in the xy-plane with vertices (0, 0), (0, 6), and (6, 0)

56. f(x,y) = e XY (x2 + 2y?); Disthedisk x> + y2<4

57. Use agraph or level curves or both to estimate the local
maximum and minimum values and saddle points of
f(x,y) = x® — 3x + y* — 2y Then use calculus to find
these values precisely.

58. Use a graphing calculator or computer (or Newton’s method
or acomputer algebra system) to find the critical points of
f(x,y) = 12 + 10y — 2x? — 8xy — y* correct to three
decimal places. Then classify the critical points and find
the highest point on the graph.

59-62 Use Lagrange multipliers to find the maximum and mini-
mum values of f subject to the given constraint(s).

59. f(x,y) =x%; x?+y?=1

63.

64.

65.

66.

Find the points on the surface xy?z® = 2 that are closest to
the origin.

A package in the shape of arectangular box can be mailed by
the US Postal Service if the sum of its length and girth (the
perimeter of a cross-section perpendicular to the length) is at
most 108 in. Find the dimensions of the package with largest
volume that can be mailed.

A pentagon is formed by placing an isosceles triangle on a
rectangle, as shown in the figure. If the pentagon has fixed
perimeter P, find the lengths of the sides of the pentagon that
maximize the area of the pentagon.

A particle of mass m moves on the surface z = f(x, y). Let

x = X(t) and y = y(t) be the x- and y-coordinates of the

particle at timet.

(a) Find the velocity vector v and the kinetic energy
K =3m|v|? of the particle.

(b) Determine the acceleration vector a.

(c) Letz = x?+ y?and x(t) = tcost, y(t) = tsint. Find
the velocity vector, the kinetic energy, and the accelera-
tion vector.
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Problems Plus

1. A rectangle with length L and width W is cut into four smaller rectangles by two lines paral-
lel to the sides. Find the maximum and minimum values of the sum of the squares of the
areas of the smaller rectangles.

2. Marine biologists have determined that when a shark detects the presence of blood in the
water, it will swim in the direction in which the concentration of the blood increases most
rapidly. Based on certain tests, the concentration of blood (in parts per million) at a point
P(x, y) on the surface of seawater is approximated by

Clx,y) = e 0

where x and y are measured in meters in a rectangular coordinate system with the blood

source at the origin.

(a) Identify the level curves of the concentration function and sketch several members of this
family together with a path that a shark will follow to the source.

(b) Suppose ashark is at the point (xo, Yo) when it first detects the presence of blood in
the water. Find an equation of the shark’s path by setting up and solving a differential
equation.

3. Along piece of galvanized sheet metal with width w is to be bent into a symmetric form with
three straight sides to make arain gutter. A cross-section is shown in the figure.
(@) Determine the dimensions that allow the maximum possible flow; that is, find the dimen-
sions that give the maximum possible cross-sectional area.
(b) Would it be better to bend the metal into a gutter with a semicircular cross-section?

4. For what values of the number r is the function

x+y+2" .
f(x.y.2) Crvit? Vit 2 if (x,y,2)# (0,0,0)
0 if (x,y,2) =1(0,0,0)

continuous on R3?

5. Suppose f is adifferentiable function of one variable. Show that all tangent planes to the
surface z = xf(y/x) intersect in a common point.

6. (@ Newton's method for approximating a root of an equation f(x) = 0 (see Section 4.8)
can be adapted to approximating a solution of a system of equations f(x,y) = 0 and
g(x,y) = 0. The surfaces z = f(x, y) and z = g(x, y) intersect in a curve that intersects
the xy-plane at the point (r, s), which is the solution of the system. If an initial approxi-
mation (X1, y1) is close to this point, then the tangent planes to the surfaces at (x4, y1)
intersect in a straight line that intersects the xy-plane in a point (x,, y2), which should be
closer to (r, s). (Compare with Figure 2 in Section 3.8.) Show that

fug — fox
fxgy — Ty«

Xe—xo— 2ETBI gy o

fegy — fygx

where f, g, and their partial derivatives are evaluated at (x4, y1). If we continue this pro-
cedure, we obtain successive approximations (X,, Yn).
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(b) It was Thomas Simpson (1710-1761) who formulated Newton’s method as we know it
today and who extended it to functions of two variables as in part (a). (See the biography
of Simpson on page 537.) The example that he gave to illustrate the method was to solve
the system of equations

x* + y¥ = 1000 x¥ + y* = 100

In other words, he found the points of intersection of the curvesin the figure. Use the
method of part (a) to find the coordinates of the points of intersection correct to six deci-

mal places.
y
x4y =1000
4+
XY+ y*=100
24
0 I

1. If theelipse x?/a? + y%b? = 1isto enclose the circle x* + y? = 2y, what values of a and b
minimize the area of the ellipse?

8. Among all planes that are tangent to the surface xy?z? = 1, find the ones that are farthest
from the origin.
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