

T Y P E T H E O RY A N D F O R M A L P RO O F

Type theory is a fast-evolving field at the crossroads of logic, computer science
and mathematics. This gentle step-by-step introduction is ideal for graduate stu-
dents and researchers who need to understand the ins and outs of the mathematical
machinery, the role of logical rules therein, the essential contribution of definitions
and the decisive nature of well-structured proofs.

The authors begin with untyped lambda calculus and proceed to several fun-
damental type systems, including the well-known and powerful Calculus of
Constructions. The book also covers the essence of proof checking and proof
development, and the use of dependent type theory to formalise mathematics.

The only prerequisite is a basic knowledge of undergraduate mathematics.
Carefully chosen examples illustrate the theory throughout. Each chapter ends
with a summary of the content, some historical context, suggestions for further
reading and a selection of exercises to help readers familiarise themselves with the
material.

R o b N e d e r p e lt was Lecturer in Logic for Computer Science until his retire-
ment. Currently he is a guest researcher in the Faculty of Mathematics and
Computer Science at Eindhoven University of Technology, the Netherlands.

H e r m a n G e u v e r s is Professor in Theoretical Informatics at the Radboud
University Nijmegen, and Professor in Proving with Computer Assistance at
Eindhoven University of Technology, both in the Netherlands.

TYPE THEORY AND FORMAL PROOF

An Introduction

RO B N E D E R P E LT
Eindhoven University of Technology,

The Netherlands

H E R M A N G E U V E R S
Radboud University Nijmegen,

and
Eindhoven University of Technology,

The Netherlands

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107036505

© Rob Nederpelt and Herman Geuvers 2014

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2014

Printed in the United Kingdom by CPI Group Ltd, Croydon CR0 4YY

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

ISBN 978-1-107-03650-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of
URLs for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

To the memory of N.G. de Bruijn

Contents

Foreword, by Henk Barendregt page xiii

Preface xv

Acknowledgements xxvii

Greek alphabet xxviii

1 Untyped lambda calculus 1

1.1 Input–output behaviour of functions 1

1.2 The essence of functions 2

1.3 Lambda-terms 4

1.4 Free and bound variables 8

1.5 Alpha conversion 9

1.6 Substitution 11

1.7 Lambda-terms modulo α-equivalence 14

1.8 Beta reduction 16

1.9 Normal forms and confluence 19

1.10 Fixed Point Theorem 24

1.11 Conclusions 26

1.12 Further reading 27

Exercises 29

2 Simply typed lambda calculus 33

2.1 Adding types 33

2.2 Simple types 34

2.3 Church-typing and Curry-typing 36

2.4 Derivation rules for Church’s λ→ 39

2.5 Different formats for a derivation in λ→ 44

2.6 Kinds of problems to be solved in type theory 46

2.7 Well-typedness in λ→ 47

2.8 Type Checking in λ→ 50

2.9 Term Finding in λ→ 51

viii Contents

2.10 General properties of λ→ 53

2.11 Reduction and λ→ 59

2.12 Consequences 63

2.13 Conclusions 64

2.14 Further reading 65

Exercises 66

3 Second order typed lambda calculus 69

3.1 Type-abstraction and type-application 69

3.2 Π-types 71

3.3 Second order abstraction and application rules 72

3.4 The system λ2 73

3.5 Example of a derivation in λ2 76

3.6 Properties of λ2 78

3.7 Conclusions 80

3.8 Further reading 80

Exercises 82

4 Types dependent on types 85

4.1 Type constructors 85

4.2 Sort-rule and var-rule in λω 88

4.3 The weakening rule in λω 90

4.4 The formation rule in λω 93

4.5 Application and abstraction rules in λω 94

4.6 Shortened derivations 95

4.7 The conversion rule 97

4.8 Properties of λω 99

4.9 Conclusions 100

4.10 Further reading 100

Exercises 101

5 Types dependent on terms 103

5.1 The missing extension 103

5.2 Derivation rules of λP 105

5.3 An example derivation in λP 107

5.4 Minimal predicate logic in λP 109

5.5 Example of a logical derivation in λP 115

5.6 Conclusions 118

5.7 Further reading 119

Exercises 121

6 The Calculus of Constructions 123

6.1 The system λC 123

6.2 The λ-cube 125

Contents ix

6.3 Properties of λC 128

6.4 Conclusions 132

6.5 Further reading 133

Exercises 134

7 The encoding of logical notions in λC 137

7.1 Absurdity and negation in type theory 137

7.2 Conjunction and disjunction in type theory 139

7.3 An example of propositional logic in λC 144

7.4 Classical logic in λC 146

7.5 Predicate logic in λC 150

7.6 An example of predicate logic in λC 154

7.7 Conclusions 157

7.8 Further reading 159

Exercises 162

8 Definitions 165

8.1 The nature of definitions 165

8.2 Inductive and recursive definitions 167

8.3 The format of definitions 168

8.4 Instantiations of definitions 170

8.5 A formal format for definitions 172

8.6 Definitions depending on assumptions 174

8.7 Giving names to proofs 175

8.8 A general proof and a specialised version 178

8.9 Mathematical statements as formal definitions 180

8.10 Conclusions 182

8.11 Further reading 183

Exercises 185

9 Extension of λC with definitions 189

9.1 Extension of λC to the system λD0 189

9.2 Judgements extended with definitions 190

9.3 The rule for adding a definition 192

9.4 The rule for instantiating a definition 193

9.5 Definition unfolding and δ-conversion 197

9.6 Examples of δ-conversion 200

9.7 The conversion rule extended with
Δ→ 202

9.8 The derivation rules for λD0 203

9.9 A closer look at the derivation rules of λD0 204

9.10 Conclusions 206

9.11 Further reading 207

Exercises 208

x Contents

10 Rules and properties of λD 211

10.1 Descriptive versus primitive definitions 211

10.2 Axioms and axiomatic notions 212

10.3 Rules for primitive definitions 214

10.4 Properties of λD 215

10.5 Normalisation and confluence in λD 219

10.6 Conclusions 221

10.7 Further reading 221

Exercises 223

11 Flag-style natural deduction in λD 225

11.1 Formal derivations in λD 225

11.2 Comparing formal and flag-style λD 228

11.3 Conventions about flag-style proofs in λD 229

11.4 Introduction and elimination rules 232

11.5 Rules for constructive propositional logic 234

11.6 Examples of logical derivations in λD 237

11.7 Suppressing unaltered parameter lists 239

11.8 Rules for classical propositional logic 240

11.9 Alternative natural deduction rules for ∨ 243

11.10 Rules for constructive predicate logic 246

11.11 Rules for classical predicate logic 249

11.12 Conclusions 252

11.13 Further reading 253

Exercises 254

12 Mathematics in λD: a first attempt 257

12.1 An example to start with 257

12.2 Equality 259

12.3 The congruence property of equality 262

12.4 Orders 264

12.5 A proof about orders 266

12.6 Unique existence 268

12.7 The descriptor ι 271

12.8 Conclusions 274

12.9 Further reading 275

Exercises 276

13 Sets and subsets 279

13.1 Dealing with subsets in λD 279

13.2 Basic set-theoretic notions 282

13.3 Special subsets 287

13.4 Relations 288

Contents xi

13.5 Maps 291

13.6 Representation of mathematical notions 295

13.7 Conclusions 296

13.8 Further reading 297

Exercises 302

14 Numbers and arithmetic in λD 305

14.1 The Peano axioms for natural numbers 305

14.2 Introducing integers the axiomatic way 308

14.3 Basic properties of the ‘new’ N 313

14.4 Integer addition 316

14.5 An example of a basic computation in λD 320

14.6 Arithmetical laws for addition 322

14.7 Closure under addition for natural and negative numbers 324

14.8 Integer subtraction 327

14.9 The opposite of an integer 330

14.10 Inequality relations on Z 332

14.11 Multiplication of integers 335

14.12 Divisibility 338

14.13 Irrelevance of proof 340

14.14 Conclusions 341

14.15 Further reading 343

Exercises 344

15 An elaborated example 349

15.1 Formalising a proof of Bézout’s Lemma 349

15.2 Preparatory work 352

15.3 Part I of the proof of Bézout’s Lemma 354

15.4 Part II of the proof 357

15.5 Part III of the proof 360

15.6 The holes in the proof of Bézout’s Lemma 363

15.7 The Minimum Theorem for Z 364

15.8 The Division Theorem 369

15.9 Conclusions 371

15.10 Further reading 373

Exercises 376

16 Further perspectives 379

16.1 Useful applications of λD 379

16.2 Proof assistants based on type theory 380

16.3 Future of the field 384

16.4 Conclusions 386

16.5 Further reading 387

xii Contents

Appendix A Logic in λD 391

A.1 Constructive propositional logic 391

A.2 Classical propositional logic 393

A.3 Constructive predicate logic 395

A.4 Classical predicate logic 396

Appendix B Arithmetical axioms, definitions and lemmas 397

Appendix C Two complete example proofs in λD 403

C.1 Closure under addition in N 403

C.2 The Minimum Theorem 405

Appendix D Derivation rules for λD 409

References 411

Index of names 419

Index of definitions 421

Index of symbols 423

Index of subjects 425

Foreword

This book, Type Theory and Formal Proof: An Introduction, is a gentle, yet

profound, introduction to systems of types and their inhabiting lambda-terms.

The book appears shortly after Lambda Calculus with Types (Barendregt et al.,

2013). Although these books have a partial overlap, they have very different

goals. The latter book studies the mathematical properties of some formalisms

of types and lambda-terms. The book in your hands is focused on the use of

types and lambda-terms for the complete formalisation of mathematics. For

this reason it also treats higher order and dependent types. The act of defining

new concepts, essential for mathematical reasoning, forms an integral part of

the book. Formalising makes it possible that arbitrary mathematical concepts

and proofs be represented on a computer and enables a machine verification

of the well-formedness of definitions and of the correctness of proofs. The re-

sulting technology elevates the subject of mathematics and its applications to

its maximally complete and reliable form.

The endeavour to reach this level of precision was started by Aristotle, by

his introduction of the axiomatic method and quest for logical rules. For clas-

sical logic Frege completed this quest (and Heyting for the intuitionistic logic

of Brouwer). Frege did not get far with his intended formalisation of math-

ematics: he used an inconsistent foundation. In 1910 Whitehead and Russell

introduced types to remedy this. These authors made proofs largely formal,

except that substitutions still had to be understood and performed by the

reader. In 1940 Church published a system with types, based on a variant of

those of Whitehead and Russell, in which the mechanism of substitution was

captured by lambda-terms and conversion. Around 1970 de Bruijn essentially

extended the formalism of types by introducing dependent types with the ex-

plicit goal to formalise and verify mathematics. By 2004 this technique was

perfected and George Gonthier established, using the mathematical assistant

Coq, a full formalisation of the Four Colour Theorem.

The learning curve to formalise remains steep, however. One still needs to be

xiv Foreword

an expert in a mathematical assistant in order to apply the technique. I hope

and expect that this book will contribute to the familiarisation of formalis-

ing mathematical proofs and to improvements in the mathematical assistants,

bringing this technique within the reach of the working mathematician and

computer scientist.

Henk Barendregt

Preface

Aim and scope

The aim of the book is, firstly, to give an introduction to type theory , an evolv-

ing scientific field at the crossroads of logic, computer science and mathematics.

Secondly, the book explains how type theory can be used for the verification

of mathematical expressions and reasonings.

Type theory enables one to provide a ‘coded’ version – i.e. a full formalisation

– of many mathematical topics. The formal system underlying type theory

forces the user to work in a very precise manner. The real power of type

theory is that well-formedness of the formalised expressions implies logical and

mathematical correctness of the original content.

An attractive property of type theory is that it becomes possible and feasible

to do the encoding in a ‘natural’ manner, such that one follows (and recognises)

the way in which these subjects were presented originally. Another important

feature of type theory is that proofs are treated as first-class citizens, in the

sense that proofs do not remain meta-objects, but are coded as expressions

(terms) of the same form as the rest of the formalisation.

The authors intend to address a broad audience, ranging from university

students to professionals. The exposition is gentle and gradual, developing the

material at a steady pace, with ample examples and comments, cross-references

and motivations. Theoretical issues relevant for logic and computer science

alternate with practical applications in the area of fundamental mathematical

subjects.

History Important investigations in the machinery of logic were made by

F.L.G. Frege, as early as the end of the nineteenth century (Frege, 1893). For-

mal mathematics started with B. Russell in the first decade of the twentieth

century, by the publication of the famous Principia Mathematica (The Prin-

ciples of Mathematics , see Russell, 1903). Other contributions were made by

D. Hilbert (Hilbert, 1927) in the 1920s. An important step in the description of

xvi Preface

the essential mechanisms behind the mathematical way of thought was made

by A. Church in the 1940s (Church, 1940). He invented the lambda calculus,

an abstract mechanism for dealing with functions, and he introduced ‘simple

type theory’ as the language for higher order logic.

At the end of the 1960s N.G. de Bruijn designed his ‘mathematical lan-

guage’, Automath (de Bruijn, 1970), which he and his group tested thoroughly

by translating a broad corpus of mathematical texts in it, and verifying it by

means of a computer program. In the same period, the Polish Mizar group

(Mizar, 1989) developed a language and a program to develop and store math-

ematical theories; they founded their efforts, however, not so much in a type-

theoretic theory.

From approximately the 1980s there was an explosion of work in the area

of type theory based on earlier work in the 1970s by J.-Y. Girard (Girard,

1986) and P. Martin-Löf (Martin-Löf, 1980). We mention the inspiring work

of H.P. Barendregt, whose lambda-cube and the notion of Pure Type Systems

based on that are by now a standard in the world of type theory (Barendregt,

1981, 1992).

The present book has been built on both Automath and the lambda-cube,

which have been combined into a novel, concise system that enjoys the advan-

tages of both respected predecessors.

Rationale Topics such as proven correctness and complete formalisation are

essential in many areas of modern science. Type theory as an all-encompassing

formalism has become more and more a standard benchmark for what formal-

isation of logico-mathematical content really means, and the more so because

it also includes the essence of what a formal proof is. Thus, type theory is a

valuable expedient to transform ‘correctness’ into a mechanisable issue, which

is of great importance, in particular in mathematical proof development and

correct computer programming.

There are many developments that build on the inherent force of type the-

ory. We mention work on proving program correctness; on correct program

construction; on automation of reasoning; on formalisation and archiving of

mathematical subjects, including on-line consultable libraries of knowledge;

on proof checking, (assistance for) proof development and construction. More

about these subjects can be found in Chapter 16, in particular Sections 16.2

and 16.3.

For the benefit of any interested person who desires to get insight into the

‘big points’ of type theory, we note the following. Notwithstanding the mo-

mentum that formalisation of mathematics has gained, especially in computer

science where it is used for the verification of software and systems by means of

proof assistants, formalising is a considerable effort. For students and also for

Preface xvii

interested researchers, it is still a major investment to understand and use the

systems. We expect this situation to improve in the future and this is where

our book aims to fill a gap, by being a gentle introduction to the art of for-

malising mathematics on the basis of type theory, suitable for proof assistants

and other systems. We believe that this book will be very useful for anyone

starting to use such a system.

Approach This textbook describes a concise version of type theory that is

immediately useable to represent mathematical theories and to verify them.

The representation is close to the manner in which mathematicians write and

think, and therefore easier to master and employ. It is a good means for stu-

dents of mathematics and computer science to make a personal acquaintance

with the ins and outs of the mathematical machinery, the role of logical rules

therein, the essential contribution of definitions and the decisive nature of well-

structured proofs.

For that purpose we build the material from scratch, gradually enlarging the

influence of the types in the various systems described. The text starts with the

untyped lambda calculus and then introduces several fundamental type sys-

tems, culminating in the well-known and powerful Calculus of Constructions.

We continue by extending that system with a formal definition system and con-

secutively test the newly obtained system with several mathematical subjects,

until we finally present a substantial piece of mathematics (Bézout’s theorem

and its proof) in the format described, in order to give a practical demon-

stration of how the formal system works, and how close the formal translation

remains to the usual mathematical way of expressing such an item.

The main thread that runs through all the chapters is the development of a

convincing and viable formal type system for mathematics. At the end of each

chapter, the results are summarised in a section entitled Conclusions. In the

final section of each chapter, called Further Reading, we look around, sketching

a broader picture: we give a short historical justification of the topics described,

an overview of the essential aspects of related research (past and present) not

dealt with in the chapter, and suggest other literature as further reading to

the interested reader.

Following each chapter there is a series of exercises, enabling the reader to

get acquainted with the presented material. The exercises concentrate on the

subjects treated in the chapter text as such (not in the Further Reading).

Since we aim at a ‘generic’ approach to type theory as the basis of logical

proofs and of mathematics in general, the exercises do not refer to, or make

use of, specific proof assistants or software tools: we regard it as sensible to

remain independent of the actual technical developments.

For answers to selected exercises, see www.win.tue.nl/∼wsinrpn/.

xviii Preface

Summary of contents

Chapter 1: Untyped lambda calculus

We start with an exposition of untyped lambda calculus, a fundamental topic

originating from A. Church in the 1930s, which may be regarded as the cal-

culus underlying the behaviour of functions, including variable binding and

substitution – essential concepts in mathematics and computer science. The

standard subjects in this area are discussed in detail, including β-reduction,

normal forms, confluence, fixed points and the related theorems. We list the

positive and negative aspects of this calculus.

Chapters 2 to 6

The drawbacks of the untyped calculus lead to a notion of type, which plays

the main role in the rest of the book. In Chapters 2 to 6 we present the

standard hierarchy of typed lambda calculi, as elaborated by H.P. Barendregt.

In these chapters we introduce several systems, each with its own rationale,

and contrast them with previous and coming ones as to their relative ‘power’.

Moreover, the reader becomes acquainted with derivation rules and their use,

and with basic logical entities and their formal role in reasonings. The relevant

properties of these systems are reviewed, with a selection of instructive proofs

of these properties.

Chapter 2: Simply typed lambda calculus

In Chapter 2 we develop the simply typed lambda calculus in the explicit

version, due to A. Church, which is called λ→. We also mention the implicit

version of H.B. Curry. We give a derivation system for λ→ and examples of its

use. The properties of the system are given, and contrasted with the properties

of the untyped lambda calculus.

Chapter 3: Second order typed lambda calculus

We extend Church’s λ→ with terms depending on types, leading to the system

λ2, enjoying second order abstraction and application, and having Π-types.

Again, examples show its usefulness.

Chapter 4: Types dependent on types

We extend λ→ in another direction, adding types depending on types. There-

fore we develop the notions ‘type constructor’ and ‘kind’. Thus we obtain the

system λω. We also adapt the derivation rules and include a conversion rule.

Chapter 5: Types dependent on terms

A third extension of λ→ leads to λP, which enables us to formalise predicates.

The far-reaching propositions-as-types concept, implying the Curry–Howard

isomorphism, is one of the topics that pop up in a straightforward fashion. We

discuss the correspondence with basic mathematical and logical notions.

Preface xix

Chapter 6: The Calculus of Constructions

Chapters 2 to 5 culminate in the powerful Calculus of Constructions (or λC),

the theory on which the well-known proof assistant Coq has been built. In this

chapter we explain the hierarchy and the structure present in the Barendregt

cube, and we add the corresponding derivation system. The relevant properties

are listed and contrasted with earlier results in the book.

Chapter 7: The encoding of logical notions in λC

We demonstrate how propositional logic and predicate logic fit naturally in

the λC framework. For each of the usual logical connectives and quantifiers we

give a type-theoretic encoding, for which we employ several times the second

order possibilities of λC. Constructive logic is separated from classical logic,

which needs a single axiom. A number of examples show how logical proofs can

be embedded in type theory, thus deepening the reader’s insight into logical

reasonings and proofs.

Chapter 8: Definitions

In this chapter we look into the nature, the usage and the usefulness of defi-

nitions in logic and mathematics. We argue why one tends to give a specific

object or notion a name of its own, often in a context of assumptions, and how

these names are used afterwards. We explain the general format underlying the

definition mechanism and discuss the various manners of instantiating these

definitions. The differences and correspondences between variables, parameters

and constants are reviewed, and we point at the possibility in type theory of

giving names to proofs.

Chapter 9: Extension of λC with definitions

Here we extend the type theory λC with formal definitions, which is essential

for making type theory practically useful. We formalise the common kind of

definitions, which name a notion that is specified by a description. We discuss

and analyse the extra derivation rules needed for the formal treatment of def-

initions: one for adding a definition, and one for instantiating a definition. We

also introduce and elaborate a reduction mechanism for enabling the ‘unfold-

ing’ of definitions, with a discussion of related notions. Finally, we obtain the

system λD0, a formal extension of λC treating definitions as first-class citizens.

Chapter 10: Rules and properties of λD

We introduce a second kind of definition, the primitive ones, which can be

used for axioms and axiomatic notions. Their formal representation resembles

the one for descriptive definitions, which is particularly apparent in the extra

derivation rules necessary to encapsulate these primitive definitions. We thus

obtain the system λD (i.e. λC + definitions + axioms) and we list the most

important properties of the obtained formal system.

xx Preface

Chapter 11: Flag-style natural deduction in λD

In order to demonstrate how λD works in practice, we start with a more

thorough investigation of formal logic in λD-style, as a sequel to Chapter 7. We

illustrate how derivations in λD can be turned into a flag-style linear format,

close to the familiar representation used in mathematics books, and therefore

easy to understand. Natural deduction, the logical system that reflects the

reasoning patterns employed by mathematicians, can be clearly presented in

this format, as we demonstrate: the introduction and elimination rules for the

standard connectives and quantifiers can be straightforwardly translated into

λD. Examples show that natural deduction nicely agrees with the ideas and

constructions present in type theory.

Chapter 12: Mathematics in λD: a first attempt

In this chapter we put λD to the test in the area of mathematics. A simple

example, consisting of a theorem and a short proof, leads to investigations

about equality, Leibniz’s law, and orders, all directly transposable in the λD

setting. Next, we discuss unique existence and the possibility to attach a name

to uniquely existing objects and notions. In order to formalise this, we axiom-

atically introduce Frege’s ι-descriptor.

Chapter 13: Sets and subsets

We discuss how to deal with sets and subsets in type theory. This is not

straightforward, since sets and types are different concepts. For example, an

element can be a member of several sets, whereas in the standard version of

type theory that we develop in this book, each ‘object’ has a unique type (up

to conversion). A crucial property of types is that it is decidable whether ‘a has

type T ’. For sets this is not the case: ‘a ∈ X’ is in general undecidable. This

means we have to make a choice as to how to deal with sets in type theory. We

make the choice to represent subsets as predicates over a type, which works

out well, as we show with a number of examples. At the end of the chapter we

compare our choice with other options.

Chapter 14: Numbers and arithmetic in λD

In order to investigate the usefulness of λD for formalising mathematics in a

systematic manner, we focus on the integer numbers. Starting with Peano’s

axioms for the natural numbers, we give similar axioms for the integers, which

turn out to be directly transposable into λD. The natural numbers then form

a subset, with the desired properties. Thereby we obtain a viable approach to

many parts of number theory. In order to demonstrate this, we develop basic

arithmetic for the integers, concerning addition, subtraction, multiplication

and the like. When formalising recursion, we make good use of the ι-descriptor

introduced in a previous chapter. Inequalities, such as ≤, and divisibility follow

relatively easy. We demonstrate the flexibility of the obtained formalisation

Preface xxi

by giving ample examples. In developing formal arithmetic, a long sequence of

provable lemmas passes by, which shows the strength of the proposed encodings

in type theory.

Chapter 15: An elaborated example

In order to demonstrate the reach and the power of the approach developed in

this book, we formalise a non-trivial theorem and its proof in λD. Therefore we

take a version of Bézout’s Lemma: if two positive natural numbers are relatively

prime, then there is a linear combination of the two which is equal to 1. We

split the proof into a number of parts, which are formalised one by one. In

the presentation we suppress a number of obvious details which are left to the

reader, in order to keep a clear view of the overall picture. Our development of

the proof of Bézout’s Lemma shows that the chosen road is viable and feasible.

Two auxiliary theorems (the Minimum Theorem and the Division Theorem)

are considered in detail and also transposed in a λD setting.

Chapter 16: Further perspectives

This chapter summarises the useful points of a type-theoretic formalisation

of mathematics as, for example, offered by λD. It also focuses on the general

principles of type theory-based proof assistants and their power concerning

proof checking and interactive proving. Finally, we outline our view on the

future of the field, motivated by recent developments.

Appendix A: Logic in λD

Summary of the natural deduction rules described and used in the book.

Appendix B: Arithmetical axioms, definitions and lemmas

For the reader’s convenience, we list the lemmas concerning arithmetic in Z,

as they are given in the text of Chapter 14.

Appendix C: Two complete example proofs in λD

We give complete versions of two λD proofs dealt with before, namely of the

Closure Property of Addition in N, and of the Division Theorem, in order to

show what such formal proofs look like when all relevant details have been

worked out.

Appendix D: Derivation rules for λD

This appendix summarises the derivation system as developed in the book, for

easy reference.

Indexes

We add four sets: an Index of names (which contains the names of the persons

mentioned in the main text of the book), an Index of definitions (listing the

formal definitions presented in the figures of Chapters 8 to 15), an Index of

symbols and an Index of subjects.

xxii Preface

What’s new?

The book has several new aspects in its presentation of type theory:

(1) A main novelty is that we present type theory in flag-derivation style. In

modern presentations of type theory, one usually sees derivations presented in

‘tree style’, which enables a concise and precise way of defining the rules of type

theory, and we will also employ it for that purpose. A tree style, however, is

very impractical for giving real derivations. Derivation trees become too wide

and big and enforce all kinds of basic typings to be derived several times (in

different branches of the derivation tree). The flag style allows easy reuse of

context elements. It also allows us, in combination with definitions (see below),

to reuse derived results. Altogether it is very close to the usual ‘book style’,

which builds up the mathematics in a linear order.

(2) Also new is the inclusion of definitions , which are often regarded as in-

formal abbreviation mechanisms on the meta-level. Contrary to this, we give a

formal treatment of definitions and show how they are used in practical deriva-

tions. Primitive notions, which are treated in a similar manner to definitions in

our presentation of type theory, are used for adding elementary concepts and

axioms to type theory.

Inductive notions can be defined by means of higher order logic and our

definition mechanism allows us to give them a name. One can also define

recursive functions over these inductive notions. Therefore we do not have

inductive definitions as a basic concept, since this is not needed.

(3) We continually take care to give a stepwise and gentle explanation of

the rules of type theory, illustrated with many examples of how these are used

to formalise mathematics. In particular, given that it is not very common to

devote a lot of attention to the notion of ‘definition’, our explicit description

in Chapter 8 of the use and meaning of definitions stands out as a new look at

what they are and intend to be. We contrast definitions with assumptions and

differentiate between variables, parameters and constants. Thus we discuss a

number of well-known mathematical concepts with a ‘linguistic-philosophical

flavour’, which is not usual.

(4) The manner in which we represent definitions leads to a relatively small

but powerful extension of λC. The system obtained in Chapter 10, called λD,

has a simple, convincing format and is new: it has not yet been described as

such in the literature. In Chapter 12 we introduce the descriptor ι in λD, which

is straightforward, since λD permits primitive concepts such as axioms and

axiomatic notions. Use of this ι, which enables uniquely identifiable objects, is

not very common in dependent type theory. We note, however, that L.S. van

Benthem Jutting already did this in his Automath translation of E. Landau’s

Preface xxiii

book on Analysis (van Benthem Jutting, 1977), and that it is also present in

the HOL system (see HOL system, 1988).

(5) At the end of Chapter 13 we give an overview discussion of how to

deal with subsets in type theory. The new aspect is that we take a pragmatic

viewpoint on subsets by making a conscious choice with a view to our aims.

Readership

Although the style of the book is expository, using a gradual pace of expla-

nation with a continuous care for good understanding, including many ex-

amples, the subject has intrinsic difficulties because of the far-reaching and

rather complex interweaving of type-related notions, which is inherent to type

theory. Therefore, we consider this to be an advanced textbook . The intended

readership may include certain undergraduate students, although the primary

readership will range from graduate students to specialists:

– Undergraduate students in mathematics and computer science (second or

third year) should be able to follow most of the text, from the beginning to

the end. The main insight they get is to learn thoroughly what a proof ‘is’,

how it should be read and how it can be obtained. Moreover, they see which

‘fine structure’ is present (albeit mostly hidden) behind a mathematical text;

that extreme precision in mathematics is feasible; that logic can be framed

as a highly systematic deduction apparatus; that proofs can be considered

as mathematical objects, on a par with the usual mathematical entities; that

definitions are an indispensable asset in the formal mathematical language.

– Graduate students in mathematics and computer science may profit more

deeply from this book. They will enjoy the same benefits as sketched above,

but they also learn from this book what the essence of types is, in particular

of higher order and dependent types. This offers a useful lead into further

investigations in type systems for programming languages. They get acquainted

with important notions connected to function evaluation, by studying (typed

and untyped) lambda calculus and their properties. They see, moreover, that

(and how) mathematics can be formalised smoothly and hence that type theory

is suitable for checking with computer assistance, for example by means of a

proof assistant such as Coq.

– Specialists and researchers in computer science and mathematics not ac-

quainted with type theory can get a good and thorough impression of what

it’s all about. They can easily browse through the text to pick up the essen-

tials that interest them, in particular with respect to the important range of

type systems combined in Barendregt’s cube; the Calculus of Constructions

and its properties; the essence and the value of (formal) definitions and how

xxiv Preface

they can form part of a fully formal derivation system; the various approaches

to formalising Set Theory; the approach to integers in the Peano style; and

a worked-out example of a real formalised proof of a well-known, non-trivial

theorem. As a by-product, the reader will understand the basic features of the

system Automath (de Bruijn, 1970). A researcher may also be inspired by the

possibility of formalising mathematics as demonstrated in this book, or by the

overview of applications and perspectives at the end of the book.

Technical level

Since the book concerns a relatively new and self-contained subject, developed

from scratch, no more prerequisites are required than a good knowledge of basic

mathematical material such as (undergraduate) algebra and analysis. Some

knowledge of logical systems and some experience with logico-mathematical

reasoning and/or proofs may help, but it is not mandatory.

About the authors

Rob Nederpelt (born 1942) is a guest researcher in the faculty of Mathematics

and Computer Science at the Eindhoven University of Technology (the Nether-

lands) and was, until his retirement, a lecturer in Logic for Computer Science

at the same university. He studied mathematics at Leiden University and ob-

tained his PhD at Eindhoven University in 1973, with N.G. de Bruijn as his

thesis supervisor. The subject of his thesis was (weak and strong) normalisa-

tion in a typed lambda calculus narrowly related to the mathematical language

Automath.

He has taught many courses at Eindhoven University, first in mathematics,

later in logic, theoretical computer science, type theory and the language of

mathematics.

His research interest is primarily logic, in particular type theory and typed

lambda calculus. See www.win.tue.nl/∼wsinrpn/publications.htm for his

list of publications. It contains many papers and three books: The Language of

Mathematics (Nederpelt, 1987), A Modern Perspective on Type Theory (Ka-

mareddine et al., 2004), Logical Reasoning (Nederpelt & Kamareddine, 2011).

He has also been one of the editors of Selected Papers on Automath (Nederpelt

et al., 1994).

Herman Geuvers (born 1964) is professor in Theoretical Informatics at the

Radboud University Nijmegen, and in Proving with Computer Assistance at

the Eindhoven University of Technology, both in the Netherlands. He has stud-

ied mathematics in Nijmegen and wrote his PhD thesis in the Foundations of

Preface xxv

Computer Science (Radboud University Nijmegen, the Netherlands; 1993) un-

der the supervision of H.P. Barendregt on the Curry–Howard formulas-as-types

interpretation that relates logic and type theory.

He has taught many courses, mainly on topics such as logic, theoretical

computer science, type theory, proof assistants and semantics of programming

languages. He has been a lecturer in type theory and proof assistants at various

international PhD summer schools.

His research is in type theory, proof assistants and formalising mathematics.

He has published over 60 papers (www.cs.ru.nl/∼herman/pubs.html), has
been a member of various programme committees and has organised various

scientific events. Moreover, he co-edited the book Selected Papers on Automath

(Nederpelt et al., 1994). He was the leader of the ‘FTA project’ at the Radboud

University Nijmegen, to formalise a constructive proof of the Fundamental The-

orem of Algebra in Coq. This led to CoRN, the Constructive Coq Repository

of formalised mathematics (http://corn.cs.ru.nl) at Nijmegen, which is a

large library of formalised algebra and analysis by means of the proof assistant

Coq.

Acknowledgements

This book is dedicated to N.G. de Bruijn (1918–2012). His pioneering work

in the 1960s on the ‘mathematical language’ Automath and on formalising

mathematics in type theory has greatly influenced the development of this

book. His creative mind has been a great inspiration for us.

We thank H.P. Barendregt for sharing his deep insights in typed lambda

calculus and for his thorough and convincing description of many important

subjects in the field.

Since one of us is a student of N.G. de Bruijn, and the other one of H.P. Baren-

dregt, the publication of this book is a way of thanking our teachers, and paying

tribute to them.

We are particularly grateful to J.R. Hindley and C. Hemerik for their com-

ments on the text. We thank F. Dechesne and H.L. de Champeaux for their

useful remarks, A. Visser and R. Iemhoff for their valuable help and P. van

Tilburg for his nice and convenient tool for making flag derivations in LATEX.

We thank Eindhoven University of Technology for kindly offering us space,

time and equipment to prepare the text. We are also grateful to Cambridge

University Press, in particular to D. Tranah and G. Smith.

Rob Nederpelt, Herman Geuvers

Greek alphabet

For convenience, we list the letters of the Greek alphabet (small and capital)

together with their names and English pronunciation.

α A alpha /"ælf@/ ν N nu /nju:/

β B beta /"bi:t@/ ξ Ξ xi /gzaI/

γ Γ gamma /"gæm@/ o O omicron /@"maIkr@n/

δ Δ delta /"delt@/ π Π pi /paI/

ε E epsilon /"epsIl6n/ ρ P rho /r@U/

ζ Z zeta /"zi:t@/ σ Σ sigma /"sIgm@/

η H eta /"i:t@/ τ T tau /tO:/

ϑ Θ theta /"Ti:t@/ υ Υ upsilon /2p"saIl@n/

ι I iota /aI"@Ut@/ ϕ Φ phi /faI/

κ K kappa /"kæp@/ χ X chi /kaI/

λ Λ lambda /"læmd@/ ψ Ψ psi /psaI/

μ M mu /mju:/ ω Ω omega /"@UmIg@/

1

Untyped lambda calculus

1.1 Input–output behaviour of functions

Many functions can be described by some kind of expression, e.g. x2 + 1, that

tells us how, given an input value for x, one can calculate an output value.

In the present case this proceeds as follows: first determine the square of the

input value and consequently add 1 to this. The so-called ‘variable’ x acts as

an arbitrary (or abstract) input value. In a concrete case, for example when

using input value 3, one must replace x with 3 in the expression. Function

x2 + 1 then delivers the output value 32 + 1, which adds up to 10.

In order to emphasise the ‘abstract’ role of such a variable x in an expression

for a function, it is customary to use the special symbol λ: one adds λx in front

of the expression, followed by a dot as a separation marker. Hence, instead

of x2 + 1, one writes λx . x2 + 1, which means ‘the function mapping x to

x2 +1’. This notation expresses that x itself is not a concrete input value, but

an abstraction. As soon as a concrete input value comes in sight, e.g. 3, we

may give this as an argument to the function, thus making a start with the

calculation. Usually, one expresses this first stage by writing the input value,

embraced in a pair of parentheses, after the function: (λx . x2+1)(3). (Compare

with the case when one wishes to apply the function sin to argument π: this is

conveniently expressed as sin(π).)

In what follows, we will concentrate on the general behaviour of functions.

We will hardly ever take into account that we know how to ‘calculate’ in the

real world, for example that we can evaluate 32+1 to 10, and sin(π) to 0. Only

later will we consider well-known elementary functions such as addition or

multiplication of numbers, or call upon our knowledge about specific functions

such as square: our initial intention is to analyse functions from an abstract

point of view.

Our first attempts lead to a system called λ-calculus. This system encap-

sulates a formalisation of the basic aspects of functions, in particular their

2 Untyped lambda calculus

construction and their use. In the present chapter we do not yet consider

types, being an abstraction of the well-known process of ‘classifying’ entities

into greater units; for example, one may consider N as the type of all natural

numbers. So this chapter deals with the untyped λ-calculus. In all the follow-

ing chapters, however, we shall consider typed versions of λ-calculus, varying

in nature, which will end up in a system suitable for doing mathematics in a

formal manner.

1.2 The essence of functions

From the previous section we conclude that in dealing with functions there are

two construction principles and one evaluation rule.

The construction principles for functions are the following:

Abstraction: From an expression M and a variable x we can construct

a new expression: λx . M . We call this abstraction of x over M .

Application: From expressions M and N we can construct expression

M N . We call this application of M to N .

If necessary, some parentheses should be added during the construction pro-

cess.

Examples 1.2.1 − Abstraction of x over x2 + 1 gives λx . x2 + 1.

− Abstraction of y over λx . x − y gives λy . (λx . x − y), i.e. the function

mapping y to: λx . x− y (which is itself a function).

− Abstraction of y over 5 gives λy . 5, i.e. the function mapping y to 5 (other-

wise said: the ‘constant function’ with value 5).

− Application of λx . x2 + 1 to 3 gives (λx . x2 + 1)(3).

− Application of λx . x to λy . y gives (λx . x)(λy . y).

− Application of f to c gives fc. This can also be written, in a more familiar

way, as f(c), but this is not the style we use here.

Remarks 1.2.2 (1) A ‘free’ usage of these construction principles allows

expressions which do not have an obvious meaning, such as xx or y(λu . u). In

this chapter, we treat these kinds of constructs just like the others, not worrying

about their apparent lack of meaning.

(2) The function ‘square’ now looks as follows: λx . x2. The stand-alone

expression x2 is still available, but it is no longer a function, but an abstract

output value, viz. the square of (an unknown, but fixed) x. The difference is

subtle and may become clearer as follows: let’s assume that x ranges over N,

1.2 The essence of functions 3

the set of natural numbers. Then λx . x2 is a function, taking natural numbers

to natural numbers. But x2 is not: it represents a natural number.

(3) The λ is particularly suited for the description of ‘neat’ functions, which

can be described by a mathematical expression. It takes some effort to use the

λ-notation to describe functions with a slightly more complicated description,

such as, for example:

− the function ‘absolute value’ with definition:

x �→
{

x if x ≥ 0

−x if x < 0
,

− or the function on domain {0, 1, 2, 3} with codomain {0, 1, 2, 3} that is de-

scribed by: 0 �→ 2, 1 �→ 2, 2 �→ 1, 3 �→ 3 .

(In Exercise 1.14 we introduce an if-then-else function, which is helpful in such

cases.)

Next to the two construction principles described above, our intuitive func-

tion notion gives rise to a rule for the ‘evaluation’ of expressions. The formalisa-

tion of the function evaluation process is called ‘β-reduction’. (An explanation

for this name, and a precise definition, will be given in Section 1.8.)

This β-reduction makes use of substitution, formally expressed by means of

square brackets ‘[’ and ‘]’: the expression M [x := N] represents ‘M in which N

has been substituted for x ’. (Note, however, that substitution is more subtle

than one might expect. See Section 1.6 for a precise definition.)

β-reduction: An expression of the form (λx . M)N can be rewritten to

the expression M [x := N], i.e. the expression M in which every x has

been replaced with N . We call this process β-reduction of (λx . M)N to

M [x := N].

Examples 1.2.3 − (λx . x2+1)(3) reduces to (x2+1)[x := 3], which is 32+1.

− (λx . sin(x)− cos(x))(3 + 5) reduces to sin(3 + 5)− cos(3 + 5).

− (λy . 5)(3) reduces to 5[y := 3], which is 5.

− (λx . x)(λy . y) reduces to x[x := λy . y], which is λy . y.

Reduction is also possible on suitable parts of expressions: when an expres-

sion of the form (λx . M)N is a subexpression of a bigger one, then this subex-

pression may be rewritten to M [x := N], as described above, provided that

the rest of the expression is left unchanged. The full former expression (with

subexpression (λx . M)N) is then said to reduce to the full latter expression

(with subexpression M [x := N]).

The rules describing how reduction extends from subexpressions to bigger

ones are called the compatibility rules for reduction (see Definition 1.8.1).

4 Untyped lambda calculus

Example 1.2.4 By compatibility, λz . ((λx . x)(λy . y)) reduces to λz . (λy . y).

Remarks 1.2.5 We emphasise that the word ‘application’ is deceptive: ap-

plication of M to N is not the result of applying M to N , but only a first step

in this procedure: all we can say is that ‘application’ is the construction of a

new expression, MN , which, in a later stage, may perhaps lead to the actual

execution of a function. For example, the application of function λx .
√
x to 7

gives expression (λx .
√
x)(7), in which the function has not yet been executed.

It is only after the reduction of the latter term that we obtain the result of

‘application of the function to 7’, namely the ‘answer’
√
7.

The λ-notation is for functions of one variable. A function of two or more

variables does not fit in this notation. One could make the choice to extend

the notation for this purpose. For example, consider the function f of two

arguments, defined as f(x, y) = x2+y. We might express f as λ(x, y) . (x2+y),

with a pair as input. In this book, however, we will only consider functions

of one argument. From the following remark it follows that this is not a real

restriction.

Remark 1.2.6 The behaviour of a function of two (or more) arguments can

be simulated by converting it into a composite of functions of a single argument.

For example, instead of the two-place function λ(x, y) . (x2 + y) one can write

λx . (λy . (x2 + y)). The latter function is called the Curried version of the

former one, after the λ-calculus pioneer H.B. Curry; the idea of ‘Currying’

already can be found in the work of M. Schönfinkel (see Schönfinkel, 1924).

There are subtle differences between the two versions when we provide them

with two input values, for example:

– give f = λ(x, y) . (x2+ y) as argument the pair (3, 5), then f(3, 5) reduces to

32 + 5;

– similarly, we can give g = λx . (λy . (x2 + y)) these two arguments, but

only successively and in the ‘correct’ order, so first 3 and then 5; the result is

(g(3))(5), which reduces again to 32 + 5 (use the reduction rule twice).

By the way: with function g we have the liberty to give only one argument and

then stop the process: g(3) has a meaning in itself, it reduces to λy . (32 + y).

This is not possible with function f , which always needs a pair of arguments.

1.3 Lambda-terms

The main concern of the discipline called lambda calculus is the behaviour of

functions in the simplest, most abstract view. This means that we can even

do without numbers, and consequently we neither consider, for the time being,

the usual simple operations connected with numbers, such as addition and

1.3 Lambda-terms 5

multiplication, nor more complex ones: exponentiation, the sine. Hence, many

of the examples from the previous section are no longer useable.

What remains?

− To start with: variables (x, y, . . .).

− Moreover: the two construction principles mentioned in the previous section:

abstraction and application.

− Finally: the ‘calculation rule’ called β-reduction.

In the rest of this chapter, we introduce the untyped λ-calculus as a for-

mal system, giving precise definitions, including the important operations, and

stating the main properties. We omit most of the proofs, for which we refer

to the overview text of J.R. Hindley and J.P. Seldin (Hindley & Seldin, 2008)

or the seminal work on untyped λ-calculus by H.P. Barendregt (Barendregt,

1981).

Remark 1.3.1 Lambda calculus or λ-calculus was invented by A. Church in

the 1930s (Church, 1933). (It is not completely clear why he used the Greek

letter λ – which represents the letter l – for expressing abstraction; see Cardone

& Hindley, 2009, Section 4.1, for more details.) Church’s aim was to use his

lambda calculus as a foundation for a formal theory of mathematics, in order

to establish which functions are ‘computable’ by means of an algorithm (and

which are not). See also Section 1.12.

Expressions in the lambda calculus are called λ-terms. The following in-

ductive definition establishes how the set Λ of all λ-terms is constructed. To

start with, we assume the existence of an infinite set V of so-called variables:

V = {x, y, z, . . .}.

Definition 1.3.2 (The set Λ of all λ-terms)

(1) (Variable) If u ∈ V , then u ∈ Λ.

(2) (Application) If M and N ∈ Λ, then (MN) ∈ Λ.

(3) (Abstraction) If u ∈ V and M ∈ Λ, then (λu . M) ∈ Λ.

Saying that this is an inductive definition of Λ means that (1), (2) and (3)

are the only ways to construct elements of Λ.

An alternative and shorter manner to define Λ is via abstract syntax (or a

‘grammar’):

Λ = V |(ΛΛ)|(λV . Λ)

One should read this as follows: following the symbol ‘=’ one finds three pos-

sible ways of constructing elements of Λ. These three possibilities are separated

by the vertical bar ‘|’.
For example, the second one is (ΛΛ), which means the juxtaposition of an

element of Λ and an element of Λ, enclosed in parentheses, gives again an

6 Untyped lambda calculus

element of Λ. (Note that the two elements taken successively from Λ may be

the same element or different elements; both possibilities are covered by the

notation ΛΛ.) What we get in this manner is clearly the same as expressed in

Definition 1.3.2 (2).

Examples 1.3.3 Examples of λ-terms are:

− (with Variable as construction principle): x, y, z,

− (with Application as final construction step): (xx), (y x), (x(x z)),

− (with Abstraction as final step): (λx . (x z)), (λy . (λz . x)), (λx . (λx . (xx))),

− (and again, with Application as final step): ((λx . (x z)) y), (y (λx . (x z))),

((λx . x)(λx . x)).

Notation 1.3.4 (The representation of λ-terms; syntactical identity; ≡)
(1) We use the letters x, y, z and variants with subscripts and primes to denote

variables in V .

(2) To denote elements of Λ, we use L,M,N, P,Q,R and variants thereof.

(3) Syntactical identity of two λ-terms will be denoted with the symbol ≡.

So (x z) ≡ (x z), but (x z) �≡ (x y). Note that ‘M ≡ N ’ expresses that the

actual λ-terms represented by M and N are identical.

With the following recursive definition we determine what the subterms of a

given λ-term are; these form a multiset , since identical terms may occur more

than once (see examples later).

Definition 1.3.5 (Multiset of subterms; Sub)

(1) (Basis) Sub(x) = {x}, for each x ∈ V .

(2) (Application) Sub((MN)) = Sub(M) ∪ Sub(N) ∪ {(MN)}.
(3) (Abstraction) Sub((λx . M)) = Sub(M) ∪ {(λx . M)}.

We call L a subterm of M if L ∈ Sub(M).

From the above definition, the properties below follow.

Lemma 1.3.6 (1) (Reflexivity) For all λ-terms M , we have M ∈ Sub(M).

(2) (Transitivity) If L ∈ Sub(M) and M ∈ Sub(N), then L ∈ Sub(N).

Note that a certain λ-term can ‘occur’ several times as a subterm in a given

term. For example, with (xx) we have that x ∈ Sub((xx)) for two reasons:

the ‘first’ x in (xx) is a subterm and also the ‘second’ x is a subterm. In such

cases, one speaks about different occurrences of the subterm.

Examples 1.3.7 − The only subterm of y is y itself.

− The subterms of (x z) are (x z), x and z.

1.3 Lambda-terms 7

− Similarly, the λ-term (λx . (xx)) has four subterms: (1) (λx . (xx)) itself;

(2) (xx); (3) the left x in (xx); and (4) the right x in (xx). Note that the

first occurrence of x in (λx . (xx)), the one immediately following the λ,

does not count as a subterm.

− Sub((λx . (xx))(λx . (xx))) consists of ((λx . (xx))(λx . (xx))), (λx . (xx))

(twice), (xx) (twice) and x (four times).

It is easy to find the subterms of a λ-term when this λ-term is given in tree

representation. We do not describe specifically how such a tree representation

can be constructed; an example should be enough. See Figure 1.1. The letter ‘a’

in this figure stands for ‘application’.

�

�

�

�
�

�
y

x z

x

a

a

λ�
�

�
��

�

�
�

Figure 1.1 The tree of (y (λx . (x z)))

A variable in a term M that immediately follows a λ symbol is drawn inside

the corresponding node in the tree. The subterms of a λ-term M correspond

to the subtrees in the tree representation of M . (We assume that the reader

is familiar with the notion ‘subtree’.) Check this in Figure 1.1. Note that the

labels of the leaves in such a tree are always variables. And the other way

round: a subterm consisting of a single variable corresponds to a labelled leaf.

(Remember that a variable placed ‘inside’ a node is not a subterm; cf. Exam-

ples 1.3.7.)

There is also a notion of proper subterm, which excludes the Reflexivity in

Lemma 1.3.6:

Definition 1.3.8 (Proper subterm)

L is a proper subterm of M if L is a subterm of M , but L �≡M .

Example 1.3.9 The proper subterms of (y(λx . (x z))) are: y, (λx . (x z)),

(x z), x and z.

Expressions constructed with Definition 1.3.2 have a lot of parentheses,

which hampers readability. In order to be able to save on parentheses, the

following conventions are followed:

Notation 1.3.10 − Parentheses in an outermost position may be omitted,

so MN stands for λ-term (MN) and λx . M for (λx . M).

8 Untyped lambda calculus

− Application is left-associative, so MNL is an abbreviation for ((MN)L).

− Application takes precedence over abstraction, so we can write λx . MN in-

stead of λx . (MN).

− Successive abstractions may be combined in a right-associative way under

one λ, so we write λxy . M instead of λx . (λy . M).

These conventions are very useful, but also treacherous. As an example,

note that λy . y (x y) should not be read as (λy . y)(x y), but as λy . (y(x y)).

Especially when substitution is involved (see Section 1.6), one must be careful.

1.4 Free and bound variables

Variable occurrences in a λ-term can be divided into three categories: free

occurrences, bound occurrences and binding occurrences.

The last-mentioned category is the easiest to describe: these are the occur-

rences immediately after a λ. Other occurrences of variables in a λ-term are

free or bound, which can be decided as follows.

In the construction of a λ-term from its parts (see Definition 1.3.2) we always

start (see step (1)) with single variables. These are then free. In building more

complicated terms via steps (2) and (3), it is only in the latter case that free-

ness may change: an occurrence of x which is free in M becomes bound in

λx . M . Otherwise said: abstraction of x over M binds all free occurrences of x

in M ; that is why the first x in λx . M is called a binding variable occurrence.

This discussion leads to the following recursive definition, in which FV (L)

denotes the set of free variables in λ-term L.

Definition 1.4.1 (FV, the set of free variables of a λ-term)

(1) (Variable) FV (x) = {x},
(2) (Application) FV (MN) = FV (M) ∪ FV (N),

(3) (Abstraction) FV (λx . M) = FV (M) \ {x}.

Examples 1.4.2

−FV (λx . x y) = FV (x y)\{x}
= (FV (x) ∪ FV (y))\{x}
= ({x} ∪ {y})\{x}
= {x, y}\{x}
= {y}.

−FV (x(λx . xy)) = {x, y}.

The last example demonstrates that Definition 1.4.1 collects the variables

which are free somewhere in a λ-term. However, other occurrences of that

variable in the same term may be bound. In the example term x(λx . x y), both

x and y occur free, but only the first occurrence of x is free, the occurrence of x

1.5 Alpha conversion 9

just before y is bound. (The occurrence of x after the λ is a binding occurrence,

being neither free nor bound.)

When inspecting the tree representation of a λ-term, it is easy to see whether

a certain occurrence of a variable is free or bound: start with a variable oc-

currence, say x, at a leaf of the tree. Now follow the ‘root path’ upwards, that

is: follow the branch from that leaf to the root (the uppermost node). If we

pass an ‘abstraction node’ with the same x inside, then the original x is bound;

otherwise it is free. Check these things for yourself with the tree representation

of the term x(λx . x y).

Ending this section, we define an important subset of the set of all λ-terms

by giving a name to terms without free variables:

Definition 1.4.3 (Closed λ-term; combinator; Λ0)

The λ-term M is closed if FV (M) = ∅. A closed λ-term is also called a

combinator . The set of all closed λ-terms is denoted by Λ0.

Example: λxyz . xxy and λxy . xxy are closed λ-terms; λx . xxy is not.

1.5 Alpha conversion

Functions in the λ-notation (see Section 1.2) have the property that the name

of the binding variable is not essential. The ‘square function’, for example,

can be expressed by λx . x2 as well as by λu . u2. In both cases the expression

means ‘the function which calculates the square of an input value and gives

the obtained number as its output value’. So the variable x (or u) serves as a

temporary name for the input value, only meant to make it possible to speak

about that value: the input called x gives output x2, which describes the same

procedure as ‘input u gives output u2’.

This is the reason why in the λ-calculus one is used to identify λ-terms which

only differ in the names of the binding variables (together with the variables

bound to them).

In order to describe this process formally, we define a relation called α-

conversion or α-equivalence. It is based on the possibility of renaming binding

(and bound) variables (cf. Hindley & Seldin, 2008, p. 278).

Definition 1.5.1 (Renaming; Mx→y; =α)

Let Mx→y denote the result of replacing every free occurrence of x in M by y.

The relation ‘renaming’, expressed with symbol =α, is defined as follows:

λx . M =α λy . Mx→y, provided that y �∈ FV (M) and y is not a binding

variable in M .

One says in this case: ‘λx . M has been renamed as λy . Mx→y’.

10 Untyped lambda calculus

The intended effect is that the binding variable x in λx . M , plus all the

corresponding bound x’s occurring in M , are renamed as y. Note that the

mentioned bound x’s are precisely the free x’s in M .

Now, what about the two conditions in this definition?

(1) First condition: y �∈ FV (M). If there were a free y in M , then this y

becomes bound to the binding variable y in λy . Mx→y, which is not what we

want: renaming should not influence the free/bound status of variables.

Example: Take λx . M ≡ λx . y, so y ∈ FV (M). Then λy . Mx→y ≡ λy . y.

Now the same variable occurrence y is first free, and then bound, which con-

flicts with our intentions regarding ‘renaming’. Note that λx . y is essentially

different from λy . y: in the first expression, every input delivers the fixed out-

put y, while in the second case each input returns itself as output.

(2) Second condition: y is not a binding variable in M . If this were permitted,

then this binding y could unintentionally bind a ‘new’ y replacing an x.

Example: Take λx . M ≡ λx . λy . x; then λy . Mx→y ≡ λy . λy . y. In the

first expression, the final x is bound by the first λx; in the second expression,

the final y, replacing the x, is bound by the second λy. So again, renaming

would essentially change the situation. In terms of ‘behaviour’: originally, a first

input followed by a second input returns the first input; but after illegitimate

renaming, a first input followed by a second input returns the second input.

In short: in the renaming of λx . M to λy . Mx→y, it is prevented that the

‘new’ binding variable y binds ‘old’ free y’s; and that any ‘old’ binding y binds

a ‘new’ y.

Renaming in Definition 1.5.1 applies to the full λ-term only. In order to allow

it more generally, we extend this definition to the following one:

Definition 1.5.2 (α-conversion or α-equivalence, =α)

(1) (Renaming) λx . M =α λy . Mx→y as in Definition 1.5.1, under the same

conditions,

(2) (Compatibility) If M =α N , then ML =α NL, LM =α LN and, for

arbitrary z, λz . M =α λz . N ,

(3a) (Reflexivity) M =α M ,

(3b) (Symmetry) If M =α N then N =α M ,

(3c) (Transitivity) If both L =α M and M =α N , then L =α N .

So renaming, expressed in (1), is the basis of α-equivalence.

The compatibility rules (2) have the effect that one may also rename binding

and corresponding bound variables in an arbitrary subterm of a given λ-term.

Reflexivity (3a), symmetry (3b) and transitivity (3c) make α-conversion into

an equivalence relation.

1.6 Substitution 11

Examples 1.5.3

(1) (λx . x (λz . x y)) z =α (λx . x (λz . x y)) z,

(λx . x (λz . x y)) z =α (λu . u (λz . u y)) z,

(λx . x (λz . x y)) z =α (λz . z (λx . z y)) z,

(λx . x (λz . x y)) z �=α (λy . y (λz . y y)) z (∗1),
(λx . x (λz . x y)) z �=α (λz . z (λz . z y)) z (∗2),
(λx . x (λz . x y)) z �=α (λu . u (λz . u y)) v (∗3)

(2) λx y . x z y =α λv y . v z y,

λx y . x z y =α λv u . v z u,

λx y . x z y �=α λy y . y z y (∗4)
λx y . x z y �=α λz y . z z y (∗5)

Note that (1) uses the first case of the Compatibility rule: the renaming

takes place in a subterm, viz. λx . x (λz . x y).

In these examples, the most interesting cases are the ones where =α does

not hold (check the other cases yourself):

(∗1): Renaming x as y in λx . x (λz . x y) violates the first condition of Defini-

tion 1.5.1, since y ∈ FV (x (λz . x y)).

(∗2): Renaming x as z in λx . x (λz . x y) violates the second condition, since z

is a binding variable in x (λz . x y).

(∗3): Renaming only applies to binding variables and (corresponding) bound

ones, not to free variables. (Name change of a free variable does affect the

‘intended meaning’ of an expression.)

(∗4): Renaming variable x as y is forbidden by the second condition of Defini-

tion 1.5.1, since y is a binding variable in λy . x z y. Note that λy y . y z y =α

λx y . y z y.

(∗5): Conflicts with the first condition.

So, given a λ-term, there are many terms that are related to this term by

the =α-relation.

Definition 1.5.4 (α-convertible; α-equivalent; α-variant)

If M =α N , then M and N are said to be α-convertible or α-equivalent. M is

called an α-variant of N (and vice versa).

1.6 Substitution

In Section 1.2 we informally made use of substitution as a stepping stone to

β-reduction. We denoted ‘M in which N has been substituted for the free vari-

able x’ as M [x := N]. We are now in the position to give a precise formulation

of this notion ‘substitution’. It is defined as follows.

12 Untyped lambda calculus

Definition 1.6.1 (Substitution)

(1a) x[x := N] ≡ N ,

(1b) y[x := N] ≡ y if x �≡ y,

(2) (PQ)[x := N] ≡ (P [x := N])(Q[x := N]),

(3) (λy . P)[x := N] ≡ λz . (P y→z[x := N]), if λz . P y→z is an α-variant of

λy . P such that z �∈ FV (N).

Remarks 1.6.2 In Definition 1.6.1 we make a liberal use of parentheses. For

example, the two pairs of parentheses in (P [x := N])(Q[x := N]) are meant to

make clear how the expression should be interpreted. They may well be erasable

after elaboration. (See also Notation 1.3.10.)

Before discussing these substitution rules in detail (see below), we note that

terms of the form P [x := N], as such, are not λ-terms, since the suffix [x := N]

does not occur in the definition of λ-terms (Definition 1.3.2). So P [x := N]

is meant to be meta-notation for a ‘proper’ λ-term, which can be found by

applying the above definition until all suffixes [x := N] have disappeared.

Now we take a closer look at the parts of Definition 1.6.1.

(1a) This is the heart of the matter: substituting N for x in the basic λ-

term x naturally results in N .

(1b) But when y is different from x, then the substitution for x has, of course,

no effect on y.

(2) Here the substitution is simply ‘pushed inside’ both sides of an applica-

tion.

(3) This is how we push the substitution inside an abstraction. Thereby we

have to be careful that free variables y of N do not become unintentionally

bound by the binding variable y of λy. P when N is substituted for the free x’s

in P ; this is the reason for taking a ‘new’ z (if necessary) such that z �∈ FV (N).

Remark 1.6.3 (1) When y �∈ FV (N), then the definition permits us to let

binding variable y stay as it is: (λy . P)[x := N] ≡ λy . (P [x := N]), since

P y→y ≡ P .

(2) This also holds when x �∈ FV (P), since then there is no x to substitute

for.

(3) Renaming can be considered as a special case of substitution, since we

can show that Mx→u =α M [x := u] if the conditions of renaming are satisfied.

Examples 1.6.4 (1) Consider (λy . y x)[x := x y].

When we disregard the condition in part (3) of Definition 1.6.1 and do not

rename the y in λy . y x, we obtain λy . ((y x)[x := x y]), which is λy . y(x y).

But this is clearly wrong, since the free y in x y has become bound in λy . y(x y).

Hence, one first should rename all y’s in λy . y x, e.g. to z. Successive use of

the substitution rules then gives:

1.6 Substitution 13

(λy . y x)[x := x y] ≡ λz . ((z x)[x := x y]),

≡ λz . ((z[x := x y])(x[x := x y])),

≡ λz . z(x y).

(2) (λx . y x)[x := x y] ≡ λz . ((y z)[x := x y]),

≡ λz . ((y[x := x y])(z[x := x y])),

≡ λz . y z,

Note: =α λx . y x (cf. Remark 1.6.3 (2)).

(3) (λx y . z z x)[z := y] ≡ λu . ((λy . z z u)[z := y]),

≡ λu . λv . ((z z u)[z := y]),
...

≡ λu v . y y u,

Note: =α λx v . y y x, but

�=α λx y . y y x.

We conclude this section with the discussion of sequential substitution: doing

a number of substitutions consecutively. For example, a twofold substitution

may look like M [x := N][y := L], which means: first substitute N for x in M ,

and next substitute L for y in the obtained result (so (M [x := N])[y := L]

would be a clearer notation).

An interesting point is the order of the substitutions: doesM [x := N][y := L]

describe the same λ-term as M [y := L][x := N]? The answer is: in general,

no. This can already be shown by means of a very simple counterexample:

x[x := y][y := x] ≡ x, but x[y := x][x := y] ≡ y.

Therefore, we have to be careful in swapping substitutions. An educated

guess is: M [x := N][y := L] ≡ M [y := L][x := N [y := L]], in order to

compensate on the right-hand side for the fact that, on the left-hand side, free

y’s in N become subject to the substitution [y := L]. Thus, on the right-hand

side we have N [y := L] instead of N , being substituted for x.

However, this still is not enough. One should also prevent free x’s in L, which

are left untouched on the left-hand side, becoming subject to the substitution

[x := N [y := L]] on the right-hand side. It suffices to require that x �∈ FV (L).

So we obtain:

Lemma 1.6.5 Let x �≡ y and assume x �∈ FV (L). Then:

M [x := N][y := L] ≡M [y := L][x := N [y := L]] .

We do not give a proof for this lemma (such a proof is not hard, but rather

boring), but make some suggestive drawings instead; see Figures 1.2 and 1.3.

In Figure 1.2 we give two pictorial representations of the λ-term M , which

possibly contains the free variables x and y. On the left-hand side of the figure,

we depict that N is substituted for x. This N may contain y. (It may also

14 Untyped lambda calculus

. x y x yM ≡ M ≡

. . . y . . .N ≡ no xL ≡
�
�

�
�

�
�

�
��1 �1

Figure 1.2 M [x := N] (left) and M [y := L] (right) in graphical form

contain x, but this is not relevant in the present case.) Similarly, on the right-

hand side of the figure, we depict that L is substituted for y. In this picture we

express, in accordance with one of the conditions in Lemma 1.6.5, that variable

x does not occur free in L.

So Figure 1.2 represent the first steps on the left-hand side and the right-

hand side of the lemma: M [x := N] and M [y := L], respectively.

Next, we depict how the second substitution steps, [y := L] on the left-hand

side and [x := N [y := L]] on the right-hand side, contribute to the final result

(see Figure 1.3). It will be intuitively clear that the results are the same. Note

the importance of the fact that L in Figure 1.2 does not contain a free x.

. x y x yM ≡ M ≡

. . . y . . .N ≡ L ≡ . . . y . . .N ≡ no xL ≡

L ≡ L ≡

N [y := L]

⎧⎪⎨
⎪⎩

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�1 �2 �2 �1

�2

Figure 1.3 M [x := N][y := L] ≡M [y := L][x := N [y := L]]

1.7 Lambda-terms modulo α-equivalence

In Section 1.5 we discussed α-conversion, meant to relate λ-terms that are in

a sense ‘equal’: if M =α N , then the structures of M and N are the same

but for the names of the binding variables and the corresponding bound ones.

This implies that M and N have similar trees: a variable, λ or a in M ’s tree

exactly matches with a corresponding one in N . Corresponding free variables

have identical names; all combinations of binding and bound variables in M

show exactly the same pattern as in N .

1.7 Lambda-terms modulo α-equivalence 15

In a sense, such α-equivalent M and N represent the same λ-term. As to

‘behaviour’, there is no difference between them. Moreover, α-equivalence is

conserved by elementary processes of term construction, as witnessed by the

following lemma.

Lemma 1.7.1 Let M1 =α N1 and M2 =α N2. Then also:

(1) M1N1 =α M2N2,

(2) λx . M1 =α λx . M2,

(3) M1[x := N1] =α M2[x := N2].

(In (1) and (2) we repeat (a variant of) the compatibility rules of Defini-

tion 1.5.2. Part (3) is stated without proof.)

As a consequence of the above, it does not really matter which one to choose

in a class of α-equivalent λ-terms: the results of manipulating such terms are

always α-equivalent again. Therefore we take the liberty to consider a full

class of α-equivalent λ-terms as one abstract λ-term. We can also express this

as follows: we abstract from the names of the bound (and binding) variables,

by treating α-equivalent terms as ‘equal’; that is to say, we consider λ-terms

modulo α-equivalence.

Convention 1.7.2 From now on, we identify α-convertible λ-terms.

Notation 1.7.3 With a slight abuse of Notation 1.3.4, we use ≡ also for

syntactical identity modulo α-equivalence.

So the relation α-equivalence gets out of sight: for example, instead of

λx . x =α λy . y we simply write λx . x ≡ λy . y .

Since Convention 1.7.2 permits us to choose the names of binding and bound

variables at will, it is convenient to agree on the following, which is called the

Barendregt convention after H.P. Barendregt, a leading expert in λ-calculus

(cf. Barendregt, 1981).

Convention 1.7.4 (Barendregt convention)

We choose the names for the binding variables in a λ-term in such a manner

that they are all different, and such that each of them differs from all free

variables occurring in the term.

Hence, we shall use a unique name after every λ occurring in a λ-term, and re-

name the bound variables accordingly. So, we do not write (λxy . xz)(λxz . z),

but e.g. (λxy . xz)(λuv . v). By adopting the Barendregt convention, one is

better able to read the λ-terms and to see how they are composed with respect

to variable binding.

In order to exploit these matters to our benefit, we also stretch out the

16 Untyped lambda calculus

Barendregt convention to ‘intermediate’ expressions with unexecuted substi-

tutions; so we will not write (λx . x y z)[y := λx . x], or (λx . x y z)[y := λy . y],

or (λx . x y z)[y := λz . z], but, for example, (λx . x y z)[y := λu . u], in line

with the Barendregt convention.

1.8 Beta reduction

Now that we have formally introduced substitution, our reduction mechanism

of Section 1.2 can be rephrased as a relation on λ-terms. It is generally called

β-reduction, following H.B. Curry. (Why the letter β, the Greek b? The simple

reason seems to be that α, the Greek a, was already occupied – see Defini-

tion 1.5.2 – and β was next; see Cardone & Hindley, 2009, for the history of

λ-calculus.)

We start with a single β-reduction step:

Definition 1.8.1 (One-step β-reduction, →β)

(1) (Basis) (λx . M)N →β M [x := N],

(2) (Compatibility) If M →β N , then ML→β NL, LM →β LN and

λx . M →β λx . N .

Note that the suffix [x := N] in (1), which (in Section 1.2) we inaccurately

described as ‘replacement’, is now meant to be the (precisely defined) substi-

tution of Section 1.6. The compatibility rules of (2) serve the same purpose as

with α-conversion: they assure that P →β Q also holds if a subterm of P of

the form (λx . M)N has been changed into M [x := N], resulting in Q.

In a picture, one-step β-reduction can be represented as in Figure 1.4.

. ((λx . M)N) →β (M [x := N])

Figure 1.4 A pictorial representation of one-step β-reduction

The subterm of the form (λx . M)N on the left-hand side of this picture is

called a redex (from ‘reducible expression’). The subterm M [x := N] on the

right-hand side is called the contractum (of the redex).

We recall from Section 1.2 that the ‘incentive’ to defining the relation →β is

the presence of an application term (in the formal sense) where the first part is

an abstraction: λx . M . Since an abstraction can be thought of as representing

a function, we can conceive of the part N as an argument for this function,

which naturally leads to an ‘outcome’: M [x := N].

The subterm M in λx . M is called the body of the abstraction. Note that

the process of reduction can be described as: ‘strip a redex down to the body

1.8 Beta reduction 17

M of the abstraction and substitute argument N for all free x’s occurring in

this body’.

Relation ‘→β ’ is called one-step β-reduction because precisely one redex is

replaced by its contractum (see again Figure 1.4).

We now give some examples.

Examples 1.8.2 (1) (λx . x(x y))N →β N(N y).

(2) In the term (λx . (λy . y x)z)v we find two redexes:

redex 1: the full term itself, and

redex 2: the subterm (λy . y x)z.

Hence, there are two possible one-step β-reductions:

via redex 1:︷ ︸︸ ︷
(λx . (λy . y x)z)v →β (λy . y v)z

or via redex 2:

(λx . (
︷ ︸︸ ︷
λy . y x)z)v →β (λx . z x)v.

Note that the terms on the right-hand sides of the →β-symbols are not

α-equivalent, hence not syntactically identical according to Convention 1.7.2.

The fact that one term reduces to two different terms demonstrates that

the direct result of the reduction of a λ-term depends on the choice of the

redex. Note, however, that, in the present example, both obtained terms can

be reduced further to obtain a ‘common reduct’, viz. z v:

(λy . y v)z →β z v, and (λx . z x)v →β z v .

(3) (λx . x x)(λx . x x)→β (λx . x x)(λx . x x)

This is a remarkable one. (To make this clearly visible, we temporarily ignore

the Barendregt convention.)

First note that the full term is a redex: the abstraction λx . x x (the left half

of the term) is applied to the argument λx . x x (being the right half of the

term). It happens that both abstraction and argument are identical.

Check that the first subterm xx is the body of the abstraction (in the left

half), and that β-reduction amounts to substituting the argument for both free

x’s in this body (so the argument becomes ‘duplicated’). This results in the

same term we started with.

As shown in the second example above, we can often perform a second β-

reduction step after the first one. Repeated one-step β-reduction leads to a

more general relation, called β-reduction (‘as such’) and denoted �β.

Definition 1.8.3 (β-reduction (zero-or-more-step), �β)

M �β N if there is an n ≥ 0 and there are termsM0 toMn such thatM0 ≡M ,

Mn ≡ N and for all i such that 0 ≤ i < n:

Mi →β Mi+1 .

18 Untyped lambda calculus

Hence, if M �β N , there exists a chain of single-step β-reductions, starting

with M and ending with N :

M ≡M0 →β M1 →β M2 →β . . .→β Mn−2 →β Mn−1 →β Mn ≡ N .

For a demonstration of the relation �β , we refer to Example 1.8.2 (2), from

which it follows that

(λx . (λy . yx)z)v �β zv .

(Example 1.8.2 even provides for two →β-chains from (λx . (λy . yx)z)v to

zv.)

The following holds for �β :

Lemma 1.8.4 (1) �β extends →β, i.e. if M →β N , then M �β N .

(2) �β is reflexive and transitive, i.e.:

(refl): for all M : M �β M ,

(trans): for all L, M and N : if L �β M and M �β N , then L �β N .

Proof (1) Take n = 1 in Definition 1.8.3.

(2) Reflexivity: take n = 0 in Definition 1.8.3. Transitivity: follows directly

from the same definition.

An extension of this zero-or-more-step β-reduction is called β-conversion,

denoted =β .

Definition 1.8.5 (β-conversion, β-equality; =β)

M =β N (to be read as: ‘M and N are β-convertible’ or ‘β-equal’) if there is

an n ≥ 0 and there are terms M0 to Mn such that M0 ≡M , Mn ≡ N and for

all i such that 0 ≤ i < n:

either Mi →β Mi+1 or Mi+1 →β Mi .

Note that each pair of Mi and Mi+1 should now be related by the single-step

relation →β , but not necessarily from left to right: it may also happen that

some of these pairs are related the other way round (from right to left).

For instances of =β , we refer again to Example 1.8.2 (2). Note that each pair

in the following set of four terms is related by means of =β :

{(λx . (λy . y x)z)v, (λy . y v)z, (λx . z x)v, z v} .
For example: (λy . y v)z =β (λx . z x)v since we have the following chain, where

←β is the inverse of →β :

(λy . y v)z →β z v ←β (λx . z x)v .

Another chain giving the same result is:

(λy . y v)z ←β (λx . (λy . y x)z)v →β (λx . z x)v .

1.9 Normal forms and confluence 19

The following holds for =β :

Lemma 1.8.6 (1) =β extends �β in both directions, i.e. if M �β N or

N �β M , then M =β N .

(2) =β is an equivalence relation, hence reflexive, symmetric and transitive,

i.e.:

(refl): for all M : M =β M ,

(symm): for all M and N : if M =β N , then N =β M ,

(trans): for all L, M and N : if L =β M and M =β N , then L =β N .

Proof (1) and (2) follow directly from Definition 1.8.5.

Check that it also holds that

− if M �β L1 and M �β L2, then L1 =β L2,

− if L1 �β N and L2 �β N , then L1 =β L2.

1.9 Normal forms and confluence

As we have said before, β-reduction mimics, in a certain sense, a calculation.

By applying a function to an argument, and using reduction, we get a kind of

(temporary) outcome, which hopefully is closer to some final outcome. This

process is comparable with ordinary numerical calculations, as for example in

(3 + 7) × (8 − 2) → 10 × (8 − 2) → 10 × 6 → 60, with → a symbol for a

‘calculation step’.

Moreover, we can see conversion as a calculation in which we can change

the direction at will. Hence, one may replace 10× (8 − 2) by 10 × 6, but also

the other way round. These apparently ‘unnatural’ calculation steps are not

as uncommon as one would expect. For example, the following calculation is

very suitable for finding the extreme value of a second order polynomial:

ax2+ bx+ c ← a(x2+ b
ax)+ c ← a(x2+2 b

2ax)+ c ← a(x+ b
2a)

2− b2

4a + c ,

which implies that c− b2

4a is the extreme value, obtained when x = − b
2a . In this

calculation one continuously calculates ‘in the wrong direction’.

In the present section, we take a closer look at these calculational aspects,

concentrating on the notion of outcome of a term and its relation with reduction

and conversion.

Definition 1.9.1 (β-normal form; β-nf; β-normalising)

(1) M is in β-normal form (or: is in β-nf) if M does not contain any redex.

(2) M has a β-normal form (has a β-nf), or is β-normalising, if there is an N

in β-nf such that M =β N . Such an N is a β-normal form of M .

20 Untyped lambda calculus

One views β-normal forms of a λ-term M as the outcome of M . When M is

in β-nf, then it is an outcome itself (it has no redex, so no further calculation

is possible). The following lemma is obvious; a zero-or-more-step reduction

starting from a β-normal form must be actually zero-step.

Lemma 1.9.2 When M is in β-nf, then M �β N implies M ≡ N .

Examples 1.9.3 See Examples 1.8.2.

(1) (λx . (λy . y x)z)v has a β-nf, viz. z v, since (λx . (λy . y x)z)v �β z v

and z v is in β-nf.

(2) Define Ω := (λx . x x)(λx . x x). Then Ω is not in β-nf (the term itself is

a redex) and does not reduce to a β-nf, since it β-reduces (only) to itself, and

so one never gets rid of the redex.

(3) Define Δ := λx . x x x. Then ΔΔ →β ΔΔΔ →β ΔΔΔΔ →β

Hence it follows that also ΔΔ does not reduce to a β-nf, since there are no

other possibilities for one-step β-reduction than the ones given in the chain

above. (Check this yourself.)

(4) Take Ω as above. Then (λu . v)Ω contains two redexes: the full term and

the subterm Ω. Reducing the first redex gives v, which is in β-nf, so (λu . v)Ω

has a β-nf. Note that one has to be careful with choosing one’s redex: when

continuously taking Ω as the redex, one never reaches a β-nf.

Remark 1.9.4 From this example, part (2), it follows that the converse of

Lemma 1.9.2 (‘If M �β N implies M ≡ N , then M is in β-nf ’) is not true:

take M ≡ N ≡ Ω for a counterexample.

From the last example, part (4), it follows that the choice of the ‘reduction

path’ may be relevant. This notion is defined as follows.

Definition 1.9.5 (Reduction path)

A finite reduction path from M is a finite sequence of terms N0, N1, N2, . . . , Nn

such that N0 ≡M and Ni →β Ni+1 for each i with 0 ≤ i < n.

An infinite reduction path from M is an infinite sequence N0, N1, N2, . . . with

N0 ≡M and Ni →β Ni+1 for all i ∈ N.

One also writes such paths as M (≡ N0) →β N1 →β . . . →β Nn (the finite

case) or M (≡ N0) →β N1 →β . . . (the infinite case). (Note that such paths

are always constructed with consecutive one-step β-reductions.)

Now we can define two subcollections of terms which ‘behave nicely’: the

terms for which there exists a reduction path leading to an outcome, and the

terms for which each reduction path leads to an outcome:

1.9 Normal forms and confluence 21

Definition 1.9.6 (Weak normalisation, strong normalisation)

(1) M is weakly normalising if there is an N in β-normal form such that

M �β N .

(2) M is strongly normalising if there are no infinite reduction paths starting

from M .

It will be clear that when M is strongly normalising, then each reduction

path can be extended to one ending in a β-nf (the process of choosing a redex,

doing the matching β-reduction, and repeating this, cannot go on indefinitely).

Hence, all strongly normalising terms are also weakly normalising.

Example 1.9.7 In Examples 1.9.3 we find a weakly normalising term in (4),

viz. (λu . v)Ω, and a strongly normalising term in (1): (λx . (λy . y x)z)v. The

terms Ω and Δ in (2) and (3) are not weakly normalising, so also not strongly

normalising.

There is a very important theorem about β-reduction, which relates weak

normalisation to having a β-normal form. It is usually accompanied by a picture

such as in Figure 1.5. Its content is: if a term M reduces to both N1 and N2,

then there exists a common reduct of these two.

N3

N1

M

N2

�
���

�
���

�
��

�
��

���

� � � � � �
���

������

Figure 1.5 A pictorial representation of the Church–Rosser Theorem

The theorem is most commonly called the Church–Rosser Theorem (after

the logicians A. Church and J.B. Rosser), abbreviated to CR. Another name

is Confluence (the reduction paths ‘flow together’ again). Its formal statement

is:

Theorem 1.9.8 (Church–Rosser; CR; Confluence) Suppose that for a given

λ-term M , we have M �β N1 and M �β N2. Then there is a λ-term N3 such

that N1 �β N3 and N2 �β N3.

The proof of this theorem is much more complex than one would expect.

Many proofs have been published in the past, some of considerable length. A

complete proof can be found in H.P. Barendregt’s standard work about the un-

typed lambda calculus (see Barendregt, 1981, p. 62) or in his ‘Handbook paper’

22 Untyped lambda calculus

about typed lambda calculus, which has also been very influential (Barendregt,

1992, p. 136–141); in the latter book the proof takes a little more than four

pages. We do not copy either of these proofs: the interested reader is referred to

Barendregt’s texts. (There also exists a short and elegant proof on an algebraic

basis; see Takahashi, 1995.)

The importance of the Church–Rosser Theorem lies in the consequence that

the outcome of a calculation (if it exists) is independent of the order in which

the calculations are executed. (This follows from Lemma 1.9.10 (2) below.) This

independence is what you intuitively expect from ‘calculations’: the consecutive

choices of the redexes should not influence the final result.

For example, when calculating the outcome of (3+ 5) · (7− 3), it should not

matter whether one starts with redex 3 + 5 or with redex 7 − 3. And indeed,

in both cases one obtains the same outcome:

(3 + 5) · (7− 3) → 8 · (7− 3) → 8 · 4 → 32,

(3 + 5) · (7− 3) → (3 + 5) · 4 → 8 · 4 → 32.

For a diagram of this calculation, see Figure 1.6.

(3 + 5) · (7− 3)

8 · (7− 3) (3 + 5) · 4

8 · 4

32

��	

�

� ��	

�

Figure 1.6 The various branches of a calculation

There is a corollary to the Church–Rosser Theorem, which says that any

pair of convertible terms has a ‘common reduct’; we shall also prove this:

Corollary 1.9.9 Suppose that M =β N . Then there is L such that M �β L

and N �β L.

Proof Because M =β N , we have by definition that, for some n ∈ N:

M ≡M0
→β←β

M1 . . . Mn−1
→β←β

Mn ≡ N .

(Here Mi
→β←β

Mi+1 denotes that either Mi →β Mi+1 or Mi+1 →β Mi.)

We proceed by induction on n.

1.9 Normal forms and confluence 23

(1) n = 0: then M ≡ N . Take L ≡ M(≡ N), then M �β L and N �β L

(in both cases in zero steps).

(2) n = k > 0: then Mk−1 exists.

So we have that M ≡M0 . . . Mk−1
→β←β

Mk ≡ N .

By induction, there is an L′ such that M0 �β L′ and Mk−1 �β L′. This is
shown graphically in Figure 1.7.

M ≡ M0

L′

.

ind:

Mk−1
� Mk ≡ N

�
��

�
��

�
��
�

��

Figure 1.7 The induction case: k > 0

Now we distinguish between the two cases, Mk−1 →β Mk or Mk →β Mk−1.

(2a) In the first case, the situation is as in Figure 1.8.

M ≡ M0

L′

. Mk−1
 Mk ≡ N

�
��

�
��

�
��
�

��

Figure 1.8 Subcase Mk−1 →β Mk

Then we have that Mk−1 �β L′ and Mk−1 →β Mk. The latter reduction (in

one step) is a special case of the more-step reduction Mk−1 �β Mk. Hence,

by CR, there is an L such that L′ �β L and Mk �β L. For a graphical

representation, see Figure 1.9.

M ≡ M0

L′

.

CR:

Mk−1
 Mk ≡ N

�
��

�
��

�
��
�

��
�

��
�

��

L

Figure 1.9 Subcase Mk−1 →β Mk, extended by means of CR

Hence we found, as desired, the common reduct L, since M �β L and

N �β L.

24 Untyped lambda calculus

(2b) In the second case, the situation is as in Figure 1.10.

M ≡ M0

L′

.

ind:

Mk−1
� Mk ≡ N

�
��

�
��

�
��
�

��

Figure 1.10 Subcase Mk →β Mk−1

Now we are immediately done: take L′ as the L we are looking for, since

M �β L′ and N �β L′.

We conclude this section with two corollaries of the above.

Lemma 1.9.10 (1) If M has N as β-normal form, then M �β N .

(2) A λ-term has at most one β-normal form.

Proof (1) Assume M =β N , with N in β-normal form. Then by the previous

Corollary 1.9.9, there is an L such that M �β L and N �β L. Since N is in

β-nf, by Lemma 1.9.2: N ≡ L. Hence M �β L ≡ N , so M �β N .

(2) Assume that M has two β-normal forms, N1 and N2. Then by part (1)

of the present lemma, M �β N1 and M �β N2. By CR, there is L such that

N1 �β L and N2 �β L. But, since both N1 and N2 are β-normal forms, it

follows (again by Lemma 1.9.2) that N1 ≡ L and N2 ≡ L, so N1 ≡ N2.

Speaking informally, the consequences of this lemma are:

(1) If a λ-term has an outcome, then this outcome can be reached by ‘forward

calculation’ (i.e. β-reduction).

(2) An outcome of a calculation, if it exists, is unique. (There cannot be two

different outcomes for one λ-term.)

1.10 Fixed Point Theorem

A remarkable aspect of untyped lambda calculus is that every λ-term L has a

‘fixed point’, i.e. for each L there exists a λ-term M such that LM =β M .

The term ‘fixed point’ (or ‘fixpoint’) is borrowed from functional analysis.

There, a function f has fixed point a if f(a) = a, that is: function f applied to

a returns a again, so a is ‘fixed’ by f . For example, the square function f on

the natural numbers with f(n) = n2 has two fixed points: 0 and 1. However,

the so-called successor function s with s(n) = n + 1 has no fixed point at all

and neither has g with g(n) = 2n.

So untyped λ-calculus deviates from ‘usual’ calculus in this respect:

1.10 Fixed Point Theorem 25

Theorem 1.10.1 For all L ∈ Λ there is M ∈ Λ such that LM =β M .

Proof For given L, define M := (λx . L(xx))(λx . L(xx)).

This M is a redex, so we have:

M ≡ (λx . L(xx))(λx . L(xx))

→β L((λx . L(xx)) (λx . L(xx)))

≡ LM .

Hence, LM =β M .

Remark 1.10.2 A λ-version of the successor function s mentioned above,

e.g. λx . (x + 1), has a fixed point M according to Theorem 1.10.1. However,

M does not represent a natural number. (About natural numbers in λ-form:

see Exercise 1.10; see also Exercise 1.11.)

From the method of the above proof, it follows that there even exists a so-

called fixed point combinator , i.e. a closed term which ‘constructs’ a fixed point

for an arbitrary input term. Such a fixed point combinator is

Y ≡ λy . (λx . y(xx))(λx . y(xx)) .

Indeed, for each λ-term L, we have that Y L is a fixed point of L, since

L(Y L) =β Y L, which can be shown as follows:

Y L→β (λx . L(xx))(λx . L(xx))

→β L((λx . L(xx))(λx . L(xx)))

=β L(Y L).

Although this universal existence of a fixed point M for every λ-term L ap-

pears a bit exotic, it has a nice consequence, namely the solvability of recursive

equations of the form

M =βM

(Here we intend to express that one or more occurrences of M appear in the

λ-term to the right of the =β-symbol.)

So we claim: an M that makes such an equation true can always be found.

We show this as follows: let L be the expression on the right-hand side,

but prefixed with λz . , and with everywhere M replaced by the variable z. So

we have that L ≡ λz z Then LM →βM

Hence, it suffices to find an M such that M =β LM . But such an M explicitly

does exist, as shown in Theorem 1.10.1.

Examples 1.10.3 (1) Let’s solve the question: does there exist a λ-term M

such that Mx =β xMx?

First rephrase the question to: is there an M such that M =β λx . xMx,

because if so, then Mx =β xMx.

26 Untyped lambda calculus

Define L := λy . (λx . xyx). Then LM →β λx . xMx. So if we find M such

that M =β LM , we are done. Otherwise said: find a fixed point for L. But this

is easy: use the fixed point combinator Y , which gives Y L as the desired fixed

point M of L.

(2) We can code the natural numbers ‘nat’ in untyped lambda calculus,

including addition ‘add’ and multiplication ‘mult’ (cf. Exercise 1.10), a succes-

sor function ‘suc’ (Exercise 1.11), together with ‘true’, ‘false’ (Exercise 1.12), a

zero-test ‘iszero’ (Exercise 1.13) and a conditional ‘if–then–else’ (Exercise 1.14).

We can also code a predecessor function ‘pred’ in this setting, which is a bit

harder to realise (see e.g. Hindley & Seldin, 2008).

The factorial ‘fac’ can now be defined by the recursive equation:

fac x =β if (iszero x) then 1 else mult x (fac(pred x)).

Again, the desired ‘fac’ can be solved from this equation by means of a fixed

point combinator.

1.11 Conclusions

We list some results about untyped lambda calculus:

(1) on the positive side:

− We have formally described the input–output behaviour of functions, includ-

ing the essential construction principles (abstraction and application), and

the evaluation rule (β-reduction).

− The λ-calculus is a clean and simple formalism for these purposes, which

also deals neatly with variable binding.

− Substitution appears to be a fundamental mechanism for function evaluation.

Its consequences are more subtle than expected. However, substitution can

be treated rigorously in untyped lambda calculus.

− Conversion is an important extension of reduction, which can straightfor-

wardly be introduced. It covers the notion ‘being equivalent by means of

calculations’.

− We have included the useful notion ‘possible outcome of a calculation’ by

defining β-normal forms.

− Confluence, a property naturally desired for calculations, is guaranteed in

lambda calculus.

− A nice consequence is the uniqueness of β-normal forms, if existing; so there

cannot be more than one ‘outcome’ of a calculation.

− A number of recursive equations can be solved by means of fixed points.

− Finally, we mention the fact (which we discuss in the following section) that

the untyped lambda calculus is Turing-complete.

1.12 Further reading 27

(2) on the negative side:

− Self-applications (such as xx or MM) are allowed in lambda calculus, al-

though they are counter-intuitive.

− Existence of normal forms for λ-terms is not guaranteed, so we have the real

possibility of undesired ‘infinite calculations’.

− Each λ-term has a fixed point, which is not in accordance with what we

know to be the usual behaviour of functions.

In the following chapters we will suppress the negative properties while main-

taining the positive properties. The negative properties are removed by adding

types to lambda calculus, which provide for natural restrictions on the terms

allowed. In successive rounds, we will build up several ‘classes’ of types, each

with their own special features and advantages.

1.12 Further reading

As we have already pointed out, the untyped lambda calculus was invented

by A. Church to capture the notion of computability (Church, 1936b). He

succeeded in giving a formal definition, on the basis of his lambda calculus:

‘λ-definability’. In Exercises 1.10 to 1.14 we give an impression of how this

Church-computability works, on the basis of the so-called Church numerals.

It turned out later that Church-computability is equivalent to a great num-

ber of other formulations of computability, defined in completely different set-

tings. One such formalisation is Turing-computability, based on the notion of

the Turing machine (Turing, 1936). (A Turing machine is an abstract kind

of computer; cf. A.M. Turing’s paper in Davis, 1965). Since ‘computable’ in

the lambda calculus is equivalent to ‘computable’ using Turing machines, the

lambda calculus is called Turing-complete.

Other formulations of effective computability are ‘Herbrand–Gödel-comput-

ability’ and ‘general recursive function’. The first is based on specifying com-

putable functions via a set of equations and the second inductively defines

the collection of ‘recursive functions’ (see Mendelson, 2009). In Lewis & Pa-

padimitriou (1981) you can find a nice exposition and proofs of the fact that

the various approaches lead to the same results. This enhances the confidence

that, indeed, a good formalisation of ‘effective computability’ has been found.

This conviction is known under the name ‘Church’s thesis’ or ‘Church–Turing

thesis’. This thesis states that any function that can be computed by using a

mechanical device can be computed by a Turing machine (or equivalently by

a λ-term).

Already before the lambda calculus, M. Schönfinkel (see Schönfinkel, 1924)

had invented combinatory logic, which is even simpler and also Turing-complete.

28 Untyped lambda calculus

Combinatory logic can be seen as the lambda calculus restricted to the terms

K := λx y . x and S := λx y z . x z(y z) with the associated equality rules,

KP Q = P and SP QR = P R(QR) (Curry, 1930; see also Exercise 1.9).

Combinatory logic is a simpler system than lambda calculus, but the basic

operations of variable binding and abstraction are not primitive, and therefore

it is a slightly more difficult system to work with.

In lambda calculus, the issue of variable binding and substitution has raised

a lot of attention, because these operations – though maybe intuitively clear

– are quite subtle, involving renaming of bound variables. N.G. de Bruijn (see

de Bruijn, 1972) invented a way of representing λ-terms without using named

variables. This is now known as a representation using de Bruijn indices. The

advantage is that all terms have a unique representation and one doesn’t have

to work ‘modulo α-conversion’. A substitution now involves updating the in-

dices, but that can rather easily be programmed. There has been quite a lot of

work on how to do all this precisely and how to combine a de Bruijn nameless

approach with a named calculus that one uses to communicate with the user.

Implementations of the untyped lambda calculus as a functional program-

ming language have existed since 1958, when Lisp (McCarthy et al., 1985) was

invented by J. McCarthy. Lisp or variants of it are still used a lot, but the more

recently developed functional languages are typed. One of the issues that comes

up when actually implementing a (typed) lambda calculus as a programming

language is the choice of an evaluation strategy, also known as reduction strat-

egy. In a λ-term there will be many redexes that one can choose to contract.

As we have seen, this choice doesn’t matter for the ‘end result’ (the normal

form that we obtain, if it exists), but it may matter for the amount of time it

takes to compute the normal form. And if we always choose the ‘wrong’ redex,

we may not find the normal form at all. For example, in the term (λu . v)Ω

we saw in Example 1.9.3 (4), there is an infinite reduction (contracting Ω) and

a one-step reduction to normal form. In the lambda calculus one therefore

studies reduction strategies: procedures that prescribe which redex to contract

next. For example, it is known that the ‘left-most reduction strategy’ (always

contract the left-most redex of the term) finds a normal form, if it exists.

In the early 1980s, H.P. Barendregt published a seminal book (Barendregt,

1981) on the untyped lambda calculus, more or less collecting all results that

were known about its syntax and semantics at the time. This book serves as the

standard reference on lambda calculus and has also been a starting point for a

lot of new research into the field. It contains a proof of the Turing-completeness

of the lambda calculus and also studies various reduction strategies and their

properties.

A more introductory text about untyped (and typed) lambda calculus is the

book Lambda-Calculus and Combinators (Hindley & Seldin, 2008), which also

Exercises 29

pays attention to the theory of combinatory logic. Another subject discussed

in this book is how to construct models of the untyped lambda calculus and of

combinatory logic; models are interpretations (mathematical structures) that

reflect the ‘behaviour’ of the original calculi.

Exercises

1.1 Apply Notation 1.3.10 on the following λ-terms. So, remove parentheses

and combine λ-abstractions:

(a) (λx . (((x z)y)(xx))),

(b) ((λx . (λy . (λz . (z((x y)z)))))(λu . u)).

1.2 Find out for each of the following λ-terms whether it is α-equivalent, or

not, to λx . x (λx . x):

(a) λy . y (λx . x),

(b) λy . y (λx . y),

(c) λy . y (λy . x).

1.3 Use the definition of =α to prove that λx . x(λz . y) =α λz . z(λz . y), in

spite of the fact that z occurs as a binding variable in x(λz . y).

1.4 Consider the following λ-term:

U := (λz . z x z)((λy . x y)x) .

(a) Give a list of all subterms of U .

(b) Draw the tree representation of U .

(c) Find the set of all free variables of U by a calculation, as in Exam-

ples 1.4.2.

(d) Find out which of the following λ-terms are α-equivalent to U and give

a motivation why; also check which of them satisfies the Barendregt

convention:

(λy . y x y)((λz . x z)x),

(λx . x y x)((λz . y z)y),

(λy . y x y)((λy . x y)x),

(λv . (v x) v)((λu . u v)x).

1.5 Give the results of the following substitutions:

(a) (λx . y(λy . x y))[y := λz . z x],

(b) ((x y z)[x := y])[y := z],

(c) ((λx . x y z)[x := y])[y := z],

(d) (λy . y y x)[x := y z].

30 Untyped lambda calculus

1.6 Show that the following proposition is not always true:

M [x := N, y := L] ≡ M [x := N][y := L]

where the expression on the left-hand side means a simultaneous substitu-

tion; so, M [x := N, y := L] is the result of replacing all free x’s and y’s in

M at the same time (‘together’) by N and L, respectively. (The expression

on the right-hand side is concerned with sequential substitution.)

1.7 Consider the λ-term U of Exercise 1.4, again.

(a) Mark all redexes in U .

(b) Find all reduction paths from U and the β-normal form of U (if it

exists).

1.8 Show that the terms (λx . x x)y and (λxy . y x)xx are not β-convertible.

1.9 Consider the following λ-terms (cf. Section 1.12):

K := λxy . x,

S := λxyz . x z(y z).

(a) Check that KP Q �β P and SP QR �β P R(QR), for arbitrary

λ-terms P , Q and R.

(b) Let I := λx . x. Prove that SKK �β I.

(c) Let B := S(KS)K. Prove that BU V W �β U(V W).

(d) Prove that S S SKK =β SKKK.

1.10 We define the λ-terms zero, one, two (the first three so-called Church

numerals), and the λ-terms add and mult (which mimic addition and

multiplication of Church numerals) by:

zero := λfx . x,

one := λfx . f x,

two := λfx . f(f x),

add := λmnfx . mf(n f x),

mult := λmnfx . m(n f)x.

(a) Show that add one one �β two.

(b) Prove that add one one �=β mult one zero.

1.11 The successor is the function mapping natural number n to n + 1. It is

represented in λ-calculus by suc := λmf x . f(mf x). Check the following

for the Church numerals defined in the previous exercise:

(a) suc zero =β one,

(b) suc one =β two.

1.12 We define the λ-terms true and false (the booleans) and not (resembling

the logical ¬-operator) by:
true := λxy . x (so it happens that true ≡ K),

false := λxy . y (and false ≡ zero),

Exercises 31

not := λz . z false true.

Show that not(not p) =β p for all λ-terms p, in each of the following

two cases: (a) p �β true or (b) p �β false.

1.13 Consider the λ-terms zero, true and false from Exercises 1.10 and 1.12.

Let iszero := λz . z(λx . false)true.

(a) Prove that iszero zero reduces to true.

(b) A natural number n > 0 may be represented by the following Church

numeral: λfx . f(f(...(x))), with n copies of the variable f . (Cf. the

definitions of one and two in Exercise 1.10.)

Prove that iszero n reduces to false for any Church numeral n ex-

cept 0. (Consequently, iszero represents a test-for-zero.)

1.14 The term ‘If x then u else v’ is represented by λx . x u v. Check this by

calculating the β-normal forms of (λx . x u v)true and (λx . x u v)false,

respectively. (The booleans true and false are defined in Exercise 1.12.)

1.15 In Examples 1.9.3 we have seen that neither Ω nor Δ reduces to a β-nf.

Prove that both λ-terms do not have a β-nf, as well.

1.16 Let M be a λ-term with the following properties:

(1) M has a β-normal form.

(2) There exists a reduction path M ≡ M0 →β M1 →β M2 →β . . . of

infinite length.

(a) Prove that every Mi has a β-normal form.

(b) Give an example of a λ-term with the mentioned two properties and

show that it satisfies these properties.

1.17 Prove the following: if MN is strongly normalising, then both M and N

are strongly normalising.

1.18 Let L, M and N be λ-terms such that L =β M and L �β N . Moreover,

let N be in β-normal form. Prove that also M �β N .

1.19 We define U := λzx . x(zzx) and Z := U U . Prove that Z is a fixed point

combinator, i.e. ZM is a fixed point for every λ-term M , so M(ZM) =β

ZM . Show that even holds: ZM �β M(ZM).

(This Z is called the Turing fixed point combinator after the famous

British mathematician A. Turing (1912–1954). The λ-term Y introduced

in Section 1.10 is usually called the Curry fixed point combinator, af-

ter its inventor H.B. Curry (1900–1982); cf. Cardone & Hindley, 2009,

Section 4.1. These two combinators are the most well-known among an

infinite number of different fixed point combinators.)

1.20 (a) Construct a λ-term M such that M =β λxy . xM y.

(b) Construct a λ-term M such that M xy z =β x y zM .

2

Simply typed lambda calculus

2.1 Adding types

In the previous chapter we saw that the abstract behaviour of functions can

be expressed very well by means of λ-calculus. The system introduced in that

chapter is highly concise and elegant. However, we also have seen that λ-

calculus is sometimes ‘too liberal’ to conform to our intuitive demands con-

cerning functions and how they should act as input–output devices. In the final

section of Chapter 1 we listed a number of important drawbacks.

In order to get a firmer hold on the desired behaviour of functions, we will

introduce types in the present chapter. This is a natural thing to do: functions

are usually thought of as acting on objects belonging to a certain collection,

e.g. the collection of the natural numbers or the collection of points on a line.

Therefore, it is quite customary to talk about a function on a domain, for

example the function ‘square’ on the natural numbers.

Hence, the addition of types gives certain restrictions on the input values

permitted: a function defined on domain N may only take natural numbers as

input values, even when it would be quite clear what the output value would be

for some ‘illegal’ input value. For example, ‘square’ on N permits us to calculate

three-squared, but excludes by definition the squaring of three-and-a-half. We

could, however, define ‘another’ squaring function on a larger domain, e.g. Q or

R, in order to make it applicable to three-and-a-half. On the other hand, such

an extension of the domain is often impossible: the function ‘square root’ on the

naturals may not be extended to a function ‘square root’ on the integers, since

the square root of a negative number is non-existent in the normal conception

of what it means to be a root (even when complex numbers are permitted as

an answer, the square root of −1 does not exist, since both i and −i could

serve as an answer).

Our hope is that the addition of types prevents the anomalies indicated in

the previous chapter. And indeed, this turns out to be the case. The simple

34 Simply typed lambda calculus

types that we introduce in the present chapter form a first important step,

although they are in several senses too restrictive: we cannot represent a suf-

ficient amount of functions by means of simple types, in particular when we

want to express mathematics in a formal shape. In the subsequent chapters we

will add more types to enlarge the expressivity of the system.

2.2 Simple types

A straightforward manner to add (abstract) types is to start with an infinite

set of type variables and then add one production rule to build more complex

types – so-called function types. This is done as follows, based on a famous

paper of A. Church (Church, 1940).

We start with an infinite set of type variables: V = {α, β, γ, . . .}.

Definition 2.2.1 (The set T of all simple types)

The set of simple types T is defined by:

(1) (Type variable) If α ∈ V, then α ∈ T,

(2) (Arrow type) If σ, τ ∈ T, then (σ → τ) ∈ T.

In abstract syntax this is as follows: T = V | T→ T.

Examples of simple types are: γ, (β → γ), ((γ → α)→ (α→ (β → γ))).

Notation 2.2.2 (1) The Greek letters α, β, . . . and variants thereof are used

for type variables belonging to V. (Do not confuse this α and β with the symbols

used for α-conversion and β-reduction.)

(2) We use σ, τ , . . . (occasionally A, B, . . .) to denote arbitrary simple types.

(3) Outermost parentheses may be omitted.

(4) The parentheses in arrow types are right-associative.

Note the right-associativity of the arrow, in contrast with the left-associa-

tivity of application (cf. Notation 1.3.10). So α1 → α2 → α3 → α4 is shorthand

for the simple type (α1 → (α2 → (α3 → α4))), whereas x1 x2 x3 x4 abbreviates

(((x1x2)x3)x4).

Remarks 2.2.3 Apart from the type variables α, β, . . . , we also still have

(ordinary) variables x, y, When we speak simply about variables, from

now on we only mean the latter species.

Now that we know what simple types are, we also want to know how to use

them.

First of all, we discuss the intended meaning of the types. This is simple:

− type variables are abstract representations of basic types such as nat for

natural numbers, list for lists, etcetera.

2.2 Simple types 35

− arrow types represent function types, such as nat → real (the set of all

functions from naturals to reals) or (nat → integer) → (integer → nat)

(the set of all functions with input a function from naturals to integers and

output a function from integers to naturals).

Remark 2.2.4 We distinguish between the sets N or L and the types nat or

list, because sets like N belong to mathematics and types like nat to computer

science. Otherwise said: N is a collection of things in the ‘real world’ of math-

ematical entities, whereas nat is some coding of these entities in the ‘virtual

world’ of computer programming. This distinction between sets and types will

repeatedly play a role in the rest of this book.

In order to express things like ‘term M has type σ’, we add so-called state-

ments (or typing statements) to our formal language, of the form M : σ.

First of all, we assume that we have an infinitude of variables available for

each type σ. If variable x has type σ, we denote this as x : σ. We thereby

assume that each variable x has a unique type: if x : σ and x : τ , then σ ≡ τ .

Now we investigate what the natural requirements are for the typing of

applications and abstractions ; these being the basic construction principles of

λ-calculus.

(1) (Application): for the type of the application MN , we clearly have to

know the types of M and N . The intention of MN is that (‘function’) M

must be applied to (‘input term’) N . First, M should have a function type,

say σ → τ . Second, N should be a ‘proper’ input for this function type, so the

type of N must be the input type σ. Finally, the resulting type of MN should

clearly be the output type τ .

Summarising: if M : σ → τ and N : σ, then MN : τ .

(2) (Abstraction): if M : τ , what is the type of the abstraction λx . M? The

latter term is a function mapping x to M , so in order to know its type, it

suffices to know the type of x (the type of M being known). Clearly, if x has

type σ, then λx . M should have (function) type σ → τ .

Summarising: if x : σ and M : τ , then λx . M : σ → τ .

The result of the above discussion is that it suffices to give the types of

variables. The extension of the types to more complicated terms (if possible!)

is then a question of calculation (see also Examples 2.2.6 below).

Remark 2.2.5 Obviously, there are two side conditions which have to be

satisfied in the typing of an application M N : the left-hand side M of the ap-

plication must have a function type ‘. . . 1 → . . . 2’, and the right-hand side N

of the application must match with the input type ‘. . . 1’. Only when both con-

ditions are met, can we derive the type of M N , being the output type ‘. . . 2’.

36 Simply typed lambda calculus

For the typing of an abstraction λx . M , we just need the types of x and M .

Examples 2.2.6 (1) When x has type σ, then the identity function λx . x

has type σ → σ.

(2) By the side conditions mentioned above, the application y x can only be

typed if y has a function type (of the form σ → τ) and the type of x matches

with the domain σ of this function type; the resulting type for y x then is τ .

Compare this with the ‘real world’ of mathematics: one may only speak of

f(x) (i.e. f applied to x) if f is a function, say from input type A to output

type B, and x is of the input type A; the result f(x) then has type B.

(3) This suggests that xx cannot have a type: if it had, then x should

have type σ → τ (for the first x) and also σ (for the second x). Since we

presuppose that each variable has a unique type, σ → τ ≡ σ, which is

obviously impossible.

Consequently, the following definition makes sense, since the conditions for

the typing of applications really prevent the typing of a number of terms.

Definition 2.2.7 (Typable term) A term M is called typable if there is a

type σ such that M : σ.

Remark 2.2.8 The difference between the right-associativity of the arrow

and the left-associativity of application (which we noticed after Notation 2.2.2)

has a natural cause: assume that function f has type ρ → (σ → τ), and that

x : ρ and y : σ, then f x : σ → τ , so (f x) y : τ . So, using both associativity

conventions, we have that f : ρ → σ → τ (without parentheses) and f x y : τ

(without parentheses). So, in a sense, both notation conventions correspond to

each other.

2.3 Church-typing and Curry-typing

Typing of a λ-term starts with typing its variables. There are two ways to give

types to variables:

(1) Prescribe a (unique) type for each variable upon its introduction. This is

called typing à la Church or explicit typing , since the types of variables are

explicitly written down (as in Church’s original paper: Church, 1940). The

types of more complex terms now follow in an obvious manner, if one takes

the restriction on typability of applications into account.

(2) Another way is not to give the types of variables, but to leave them open

(‘implicit ’) to some extent; this is called typing à la Curry or implicit typing . In

this case, the typable terms are found by a search process, which may contain

‘guesses’ for the types of the variables. See the second example below.

2.3 Church-typing and Curry-typing 37

Examples 2.3.1 (1) (Typing à la Church) Assume x has type α→ α and y

has type (α→ α)→ β, then yx has type β.

If, moreover, z has type β and u has type γ, then λzu . z has type β → γ → β.

(We recall that β → γ → β stands for β → (γ → β); cf. Notation 2.2.2 (4).)

Hence, the application (λzu . z)(y x) is permitted, since the type β of y x

matches with the ‘input type’ β of λzu . z. So (λzu . z)(y x) is typable, with

type γ → β.

(2) (Typing à la Curry) Look again at the λ-term M ≡ (λzu . z)(y x), but

now assume that the types of the variables x, y, z and u have not been given

beforehand. Can we make an educated guess about the ‘possible’ types of these

variables, provided that we require that the full term must obtain a type?

First of all, we note that the term M is an application of λzu . z to y x.

So λzu . z should have a function type, say A → B, and then y x must have

type A. Consequently, M has type B.

The fact that λzu . z : A → B, implies that z : A and λu . z : B. In the

latter typing statement, B is the type of a term starting with λ, hence B is a

function type, so B ≡ (C → D) for some C and D, and it follows that u : C

and z : D.

In the second place, y x itself is an application, so there must be E and F

such that y : E → F and x : E. Then y x : F .

It follows that:

− x : E,

− y : E → F ,

− z : A and z : D, so A ≡ D,

− u : C,

− B ≡ (C → D),

− y x : A and y x : F , so A ≡ F .

Hence, we have that A ≡ D ≡ F , so, omitting the superfluous D and F

(and B), we obtain:

(∗) x : E, y : E → A, z : A, u : C .

Since M has type B and D ≡ A, we can also say that M : C → A. Thus we

obtained a general scheme (∗) for the types of x, y, z and u, inducing a type

for M .

We may fill the scheme (∗) with ‘real’ types, e.g.:

− x : β, y : β → α, z : α, u : δ, with M : δ → α; or

− x : α → α, y : (α → α) → β, z : β, u : γ, with M : γ → β (compare this

with the typing-à-la-Church example above); or

− x : α, y : α→ α→ β, z : α→ β, u : α→ α, with M : (α→ α)→ α→ β.

38 Simply typed lambda calculus

Apparently, each mentioned ‘instance’ of the general scheme shows that the

λ-term M ≡ (λzu . z)(yx) is a typable term. Hence, as long as the restrictions

imposed by the general scheme are respected, there is a rich choice of types for

the four variables.

Typing à la Curry has interesting features, some of which have been hinted

at above. We will discuss Curry-typing in some detail in Section 2.14. In the

major part of this textbook, however, we only consider typing à la Church

(explicit typing), because in ‘real life’ situations from mathematics and logic,

types are usually fixed and given beforehand.

For a clear presentation, we denote the types of bound variables immediately

after their introduction following a λ. The types of the free variables are given

in a so-called context (sometimes called basis), in an order that may be chosen

at will.

Example 2.3.2 Consider the term (λzu . z)(y x) again of Examples 2.3.1 (1),

where z and u are bound and x and y are free. Assuming that z has type β

and u has type γ, we write this term as follows: (λz : β . λu : γ . z)(y x), with

explicit typing of the bound variables z and u.

The context registering the types of the free variables x and y, as given in

Examples 2.3.1 (1), becomes: x : α→ α, y : (α→ α)→ β.

Altogether, we write the content of this example in the following explicit

format:

x : α→ α, y : (α→ α)→ β � (λz : β . λu : γ . z)(y x) : γ → β .

This judgement can be read as follows:

‘In context x : α → α, y : (α → α) → β, the term (λz : β . λu : γ . z)(y x)

has type γ → β.’

The separation marker ‘�’ between context (left) and typable term (right)

in the example judgement above, points at a technical connotation of ‘deriv-

ability’, which will be explained in the next section.

Remark 2.3.3 We do not have β-reduction yet for ‘typed terms’ (for this,

see Section 2.11), but an educated guess is that

(λz : β . λu : γ . z)(y x) →β λu : γ . y x .

Note that the latter term has the same type γ → β as the former one, since it

can be shown that

x : α→ α, y : (α→ α)→ β � λu : γ . y x : γ → β .

(Check this; see also Lemma 2.11.5.)

2.4 Derivation rules for Church’s λ→ 39

2.4 Derivation rules for Church’s λ→
Since we have decorated our terms with type information for the bound vari-

ables, we have to revise our definition of λ-terms, Λ. We call our new set of

terms ΛT, described by the following abstract syntax:

Definition 2.4.1 (Pre-typed λ-terms, ΛT)

The set of pre-typed λ-terms is defined by:

ΛT = V |(ΛTΛT)|(λV : T . ΛT) .

As already said in Section 2.2, we want to express things like ‘λ-term M has

type σ’, relative to a context Γ, which we do by means of a judgement .

Definition 2.4.2 (Statement, declaration, context, judgement)

(1) A statement is of the form M : σ, where M ∈ ΛT and σ ∈ T.

In such a statement, M is called the subject and σ the type.

(2) A declaration is a statement with a variable as subject.

(3) A context is a list of declarations with different subjects.

(4) A judgement has the form Γ � M : σ, with Γ a context and M : σ a

statement.

So x : α → β is a declaration, and x1 : α, x2 : α → β, x3 : (β → α) → β

is an example of a context, where x1, x2 and x3 must be different variables. A

context may also consist of a single declaration, or even of none (a so-called

empty context).

Notation 2.4.3 We use similar notation conventions as in Notation 1.3.4

and Notation 1.3.10. So we write λx : α . λy : β . z for (λx : α . (λy : β . z)).

We import the notions ‘free variable’ and ‘bound variable’ in a straightforward

manner from untyped λ-calculus.

In a judgement Γ �M : σ, we count the subject variables in the declarations

of Γ as binding variables; they bind the corresponding free variables in M . We

maintain the Barendregt convention 1.7.4 also for these ‘new’ binding variables.

For example, in the judgement below Example 2.3.2, we take x, y, z and u as

all different.

Since we are primarily interested in typable terms, it is profitable to have a

kind of method to establish whether a term t ∈ ΛT is indeed typable and, if

so, to compute a type for t. How this method works (in principle) has already

been exemplified in the previous section. Now we give a set of formal rules

which enable us to see whether a judgement Γ � M : σ is derivable, that is,

whether M has type σ in context Γ.

The rules given below form a so-called derivation system: each rule explains

40 Simply typed lambda calculus

how certain judgements can be formally established. Each of the three deriva-

tion rules is in the so-called premiss–conclusion format , where a number of

premisses appear above a horizontal line, and the conclusion below.

In general, a derivation rule has the following format:

premiss 1 premiss 2 . . . premiss n

conclusion

The meaning of this derivation scheme is: if we ‘know’ that premiss 1 up

to premiss n hold, then the corresponding conclusion may be drawn.

The number of premisses may be zero, in which case one only writes the

conclusion (without the horizontal line).

Remark 2.4.4 We use a different font for these notions premiss and con-

clusion, because we wish to distinguish the technical use of these words (as

pointing at expressions in a formal derivation) from their colloquial meanings

(‘presupposition’ and ‘final result’).

Below we give the three derivation rules for Church’s λ→, being the counter-

parts of our discussion in Section 2.2. Together, these rules form a derivation

system for Church’s λ→:

Definition 2.4.5 (Derivation rules for λ→)

(var) Γ � x : σ if x : σ ∈ Γ

(appl)
Γ � M : σ → τ Γ � N : σ

Γ � MN : τ

(abst)
Γ, x : σ � M : τ

Γ � λx : σ . M : σ → τ

The intention of these rules is universal , in the sense that they hold for

‘arbitrary’ Γ, σ, τ , x, M and N . In using these rules, we have to produce

instances of all of these, so we must provide actual specimens of Γ etcetera.

We discuss these derivation rules briefly:

The (var)-rule. This rule formally expresses that each declaration which oc-

curs in the context is derivable with respect to that context. It thereby records

behind the �-symbol what the type is of a variable, the simplest expression

in λ-calculus. This only applies to a variable that is already a subject in the

context; its type is copied from that context.

The rule has no premisses, but only contains a conclusion, so it can be

used as the start of a derivation.

The (appl)-rule. This rule concerns the typing of an application. It has two

premisses and one conclusion.

2.4 Derivation rules for Church’s λ→ 41

The rule establishes what we have seen before: if M has function type σ → τ

with respect to a certain context Γ, and N has type σ with respect to the

same context Γ, then the application MN has type τ (with respect to the

same Γ). Note that this means that the conditions on application, mentioned

in Remark 2.2.5, have been satisfied.

The (abst)-rule. This rule enables us to type an abstraction. It has one

premiss and one conclusion.

In the premiss, we have the context Γ, x : σ. This is a notation for the list Γ

concatenated with x : σ, so for context Γ extended with one more declaration.

The rule now establishes that, if M has type τ with respect to the extended

context, then λx : σ . M has type σ → τ with respect to Γ only.

The contents of this rule have already been explained in the previous sec-

tions. The only difficulty lies in the context, which becomes smaller from

premiss to conclusion. What is the motivation for this? First note that in

the term λx : σ . M , variable x may occur free in M , since the term expresses

a function ‘mapping x to M ’. So, if we look at a stand-alone M , as we do in

the premiss, then we need type information concerning such an x. Therefore,

we register its type (viz. σ) in the context.

On the other hand, this typing of x is no longer necessary in the conclusion:

x has become a bound variable in λx : σ . M , and gets its type within that

term.

We give an example of a so-called derivation, built with the aid of Defini-

tion 2.4.5.

Example 2.4.6

(i) y : α→ β, z : α � y : α→ β (ii) y : α→ β, z : α � z : α

(iii) y : α→ β, z : α � y z : β

(iv) y : α→ β � λz : α . y z : α→ β

(v) ∅ � λy : α→ β . λz : α . y z : (α→ β)→ α→ β

This derivation has been constructed as follows:

− First, a double use of the (var)-rule gives us (i) and (ii),

− then (iii) is obtained from (i) and (ii) by the (appl)-rule,

− and (iv) results from (iii) by the (abst)-rule;

− finally, we get (v) from (iv), again by the (abst)-rule.

The final result of the derivation in the above example can be found in the

bottom line: (v). It says that in the empty context, λy : α→ β . λz : α . y z has

42 Simply typed lambda calculus

type (α → β) → α → β. The derivation, exactly following the rules, thereby

not only serves to construct judgement (v), but also to justify it.

Note that we may stop a certain derivation at an earlier point, or extend

it to a later stage. For example, when restricting the example derivation to

judgements (i) to (iv), we obtain a justifying construction of (iv).

Remark 2.4.7 Derivation rules like the ones given in Definition 2.4.5 can

be read in two directions: either from top to bottom or from bottom to top.

From top to bottom: when we are in a situation covered by the premisses, then

we may derive the conclusion as a result. This makes it possible to extend

our knowledge step by step, as demonstrated in Example 2.4.6. This reading

also emphasises that the derivation rules give an inductive definition of the set

of derivable judgements.

From bottom to top: the rules can also be used as a guide to obtain some goal.

For example, the (appl)-rule gives a guideline on how to find a type for an

application MN , namely: try to find types for M and N , and see whether they

match. The (abst)-rule tells us how to type an abstraction λx : σ . M , namely

by trying to type M , with respect to the same context extended with x : σ.

There exists a strong parallel between Definition 2.4.1 of pre-typed λ-terms

and Definition 2.4.5 of the derivation system: there are three kinds of terms

(variables, applications and abstractions), and for each of these kinds of terms

there is a corresponding derivation rule (one for deriving the type of a variable,

one for the type of an application and one for the type of an abstraction).

It is worthwhile to compare the (appl)- and (abst)-rules in the derivation

system of Definition 2.4.5 with well-known situations in mathematics and logic,

as we do in the following two examples.

Example 2.4.8 Mathematics:

Read A→ B as the set of all functions from A to B. Then we have:

(func-appl):
If f is a member of A→ B and c ∈ A,

then f(c) ∈ B

and

(func-abst):
If for arbitrary x ∈ A it holds that f(x) ∈ B,

then f is a member of A→ B.

Note the similarities between these rules and the (appl)- and (abst)-rules

of Church’s λ→. The correspondence becomes even more striking if we recall

that the function f in the conclusion of (func-abst) can also be written as

λx ∈ A . f(x).

The context Γ of Definition 2.4.5 is empty here, but for the premiss of

(func-abst): the ‘arbitrary’ x ∈ A mentioned there stands for Γ ≡ x : A.

2.4 Derivation rules for Church’s λ→ 43

Example 2.4.9 Logic:

Now read A → B as the implication A ⇒ B, which is ‘A implies B’. So we

‘identify’ the function arrow → with the implication connective ⇒, a basic

symbol in logic.

In order to get a clear view on the logic behind the implication symbol, we

refer to a formal system very appropriate for our purposes, namely that of

natural deduction. In this system the ‘natural’ treatment of logical symbols,

e.g. in mathematics, has been condensed. In the present book we often come

back to natural deduction.

(For readers not acquainted with natural deduction as a logical system, we

refer to van Dalen, 1994, or Pelletier, 1999.)

There are two standard rules for ⇒ in natural deduction. The first rule is

called the elimination rule for ⇒, the second one the introduction rule for ⇒:

(⇒-elim)
A⇒ B A

B

Assume : A
...

B
(⇒-intro)

A⇒ B

The (⇒-elim)-rule is also known under the name Modus Ponens. It is the

rule to ‘eliminate’ an ⇒. It expresses how to use an implication: if A ⇒ B

holds and A holds as well, then B is a legitimate conclusion.

The (⇒-intro)-rule gives a scheme suitable to ‘introduce’ an ⇒, so to obtain

an implication. This scheme formalises the following intuitive proof procedure:

start with the assumption that A holds and then try to show that B holds. If

we succeed (by filling the vertical dots with an appropriate argument), then

we have shown that A implies B altogether – so we can conclude A⇒ B.

Again, note the similarities with Definition 2.4.5 (in particular when iden-

tifying ⇒ and →). The context extension with x : σ in the premiss of the

(abst)-rule corresponds to the addition of a so-called ‘flag’ in the premiss of

(⇒-intro). Such a flag marks an assumption, in this case of the proposition A.

The ‘flag pole’ delimits the scope of the assumption.

Terms which are typable by the aid of a derivation system are called legal .

Definition 2.4.10 (Legal λ→-terms)

A pre-typed term M in λ→ is called legal if there exist context Γ and type ρ

such that Γ �M : ρ.

For example, entry (v) in the λ→-derivation given in Example 2.4.6, shows

44 Simply typed lambda calculus

that the following term is legal: λy : α → β . λz : α . y z, since there exist a

context Γ and a type ρ such that

Γ � λy : α→ β . λz : α . y z : ρ .

2.5 Different formats for a derivation in λ→
A derivation that naturally follows the derivation rules has a tree format . See

again the derivation given in Example 2.4.6. Its structure corresponds to the

tree depicted in Figure 2.1.

(i) (var) (ii) (var)

(iii) (appl)

(iv) (abst)

(v) (abst)

� �
�
�
�

�
�
�

�
�

�

Figure 2.1 The tree structure of the derivation in Example 2.4.6

Such a tree format gives a good picture of the buildup of a derivation, but in

more complicated cases a tree tends to spread out over the page, especially with

longer judgements, and thereby this format loses its attraction. Another thing

is that a more complex tree has many ramifications, and it may be difficult

for a reader to get a good picture of how the separate construction steps have

contributed to the final result.

This kind of inconvenience can be partly solved by imposing a linear order

on the derivation steps, thus presenting the judgements one by one, as the lines

in a book. Note that we already suggested an order in Example 2.4.6, since we

numbered the judgements as (i) to (v).

The same derivation in linear format may look as the following list of judge-

ments:

(i) y : α→ β, z : α � y : α→ β (var)

(ii) y : α→ β, z : α � z : α (var)

(iii) y : α→ β, z : α � y z : β (appl) on (i) and (ii)

(iv) y : α→ β � λz : α . y z : α→ β (abst) on (iii)

(v) ∅ � λy : α→ β . λz : α . y z : (α→ β)→ α→ β (abst) on (iv)

The original tree structure being lost, we add an extra column with infor-

mation about the construction process, giving the names of the rules and the

2.5 Different formats for a derivation in λ→ 45

numbers of the judgements involved. Note that the order in this list of judge-

ments is not completely fixed. Taking it that a judgement J should follow

all judgements used for its derivation, we see that (v) must follow (iv), which

must follow (iii), which must follow both (i) and (ii). But the order of (i) and

(ii) may be interchanged, without effect on the full derivation.

These dependencies between judgements in a derivation can be characterised

as being a strict partial order . That is to say: it is irreflexive (no judgement J
precedes itself), asymmetric (if one precedes another, then not the other way

round) and transitive (if Jk precedes Jl and Jl precedes Jm, then Jk precedes

Jm). This can easily be seen.

For a visualisation of such an order one often appeals to a kind of diagram,

as has been drawn for example in Figure 2.1.

In the derivation above, either in tree format (Example 2.4.6) or in linear

format, we observe many duplications of the declarations in the contexts, to

the left of the �-separators. Such duplications become annoying in more com-

plex derivations. In order to prevent this, we present an alternative format for

linear derivations, called the flag notation. In this notation, one displays each

declaration in a ‘flag ’ (a rectangular box) and presumes that this declaration

is part of the context for all statements behind the attached flag pole.

We illustrate this flag format of a derivation by rewriting the same example

as above in flag notation:

(a) y : α→ β

(b) z : α

(1) y : α→ β (var) on (a)

(2) z : α (var) on (b)

(3) y z : β (appl) on (1) and (2)

(4) λz : α . y z : α→ β (abst) on (3)

(5) λy : α→ β . λz : α . y z : (α→ β)→ α→ β (abst) on (4)

The correspondence between the linear and the flag-style display of the

derivation will be obvious:

(i) ↔ (a), (b) � (1)

(ii) ↔ (a), (b) � (2)

(iii) ↔ (a), (b) � (3)

(iv) ↔ (a) � (4)

(v) ↔ ∅ � (5)

In what follows, we will allow a further shortening of a derivation by permit-

46 Simply typed lambda calculus

ting that the (var)-rule may be silently executed. With this convention, the

above flag derivation changes into the following shorter form:

(a) y : α→ β

(b) z : α

(1′) y z : β (appl) on (a) and (b)

(2′) λz : α . y z : α→ β (abst) on (1′)

(3′) λy : α→ β . λz : α . y : (α→ β)→ α→ β (abst) on (2′)

As the above examples suggest, the linear format, and particularly the flag

format, are convenient manners of depicting derivations. This will become still

more apparent when we add definitions to typed lambda calculus, as we do from

Chapter 9 onwards. The flag format enables a writer to develop a derivation

step by step, and a reader to follow it in the specific order in which it has been

presented. Such a linear format corresponds to the natural way of knowledge

representation, as one finds, for example, in mathematics books: the accepted

style is to unfold the contents stepwise, line by line.

Since the flags make a linear derivation considerably more perspicuous, we

shall mostly use the flag format in the text to come for the representation of

derivations.

2.6 Kinds of problems to be solved in type theory

In general, there are three kinds of problems connected with judgements in

type theory:

(1) Well-typedness (also called Typability).

This problem will be posed in Section 2.7, which starts with a question of

the following form:

? � term : ? ,

namely: find out whether a term is legal. To be precise, the task is to find an

appropriate context and type if the term is indeed legal, and if not so, to show

where it goes wrong.

(1a) A variant of this is Type Assignment, where the context is given as well,

so that only the type has to be found:

context � term : ? .

2.7 Well-typedness in λ→ 47

(2) Type Checking.

In Section 2.8 we give an example of how to check whether

context
?
� term : type ,

where ‘context’, ‘term’ and ‘type’ are given. The task is hence merely to check

that a certain term has a certain type (relative to a certain context).

(3) Term Finding (also called Term Construction or Inhabitation).

There exists another important problem in this field, namely:

context � ? : type .

Thus, given a context and a type, find out whether a term exists with that

type, corresponding to that specific context. A problem of this kind can be

found in Section 2.9.

A particular case of Term Finding occurs when context ≡ ∅, so the problem

boils down to:

∅ � ? : type .

An example of this problem can be found in the logic of natural deduction

that we have mentioned in Example 2.4.9: the existence of a term of type σ in

the empty context turns out to be equivalent to the provability of σ. We shall

discuss this in Section 2.9.

We note that all of these problems are decidable in λ→, i.e. for each of these

questions there is an algorithm that produces the answer, for given input in

the form of ‘context’, ‘term’ and/or ‘type’.

In more complicated systems, however, such as the ones we develop in the

chapters to come, Term Finding is the real problem. It is undecidable in many

cases. That is to say, there is no general method (or algorithm) to find out

whether a term of the desired type exists, and if so, what this term is. We

come back to this later.

2.7 Well-typedness in λ→
We have seen in Sections 2.4 and 2.5 that, given a derivation, it is a simple

task to check its correctness.

If, however, the derivation has not been given, how should we try to find one?

In this case, the derivation rules show the way, to some extent. We demonstrate

this with the same example of Section 2.5, using the flag notation for displaying

the context. At the same time, this is a good example of the Well-typedness

problem.

48 Simply typed lambda calculus

So, let’s start all over again. We want to show that the following λ-term M

is legal: M ≡ λy : α → β . λz : α . y z. Hence, our task is to find a context Γ

and a type ρ such that Γ �M : ρ.

First about the context Γ. It is a reasonable conjecture that Γ ≡ ∅ suffices,

since a context is intended to give the types of the free variables in a λ-term,

and there are no free variables in M . So all that’s left is to find ρ. We can

display this task as follows:

(n) λy : α→ β . λz : α . y z : ?

Now we browse through the three derivation rules of λ→ in order to find

a match. Obviously, only the (abst)-rule may be of help, since it is the only

one to deliver an abstraction term in the conclusion. Looking at the premiss

of (abst), we see that we can find a type for M if we can find a type for

λz : α . y z, in a context extended with the declaration y : α → β. Hence, our

new task is:

(a) y : α→ β
...

(m) λz : α . y z : ?

(n) λy : α→ β . λz : α . y z : . . . (abst) on (m)

Our new goal is the type ? in line (m). If that goal is solved, then this also

solves the ‘old’ goal in line (n), by a simple use of the (abst)-rule.

So we have to find a type for λz : α . y z. Again, the main symbol is a λ, so

we repeat the above procedure and we get:

(a) y : α→ β

(b) z : α
...

(l) y z : ?

(m) λz : α . y z : . . . (abst) on (l)

(n) λy : α→ β . λz : α . y z : . . . (abst) on (m)

The new term to be typed is y z. This is an application term, so only

(appl) can help us further: it is the only rule with an application term in

the conclusion.

Since (appl) has two premisses, we now obtain two new goals:

2.7 Well-typedness in λ→ 49

(a) y : α→ β

(b) z : α
...

(k1) y : ?1
...

(k2) z : ?2

(l) y z : . . . (appl) on (k1) and (k2)

(m) λz : α . y z : . . . (abst) on (l)

(n) λy : α→ β . λz : α . y z : . . . (abst) on (m)

Now we are at the heart of our expedition: the terms corresponding to the

new goals are y and z, respectively. They are simple variables, and in that case

the (var)-rule is the only candidate for a match. And indeed, both ?1 and ?2
can easily be solved by means of the (var)-rule, as we have demonstrated in

the first flag derivation of Section 2.5.

The rest is routine: we find β for the type of term y z in line (l), since the

side conditions of (appl) are satisfied, and we easily deduce the other types.

Also here, an alternative is to skip lines k1 and k2, and to use (appl) directly

on flags (a) and (b), as in the shortened flag derivation at the end of Section 2.5.

Remark 2.7.1 The type α of z matches with the left-hand side of the type of

y. If this were not the case, then our attempt at finding a type for y z in line (l)

would have failed. For example, if the type of z had been β instead of α, then

there was no match.

Hence, if we had started with the term λy : α → β . λz : β . y z , then at

this point we would have come to the conclusion that a derivation of a type is

impossible: the conclusion of the Well-typedness problem is that the term has

no type.

Our final conclusion is that we have succeeded in finding a derivation which

shows that λy : α→ β . λz : α . y z is legal. Note that – but for the renumbering

of the line-labels (k1) up to (n) – we have obtained exactly the same derivation

as the one in Section 2.5.

Remark 2.7.2 In general, different derivations exist for showing that a par-

ticular term is legal. For example, we can take any Γ as a start of the above

derivation, instead of Γ ≡ ∅. Moreover, lines (k1) and (k2) may be inter-

changed, as can easily be seen. There are many other reasons why derivations

for the legality of a given term may vary, such as repetitions and detours, but

also more essential differences may occur between derivations of the same term.

50 Simply typed lambda calculus

2.8 Type Checking in λ→
We continue with an example concerning the second kind of problem sketched

in Section 2.6: Type Checking, i.e. checking the validity of a full judgement.

In order to illustrate this matter, we construct a derivation for the judgement

we gave at the end of Section 2.3:

x : α→ α, y : (α→ α)→ β � (λz : β . λu : γ . z)(y x) : γ → β .

So our goal is now to fill the dots in:

(a) x : α→ α

(b) y : (α→ α)→ β

...

(n) (λz : β . λu : γ . z)(y x) : γ → β

Since the term (λz : β . λu : γ . z)(y x) is an application term, we use the

(appl)-rule:

(a) x : α→ α

(b) y : (α→ α)→ β

...

(m1) λz : β . λu : γ . z : ?1
...

(m2) y x : ?2

(n) (λz : β . λu : γ . z)(y x) : γ → β (appl) on (m1) and (m2), (?)

Since use of the (appl)-rule is only allowed when the corresponding types

match, we add a reminder (?) in the last line: at this moment we cannot yet

check the match, since ?1 and ?2 are still unknown.

Now the final goal ?2 is easily solvable by using (var) twice, followed by

(appl). Note that the types of y and x match as required. What remains is:

(a) x : α→ α

(b) y : (α→ α)→ β

...

(m1) λz : β . λu : γ . z : ?

2.9 Term Finding in λ→ 51

The goal in line (m1) is easily solved by twice using the (abst)-rule, each for

one of the λs in the term. This leads to the following complete derivation in

the shortened version:

(a) x : α→ α

(b) y : (α→ α)→ β

(c) z : β

(d) u : γ

(1) z : β (var) on (c)

(2) λu : γ . z : γ → β (abst) on (1)

(m1) λz : β . λu : γ . z : β → γ → β (abst) on (2)

(m2) y x : β (appl) on (b) and (a)

(n) (λz : β . λu : γ . z)(y x) : γ → β (appl) on (m1) and (m2) (?)

We have suppressed the non-essential uses of the (var)-rule (see line (m2)),

but we cannot suppress the mentioning of (var) in line (1), since we need that

line for obtaining line (2).

So all that’s left is our ‘hanging’ task to check the conditions on (appl) in

line (n), but these are clearly satisfied.

Hence we have succeeded in giving a proper derivation of the judgement of

Section 2.3.

Remark 2.8.1 In Remark 2.3.3 we noticed that

(λz : β . λu : γ . z)(y x) →β λu : γ . y x .

It is easy to establish that the latter term also has the type γ → β, in the

same context for x and y as above.

2.9 Term Finding in λ→
A final example in the present chapter concerns the third of the general prob-

lems in type theory mentioned in Section 2.6, namely Term Finding: find an

appropriate term of a certain type, in a certain context.

A term which belongs to a certain type, is called an inhabitant of that

type: one sees the type as a ‘house’ (or a city) which may (or may not) give

accommodation to terms/residents.

Hence, the problem here is to find an inhabitant of a given type. We start

with an empty context and explore the situation in which the type is an ex-

pression from logic: a proposition. Surprisingly, every inhabitant then codes a

52 Simply typed lambda calculus

proof of this proposition, hence declaring it to be a ‘true’ one. We demonstrate

this below.

As logical expression, we take A → B → A, where → should be read as

‘implication’. This proposition is a tautology , which is to say that it holds as

a general fact in logic. In this simple case our intuition immediately delivers a

‘proof’ of this, viz: assume that A holds and assume then that also B holds,

then A of course still holds; hence we conclude: if A, then (if B then A).

Let’s formalise this proof in λ→. So we take A→ B → A as a type and try

to find an inhabitant in the empty context:

(n) ? : A→ B → A

Our goal is to find a term of an →-type, so the (abst)-rule of our derivation

system (Definition 2.4.5) is obviously a first try. This gives (check it yourself):

(a) x : A
...

(m) ? : B → A

(n) . . . : A→ B → A (abst) on (m)

The variable x in line (a) is a consequence of using the (abst)-rule.

Again, our goal concerns an→-type, so we repeat the procedure. (Note that

we take a new variable (y) here, as Definition 2.4.2 (3) requires.)

(a) x : A

(b) y : B
...

(l) ? : A

(m) . . . : B → A (abst) on (l)

(n) . . . : A→ B → A (abst) on (m)

Clearly, the goal ? can be solved by the x in line (a) and we obtain:

(a) x : A

(b) y : B

(1) x : A (var) on (a)

(2) λy : B . x : B → A (abst) on (1)

(3) λx : A . λy : B . x : A→ B → A (abst) on (2)

2.10 General properties of λ→ 53

Thus we have finished the job.

Finally, we express this derivation in words, considering propositions as types

and inhabitants of propositions as proofs, as mentioned above:

(a) Assume that x is a proof of proposition A.

(b) Also assume that y is a proof of proposition B.

(1) Then x is (still) a proof of A.

(2) So the function mapping y to x sends a proof of B to a proof of A,

i.e. λy : B . x proves the implication B → A.

(3) Consequently, λx : A . λy : B . x proves A→ B → A.

So we deal with an interpretation of proofs and logical expressions that

works. It is generally called the PAT-interpretation, where ‘PAT’ means both

‘propositions-as-types’ and ‘proofs-as-terms’. We will come back at length on

this important idea in Section 5.4; see also Remark 5.1.1.

Remark 2.9.1 When wishing to capture the derivation above, it suffices to

store the final term λx : A . λy : B . x only, because the full derivation can

easily be reconstructed from this term. It is a complete ‘coding’ of the proof,

and even more than that: the term implicitly includes the proposition it proves,

since this is its type, being computable by the decidability of Well-typedness.

Remark 2.9.2 In Well-typedness and Type Checking, the development of the

complete derivation roughly follows a pattern as illustrated in the left part of

Figure 2.2: starting with a term (positioned on the lower left-hand side of the

picture), one successively replaces it by simpler terms (upwards) until it can be

typed (at the top of the picture); then the other types are calculated (downwards)

until finally the type of the original term has been derived (on the place of the

arrow head). See the examples in Sections 2.7 and 2.8 for derivations following

this construction scheme.

In Term Finding, on the other hand, the pattern is as in the right part of

Figure 2.2. Here one starts with a type, replaces it by simpler types until one

finds a term inhabiting such a type, and then terms are constructed correspond-

ing to the types, until one obtains a term which inhabits the original type. See

the example in the present section for a derivation construction that follows

this scheme.

2.10 General properties of λ→
In this section we list a number of properties of Church’s λ→ and explain their

contents and importance. We do not give all the proofs of the lemmas; for the

missing ones, we refer to Barendregt (1992).

First, we give a number of definitions about contexts, followed by examples.

54 Simply typed lambda calculus

�

� �

:

:

:

�

� �

:

:

:

Figure 2.2 Construction schemes for typing problems

Definition 2.10.1 (Domain,dom, subcontext,⊆, permutation, projection, �)
(1) If Γ ≡ x1 : σ1, . . . , xn : σn, then the domain of Γ or dom(Γ) is the list

(x1, . . . , xn).

(2) Context Γ′ is a subcontext of context Γ, or Γ′ ⊆ Γ, if all declarations

occurring in Γ′ also occur in Γ, in the same order.

(3) Context Γ′ is a permutation of context Γ, if all declarations in Γ′ also occur

in Γ, and vice versa.

(4) If Γ is a context and Φ a set of variables, then the projection of Γ on Φ, or

Γ � Φ, is the subcontext Γ′ of Γ with dom(Γ′) = dom(Γ) ∩ Φ.

Examples 2.10.2 Let Γ ≡ y : σ, x1 : ρ1, x2 : ρ2, z : τ, x3 : ρ3.

(1) dom(∅) = (), the empty list; dom(Γ) = (y, x1, x2, z, x3).

(2) ∅ ⊆ (x1 : ρ1, z : τ) ⊆ Γ.

(3) x2 : ρ2, x1 : ρ1, z : τ, x3 : ρ3, y : σ is a permutation of Γ.

(4) Γ � {z, u, x1} = x1 : ρ1, z : τ .

An important property of λ→ is the following, concerning the free variables

occurring in a judgement:

Lemma 2.10.3 (Free Variables Lemma)

If Γ � L : σ, then FV (L) ⊆ dom(Γ).

As a consequence of the lemma, each free variable x that occurs in L has

a type, which is recorded in a declaration x : σ occurring in the context Γ.

Therefore, in a judgement, there can be no confusion about the type of any

variable whatsoever, since also bound variables get their type, namely upon

introduction, behind the binding λ.

We now try to prove this lemma. The question is, of course, how to do this,

so first we concentrate on the proof method. We have to show something for

an arbitrary judgement Γ � L : σ (namely that all free variables of L occur

in dom(Γ)). What can we say about this judgement? Not very much, since it

is ‘arbitrary’. However, if it is a proper judgement, then by definition it must

be derivable, so there must exist a derivation with this judgement as the final

2.10 General properties of λ→ 55

conclusion. Derivations (as many notions in this field) are inductively defined,

so our conjecture is that the proof of the lemma also needs induction.

The kind of induction that we use here is called structural induction. The

principle is as follows. An inductive definition describes how to construct the

expressions. So, to prove a general property P for an arbitrary expression E
we can proceed by:

− assuming that P holds for all expressions E ′ used to construct E (this is

called the induction hypothesis),

− and then proving that P also holds for E itself.

We apply this proof method to the lemma:

Proof of Lemma 2.10.3 The proof is by induction on the derivation of the

judgement J ≡ Γ � L : σ, so we suppose that J is the final conclusion of a

derivation and we assume that the content of the lemma already holds for the

premisses that have been used to derive the conclusion.

By Definition 2.4.5, there are three possible cases: the final step to establish

that J holds has been (1) the (var)-rule, or (2) the (appl)-rule, or (3) the

(abst)-rule.

− Case (1): J is the conclusion of the (var)-rule.

Then J has the form Γ � x : σ and this follows from x : σ ∈ Γ. Now the L

mentioned in the lemma is x and we have to prove that FV (x) ⊆ dom(Γ).

But this is an immediate consequence of x : σ ∈ Γ.

(Note: the (var)-rule has no premisses, so there is no induction hypothesis

about ‘previously constructed’ judgements.)

− Case (2): J is the conclusion of the (appl)-rule.

Then J must have the form Γ � MN : τ and we have to prove that

FV (MN) ∈ dom(Γ).

By induction, the lemma already holds for the premisses of the (appl)-

rule, which are: Γ � M : σ → τ and Γ � N : σ. Hence we may as-

sume FV (M) ⊆ dom(Γ) and FV (N) ⊆ dom(Γ). Since by Definition 1.4.1,

FV (MN) = FV (M) ∪ FV (N), it follows that FV (MN) ⊆ dom(Γ).

− Case (3): J is the conclusion of the (abst)-rule.

Then J must have the form Γ � λx : σ . M : σ → τ and we have to prove

that FV (λx : σ . M) ⊆ dom(Γ).

By induction, the lemma already holds for the premiss Γ, x : σ � M : τ ,

so FV (M) ⊆ dom(Γ) ∪ {x} (∗). Now FV (λx : σ . M) = FV (M)\{x} (again
by Definition 1.4.1), and by (∗) we have: FV (M)\{x} ⊆ dom(Γ).

Remark 2.10.4 A proof by induction apparently works backwards: in order

to show a property of some expression, we appeal to previously constructed

expressions. However, convince yourself that induction ultimately amounts to

56 Simply typed lambda calculus

a forward process: imagine yourself an arbitrary derivation, then the property

P can be thought of as being passed on from top to bottom, in parallel with

the usage of the derivation rules. In every step, property P is ‘handed over’

from premiss(es) to conclusion. (If there is no premiss at all, then induction

amounts to showing that the property holds ‘immediately’; cf. the above proof,

case (1).)

We continue with three other properties of λ→.

Lemma 2.10.5 (Thinning, Condensing, Permutation)

(1) (Thinning) Let Γ′ and Γ′′ be contexts such that Γ′ ⊆ Γ′′. If Γ′ � M : σ,

then also Γ′′ �M : σ.

(2) (Condensing) If Γ �M : σ, then also Γ � FV (M) �M : σ.

(3) (Permutation) If Γ � M : σ, and Γ′ is a permutation of Γ, then Γ′ is
also a context and moreover, Γ′ �M : σ.

We shall discuss these properties first, and then consider their proofs.

− The ‘thinning’ of a context is an extension of it obtained by adding extra

declarations with ‘new’ subject variables. (So ‘being thinner’ is the con-

verse of ‘being a subcontext’ – see Definition 2.10 (2).) Now the Thinning

Lemma 2.10.5 (1) says: if M has type σ in some context Γ′, then M also has

type σ in a ‘thinner’ context Γ′′.

This is intuitively acceptable: Γ′ already contains all the necessary type

information for the free variables in M (otherwise Γ′ � M : σ could not

have been derived; see also Theorem 2.10.3). But all this type information

is of course unaffected by thinning of the context, since then one merely

adds some declarations of new, and hence ‘non-essential’, variables, but no

declaration is removed or changed.

− On the other hand, the Condensing Lemma 2.10.5 (2) tells us that we may

remove declarations x : ρ from Γ for those x’s which do not occur free in M ,

thus keeping only those declarations which are relevant for M .

− One could rephrase these two properties in a popular style as follows: ‘One

may either add or remove junk to/from a context, without affecting deriv-

ability’, where ‘junk’ consists of declarations of variables which do not occur

free in the term M . (Such variables play no role in the typing process.)

− Finally, the Permutation Lemma tells us that it is not important how the

context is ordered. This is intuitively clear. Firstly, declarations are only

used to store information about types of free variables; the order of these

declarations is therefore irrelevant. Secondly, declarations in a context are

mutually independent, so there is also no technical reason why they cannot

be permuted.

2.10 General properties of λ→ 57

Remark 2.10.6 One can also define a context as a set – not a list: this is the

usual approach in λ→. Such set-contexts are called bases (see e.g. Barendregt,

1992). We prefer (ordered) contexts over (unordered) bases, because richer sys-

tems – to be discussed in later sections – have dependent declarations, so there

the order is important.

We give an idea of the proofs of Lemma 2.10.5 (1) and (2) by consider-

ing some interesting cases. (For more complete proofs, see Barendregt, 1992,

Proposition 3.2.7 or 3.1.7.) For Lemma 2.10.5 (3), we only give a hint.

Proof of Lemma 2.10.5

(1) We use induction on the derivation of the judgement J ≡ Γ′ � M : σ,

assuming that Γ′ ⊆ Γ′′, with Γ′′ another context. Again, there are three cases

to consider: J has been constructed with the (var)-, (appl)- or (abst)-rule. We

only treat the last case:

− Case (3): J is the conclusion of the (abst)-rule.

Then J must have the form Γ′ � λx : ρ . L : ρ→ τ . We have to prove that

Γ′′ � λx : ρ . L : ρ→ τ . (We assume that x �∈ dom(Γ′′); otherwise, rename x

in λx : ρ . L.)

Now Γ′, x : ρ � L : τ must have been the premiss in the construction of

J , so by induction we have:

(∗): Thinning already holds for Γ′, x : ρ � L : τ .

Since x �∈ dom(Γ′′), it follows that Γ′′, x : ρ is a correct context and also

Γ′, x : ρ ⊆ Γ′′, x : ρ. From the induction hypothesis (∗) it follows that

Γ′′, x : ρ � L : τ . From this, the (abst)-rule gives as conclusion that also

Γ′′ � λx : ρ . L : ρ→ τ .

(2) Again, we use induction, this time on the construction of J ≡ Γ � M : σ.

We only treat the (appl)-case:

− Case (2): J is the conclusion of the (appl)-rule.

Then J has the form Γ � LN : τ . To prove: Γ � FV (LN) � LN : τ .

By induction, the lemma already holds for the premisses Γ � L : ρ → τ

and Γ � N : ρ, so we know that Γ � FV (L) � L : ρ → τ (∗) and

Γ � FV (N) � N : ρ (∗∗). Note that Γ � FV (LN) is indeed a context.

So by part (1) (the Thinning Lemma), since both FV (L) ⊆ FV (LN) and

FV (N) ⊆ FV (LN), we obtain Γ � FV (LN) � L : ρ → τ from (∗) and

Γ � FV (LN) � N : ρ from (∗∗). Using the (appl)-rule, we get from this

Γ � FV (LN) � LN : τ .

(3) By induction on the derivation of Γ �M : σ. (Try this yourself.)

In the following lemma, we establish that every derivation can be ‘traced

back’ to the previous stage. That is to say, the legality of a variable, an appli-

cation or an abstraction, can only follow from the (var)-rule, the (appl)-rule

58 Simply typed lambda calculus

or the (abst)-rule, respectively. (One also says that derivations are syntax-

directed : for each judgement there is only one rule possible for establishing

that judgement as a conclusion, so the syntax of the term is a distinguishing

factor in the construction of judgements.)

The lemma is called the Generation Lemma, since it says precisely how a

certain judgement can be ‘generated’.

Lemma 2.10.7 (Generation Lemma)

(1) If Γ � x : σ, then x : σ ∈ Γ.

(2) If Γ � MN : τ , then there is a type σ such that Γ � M : σ → τ and

Γ � N : σ.

(3) If Γ � λx : σ . M : ρ, then there is τ such that Γ, x : σ � M : τ and

ρ ≡ σ → τ .

Proof Inspection of the derivation rules for Church’s λ→ as given in Defini-

tion 2.4.5, shows that there are no other possibilities than the ones stated in

this lemma.

Legal terms were defined as the typable ones (see Definition 2.4.10). So legal

terms are the well-behaving constructs in λ→-land. The following lemma ex-

presses that all subterms of a well-behaving term are well-behaving as well.

Here the notion ‘subterm’ is defined as in the untyped λ-calculus (Defini-

tion 1.3.5), reading λx : σ . M instead of λx . M .

Lemma 2.10.8 (Subterm Lemma) If M is legal, then every subterm of M

is legal.

(Given as Proposition 3.2.9 (see also 3.1.9) in Barendregt, 1992.)

Proof Exercise 2.16.

So if there are Γ1 and σ1 such that Γ1 �M : σ1, and if L is a subterm of M ,

then there are Γ2 and σ2 such that Γ2 � L : σ2.

As an example, take the following judgement, derived in Section 2.8:

x : α→ α, y : (α→ α)→ β � (λz : β . λu : γ . z)(y x) : γ → β .

Hence, M ≡ (λz : β . λu : γ . z)(y x) is legal.

(1) A subterm of M is λu : γ . z. According to the Subterm Lemma, this

term should be legal, as well. And indeed, as we showed in Section 2.8 (see

line (2) in the last diagram of that section):

x : α→ α, y : (α→ α)→ β, z : β � λu : γ . z : γ → β .

A simpler answer is, for arbitrary type δ:

z : δ � λu : γ . z : γ → δ .

2.11 Reduction and λ→ 59

(2) Another subterm of M is y x. This term is legal, as shown in Section 2.8:

x : α→ α, y : (α→ α)→ β � y x : β ,

or, shorter yet:

x : α, y : α→ β � y x : β .

To conclude this section, we mention the following important property of

Church’s λ→ which expresses that, given a context, a term may have at most

one type. Therefore, the type, if existing, is ‘unique’. (This property does not

hold for systems with typing à la Curry, as we noticed in Examples 2.3.1 (2).

See also Barendregt, 1992, p. 159.)

Lemma 2.10.9 (Uniqueness of Types) Assume Γ � M : σ and Γ � M : τ .

Then σ ≡ τ .

Proof By induction on the construction of M (Exercise 2.17).

Finally, we repeat what we already noted in Section 2.6:

Theorem 2.10.10 (Decidability of Well-typedness, Type Assignment, Type

Checking and Term Finding) In λ→, the following problems are decidable:

(1) Well-typedness: ? � term : ? .

(1a) Type Assignment: context � term : ? .

(2) Type Checking: context
?
� term : type .

(3) Term Finding: context � ? : type .

Proofs can be found in Barendregt, 1992, Propositions 4.4.11 and 4.4.12.

2.11 Reduction and λ→
In this section we examine the behaviour of λ→ with regards to β-reduction.

First we look at substitution, an operation at the heart of β-reduction.

In order to be able to treat substitution in λ→, we have to adjust the

related definition, viz. Definition 1.6.1; the only change concerns part (3), the

abstraction case, because we have to add a type to the bound variable:

(3) (λy : σ . P)[x := N] ≡ λz : σ . (P y→z[x := N]), if λz : σ . P y→z is an

α-variant of λy : σ . P such that z �∈ FV (N).

Now we have the following:

Lemma 2.11.1 (Substitution Lemma) Assume Γ′, x : σ, Γ′′ � M : τ and

Γ′ � N : σ. Then Γ′, Γ′′ � M [x := N] : τ .

This lemma says that if we substitute, in a legal term M , all occurrences

of context variable x by a term N of the same type as x, then the result

60 Simply typed lambda calculus

M [x := N] keeps the same type as M had. This is intuitively understandable:

in order to calculate the type ofM , it does not matter whether we deal with x’s,

or with N ’s at the same place(s) in the expression, given that the types of x

and N are the same.

Note that the validity of the premiss Γ′ � N : σ, without the declaration

x : σ in the context, implies that x does not occur free in N (cf. the Free

Variable Lemma 2.10.3). That’s why the declaration x : σ has been omitted in

the final judgement since x consequently also does not occur free in M [x := N].

Note also that x : σ is a declaration occurring somewhere in the full context

of the first judgement: the declaration x : σ is preceded by context part Γ′ and
followed by context part Γ′′ (either of these may be empty, of course). This

is not essential: due to the Permutation Lemma 2.10.5 (3), we may shift x : σ

back and forth through the full context. However, if we omit the Γ′′, the proof

of the lemma would be more complicated, in particular the (abst)-case (see

below).

We now discuss a proof of this Substitution Lemma. We spell out some

important details, and ask the reader to complete the proof in the same vein.

Proof of Lemma 2.11.1 We use induction on the derivation of the judgement

J ≡ Γ′, x : σ, Γ′′ � M : τ . For the final step in the derivation of J , there are

three possibilities, depending on the ‘shape’ of M : whether it is a variable, an

application or an abstraction.

We only look at the most complicated case, namely when M is an abstrac-

tion; say M ≡ λu : ρ . L. Consequently, τ must be ρ → ζ for some type ζ,

so

J ≡ Γ′, x : σ, Γ′′ � λu : ρ . L : ρ→ ζ.

Then the derivation step by means of which this J has been obtained, must

have been an instance of (abst), leading

− from J ′ ≡ Γ′, x : σ, Γ′′, u : ρ � L : ζ

− to the J given just now.

The well-formedness of the context in J ′ implies that u cannot be a subject

variable in Γ′. Hence, since Γ′ � N : σ and by the Free Variables Lemma 2.10.3,

we have that u �∈ FV (N).

Induction tells us that the lemma already holds for J ′. (This J ′ has an

‘extended’ Γ′′, compared to J , namely Γ′′, u : ρ.) Putting the lemma into

effect on J ′ and the supposition Γ′ � N : σ, we obtain:

Γ′, Γ′′, u : ρ � L[x := N] : ζ.

Now we may employ the (abst)-rule for this judgement, yielding:

Γ′, Γ′′ � λu : ρ . (L[x := N]) : ρ→ ζ,

2.11 Reduction and λ→ 61

which (by what we noticed about substitution in the beginning of the present

section and since u �∈ FV (N)) is the same as

Γ′, Γ′′ � (λu : ρ . L)[x := N]) : ρ→ ζ,

hence

Γ′, Γ′′ � M [x := N] : τ .

Another important lemma is concerned with β-reduction. We have defined

β-reduction in an untyped setting (see Chapter 1), so we have to adjust it to the

(pre-typed) terms of ΛT. This is straightforward: all we have to do is reconsider

the Basis of one-step β-reduction (see Definition 1.8.1), since this contains a

λ-abstraction over variable x, which now gets a type. All other things remain

the same:

Definition 2.11.2 (One-step β-reduction, →β , for ΛT)

(1) (Basis) (λx : σ . M)N →β M [x := N] .

(2) (Compatibility) As in Definition 1.8.1.

(Of course, in the third compatibility rule of Definition 1.8.1, we now have

to read λx : τ . M →β λx : τ . N instead of λx . M →β λx . N .)

We copy Definition 1.8.3 for zero-or-more-step reduction, �β , in ΛT and

Definition 1.8.5 for conversion, =β .

Since types clearly play no role in the β-reduction process (see the (Basis)-

rule above, where σ is neglected and, moreover, it is not required that x and

N have the same type), the Church–Rosser Theorem (1.9.8) for untyped λ-

calculus is also valid in the typed version λ→:

Theorem 2.11.3 (Church–Rosser Theorem; CR; Confluence) The Church–

Rosser property also holds for λ→.

It is not hard to see that Corollary 1.9.9 also still holds in λ→:

Corollary 2.11.4 Suppose that M =β N . Then there is L such that M �β L

and N �β L.

An important lemma about β-reduction in λ→ is the following:

Lemma 2.11.5 (Subject Reduction) If Γ � L : ρ and if L �β L′, then

Γ � L′ : ρ.

We shall discuss this lemma first, and then prove it.

The lemma states that β-reduction does not affect typability. And even more:

β-reduction of a term does not change the type of that term (and the same

context will do).

This is of course a very welcome property: β-reduction is a formalisation of

62 Simply typed lambda calculus

‘calculation’, as we saw in Chapter 1. And we would not like calculations with

a term to affect either the typability or the type of that term: 3+5 is a natural

number, and it remains so after evaluation to 8.

Take again the example of Section 2.8 and consider Remark 2.8.1. With

Subject Reduction, we can now immediately conclude that:

x : α→ α, y : (α→ α)→ β � λu : γ . y x : γ → β .

(This judgement can also be established on its own, of course, by means of

a derivation, but an appeal to Subject Reduction is easier now.)

Proof of Lemma 2.11.5 We prove the case L →β L′, which is L �β L′ in
one step; the lemma then follows by induction on the number of one-step β-

reductions of L �β L′.
The case L→β L′ is proved by induction on the generation of L→β L′, that

is to say: one distinguishes between the various possibilities for establishing that

L→β L′, assuming that the lemma already holds for the assumptions leading

to L→β L′ (cf. Definition 2.11.2):

(1) Basis: L ≡ (λx : σ . M)N and L′ ≡M [x := N],

(2.1) Compatibility, case 1: L ≡MK and L′ ≡M ′K,

(2.2) Compatibility, case 2: L ≡ KM and L′ ≡ KM ′,

(2.3) Compatibility, case 3: L ≡ λx : τ . M and L′ ≡ λx : τ . M ′.

The Basis case has no assumptions, so induction does not apply. In all three

Compatibility cases the assumption is M →β M ′.
We only treat the Basis case, because it is the most interesting case: we

assume that Γ � (λx : σ . M)N : ρ and prove that Γ � M [x := N] : ρ.

By the Generation Lemma 2.10.7 (2), there must be a type τ such that

Γ � λx : σ . M : τ → ρ and Γ � N : τ . The first of these two judgements

implies, by the Generation Lemma 2.10.7 (3), the existence of a ϕ such that

Γ, x : σ � M : ϕ and τ → ρ ≡ σ → ϕ. Hence, τ ≡ σ and ρ ≡ ϕ. We obtain

Γ, x : σ � M : ρ and Γ � N : σ. Then by the Substitution Lemma 2.11.1:

Γ � M [x := N] : ρ.

(Do the Compatibility cases yourself: Exercise 2.18.)

Finally, one can prove that there are no infinite reduction sequences in λ→,

or ‘every calculation is finite’. (See Definition 1.9.6 for the notion ‘strong nor-

malisation’.)

Theorem 2.11.6 (Strong Normalisation Theorem or Termination Theorem)

Every legal M is strongly normalising.

The proof uses a kind of measure on legal terms which is always positive,

and becomes smaller in each β-reduction step. These two facts clearly imply

2.12 Consequences 63

strong normalisation. We do not give the details of the proof here (see e.g.

Geuvers & Nederpelt, 1994; see also Barendregt, 1992, Theorem 5.3.33).

Remark 2.11.7 As already mentioned in Chapter 1, strong normalisation

(or ‘termination’) always guarantees an outcome, whatever reduction path we

choose. This of course is relevant for calculations, but also for programming:

programs which do not end are undesirable. Algol 60 was one of the first well-

structured, so-called ‘high-level’ programming languages in the history of com-

puter science, but unfortunately, termination was not guaranteed. This is un-

avoidable: every programming language of sufficient power has non-terminating

programs.

On the other hand, one should not overestimate strong normalisability. In-

deed, it guarantees termination within a finite amount of time, but this may

nevertheless require waiting a long time. And since there is no upper bound on

‘finiteness’, one doesn’t know beforehand how long this waiting will take.

2.12 Consequences

In the previous two sections we listed and proved a number of important prop-

erties of λ→. These imply that all the negative aspects of untyped λ-calculus

(see Section 1.11) disappear.

We show this one by one.

(1) There is no self-application in λ→. (See also Example 2.2.6 (3).)

Proof Assume that MM is a legal term in λ→. Then there are Γ and τ such

that Γ �MM : τ . From the Generation Lemma 2.10.7 (2), it then follows that

there is a type σ such that (for the first M :) Γ � M : σ → τ and (for the

second M :) Γ � M : σ. Hence, by the Uniqueness of Types Lemma 2.10.9,

σ → τ ≡ σ. But this is clearly impossible: no function type can be equal to

its own left-hand side.

(2) Existence of β-normal forms is guaranteed.

This follows directly from the Strong Normalisation Theorem 2.11.6.

(3) Not every legal λ-term has a fixed point.

First note that the proof of Theorem 1.10.1 no longer works in λ→: the term

M ≡ (λx . L(xx))(λx . L(xx)) which is introduced in that proof makes heavy

use of self-application (the term itself is of the form NN , and there are also

two subterms xx).

But this is not enough to conclude that there are legal terms in ΛT without

a fixed point. So, let’s give an example to show this.

64 Simply typed lambda calculus

Take two different types, σ and τ , and consider some legal function F of

type σ → τ , in some context Γ, so Γ � F : σ → τ . Now this F cannot have a

fixed point within the system λ→, which we show now.

Assume that FM =β M where FM and M are legal. Then M must have

type σ (by legality of FM , Uniqueness of Types and Generation Lemma (2)).

Hence, by the (appl)-rule, FM has type τ . Now by Corollary 2.11.4, there

must be N such that FM �β N and M �β N , and by Subject Reduction

(twice) we obtain both Γ � N : τ and Γ � N : σ. This contradicts Uniqueness

of Types.

2.13 Conclusions

In this chapter we have added simple types to lambda calculus. These types

do not have much structure: starting from type variables, the only way to

construct other types is by repeatedly writing the binary →-symbol between

types. By their simplicity, they do not contain much ‘information’ about the

terms. We preferred explicit typing (à la Church) over implicit typing (à la

Curry).

The derivation system for Church’s λ→ reflects the structure of λ-terms in

that it has one rule for variables, one for applications and one for abstractions.

Thus it is very concise and to the point. It also conforms neatly to intuition.

We gave examples of derivations, which demonstrated the smooth behaviour

of the system-in-action.

The system λ→ satisfies many nice and desirable properties, in particular

concerning β-reduction. These properties also cause the drawbacks encountered

in untyped lambda calculus to be eliminated. In other words, there is no more

self-application, there are no infinite reduction sequences and we no longer have

fixed points for every function. And there is more: the positive points of un-

typed lambda calculus extend to the simply typed version of lambda calculus.

There is only one important drawback, which we mention here without a proof:

the system λ→ is much too weak to encapsulate all computable functions and

is hence not useable for the formalisation of mathematics.

Therefore, we have to extend λ→ to more powerful systems of typed lambda

calculus, which we shall do in the following chapters: we gradually introduce

more complex types, which are suitable for more ‘realistic’ situations, in par-

ticular for general use in logic and mathematics, as we shall show with various

examples.

Important to note is that these extensions will be without harm: the unde-

sired aspects of untyped lambda calculus will stay away.

2.14 Further reading 65

2.14 Further reading

Historically, the British mathematician and philosopher B. Russell was the first

to formulate a type theory. He developed this type theory (called the Ramified

Theory of Types, or RTT ; see also Section 13.8) for his thorough investigations

into the foundations of mathematics. Russell did not yet employ the λ-notation.

A few decades later, A. Church presented the simply typed lambda calculus

– the subject of the present chapter – which is a simplification of RTT, as it

removes the ramification. Church’s goal was to define higher order logic; simple

type theory defines the language of higher order logic. Church’s paper (Church,

1940) is still very accessible.

In this chapter we have mainly discussed the explicit typing variant of simple

type theory, or typing à la Church. With explicit typing, the decidability of

typing is almost immediate: the free variables have a type in the context and

the bound variables have a type in the lambda abstraction (we write λx : σ . M

instead of just λx . M). From that information one straightforwardly computes

the (unique) type of the whole term, if it exists.

For functional programming languages, the system à la Curry, with implicit

types, is relevant. That is because, when programming, one wants to avoid

writing the types, and instead let the compiler compute a type (if the term is

typable; and return ‘fail’ if the term is not typable). For the Curry system, the

type of a term is not unique. J.R. Hindley (see Hindley, 1969, 1997), H.B. Curry

(Curry, 1969) and R. Milner (Milner, 1978) have independently developed the

principal type algorithm, that, given a closed untyped term M , computes a

type σ of M (if M is typable) and ‘fail’ if M is not typable in simple type

theory à la Curry. Moreover, the computed type σ is ‘minimal’ in the sense

that all possible types for M are substitution instances of σ. (Such a type is

called a principal type.) A more modern exposition of this algorithm is given

by M. Wand (Wand, 1987), where a type checking problem is reduced to a

unification problem over type expressions, and then the most general unifier

of J.A. Robinson’s unification algorithm (Robinson, 1965) yields the principal

type.

Readers particularly interested in the value of types for computer science are

referred to the books of B.C. Pierce (Pierce, 2002, 2004). A good introductory

text on simple type theory for logic is Hindley (1997); another one, focusing

on computation, is Simmons (2000).

Untyped lambda calculus is Turing-complete, but the expressivity of simple

type theory is limited. It can be shown that one can encode natural numbers

as the closed terms of type (α → α) → α → α. The encoding represents

the number n as the expression λf : α → α . λx : α . f(. . . (f x) . . .) with n

times an f . These are called the (typed) Church numerals (Church, 1940).

66 Simply typed lambda calculus

(See Exercise 2.2; compare this with Exercise 1.10.) On these numerals, one

can then define addition and multiplication, but that’s about it: the class of

functions definable on the Church numerals in simple type theory is the class

of generalised polynomials (Schwichtenberg, 1976).

The limited expressivity of simple type theory can be overcome by extending

the system with a fixed point combinator. This has been done in the system

PCF (Plotkin, 1977), where for every type σ, a constant Yσ : (σ → σ) → σ is

added, satisfying the reduction rule Yσ f → f (Yσ f). This renders the system

Turing-complete and therefore it has been studied as the theoretical basis of

functional programming languages. It is also a good basis to study various

evaluation strategies that are known from functional programming, for example

‘call-by-value’ (to reduce (λx : σ . M)N , first reduce N to a value) and ‘call-by-

name’ (to reduce (λx : σ . M)N , first contract the redex itself to M [x := N]).

A non-trivial property of simple type theory is normalisation. For simple type

theory, Weak Normalisation (cf. Definition 1.9.6) was first proved by A.M. Tur-

ing in the 1940s, but only written up by his student R.O. Gandy much later

(see Gandy, 1980). Strong Normalisation was first proved by L.E. Sanchis in

1965 and published in Sanchis (1967). Probably the most well-known proof of

Strong Normalisation is due to W.W.Tait, using an ingenious semantic inter-

pretation. In Tait (1967) he only proves Weak Normalisation, but the proof can

immediately be extended to Strong Normalisation. See Section 8.2 of Cardone

& Hindley (2009) for a more detailed historic overview.

Exercises

2.1 Investigate for each of the following λ-terms whether they can be typed

with a simple type. If so, give a type for the term and the corresponding

types for x and y. If not, explain why.

(a) xx y,

(b) x y y,

(c) x y x,

(d) x(x y),

(e) x(y x).

2.2 Find types for zero, one and two (see Exercise 1.10).

2.3 Find types for K and S (see Exercise 1.9).

2.4 Add types to the bound variables in the following λ-terms such that they

become pre-typed λ-terms which are legal, and give their types:

(a) λxyz . x(y z),

(b) λxyz . y(x z)x.

Exercises 67

2.5 For each of the following terms, try to find a pre-typed variant which is

typable. If this is not possible, show why.

(a) λxy . x(λz . y)y,

(b) λxy . x(λz . x)y.

2.6 (a) Prove that the following pre-typed λ-term is legal, using the tree for-

mat:

λx : ((α→ β)→ α) . x (λz : α . y).

(b) Transform the derivation into flag format.

2.7 (a) Prove the following by giving a kind of derivation, with the rules

(func-appl) and (func-abst) described in Example 2.4.8:

If f : A→ B and g : B → C, then g ◦ f : A→ C.

(Note: g◦f is the composition of f and g, being the function mapping

x to g(f x).)

(b) Give a derivation in natural deduction of the following expression,

using the rules ⇒-elim and ⇒-intro described in Example 2.4.9:

(A⇒ B)⇒ ((B ⇒ C)⇒ (A⇒ C)).

(c) Prove that the following pre-typed λ-term is legal, using the flag for-

mat:

λz : α . y(x z).

(d) Indicate the similarities between the derivations in (a), (b) and (c).

2.8 (a) Add types to the bound variables in the λ-term λxy . y(λz . y x) such

that the type of this term becomes

(γ → β)→ ((γ → β)→ β)→ β.

(b) Give a derivation in tree format, proving this.

(c) Sketch a diagram of the tree structure, as in Section 2.5.

(d) Transform the derivation into flag format.

2.9 Give derivations by means of which the following judgements become

type-checked. You may use the flag notation. In part (b), you may use

flag notation in its ‘shortened’ form, i.e. suppress steps involving the (var)-

rule.

(a) x : δ→δ→α, y : γ→α, z : α→β �
λu : δ . λv : γ . z(y v) : δ → γ → β,

(b) x : δ→δ→α, y : γ→α, z : α→β �
λu : δ . λv : γ . z(xuu) : δ → γ → β.

2.10 Prove that the following pre-typed λ-terms are legal, by giving derivations

in (shortened) flag notation.

(a) x z (y z),

(b) λx : (α→ β)→ β . x(y z),

(c) λy : α . λz : β → γ . z(x y y),

(d) λx : α→ β . y(x z)z.

68 Simply typed lambda calculus

2.11 Find inhabitants of the following types in the empty context, by giving

appropriate derivations.

(a) (α→ α→ γ)→ α→ β → γ,

(b) ((α→ γ)→ α)→ (α→ γ)→ β → γ.

2.12 (a) Construct a term of type ((α→ β)→ α)→ (α→ α→ β)→ α.

(b) Construct a term of type ((α→ β)→ α)→ (α→ α→ β)→ β.

(Hint: use (a).)

2.13 Find a term of type τ in context Γ, with:

(a) τ ≡ (α→ β)→ α→ γ, Γ ≡ x : α→ β → γ,

(b) τ ≡ α→ (α→ β)→ γ, Γ ≡ x : α→ β → α→ γ,

(c) τ ≡ (α→ γ)→ (β → α)→ γ, Γ ≡ x : (β → γ)→ γ.

Give appropriate derivations.

2.14 Find an inhabitant of the type α→ β → γ in the following context:

Γ ≡ x : (γ → β)→ α→ γ.

Give an appropriate derivation.

(Hint: if τ is inhabited, then also σ → τ is inhabited.)

2.15 Give the (var)- and (appl)-cases of the proof of Lemma 2.10.5 (1) (the

‘Thinning Lemma’).

2.16 Prove Lemma 2.10.8 (the ‘Subterm Lemma’).

2.17 Prove Lemma 2.10.9 (the ‘Uniqueness of Types Lemma’).

(Hint: use Lemma 2.10.7 (the ‘Generation Lemma’).)

2.18 Prove the Compatibility cases in the proof of Lemma 2.11.5.

3

Second order typed lambda calculus

3.1 Type-abstraction and type-application

In Church’s λ→, we only encounter abstraction and application on the term

level:

− Look at the abstraction process. We start with termM , in which xmay occur

as a free variable. Assuming that x has type σ, we then may abstract M from

x by means of a λ, in order to obtain λx : σ . M . As a side effect, every free

occurrence of x in M becomes bound in λx : σ . M .

The variable x is itself a term. Consequently, by abstracting the term M

from the term x, we obtain a new term: λx : σ . M . One describes this

situation by saying:

the term λx : σ . M depends on the term x .

Hence, in λ→ we can construct terms depending on terms.

− The counterpart of abstraction is application. And when we can ‘abstract a

term from a term’, then it is natural that we also can ‘apply a term to a

term’. And indeed, we can: for the construction of MN we apply the term

M to the term N . Also now, the result is a term, namely MN .

Here one speaks of first order abstraction, or first order dependency, since

the abstraction is over terms. Its companion, application, is first order as well.

In the present chapter, we also introduce terms depending on types. In

this case one speaks of second order operations (or second order dependency).

The system that we obtain is called the second order typed lambda calculus,

or λ2 for short. Its precise definition and derivation rules follow later in this

chapter.

We start with motivating examples.

Examples 3.1.1 (1) First, we consider the identity function, i.e. the function

which, after taking an input, returns it unchanged:

70 Second order typed lambda calculus

− On the natural numbers, nat , this identity function is λx : nat . x.

− On the booleans, bool , this is λx : bool . x.

− On nat → bool (the set of functions from nat to bool), we have the identity

function λx : (nat→bool) . x.

So there are many identity functions, one per type. But what about ‘the’

identity function? It apparently does not exist in λ→. The best we can do is

to consider an ‘arbitrary’ type α and construct the function f ≡ λx : α . x.

But now, given an M of type nat , we cannot write fM , because this term

is not legal: the types do not match. (Since α �≡ nat , the (appl)-rule of Defi-

nition 2.4.5 fails.) Similar considerations hold for a B of type bool : also fB is

not legal.

Concluding, we want to have the possibility of ‘tuning’ this general function

λx : α . x in such a manner that it can deal with all kinds of types. The trick

for this is to add another abstraction at the front:

λα : ∗ . λx : α . x .

The novelty in this new kind of abstraction is the type variable α occurring

behind the first λ. The symbol ∗ denotes the type of all types, so in particular

α : ∗.
Note that λα : ∗ . λx : α . x acts by itself as a term again, but this time it is

a term depending on a type. The type it depends on is α.

The obtained (second order) term is called the polymorphic identity function.

Note that it is not an identity function itself, but only a potential one (an

‘identity-function-to-be’). We have to do (second order) application and β-

reduction to obtain a ‘genuine’ identity function. For example:

− (λα : ∗ . λx : α . x)nat →β λx : nat . x, which is the identity on nat ,

− (λα : ∗ . λx : α . x)(nat → bool) →β λx : (nat → bool) . x, which is the

identity on nat → bool .

So when extending λ→ in this manner, we have to add second order abstrac-

tion and application. Moreover, we need β-reduction for second order terms.

(2) Our second example is about iteration, i.e. the repeated application of

the same function.

Take a type σ and a function F of type σ → σ. We define Dσ,F as the

function mapping x in σ to F (F (x)). So Dσ,F is the second iteration of F , also

denoted as F ◦ F (the composition of F with itself).

This Dσ,F can easily be expressed in λ→ already, viz. as λx : σ . F (F x).

Now we want to consider such a D for arbitrary σ and arbitrary F : σ → σ,

so instead of the fixed type σ we take type variable α, and instead of the fixed

3.2 Π-types 71

function F we take term variable f , where f : α→ α. By means of abstraction

from f and α we obtain:

D ≡ λα : ∗ . λf : α→ α . λx : α . f(fx) .

D is called a polymorphic function, since it generalises over types: the first

abstraction is second order. We can apply D, for example, to the type nat ,

using second order application. Reduction gives:

D nat →β λf : nat → nat . λx : nat . f(fx) ,

so D nat is the function that maps f to its second iteration f ◦ f .
Assume that s is the successor function on the naturals, that is the function

mapping n to n+ 1, having type nat → nat . Then:

D nat s �β λx : nat . s(s x) .

This is the function mapping n to n+ 2.

(3) Iteration as in the previous example is a special case of general function

composition, i.e. the application of one function after another.

We immediately give the function composition operator, ◦, in λ2:

◦ ≡ λα : ∗ . λβ : ∗ . λγ : ∗ . λf : α→ β . λg : β → γ . λx : α . g(fx) .

So for given types A, B and C, and functions F : A → B and G : B → C,

we have that ◦ABC F G ‘is’ (i.e. is β-convertible to) the composition G ◦ F ,

being the function λx : A . G(F (x)).

3.2 Π-types

In the previous section we introduced second order λ-abstraction or type-

abstraction; see for example the first λ of the polymorphic identity:

λα : ∗ . λx : α . x .

Since we work in typed lambda calculus, it is natural to ask what the type is of

this second order term. Now we know already from λ→ that λx : α . x : α→ α,

so an educated guess is:

λα : ∗ . λx : α . x : ∗ → (α→ α) .

But now we have a problem. We saw earlier (Section 1.5) that we iden-

tify terms which only differ in the names of their binding (and corresponding

bound) variables. In our second order expression above, the type α has become

a binding variable, since it appears behind a λ (it is no longer a free variable,

as in Chapter 2).

72 Second order typed lambda calculus

It is natural to identify λα : ∗ . λx : α . x with e.g. λβ : ∗ . λx : β . x.

However, then we have:

λα : ∗ . λx : α . x : ∗ → (α→ α)

||| |||
λβ : ∗ . λx : β . x : ∗ → (β → β) ,

implying that two ‘identical’ terms (left) have different types (right). This is

clearly not what we intended.

It is easy to pinpoint the trouble: in both left-hand sides, we treat α and β

as bound variables, but in the right-hand sides, α and β act as free variables,

which is not what we want. Therefore we introduce a new binder, the type-

binder or Π-binder, denoted by the Greek capital Π (pronounced ‘pi’). We

write Πα : ∗ . α → α for the type of functions sending an arbitrary type α to

a term of type α→ α.

By an obvious extension of the notion of α-conversion (see Section 1.5), we

obtain Πα : ∗ . α→ α ≡α Πβ : ∗ . β → β , so now we have:

λα : ∗ . λx : α . x : Πα : ∗ . α→ α

||| |||
λβ : ∗ . λx : β . x : Πβ : ∗ . β → β ,

and our problem has been solved.

Looking at the second order terms in (2) and (3) from Examples 3.1.1, it is

not hard to guess what their Π-types will be (see also Section 3.5):

λα : ∗ . λf : α→ α . λx : α . f(fx) : Πα : ∗ . (α→ α)→ α→ α ,

λα : ∗ . λβ : ∗ . λγ : ∗ . λf : α→ β . λg : β → γ . λx : α . g(fx) :

Πα : ∗ . Πβ : ∗ . Πγ : ∗ . (α→ β)→ (β → γ)→ α→ γ .

Remark 3.2.1 In mathematics, the letter Π (the Greek P) is usually reserved

for a product, just as Σ (the Greek S) is reserved for sums. Π-types are also

called product types; cf. Remark 5.2.2.

3.3 Second order abstraction and application rules

Since we allow second order abstraction, second order application and Π-types,

our derivation system for λ→ has to be extended.

To begin with, we need an extra abstraction rule, in order to make the

connection between second order terms and Π-types. This rule is:

Definition 3.3.1 (Second order abstraction rule)

(abst2)
Γ, α : ∗ � M : A

Γ � λα : ∗ . M : Πα : ∗ . A

3.4 The system λ2 73

So when M has type A in a context where α has type ∗, then λα : ∗ . M has

type Πα : ∗ . A. This rule corresponds to our expectations after the examples in

the previous section. There is one novelty: we allow second order declarations

in the context, such as α : ∗.
How about applications in the presence of Π-types? Let’s observe an exam-

ple, again. We know that λα : ∗ . λx : α . x : Πα : ∗ . α→ α .

Now we apply the left-hand side to, say, nat . This is a type, so it does ‘fit’

in the second order term. We obtain the term:

(λα : ∗ . λx : α . x)nat ,

which β-reduces to λx : nat . x. (It is easy to see how reduction must be

extended to second order terms.) The latter term has type nat → nat , so a

good guess is:

(λα : ∗ . λx : α . x)nat : nat → nat .

This is indeed also a natural thing to do: we start with a function belonging

to the specific Π-type Πα : ∗ . α→ α, which is the type of all functions sending

an arbitrary type α to a term of type α→ α. So, when applying such a function

to nat , we obtain a term of type nat → nat , and that’s exactly what we have

above.

Recapitulating the above in a more general setting:

If M : Πα : ∗ . α→ α , then:

MB : B → B ,

and even more generally:

If M : Πα : ∗ . A , then:

MB : A[α := B] .

Of course, we have to be certain that B matches with the domain of M

in the last two cases, so B should be a type, i.e. B : ∗. This leads us to the

following second order application rule:

Definition 3.3.2 (Second order application rule)

(appl2)
Γ � M : Πα : ∗ . A Γ � B : ∗

Γ � MB : A[α := B]

3.4 The system λ2

In this section we describe the complete system λ2.

Firstly, we have to extend our definition of types (cf. Definition 2.2.1). This

is the abstract syntax for λ2-types:

T2 = V | (T2→ T2) | (ΠV : ∗ . T2),

74 Second order typed lambda calculus

with V the set of type variables. For these we take α, β, γ,

Secondly, we extend our set of pre-typed λ-terms (ΛT, cf. Definition 2.4.1)

to terms where also second order abstraction and application are allowed:

Definition 3.4.1 (Second order pre-typed λ-terms, λ2-terms, ΛT2)

The set of second order pre-typed λ-terms, or λ2-terms, is defined by:

ΛT2 = V |(ΛT2ΛT2)|(ΛT2T2)|(λV : T2 . ΛT2)|(λV : ∗ . ΛT2) .

Note that we now have two classes of variables at our disposal: object vari-

ables V (such as x, y, . . .) and type variables V (such as α, β, . . .). As a

consequence, we have first order abstraction (λV : T2 . ΛT2) from object vari-

ables, and second order abstraction (λV : ∗ . ΛT2) from type variables.

Correspondingly, we have first order application (ΛT2ΛT2) and second order

application (ΛT2T2).

In λ2, we save on parentheses and λs in a similar manner as we have done

for untyped lambda calculus and for simply typed lambda calculus (see Nota-

tions 1.3.10 and 2.2.2). This convention extends to arrows (→) and Πs:

Notation 3.4.2 − Outermost parentheses may be omitted.

− Application is left-associative.

− Application and → take precedence over both λ- and Π-abstraction.

− Successive λ- or Π-abstractions concerning the same types may be combined

in a right-associative way.

− Arrow types are denoted in a right-associative way.

For example: we write Πα, β : ∗ . α → β → α as an abbreviating notation

for (Πα : ∗ . (Πβ : ∗ . (α→ (β → α)))).

Next, we extend our notion of ‘declaration’ (see Definition 2.4.2) by allowing

second order declarations:

Definition 3.4.3 (Statement, declaration)

(1) A statement is either of the form M : σ, where M ∈ ΛT2 and σ ∈ T2, or of

the form σ : ∗, where σ ∈ T2.

(2) A declaration is a statement with a term variable or a type variable as

subject.

In λ→, a context was just a list of term declarations. In λ2, however, we are

a bit more strict. Since the type constants of λ→ have become type variables

in λ2, we treat these type variables on a par with term variables, in the sense

that all variables must be declared before they can be used. This guarantees

that we ‘know’ the types of all variables before we use them.

That is to say, a declaration such as x : α → α must be preceded by the

3.4 The system λ2 75

declaration of type variable α (having type ∗). Furthermore, the declaration

x : α→ β presupposes the declarations of both α and β.

This is the motivation for the following recursive definition of λ2-context,

which we combine with a new definition of the domain of a context. In this def-

inition, part (3), we speak about free type variables. We leave it as an exercise

to the reader to say what freeness for type variables comprises (Exercise 3.21).

Definition 3.4.4 (λ2-context; domain; dom)

(1) ∅ is a λ2-context;

dom(∅) = (), the empty list.

(2) If Γ is a λ2-context, α ∈ V and α �∈ dom(Γ), then Γ, α : ∗ is a λ2-context;

dom(Γ, α : ∗) = (dom(Γ), α), i.e. dom(Γ) concatenated with α.

(3) If Γ is a λ2-context, if ρ ∈ T2 such that α ∈ dom(Γ) for all free type variables

α occurring in ρ and if x �∈ dom(Γ), then Γ, x : ρ is a λ2-context;

dom(Γ, x : ρ) = (dom(Γ), x).

Note that this definition entails that all term variables and type variables in

a λ2-context are mutually distinct.

Example 3.4.5

− ∅ is a λ2-context by (1).

− So α : ∗ is a λ2-context by (2).

− Hence, α : ∗, x : α → α is a λ2-context by (3). (Note that type variable α

in type α→ α has already been declared in the context.)

− Also, α : ∗, x : α→ α, β : ∗ is a λ2-context by (2).

− Hence, Γ ≡ α : ∗, x : α→ α, β : ∗, y : (α→ α)→ β is a λ2-context by (3),

with dom(Γ) = (α, x, β, y).

Conforming with our new notion of context, we adapt the (var)-rule of λ→
(cf. Definition 2.4.5) in order to start the derivation of the type of a variable

relative to a ‘proper’ λ2-context:

Definition 3.4.6 (Var-rule for λ2)

(var) Γ � x : σ if Γ is a λ2-context and x : σ ∈ Γ .

Note that this (var)-rule for λ2 is, again, a rule without a premiss.

Now we have most of the rules for derivations in λ2: we reuse (appl) and

(abst) from λ→ (see Definition 2.4.5), we take the new (var)-rule as above and

we add the rules (appl2) and (abst2) from the previous section.

There is one complication, however: when employing these five rules, we will

never be able to use the (appl2)-rule. The reason is that the second premiss

of this rule is Γ � B : ∗, and there is no rule to establish that something has

type ∗ (verify this: no conclusion is of the form . . . � . . . : ∗).

76 Second order typed lambda calculus

It is not hard to repair this. Our intuition is that B : ∗ holds as soon as B

is a type and all type variables in B are ‘known’. So we add:

Definition 3.4.7 (Formation rule)

(form)
Γ � B : ∗ if Γ is a λ2-context, B ∈ T2 and

all free type variables in B are declared in Γ.

This rule is called the formation-rule, since it tells us what the type is

(namely, ∗) of a B which is itself a properly formed λ2-type.

Note that the (form)-rule has three side conditions, but no premisses. So,

just like the (var)-rule, it can only occur in the leaves of a derivation tree.

For convenience, we display all derivation rules of λ2 in Figure 3.1:

(var) Γ � x : σ if Γ is a λ2-context and x : σ ∈ Γ

(appl)
Γ � M : σ → τ Γ � N : σ

Γ � MN : τ

(abst)
Γ, x : σ � M : τ

Γ � λx : σ . M : σ → τ

(form)
Γ � B : ∗ if Γ is a λ2-context, B ∈ T2 and
all free type variables in B are declared in Γ

(appl2)
Γ � M : (Πα : ∗ . A) Γ � B : ∗

Γ � MB : A[α := B]

(abst2)
Γ, α : ∗ � M : A

Γ � λα : ∗ . M : Πα : ∗ . A

Figure 3.1 Derivation rules for λ2

We translate the notion ‘legality’ from Definition 2.4.10 to λ2:

Definition 3.4.8 (Legal λ2-terms) A term M in ΛT2 is called legal if there

exists a λ2-context Γ and a type ρ in T2 such that Γ �M : ρ .

3.5 Example of a derivation in λ2

In Section 3.2 we ‘guessed’ the type ofM ≡ λα : ∗ . λf : α→ α . λx : α . f(fx).

Now we show how this type can be derived by the aid of the rules. So, our

task is to find a context Γ and a type ρ such that Γ � M : ρ. Since M has no

free term or type variables, we take Γ ≡ ∅. Thus, we start with the goal:

3.5 Example of a derivation in λ2 77

(n) λα : ∗ . λf : α→ α . λx : α . f(fx) : ?

Since the term-to-be-typed starts with a ‘second order λ’, we use the rule

(abst2), in reverse order:

(a) α : ∗
...

(m) λf : α→ α . λx : α . f(fx) : ?

(n) λα : ∗ . λf : α→ α . λx : α . f(fx) : . . . (abst2) on (m)

The new goal starts with λf : α → α, which is an ‘ordinary’ first

order abstraction, so (abst) is the suitable rule to use – again, in reverse order.

Obviously, we may use this rule twice:

(a) α : ∗
(b) f : α→ α

(c) x : α
...

(k) f(fx) : ?

(l) λx : α . f(fx) : . . . (abst) on (k)

(m) λf : α→ α . λx : α . f(fx) : . . . (abst) on (l)

(n) λα : ∗ . λf : α→ α . λx : α . f(fx) : . . . (abst2) on (m)

The remainder is just a typing problem in λ→, which we know how to solve

(we give a shortened derivation, as in the previous chapter):

(a) α : ∗
(b) f : α→ α

(c) x : α

(1) fx : α (appl) on (b) and (c)

(2) f(fx) : α (appl) on (b) and (1)

(3) λx : α . f(fx) : type1 (abst) on (2)

(4) λf : α→ α . λx : α . f(fx) : type2 (abst) on (3)

(5) λα : ∗ . λf : α→ α . λx : α . f(fx) : type3 (abst2) on (4)

Now all that’s left is to fill in type1, type2 and type3, which immediately

follows from the (abst)- and (abst2)-rules:

type1 ≡ α→ α,

type2 ≡ (α→ α)→ α→ α, and

type3 ≡ Πα : ∗ . (α→ α)→ α→ α.

78 Second order typed lambda calculus

So our conclusion, the completion of line (5), is:

(5) ∅ � λα : ∗ . λf : α→ α . λx : α . f(fx) : Πα : ∗ . (α→ α)→ α→ α .

From this we can conclude by the Thinning Lemma (see Lemma 3.6.4), that

for every λ2-context Γ:

(6) Γ � λα : ∗ . λf : α→ α . λx : α . f(fx) : Πα : ∗ . (α→ α)→ α→ α .

Suppose we have a type nat that we can form in Γ, that is we have:

(7) Γ � nat : ∗ .

From (6) and (7) follows by (appl2):

(8) Γ � (λα : ∗ . λf : α→ α . λx : α . f(fx)) nat :

(nat → nat)→ nat → nat .

Suppose we also have:

(9) Γ � suc : nat → nat ,

then with (appl) on (8) and (9) we get:

(10) Γ � (λα : ∗ . λf : α→ α . λx : α . f(fx)) nat suc : nat → nat ,

and so, if we also have Γ � two : nat , we obtain:

(11) Γ � (λα : ∗ . λf : α→ α . λx : α . f(fx)) nat suc two : nat .

3.6 Properties of λ2

We have to adapt our Definition 1.5.2 of α-conversion, in order to accommodate

Π-types:

Definition 3.6.1 (α-conversion or α-equivalence, extended)

(1a) (Renaming of term variable)

λx : σ . M =α λy : σ . Mx→y if y �∈ FV (M) and y does not occur as a binding

variable in M .

(1b) (Renaming of type variable)

λα : ∗ . M =α λβ : ∗ . M [α := β] if β does not occur in M ,

Πα : ∗ . M =α Πβ : ∗ . M [α := β] if β does not occur in M .

(2), (3a), (3b), (3c) (Compatibility, Reflexivity, Symmetry, Transitivity)

As in Definition 1.5.2.

We also extend β-reduction to λ2 in the obvious way (cf. Definitions 1.8.1

and 2.11.2):

3.6 Properties of λ2 79

Definition 3.6.2 (One-step β-reduction, →β for Λ2-terms)

(1a) (Basis, first order) (λx : σ . M)N →β M [x := N]

(1b) (Basis, second order) (λα : ∗ . M)T →β M [α := T]

(2) (Compatibility) As in Definition 1.8.1.

Example 3.6.3 We can start a β-reduction on the term in judgement (11)

of the previous section:

(λα : ∗ . λf : α→ α . λx : α . f(fx)) nat suc two →β

(λf : nat→ nat . λx : nat . f(fx)) suc two →β

(λx : nat . suc(suc x)) two →β

suc(suc two).

Each of the four terms in this β-reduction chain has the same type, viz. nat.

This can be established in two ways:

(1) By giving type derivations for each of them, as we did in Section 3.5 for

the first one (this is the laborious way);

(2) But also: by using Subject Reduction (see Lemma 3.6.4 below) – this is

apparently the easy way here, because we have already derived judgement (11).

In Chapter 2 we established a number of properties for λ→. Most of these

may be transferred to λ2.

Lemma 3.6.4 The following lemmas and theorems also hold for λ2:

− Free Variables Lemma (cf. Lemma 2.10.3),

− Thinning Lemma (cf. Lemma 2.10.5 (1)),

− Condensing Lemma (cf. Lemma 2.10.5 (3)),

− Generation Lemma (cf. Lemma 2.10.7),

− Subterm Lemma (cf. Lemma 2.10.8),

− Uniqueness of Types (cf. Lemma 2.10.9),

− Substitution Lemma (cf. Lemma 2.11.1),

− Church–Rosser Theorem (cf. Theorem 2.11.3),

− Subject Reduction (cf. Lemma 2.11.5),

− Strong Normalisation Theorem (cf. Theorem 2.11.6).

We omit proofs of these properties.

Note that the only lemma from Chapter 2 that we have to adapt is the

Permutation Lemma (cf. Lemma 2.10.5): it is no longer allowed to arbitrarily

permute the declarations in a context Γ occurring in a judgement Γ � M : T ,

since a declaration occurring later in that context may depend on an earlier one,

as we have explained in Section 3.4. If we require, however, that the permuted

context is a λ2-context, again, then it holds.

80 Second order typed lambda calculus

3.7 Conclusions

In this chapter we have extended Church’s λ→ with terms depending on types.

The motivation is that a natural desire exists to ‘abstract away’ from a certain

type in order to get a more general notion, such as the (polymorphic) identity

function or generic function composition.

The extension has led to terms incorporating second order abstraction and

application. As a consequence of the extension, Π-types have been introduced,

being types of functions which send a type to a term.

The system obtained is λ2, having first order and second order abstraction

and application rules. Most of the nice properties of λ→ still hold for the new

system λ2.

3.8 Further reading

The second order typed lambda calculus was first defined by J.-Y. Girard in

his PhD thesis (Girard, 1972), where it was called ‘system F’. Girard defined

system F for proof-theoretic reasons: to capture the functions that one can

prove to be total in second order arithmetic. We have not taken that angle

here, but there is a vast literature on second order lambda calculus that builds

on it (see Girard, 1986, and Girard et al., 1989, for a comprehensible overview).

A powerful aspect of second order types is that one can define various

data types, such as natural numbers, lists and trees, as closed second or-

der types. One can also define functions over these data types such as ad-

dition and multiplication. For example, the data type of the natural num-

bers is Πα : ∗ . (α → α) → α → α and the natural numbers are repre-

sented as the polymorphic Church numerals: natural number n is represented

as λα : ∗ . λf : α → α . λx : α . f(. . . (f x) . . .) with n times an f (cf. what

we said about this in Section 2.14). C. Böhm and A. Berarducci have given

a general method of representing algebraic data types in λ2 (Böhm & Berar-

ducci, 1985). They also show how a large class of functions can be defined on

those data types in λ2.

Polymorphic types are also called ‘impredicative’ types. One speaks of im-

predicativity if an element of a set X is identified by referring to the set X

itself. A famous example of impredicativity occurs in the so-called Naive Set

Theory, where we have the notion powerset of a set X. (The powerset P(X) of

a set X is the set of all subsets of X.) Now it is tempting to introduce the set

of all sets, say Set. Then we must also allow the powerset of Set, and we have

P(Set) ∈ Set. In this case we identify the element P(Set) by referring to the

set Set to which it belongs. Impredicativity was seen as a source of inconsis-

tency by B. Russell and A.N. Whitehead in the book Principia Mathematica

3.8 Further reading 81

(Whitehead & Russell, 1910; cf. Section 2.14) and therefore banned from their

type theory (see also Section 13.8).

In the definition of a polymorphic type like σ := Πα : ∗ . α→ α, itself being

of type ∗, we also refer to (i.e. quantify over) the whole collection of types (the

type ∗ of the αs). Therefore, σ is called an impredicative type. Fortunately, it

has been shown by J.-Y. Girard that polymorphic types are consistent, so the

seemingly ‘vicious circle’ in the definition of polymorphic types is harmless. To

be precise, we mean here that the type theory is (logically) consistent if we

view the types as propositional formulas under the so-called propositions-as-

types isomorphism (‘PAT ’; see the end of Section 2.9 or Section 5.4) and we

can prove that there are ‘empty types’, i.e. types σ for which there is no closed

term M : σ.

Independent of Girard, J.C. Reynolds (see Reynolds, 1974) invented a simi-

lar typed lambda calculus that he called the polymorphic lambda calculus. He

constructed this system in order to capture the notion of parametricity. Para-

metricity is the aspect that we have been focusing on in this chapter: a function

f of type Πα : ∗ . α→ α treats the input type as a parameter. Such an f , ap-

plied to an arbitrary type τ , maps an object of τ to an object of that same

type τ without the possibility to look deeper into the structure of τ . Therefore,

an ‘overloaded’ function F that maps a natural number n to n+1, and a real

number x to |x|, and a list l to the empty list, is not parametric, because F

has to distinguish cases according to the type of its argument. In order to com-

pute the value of F t, one has to inspect the type of t, and depending on that,

apply a certain algorithm. Actually, it can be shown that the only function

f : α → α that is parametric is the identity. This fits precisely with the fact

that the polymorphic identity λα : ∗ . λx : α . x is the only closed term of type

Πα : ∗ . α→ α.

The polymorphic lambda calculus of Reynolds has inspired researchers in

functional programming languages to extend their languages with more pow-

erful typing disciplines. However, in a programming language, one wants to

write as few types as possible and let the compiler do type inference: i.e. do

the check whether the term we have is typable, and if so, to compute a ‘most

general type’ for us. This amounts to the implicit (à la Curry) typing that we

have alluded to in Chapter 2.

For second order typed lambda calculus, some of the basic questions are

much more difficult than for simple type theory.

For example, self-application is possible in λ2: we can add type information

to the term λx . x x that makes it typable. This can be observed by looking

at the term λx : (Πα : ∗ . α → α) . x (σ → σ) (xσ), which is a proper way

of adding type information to λx . x x. For (λx . x x)(λx . x x), however, this is

not possible, but that is far from obvious. A type inference algorithm should be

82 Second order typed lambda calculus

able to see that λx . x x is typable while the other term is not. It was an open

question for a long time whether type inference in polymorphic lambda calculus

is decidable, until this question was answered in the negative by J.B. Wells (see

Wells, 1994).

In modern functional languages, various ‘weak’ versions of polymorphism

are used that allow parametricity while preserving the decidability of type

inference. These type inference algorithms build on the work of R. Milner

(Milner, 1978), who was the first to develop typing algorithms for polymorphic

languages (see also Damas & Milner, 1982).

As for the meta-theory of polymorphic λ-calculus, Girard extended the orig-

inal strong normalisation proof of the simple type theory by W.W. Tait (Tait,

1967) in an ingenious way to λ2 (Girard, 1971; Girard et al., 1989). Another

interesting aspect to mention of the polymorphic λ-calculus is that it has no

‘set-theoretic’ models, as was proved by J.C. Reynolds (1984). This means that

in a semantics of λ2, the type σ → τ cannot be interpreted as the full set of

functions from the interpretation of σ to the interpretation of τ .

Exercises

3.1 How many λ2-contexts are there consisting of the four declarations α : ∗,
β : ∗, f : α→ β, x : α?

3.2 Give a full (i.e. not-shortened) derivation in λ2 to show that the following

term is legal; use the flag format. (Cf. Example 3.1.1 (3).)

M ≡ λα, β, γ : ∗ . λf : α→ β . λg : β → γ . λx : α . g(f x).

3.3 Take M as in Exercise 3.2. Assume nat : ∗, bool : ∗, suc : nat → nat and

even : nat → bool .

(a) Prove that M nat nat bool suc even is legal.

(b) Prove that λx : nat . even(suc x) is legal, in two ways:

(1) using Exercise 3.3 (a) and Subject Reduction; (2) directly.

3.4 Give a shortened derivation in λ2 to show that the following term is legal

in the context Γ ≡ nat : ∗, bool : ∗:
(λα, β : ∗ . λf : α→ α . λg : α→ β . λx : α . g(f(f x))) nat bool .

3.5 Let ⊥ ≡ Πα : ∗ . α and Γ ≡ β : ∗, x : ⊥.
(a) Prove that ⊥ is legal.

(b) Find an inhabitant of β in context Γ.

(c) Give three not β-convertible inhabitants of β → β in context Γ, each

in β-normal form.

(d) Prove that the following terms inhabit the same type in context Γ:

λf : β → β → β . f(xβ)(xβ), x((β → β → β)→ β).

Exercises 83

3.6 Find terms in ΛT2 that are inhabitants of the following λ2-types, each in

the given context Γ:

(a) Πα, β : ∗ . (nat → α)→ (α→ nat → β)→ nat → β,

where Γ ≡ nat : ∗.
(b) Πδ : ∗ . ((α→ γ)→ δ)→ (α→ β)→ (β → γ)→ δ,

where Γ ≡ α : ∗, β : ∗, γ : ∗.
(c) Πα, β, γ : ∗ . (α→ (β → α)→ γ)→ α→ γ, in the empty context.

3.7 Take ⊥ as in Exercise 3.5.

Let context Γ be α : ∗, β : ∗, x : α→ ⊥, f : (α→ α)→ α.

Give a derivation to successively calculate an inhabitant of α and an

inhabitant of β, both in context Γ.

3.8 Recall that K ≡ λxy . x in untyped lambda calculus.

Consider the following types:

T1 ≡ Πα, β : ∗ . α→ β → α and T2 ≡ Πα : ∗ . α→ (Πβ : ∗ . β → α).

Find inhabitants t1 and t2 of T1 and T2, which may be considered as

different closed λ2-versions of K.

3.9 Find a closed λ2-version of S ≡ λxyz . x z(y z), and establish its type.

3.10 Let M ≡ λx : (Πα : ∗ . α→ α) . x(σ → σ)(xσ) . (Cf. Section 3.8.)

(a) Prove that M is legal in λ2.

(b) Find a term N such that M N is legal in λ2 and may be considered

to be a proper way of adding type information to (λx . x x)(λy . y).

3.11 Take ⊥ as in Exercise 3.5. Prove that the following term is legal in the

empty context:

λx : ⊥ . x(⊥ → ⊥ → ⊥)(x(⊥ → ⊥)x)(x(⊥ → ⊥ → ⊥)xx) .
What is its type?

3.12 As mentioned in Section 3.8, we have in λ2 the polymorphic Church

numerals. They resemble the untyped Church numerals, as described in

Exercises 1.10 and 1.13 (b). For example:

Nat ≡ Πα : ∗ . (α→ α)→ α→ α,

Zero ≡ λα : ∗ . λf : α→ α . λx : α . x, having type Nat ,

One ≡ λα : ∗ . λf : α→ α . λx : α . f x, with type Nat , as well,

Two ≡ λα : ∗ . λf : α→ α . λx : α . f(f x).

We define Suc as follows as a λ2-term:

Suc ≡ λn : Nat . λβ : ∗ . λf : β → β . λx : β . f(nβ f x).

Check that Suc acts as a successor function for the polymorphic Church

numerals, by proving that Suc Zero =β One and Suc One =β Two.

3.13 See the previous exercise.

(a) We define Add in λ2 as follows:

Add ≡ λm, n : Nat . λα : ∗ . λf : α→ α . λx : Nat . mα f(nα f x).

Show that Add simulates addition, by evaluating Add One One.

84 Second order typed lambda calculus

(b) Find a λ2-term Mult that simulates multiplication on Nat . (Hint: see

Exercise 1.10.)

3.14 We may also introduce the polymorphic booleans in λ2:

Bool ≡ Πα : ∗ . α→ α→ α,

True ≡ λα : ∗ . λx, y : α . x,

False ≡ λα : ∗ . λx, y : α . y.

Construct a λ2-term Neg : Bool → Bool such that Neg True =β False

and Neg False =β True. Prove the correctness of your answer.

3.15 See Exercise 3.14. Define M by

M ≡ λu, v : Bool . λβ : ∗ . λx, y : β . u β(v β x y)(v β y y).

(a) Reduce the following terms to β-normal form:

M True True, M True False, M False True, M False False.

(b) Which logical operator is represented by M?

3.16 See the previous exercises. Find λ2-terms that represent the logical oper-

ators ‘inclusive or’, ‘exclusive or’ and ‘implication’.

3.17 See the previous exercises. Find a λ2-term Iszero that represents the

test-for-zero. That is, define a λ2-term such that Iszero Zero =β True

and Iszero n =β False for all polymorphic Church numerals n except

Zero. (Hint: see Exercise 1.14.)

3.18 See Exercise 3.14. We define the type Tree, representing the set of binary

trees with boolean-labelled nodes and leaves, by

Tree ≡ Πα : ∗ . (Bool → α)→ (Bool → α→ α→ α)→ α.

Then λα : ∗ . λu : Bool → α . λv : Bool → α→ α→ α . M has type Tree,

for every λ2-term M of type α.

(a) Sketch the three trees that are represented if we take for M , respec-

tively:

u False,

v True(u False)(u True),

v True(u True)(v False(u True)(u False)).

(b) Give a λ2-term which, on input a polymorphic boolean p and two

trees s and t, delivers the combined tree with p on top, left subtree s

and right subtree t.

3.19 Prove: if Γ � L : σ, then Γ is a λ2-context.

3.20 Prove the Free Variables Lemma for λ2 (cf. Lemma 3.6.4): if Γ � L : σ,

then FV (L) ⊆ dom(Γ).

3.21 Give a recursive definition for FTV (A), the set of free type variables in A,

for an expression A in T2 or in ΛT2.

4

Types dependent on types

4.1 Type constructors

In the previous chapter we introduced the possibility of constructing generalised

terms, by abstracting a term from a type variable. For example, the term

λx : σ . x (which is the identity on the fixed type σ) can be generalised to the

term λα : ∗ . λx : α . x (the ‘polymorphic’ identity, i.e. the identity on variable

type α, abstracted from this α).

In a similar manner, there is a natural wish to construct generalised types.

For example, types like β → β, γ → γ, (γ → β) → (γ → β), . . . , all have

the general structure ♦ → ♦, with the same type both left and right of the

arrow. Abstracting over ♦ makes it possible to describe the whole family of

types with this structure.

In order to handle this, we introduce a generalised expression that embodies

the essence of this structure: λα : ∗ . α → α. This is itself not a type, but a

function with a type as a value. It is therefore called a type constructor . Only

when we ‘feed’ it with e.g. β, γ or (γ → β), we obtain types:

(λα : ∗ . α→ α)β →β β → β ,

(λα : ∗ . α→ α) γ →β γ → γ ,

(λα : ∗ . α→ α) (γ → β) →β (γ → β)→ (γ → β) .

We obtain the type constructor λα : ∗ . α → α by abstracting the type

α→ α from the type α. In a similar manner, we can make more complex type

constructors, such as λα : ∗ . λβ : ∗ . α→ β.

An obvious question is: what are the types of these type constructors? We

already know that α→ α is a type. Hence, one may consider λα : ∗ . α→ α as

a function mapping the type α to the type α→ α. Since α : ∗ and α→ α : ∗,
we obtain:

λα : ∗ . α→ α : ∗ → ∗ .
Therefore, we need, next to ∗, a new ‘super-type’, viz. ∗ → ∗.

86 Types dependent on types

Similarly, we may conclude:

λα : ∗ . λβ : ∗ . α→ β : ∗ → (∗ → ∗) .

When adding things like ∗ → ∗ and ∗ → (∗ → ∗) as new super-types, it is

natural to also allow variables belonging to these super-types.

Examples 4.1.1

(1) Suppose we have a variable α : ∗ → ∗, then for γ : ∗, we have:

αγ : ∗.
It is then also natural to abstract from this variable α, obtaining:

λα : ∗ → ∗ . α γ : (∗ → ∗)→ ∗.
And we can apply this type constructor to the identity on types λβ : ∗ . β,
since λβ : ∗ . β has type ∗ → ∗ :
(λα : ∗ → ∗ . α γ)(λβ : ∗ . β) : ∗.

(2) We also may abstract from an α of type ∗ → ∗ and infer:

λα : ∗ → ∗ . α : (∗ → ∗)→ (∗ → ∗) .

The extensions described above can be summarised as the addition of types

depending on types, which will lead to the system λω to be described in

the present chapter.

Remark 4.1.2 When using this kind of general explanatory expression, such

as ‘terms depending on types’ or ‘types depending on types’, we now have to

extend the meaning of the word ‘type’, since we deal with both ordinary types

and type constructors. Similar things hold for expressions such as ‘abstracting

a term from a type’.

Above we have met the following examples of types (better: type construc-

tors) depending on a type, which here is, in all cases, α:

− λα : ∗ . α→ α,

− λα : ∗ . λβ : ∗ . α→ β,

− λα : ∗ → ∗ . α,
− λα : ∗ → ∗ . α γ.

The ‘super-types’ which we have met above, consisting of ∗ alone and of

∗-symbols with arrows in between, are called kinds. Abstract syntax for the

set K of all kinds is:

K = ∗ | (K→ K) .

Notation 4.1.3 We use similar conventions for the omission of parentheses,

as for simple types. So outermost parentheses may be omitted, and the kinds

are denoted right-associatively. (Cf. Notation 2.2.2.)

4.1 Type constructors 87

Examples of kinds are:

∗, ∗ → ∗, ∗ → ∗ → ∗, (∗ → ∗)→ ∗, (∗ → ∗)→ ∗ → ∗, ∗ → (∗ → ∗)→ ∗.

We introduce a new symbol for the type of all kinds, namely �, which is so

to speak the one and only ‘super-super-type’. We have now e.g. that ∗ : �, but

also ∗ → ∗ : �, etcetera. If κ is a kind, then often each M ‘of type’ κ (this is

colloquial for M : κ) is called a type constructor, or simply constructor . Then

all ‘old’ types – like α or α→ α – are also called constructors, although there

is ‘nothing to construct’ in these cases. So λα : ∗ . α → α is a constructor of

kind ∗ → ∗ and the ‘old’ type α→ α itself is a constructor of kind ∗.
We use the term proper constructor for constructors which are not types. So

the set of constructors splits apart into (‘old’) types and proper constructors .

Finally, the word sort is used for either ∗ or �, so:

Definition 4.1.4 (Constructor, proper constructor, sort)

(1) If κ : � and M : κ, then M is a constructor . If κ �≡ ∗, then M is a proper

constructor .

(2) The set of sorts is {∗,�}.

Notation 4.1.5 From now on, we reserve symbol s as meta-variable for a

sort (so s represents either ∗ or �).

With the addition of �, we now have four levels in our syntax:

Definition 4.1.6 (Levels)

Level 1: here we find the terms;

level 2: where the constructors are (so the types plus the proper constructors);

level 3: that of the kinds;

level 4: consists solely of �.

By gluing things together, we informally write judgement chains such as

t : σ : ∗ → ∗, or even t : σ : ∗ → ∗ : �, expressing t : σ and σ : ∗ → ∗
and ∗ → ∗ : �. In the last example we have levels 1 to 4 combined into one

judgement chain.

When σ is a proper constructor, then it cannot be inhabited, so we have

to omit the t from the chain. We then obtain the shorter judgement chain

σ : κ : �, with, for example, κ ≡ ∗ → ∗. But again, we observe several levels

in this chain, viz. levels 2 to 4.

Remark 4.1.7 It is worthwhile noticing that also statements A : B are

influenced by the richer choice in levels. Since the level of B must be one

higher than that of A, we have:

If A has level 1, then A must be a term and B a type.

In λ2, A may also have level 2. Then A is a type and B ≡ ∗. In λω, A may

88 Types dependent on types

also be a type constructor and consequently B can be a more complicated kind,

such as ∗ → ∗.
In λω, it is possible that A has level 3; then A is a kind and B ≡ �.

Consequently, the roles of subject and type in a statement also range over

several levels. These roles (and therefore their constructions) become increas-

ingly interwoven, which will be an essential feature of the type systems to be

discussed in the present chapter and thereafter.

4.2 Sort-rule and var-rule in λ ω

The system we consider in the present chapter is called λω. It is another

extension of λ→:

− λ2 = λ→ plus terms-depending-on-types,

− λω = λ→ plus types-depending-on-types.

We now continue with describing the specific derivation rules of λω. First,

we formalise the fact that the super-type ∗ is of type �. (That also all other

kinds are of type �, follows in Section 4.4.) This rule is called the sort-rule:

Definition 4.2.1 (Sort-rule)

(sort) ∅ � ∗ : �

Our next desire is a rule to establish that all declarations occurring in a

context are derivable in that context. In λ→ and λ2, we used the (var)-rule

for this purpose (see Definition 2.4.5 and Figure 3.1, respectively). In λω, we

use a slightly different approach: we neatly combine derivability of context

declarations with the construction of the context proper .

The reason for this is that types are more complex in λω, so we have to

make sure that the types are well-formed. In λ→, where the set of permissible

types was given beforehand, there was no problem at all. In λ2, things were a

bit more complicated, so we had to establish what a (proper) λ2-context was

(see Definition 3.4.4), which led in particular to requirements on the types used

in such contexts. Hence, the permissibility of types occurring in a judgement

could no longer be decided by referring to an outside set, but should depend

on an inspection of the judgement itself, including its context.

In the present system, the requirements imposed on the types are still more

severe: the permissibility of a type occurring in a judgement now only follows

if we can formally derive it.

Our new approach is the following: we only extend a context with a declara-

tion x : A if the type A itself is already ‘permissible’. And ‘permissible types’

of a statement occur in either level 2 or 3, and therefore are a type or a kind.

These things can be expressed in a rule, as follows:

4.2 Sort-rule and var-rule in λω 89

Definition 4.2.2 (Var-rule)

(var)
Γ � A : s

Γ, x : A � x : A
if x �∈ Γ.

Recall that s ranges over sorts (cf. Notation 4.1.5). So, the premiss of this

(var)-rule, Γ � A : s, requires that A itself is a type (if s ≡ ∗) or a kind (if

s ≡ �). Notice that the letter ‘x’ may hence stand for either a term variable or a

type variable. The (var)-rule allows us to extend context Γ with a declaration

x : A, and to derive the same declaration as a statement in the extended

context.

The restriction x �∈ Γ guarantees that variable x is ‘fresh’, i.e. x does not oc-

cur in Γ. From this follows that all variables declared in a context are different ,

which is a natural requirement, again: a context serves for typing possibly free

variables in a statement and it is obviously unnecessary to declare a variable

more than once in a context (and even confusing if the corresponding types

happen to be different).

We emphasise the fact that this (var)-rule plays a double role, due to the

two possibilities for s. Since s may be either ∗ (of level 3) or � (of level 4),

the rule-as-a-whole covers two levels. We show this in the following example,

by giving several realisations of the statements A : s and x : A occurring in

Definition 4.2.2:

Example 4.2.3

s ≡ � s ≡ ∗
A : s ∗ : � ∗ → ∗ : � α : ∗ α→ β : ∗
x : A α : ∗ β : ∗ → ∗ x : α y : α→ β

Now we can start a derivation with the (sort)- and (var)-rules as given

above. We give an example in tree format, which clearly demonstrates how

these rules work.

(1) ∅ � ∗ : �
(var)

(2) α : ∗ � α : ∗
(var)

(3) α : ∗, x : α � x : α

The (sort)-rule gives line (1). The (var)-rule has been used in its two roles,

with s ≡ � in line (2), and with s ≡ ∗ in line (3).

Of course, a similar derivation can be made for a type β.

In Section 2.5 we have mentioned that we prefer a flag format over a tree

format in this book. Therefore we repeat the above derivation in flag format:

90 Types dependent on types

(1) ∗ : � (sort)

α : ∗
(2) α : ∗ (var) on (1)

x : α

(3) x : α (var) on (2)

It becomes also clear from this example that the (var)-rule introduced in

the present chapter is less general than the one in e.g. the system λ→ (see

Definition 2.4.5), since the present (var)-rule only allows the derivation of the

newly added, final declaration x : A of the context. See lines (2) and (3) in the

derivation. In λ→, however, any declaration x : σ occurring in Γ, is derivable

with respect to this Γ.

It is a natural desire that we can do as much in our present system λω as in

λ→. So, for example, we want to be able to derive not only α : ∗, x : α � x : α,

but also:

(?1) α : ∗, x : α � α : ∗ ,
which is impossible with the present rules. Another judgement that we cannot

make yet, is:

(?2) α : ∗, β : ∗ � α : ∗ .
When we come to think about it, even the derivation of

(?3) α : ∗, β : ∗ � β : ∗
is not possible, although β : ∗ is the final declaration of the context α : ∗, β : ∗.
The reason is that we cannot yet obtain the premiss:

(?4) α : ∗ � ∗ : � ,

which is necessary for deriving (?3) with the (var)-rule.

All this will be repaired in the following section by the addition of the so-

called ‘weakening rule’.

4.3 The weakening rule in λ ω

The solution to the previously explained problem is the addition of a new rule.

This rule, called Weakening , allows us to ‘weaken’ the context of a judgement

by adding new declarations, provided that the ‘types’ of the new declarations

are ‘well-formed’. We first state the rule and discuss it afterwards:

Definition 4.3.1 (Weakening rule)

(weak)
Γ � A : B Γ � C : s

Γ, x : C � A : B
if x �∈ Γ.

4.3 The weakening rule in λω 91

The main effect of this rule can be described as follows. Assuming that we

have derived the judgement Γ � A : B (first premiss), then we may ‘weaken’

the context Γ by adding an arbitrary declaration at the end. So, the resulting

conclusion is Γ, x : C � A : B, i.e. A : B is also derivable in the extended

context.

There is one proviso: the type C of the added declaration should be well-

formed itself. This is expressed in the requirement given in the second premiss:

it should hold that Γ � C : s, i.e. C itself is derivable in the same context Γ

as something at level 2 when s ≡ ∗, or level 3 when s ≡ �.

The fact that the context extension in the (weak)-rule is only allowed at the

end is easy to express and turns out to be sufficient. It is provable that any

extension of the context with a well-formed declaration is permissible, which is

a result of the Thinning Lemma which also holds for λω (cf. Lemmas 2.10.5 (1)

and 3.6.4).

Remark 4.3.2 In type theory, one prefers the word ‘thinning’ for the general

process of inserting a new declaration in a given list of declarations, at an

arbitrary place. ‘Weakening’, however, is preferably used for extending such a

list at the end only. In both situations one adds more assumptions, and this

has indeed a ‘weakening’ (or ‘thinning’) effect on what we express.

Now we are able to derive the missing judgements (?1) to (?4), mentioned at

the end of the previous section. We first give the tree versions of the derivations,

in order to maintain a close correspondence to the format of the rules.

(?1) This is the resulting judgement (4) in the following derivation, in which

the (weak)-rule plays an important role.

(1) ∅ � ∗ : � (1) ∅ � ∗ : �
(var) (var)

(2) α : ∗ � α : ∗ (2) α : ∗ � α : ∗
(weak)

(4) α : ∗, x : α � α : ∗

It is interesting to see how two copies of line (2) have been used here as the

first and the second premiss of the (weak)-rule, in order to obtain line (4) as

a conclusion. We take s ≡ ∗. Please check carefully what is happening here.

(?2) and (?4) In the following derivation, the final conclusion (line (6))

solves question (?2). As a subresult, we also obtain an answer to question (?4):

see line (5), for which, again, two copies of the same judgement have been used

as left and right premisses.

92 Types dependent on types

(1) ∅ � ∗ : � (1) ∅ � ∗ : � (1) ∅ � ∗ : �
(var) (weak)

(2) α : ∗ � α : ∗ (5) α : ∗ � ∗ : �
(weak)

(6) α : ∗, β : ∗ � α : ∗

Both cases of (weak) here are based on s ≡ �.

(?3) The remaining question is solved in line (7) below.

(1) ∅ � ∗ : � (1) ∅ � ∗ : �
(weak)

(5) α : ∗ � ∗ : �
(var)

(7) α : ∗, β : ∗ � β : ∗

Finally, we condense all tree derivations as given in this and the previous

section into one flag derivation:

(1) ∗ : � (sort)

α : ∗
(2) α : ∗ (var) on (1)

x : α

(3) x : α (var) on (2)

(4) α : ∗ (weak) on (2) and (2)

(5) ∗ : � (weak) on (1) and (1)

β : ∗

(6) α : ∗ (weak) on (2) and (5)

(7) β : ∗ (var) on (5)

Remark 4.3.3 Albeit that tree derivations reflect the derivation rules faith-

fully, they are not always easy to read, as we mentioned already in Section 2.5.

Firstly, tree derivations soon become inconveniently large and complex. Sec-

ondly, tree derivations tend to contain many repetitions of judgements, and

also of subtrees. See the trees above, for example, where line (1) has been writ-

ten seven times. The tree consisting of lines (1) and (2) has been repeated three

times.

A linear representation such as the flag format is more distant from the

derivation rules as presented. It gives, however, a step-by-step impression of

the development of a derivation. Moreover, flag derivations are considerably

more compact, as the above example demonstrates. In particular, the repetitions

4.4 The formation rule in λω 93

that are inherent to a tree derivation are no longer necessary, since each line

in a flag derivation can be used arbitrarily often. See, for example, the flag

derivation above, where line (2) has been given only once, but has been appealed

to four times.

4.4 The formation rule in λ ω

In λ2 we had a formation rule called (form) for the construction of typing

statements in a context. The rule was based on a set T2 of λ2-types (see the

beginning of Section 3.4). As already noted in Section 4.2, types in λω are more

complex. Therefore, we introduce a ‘real’ derivation rule, with premisses and

conclusion, for the construction of types.

Moreover, we have also kinds in λω. But, thanks to the possibility of ‘double

roles’ in λω, things become easier than expected. The new (form)-rule, enabling

to form types and kinds, looks as follows:

Definition 4.4.1 (Formation rule)

(form)
Γ � A : s Γ � B : s

Γ � A→ B : s

This covers all the types and kinds that we want. (Note that there are no

terms depending on types in λω, which has as a consequence that there are no

Π-types in λω.)

We give two examples of this rule, the first one with s ≡ ∗. The omitted

subtrees above lines (6) and (7) can be found in the previous section.

.

(6) α : ∗, β : ∗ � α : ∗ (7) α : ∗, β : ∗ � β : ∗
(form)

(8) α : ∗, β : ∗ � α→ β : ∗

Our second example has s ≡ �:

.

(5) α : ∗ � ∗ : � (5) α : ∗ � ∗ : �
(form)

(9) α : ∗ � ∗ → ∗ : �

We can also give these results in flag format, by extending the flag derivation

of the previous section with two more lines:

94 Types dependent on types

...

(8) α→ β : ∗ (form) on (6) and (7)

(9) ∗ → ∗ : � (form) on (5) and (5)

4.5 Application and abstraction rules in λ ω

What remains are the (appl)- and (abst)-rules. We give them below.

The rules slightly differ from the rules in Chapter 3 (see Figure 3.1). Firstly,

the names of the meta-variables for the types are different (A instead of σ,

etcetera), because types in λω are more general. And secondly, in the (abst)-

rule we must be sure that A→ B is a well-formed type. (Recall that we have

no Π-types in λω.) This is expressed as a second premiss of that rule in a

manner similar to what we did earlier in the present chapter.

(appl)
Γ � M : A→ B Γ � N : A

Γ � MN : B

(abst)
Γ, x : A � M : B Γ � A→ B : s

Γ � λx : A . M : A→ B

Note that both have a double role again, since s ∈ {∗,�}. Hence, the type

A → B, occurring in both (appl) and in (abst), may be a second level type

such as (α→ β)→ γ, when s ≡ ∗. But A→ B can also be a third level type,

or kind, such as (∗ → ∗)→ ∗, when s ≡ �.

We still have not explained exactly how to extend β-reduction and β-con-

version to λω. This is a natural thing to do. We postpone the real definition

until later, and refer to the beginning of Section 4.1 for examples to show how

it works.

One of these examples was:

(λα : ∗ . α→ α)β →β β → β .

As a little exercise, let’s calculate the types of the two expressions. We start

with the left-hand side (λα : ∗ . α → α)β, and derive its type in flag format,

again as a continuation of the previous flag derivation, but with an empty

context to start with.

Both (abst) and (appl) are used in the derivation: see lines (14) and (16). In

order to demonstrate graphically how these rules have been implemented, we

also give the corresponding part of the tree-formatted derivation.

4.6 Shortened derivations 95

...

β : ∗

(10) ∗ : � (weak) on (1) and (1)

α : ∗
(11) α : ∗ (var) on (10)

(12) α→ α : ∗ (form) on (11) and (11)

(13) ∗ → ∗ : � (form) on (10) and (10)

(14) λα : ∗ . α→ α : ∗ → ∗ (abst) on (12) and (13)

(15) β : ∗ (var) on (1)

(16) (λα : ∗ . α→ α) β : ∗ (appl) on (14) and (15)

(12) β : ∗, α : ∗ � α→ α : ∗ (13) β : ∗ � ∗ → ∗ : �
(abst)

(14) β : ∗ � λα : ∗ . α→ α : ∗ → ∗
(15) β : ∗ � β : ∗

(appl)
(16) β : ∗ � (λα : ∗ . α→ α) β : ∗

The derivation corresponding to the right-hand side, β → β , is simple; we

only need line (15) for this:

...

(17) β → β : ∗ (form) on (15) and (15)

Judgements (16) and (17) demonstrate that left-hand side and right-hand

side of the example β-reduction have the same types, corresponding to the

same contexts. This is as expected: cf. the Subject Reduction Lemma 2.11.5.

4.6 Shortened derivations

Derivations like the ones given in the previous sections, leading to a judgement

in λω, have both interesting and uninteresting components. For example, the

judgement

(8) α : ∗, β : ∗ � α→ β : ∗
has been constructed from judgements (6) and (7) by means of the (form)-rule.

These judgements, in turn, depend on (1), (2) and (5), as can be established

by inspecting either the trees or the flag derivations.

96 Types dependent on types

We list these judgements below:

(1) ∅ � ∗ : � (sort),

(2) α : ∗ � α : ∗ (var),

(5) α : ∗ � ∗ : � (weak),

(6) α : ∗, β : ∗ � α : ∗ (weak),

(7) α : ∗, β : ∗ � β : ∗ (var).

No less than five judgements are needed to establish (8). However, all the

judgements mentioned, including (8), look very obvious.

These kinds of not-so-interesting steps occur in particular in three cases:

(i) when using the rules (sort), (var) and (weak),

(ii) when using (form), and

(iii) when establishing the validity of the second premiss of the (abst)-rule.

Note that case (i) applies to all five judgements used in the derivation of (8).

All these are ‘obviously’ well-formed judgements. Case (ii) applies to (8). Cases

(ii) and (iii) are precisely the cases when we want to make sure that something

is a well-formed type.

We like to focus our attention on the really interesting steps, as in Chapters 2

and 3 (see, for example, the shortened derivation in Section 2.5). Therefore we

will allow skipping all judgements which are obvious as such, or only intended

to establish that something is a well-formed type.

Remark 4.6.1 This is of course a debatable decision, since we are no longer

as precise as we actually should be. But humans tend to make errors when they

lose their concentration, and this easily happens when one does uninteresting

steps. Moreover, our system being completely formal enables us to leave the

final check to a computer program, which has no problems in filling in the

omitted judgements. Therefore, we feel it is permissible to skip ‘uninteresting’

steps in the rest of this book.

A consequence is that the (form)-rule will be rarely appealed to from now

on, and the use of (sort), (var) and (weak) will be minimal.

To demonstrate what we win when employing this convention, we give the

shortened version of the flag derivation of (16), as given in the previous section:

(a) β : ∗
(b) α : ∗
(12) α→ α : ∗ (form) on (b) and (b)

(14) λα : ∗ . α→ α : ∗ → ∗ (abst) on (12)

(16) (λα : ∗ . α→ α)β : ∗ (appl) on (14) and (a)

4.7 The conversion rule 97

Comparing these two derivations, the following may be noticed:

− The second derivation is compact and directly understandable, in particular

when read in the goal-directed (bottom-to-top) direction.

− We may immediately refer to what is in the flags: compare the two versions

of (12), and of (16).

− The rule (form) has been skipped in the shortened version, but judge-

ment (12) must remain since it is necessary for (14).

− We allow (abst) to be used with a reference to the first premiss only, ne-

glecting the second one: see the new (14).

4.7 The conversion rule

In this section we come back to β-reduction and β-conversion in λω, and their

consequences for typing. We recall the following λω example of β-reduction,

discussed in Sections 4.1 and 4.5:

(λα : ∗ . α→ α)β →β β → β .

We derived type ∗ for the left-hand side in the previous section, in context

β : ∗ (see line (16)). By the (var)-rule then follows:

β : ∗, x : (λα : ∗ . α→ α)β � x : (λα : ∗ . α→ α)β.

What we naturally want is that also:

β : ∗, x : (λα : ∗ . α→ α)β � x : β → β,

since β-convertible types are intentionally ‘the same’ types.

However (and this may come as a surprise), the latter judgement cannot be

derived, because our derivation system is too weak to draw that conclusion.

The transition from the type (λα : ∗ . α→ α)β to the type β → β is a case of

the more general β-conversion. Obviously, the following is what we want:

If M has type B and B =β B′, then M also has type B′

(provided that both B and B′ are well-formed types or kinds).

Since we cannot yet derive this in our system λω, we need an extra derivation

rule. This rule, called the conversion rule, is expressed as follows:

Definition 4.7.1 (Conversion rule)

(conv)
Γ � A : B Γ � B′ : s

Γ � A : B′ if B =β B′.

Note that, in the above rule, B is already well-formed since it appears as a

type in the judgement Γ � A : B. In order to guarantee that B′ is well-formed

as well, we add the second premiss: Γ � B′ : s. (So when s ≡ ∗, we have that
B′ is a well-formed type, and when s ≡ �, we have that B′ is a well-formed

kind .)

98 Types dependent on types

Remark 4.7.2 One could wonder whether the second premiss in the conver-

sion rule is really necessary: the first premiss implies that B is well-formed;

isn’t B′ then automatically well-formed, as well, since B =β B′?
The answer is: no. It holds, for example, that β → γ =β (λα : ∗ . β → γ)M,

for any term M . Now the left-hand side β → γ is a well-formed type, but the

right-hand side (λα : ∗ . β → γ)M may easily be ‘wrong’, e.g. when M has not

the type ∗.

As an example, we picture the key part of the tree derivation corresponding

to the judgements above. Let Γ ≡ β : ∗, x : (λα : ∗ . α→ α)β.

(18) Γ � x : (λα : ∗ . α→ α)β (19) Γ � β → β : ∗
(conv)

(20) Γ � x : β → β

Notwithstanding what has been said in Remark 4.7.2, we allow that the

second premiss in the conversion rule is suppressed in a shortened derivation,

as soon as it is immediately clear that the B′ under consideration is a well-

formed type. This is in line with our convention in the previous section.

As an example, we express the part of the tree given above as a flag-

formatted, shortened derivation; hence, we omit the second premiss of (conv),

viz. line (19).

...

x : (λα : ∗ . α→ α)β

(18) x : (λα : ∗ . α→ α)β (var) on (16)

(20) x : β → β (conv) on (18)

In order to make perfectly clear what the difference is between subject re-

duction and the conversion rule, we give the following scheme:

Γ � A : B

↓ β

A′

Γ � A′ : B

Subject Reduction

(a theorem)

Γ � A : B

↓ β

B′

Γ � A : B′

if Γ � B′ : s

Type Reduction

(subcase of (conv))

Γ � A : B

=β

B′

Γ � A : B′

if Γ � B′ : s

Conversion

(the rule (conv))

Subject Reduction states that if we reduce the subject of a judgement, keep-

4.8 Properties of λω 99

ing the type as it is, we obtain a judgement that is derivable again. It can be

proved in λω without the Conversion rule.

Type Reduction states that if we reduce the type of a judgement, we ob-

tain a derivable judgement again. But this is not provable in λω without the

Conversion rule. Note that Type Reduction is a special case of the Conversion

rule.

For convenience, we end this section with a list of all λω-rules (see Fig-

ure 4.1).

(sort) ∅ � ∗ : �

(var)
Γ � A : s

Γ, x : A � x : A
if x �∈ Γ

(weak)
Γ � A : B Γ � C : s

Γ, x : C � A : B
if x �∈ Γ

(form)
Γ � A : s Γ � B : s

Γ � A→ B : s

(appl)
Γ � M : A→ B Γ � N : A

Γ � MN : B

(abst)
Γ, x : A � M : B Γ � A→ B : s

Γ � λx : A . M : A→ B

(conv)
Γ � A : B Γ � B′ : s

Γ � A : B′ if B =β B′

Figure 4.1 Derivation rules for λω

4.8 Properties of λ ω

The system λω satisfies the majority of the nice properties of previous systems

(see Sections 2.10, 2.11 and 3.6).

However, the conversion rule requires a slight modification of the Uniqueness

of Types Lemma: types need no longer be literarily unique, but they are unique

up to conversion:

Lemma 4.8.1 (Uniqueness of Types up to Conversion)

If Γ � A : B1 and Γ � A : B2, then B1 =β B2.

We do not give a proof of this lemma.

100 Types dependent on types

4.9 Conclusions

We have studied generalised types, which themselves also depend on types.

Some of the constructs obtained are (proper) type constructors, i.e. functions

that are not types, but that deliver types when applied to the right arguments.

In extending our set of types, we also needed to extend our singleton set of

super-types: ∗ alone is not enough, we obtain kinds built from ∗ and →. We

also extended the already obtained three levels by a fourth: that of the super-

super-type �. The system resulting from these extensions is λω.

As to the derivation rules for λω, we have a (sort)-rule stating that ∗ is of

type �. Moreover, we need a new (var)-rule for variables, and a weakening

rule (weak) for contexts of judgements. In order to construct types inside the

derivation system, we have introduced the formation rule (form).

The application rule (appl) and abstraction rule (abst) in λω are more or less

as expected. They are single, straightforward rules, which need not be doubled

as in λ2. One reason for this is that there are no Π-types in λω. Another reason

is the important double role of most of the rules in λω, in particular of (appl)

and (abst).

When making actual derivations in λω, it turns out that many steps are not

very interesting. To cope with this, we have allowed shortened derivations, in

which some of the necessary checks are deliberately left out. Although this is a

debatable decision, it makes the derivations shorter and more manageable for

humans.

Finally, we have added the conversion rule (conv), which allows us to replace

a type by a (‘well-formed’) convertible type.

The system λω satisfies many of the nice properties of previous systems

(λ→, λ2). But, in order to deal with convertible types originating from the

conversion rule, the Uniqueness of Types Lemma has to be adapted.

4.10 Further reading

J.-Y. Girard was the first one to study the phenomenon of ‘types depending

on types’ in his PhD thesis (Girard, 1972), as an extension of his system F

(see Section 3.8) to system Fω. His goal was to study the class of functions

that one can prove to be total in higher order arithmetic. It turns out that this

class coincides exactly with the functions that can be defined in Fω.

The ‘types depending on types’ feature is usually not studied in isolation,

but combined with polymorphism as introduced in Chapter 3 (see Exam-

ples 3.1.1 (2)). The system λω is basically only defined as a transition to Fω

or the Calculus of Constructions (see Chapter 6).

In modern functional languages, e.g. in Haskell (Peyton Jones et al., 1998),

Exercises 101

we see ‘types depending on types’ in the form of type constructors: if Listσ
is the type of lists over the carrier type σ (so l : Listσ is a list consisting

of terms of type σ), then one would like to abstract from the carrier. Then

we view List : ∗ → ∗ as a ‘type constructor’, taking a type σ to the type of

lists over σ. The ‘length’ function then can be given the polymorphic type

Πα : ∗ . Listα→ nat , which is ‘borrowed’ from λ2.

Exercises

4.1 Give a diagram of the tree corresponding to the complete tree derivation

of line (16) of Section 4.5.

4.2 Give complete λω-derivations, first in tree format and then in flag format

(not shortened), of the following judgements:

(a) ∅ � (∗ → ∗)→ ∗ : �,

(b) α : ∗, β : ∗ � (α→ β)→ α : ∗.
4.3 (a) Give a complete (i.e. not shortened) λω-derivation in flag format of

α, β : ∗, x : α, y : α→ β � y x : β.

(b) Give a shortened λω-derivation in flag format of

α, β : ∗, x : α, y : α→ β, z : β → α � z(y x) : α.

4.4 Give shortened λω-derivations in flag format of the following judgements:

(a) α : ∗, β : ∗ → ∗ � β(β α) : ∗,
(b) α : ∗, β : ∗ → ∗, x : β(β α) � λy : α . x : α→ β(β α),

(c) ∅ � λα : ∗ . λβ : ∗ → ∗ . β(β α) : ∗ → (∗ → ∗)→ ∗,
(d) ∅ � (λα : ∗ . λβ : ∗ → ∗ . β(β α)) nat (λγ : ∗ . γ) : ∗, assuming that

nat is a constant of type ∗.
4.5 Give a shortened λω-derivation in flag format of the following judgement:

α : ∗, x : α � λy : α . x : (λβ : ∗ . β → β)α.

4.6 (a) Prove that there are no Γ and N in λω such that Γ � � : N is

derivable.

(b) Prove that there are no Γ, M and N in λω such that Γ � M→ � : N

is derivable.

4.7 (a) Give λω-definitions of the notions legal term, statement, λω-context

and domain.

(b) Formulate the following theorems for λω: Free Variables Lemma,

Thinning Lemma, Substitution Lemma.

5

Types dependent on terms

5.1 The missing extension

In the previous three chapters, we have met the following dependencies:

− Chapter 2: terms depending on terms , in the basic system λ→.

− Chapter 3: terms depending on terms + terms depending on types, in the

system λ2, extending λ→.

− Chapter 4: terms depending on terms + types depending on types , in the

system λω, also extending λ→.

Clearly, there is one extension missing, and that’s the one we deal with now:

− Chapter 5: terms depending on terms + types depending on terms. This

gives us the system λP, another extension of λ→.

A type depending on a term has the general format:

λx : A . M ,

where M is a type, and x a term-variable (then A must be a type). The

abstraction λx : A . M then depends on the term x.

In correspondence with Remark 4.1.2, we note that ‘a type depending on a

term’, such as λx : A . M , is actually a type-valued function or type constructor .

We start with motivating examples, showing some of the useful features of

the novel extension, particularly when using type theory for logic and mathe-

matics.

In order to get an idea of the usefulness of types-depending-on-terms, we

specialise the type M in the general expression λx : A . M to either sets or

propositions:

(1) Let Sn be a set for each n : nat . Informally speaking, each of those sets

can be considered as a type. Then λn : nat . Sn is also a type (to be precise:

a type constructor), depending on the term n. One can also say: λn : nat . Sn

is the function mapping term n to the set Sn, a so-called set-valued function.

104 Types dependent on terms

Other terminology that is used for λn : nat . Sn is that it is a family of types

(one type for every n : nat) or an indexed type (indexed by n : nat).

For example, let Sn = {0, n, 2n, 3n, . . .}, the set of all non-negative multiples

of n. Then λn : nat . Sn maps:

− natural number 0 to the set {0},
− natural number 1 to the set nat (the set of all natural numbers),

− natural number 2 to the set {0, 2, 4, 6, . . .} (the set of the even naturals),

etcetera.

What is the type of λn : nat . Sn? Since n : nat and Sn : ∗, this type clearly

should be nat → ∗.
A more common example is the following, presupposing that we have the

notion ‘finite sequence of naturals’ at our disposal: assume that 〈v1, . . . , vn〉
represents a sequence of n natural numbers.

Now let Vn = {〈v1, . . . , vn〉 | vi ∈ N}, the set of all natural number sequences

(‘vectors’) of length n. Then λn : nat . Vn maps n to the set of all vectors of

length n.

The type of λn : nat . Vn is again nat → ∗.

(2) Now take Pn to be a proposition for each n : nat . Let’s consider propo-

sitions as types, again. Then λn : nat . Pn is also a type (to be precise: a type

constructor), depending on the term n. One can also say: λn : nat . Pn is the

function mapping term n to the proposition Pn, so it is a proposition-valued

function.

Such a function represents what in logic is called a predicate. For example,

take Pn to be the proposition ‘n is a prime number’. Then λn : nat . Pn is the

logical predicate ‘to be a prime number’ (for naturals).

The logical predicate λn : nat . Pn, applied to a given n, may hold (be true

for that n) or not (be false for that n).

With Pn as above, the predicate λn : nat . Pn maps for example:

− natural number 3 to the proposition ‘3 is a prime number’ (which is true),

− natural number 4 to the proposition ‘4 is a prime number’ (which is false).

Again, the type of λn : nat . Pn is nat → ∗.

In mathematics there are many set-valued functions, and both in logic and

mathematics the notion ‘predicate’ is of paramount importance. So the exten-

sion of λ→ with types-depending-on-terms has useful applications.

Remark 5.1.1 In part (2) above, we consider propositions as types. This

is the so-called PAT-interpretation, which we have already mentioned in Sec-

tion 2.9. It is the first step to a very fruitful treatment of proofs in formal logic

5.2 Derivation rules of λP 105

and mathematics. See the forthcoming Section 5.4 for examples that provide a

convincing introduction to this powerful and fundamental pillar of type theory.

As we have mentioned before, the system obtained from λ→ by extending

it with types-dependent-on-terms, is called λP. It will not come as a surprise

now, that the letter ‘P’ in λP comes from predicate.

By applying the above-mentioned type constructors to a term we obtain:

− (λn : nat . Sn) 3,

− (λn : nat . Pn) 3.

Both expressions represent types, depending on a term (viz. 3). In the first

case, β-reduction gives S3 (which is the set of all non-negative multiples of 3);

in the second case we obtain P3 (the proposition ‘3 is a prime number’).

5.2 Derivation rules of λP

The derivation rules of λP have a great resemblance to the rules of λω (see

Figure 4.1 on page 99). The rules (sort), (var) and (weak) in λP are even

identical to the ones in λω. The same holds for (conv), the Conversion rule.

In Figure 5.1 we give a list of all λP-rules.

(sort) ∅ � ∗ : �

(var)
Γ � A : s

Γ, x : A � x : A
if x �∈ Γ

(weak)
Γ � A : B Γ � C : s

Γ, x : C � A : B
if x �∈ Γ

(form)
Γ � A : ∗ Γ, x : A � B : s

Γ � Πx : A . B : s

(appl)
Γ � M : Πx : A . B Γ � N : A

Γ � MN : B[x := N]

(abst)
Γ, x : A � M : B Γ � Πx : A . B : s

Γ � λx : A . M : Πx : A . B

(conv)
Γ � A : B Γ � B′ : s

Γ � A : B′ if B =β B′

Figure 5.1 Derivation rules for λP

106 Types dependent on terms

The main differences with respect to λω are:

(i) An upgrading of the →-types. The main novelty is the reappearance of

Π-types. In the rules (form), (appl) and (abst) of λP, we do not find →-types

A→ B, but Π-types Πx : A . B instead. Of course, this is more than a simple

change in notation: it is a real generalisation, since variable x may occur as a

free variable in B. As a consequence, we no longer have the simple situation of

a function type, consisting of all functions from input type A to a fixed output

type B. Instead, we have a dependent product in which the output type depends

on the value x chosen in the input type A.

(ii) A downgrading of the input types . In λP, we have types dependent on

terms, but no types dependent on types, such as Πα : ∗ . α→ α in λω. Hence,

a type Πx : A . B in λP has the property that x is a term, so A can only have

type ∗, not �. See the (form)-rules of λP and λω.

Apart from the mentioned differences between λω and λP, we note the fol-

lowing consequences of the fact that B in Πx : A . B may depend on x:

As to (form): We have to extend the context of the second premiss, by

changing Γ into Γ, x : A.

As to (appl): We have to choose the ‘proper’ output type B[x := N], corre-

sponding to the input value N taken for x.

Note again the double role of many of the rules, so that they are useable at

different levels.

For example, for the (form)-rule we have the following possibilities:

(1) s = ∗. Then A : ∗, B : ∗ and Πx : A . B : ∗,
(2) s = �. Then A : ∗, B : � and Πx : A . B : �.

Consider the following concrete examples of the above Π-types:

(1) Πn : nat . nat : ∗,
(2) Πn : nat . ∗ : �.

We have already met inhabitants of these Π-types:

(1) λn : nat . f(fn) : Πn : nat . nat (cf. Examples 3.1.1 (2)),

(2a) λn : nat . Sn : Πn : nat . ∗ (Section 5.1 (1)),

(2b) λn : nat . Pn : Πn : nat . ∗ (Section 5.1 (2)).

Notation 5.2.1 In λP, we write A→ B for Π-type Πx : A . B if we are sure

that x does not occur free in B. However, ‘officially’ we have only Π-types in

λP, and no →-types.

System λP has the same nice properties as λ2 and λω, albeit in a slightly

different format because our terms and types are a bit different. We do not

give a list of these properties now, but postpone this to the following chapter,

where all relevant properties are given and described in a general format.

5.3 An example derivation in λP 107

Remark 5.2.2 The Formation rule, (form), is also called the Product rule,

since it enables the construction and typing of a Π-type (see Section 3.2).

Martin-Löf (1980) calls a Π-type the Cartesian product of a family of types.

If one considers A to be a finite type, say with two elements a1 and a2, then

Πx : A . B is indeed the same as B[x := a1]×B[x := a2], the Cartesian product.

So, Π-types can both be seen as a generalisation of the Cartesian product and

as a generalisation of the function space (if x /∈ FV (B), then Πx : A . B is

just A→ B).

5.3 An example derivation in λP

We give an example of a derivation in λP, starting from scratch. We use the

flag format and leave it as an exercise to the reader to verify that the λP-rules

are properly used.

We first derive the following simple judgements in λP:

(1) ∗ : � (sort)

A : ∗
(2) A : ∗ (var) on (1)

(3) ∗ : � (weak) on (1) and (1)

x : A

(4) ∗ : � (weak) on (3) and (2)

(5) A→ ∗ : � (form) on (2) and (4)

All of these are also derivable in λω, as shown in the previous chapter, except

the last one. In line (5) we derive the super-type A → ∗, i.e. Πx : A . ∗. Here
we have types of different level left and right of the →. This was not possible

in λω. Note that A → ∗ is a kind depending on a term, and a P : A → ∗ is a
type depending on a term, although this is not immediately visible: the term

they depend on is the x in the unabbreviated form of A→ ∗, viz. Πx : A . ∗.
The new type A → ∗ may have inhabitants. For example, we may assume

that P is an inhabitant and continue the derivation with this assumption:

...

P : A→ ∗
(6) P : A→ ∗ (var) on (5)

(7) A : ∗ (weak) on (2) and (5)

(8) ∗ : � (weak) on (3) and (5)

108 Types dependent on terms

Adding a variable x of type A, again, gives more possibilities; for example,

we can apply P to x to obtain the type P x:

...

x : A

(9) x : A (var) on (7)

(10) P : A→ ∗ (weak) on (6) and (7)

(11) P x : ∗ (appl) on (10) and (9)

Line (11) enables us to construct a ‘real’ dependent type, Πx : A . P x, with

variable x occurring in ‘body’ P x:

...

(12) Πx : A . P x : ∗ (form) on (7) and (11)

After raising a new flag x : A (with a ‘new’ variable, called x again by abuse

of notation), we can derive other consequences of line (11): first, we show that

also the type P x → P x is derivable, and next we construct another Π-type,

viz. Πx : A . P x → P x. It is mere technique to show the validity of these

judgements and we leave it to the reader to see what’s happening:

...

x : A

y : P x

(13) P x : ∗ (weak) on (11) and (11)

(14) P x→ P x : ∗ (form) on (11) and (13)

(15) Πx : A . P x→ P x : ∗ (form) on (7) and (14)

Finally, we show that this Πx : A . P x → P x is inhabited , i.e. there is a

term of this type. This requires new flags x : A and y : P x, and the use of

the (abst)-rule, twice:

...

x : A

y : P x

(16) y : P x (var) on (11)

(17) λy : P x . y : P x→ P x (abst) on (16) and (14)

(18) λx : A . λy : P x . y : Πx : A . P x→ P x (abst) on (17) and (15)

5.4 Minimal predicate logic in λP 109

Remark 5.3.1 Also in λP, many rules have a double role, since the s may

be either ∗ or �. Check yourself that s ≡ � has been used in lines (2), (3), and

(5) to (8) of the above derivation, whereas s ≡ ∗ holds for the justifications of

lines (4), (9), (10), and (12) to (18).

So altogether, we have obtained a derivation which can be seen as a solution

to several questions (cf. Section 2.6), all condensed in line (18):

(Q1) Well-typedness: find out whether λx : A . λy : P x . y is well-typed.

(Q2) Type Checking: check that

A : ∗, P : A→ ∗ � λx : A . λy : P x . y : Πx : A . P x→ P x.

(Q3) Term Finding: find a term of type Πx : A . P x → P x in the context

A : ∗, P : A→ ∗.
We solved these questions ‘linearly’, starting from ∅ � ∗ : � and building

our derivation step by step. Almost accidentally this culminated in judge-

ment (18). If one of the three questions above had been our starting point,

then a linear (‘forward’) build-up of the derivation is not the best approach:

see Remark 2.9.2.

As we did with λω-derivations (see Section 4.6), we may restrict ourselves to

shortened derivations in λP by omitting the majority of lines based on (sort),

(var), (weak) and (form), and by suppressing references to the second premiss

of the (abst)-rule.

When we apply this convention to the derivation above, we obtain the fol-

lowing, considerably shorter derivation:

(a) A : ∗
(b) P : A→ ∗
(c) x : A

(11) P x : ∗ (appl) on (b) and (c)

(e) y : P x

(16) y : P x (var) on (11)

(17) λy : P x . y : P x→ P x (abst) on (16)

(18) λx : A . λy : P x . y :

Πx : A . P x→ P x (abst) on (17)

5.4 Minimal predicate logic in λP

In λP it is possible to code a very simple form of logic, called minimal pred-

icate logic, which only has implication and universal quantification as logical

110 Types dependent on terms

operations. The basic entities of this predicate logic are propositions , sets and

predicates over sets .

We already mentioned in Section 2.9 that the propositions-as-types inter-

pretation of logic (cf. Remark 5.1.1) also implies another nice and useful in-

terpretation: proofs-as-terms. Both notions are abbreviated by PAT and one

speaks about the PAT-interpretation of logic, covering both aspects.

We summarise the meaning of PAT as follows:

− If a term b inhabits type B (i.e. b : B), where B is interpreted as a propo-

sition, then we interpret b as a proof of B. Such a term b in type theory is

called a proof object .

− On the other hand, when no inhabitant of the proposition B exists (there is

no b with b : B), then there exists no proof of B, so B must be false.

Of course, the existence of an inhabitant of type B should be checked in a

type system such as λP, so one has to deliver a context Γ and a term b such

that Γ � b : B.

So the PAT-interpretation implies:

Proposition B is inhabited iff B is true;

proposition B is not inhabited iff B is false.

We now investigate the coding of the basic entities of minimal predicate logic

and apply the full PAT-interpretation in the appropriate cases.

I. Sets

We code a set S as a type, so S : ∗. Elements of sets are terms. So if a is an

element of set S, then a : S. (Of course, if S is the empty set, then there should

be no derivable term a with a : S.)

Examples: nat : ∗, nat → nat : ∗ ; 3 : nat , λn : nat . n : nat → nat .

II. Propositions

We also code propositions as types. So if A is a proposition, then A : ∗. Ac-
cording to the PAT-interpretation, a term p inhabiting such A codes a proof

of A. So if A is a true proposition, p being a proof of A, then p : A. (If there

is no proof of A, i.e. if A is false, then there is no such p inhabiting A.)

III. Predicates

As we saw in Section 5.1, a predicate P is a function from a set S to the set

of all propositions. So P : S → ∗ .
We investigate this situation a bit further. If P is an arbitrary predicate

on S, i.e. P : S → ∗, then for each a : S we have that P a : ∗. All these P a

5.4 Minimal predicate logic in λP 111

are propositions, which are types (level 2), so each P a may be inhabited. To

be precise:

(1) If P a is inhabited, so t : P a for some t, then the predicate holds for a.

(2) If P b is not inhabited, then the predicate does not hold for b.

Let’s now have a closer look at the logical operations of minimal predicate

logic, viz. implication and universal quantification:

IV. Implication

In Section 2.4 (Example 2.4.9) we identified the logical implication A ⇒ B

with the type A→ B. Using the PAT-interpretation, we can easily justify this

coding of ⇒ as →, by considering the following string of equivalences:

A⇒ B is true;

if A is true, then also B is true;

if A is inhabited, then also B is inhabited;

there is a function mapping inhabitants of A to inhabitants of B;

there is an f with f : A→ B;

A→ B is inhabited.

So the truth of A ⇒ B is equivalent to the inhabitation of A → B. And

since in PAT, ‘truth’ is the interpretation of being inhabited, the following is

intuitively permitted:

We code the implication A⇒ B in type theory as the function type A→ B.

Remark 5.4.1 The propositions A and B are ‘independent’, hence we may

write A→ B in case of an implication, instead of Πx : A . B, because x cannot

occur free in B.

A remarkable thing is now that we get the elimination rule and introduction

rule of the implication for free. We discussed this already for λ→ in Exam-

ple 2.4.9: there are narrow correspondences between the ⇒-elimination rule

from natural deduction and the (appl)-rule, and between the ⇒-introduction

rule and the (abst)-rule.

This is still the case for implications in λP. Writing A → B for Πx : A . B,

we obtain the following version of the (appl)-rule (familiar from λω):

(appl)
Γ � M : A→ B Γ � N : A

Γ � MN : B

Similarly, we obtain the following version of the (abst)-rule:

(abst)
Γ, x : A � M : B Γ � A→ B : s

Γ � λx : A . M : A→ B

112 Types dependent on terms

We invite the reader to compare these rules with the (⇒-elim)-rule and the

(⇒-intro)-rule given in Example 2.4.9.

V. Universal quantification

Now consider the universal quantification ∀x∈S(P (x)) of some predicate P de-

pending on x, over a set S. What is ∀x∈S(P (x)) under the PAT-interpretation?

Again, we can make a string of equivalences:

∀x∈S(P (x)) is true;

for each x in the set S, the proposition P (x) is true;

for each x in S, the type P x is inhabited;

there is a function mapping each x in S to an inhabitant of P x

(such a function has type Πx : S . P x);

there is an f with f : Πx : S . P x;

Πx : S . P x is inhabited.

So, similarly to the case of implication, we have found a way to code universal

quantification in type theory: we code the universal quantification ∀x∈S(P (x))

as the Π-type Πx : S . P x.

Remarks 5.4.2 (1) The ‘logico-mathematical’ proposition P (x), i.e. predi-

cate P for value x, has been coded as the type-theoretic term P x.

(2) Πx : S . P x is a type (constructor) depending on a term, x, which actu-

ally occurs in the body P x.

Just as in the case of implication, the elimination and introduction rules

for ∀ turn out to be a special case of the (appl)- and (abst)-rules of λP.

Va. (∀-elim) versus (appl)

First we recapitulate the (∀-elim)-rule:

(∀-elim)
∀x∈S(P (x)) N ∈ S

P (N)

The content of this rule is: ‘If we know that for all x in set S, proposition P

holds for x, then we may conclude that P holds for N , for given N in S.’

Next, we repeat (appl):

(appl)
Γ � M : Πx : A . B Γ � N : A

Γ � MN : B[x := N]

The correspondences are clear, when we consider the following:

(1) The ∀ in (∀-elim) is coded as Π in (appl).

(2) The S corresponds to A.

5.4 Minimal predicate logic in λP 113

(3) The P (x) in (∀-elim) is B in (appl), hence P (N) becomes B[x := N].

(4) In (appl), every judgement has a context. In (∀-elim) the context is tradi-

tionally left implicit.

(5) In (appl) there are proof objects added for the proposition Πx : A . B

(viz. M) and for the proposition B[x := N] (viz. MN). This is possible by

the PAT-interpretation, and necessary because we need ‘full’ judgements

in λP.

The corresponding reading of (appl) in the Π=∀-case is: ‘If we know that (in

a certain context) M is a proof of ∀x : A . B, and if (in the same context) N

is of type A, then MN is (in that context) a proof of B[x := N].’

This matches the earlier given reading of (∀-elim).

Vb. (∀-intro) versus (abst)

The correspondence between (∀-intro) and (abst) is similar, as we show below.

First, we give the (∀-intro)-rule in flag style:

Let x ∈ S
...

P (x)

(∀-intro)
∀x∈S(P (x))

The rule says the following: ‘If we can show, for arbitrary x ∈ S, that

predicate P holds for x, then we may conclude that P holds for all x ∈ S.’ The

‘arbitrariness’ of x is expressed by putting x in a flag.

The type-theoretic counterpart of this rule is (abst), which we repeat below:

(abst)
Γ, x : A � M : B Γ � Πx : A . B : s

Γ � λx : A . M : Πx : A . B

The correspondences (and differences) are obvious:

(1) The second premiss in (abst) does not occur in (∀-intro), so we should

dismiss it in our comparison. This second premiss only serves to ensure

that Πx : A . B is well-formed, whereas in (∀-intro) it was taken for granted

that ∀x∈A(P (x)) is an ‘acceptable’ expression.

(2) Again, ∀ is coded as Π.

(3) In (∀-intro), the context Γ is implicit. Only the context extension with

x : S (in the flag) is given explicitly.

(4) Again, the S has been changed into A, and the P (x) has become a B.

(5) Finally, proof objects have been added in (abst) with respect to (∀-intro),
namely: M as a proof of B, and λx : A . M as a proof of Πx : A . B.

114 Types dependent on terms

Remark 5.4.3 In retrospect, we now have some interesting interpretations

for judgements in Section 5.3. Let Γ ≡ A : ∗, P : A→ ∗.
(12) Γ � Πx : A . P x : ∗ , can be read as:

‘If A is a set and P a predicate over A, then ∀x∈A(P (x)) is a proposition.’

(15) Γ � Πx : A . P x→ P x : ∗ , expresses:
‘In the same setting, ∀x∈A(P (x)⇒ P (x)) is a proposition.’

(18) Γ � λx : A . λy : P x . y : Πx : A . P x→ P x , says:

‘And moreover, there is an inhabitant λx : A . λy : P x . y of the proposition

∀x∈A(P (x) ⇒ P (x)).’ Hence, by the PAT-interpretation, ∀x∈A(P (x) ⇒ P (x))

is a logical tautology, and λx : A . λy : P x . y a coded version of its proof.

Note that ∀x∈A(P (x)) is not a tautology, and indeed, no inhabitant can be

found for Πx : A . P x.

So we now have a coding of minimal predicate logic by means of the deriva-

tion rules of λP.

In Figure 5.2 we summarise what we have found. Note that we have neither

negation in minimal predicate logic (or λP), nor do we have conjunction, dis-

junction or the existential quantifier. These things are not available in λP: we

need more, as we explain in the following chapter, where we combine several

systems. (In Chapter 7 we come back to the coding of logic in type theory.

General remarks about natural deduction can be found in Section 11.4.)

Minimal predicate logic The type theory of λP

S is a set S : ∗
A is a proposition A : ∗

a ∈ S a : S
p proves A p : A

P is a predicate on S P : S → ∗

A⇒ B A→ B (= Πx : A . B)
∀x∈S(P (x)) Πx : S . Px

(⇒-elim) (appl)
(⇒-intro) (abst)

(∀-elim) (appl)
(∀-intro) (abst)

Figure 5.2 Coding minimal predicate logic in λP

5.5 Example of a logical derivation in λP 115

5.5 Example of a logical derivation in λP

In Section 5.3, when practising with the derivation rules of λP, we finally ob-

tained a judgement allowing a logical interpretation: line (18) can be seen as a

proof of the proposition ∀x∈A(P (x)⇒ P (x)), as we mentioned in Remark 5.4.3.

In the present section, we demonstrate how such a result can be obtained

in a systematic manner, starting from the proposition-to-prove. We give an

example in minimal predicate logic, coded in λP.

Let S be a set and Q a binary predicate over S. Then the following propo-

sition is provable in minimal predicate logic:

∀x∈S∀y∈S(Q(x, y)) ⇒ ∀u∈S(Q(u, u)) .

We first give its natural deduction proof, which is straightforward:

(a) Assume : ∀x∈S∀y∈S(Q(x, y))

(b) Let u ∈ S

(1) ∀y∈S(Q(u, y)) (∀-elim) on (a) and (b)

(2) Q(u, u) (∀-elim) on (1) and (b)

(3) ∀u∈S(Q(u, u)) (∀-intro) on (2)

(4) ∀x∈S∀y∈S(Q(x, y)) ⇒ ∀u∈S(Q(u, u)) (⇒-intro) on (3)

Remark 5.5.1 Line number (1) is a result of the (∀-elim)-rule:

− Flag (a) matches the first premiss ∀x∈S(P (x)) in the (∀-elim)-rule, if we

take P such that P (x) ≡ ∀y∈SQ(x, y).

− For the second premiss N ∈ S, we take flag (b), i.e. u ∈ S.

− Then the conclusion P (N) of the (∀-elim)-rule becomes P (u), which is in

the present case: ∀y∈S(Q(u, y)). (Note the u in the place of the x.)

Now we code the expression and its proof in λP.

First, we have to decide how to code the binary predicate Q over S × S. At

first sight, this is an inhabitant of the type (S × S)→ ∗, so we have to find a

coding for the Cartesian product S × S.

However, we may also get round this by using Currying (see Remark 1.2.6):

we consider Q to be a composite unary predicate of type S → S → ∗, which
is S → (S → ∗). Hence, instead of ‘feeding’ Q immediately with a pair (a, b),

denoted Q(a, b), we give it a first and b afterwards. This leads to Qa b, which

is (Qa)b, hence Q applied to a where the result has been applied to b. Our

coding of the original proposition from minimal predicate logic now becomes:

Πx : S . Πy : S . Qx y → Πu : S . Quu .

We have to find an inhabitant of this, so our task is:

116 Types dependent on terms

(n) ? : Πx : S . Πy : S . Qx y → Πu : S . Quu .

In the above expression, both S and Q are untyped (or free) variables. Since

this is undesirable in a derivation system, we add a context of two flags:

(a) S : ∗
(b) Q : S → S → ∗

...

(n) ? : Πx : S . Πy : S . Qx y → Πu : S . Quu

The type in (n) is an →-type, which reflects that the original logical propo-

sition is an implication. So it is natural to try the λP-variant of the (⇒-intro)-

rule. In part IV of Section 5.4 we formulated a simplified (abst)-rule for this

purpose. We can use this simplified (abst)-rule bottom-up; thereby we forget

about the second premiss (we make shortened derivations, as described in

Section 4.5):

(a) S : ∗
(b) Q : S → S → ∗
(c) z : (Πx : S . Πy : S . Qx y)

...

(m) ? : Πu : S . Quu

(n) . . . : Πx : S . Πy : S . Qx y → Πu : S . Quu (abst)

Line (m) asks for (abst), again. Note that this time we cannot appeal to

the →-version of the (abst)-rule, described in Section 5.4, IV, since we have a

‘real’ Π-type. This is also visible in the natural deduction proof, where we use

(∀-intro), and not (⇒-intro), in the corresponding step. We obtain:

(a) S : ∗
(b) Q : S → S → ∗
(c) z : (Πx : S . Πy : S . Qx y)

(d) u : S
...

(l) ? : Quu

(m) . . . : Πu : S . Quu (abst)

(n) . . . : Πx : S . Πy : S . Qx y → Πu : S . Quu (abst)

5.5 Example of a logical derivation in λP 117

The rest is not hard. Combining lines (c) and (d) with the (appl)-rule, twice,

gives exactly the desired result, since:

z u : Πy : S . Qu y (note the u instead of the x), hence

z u u : Quu.

So finally, we can fill in everything that is left open; as usual, we include the

arguments:

(a) S : ∗
(b) Q : S → S → ∗
(c) z : (Πx : S . Πy : S . Qx y)

(d) u : S

(1) z u : Πy : S . Qu y (appl) on (c), (d)

(2) z u u : Quu (appl) on (1), (d)

(3) λu : S . z u u : Πu : S . Quu (abst) on (2)

(4) λz : (Πx : S . Πy : S . Qx y) . λu : S . z u u :

Πx : S . Πy : S . Qx y → Πu : S . Quu (abst) on (3)

Compare this derivation with the logical one in the beginning of this section.

The derivation is a bit longer than the natural deduction proof, but it captures

the same content. Note that the derivation includes all the proof objects and

hence tells us exactly how the proof has been constructed. So the derivation

contains more information.

The final conclusion in this derivation is the judgement (a), (b) � (4), i.e.:

S : ∗, Q : S → S → ∗ � λz : (Πx : S . Πy : S . Qx y) . λu : S . z u u :

Πx : S . Πy : S . Qx y → Πu : S . Quu .

So we have indeed found an inhabitant of the original goal type, namely

λz : (Πx : S . Πy : S . Qx y) . λu : S . z u u .

This is the proof object proving the proposition. The proof object codes the full

proof of the theorem it proves. That is to say: from the proof object alone one

can already reconstruct the full derivation. So the above derivation contains, in

a sense, too much information. Of course, for a human reader the above version

is preferable, since it concisely shows how the proof has been constructed.

Remark 5.5.2 By calculating the type of a proof object, one obtains a coding

of the proposition it proves. There is a slight complication due to the (conv)-

rule. Assume that M is a proof object, and that a direct calculation of its type

gives expression N . Then it may be the case that the direct representation of the

118 Types dependent on terms

proposition-to-prove is a different expression N ′. However, if N =β N ′ there
is no problem, since proof object M then also proves N ′ by the (conv)-rule.

The context Γ of judgement (4), consisting of the declarations (a) and (b),

gives type information about S and Q. Note that in the above shortened

derivation, we do not call upon this information. However, when giving the

full derivation, we do need (a) and (b), as follows from Exercise 5.3.

5.6 Conclusions

In the present section we have extended the basic system λ→ with types de-

pending on terms. The system obtained, λP, differs from λω in several aspects.

For example, the (form)-rule is less general; on the other hand: Π-types are

back as first-class citizens.

System λP is particularly suited for coding set-valued functions and propo-

sition-valued functions. The latter functions are generally known as ‘predi-

cates’.

In λP we have the opportunity to investigate and use an extremely important

interpretation, being a foundational idea behind type theory as a whole: the

so-called propositions-as-types notion, or PAT. In this conception, propositions

are coded as types, and inhabitants of these types represent the proofs of these

propositions (‘proofs-as-terms’ , which is a second reading of ‘PAT’). By means

of this PAT-interpretation, propositions are treated on a par (at least, to a large

extent) with sets, since propositions and sets are coded as types. Similarly,

there is a correspondence between proofs of propositions and elements of sets:

both are coded as terms of the types concerned.

This ‘double’ PAT-approach has already widely demonstrated its power and

fruitfulness. It enables type theory to be employed as a foundation of logic and

mathematics. In the present chapter we have given a hunch about how this

can be started.

Interesting features of λP are its possibilities of encoding

(1) basic mathematical notions, in particular: sets, propositions and predicates;

(2) basic logical notions: implication and universal quantification.

These are the ingredients of minimal predicate logic.

There is a striking correspondence between the traditional way of reason-

ing in minimal predicate logic and the corresponding derivational approach in

λP. System λP can be seen as a more complete variant of minimal predicate

logic, including proof objects that encode the reasoning. The type-theoretic

translation of logical formulas is rather straightforward: ⇒ becomes →, and

∀ is represented by Π. The derivation rules of natural deduction in minimal

5.7 Further reading 119

predicate logic on the one hand, and the derivation rules of λP on the other,

are comparable to a high degree.

5.7 Further reading

Ideas about dependent types were already present in the work of H.B. Curry on

‘illative logic’ (see e.g. Curry & Feys, 1958, Appendix A). The idea was to add

a constant to untyped λ-calculus (or combinatory logic) to single out the terms

representing well-formed propositions, and a constant to denote derivability. A

formal system based on these ideas was developed by J.P. Seldin in 1975, but

only published in Seldin (1979). See also the historic overview in Cardone &

Hindley (2009).

The first system to actually use type theory to formalise mathematics was the

Automath system, developed by N.G. de Bruijn and his research team in the

early 1970s (de Bruijn, 1980; Nederpelt et al., 1994). See also the Automath

Archive (2004), a database containing copies of many original papers about

Automath. There are various Automath type theories and several of them

have been implemented as proof checkers. For two of the Automath languages,

AUT-68 and AUT-QE, F. Wiedijk has made new computer implementations,

written in C (see Wiedijk, 1999).

An interesting aspect of Automath is that it also used type theory and the

propositions-as-types interpretation in a different way than as described in

this chapter. The first Automath systems used what can be called the ‘Logi-

cal Framework’ interpretation of propositions-as-types (see below), which was

invented by de Bruijn in the late 1960s.

The propositions-as-types interpretation of minimal predicate logic into λP

we have described in the present chapter can be called the ‘Curry–Howard’

interpretation (or isomorphism), which was first formally described in a paper

by W. Howard of 1968, which only appeared in print 12 years later (Howard,

1980). Later Automath systems, such as AUT-QE (1970; cf. Nederpelt et al.,

1994), also used the Curry–Howard interpretation, or combined the two. There-

fore, the ‘propositions-as-types’ interpretation is now often referred to as the

‘Curry–Howard–de Bruijn’ embedding.

The idea of the ‘Logical Framework’ interpretation is that we use λP as a

‘meta-calculus’ for doing logic: one can define a logic L in λP by choosing an

appropriate context ΓL. In ΓL, the language and the logical rules are declared.

Then one can employ the logic L by working in the context ΓL within the

type theory λP. The strength of this approach lies in the fact that λP deals

with the ‘meta-operations’ of binding and substitution that are present in any

formal system of logic. Important aspects that are usually left implicit in a

120 Types dependent on terms

paper description of the logic, like avoiding the capture of free variables when

performing a substitution, are taken care of by the system λP.

The logical framework approach has been revived in the Edinburgh LF sys-

tem (Harper et al., 1987). There also the presentation with contexts was used.

(Automath uses a system with so-called ‘books’ and ‘lines’; see also Chapters 9

and 11, where we follow similar ideas.) The system Twelf (see Twelf Project,

1999) is a direct successor of Edinburgh LF; it is widely used in the United

States of America for formalisation and verification in computer science.

In the period when de Bruijn introduced Automath, P. Martin-Löf intro-

duced his Intuitionistic Type Theory (Martin-Löf, 1980; Nordström et al.,

1990), which can be seen as an extension of λP with specific features to be

a foundation of intuitionistic mathematics. Martin-Löf’s primary aim was not

to lay the basis for a system for formalising mathematics, but to develop a

foundational system to capture the Brouwer–Heyting–Kolmogorov interpreta-

tion (Troelstra & van Dalen, 1988) of proofs. There are various versions of

intuitionistic type theory, some being intensional like λP and some being ex-

tensional. In extensional type theory, two types have the same inhabitants if

they are provably equal (not only if they are β-convertible). This conforms

with a set-theoretic view of mathematics, but it renders the type checking

undecidable, so therefore it has been abandoned by Martin-Löf.

Martin-Löf’s systems have been very influential in type theory. He extended

type theory with Σ-types to represent dependent products, and with inductive

types to make proofs by induction (and also functions defined by well-founded

recursion) a primitive in the system. A Σ-type Σx : A . B represents the type

of the pairs 〈a, b〉, such that a : A and b : B[x := a]; so the type B may

depend on the x of type A. These Σ-types (or a variant thereof) are very useful

for representing abstract mathematical structures, like ‘symmetric relations’,

consisting of tuples 〈A,R〉 where A is a type and R is a binary relation on

A that is symmetric. See also Sections 6.5 and 13.8 for more information on

Σ-types. Inductive types as primitives allow proofs by induction, but are also

very useful for representing data types and functional programs over them.

This enables one to specify functional programs and prove them correct.

These ideas have been followed by other systems, for example in the type

theory of the proof assistant Coq (see Coquand & Huet, 1988; Coq Devel-

opment Team, 2012), called the Calculus of Inductive Constructions (Bertot

& Castéran, 2004). Martin-Löf’s type theory itself has been implemented as a

proof assistant in the systems Nuprl (Constable et al., 1986), ALF (Magnusson

& Nordström, 1994) and Agda (Bove et al., 2009).

A recent text with special emphasis on the Curry–Howard isomorphism is

M.H. Sørensen and P. Urzyczyn’s Lectures on the Curry–Howard Isomorphism

(2006), which also treats other topics related to this book, such as simply

Exercises 121

typed λ-calculus (cf. our Chapter 2), dependent types, the λ-cube (Chapter 6),

sequent calculus (Section 11.13) and arithmetic (Chapter 14). Another text

that explains ‘Curry–Howard’ is Simmons (2000), but its types are only simple

and its emphasis is more on computation than derivation.

Exercises

5.1 Give a diagram of the tree corresponding to the complete tree derivation

of line (18) of Section 5.3.

5.2 Give a complete (i.e. unshortened) λP-derivation of

S : ∗ � S → S → ∗ : � ,

(a) in tree format,

(b) in flag format.

5.3 Extend the flag derivation of Exercise 5.2 (b) to a complete derivation of

S : ∗, Q : S → S → ∗ � Πx : S . Πy : S . Qx y : ∗ .
5.4 Prove that ∗ is the only legal kind in λP.

5.5 Prove that A ⇒ ((A ⇒ B) ⇒ B) is a tautology by giving a shortened

λP-derivation.

5.6 Prove that (A ⇒ (A ⇒ B)) ⇒ (A ⇒ B) is a tautology, (first) in natural

deduction and (second) by means of a shortened λP-derivation.

5.7 Prove that the following propositions are tautologies by giving shortened

λP-derivations:

(a) (A⇒ B)⇒ ((B ⇒ C)⇒ (A⇒ C)),

(b) ((A⇒ B)⇒ A)⇒ ((A⇒ B)⇒ B),

(c) (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C)).

5.8 (a) Let Γ ≡ S : ∗, P : S → ∗, Q : S → ∗. Find an inhabitant of

Πx : S . P x→ Qx→ P x with respect to Γ, and give a corresponding

(shortened) derivation.

(b) Give a natural deduction proof of the corresponding logical expres-

sion.

5.9 Give proofs that the following propositions are tautologies, (first) in nat-

ural deduction and (second) by means of a shortened λP-derivation.

(a) ∀x∈S (Q(x)) ⇒ ∀y∈S(P (y)⇒ Q(y)),

(b) ∀x∈S(P (x)⇒ Q(x)) ⇒ (∀y∈S (P (y)) ⇒ ∀z∈S (Q(z))).

5.10 Consider the following context:

Γ ≡ S : ∗, P : S → ∗, f : S → S, g : S → S,

u : Πx : S . (P (f x)→ P (g x)), v : Πx, y : S . ((P x→ P y)→ P (f x))

(cf. Notation 3.4.2).

Let M ≡ λx : S . v(f x)(g x)(ux).

122 Types dependent on terms

(a) Make a guess at which type N may satisfy Γ � M : N .

(b) Demonstrate that the proof object M does indeed code a proof of the

proposition N you have guessed, by elaborating the λP-derivation

corresponding to M .

5.11 Let S be a set, with Q and R relations on S × S, and let f and g be

functions from S to S. Assume that ∀x,y∈S(Q(x, f(y)) ⇒ Q(g(x), y)),

∀x,y∈S(Q(x, f(y))⇒ R(x, y)), and ∀x∈S(Q(x, f(f(x)))).

Prove that ∀x∈S(R(g(g(x)), g(x))) by giving a context Γ and finding a

term M such that:

Γ � M : Πx : S . R (g(g x)) (g x).

Give the corresponding (shortened) λP-derivation.

5.12 In λP, consider the context

Γ ≡ S : ∗, R : S → S → ∗, u : Πx, y : S . Rx y → Ry x,

v : Πx, y, z : S . Rx y → Rxz → Ry z.

(a) Show that R is ‘reflexive on its domain’, by constructing an inhabitant

of the type Πx, y : S . Rx y → Rxx in context Γ; give a corresponding

(shortened) derivation.

(b) Show that R is transitive by constructing an inhabitant of the type

Πx, y, z : S . Rx y → Ry z → Rxz in context Γ; give a corresponding

(shortened) derivation.

6

The Calculus of Constructions

6.1 The system λC

In this section we combine the systems of Chapters 2 to 5, so we obtain a system

with all four possible choices of ‘terms/types depending on terms/types’ (see

the beginning of Section 5.1).

The system thus obtained is known as λC, but also as Calculus of Construc-

tions or λ-Coquand, after one of its founders, Th. Coquand (see Coquand,

1985, and Coquand & Huet, 1988). So the letter ‘C’ in the name λC has many

references, and there’s still one more to come: the ‘c’ in the word λ-cube (see

below).

Technically, there is only one difference between λP and λC, but this is

enough to extend λP to λC = λ2 + λω + λP. The difference concerns the rule

(form), the formation rule. In λP this rule looks as follows:

(formλP)
Γ � A : ∗ Γ, x : A � B : s

Γ � Πx : A . B : s

As we noted in Section 5.2, the crucial point for λP in this rule is that A

must have type ∗, in order to guarantee that the inhabitants of Πx : A . B are

terms or types dependent on terms only (since x is a term, of level 1). But

when we lift this restriction, we get the generalisation we want: terms or types

depending on terms or types.

Hence, it appears to be sufficient to replace A : ∗ in the rule by A : s, with s

in {∗,�}. However, we already have an s in the rule, since also B : s, and we

want to be able to choose the two s’s independently of each other.

Compare this with the (form)-rule of λω, where there is only one s involved,

so that we only have terms-dependent-on-terms and types-dependent-on-types,

but not the ‘cross-overs’:

(formλω)
Γ � A : s Γ � B : s

Γ � A→ B : s

124 The Calculus of Constructions

A neat way out is to use two s’s: an s1 and an s2. And this is exactly what

we do in the (form)-rule of system λC:

(formλC)
Γ � A : s1 Γ, x : A � B : s2

Γ � Πx : A . B : s2

So in the first premiss we have s1 and in the second premiss we have s2,

which may be chosen independently of each other from {∗,�} (four possible

choices). In the conclusion of the rule, s2 appears, again. So the type of

Πx : A . B is inherited from its body, viz. B. This is acceptable because:

(1) intuitively: if B is a type, then the generalised (‘dependent’) type Πx : A . B

should be a type as well; and if B is a kind, then Πx : A . B should be one,

too. This may not be a very convincing argument, since there are more general

systems of type theory where the type of Πx : A . B may be different from

s1 and s2. (Such systems, developed by S. Berardi and J. Terlouw, are called

‘pure type systems’ or PTS s. In a PTS, the type of Πx : A . B becomes s3; this

leads to eight possible choices for (s1, s2, s3).)

(2) technically: in the (form)-rule of λC we just copy the features of the rules

(formλP) and (formλω), in which the types of B and Πx : A . B (or A → B)

are the same.

So what can we obtain with this rule (formλC)? Assume we have a function

λx : A . b of type Πx : A . B, that is constructed with the (abst)-rule (which is

identical to the one in λP, so b must be of type B). Then A is of type s1 and

B is of type s2 by the (form)-rule. This leads to the following possibilities:

x : A : s1 b : B : s2 (s1, s2) λx : A . b from

∗ ∗ (∗, ∗) term-depending-on-term λ→
� ∗ (�, ∗) term-depending-on-type λ2

� � (�,�) type-depending-on-type λω

∗ � (∗,�) type-depending-on-term λP

Clearly, all four possibilities from Chapters 2 to 5 can be realised. For exam-

ple, when (s1, s2) = (�, ∗), then we have terms dependent on types as in λ2;

from the table it follows that x then has level 2, that A has level 3 and that b

has level 1.

In order to be able to quickly recognise the nature of the dependencies in λ-

and Π-abstractions, we give the following diagrams:

6.2 The λ-cube 125

λx : A . b

. . . .

s1 B

. .

s2

Πx : A . B

. . . .

s1 s2

For example, in order to know in which subsystem of λC a certain λ-

expression λx : A . b can be formed, we calculate the type of A (say s1) and the

type of the type of b (say s2). Then the pair (s1, s2) tells us which combination

we need to have.

For a Π-expression Πx : A . B we calculate the types of A and B.

6.2 The λ-cube

We have encountered three extensions of the simplest system, λ→:

− with terms depending on types: λ2,

− with types depending on types: λω,

− with types depending on terms: λP.

These three possibilities are mutually independent. They may be visualised

as three perpendicular directions of extending λ→, giving a three-dimensional

system of coordinate axes (see Figure 6.1).

�

������

λ→ to λP

to λω

to λ2

Figure 6.1 Directions of extending λ→

All three extensions together give λC, as we have seen in the previous section.

There are, of course, other possibilities of extension, by combining λ→ with

two of the three possibilities. The obtained systems are called λω, λP2 and

λPω, respectively. The decisive choice is what combinations of s1 and s2 are

allowed in the (form)-rule. These combinations are listed in Figure 6.2.

All eight systems can be positioned in a cube, the so-called λ-cube or Ba-

rendregt cube (see Figure 6.3).

Remark 6.2.1 The unifying framework for the eight systems was discov-

ered and described by H.P. Barendregt (see Barendregt, 1992). He investigated

the common properties and differences of existing type-theoretic systems and

126 The Calculus of Constructions

system: combinations (s1, s2) allowed:

λ→ (∗, ∗)
λ2 (∗, ∗) (�, ∗)
λω (∗, ∗) (�,�)
λP (∗, ∗) (∗,�)
λω (∗, ∗) (�, ∗) (�,�)
λP2 (∗, ∗) (�, ∗) (∗,�)
λPω (∗, ∗) (�,�) (∗,�)
λPω = λC (∗, ∗) (�, ∗) (�,�) (∗,�)

Figure 6.2 The eight systems of the λ-cube

��������

��������

��������

��������

λ→ λP

λ2 λP2

λω λPω

λCλω

� 	

		

	 	

�	

Figure 6.3 The λ-cube or Barendregt cube

investigated their relation. Thus he could identify some of these systems as

(essentially) λ2, λω, λP, and others as λP2, λω or λC.

The most striking result of Barendregt’s investigations is that the eight dif-

ferent systems can be described with only one set of derivation rules (see Fig-

ure 6.4). This set of rules is relatively simple: apart from three initialisation

rules (viz. (sort), (var) and (weak)), all that we need are a formation rule

(form) for Π-types, a conversion rule (conv) and the two fundamental rules for

every lambda calculus system, concerning application and abstraction.

Remark 6.2.2 N.G. de Bruijn’s Automath, the first operative formal sys-

tem for formalising and checking mathematics, enjoys all relevant features of

λP, but is richer, as has been demonstrated by Kamareddine et al. (2004); also

some aspects of λ2 and λω are incorporated in it. In fact, one could position

Automath in the centre of the lateral face on the right-hand side of the depicted

λ-cube. Moreover, definitions are a core notion in Automath (their indispens-

6.2 The λ-cube 127

ability will be argued in Chapter 8 and further). In other words, Automath ∼
λP + 1

2λ2 + 1
2λω + definitions.

In Figure 6.4 we give the complete list of rules for the eight systems of the

λ-cube. In which system we are depends on the combinations of (s1, s2) we

allow in the (form)-rule, according to the table in Figure 6.2.

(sort) ∅ � ∗ : �

(var)
Γ � A : s

Γ, x : A � x : A
if x �∈ Γ

(weak)
Γ � A : B Γ � C : s

Γ, x : C � A : B
if x �∈ Γ

(form)
Γ � A : s1 Γ, x : A � B : s2

Γ � Πx : A . B : s2

(appl)
Γ � M : Πx : A . B Γ � N : A

Γ � MN : B[x := N]

(abst)
Γ, x : A � M : B Γ � Πx : A . B : s

Γ � λx : A . M : Πx : A . B

(conv)
Γ � A : B Γ � B′ : s

Γ � A : B′ if B =β B′

Figure 6.4 Derivation rules for the systems of the λ-cube

Remark 6.2.3 It will immediately be clear how the systems λω and λP,

as respectively described in Chapters 4 and 5, fit in the general framework of

Figure 6.4:

− For λω, just see A→ B as an abbreviation of Πx : A . B, and the rules given

in Figures 4.1 and 6.4 coincide. (Since (s1, s2) ∈ {(∗, ∗), (�,�)} in λω, we

may take s1 = s2 = s.)

− For λP, restrict s1 of Figure 6.4 to s1 = ∗, and we obtain the rules in

Figure 5.1.

For λ→ and λ2 we have to do a little more work to see that their original

definitions in Chapters 2 and 3 fit in Figure 6.4. In the original versions of

λ→ and λ2, the types are given beforehand as a fixed set, while in the λ-cube

definition, they need to be constructed during a derivation by means of (sort),

(weak) and (form). Moreover, the (conv)-rule is superfluous in these systems,

since there B =β B′ implies that B ≡ B′. It is not too hard to show, however,

128 The Calculus of Constructions

that the original λ→ and λ2 are precisely covered by the rules in the λ-cube, of

course when restricting the admissible (s1, s2)-combinations to the sets {(∗, ∗)}
and {(∗, ∗), (�, ∗)}, respectively.

6.3 Properties of λC

Most of the properties of the previously described systems also hold for the

‘combined’ system λC. Of course, the phrasing of the lemmas should sometimes

be a little bit different, because we are in a more general environment (no fixed

types, more than two or three levels, etcetera).

Below we give the lemmas for λC in their general shape. For comments on

their content, in particular regarding their intuition and relevance, we refer to

Sections 2.10 and 2.11, and to Section 4.8 for the necessary extension of the

Uniqueness of Types Lemma.

Some notions have to be redefined in the more general environment of λC.

For example, the description of the domain (dom) of a λ→-context, given in

Definition 2.10, should be slightly adapted for the case of a λC-context. Many

of these changes in definition are straightforward and therefore we do not spell

them out.

We do not give proofs of the lemmas below, since they are rather laborious for

the λC case. In particular, the proof of Strong Normalisation (Theorem 6.3.14)

is very complicated. The proof in Geuvers (1995) is four pages long and that

in Barendregt (1992) is even longer, almost 19 pages.

First we summarise what the expressions are in λC:

Definition 6.3.1 (Expressions of λC, E)
The set E of λC-expressions is defined by:

E = V |� | ∗ |(EE)|(λV : E . E)|(ΠV : E . E) .

Notation 6.3.2 In λC, we employ the same notation conventions as before,

in particular about variables (see Notation 1.3.4), parentheses, successive ab-

stractions (Notations 1.3.10, 3.4.2), sorts (Notation 4.1.5) and the abbreviation

A→ B for Πx : A . B, in case x �∈ FV (B) (Notation 5.2.1).

Now we give a list of important lemmas and theorems, provided with a short

comment.

Lemma 6.3.3 (Free Variables Lemma)

If Γ � A : B, then FV (A), FV (B) ⊆ dom(Γ).

Comment: Cf. Lemma 2.10.3. See also Barendregt (1992), Lemma 5.2.8, 2.

We say that a context is well-formed if it forms part of a derivable judgement:

6.3 Properties of λC 129

Definition 6.3.4 (Well-formed context)

A context Γ is well-formed if there are A and B such that Γ � A : B.

Lemma 6.3.5 (Thinning Lemma, Permutation Lemma, Condensing Lemma)

(1) (Thinning) Let Γ′ and Γ′′ be contexts such that Γ′ ⊆ Γ′′. If Γ′ � A : B

and Γ′′ is well-formed, then also Γ′′ � A : B.

(2) (Permutation) Let Γ′ and Γ′′ be contexts such that Γ′′ is a permutation

of Γ′. If Γ′ � A : B and Γ′′ is well-formed, then also Γ′′ � A : B.

(3) (Condensing) If Γ′, x : A, Γ′′ � B : C and x does not occur in Γ′′, B or

C, then also Γ, Γ′′ � B : C.

Comment: Cf. Lemma 2.10.5; we do not give the general notion of context-

inclusion (Γ′ ⊆ Γ′′) – it is similar to the one in Definition 2.10 (2).

As to the Condensing Lemma: we recall that Γ′, x : A, Γ′′ is a context in

which the declaration x : A occurs somewhere. Note that the present Con-

densing Lemma is slightly different from the one in Lemma 2.10.5: here we

state that it is allowed to take out an arbitrary ‘superfluous’ declaration x : A

from the context, while in the λ→-version we projected out all the superfluous

context declarations ‘in one sweep’.

For proofs of the three parts of Lemma 6.3.5, see Barendregt, 1992 (Lem-

mas 5.2.12 and 5.2.17).

Lemma 6.3.6 (Generation Lemma)

(1) If Γ � x : C, then there exist a sort s and an expression B such that

B =β C, Γ � B : s and x : B ∈ Γ.

(2) If Γ �MN : C, then M has a Π-type, i.e. there exist expressions A and

B such that Γ � M : Πx : A . B; moreover, N fits in this Π-type: Γ � N : A,

and finally, C =β B[x := N].

(3) If Γ � λx : A . b : C, then there are a sort s and an expression B such

that C =β Πx : A . B, where Γ � Πx : A . B : s and moreover: Γ, x : A � b : B.

(4) If Γ � Πx : A . B : C, then there are s1 and s2 such that C ≡ s2, and

moreover: Γ � A : s1 and Γ, x : A � B : s2.

Comment: Cf. Lemma 2.10.7. See Barendregt, 1992 (Lemma 5.2.13) for a

proof.

Note that we distinguish four cases here: except (1) for variable x, (2) for

application MN and (3) for λ-abstraction λx : A . b, as in Lemma 2.10.7,

we need the extra case (4) for Π-abstraction Πx : A . B here. All four cases

are more complicated because of the (conv)-rule, which allows a type to be

replaced by a β-convertible one. If we forget about this complication, then the

four cases reflect rather directly the corresponding rules: (var), (appl), (abst)

and (form).

130 The Calculus of Constructions

One employs a more general notion of legality (cf. Definition 2.4.10) in λC.

This is defined as follows:

Definition 6.3.7 An expression M in λC is legal if there exist Γ and N such

that Γ �M : N or Γ � N : M (so when M is either typable or inhabited).

Then we have:

Lemma 6.3.8 (Subexpression Lemma)

If M is legal, then every subexpression of M is legal.

Comment: Cf. Lemma 2.10.8 and Barendregt, 1992 (Corollary 5.2.14, 4).

Lemma 6.3.9 (Uniqueness of Types up to Conversion)

If Γ � A : B1 and Γ � A : B2, then B1 =β B2.

Comment: Cf. Lemmas 2.10.9 and 4.8.1. A proof can be found in Barendregt,

1992 (Lemma 5.2.21).

Lemma 6.3.10 (Substitution Lemma)

Let Γ′, x : A, Γ′′ � B : C and Γ′ � D : A.

Then Γ′, Γ′′[x := D] � B[x := D] : C[x := D].

Comment: Cf. Lemma 2.11.1 and the explanation following that lemma. Here

we substitute D for x in the judgement Γ′, x : A, Γ′′ � B : C, where D and

x have the same type, viz. A. The lemma says that the resulting judgement

is still derivable (we may even leave out the declaration x : A, for obvious

reasons). The substitutions should take place everywhere, so not only in B

and C, but also in the part of the context in which x’s may occur (viz. Γ′′).
The latter substitution, Γ′′[x := D], has not yet been defined. However, it will

be obvious how this should be done.

For a proof of Lemma 6.3.10, see Barendregt, 1992 (Lemma 5.2.11).

Theorem 6.3.11 (Church–Rosser Theorem; CR; Confluence)

The Church–Rosser property holds for λC, i.e. if M in E, M �β N1 and

M �β N2, then there is N3 such that N1 �β N3 and N2 �β N3.

Comment: Cf. Theorems 1.9.8 and 2.11.3. The notions of β-reduction and β-

conversion have to be adapted to the expressions of λC. This is straightforward

(see also Definitions 1.8.1, 1.8.3, 1.8.5, 2.11.2 and 3.6.2).

Corollary 6.3.12 Suppose that M , N in E and M =β N . Then there is L

such that M �β L and N �β L.

Comment: Cf. Corollaries 1.9.9 and 2.11.4.

Lemma 6.3.13 (Subject Reduction)

If Γ � A : B and A �β A′, then Γ � A′ : B.

6.3 Properties of λC 131

Comment: Cf. Lemma 2.11.5. For a proof, see Barendregt, 1992 (Theo-

rem 5.2.15).

Theorem 6.3.14 (Strong Normalisation Theorem or Termination Theorem)

Every legal M is strongly normalising.

Comment: Cf. Theorem 2.11.6. The proof is complicated. See e.g. Baren-

dregt, 1992 (Theorem 5.3.33), or Geuvers, 1995.

Finally, we concentrate on the three main questions in type theory, namely:

Well-typedness, Type Checking and Term Finding (cf. Section 2.6). The first

two of these are decidable; for a proof, see van Benthem Jutting (1993).

Theorem 6.3.15 (Decidability of Well-typedness and Type Checking)

In λC and its subsystems, the questions of Well-typedness and Type Checking

are decidable.

So it is possible to conceive of a computer program which solves these prob-

lems automatically: on input of either a sole ‘term’ or a combination ‘term +

type’ (with or without context), the program finds out whether a corresponding

derivation exists and, if so, gives this derivation.

The question of Term Finding, however, is decidable in λ→ and λω, but

undecidable in all other systems. This is understandable if we recall that there

is no general method to prove or disprove an arbitrary theorem in mathematics.

This famous result, called the Church–Turing Undecidability Theorem, comes

from A. Church and, independently, A.M. Turing (see Church, 1935, 1936a,b;

Turing, 1936). As we saw, the assignment to prove or disprove a proposition M

can be translated into finding a term of type M in type theory, or to show that

no such inhabitant exists. Hence, decidability of Term Finding would imply

that there was an algorithm which could prove or disprove every mathematical

proposition.

As a consequence, logic and mathematics cannot be fully handed over to

a machine that solves all problems that you pose. That may be a pity for

science in general, but not for the scientists, who are still necessary not only to

invent the problems, but also to solve them. Hence, in a type-theoretic setting:

humans formulate the types and human intervention is also required to find

the inhabitants.

Nevertheless, computers can be of substantial aid in solving these problems.

They can administer the problem and the derivation as it develops, be of help

in listing the open goals that have not (yet) been solved and check whether

the development of the derivation occurs exactly according to the rules.

Such computer programs, called ‘proof assistants’, become more and more

useful in helping a human solving logical or mathematical problems. They

132 The Calculus of Constructions

are also employed for proving correctness of computer programs in general, i.e.

giving a formal proof that a given computer program satisfies its specifications.

Last but not least, proof assistants may be of help in the development of

provably correct computer programs.

6.4 Conclusions

Different combinations of the systems encountered in the previous chapters

are possible. All systems (λ→, λ2, λω and λP), and therefore all combina-

tions thereof, include the simply typed lambda calculus (λ→), this being the

foundation on which the enlargements are built.

Different dependencies of terms and/or types on terms and/or types are

realised in these combinations; these combinations can be positioned in a cube:

the λ-cube or Barendregt cube.

All these systems – eight of them, altogether – can be described concisely and

very elegantly by means of one single set of derivation rules (see Figure 6.4), in

which the tuning of one parameter (the choice of the permitted combinations

(s1, s2) in the (form)-rule) determines which system we have at hand. Among

these rules there are many that are already familiar from the four basic systems.

They are presented here in a uniform format, in which they get their definite

description.

One recognises, for instance, the application and abstraction rules, funda-

mental to every system of lambda calculus. The sort-rule is the start of every

derivation. Moreover, we have a variable rule and a weakening rule to manipu-

late contexts and a formation rule to construct dependent types. Finally, there

is a conversion rule, which allows us to replace a type in a derivation by a legal

β-convertible one.

The most extensive combination, combining all the mentioned systems, is

λC, the Calculus of Constructions. Every combination of s1 and s2 is allowed

in this ‘jewel of type theory’. Moreover, it satisfies all the nice properties al-

ready formulated for the underlying systems, albeit sometimes in a slightly

more general phrasing. Among these are the Uniqueness of Types Lemma (up

to conversion), the Church–Rosser Theorem, the Subject Reduction Lemma,

the Termination Theorem and the Decidability of Well-typedness and Type

Checking.

These remarkable results establish the power of these systems and their

suitability to be used as a foundation for proof assistants. Their proofs ensure

the reliability and useability of λC and its subsystems.

6.5 Further reading 133

6.5 Further reading

The Calculus of Constructions (Coquand & Huet, 1988), also called CC , was

implemented as a proof checker in the 1980s. It combines all features of λP and

λω (where λω = λ2 + λω, see Section 6.2). It has been introduced to do exactly

that: it was conceived as a type theory that unites ideas of A. Church, N.G. de

Bruijn, P. Martin-Löf and J.-Y. Girard. Thus it includes higher order predicate

logic and polymorphic data types. The λ-cube was constructed to make this

explicit, defining the Calculus of Constructions as the union of λP and λω (cf.

Figure 6.2). Thus it became explicit how the typing rules correspond to the

term/type dependencies (see Barendregt, 1992, or Sørensen & Urzyczyn, 2006,

for further reading).

CC was used a lot for proving functional programs correct. The data types

used were the definable polymorphic data types, because there were no prim-

itive inductive types. These were added later, because the polymorphic data

types are a bit less expressive and don’t yield an induction proof principle

(which has to be added axiomatically). The extension with inductive types

(mentioned already in Section 5.7) was called the ‘Calculus of Inductive Con-

structions’ or CIC (see Bertot & Castéran, 2004, for further reading).

Another variant of the Calculus of Constructions is where ‘universes’ are

added. This means we add ‘super-kinds’ �i (for i ∈ N; we identify �0 with our

old sort �), where �i : �i+1 and as (form)-rule we have:

Γ � A : �i Γ, x : A � B : �j

Γ � Πx : A . B : �max(i,j)

The reason for not taking �j in the conclusion is that if j < i, we can get an

inconsistency: one can construct a term of type ⊥. This system was first defined

and analysed by Z. Luo (see Luo, 1994) and called the ‘Extended Calculus of

Constructions’, ECC . In ECC, the universes are also subsets of each other:

�i ⊆ �i+1. This is usually phrased as ‘cumulativity’ of the universe hierarchy

and it amounts to the following typing rules:

Γ � A : ∗
Γ � A : �0

Γ � A : �i

Γ � A : �i+1

Furthermore, ECC also has Σ-types (see Section 5.7, again), with the for-

mation rules:

Γ � A : ∗ Γ, x : A � B : ∗
Γ � Σx : A . B : ∗

Γ � A : �i Γ, x : A � B : �j

Γ � Σx : A . B : �max(i,j)

The reason for not allowing ‘impredicative Σ-types’, like Σα : ∗ . α→ α : ∗,
is that we lose consistency.

In Section 5.7 we already mentioned a number of proof assistants, such as

134 The Calculus of Constructions

Coq. Many of these are based on the Calculus of Constructions, so not only on

λP. For a general paper on proof assistants, see Barendregt & Geuvers (2001).

Exercises

6.1 (a) Give a complete derivation in tree format showing that ⊥ ≡ Πα : ∗ . α
is legal in λC (cf. Exercise 3.5).

(b) The same for ⊥ → ⊥.
(c) To which systems of the λ-cube does ⊥ belong? And ⊥ → ⊥?

6.2 Let Γ ≡ S : ∗, P : S → ∗, A : ∗ .
Prove by means of a flag derivation that the following expression is

inhabited in λC with respect to Γ:

(Πx : S . (A→ P x))→ A→ Πy : S . P y .

(You may shorten the derivation, as explained in Section 4.5.)

6.3 Let J be the judgement:

S : ∗, P : S → ∗ � λx : S . (P x→ ⊥) : S → ∗ .
(a) Give a shortened λC-derivation of J .
(b) Determine the (s1, s2)-combinations corresponding to all Πs (or ar-

rows) occurring in J . (For ⊥, see Exercise 6.1.)

(c) Which is the ‘smallest’ system in the λ-cube to which J belongs?

6.4 Let Γ ≡ S : ∗, Q : S → S → ∗ and let M be the following expression:

M ≡ (Πx, y : S . (Qxy → Qy x→ ⊥))→ Πz : S . (Qz z → ⊥) .
(a) Give a shortened derivation of Γ �M : ∗ and determine the smallest

subsystem to which this judgement belongs.

(b) Prove in λC that M is inhabited in context Γ. You may use a short-

ened derivation.

(c) We may considerQ to be a relation on set S. Moreover, it is reasonable

to see A→ ⊥ as the negation ¬A of proposition A. (We shall explain

this in Section 7.1.) How can M then be interpreted, if we also take

Figure 5.2 into account? And what is a plausible interpretation of the

inhabiting term you found in (b)?

6.5 Let J be the following judgement:

S : ∗ � λQ : S → S → ∗ . λx : S . Qxx : (S → S → ∗)→ S → ∗ .
(a) Give a shortened derivation of J and determine the smallest subsys-

tem to which J belongs.

(b) We may consider the variable Q in J as expressing a relation on

set S. How could you describe the subexpression λx : S . Qxx in this

setting? And what is then the interpretation of the judgement J ?

Exercises 135

6.6 Let M ≡ λS : ∗ . λP : S → ∗ . λx : S . (P x→ ⊥) .
(a) Which is the smallest system in the λ-cube in which M may occur?

(b) Prove that M is legal and determine its type.

(c) How could you interpret the constructor M , if A→ ⊥ encodes ¬A?
6.7 Given Γ ≡ S : ∗, Q : S → S → ∗, we define in λC the expressions:

M1 ≡ λx, y : S . ΠR : S → S → ∗ . ((Πz : S . R z z)→ Rxy),

M2 ≡ λx, y : S . ΠR : S → S → ∗ .
((Πu, v : S . (Quv → Ruv))→ Rxy).

(a) Give an inhabitant of Πa : S . M1 a a and a shortened derivation

proving your answer.

(b) Give an inhabitant of Πa, b : S . (Qa b → M2 a b) and a shortened

derivation proving your answer.

6.8 (a) Let Γ ≡ S : ∗, P : S → ∗. Find an inhabitant of the following

type N in context Γ, and prove your answer by means of a shortened

derivation:

N ≡ [Πα : ∗ . ((Πx : S . (P x→ α))→ α)]→
[Πx : S . (P x→ ⊥)]→ ⊥.

(b) Which is the smallest system in the λ-cube in which your derivation

may be executed?

(c) The expression Πα : ∗ . ((Πx : S . (P x→ α))→ α may be considered

as an encoding of ∃x∈S(P (x)). (We shall show this in Section 7.5.) In

Section 7.1 we make plausible that A → ⊥ may be considered as an

encoding of the negation ¬A. With these things in mind, how can we

interpret the content of the expression N? (See also Figure 5.2.)

6.9 Given S : ∗, P : S → ∗ and f : S → S, we define in λC the expression:

M ≡ λx : S . ΠQ : S → ∗ . (Πz : S . (Qz → Q(f z)))→ Qx.

Give a term of type Πa : S . (M a→M(f a)) and a (shortened) deriva-

tion proving this.

6.10 Given S : ∗ and P1, P2 : S → ∗, we define in λC the expression:

R ≡ λx : S . ΠQ : S → ∗ . (Πy : S . (P1 y → P2 y → Qy))→ Qx.

We claim that R codes ‘the intersection of P1 and P2’, i.e. the predicate

that holds if and only if both P1 and P2 hold. In order to show this, give

inhabitants of the following types, plus (shortened) derivations proving

this:

(a) Πx : S . (P1 x→ P2 x→ Rx),

(b) Πx : S . (Rx→ P1 x),

(c) Πx : S . (Rx→ P2 x).

Why do (a), (b) and (c) entail that R is this intersection?

(Hint for (b): see Exercise 5.8 (a).)

136 The Calculus of Constructions

6.11 Let Γ �M : N in λC and Γ ≡ x1 : A1, . . . , xn : An.

(a) Prove that the x1, . . . , xn are distinct.

(b) Prove the Free Variables Lemma (Lemma 6.3.3) for λC.

(c) Prove that FV (Ai) ⊆ {x1, . . . , xi−1}, for 1 ≤ i ≤ n.

7

The encoding of logical notions in λC

7.1 Absurdity and negation in type theory

In Section 5.4, IV, we saw how implication can be coded in type theory (in

particular, in λP). We recall: by coding the implication A⇒ B as the function

type A → B, we mimic the behaviour of ‘implication’, including its introduc-

tion and elimination rule, in type theory. So we also have minimal propositional

logic in λC, since λP is part of λC.

In order to get more than minimal propositional logic, we have to be able

to handle more connectives, such as negation (‘¬’), conjunction (‘∧’) and dis-

junction (‘∨’). This cannot be done in λP, but in λC there exist very elegant

ways to code the respective notions, as we presently show.

We start with negation. It is natural to consider the negation ¬A as the

implication A ⇒ ⊥, where ⊥ is the ‘absurdity’, also called contradiction. So

we interpret ¬A as ‘A implies absurdity’. But for this we first need a coding of

the absurdity itself. (In Exercises 3.5 and 6.1 (a) we already mentioned codings

of ⊥ in λ2 and λC, which we shall justify below.)

I. Absurdity

A characteristic property of the proposition ‘absurdity’, or ⊥, is the following:

If ⊥ is true, then every proposition is true.

In natural deduction this property is known under the name ⊥-elimination.

It is traditionally called: ‘ex falso’ or Ex falso sequitur quodlibet , meaning: from

an absurdity follows whatever you like. It can also be expressed as follows, in

a type-theoretic setting:

‘If ⊥ is inhabited, then all propositions A are inhabited.’

We can make this more constructive, by invoking a function:

‘If we have an inhabitant M of ⊥, then there exists a function mapping an

arbitrary proposition α to an inhabitant of this same α.’

Such a function apparently has type Πα : ∗ . α. And indeed, if f has type

138 The encoding of logical notions in λC

Πα : ∗ . α, then by the (appl)-rule: fA : α[α := A] ≡ A. So if f is such a

function, then fA inhabits A (or: makes A true). This holds for a general

proposition A, since also fB inhabits B, etcetera.

So we can rephrase again:

‘Let M be an inhabitant of ⊥. Then there is a function f which inhabits

Πα : ∗ . α.’
And the other way round: if there is such an f , then we can make all (!)

propositions (A, B, . . .) true; this is apparently absurd, so we have an absur-

dity.

Summarising: ⊥ is inhabited if and only if Πα : ∗ . α is inhabited.

Our problem was to find a practical coding for ⊥. By the above, the solution

is now at hand: define ⊥ in type theory as Πα : ∗ . α.

Remark 7.1.1 By defining ⊥ as Πα : ∗ . α, we get ⊥-elimination for free.

To demonstrate this, we picture ⊥-elimination and its type-theoretic equivalent

next to each other, where A is an arbitrary inhabitant of ∗.

(⊥-elim)
⊥
A

(a) f : Πα : ∗ . α
(i) fA : A (appl) on (a) and A : ∗

We discuss the counterpart of ⊥-elimination, viz. ⊥-introduction, after hav-
ing introduced ‘negation’: see Remark 7.1.2 below.

To end our discussion of absurdity (⊥), we investigate in which system ⊥
lives. Since ⊥ ≡ Πα : ∗ . α, we see that s1 = � and s2 = ∗ (cf. the diagram

in Section 6.1). So we are in λ2. Moreover, we can show using the derivation

rules of λ2, that ⊥ : ∗ (cf. Exercise 3.5).

II. Negation

Now that we have ‘absurdity’, we also have ‘negation’. We define:

¬A ≡ A→ ⊥.
Note that A → ⊥ is an abbreviation for Πx : A . ⊥. Since A : ∗ and ⊥ : ∗,

we have here that (s1, s2) = (∗, ∗). However, by the involvement of ⊥ we need

at least λ2 to code negation.

Remark 7.1.2 The ⊥-introduction rule employs negation:

(⊥-intro) A ¬A
⊥

However, this rule has become superfluous by the identification of ¬A and

A→ ⊥ (or A⇒ ⊥), since the ⊥-introduction rule is now just:

(⊥-intro) A A⇒ ⊥
⊥

7.2 Conjunction and disjunction in type theory 139

and this is a particular instance of the (⇒-elim)-rule (cf. Example 2.4.9).

Similarly, we don’t need the natural deduction rule (¬-intro), nor (¬-elim),

since they can be replaced by (⇒-intro) and (⇒-elim), respectively (see Ex-

ample 2.4.9, again). Comparing the following rules, keeping in mind that ¬A
stands for A⇒ ⊥, we easily see that the left-hand versions are special cases of

the right-hand ones:

Assume : A
...

⊥
(¬-intro)

¬A

Assume : A
...

B
(⇒-intro)

A⇒ B

(¬-elim)
¬A A

⊥ (⇒-elim)
A⇒ B A

B

Note: (⊥-intro) and (¬-elim) are identical special cases of the ⇒-elim-rule.

However, they serve different purposes:

(1) (⊥-intro) is meant as a rule explaining how to obtain ⊥: in order to

get ⊥, find a proposition A such that A itself holds, and also its negation ¬A.
So, as all intro-rules, it is used as a backward rule.

(2) (¬-elim) tells us how we can use a negation ¬A: find out whether the

un-negated A holds as well, because then we have an absurdity (⊥). This is a

forward rule (as all elim-rules are).

7.2 Conjunction and disjunction in type theory

I. Conjunction

The conjunction A ∧ B is true if and only if both A and B are true. There

exists a nice encoding of the conjunction in λ2:

A ∧B ≡ ΠC : ∗ . (A→ B → C)→ C .

This is a so-called ‘second order’ encoding of the conjunction, which is more

general than a first order encoding such as A∧B ≡ ¬(A→ ¬B). It is more gen-

eral because the latter encoding only works in classical logic (see Section 7.4).

Why does the expression on the right-hand side, behind the ‘≡’, encapsulate
the same meaning (and has the same force) as ‘A ∧B’ ?

Let’s read the Π as ‘for all’ and the → as ‘implies’ (cf. Section 5.4). Then

the expression ΠC : ∗ . (A→ B → C)→ C can be read as:

(i) For all C, (A implies (B implies C)) implies C.

140 The encoding of logical notions in λC

Since we are dealing with logic, it is natural to conceive of A, B and C as

propositions. Then a free interpretation of (i) is that for all propositions C:

‘if A and B together imply C, then C holds on its own’.

This expresses that the ‘condition’ in the expression before the comma,

namely that both A and B hold, is redundant. Such a thing can only be the

case if that condition is fulfilled, so A must hold and B must hold. And the

other way round: it is not hard to see that the truth of both A and B brings

along that also (i) holds, since ‘true implies C’ is logically equivalent to C.

Hence, it seems to be permitted to use ΠC : ∗ . (A → B → C) → C as an

encoding for A∧B. One calls this the second order encoding of A∧B, because

it generalises over propositions (‘For all propositions C...’). And propositions

(encoded as types) are second order objects.

The informal reasoning given above motivates the proposed encoding of the

conjunction in λ2. There is also a formal justification that this second order

encoding is a proper way of treating conjunction in type theory: we shall show

that the encoding satisfies the same introduction and elimination rules as ∧
does in natural deduction. We recall these rules for ∧, juxtaposing the type-

theoretic second order encodings:

(∧-intro) A B

A ∧B
(∧-intro-sec) A B

ΠC : ∗ . (A→ B → C)→ C

(∧-elim-left)
A ∧B

A
(∧-elim-left-sec)

ΠC : ∗ . (A→ B → C)→ C

A

(∧-elim-right)
A ∧B

B
(∧-elim-right-sec)

ΠC : ∗ . (A→ B → C)→ C

B

In order to see that the second order rules are derivable rules in type theory, it

suffices to give corresponding derivations in λC. Under the PAT-interpretation,

this boils down to finding solutions to questions ?1, ?2 and ?3 in the following

schemes, assuming that Γ ≡ A : ∗, B : ∗:

(∧-intro-sec-tt) Γ � a : A Γ � b : B

Γ � ?1 : ΠC : ∗ . (A→ B → C)→ C

(∧-elim-left-sec-tt)
Γ � c : ΠC : ∗ . (A→ B → C)→ C

Γ � ?2 : A

(∧-elim-right-sec-tt)
Γ � d : ΠC : ∗ . (A→ B → C)→ C

Γ � ?3 : B

As an example, we give a derivation corresponding to the (∧-intro-sec)-rule.
So we assume that a is a term of type A and b is a term of type B, both in

7.2 Conjunction and disjunction in type theory 141

context Γ. Then we have to find, in the same context, a term ?1 having as type

the second order conjunction of A and B, viz. ΠC : ∗ . (A→ B → C)→ C.

In order to comply with the λC-format, we take variables x and y instead

of the ‘expressions’ a and b, and add x : A and y : B to the context. So our

start situation is:

(a) A : ∗
(b) B : ∗
(c) x : A

(d) y : B
...

(n) ?1 : ΠC : ∗ . (A→ B → C)→ C

Filling the gap in this derivation is standard. We take the rules of the most

powerful system, λC (although λ2 would suffice). As in Chapters 4 and 5, we

give a shortened derivation; in particular: we ignore the second premiss of the

(abst)-rule.

(a) A : ∗
(b) B : ∗
(c) x : A

(d) y : B

(e) C : ∗
(f) z : A→ B → C

(1) z x : B → C (appl) on (f) and (c)

(2) z x y : C (appl) on (1) and (d)

(3) λz : A→ B → C . z x y :

(A→ B → C)→ C (abst) on (2)

(4) λC : ∗ . λz : A→ B → C . z x y :

ΠC : ∗ . (A→ B → C)→ C (abst) on (3)

Find yourself derivations that correspond to the two second order ∧-elim
rules (Exercise 7.4). Our final conclusion is that all these rules are already

derivable in λC, and don’t need to be added.

142 The encoding of logical notions in λC

II. Disjunction

There is a similar second order encoding of the disjunction A ∨B:

A ∨B ≡ ΠC : ∗ . (A→ C)→ (B → C)→ C .

(The usual first order encoding of disjunction is A ∨ B ≡ ¬A→ B. But, as

with the conjunction, this only works in classical logic.)

Similarly arguing as with conjunction, above, we may rephrase the right-

hand expression ΠC : ∗ . (A→ C)→ (B → C)→ C as:

(ii) For all C, (A→ C implies that (B → C implies C)).

We have to convince ourselves that (ii) encapsulates the same meaning as

A ∨ B. We first do this by giving an intuitive argument, as with conjunction.

Think of A, B and C as propositions, again. An interpretation of (ii) is that

for all propositions C:

‘if A implies C and also B implies C, then C holds on its own’.

Logically, this means the same as

‘if (A or B) implies C, then C holds’.

Clearly, the ‘condition’ in the expression before the comma is redundant,

again. So A or B must hold.

The reasoning the other way round is more complicated. Assume that A or B

holds. We may see this as the fact that there are two cases, one expressed as

A, and the other as B. If we know now that for an arbitrary C, in case A we

have C (i.e. A⇒ C) and also in case B we have C (i.e. B ⇒ C), then we may

conclude that C holds altogether. This is essentially what (ii) says.

Another justification is the formal proof that the encoding corresponds to

the natural deduction rules for disjunction, which are:

(∨-intro-left) A

A ∨B

(∨-intro-right) B

A ∨B

(∨-elim)
A ∨B A⇒ C B ⇒ C

C

We shortly comment on these natural deduction rules.

The intro-rules speak for themselves: if A alone holds already, then also A∨B
holds; and similarly for B.

For the elim-rule for ∨, we refer to our discussion above, in particular the

part about ‘case distinction’.

The type-theoretic second order versions of the ∨-rules look as follows.

7.2 Conjunction and disjunction in type theory 143

(∨-intro-left-sec) A

ΠC : ∗ . (A→ C)→ (B → C)→ C

(∨-intro-right-sec) B

ΠC : ∗ . (A→ C)→ (B → C)→ C

(∨-elim-sec)
ΠD : ∗ . (A→ D)→ (B → D)→ D A→ C B → C

C

(We use the bound variable D in the last-mentioned Π-expression in order

to avoid confusion with the free C’s occurring in the rest of the rule.)

Formal derivations in λC showing that the two second order ∨-intro-rules
are covered by the encoding are left to the reader (Exercise 7.7).

Here follows a formal derivation in λC corresponding to the second order

∨-elim-rule:

(a) A : ∗
(b) B : ∗
(c) C : ∗
(d) x : (ΠD : ∗ . (A→ D)→ (B → D)→ D)

(e) y : A→ C

(f) z : B → C

(1) xC : (A→ C)→ (B → C)→ C (appl) on (d), (c)

(2) xC y : (B → C)→ C (appl) on (1), (e)

(3) xC y z : C (appl) on (2), (f)

Remark 7.2.1 In the previous section and the present one, we have defined

type-theoretic variants of negation, conjunction and disjunction by

¬A ≡ A→ ⊥ ,

A ∧B ≡ ΠC : ∗ . (A→ B → C)→ C ,

A ∨B ≡ ΠC : ∗ . (A→ C)→ (B → C)→ C .

However, there are free variables (A and B) in these expressions. In order

to be sure that these variables have the proper type (∗), we could also have

chosen to introduce the sole connectives as abbreviations for more ‘abstract’

expressions:

¬ ≡ λα : ∗ . (α→ ⊥) ,
∧ ≡ λα : ∗ . λβ : ∗ . Πγ : ∗ . (α→ β → γ)→ γ ,

∨ ≡ λα : ∗ . λβ : ∗ . Πγ : ∗ . (α→ γ)→ (β → γ)→ γ .

144 The encoding of logical notions in λC

Starting from these alternative encodings, we can easily get the contents of

the original ones by the (appl)-rule, for example:

¬A ≡ (λα : ∗ . (α→ ⊥))A →β A→ ⊥ .

(Note that ¬A means here ¬ applied to A.)

So, these alternatives have the same expressivity, although we need more

than λ2. In fact, we need λω (cf. Figure 6.2). Check this yourself.

7.3 An example of propositional logic in λC

We are now able to ‘do’ propositional logic in type theory, since we have en-

codings for absurdity (⊥) and for the connectives ⇒, ¬, ∧ and ∨.

Remark 7.3.1 Only the ⇔ is missing, but this can be easily remedied by

expressing it by means of the other connectives, in the usual way:

A⇔ B ≡ (A⇒ B) ∧ (B ⇒ A).

In order to show how propositional logic ‘works’ in type theory, we give a

type-theoretic proof of the following tautology:

(A ∨B)⇒ (¬A⇒ B) .

In Figure 7.1 we give the full proof as a derivation in λC. Since we use

the type-theoretic encodings of ∨, ⇒ and ¬, the goal (see line (10) in the

derivation) becomes to find an inhabitant of:

(∗) (ΠC : ∗ . ((A→ C)→ (B → C)→ C))︸ ︷︷ ︸
A∨B

→ (A→ ⊥)︸ ︷︷ ︸
¬A

→ B .

About this derivation, we note the following:

− In the above expression, we treat A and B as free variables, representing

‘arbitrary’ propositions. Hence, we must start our derivation in Figure 7.1

with the assumptions given in lines (a) and (b).

− So the set-up of the derivation is: in context (a) and (b), find an inhabitant

of the expression above. Line (10) shows that we succeed in finding such an

inhabitant.

− How has this been accomplished? Well, we assume to have an inhabitant of

the left-hand side of the expression (see line (c)) and derive an inhabitant

of the right-hand side (namely (A→ ⊥)→ B), in the extended context (a),

(b) and (c). Line (9) displays the desired (new) inhabitant.

− That inhabitant, in its turn, has been found by adding the left-hand side of

the type (A → ⊥) → B as an assumption to the context (see line (d)) and

deriving an inhabitant of the right-hand side, which is B. The last-mentioned

inhabitant is given in line (8).

7.3 An example of propositional logic in λC 145

(a) A : ∗
(b) B : ∗
(c) x : (ΠC : ∗ . ((A→ C)→ (B → C)→ C))

(d) y : A→ ⊥

(1) xB : (A→ B)→ (B → B)→ B (appl) on (c) and (b)

(e) u : A

(2) y u : ⊥ (appl) on (d) and (e)

(3) y uB : B (appl) on (2) and (b)

(4) λu : A . y uB : A→ B (abst) on (3)

(5) xB (λu : A . y uB) : (B → B)→ B (appl) on (1) and (4)

(f) v : B

(6) v : B (var) on (f)

(7) λv : B . v : B → B (abst) on (6)

(8) xB (λu : A . y uB)(λv : B . v) : B (appl) on (5) and (7)

(9) λy : A→ ⊥ . xB (λu : A . y uB)(λv : B . v) :

(A→ ⊥)→ B (abst) on (8)

(10) λx : (ΠC : ∗ . ((A→ C)→ (B → C)→ C)) .

λy : A→ ⊥ . xB (λu : A . y uB)(λv : B . v) :

(ΠC : ∗ . ((A→ C)→ (B → C)→ C))→
(A→ ⊥)→ B (abst) on (9)

Figure 7.1 A derivation of the logical tautology (A ∨B)⇒ (¬A⇒ B)

− So the situation is now to explain why xB (λu : A . y uB)(λv : B . v) is an

inhabitant of B, in the context (a)–(d); and in particular how we found it.

The flash of inspiration is to apply x to the proposition B, as has been done

in line (1), which gives an inhabitant of (A → B) → (B → B) → B. (This

ends in B, which is promising, since we look for an inhabitant of B.)

− So as soon as we have something of type A → B and something of type

B → B, we can use ⇒-elimination twice, in order to obtain the desired

inhabitant of B. This is exactly what we do: see lines (4) and (7) for these

inhabitants.

− The rest will be obvious. Note that in line (3) we use the type-theoretic

version of (⊥-elim) on line (2): recall that ⊥ is an abbreviation of Πα : ∗ . α.

146 The encoding of logical notions in λC

Hence, if y u : ⊥, then y uB : B (cf. Section 7.1). This is exactly what we

put into practice.

We invite and encourage the reader to study the further details of Figure 7.1.

Note that this is, again, a shortened derivation, in which the second premiss

of the (abst)-rule has consistently been neglected.

Remark 7.3.2 The derivation in Figure 7.1 uses the earlier described codings

for expressions with ∨ and ¬. When starting from the higher order encodings

described in Remark 7.2.1, we have to do a little bit more work. The translation

of A ∨ B then is (λα : ∗ . λβ : ∗ . Πγ : ∗ . (α → γ) → (β → γ) → γ)AB, with

the consequence that lines (c) and (d) in the derivation look like:

(c′) x : (λα : ∗ . λβ : ∗ . Πγ : ∗ . ((α→ γ)→ (β → γ)→ γ))AB

(d′) y : (λα : ∗ . (α→ ⊥))A

In order to continue this derivation, it is wise to execute β-reduction in each

of the two types in lines (c′) and (d′).
By the conversion rule – note that this is a good occasion to use it – we

obtain the intermediate lines (i) and (ii) below:

(c′) x : (λα : ∗ . λβ : ∗ . Πγ : ∗ . ((α→ γ)→ (β → γ)→ γ))AB

(d′) y : (λα : ∗ . (α→ ⊥))A

(i) x : (Πγ : ∗ . ((A→ γ)→ (B → γ)→ γ)) (conv) on (c′)

(ii) y : A→ ⊥ (conv) on (d′)

Hence we may continue the derivation just as in lines (1) to (10) of Fig-

ure 7.1, with the only change that references to (c) and (d) should be replaced

by references to (i) and (ii), respectively.

7.4 Classical logic in λC

It is worth noting that the logic we have seen until now is constructive logic

(sometimes also referred to as intuitionistic logic; see van Dalen, 1994, Chap-

ter 5). It is slightly less powerful than the usual classical logic. In classical logic

one has the ‘law of the excluded third ’ (ET), stating that A ∨ ¬A holds for

any A. Also, one has the ‘double negation law’ (DN), stating that ¬¬A ⇒ A

holds for any A. Both ET and DN are not derivable from the rules that we

have seen until now (constructive logic). For a proof of this fact, see Troelstra

& van Dalen (1988), Vol. 1, p. 79.

Classical logic is what one generally wants, since this is the most commonly

7.4 Classical logic in λC 147

used kind of logic in mathematics. In order to obtain this, one has to extend

constructive logic.

It turns out to be sufficient to add either ET, or DN. The reason is that in

constructive logic plus ET we can derive DN. And vice versa: in constructive

logic plus DN we can derive ET.

How can we add either ET or DN to λC? It should become a proposition

which always ‘holds’, so it must be formalised as something which can be called

upon in every derivation. The easiest way to manage this is to add it as an

assumption in front of the context. Such an assumption can be represented in

λC by means of a declaration. Let’s do this, for example, for ET:

iET : Πα : ∗ . α ∨ ¬α

We call this the addition of an axiom: we suppose that we have an inhabi-

tant , iET , of the excluded-third-axiom in the right-hand side of the expression

(reading: for all propositions α we have that α ∨ ¬α.)

As an example, we now give the derivation corresponding to one of the two

things which we claimed above: that (the type-theoretic version of) construc-

tive logic + ET enables one to derive DN.

So we start our context with the axiom ET and obtain the following goal:

(a) iET : Πα : ∗ . α ∨ ¬α
...

(n) ? : Πβ : ∗ . ¬¬β → β

The goal naturally brings along the following two steps:

(a) iET : Πα : ∗ . α ∨ ¬α
(b) β : ∗
(c) x : ¬¬β

...

(l) ? : β

(m) . . . : ¬¬β → β

(n) . . . : Πβ : ∗ . ¬¬β → β

Now we try to use (a), (b) and (c) in order to find an inhabitant of β.

Line (a) appears to be a good candidate: its type is a Π-type which generalises

over α of type ∗. It appears to be a good choice to apply iET to β, obtaining an

148 The encoding of logical notions in λC

inhabitant of β ∨ ¬β. The latter expression is, in the type-theoretic encoding,

an abbreviation for Πγ : ∗ . ((β → γ) → (¬β → γ) → γ). So, for convenience

omitting lines (m) and (n), we obtain:

(a) iET : Πα : ∗ . α ∨ ¬α

(b) β : ∗

(c) x : ¬¬β

(1) iET β : β ∨ ¬β
(2) iET β : Πγ : ∗ . (β → γ)→ (¬β → γ)→ γ

...

(l) ? : β
...

Since the type in line (2) is a Π-type, again, it appears to be a good option

to apply it (again) to β. This leads to the addition of line (3):

(a) iET : Πα : ∗ . α ∨ ¬α

(b) β : ∗

(c) x : ¬¬β

(1) iET β : β ∨ ¬β
(2) iET β : Πγ : ∗ . (β → γ)→ (¬β → γ)→ γ

(3) iET β β : (β → β)→ (¬β → β)→ β
...

(l) ? : β
...

What’s next? Our goal is to obtain an inhabitant of β. Now β is also the

rightmost subexpression in the type of line (3). So if we succeed in finding

inhabitants of successively β → β and ¬β → β, then a double use of the

application rule leads from line (3) to goal (l).

The first task is easy: β → β is obviously a tautology, with an easy proof,

given in line (4). (See also Figure 7.1, flag (f), and lines (6) and (7).) We fill

this in, together with the (appl)-consequence of lines (3) and (4), stated in

line (5):

7.4 Classical logic in λC 149

(a) iET : Πα : ∗ . α ∨ ¬α

(b) β : ∗

(c) x : ¬¬β

(1) iET β : β ∨ ¬β
(2) iET β : Πγ : ∗ . (β → γ)→ (¬β → γ)→ γ

(3) iET β β : (β → β)→ (¬β → β)→ β

(4) λy : β . y : β → β

(5) iET β β (λy : β . y) : (¬β → β)→ β
...

(l) ? : β
...

What’s left is the task to find an inhabitant of ¬β → β. For convenience, we

isolate this part of the proof and add line (k) for the purpose mentioned. This

naturally leads to assumption (d) and the new goal (j):

...
...

(c) x : ¬¬β
...
...

(5) iET β β (λy : β . y) : (¬β → β)→ β

(d) z : ¬β
...

(j) ? : β

(k) . . . : ¬β → β

(l) . . . : β
...

Combining assumptions (c) and (d) we obtain ⊥, since ¬¬β is identical to

¬β → ⊥. And having an inhabitant of ⊥, we have inhabitants for ‘everything’.
(Recall the type-theoretic version of the (⊥-elim)-rule, see Section 7.1, I.) So

we have also solved the goal in line (j) and we are done (but for the filling in

of a number of terms and argumentations).

150 The encoding of logical notions in λC

This part of the proof then looks as given below. Lines (7), (8) and (9)

replace goals (j), (k) and (l).

Finish the derivation yourself, including the arguments.

...
...

(c) x : ¬¬β
...
...

(5) iET β β (λy : β . y) : (¬β → β)→ β

(d) z : ¬β

(6) x z : ⊥
(7) x z β : β

(8) λz : ¬β . x z β : ¬β → β

(9) iET β β (λy : β . y) (λz : ¬β . x z β) : β
...

7.5 Predicate logic in λC

Now that we have coded propositional logic (both the constructive and the

classical versions), it is time to look at predicate logic. For this, we have to find

encodings for the quantifiers ∀ and ∃. As far as ∀ is concerned, this has already
been done in Section 5.4, part V. There we have shown that the encoding of

∀x∈S(P (x)) as Πx : S . Px is satisfactory, since it satisfies the elimination and

introduction rules for ∀.
All that’s left is the existential quantifier ∃. The first order definition of ∃,

namely ∃x∈S(P (x)) ≡ ¬∀x∈S(¬P (x)), only works in classical logic. There exists

a more general second order encoding of ∃ which conforms nicely with the

(constructive) elimination and introduction rules for ∃, namely, encode

∃x∈S(P (x)) as Πα : ∗ . ((Πx : S . (P x→ α))→ α).

Let’s try to translate the latter expression in words, reading Π as ∀, and →
as ⇒:

‘For all α:

if we know that for all x in S it holds that P x implies α,

then α holds.’

It is not immediately clear why this statement covers the same content as the

statement ‘There exists an x in S with P (x)’. However, it is straightforward to

7.5 Predicate logic in λC 151

compare the above encoding with the usual (∃-elim)- and (∃-intro)-rules from
constructive logic, as we do next (see also van Dalen, 1994, Section 2.9).

Let’s start with the elimination rule for ∃ as it is commonly expressed in

natural deduction for first order logic. Let P be a predicate over set S, and

x �∈ FV (A):

(∃-elim)
∃x∈SP (x) ∀x∈S(P (x)⇒ A)

A

So this rule says:

‘(first premiss) If there exists an x in the set S for which the predicate

P holds,

(second premiss) and if for all x in S: if P holds for this x, then the propo-

sition A holds ,

(conclusion) then A holds altogether.’

We first give an intuitive explanation of this rule. The situation to start with

is:

(1) There is an x with P (x), and

(2) for all x we know: as soon as P (x) then also A.

Then a natural reasoning is:

− we may apply (2) to ‘the’ x which is claimed to exist in (1);

− for this x we indeed have P (x) by (1);

− hence (2) leads us to the conclusion that A holds. And this is exactly the

conclusion in the (∃-elim)-rule.

So this rule is intuitively acceptable.

Remark 7.5.1 It is a general habit to apply ∃-elimination in a loose manner:

if one knows that ∃x∈SP (x), one simply takes ‘such an’ x for which P holds,

and works with ‘that’ x as if it has been given.

Therefore, a mathematician tends to use the following scheme:

(1) ∃x∈SP (x)

(2) Let x ∈ S be such that P x holds

(3)
...

(4) A

In mathematical texts, it is customary to simplify this scheme even more, by

omitting sentence (2).

However, either of these presentations is questionable. The silent assumption

about the scope of the x introduced in line (2) is that it may be used in (3), but

not in (4). And when (2) is omitted, each free x in (3) can only refer to the

binding variable x in (1); which clearly violates the scope of the ∃-symbol.

152 The encoding of logical notions in λC

That is the reason why we consider the above (∃-elim)-rule to be the only

acceptable one for a formal proof, in spite of the extra work that it requires.

Now we have to show that the type-theoretic (second order) counterpart of

the (∃-elim)-rule is correct. So we must convince ourselves that the following

rule is acceptable, for all S : ∗, P : S → ∗ and A : ∗ with x �∈ FV (A):

(∃-elim-sec)
Πα : ∗ . ((Πx : S . (P x→ α))→ α) Πx : S . (P x→ A)

A

A derivation to show that this rule is derivable in λC is easy and can be

given right away. For the record, we spell it out:

(a) S : ∗
(b) P : S → ∗
(c) A : ∗
(d) y : Πα : ∗ . ((Πx : S . (P x→ α))→ α)

(e) z : Πx : S . (P x→ A)

(1) y A : (Πx : S . (P x→ A))→ A (appl) on (d), (c)

(2) y A z : A (appl) on (1), (e)

Note how simple this is. This does not come as a surprise, if we look again

at the (∃-elim-sec)-rule. Let’s abbreviate Πx : S . (P x → α) as ϕ(α). Then

the rule expresses the following, in logical terms:

‘If (i) for all α we have that ϕ(α)⇒ α and (ii) ϕ(A), then (iii) A.’

We obtain this simply by first applying (i) to A by means of (∀-elim), which

gives ϕ(A)⇒ A (see also line (1)), and next combining this with (ii), applying

(⇒-elim). The result is (iii) (see line (2)).

Remark 7.5.2 In the derivation it is essential that x �∈ FV (A), because

otherwise the application in line (2) would be illegal (see Exercise 7.11).

On closer inspection, we see that the second order encoding of ∃ is exactly

what the (∃-elim)-rule expresses, namely that the existence of an x ∈ S with

P (x) brings along that ‘if ∀x∈S(P (x) ⇒ A), then A’, or in type-theoretic

terms: (Πx : S . (P x→ A))→ A. This should hold for all A, hence we obtain

Πα : ∗ . ((Πx : S . (P x→ α))→ α) as the desired encoding.

Clearly, in all cases where we appeal to (∃-elim) in logic, we are permitted to

use the second order encoding of ∃ in type theory. This brings our discussion

of (∃-elim) to a conclusion.

7.5 Predicate logic in λC 153

How about the introduction rule for ∃? Its usual version in first order nat-

ural deduction is the following, where, as before, P is a predicate over set S;

moreover, a is some fixed element (see again van Dalen, 1994, Section 2.9):

(∃-intro) a ∈ S P (a)

∃x∈S(P (x))

In words:

‘(first premiss) If a certain object a is element of the set S,

(second premiss) and the predicate P holds for this a,

(conclusion) then ∃x∈S(P (x)) holds.’

This reasoning scheme is obvious and thus also intuitively acceptable: if

we already know (first and second premisses) that a certain a in S has

‘property’ P , then (conclusion) there exists some x in S with property P

(namely x = a).

In order to show that the type-theoretic counterpart of this (∃-intro)-rule is

correct as well, we have to convince ourselves that the following second order

rule is derivable, for all S : ∗ and P : S → ∗:

(∃-intro-sec) a : S P a

Πα : ∗ . ((Πx : S . (P x→ α))→ α)

A derivation of this can start as follows, where we code the arbitrary a as a

variable in flag (c):

(a) S : ∗
(b) P : S → ∗
(c) a : S

(d) u : P a
...

(n) ? : Πα : ∗ . ((Πx : S . (P x→ α))→ α)

Completion of this derivation is straightforward and easy. We leave it as an

exercise to the reader to derive that the following proof object is correct:

? ≡ λα : ∗ . λv : (Πx : S . (P x→ α)) . v a u.

Remark 7.5.3 We have defined a type-theoretic equivalent of the logical ∃-
expression by taking:

∃x∈S(P (x)) ≡ Πα : ∗ . ((Πx : S . (P x→ α))→ α) .

154 The encoding of logical notions in λC

As in Remark 7.2.1, we note that there are free variables in this expression,

viz. S and P . Again, we could also abstract from these variables, in order to

incorporate their types. Then we get the alternative representation

∃ ≡ λS : ∗ . λP : S → ∗ . Πα : ∗ . ((Πx : S . (P x→ α))→ α) .

When using this alternative, we obtain, for given S and P of the proper

types:

∃S P →β Πα : ∗ . ((Πx : S . (P x→ α))→ α) ,

so ∃S P ‘is’ the type-theoretic encoding of ∃x∈S(P (x)).

Check yourself that for Πα : ∗ . ((Πx : S . (P x → α)) → α), having type ∗,
we need (at least) λP2 (see Figure 6.3). For the alternative ∃ described here,

however, we need λC, since its type is ΠS : ∗ . (S → ∗)→ ∗.

7.6 An example of predicate logic in λC

In order to demonstrate how the codings of ∀ and ∃ in λC work, we give a

type-theoretic derivation of the following proposition:

¬∃x∈S(P (x)) ⇒ ∀y∈S(¬P (y)) .

In second order λC-encoding this becomes:

((Πα : ∗ . (Πx : S . (P x→ α))→ α)→ ⊥) → Πy : S . (P y → ⊥) .

In order to keep close to the formulation in logic, we write ¬A for A → ⊥
and A⇒ B for A→ B (see Section 7.1).

In accordance with the previous section, we also employ the ∀- and ∃-
symbols, which are more familiar: we write, if appropriate,

∀x : S . P x for Πx : S . P x, and

∃x : S . P x for Πα : ∗ . ((Πx : S . (P x→ α))→ α).

With all this notational ‘sugaring’, our encoding in λC becomes very similar

to the usual representation in logic, namely: ¬(∃x : S . P x) ⇒ ∀y : S . ¬(P y).

In order to give a proof of this λC-proposition, we try to find an inhabitant.

Raising flags for the free variables S and P , we obtain the following start

situation:

(a) S : ∗
(b) P : S → ∗

...

(n) ? : ¬(∃x : S . P x) ⇒ ∀y : S . ¬(P y)

7.6 An example of predicate logic in λC 155

The goal type is in fact an →-expression, i.e. an abbreviated Π-type. Its

right-hand side ∀y : S . ¬(P y) is a Π-expression in disguise, with an ‘embedded’

→-expression, namely P y → ⊥. Hence, we can try to obtain line (n) by three

applications of the (abst)-rule. See flags (c), (d) and (e) below, and the new

goals (m), (l) and (k).

(a) S : ∗
(b) P : S → ∗
(c) u : ¬(∃x : S . P x)

(d) y : S

(e) v : P y
...

(k) ? : ⊥
(l) . . . : ¬(P y) (abst) on (k)

(m) . . . : ∀y : S . ¬(P y) (abst) on (l)

(n) . . . : ¬(∃x : S . P x) ⇒ ∀y : S . ¬(P y) (abst) on (m)

How can we obtain an inhabitant of ⊥ in line (k)? A promising idea is to

get it via flag (c), by finding an inhabitant of ∃x : S . P x. If we succeed, then

we can apply u to this in order to get an expression of type ⊥.
See step (j) in the incomplete derivation below.

(a) S : ∗
(b) P : S → ∗
(c) u : ¬(∃x : S . P x)

(d) y : S

(e) v : P y
...

(j) ? : ∃x : S . P x

(k) . . . : ⊥ (appl) on (c) and (j)

(l) . . . : ¬(P y) (abst) on (k)

(m) . . . : ∀y : S . ¬(P y) (abst) on (l)

(n) . . . : ¬(∃x : S . P x) ⇒ ∀y : S . ¬(P y) (abst) on (m)

156 The encoding of logical notions in λC

It is not hard to find a solution to ? in line (j), since the second order ∃-
introduction rule tells us that it suffices to find an a in S such that P a holds.

And such an a is obviously at hand, namely y: see flags (d) and (e).

So the derivation going with (∃-intro-sec) – see Section 7.5 – gives the answer

what to take for ? in line (j).

The rest of the derivation is no more than accurate administration:

(a) S : ∗
(b) P : S → ∗
(c) u : ¬(∃x : S . P x)

(d) y : S

(e) v : P y

(1) λα : ∗ . λw : (Πx : S . (P x→ α)) . w y v : ∃x : S . P x

(see Section 7.5)

(2) u (λα : ∗ . λw : (Πx : S . (P x→ α)) . w y v) : ⊥
(appl) on (c) and (1)

(3) . . . : ¬(P y) (abst) on (2)

(4) . . . : ∀y : S . ¬(P y) (abst) on (3)

(5) . . . : ¬(∃x : S . P x) ⇒ ∀y : S . ¬(P y) (abst) on (4)

We omitted the proof terms in lines (3) to (5), since they become longer and

longer. For the record, we spell out the proof term for line (5):

λu : ¬(∃x : S . P x) . λy : S . λv : P y .

u (λα : ∗ . λw : (Πx : S . (P x→ α)) . w y v) .

Without the λC-definitions of ∃ and ¬, this expression would be even longer.

Since an expression of this length already occurs in the five-line example above,

we can easily imagine that we soon get unintelligible long expressions in a

derivation of some weight (see for example Exercise 7.14). Moreover, many

(sub-)expressions become repeated in the proof terms, as one can see already

in the proof objects of lines (1) and (2). These repetitions, together with

the length of the expressions, hinder the understanding of what’s happening.

Clearly, we have to do something about this, in order to keep our derivations

readable.

Another observation is that the natural deduction rules of logic are not

visible in derivations represented as above, as we see for example in line (1),

which is based on a ‘hidden’ ∃-introduction.

7.7 Conclusions 157

Hence, in spite of the transparency we achieved by using the flag format, we

need more means to maintain the overview in complex derivations, both in logic

and mathematics. In the following chapters it will turn out that a structured

definition system will help us considerably in getting a grip on derivations.

Note that our investigations in the present chapter already hinted at such an

expedient: on several occasions we used abbreviations for type-theoretic terms,

such as ⊥ for Πα : ∗ . α and A∧B for ΠC : ∗ . (A→ B → C)→ C. The usage

of the ∀- and ∃-quantifiers in the example above also helped a lot.

7.7 Conclusions

In this chapter we have investigated the possibilities for encoding basic logical

notions in type theory. When dealing with mathematical matters, for example

when inventing, writing or reading proofs, one often uses a standard logical

framework, which in more abstract form has become known as natural deduc-

tion. Most mathematicians apply this logical framework intuitively, since they

have been acquainted with it since their first steps in mathematics.

We have succeeded in finding type-theoretic equivalents for the notions ab-

surdity and negation and their relation with natural deduction. Next, we have

introduced (second order) encodings of conjunction and disjunction. Since im-

plication has already been covered in type theory, we have obtained a type-

theoretic version of propositional logic (biimplication can be treated easily by

the usual definition).

This immediately delivers an encoding of constructive propositional logic. In

order to get classical logic, one has to add either ET (excluded third) or DN

(double negation). This can be done with an extra assumption at the front end

of the context, acting as an axiom.

We have also introduced the (second order) ‘constructive’ encoding of ∃ (the
encoding of ∀ was given in an earlier chapter). So also predicate logic (either

constructive or classical) is covered by type theory.

Moreover, all encodings appear to be intuitively acceptable on the one hand,

and precisely correspond to the usual logical introduction and elimination rules,

on the other hand. With a number of examples it has become clear how logical

derivations in type theory ‘work’.

We also experienced that proof terms in more complex derivations may grow

to an undesirable length, making it hard to keep the derivations within rea-

sonable bounds. This interferes with understanding and ease of survey. In fol-

lowing chapters, however, we shall solve these problems by an adequate usage

of definitions .

We have showed several times how we can mimic the logical proof that a

158 The encoding of logical notions in λC

certain expression is a tautology, by giving a term of the corresponding type

and a derivation that this term is of the right type. Of course, proofs in logic

resemble their type-theoretic counterparts (the proof terms) to a great extent.

In both cases there is an underlying derivation system which gives justifications

for all the steps in the proof. This means that both a logical proof system and

the here-developed type-theoretic proof system can be fully automatised, which

means that the verifying check for such a proof can be left to a machine (e.g.

a computer).

Advantages of the type-theoretic encodings over the usual manner, based on

natural deduction, to formalise logical reasoning, are:

− Since type theory uses inhabitants of propositions as ‘witnesses’ of their

validity, we are forced to give a complete justification of the logical facts

which we are proving. In ordinary logic, the precise justifications are often

not expressed at all, or only on the meta-level , e.g. by adding a phrase such

as: ‘by ⇒-elimination’. In type theory – due to the derivation rules which

use statements of the form M : A instead of solely the proposition A – such

justifications (the M ’s) are on the object level : one is obliged to provide

such M ’s as inhabitants, which are type-theoretic terms (having the proper

type A).

− This makes it also easy to build a computer program for checking logical

proofs: all ingredients of reasonings are well-described and precisely formu-

lated in type theory. Leaving gaps and ‘hand waving’ are not permitted when

conforming to the type-theoretic rules of λC.

− One sometimes expresses this powerful property of type theory as: proof

checking = type checking .

− By the use of type theory, it becomes feasible to extend logic in a uniform

manner to ‘full’ mathematics: the same principles holding for expressing

logic can be used to express mathematics in a formal way. Type theory

is much more general than logic alone: one can not only represent logical

notions, but also all kinds of mathematical notions. We give an idea of how

this works in the following chapters, in particular Chapters 12 to 15.

Hence, also for wider applications in the field of mathematics, the use of

type theory can be advantageous, when we think of the following features:

− Checking of mathematical theorems and proofs, or even complete theories,

e.g. by the aid of a computer program.

− Helping mathematicians in filling in details in their mathematical inventions,

or in developing new mathematics. This is called proof assistance. Computer

programs designed for these purposes are called proof assistants. They are

particularly useful in very complicated proving situations, or in the case

7.8 Further reading 159

where a proof consists of a great amount of different simple cases (when a

human easily loses concentration, contrary to a computer).

Of course, there are also disadvantages of using type theory for logic: things

become more complicated; every detail has to be spelled out in order to comply

with the type-theoretic rules. This makes derivations harder to read. Reason-

ings in logic are usually easier to understand than their type-theoretic coun-

terparts. So for humans desiring only to understand what’s happening – in

particular students – it may be disputable whether logic in type theory is

preferable over ‘old-time’ logical systems. But type theory may certainly help

to deepen understanding.

7.8 Further reading

The definition of the connectives ∨, ∧ and ∃ in terms of ⇒ and ∀ in second

order logic is well-known from the literature and can be found e.g. in Troelstra

& van Dalen, 1988, or in van Dalen, 1994 (Theorem 4.5). In Sections 1.4, 1.6,

2.8 and 2.9 of the latter book one can also find the first order natural deduction

rules for the logical connectives, as we use them in this chapter. The book is a

rich and useful text on mathematical logic in general.

The interesting aspect of the second order definitions is that they work in a

constructive logic, so where we don’t have the double negation law (or excluded

middle). In the presence of the double negation axiom, one can also define ∨,
∧ and ∃ in terms of ⇒, ¬ and ∀ in the usual classical way: A∨B := ¬A⇒ B,

A ∧B := ¬(¬A ∨ ¬B) and ∃x . P (x) := ¬∀x . ¬P (x).

Several systems for formal logic were devised in the beginning of the twen-

tieth century. The various systems can be categorised as:

(1) natural deduction systems,

(2) sequent calculi,

(3) axiomatic systems (also called Hilbert style systems).

− The natural deduction systems were developed by G. Gentzen, and inde-

pendently by S. Jaśkowski, to capture the natural way that mathematicians

and logicians reason and to give this a formal foundation (Gentzen, 1934/5;

Jaśkowski, 1934). (More about the various systems of natural deduction,

their history and their use in textbooks, can be found in Pelletier, 1999.)

− In order to study his system of natural deduction, Gentzen introduced se-

quent calculus, which is much more explicit and in which one has more

control over the forms of the derivations.

− Hilbert style systems usually have a different aim, namely to enable theoret-

ical investigations without being bothered by an abundance of rules.

160 The encoding of logical notions in λC

In natural deduction, a judgement is of the shape:

A1, . . . , An � B,

where the Ai are seen as hypotheses and B as the conclusion. One may read

this as: from A1 to An we can derive B. The derivation rules say for each

connective how to introduce it and how to eliminate it. This can clearly be

observed from the rules for the various connectives that we have introduced in

the present chapter.

In sequent calculus, a judgement is of the shape:

A1, . . . , An � B1, . . . , Bk,

which can intuitively be read as A1 ∧ . . . ∧ An � B1 ∨ . . . ∨ Bk, or otherwise

said: (at least) one of the Bj follows from the conjunction of the Ai. The

derivation rules say for each connective how to introduce it on the left and

how to introduce it on the right. This gives the rules of sequent calculus a nice

symmetry.

For example, here are the classical rules for conjunction and disjunction,

where we abbreviate A1, . . . , An to A and B1, . . . , Bk to B. Note the crosswise

duality between the ∧- and ∨-rules.

A � C, B A � D, B

A � C ∧D, B

A, C, D � B

A, C ∧D � B

A � C, D, B

A � C ∨D, B

A, C � B A, D � B

A, C ∨D � B

The rules for implication are as follows:

A, C � D, B

A � C ⇒ D, B

A, D � B A � C, B

A, C ⇒ D � B

The derivation rules of sequent calculus are not devised for being ‘natural’,

but for being able to prove properties about the system. Gentzen did this

successfully, for example by proving various consistency results for logic using

sequent calculus. It can be shown that the derivable judgements of sequent

calculus and natural deduction are the same.

Another way to formalise the notion of logical derivation is via Hilbert sys-

tems, where one trades derivation rules for axioms. The idea is to introduce a

number of axiom schemes and have only few derivation rules. The simplest

instance is minimal proposition logic, which has no more than two axiom

schemes:

A⇒ (B ⇒ A) and (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C)),

7.8 Further reading 161

where A, B and C can be instantiated with any formula; and one derivation

rule, modus ponens:

A⇒ B A

B

However, the axiomatic method is quite unnatural to make formal deriva-

tions in. Natural deduction is the system that corresponds closest to the ‘usual

way of reasoning’ in mathematics, so therefore we have adopted this to for-

malise reasoning. In fact, type theory can be seen as a more formal treatment

of natural deduction, because now the derivations themselves (the proofs) are

given a term representation.

The flag-style format for natural deduction was introduced by Jaśkowski

(1934). Later it was further studied and popularised by F. Fitch (see Fitch,

1952) and it is therefore also often referred to as ‘Fitch style natural deduction’.

A practical introduction, especially for beginning students of mathematics or

computer science that want to learn to use the rules, is by Nederpelt & Ka-

mareddine (2011).

In flag-style natural deduction, a derivation is not a tree but a linear con-

struction, where the scope of variables and hypotheses is explicitly delimited

by flags. Flag-style natural deduction is not fundamentally different from tree

style – also called Gentzen style. Geuvers & Nederpelt (2004) show how to

translate them to each other and how to translate a proof term to a tree-style

derivation or a flag-style derivation.

Natural deduction has been studied extensively by D. Prawitz (Prawitz,

1965), especially in terms of the structure of the proofs. This is the field of proof

theory, which was originally devoted to studying the structure and properties

of ‘derivation trees’, but due to the formulas-as-types/proof-as-terms analogy,

this is now also very much a study of the structure and properties of (proof)

terms in type theory. The β-reduction rule on terms has an interesting analogy

in derivations as ‘cut elimination’, which makes the study of normalisation

and confluence of reduction also relevant for proof theory. Similar reductions

(either on the derivation level or on the term level) can be introduced for the

other connectives ∧, ∨ and the quantifier ∃. We refer to Girard et al. (1989)

or Prawitz (1965) for details.

The already mentioned system Coq (Bertot & Castéran, 2004; Coq Develop-

ment Team, 2012) is a proof assistant based on type theory. Originally it was

based on the system λC and then the way to do logic in Coq was exactly what

we describe in the present chapter. Nowadays, however, Coq also has inductive

types, and the connectives are defined inductively. In a computer system like

Coq, a user does not write the complete proof terms, but constructs them inter-

actively with the system via so-called ‘tactics’. This relieves the user from some

162 The encoding of logical notions in λC

of the problems that we have encountered in this chapter, where proof terms

easily become very large: the Coq system doesn’t show the proof terms to the

user (but of course they are there!). We note, however, that the introduction

of formal definitions , as we employ later in the present book, overcomes most

of the mentioned inconveniences.

Exercises

7.1 Verify that each of the following expressions is a tautology in constructive

logic, (1) by giving a proof in natural deduction, and (2) by giving a

corresponding derivation in λC.

(For the natural deduction rules concerning ⇒, ⊥ and ¬, see Sec-

tion 7.1.)

You may employ the flag style for the derivations, as in the examples

given in the present chapter.

(a) B ⇒ (A⇒ B),

(b) ¬A⇒ (A⇒ B),

(c) (A⇒ ¬B)⇒ ((A⇒ B)⇒ ¬A),
(d) ¬(A⇒ B)⇒ ¬B (hint: use part (a)).

7.2 (a) Formulate the double negation law (DN) as an axiom in λC.

(b) Verify that the following expression is a tautology in classical logic,

by giving a corresponding flag-style derivation in λC (use DN):

(¬A⇒ A)⇒ A.

7.3 Give λC-derivations proving that the following expressions are tautologies

in classical logic (so you may use DN or ET):

(a) (A⇒ B)⇒ (¬B ⇒ ¬A),
(b) (¬B ⇒ ¬A)⇒ (A⇒ B).

7.4 Give λC-derivations to show that the following natural deduction rules

are derivable in λC (cf. Section 7.2, I):

(a) (∧-elim-left-sec),

(b) (∧-elim-right-sec).

7.5 As Exercise 7.2 (b):

(a) ¬(A⇒ B)⇒ A (hint: use Exercise 7.1 (b)),

(b) ¬(A⇒ B)⇒ (A ∧ ¬B) (hint: use Exercise 7.1 (d)).

7.6 Verify that each of the following expressions is a tautology in construc-

tive logic, by giving a (‘second order’) flag-style derivation in λC. Use

Exercise 7.4 and Section 7.2, I.

(a) ¬A⇒ ¬(A ∧B),

(b) ¬(A ∧ ¬A),

Exercises 163

(c) ¬(A ∧B)⇒ (A⇒ ¬B).

7.7 Give λC-derivations to show that the following natural deduction rules

are derivable in λC:

(a) (∨-intro-left-sec),
(b) (∨-intro-right-sec).

7.8 Give λC-derivations verifying the following tautologies of constructive

logic (hint: use Exercise 7.7 and Section 7.2):

(a) (A ∨B)⇒ (B ∨A),

(b) ¬(A ∨B)⇒ (¬A ∧ ¬B),

(c) (¬A ∧ ¬B)⇒ ¬(A ∨B).

7.9 Verify that each of the following expressions is a tautology in constructive

logic, (1) by giving a proof in first order natural deduction, and (2) by

giving a flag-style derivation in λC:

(a) ∀x∈S(¬P (x)⇒ (P (x)⇒ (Q(x) ∧R(x)))),

(b) ∀x∈S(P (x))⇒ ∀y∈S(P (y) ∨Q(y)).

7.10 As Exercise 7.9:

∀x∈S(P (x)⇒ Q(x)) ⇒
∀y∈S(P (y)⇒ R(y)) ⇒ ∀z∈S(P (z)⇒ (Q(z) ∧R(z))).

7.11 Let S : ∗ and P,Q : S → ∗. Let y : Πα : ∗ . ((Πx : S . (P x→ α))→ α),

z : Πx : S . (P x→ Qx) and x : S.

(a) Find a correct type for y(Qx).

(b) Why is the application y(Qx)z incorrect?

(c) Check that this results corresponds with Remark 7.5.2.

7.12 (a) Complete the derivation given in Section 7.5 that shows that the

natural deduction rule (∃-intro-sec) is derivable in λC.

(b) Give a flag-style λC-derivation verifying the following tautology of

classical logic:

¬∃x∈S(¬P (x)) ⇒ ∀y∈S(P (y)).

(Hint: use part (a) and DN.)

7.13 Verify that the following expression is a tautology in constructive logic,

by giving a flag-style derivation in λC:

∃x∈S(P (x)) ⇒ (∀y∈S(P (y)⇒ Q(y))⇒ ∃z∈S(Q(z))).

7.14 Let Γ ≡ S : ∗, P : S → ∗, Q : S → ∗.
Consider the following λC-expression:

M ≡ λu : (∃x : S . (P x ∧Qx)) . λα : ∗ . λv : (Πx : S . (P x→ α)) .

u α (λy : S . λw : (P y∧Qy) . v y (w(P y) (λs : P y . λt : Qy . s))) .

(a) Find a type N such that Γ �M : N .

164 The encoding of logical notions in λC

(b) Which logical tautology is expressed by N and proved by M?

(c) Give a derivation of Γ �M : N .

8

Definitions

8.1 The nature of definitions

In the ‘real world’ of logical and mathematical texts, definitions are indispens-

able. This is particularly the case when the amount of ‘knowledge’ begins to

grow.

Therefore we aim at an extension of λC with definitions. In the present chap-

ter we start with an overview of what definitions are and how they are used.

Gradually, we shall transform the definitions to a more formal format, in order

to be able to incorporate them in λC. The derivation system that we eventu-

ally obtain when extending λC with definitions, we call λD, to be described

in Chapter 10. A simpler precursor shall be named λD0; see Chapter 9. In the

following sections we describe and discuss the essential features of definitions,

and how they can be formalised.

We first ask ourselves: what is the use of a definition? The main reason for

introducing a definition is to denote and highlight a useful concept. Both logic

and mathematics are based on certain notions, most of which are composed

from other ones. It is very convenient to single out the noteworthy notions by

giving them names.

We start with a number of examples of definitions as they occur in mathe-

matics books.

Examples 8.1.1 (1) ‘A rectangle is a quadrilateral with four right angles.’

Here the notion that we want to single out is ‘a quadrilateral with four right

angles’. We give it the name ‘rectangle’. Note that the definition makes use of

other, ‘older’ names of notions, such as ‘quadrilateral’ and ‘right angle’. Each

of these names has been established in earlier definitions.

(2) ‘A function f from R to R is called increasing if, for all x, y ∈ R, x < y

implies f(x) < f(y) .’

166 Definitions

This definition says that the name ‘increasing’ may be used for a function

f : R→ R, when it has the property described.

(3) ‘We say that a relation R on a set S is total , if for every two elements x

and y of S, either x is related to y, or y to x, or both.’

This is a definition of the notion ‘totality’. Obviously, we need to have some

set S and some relation R on S, before we can decide whether R is total on S.

Note that S comes first: we need it for R (a relation on S).

The (new) names introduced in these definitions are words from natural

language: rectangle, increasing , total . However, it is also possible to use newly

invented ‘words’, or symbols, such as c or Dn; see the following examples.

Examples 8.1.2 (4) ‘Define c as 1+
√
5

2 ’.

In this definition, we use the short name c as a handy abbreviation of a more

complex expression – thus saving space, and making it easier to speak about

the object: after this definition, one may use the name c instead of the longer

expression 1+
√
5

2 .

Hence it is now appropriate to say: ‘It is easy to verify that c2 − c = 1.’

(5) ‘Let n be a natural number > 0. Then Dn is defined as the set of all

positive integer divisors of n.’

Note that D depends on n: we need an n > 0 in order to determine what Dn

is. So we have that D1 = {1}, D2 = {1, 2}, D3 = {1, 3}, D4 = {1, 2, 4},
We may use this definition afterwards, e.g. by saying that: ‘D4 ∪ D6 =

{1, 2, 3, 4, 6}’, or: ‘if k is a divisor of l, then Dk ⊆ Dl’.

Names such as c and Dn are probably for temporary use, but not essentially

different from more permanent names such as ‘total’, described earlier. An

important feature of all kinds of newly defined names is that they enable the

user to repeatedly refer to the related object or notion in a concise manner. In

principle, all kinds of names are useable, from ‘prime’ or ‘continuous’ to ‘F ′
3’

or ‘K
(0)
i ’.

Apart from the reasons mentioned above, there is also a practical reason for

introducing definitions: without definitions, logical or mathematical texts grow

rapidly beyond reasonable bounds. This is an experimental fact, which can be

verified by making a calculation for the ‘worst case scenario’; it has been shown

that definition-less mathematics may obtain a complexity that is considerably

worse than exponential growth.

Hence, in order to do logic and mathematics in a feasible way, we need

definitions.

We conclude that it is very convenient, and almost inevitable, to introduce

and use definitions.

8.2 Inductive and recursive definitions 167

There is another case in which new names are presented, namely when in-

troducing a variable, as in the sentences ‘Let x be a real number’ or ‘Let f be a

function from R to R’. There is, however, an essential difference between such

variables and defined names: variables (such as x, f) serve as names for ‘ar-

bitrary ’ entities of a certain collection (real numbers, functions from R to R),

whereas defined names stand for one specific thing or notion, being described

in the corresponding definition.

Remark 8.1.3 One preferably chooses names which are easy to remember

in connection with the notion concerned: a name often acts as a mnemonic

(‘something to remember the notion by, short and clear’). For example, the

word ‘rectangle’ combines the Latin word ‘rectus’, which means ‘right’ (cf. ‘rec-

tify’: make right), with the word ‘angle’. This may help to recall the notion.

Another example is the word ‘increasing’, which clearly has mnemonic power:

the graph of an increasing function, viewed from left to right, reminds of a path

with increasing height. The defined name ‘total’ originates from the observation

that such a relation holds for the ‘totality’ of all pairs in S × S: each pair is

related in at least one of the two directions.

This preference for names which are easy to remember also applies to the

names used as a temporary aid. It is not a coincidence that the often used letter

‘c’ is also the first letter of the word ‘constant’, and a similar thing holds for

the name ‘D’ as used above for a set of divisors.

When more constants need to be defined (or more functions), then one usu-

ally varies a little bit on this habit: one uses primes or subscripts (not only c,

but also c′, c1, . . .) or letters in the same ‘range’ of the alphabet (a, b, d, . . .).

8.2 Inductive and recursive definitions

In our type theory, we don’t have inductive definitions or inductive types (see

also Sections 5.7 and 6.5) as primitive constructions. In some very powerful type

theories such as the Calculus of Inductive Constructions (CIC ; see e.g. Bertot

& Castéran, 2004) one can, for example, define the type of natural numbers as

the type inductively built up from the constant 0 and the successor function

(see Section 1.10). This automatically generates the induction proof principle

and the possibility of defining functions by well-founded recursion.

We don’t have inductive definitions, because they can be defined as predi-

cates in higher order logic. Alternatively, they can be assumed axiomatically,

as we will do for the integers in Section 14.2.

As for recursive definitions, the intention is to describe a certain object by

means of an algorithm. For example, the factorial n! of a natural number n

can be described by means of the recursion scheme:

168 Definitions

fac(0) = 1,

fac(n+ 1) = fac(n) · (n+ 1).

Then we can, for example, calculate what the value of fac(3) is:

fac(3) = fac(2) · 3 = (fac(1) · 2) · 3 = ((fac(0) · 1) · 2) · 3 = 1 · 1 · 2 · 3 = 6.

Later in this book we will show that we can do without recursive definitions

by making use of the descriptor ι, which gives a name to a uniquely existing

entity (see Section 12.7). By not incorporating recursive definitions, we attain

two goals:

− we keep our system relatively simple;

− we avoid the complications accompanying such recursive definitions, such as

the necessity to show that each recursive definition represents a terminating

algorithm with a unique answer for each input.

An obvious drawback is that, in our case, a function like fac is not a program,

so it cannot be executed. As a consequence, fac(3) = 6 requires a proof .

For more examples of recursive definitions and of the way in which we embed

these in our type-theoretic system, see Section 14.4 (about integer addition)

and Section 14.11 (about integer multiplication).

8.3 The format of definitions

We borrow the following standard format for definitions from mathematics:

a := E .
This expresses that a is defined as E . So a is the name given to E , which in its

turn is an expression describing some notion which is worth being named or

remembered.

Definition 8.3.1 (Definiendum, defined name, defined constant, definiens)

− In a := E , the name a is called the definiendum (i.e. ‘the thing to be

defined’), also called the defined name or the defined constant.

− The expression E is the definiens: ‘the thing that defines’, or ‘the expression

that establishes what the meaning is’.

In this format we may rewrite two of the definitions given in Examples 8.1.1

and 8.1.2 as:

rectangle := quadrilateral with four right angles,

c := 1+
√
5

2 .

The situation is more complicated for the other examples, where we need

some kind of ‘setting’ for the definitions:

8.3 The format of definitions 169

− For a proper definition of ‘increasing’, we must have the disposal of some

function f from R to R.

− For the definition of ‘total’, we need a set and a relation on this set.

− For the definition of Dn, we need a positive natural number n.

It will be clear that such a ‘setting’, as in the previous chapters, can be

formalised as a context for the definition in question. This can be expressed as

in Figure 8.1. (We there code a relation on S as a predicate on S × S.)

f : R→ R

increasing(f) := ∀x,y∈R (x < y ⇒ f(x) < f(y))

S : ∗
R : (S × S)→ ∗

total(S,R) := ∀x,y∈S(R(x, y) ∨R(y, x))

n : N+

D(n) := the set of all positive integer divisors of n

Figure 8.1 Examples: definitions in a context

As these examples show, each defined constant has been provided with a so-

called parameter list : (f), (S,R) and (n), respectively. In these lists we collect

the context variables (the subjects of the declarations) as appearing in the

flags, in the original order. We say that the constant ‘increasing ’ depends on

the parameter f , that ‘total ’ depends on the parameters S and R, and D on n.

Remark 8.3.2 Parameter lists in definitions could as well be omitted: a

parameter list can always be reconstructed by inspecting the context.

We nevertheless choose to consistently append such a list to a defined con-

stant, since addition of a parameter list to a definition makes it look more

‘natural’.

Compare for example the following two versions of the same definition, ex-

pressing the function ‘sum of two squares’ in the context x : R, y : R:

(1) (without parameter list) f := x2 + y2;

(2) (with parameter list) f(x, y) := x2 + y2.

We suppose that many readers prefer the latter definition over the former.

In order to employ a consistent format in these matters, we also should add

an empty parameter list to defined constants such as ‘c’ above, and ‘rectangle’,

170 Definitions

which do not need a context for their definition; or rather, which are defined

in the empty context. Formally, we should write the following:

a rectangle() := . . .,

c() := 1+
√
5

2 .

We will, however, often evade this obligation; see the following convention.

Notation 8.3.3 A constant that has been defined in an empty context has an

empty parameter list. It may be written without such an empty list, not only

upon introduction (in its definition), but also when used later on.

8.4 Instantiations of definitions

Obviously, definitions are not made for their own sake, but in order to be used .

For example, we have already mentioned that the definition c := 1+
√
5

2 may

be used to state that c2 − c = 1, which is easier to read than

(1+
√
5

2)2 − 1+
√
5

2 = 1 .

Moreover, the same c may be used over and over again, for example in the

following calculation:

‘Since c2 = c+ 1, we have that c3 = c2 + c = c+ 1 + c = 2c+ 1 ’,

or in establishing that

‘The n-th Fibonacci number fn satisfies the equation fn = cn−(1−c)n√
5

.’

(Note that we repeatedly apply Notation 8.3.3 here, writing c for c().)

Matters become a bit more complex for definitions in a non-empty con-

text . For example, consider the definition of ‘increasing’ as expressed in Ex-

amples 8.1.1 and formalised with context f : R → R in Figure 8.1. When one

desires to employ that definition of ‘increasing’, one obviously must have a

function from R to R at hand. For example, consider the following sentence:

‘The function sending a real number to its third power, is increasing.’

In our format, this becomes: increasing(λx : R . x3).

What we see is that parameter f , occurring in increasing(f), has been substi-

tuted by the function λx : R . x3. Such a substitution is called an instantiation

(of the parameter). One says: ‘f has been instantiated with λx : R . x3 ’.

Remark 8.4.1 Note that a parameter necessarily is a variable (namely a

subject variable of the context), whereas an instantiation may be a variable or

any other well-formed expression.

Of course, an instantiation should respect typing requirements as given in

8.4 Instantiations of definitions 171

the context: since f has been introduced in its context flag as having type

R→ R, it must hold that also λx : R . x3 : R→ R. This is clearly the case.

Another thing to note is that the context flag f : R → R is only needed

in the definition itself; the flag contains the parameter on which the defined

notion (‘increasing’) depends, plus information about the type of that notion.

But as soon as we use the definition, by instantiating the parameter f , the flag

itself has become superfluous (though its typing information is necessary for

establishing the ‘correctness’ of the instantiation).

So we may use the expression ‘increasing(λx : R . x3)’ wherever we like,

without the f -flag. But, of course, only after the definition has been given.

In the majority of the cases, we meet a more complex situation in which

we have definitions with two or more parameters. Let’s look at example (3)

of Examples 8.1.1, in which the definition of total(S,R) has been given, with

the parameter list (S,R). In any ‘instance’ of the definition – that is, in any

situation in which we ‘use’ this definition – we need:

(i) a set as instantiation of S, and

(ii) a relation as an instantiation of R; this relation obviously should concern

the instantiated set, since S itself is no longer available.

For example, let’s take for S the set R of the reals, and for R the relation ‘≤’
on that set R. Then we obtain the correct instantiation

total(R,≤) .
This is a proposition, which does indeed hold in mathematics.

Instantiating S with N+, the positive naturals, and R with ‘|’, the divisibility
relation on N+, we obtain

total(N+, |).
As an instantiation, this is correct, again. (Which has got nothing to do with

the fact that, as a proposition, it is false: for example, neither 3|5, nor 5|3.)
Note that in all cases, the type conditions as given in the context of the

definition should be respected in the instantiations of the parameter list, as

pictured in the diagram below.

first flag second flag

S : ∗ R : (S × S)→ ∗

instantiation instantiation

R : ∗ ≤ : (R× R)→ ∗
N+ : ∗ | : (N+ × N+)→ ∗

In definitions with more than two flags, these type conditions clearly have a

cumulative effect. The precise effects will be described in Chapter 9.

172 Definitions

Summarising: the use of a definition brings along that parameters become

instantiated. A convenient manner is to record the instantiations as a list as

well, in the same order as in the original parameter list.

The two different aspects of constants (their introduction and their use)

imply that a constant has two different life stages:

(1) its ‘birth’, when introduced in a definition, e.g. total(S,R);

(2) its ‘path of life’, when used in different circumstances, with varying instan-

tiations for the parameters, e.g. total(R,≤) or total(N+, |).

8.5 A formal format for definitions

Now that we know what definitions are and how they work, it is time to include

them in our formal system. Look again at the three definitions in Figure 8.1.

Each of these has the following general format:

Γ � a(x1, . . . , xn) := E ,
with Γ a context and a a constant with suffixed parameter list (together the

definiendum), having been defined as E (the definiens). We introduce the sym-

bol ‘�’ here as a separator between the context and the rest.

The meaning of this expression clearly is:

In context Γ, we define a(x1, . . . , xn) as E .

Since we work in a typed environment, it appears to be appropriate to add a

type to the definiens, which is also a type for the definiendum. Therefore, our

general format for a definition becomes:

Γ � a(x1, . . . , xn) := M : N ,

with M the definiens and N its type, acting as type of a(x1, . . . , xn), as well.

The parameter list (x1, . . . , xn) consists of the subject variables of the context

(in the same order), so a definition looks like:

x1 : A1, . . . , xn : An � a(x1, . . . , xn) := M : N .

Here n is a natural number, so it may be 0 (if Γ is the empty context). The

parameter list (x1, . . . , xn) can directly be reconstructed from Γ. Nevertheless,

as we discussed before (see Remark 8.3.2), our general attitude is to add a

parameter list to every defined constant.

Below, we will often use an abbreviating notation for the general format,

namely:

x : A � a(x) := M : N .

We employ the following abbreviations in the meta-language:

8.5 A formal format for definitions 173

Notation 8.5.1 (1) We write x for the list x1, . . . , xn of variables.

(2) We write A for the list A1, . . . , An of expressions.

(3) We write x : A for the context x1 : A1, . . . , xn : An.

As we are used to doing, we employ the flag format for the representation of

this kind of formal definition. This not only gives a better overview, but also

avoids annoying repetitions of context declarations.

As an example, we have listed a series of definitions regarding a set S and

a relation R on S in Figure 8.2. The notions ‘reflexive’, ‘antisymmetric’ and

‘transitive’ have been formally expressed here by means of defined constants,

and so is their conjunction: ‘partially-ordered’. All four definitions depend on

the same context, and therefore we suffice with one initial pair of context flags.

Since each of the four defined notions is a proposition, they all have type ∗.

(a) S : ∗
(b) R : (S × S)→ ∗

(1) reflexive(S,R) := ∀x∈S(R(x, x)) : ∗
(2) antisymmetric(S,R) := ∀x,y∈S((R(x, y) ∧R(y, x))⇒ x = y) : ∗
(3) transitive(S,R) := ∀x,y,z∈S((R(x, y) ∧R(y, z))⇒ R(x, z)) : ∗
(4) partially-ordered(S,R) :=

reflexive(S,R) ∧ (antisymmetric(S,R) ∧ transitive(S,R)) : ∗

Figure 8.2 A series of definitions

At the end of this book, we append an Index of definitions.

There are many instances of the list (S,R) in this figure. Four of these lists,

namely the ones left of the ‘:=’ signs in lines (1) to (4), are parameter lists , as

we discussed in Section 8.3. In these lists we collect the subjects S from flag

(a) and R from flag (b).

The lists (S,R) behind reflexive, antisymmetric and transitive in line (4),

however, are instantiations. To be precise: they are identity instantiations; that

is: in all cases, S has been instantiated with S and R with R. Obviously, the

present example contains only identity instantiations; although identity instan-

tiations are very common, as we shall experience later, the really interesting

instantiations occur when we instantiate with expressions that differ from the

variables in the parameter list.

All variables S and R in (1) to (4), in particular the ones in the parameter

lists and in the instantiations in line (4), are bound variables, being bound to

174 Definitions

the binding variables S and R in the flags (a) and (b). These binding variables

are still within reach, as witnessed by the flag poles.

An important observation is that the flag notation involves an inherent ‘over-

loading’ of the binding variables S and R. In order to make this clear, we give

the definitions of Figure 8.2 in the formal style as introduced just now, split-

ting up the context over the definition lines. But we do more: in order to be as

exact as possible, we apply a strict renaming, avoiding the usage of different

binding variables with the same name. Thereby, we avoid overloading.

We use different subscripts for all binding occurrences of the ‘flag variables’

S and R. To be ultimately clear, we also distinguish the different occurrences

of the binding variables x, y and z accompanying the ∀-quantifiers.
This leads to the following four definitions-in-a-context in which all ‘over-

loading’ has been eliminated:

(i) S1 : ∗, R1 : (S1 × S1)→ ∗ �
reflexive(S1, R1) :=
∀x1∈S1

(R1(x1, x1)) : ∗
(ii) S2 : ∗, R2 : (S2 × S2)→ ∗ �

antisymmetric(S2, R2) :=
∀x2,y2∈S2

((R2(x2, y2) ∧R2(y2, x2))⇒ x2 = y2) : ∗
(iii) S3 : ∗, R3 : (S3 × S3)→ ∗ �

transitive(S3, R3) :=
∀x3,y3,z3∈S3

((R3(x3, y3) ∧R3(y3, z3))⇒ R3(x3, z3)) : ∗
(iv) S4 : ∗, R4 : (S4 × S4)→ ∗ �

partially-ordered(S4, R4) :=

reflexive(S4, R4) ∧ (antisymmetric(S4, R4) ∧ transitive(S4, R4)) : ∗

An important thing that we can learn from this example is that definitions

often depend on other definitions. Clearly, (iv) depends on (i) to (iii), since

the constants reflexive, antisymmetric and transitive are used in the definiens

of (iv). So there is an order between definitions, which must be respected. For

example, we may list (i), (ii) and (iii) in an arbitrary order, but (iv) must

always follow all of these.

8.6 Definitions depending on assumptions

In the previous sections, we have encountered definitions depending on a con-

text. The variables we met in those contexts represented sets (such as S),

objects (f , n) or relations (R).

Another frequently occurring case is that such a context contains one or more

assumptions. Such assumptions are often expressed as conditions imposed on

context elements. For example, when defining what a minimal element is in a

8.7 Giving names to proofs 175

set with respect to a relation, one often already assumes that the set has been

partially ordered by this relation:

‘Let S be a set, partially ordered by a relation R. An element m of S is

called a minimal element with respect to R, if R(x,m) implies that x = m.’

(So the only element related to a minimal element m, is m itself.)

This definition of ‘minimal element’ presupposes that we have a relation

R that is partially ordered. We have formalised this notion in the previous

section (see Figure 8.2). We can extend this figure with a new definition: see

Figure 8.3, line (5). We need two more flags, one of them (flag (c)) expressing

the assumption mentioned above.

...

(c) u : partially-ordered(S,R)

(d) m : S

(5) minimal -element(S,R, u,m) := ∀x∈S(R(x,m)⇒ x = m) : ∗

Figure 8.3 Definition of ‘minimal element’, depending on an assumption

This new definition is a flag version of the definition:

(v) S : ∗, R : (S × S)→ ∗, u : partially-ordered(S,R), m : S �
minimal -element(S,R, u,m) := ∀x∈S(R(x,m)⇒ x = m) : ∗.

8.7 Giving names to proofs

With the formal machinery described up to here, we can already express a

wide range of definitions in formal form. For example, we have met definitions

of constants for:

− sets, having ∗ as type;
− objects, having a set as type; and

− propositions , having ∗ as type.

Notation 8.7.1 The kind ∗ is used as representing both the type of sets and

of propositions. For a better understanding, it is sometimes convenient to add

a subscript to ∗ in order to distinguish between these two interpretations: we

then write ∗s for the type of all sets, and ∗p for the type of all propositions.

However, this is only a kind of ‘sugaring’ to facilitate the interpretation: in

the formal type theory discussed in this book, there are no such things as ∗s or

∗p, but only ∗.

With this notation, we see that some of the example constants of Sections 8.1

and 8.3 satisfy the following typing conditions:

176 Definitions

− (sets) rectangle : ∗s and D(n) : ∗s,
− (objects) c : R (with R : ∗s),
− (propositions) increasing(f) : ∗p and total(S,R) : ∗p.

In a schematic form, we may summarise all this in a table (see Figure 8.4),

showing these three elementary kinds of definitions in an abstract setting.

(sets) Γ1 � A(. . .) := E1 : ∗s

(objects) Γ2 � a(. . .) := E2 : S

(propositions) Γ3 � B(. . .) := E3 : ∗p

with S : ∗s

Figure 8.4 Three different kinds of definitions

It is obvious that there is one line missing in Figure 8.4: a line representing

a definition of a proof of a proposition (see Figure 8.5).

(proofs) Γ4 � b(. . .) := E4 : P with P : ∗p

Figure 8.5 A missing kind of definition

This is the kind of definition which gives a name, viz. b(. . .), to a proof E4
of a proposition P .

By means of the following example we shall make clear that this kind of def-

inition should indeed be added, since it is very important in the formalisation

of mathematics, in particular when one wants to apply a valid (i.e. proven)

theorem.

Consider the following example from mathematics:

‘Theorem. Let m and n be positive natural numbers and assume
that they are coprime. Then there are integers x and y such that
mx+ ny = 1.’

(Two positive natural numbers are coprime if their greatest common divisor

is 1.)

Remark 8.7.2 This theorem (or a slightly different version of it) is known

under the name Bézout’s Lemma. More information about it can be found in

Remark 15.1.1. We shall devote Chapter 15 to Bézout’s Lemma, in which we

formalise a proof of it in the formal system λC extended with definitions. This

serves as the major example of the system-with-definitions being developed in

this book.

8.7 Giving names to proofs 177

The theorem states that:

∃x,y∈Z(mx+ ny = 1)

which depends on a context that we can summarise as:

m : N+, n : N+, u : coprime(m,n),

where N+ is the type of the positive naturals.

The third declaration expresses an assumption: variable u represents an as-

sumed ‘proof’ (cf. Section 8.6) of the proposition coprime(m,n).

Suppose that we have a correct proof of the theorem, in a formalised version;

say formalproof. Then formalproof has type ∃x, y : Z . (mx + ny = 1), fol-

lowing PAT, and we obtain the following version of Bézout’s Lemma, writing

the context in flags:

m : N+

n : N+

u : coprime(m,n)

formalproof : ∃x, y : Z . (mx+ ny = 1)

An important aspect of such a theorem is that it can be applied . For example,

we might want to use Bézout’s Lemma with m = 55 and n = 28, which is

allowed since their greatest common divisor is 1. Say we have a proof U of

the coprimality of 55 and 28. Then we can apply the theorem by means of an

instantiation, employing the substitution:

[m := 55], [n := 28], [u := U].

Note that we instantiate the assumption u of type coprime(m,n) with the

proof U of type coprime(55, 28); hence, the m and n in the type of u have been

instantiated, as well.

Remark 8.7.3 We use the symbol ‘:=’ for substitution as we did in Sec-

tion 1.6. Note that the symbol ‘:=’ is overloaded, since we have also decided to

employ it for a definition.

The result of applying Bézout’s Lemma in this special case is that (without

a context):

∃x, y : Z . (55x+ 28y = 1).

How can we obtain a proof for ∃x, y : Z . (55x + 28y = 1)? It is not hard

to imagine that such a proof may be constructed by taking the expression

formalproof and substituting [m := 55], [n := 28], [u := U] everywhere in this

178 Definitions

expression. This procedure specialises the general proof formalproof into a

proof of ∃x, y : Z . (55x+ 28y = 1).

All this can be realised very quickly and in a formal manner, as well, when

we give a name to that proof (as suggested in Figure 8.5), say p. In flag format:

m : N+

n : N+

u : coprime(m,n)

p(m,n, u) := formalproof : ∃x, y : Z . (mx+ ny = 1)

Or, in the formal format for definitions:

m : N+, n : N+, u : coprime(m,n) �
p(m,n, u) := formalproof : ∃x, y : Z . (mx+ ny = 1).

Now we may formally conclude that, for the instantiation with [m := 55],

[n := 28], [u := U]:

p(55, 28, U) : ∃x, y : Z . (55x+ 28y = 1).

And this is a perfect use of a definition, exactly following the patterns as we

have described earlier. Hence, it is worth while to also allow defined names for

proofs . So all four kinds of definitions discussed in the beginning of this section

have become part of our ‘definition tool box’.

8.8 A general proof and a specialised version

We have expressed a version of Bézout’s Lemma in the previous section, but

we did not prove it there, although we gave the name p(m,n, u) to a formal

proof that we supposed to exist. Part of this omission will be remedied in the

present section, since we shall write down a proof in the usual mathematical

format: see Figure 8.6.

In the proof-in-words given here, we consider the set S of all ‘linear combi-

nations’ of m and n, i.e. the numbers mx+ny for integer x and y. The positive

part of S has a minimum, say d. A clever calculation shows that d divides m,

and also n. The desired result then follows easily.

We invite the reader to study the details of the proof and to check its cor-

rectness. The formal proof of this lemma, expressed in λD, will be the subject

of Chapter 15.

In the previous section we also claimed that p(55, 28, U) represents a proof

of Bézout’s Lemma in the special case when m = 55 and n = 28, where U

8.8 A general proof and a specialised version 179

General theorem: (Bézout’s Lemma)
Let m and n ∈ N+ be coprime. Then ∃x,y∈Z(mx+ ny = 1).

Proof Let S be the set of all integer numbers mx+ ny, where x ∈ Z and y ∈ Z, and
let S+ be the subset of the positive elements of S. Let d be the minimum of S+.
Since d ∈ S+, we have d > 0. Also d ∈ S, hence:

(1) d = mx0 + ny0

for certain x0, y0 ∈ Z.
Divide m by d: we get

(2) m = qd+ r,

for certain q and r with 0 ≤ r < d (r is the remainder of the division).
From (1) and (2) we obtain m = q(mx0 + ny0) + r, hence r = m(1 − qx0) − n(qy0),
implying that r ∈ S.
If r were greater than 0, then r ∈ S+, so r ≥ d since d = min(S+). But r < d;
contradiction. Hence, r = 0.
So, m = qd by (2), hence d|m.
In a similar manner we can prove d|n.
Since m and n are coprime, d must be 1, so 1 ∈ S.
Hence there exist x, y ∈ Z such that mx+ ny = 1.

Figure 8.6 A proof of Bézout’s Lemma

represents a proof of the fact that 55 and 28 are coprime. The result is now

that ∃x, y : Z . (55x+ 28y = 1).

In order to support this claim, we also write out the specialised proof; see

Figure 8.7.

Special theorem: (Bézout’s Lemma for m = 55 and n = 28)
∃x,y∈Z(55x+ 28y = 1).

Proof Let S be the set of all integer numbers 55x+28y, where x ∈ Z and y ∈ Z, and
let S+ be the subset of the positive elements of S. Let d be the minimum of S+.
Since d ∈ S+, we have d > 0. Also d ∈ S, hence:

(1) d = 55x0 + 28y0

for certain x0, y0 ∈ Z.
Divide 55 by d: we get

(2) 55 = qd+ r,

for certain q and r with 0 ≤ r < d.
From (1) and (2) we obtain 55 = q(55x0 +28y0) + r, hence r = 55(1− qx0)− 28(qy0),
implying that r ∈ S.
If r were greater than 0, then r ∈ S+, so r ≥ d since d = min(S+). But r < d;
contradiction. Hence, r = 0.
So, 55 = qd by (2), hence d|55.
In a similar manner we can prove d|28.
Since 55 and 28 are coprime, d must be 1, so 1 ∈ S.
Hence there exist x, y ∈ Z such that 55x+ 28y = 1.

Figure 8.7 A proof of Bézout’s Lemma with m = 55 and n = 28

180 Definitions

A proof as in Figure 8.7 is not something one easily encounters, neither in

mathematics, nor in a formalisation. We give it here just to illustrate our claim:

the proofs in Figures 8.6 and 8.7 are very similar, with the only difference the

use of the general numbers m and n in the first case, and the special numbers

55 and 28 in the second case.

It is important to realise that both proofs may be read independently as

convincing mathematical argumentations for the validity of the respective the-

orems: one may read, for example, the specialised proof and believe it without

even being aware of the general version.

This proof specialisation works properly, but is very cumbersome. A math-

ematician will apply the general lemma to this special case without devoting

many words to this. And in a formal setting such as λD, one can suffice with in-

stantiating the proof name p(m,n, u) to p(55, 28, U), since the latter expression

fully encapsulates the proof of the special theorem.

Remark 8.8.1 For the special theorem there also exists a short, direct proof

that does not use the general theorem, viz.:

‘Since 55 . (−1) + 28 . 2 = 1, by elementary logic: ∃x,y∈Z(55x+ 28y = 1).’

But this is irrelevant. The point that we want to make is that the specialised

proof of the theorem, as presented in Figure 8.7, is indeed a correct proof; the

length of the proof does not matter for this observation.

8.9 Mathematical statements as formal definitions

In Section 8.7 we have seen that giving names to proof objects can be useful. But

this also has consequences for our formalisation of mathematical statements if

we realise that every statement in the judgement-format of λC,

Γ �M : N ,

can also be represented in definition format:

Γ � a(. . .) := M : N .

This small transformation enables us to treat statements and definitions in

a similar manner, by taking the definition format as the reigning format. The

only complication is then that in every statement the termM must be preceded

by a constant and parameter list, a(. . .). But this small inconvenience causes

great profit in the case M is a proof term proving N , because it enables us to

apply theorem N in a smooth but formal manner. We have demonstrated this

in Sections 8.7 and 8.8, when applying Bézout’s Lemma to a special case.

In order to show how this transformation works, we give an example in

which we consistently employ the definition format for the formalisation of

8.9 Mathematical statements as formal definitions 181

mathematics. Consider the following text, which repeats the definition of ‘total’

(cf. Figure 8.1) and continues with some other notions and related statements.

‘A relation R on a set S is called total if for all x, y ∈ S we

have R(x, y) or R(y, x).

The inverse of a relation R is the relation R′ such that R′(x, y)
iff R(y, x).

If R is total, then also the inverse of R is total.
The relation R on S such that R(x, y) iff x = y, is called the

identity relation on S.

If S has more than one element, then the identity relation on

S is not total.

An example of a total relation on R is ≤.’

This text contains three definitions-in-a-context, namely of the notions ‘to-

tal’, ‘inverse’ and ‘identity relation’. These definitions have been mixed with

three unproven statements:

− If R is total, then also the inverse of R is total.

− If S has more than one element, then the identity relation on S is not total.

− The relation ≤ on R is a total relation.

Below we represent all these as formal definitions, in flag format. The three

missing proof objects are provisionally called open-term 1 to open-term 3. For

clearness’ sake, we specialise ∗ to either ∗s or ∗p (cf. Notation 8.7.1).

(a) S : ∗s

(b) R : (S × S)→ ∗p

(1) total(S,R) := ∀x, y : S . (R(x, y) ∨R(y, x)) : ∗p
(2) inverse(S,R) := λ (x, y) : (S × S) . (R(y, x)) : (S × S)→ ∗p
(3) p1(S,R) := open-term 1 : total(S,R)⇒ total(S, inverse(S,R))

(4) Id(S) := λ (x, y) : (S × S) . (x = y) : (S × S)→ ∗p
(5) p2(S) := open-term 2 : (|S| ≥ 2)⇒ ¬(total (S, Id(S))
(6) p3 := open-term 3 : total(R ,≤)

Figure 8.8 A formalised mathematical text in definition format

This example shows that the formal definition format as we have introduced

it in Section 8.5 is very powerful: formal definitions can be used as the basic

units for expressing oneself in a type-theoretic ambiance, and a formalised

182 Definitions

mathematical text is no more than a list of well-formed definitions. This is a

point of great importance, which we shall fruitfully exploit in the chapters to

come.

But we still have to find out what the notion ‘well-formedness’ means for

definitions. This we discuss in the following two chapters.

8.10 Conclusions

In the previous chapters there has hardly been any need for definitions or

abbreviations: the logical systems that we considered were relatively simple.

Remember, however, that we used a definition for⇔ (see Remark 7.3.1). More-

over, there were several ‘hidden’ definitions in Chapter 7: for example, ⊥ was

defined as (‘identified with’) Πα : ∗ . α, and ¬A was introduced as abbreviating

A→ ⊥.
When formalising more substantial parts of logic and mathematics, we can-

not do without definitions. An introduction to this concept of ‘definition’ was

given earlier in this chapter.

We have become acquainted with definitions, their nature and their usage.

The main purpose of a definition is to single out a useful notion and enable one

to refer to it later; this is an essential desire in both logic and mathematics.

Moreover, definitions have proven to be extremely useful in the development of

any mathematical theory; it is even inevitable to use definitions, since without

them one very soon loses grip on the complexity of what one wishes to express.

We do not consider inductive and recursive definitions, although this kind of

definitions is often used in proof assistants. But since we can do without them,

we do not incorporate them in our type system. This has certain advantages:

it keeps our system simpler and it relieves us of the obligation to inspect each

inductive definition on its ‘soundness’.

We have introduced a general format for definitions:

a := E ,
expressing that a is defined as E .
Since definitions are often expressed in a context and since we like to work

with typed expressions, we have extended this format to:

Γ � a(. . .) := M : N ,

with Γ a list of declarations, a the defined constant and (...) the parameter

list , consisting of the subject variables of Γ, listed in the same order. In such

a definition-in-a-context, a(. . .) has been defined relative to Γ as M , having

type N . The parameter list is essentially superfluous, but we employ it in spite

of this, for several reasons.

Using a definition amounts to calling upon the defined constant a, provided

8.11 Further reading 183

with an instantiation of the parameter list, each parameter substituted with

an appropriate expression. Such a ‘compound’ substitution is rather precise

work, since it has to satisfy the typing conditions as stated in the declarations,

and should also be applied to all types in the variable declarations that are

involved. Hence, substitution has a direct (and cumulative) effect on the typing

conditions.

We have observed that it is natural to also use a definition for identifying a

proof of a proposition. We argued that this kind of definition is desirable for

being able to make use of (‘apply’) a valid proposition (a theorem, a lemma) in

different ‘situations’. Such a desire can easily be satisfied by naming the proof

of a theorem, and instantiating this proof later, in the new circumstances, by

means of a substitution.

It is interesting to see that also statements, e.g. expressed as λC-judgements,

fit in the general format for definitions that we have developed, with only a

slight adaptation. This enables us to employ a unified standard format for

formally expressing mathematical texts: a satisfactory formalisation consists of

an ordered list of formal definitions, and no more than that. This is a promising

road, which we will follow in the chapters to come.

Now that we have investigated the pragmatic aspects of definitions, it be-

comes time to formalise the concept of ‘definition’ in one of our formal type-

theoretic systems, for which we shall take λC. The desired extension of λC asks

for new derivation rules, which makes the system more complex. But it also

makes things easier for the formalisation of logical and mathematical content,

since definitions are so handy, useful and even indispensable in ‘real-life’ situa-

tions. Formal derivation rules for definitions enable one to mimic the common

way of thinking, in particular as regards definitions, in the formal setting of

λC. This is the subject of the following two chapters.

8.11 Further reading

As we have seen in this chapter, definitions are everywhere in mathematics

and they have an interesting structure with dependencies on parameters that

can be sets, objects or proofs. In formal logics, definitions are left unanalysed

and are used as ‘meta-level’ abbreviations: in a book on formal logic one finds

statements like ‘we define ϕ(x, y) to be the formula x + y = y + x’ or ‘we

abbreviate the formula x + y = y + x to ϕ(x, y)’. But no formal rules are

introduced for what is a well-formed definition, or rules for instantiating a

definition or for unfolding it (i.e. ‘undoing’ a definition, by replacing a constant

by its definiens, properly instantiated). For example, ϕ(2, 3) can be ‘unfolded’

to 2+3 = 3+2. But in a book text, ϕ(2, 3) and 2+3 = 3+2 would just be used

184 Definitions

as synonyms. (We come back to unfolding in Section 9.5.) So, definitions are

treated as ‘abbreviations in the meta-language’. In various mathematics texts

one would even be more sloppy, writing ‘we abbreviate the formula x+y = y+x

to ϕ’, and then later write ϕ(2, 3) for 2 + 3 = 3 + 2.

Definitions have been the subject of study by many philosophers. In ordinary

language, definitions are not only used as a (parameterised) abbreviation, but

have other purposes. As mathematics also uses natural language, these issues

also come up when formalising mathematics. So, the question of what defini-

tions in ordinary language mean in terms of formal mathematics is important,

but this is not what is dealt with in this chapter (or book): we only deal with

the correct treatment of formal mathematical definitions , not with the process

of understanding what a linguistic definition means formally.

For further reading on the topic of definitions from a linguistic or philosophic

perspective, the Stanford Encyclopedia of Philosophy is a good starting point

(see Gupta, 2014). Also the paper On Denoting by B. Russell (Russell, 1905) is

interesting, because it was the starting point for lots of discussions and research

into the topic.

When implementing a system as a proof assistant, definitions are indispens-

able, so all proof assistants have an implementation of definitions. Unfolding of

definitions is an operation that a proof assistant would do sparingly, because

unlimited definition unfolding increases the size of formulas. Even though proof

assistants have a formal definition mechanism implemented, the formal rules for

definitions are often not described as a calculus and are thus left unexplained.

The first study of definitions in the context of λC and related type theories

was by P.G. Severi and E. Poll (Severi & Poll, 1994). The rules presented there

are, on the one hand, more restricted than ours, because they do not allow

parameterised definitions. All definitions are of the form c := t : A and if

one wants to give a parameter to a definition, it has to be ‘abstracted over’

by a λ-abstraction. So, for example, total(S,R) := ∀x,y∈S(R(x, y) ∨ R(y, x)),

cf. Figure 8.1, would have to be defined with a double λ-abstraction, e.g. as

follows:

Total := λS : ∗s . λR : S → S → ∗p . ∀x, y : S . (R(x, y) ∨R(y, x)).

It should be noted that this method of replacing a number of parameters

by λ-abstractions only works if the λ-abstractions are allowed by the type

theory: there is no restriction on which variables can be used as parameters,

but in general there is a restriction on the λ-abstractions that one can do.

(However, in λC there happens to be none.) See Kamareddine et al. (2004) for

a close investigation of the various possibilities of restrictions on abstractions

and parameter use.

On the other hand, the definitions by Severi & Poll (1994) are more general,

Exercises 185

because ‘local definitions’ are allowed: a definition can be introduced at any

time inside the context and it can be abstracted over, so definitions can occur

deeper inside a term or a proof. This allows, for example, a local definition

within a proof, where the scope of the definition is limited to the proof in

which it is used. We see such a definition in the proof about the greatest

common divisor in Figure 8.6, where the definitions of S and S+ are local to

that proof.

In systems with global and local variables, the distinction between them is

part of the syntax. It will be obvious that there is a need for different rules

concerning the two kinds of definitions.

For local definitions, as they are introduced by Severi & Poll (1994), without

parameters, one allows contexts which contain declarations x : A and defini-

tions c := t : A in arbitrary order. There are rules for ensuring the correctness

of these contexts and there are the usual rules for λ, Π, etcetera. The crucial

rule for allowing ‘local definitions’ is the following derivation rule:

Γ, c := t : A � M : B

Γ � (c := t : A in M) : (c := t : A in B)

This allows a definition to go ‘deeper in a term’, making it possible to have

e.g. local definitions in a proof. In the setting developed in the present book,

however, local definitions are not essential, since they may easily be represented

by ‘global’ ones, as we will demonstrate later.

In the Automath project, a definition is sometimes formalised via a β-redex,

following the idea that c := t : A in M is convertible with (λc : A . M) t.

(They have the same normal form.) In that case one has to consider a ‘mini

reduction’ to allow the replacement of just one occurrence of c in M . That is,

if M [c] depicts M in which a specific occurrence of c is ‘highlighted’, we have

(λc : A . M [c]) t→ (λc : A . M [t]) t, with M [t] being M in which t replaces the

specific occurrence of c.

Exercises

8.1 In Section 8.7, we gave the name p(m,n, u) to a proof of the proposition

∃x, y : Z . (mx+ ny = 1)

in the context Γ ≡ m : N+, n : N+, u : coprime(m,n).

Assume that we have constructed, in context m : N+, n : N+, a proof

(i.e. an inhabitant) q(m,n) of the proposition

coprime(m,n)⇒ coprime(n,m).

Find an inhabitant of ∃x, y : Z . (nx+my = 1) in context Γ.

186 Definitions

8.2 The formal text represented below in flag format, is about a number of

well-known notions in analysis, containing some statements with omitted

proofs.

V : ∗s
u : V ⊆ R

(1) bounded -from-above(V, u) :=

∃y : R . ∀x : R . (x ∈ V ⇒ x ≤ y) : ∗p
s : R

(2) upper -bound(V, u, s) := ∀x : R . (x ∈ V ⇒ x ≤ s) : ∗p
(3) least-upper -bound(V, u, s) := upper -bound(V, u, s) ∧

∀x : R . (x < s⇒ ¬upper -bound(V, u, x)) : ∗p
v : V �= ∅

w : bounded -from-above(V, u)

(4) p4(V, u, v, w) := . . . : ∃1s : R . (least-upper -bound(V, u, s)

(5) S := {x : R | ∃n : R . (n ∈ N ∧ x = n
n+1)} : ∗s

(6) p6 := . . . : S ⊆ R

(7) p7 := . . . : bounded -from-above(S, p6)

(8) p8 := . . . : least-upper -bound(S, p6, 1)

(a) Translate the text into a more usual format, as you might find in a

textbook. (Note: ∃1 expresses unique existence; ‘there exists exactly

one . . . ’.)

(b) Which of the eight lines are formalised definitions? Which are for-

malised mathematical statements?

(c) Which constants have been introduced in the text and which con-

stants will have been introduced before?

(d) Underline all instantiations of parameter lists in the formal text and

explain accurately what has been instantiated for what, and why that

is correct.

8.3 Consider the formal text in Exercise 8.2. Describe the partial order rep-

resenting the dependencies between the definitions given in this text. (Cf.

the end of Section 8.5.)

8.4 The following formal text in flag format is about some well-known notions

in algebra, where ‘op’ means a binary operation on S, in Curried form

(cf. Remark 1.2.6).

Exercises 187

S : ∗s
op : S → S → S

(1) semigroup(S, op) :=

∀x, y, z : S . (op x (op y z) = op (op x y) z) : ∗p
u : semigroup(S, op)

e : S

(2) unit(S, op, u, e) := ∀x : S . (op x e = x ∧ op e x = x) : ∗p
(3) monoid(S, op, u) := ∃e : S . (unit(S, op, u, e)) : ∗p

e1, e2 : S

(4) p4(S, op, u, e1, e2) :=

. . . : (unit(S, op, u, e1) ∧ unit(S, op, u, e2))⇒ e1 = e2

(a) Translate the text into a more usual format, as you might find in a

textbook. Use infix notation when appropriate.

(b) Underline all variables that are bound to a binding variable intro-

duced in the text.

(c) Rewrite lines (1) and (2) in the format Γ � a(. . .) := M : N as

described in Section 8.5.

8.5 Identify the definitions in the following text and rewrite the text in a

formal form, using exclusively the definition format, as demonstrated in

Figure 8.8. Assume that R is a type. Employ the flag format and the set

notation {x : R |P x}.
‘The real number r is rational if there exist integer numbers p and q

with q �= 0 such that r = p/q. A real number that is not rational is called

irrational . The set of all rational numbers is called Q. Every natural

number is rational. The number 0.75 is rational, but
√
2 is irrational.’

8.6 Consider the following mathematical text:

‘If k, l and m are integers, m being positive, then one says that k is

congruent to l modulo m if m divides k − l. We write k ≡ l (mod m) to

indicate that k is congruent to l modulo m.

Hence −3 ≡ 17 (mod 5), but not −3 ≡ −17 (mod 5).

If k ≡ l (mod m), then also l ≡ k (mod m).

k ≡ l (mod m) if and only if there is an integer u such that k = l+um.’

(a) Rewrite the texts in a formal form, as a list of definitions. Assume

that Z is a type. Employ the flag format. Formalise k ≡ l (mod m) as

eqv(k, l,m, u), with u a proof that m is positive.

188 Definitions

(b) Indicate the scopes of all variables and constants introduced in the

formal text.

(c) Identify all instantiations of the parameter lists introduced in the

formal text and check that the type conditions are respected.

9

Extension of λC with definitions

9.1 Extension of λC to the system λD0

In the present chapter we investigate the formal aspects of adding definitions

to a type system. In this we follow the pioneering work of N.G. de Bruijn (cf.

de Bruijn, 1970). As the basic system we take λC, the most powerful system

in the λ-cube. System λC is suitable for the PAT-interpretation, because it

encapsulates λP. But it also covers the nice second order aspects of λ2. There-

fore, λC appears to be enough for the purpose of ‘coding’ mathematics and

mathematical reasonings and is an excellent candidate for the natural exten-

sion we want, being almost inevitable for practical applications: the addition

of definitions.

We start with an extension leading from λC to a system called λD0. This

system contains a formal version of definitions in the usual sense, the so-called

descriptive definitions, so it can be used for a great amount of applications in

the realm of logic and mathematics. But λD0 does not yet allow a satisfactory

representation of axioms and axiomatic notions; these will be considered in the

following chapter, in which a small, further extension of λD0 leads to our final

system λD. (We have noticed before that we do not consider inductive and

recursive definitions, since we can do without them; see Section 8.2.)

In order to give a proper description of λD0, we first extend our set of

expressions, as given in Definition 6.3.1 for λC. Since the expressions of λD0

are the same as those for λD, we call the set EλD.
We describe EλD in Definition 9.1.1. We assume that, apart from the infinite

set of variables, V , we also have an infinite set of constants: C. We take symbols

a, a1, ai, a
′, b, . . . as names of constants, just as we took x, x1, xi, x

′, y, . . . as
names for variables. Moreover, we assume that variables and constants come

from disjoint sets, and that � and ∗ are special symbols that are distinct and

not in V or C:

V ∩ C = ∅, ∗ �= �, ∗,� �∈ V ∪ C.

190 Extension of λC with definitions

Definition 9.1.1 (Expressions of λD0 and λD, EλD)
The set EλD of expressions of λD0 (and λD) is defined by:

EλD = V |� | ∗ |(EλD EλD)|(λV : EλD . EλD)|(ΠV : EλD . EλD)|C(EλD) .

The ‘overlining’ in EλD means a list of EλD-expressions.
First we repeat from Section 8.5 what a (descriptive) definition is; for the

meaning of the overlinings in x : A and a(x), see Notation 8.5.1. We also

introduce the name ‘environment’ for a list of definitions.

Definition 9.1.2 (Descriptive definitions in λD0; environment)

(1) A (descriptive) definition in λD0 has the form

x : A � a(x) := M : N ,

with all xi ∈ V , a ∈ C, and all Ai,M,N ∈ EλD.
(2) An environment Δ is a finite (empty or non-empty) list of definitions.

We use symbols such as D,Di, . . . as meta-names for definitions. An envi-

ronment of length k will be denoted by e.g. Δ ≡ D1, . . . ,Dk.

With regards to a definition, we distinguish the following elements:

Definition 9.1.3 (Elements of a definition)

Let D ≡ x : A � a(x) := M : N be a definition. Then:

− x : A is the context of D.
− a is the defined constant of D, with x as parameter list.

− a(x) is the definiendum of D.
− M : N is the statement of D, M is the definiens or the body of D, and N is

the type of D.

9.2 Judgements extended with definitions

How can we incorporate formal definitions into our most general type system,

the Calculus of Constructions, i.e. λC?

Recall that the prominent expressive entity in λC is the judgement (also

called typing judgement), having the form

Γ � M : N .

In the presence of definitions, such a judgement may well depend on one

or more defined constants. In particular, M and N , but also the types in the

context Γ, may contain one or more constants: a1, a2, So each judgement

must have the possibility to be preceded by an environment, which is a list

Δ ≡ D1, . . . ,Dk of definitions.

Let’s use meta-symbol ‘;’ for the separation between an environment and a

judgement. Then we obtain a new general format for a judgement with defini-

tions :

9.2 Judgements extended with definitions 191

Definition 9.2.1 (Judgement with definitions; extended judgement)

A judgement with definitions or extended judgement has the form

Δ ; Γ � M : N ,

with Δ an environment, Γ a context and M,N ∈ EλD.

We pronounce this as: ‘M has type N in environment Δ and context Γ.’

By abuse of language, we will still use the simple word ‘judgement’ for such

a ‘judgement with definitions’; sometimes we’ll speak of extended judgements

to distinguish them from the judgements without definitions, as presented in

the previous chapters.

By writing out the environment Δ and the context Γ we obtain:

D1,D2, . . . ,Dk ; x1 : A1, . . . , xn : An � M : N .

So in this format, the basic statement M : N has been ‘decorated’ at the

front with a list Δ and a list Γ:

(1) the environment Δ binding the constants occurring in M : N ,

(2) the context Γ binding the free variables occurring in M : N .

Remark 9.2.2 Note that the binding effects in the whole judgement are more

complicated than this: we have ‘accumulated dependencies’ in a judgement with

definitions. In order to make this clear, we consider the following judgement-

with-definitions:

D1,D2, . . . ,Dk ; x1 : A1, . . . , xn : An � M : N .

Then we have:

(1) The defined constant ai of definition Di, may occur in each of the defini-

tions Di+1, . . . ,Dk, and also in each of the types A1, . . . , An, in M and in N .

However, this ai may not occur in any of the preceding D1, . . . ,Di−1.

(2) A context variable xj may occur in each of the types Aj+1, . . . , An of

following declarations, and in M or in N .

However, xj may not occur in any of the Di’s, nor in any of the preceding

types A1, . . . , Aj−1, nor in the type Aj itself.

Note: in practice, it regularly happens that these matters seem to be disre-

garded. For example, one may find an xj in one of the Di’s, but then it is

clearly meant to be a ‘different’ one.

Similar to our notations regarding contexts, we use the following notation

convention for environments:

Notation 9.2.3 Let Δ be an environment (in the list representation) and

D a definition. Then Δ,D stands for the list consisting of Δ, extended on the

right with D.

192 Extension of λC with definitions

As a consequence of the extension of judgements with definitions, we have to

revise the derivation rules for λC (see Figure 6.4, which contains the derivation

rules for the systems of the λ-cube, so in particular for λC). First of all, the

judgements in these rules must be replaced by extended judgements. So all

judgements of the form Γ � K : L must be replaced by judgements of the

form Δ ; Γ � K : L. But that is obviously not all: for the extension of λC with

definitions, we have to add some new rules. It will also turn out that we need

a revision of the conversion rule.

In Section 9.8 we give a full description of λD0, which is λC extended with

(descriptive) definitions. But before we describe the new derivation system

λD0, we investigate two new rules:

− a rule for introducing a definition with a context, by attaching a fresh defined

constant with corresponding parameter list to a definiens, and adding the

newly obtained definition (including its context) to an existing environment,

− and a rule for using a definition by instantiating the parameter list with

appropriate expressions.

These two aspects of a definition are formalised in the rules (def) and (inst),

to be developed in the following two sections, respectively.

Remark 9.2.4 We do not consider recursive definitions. Therefore, the de-

fined constant a in a definition x : A � a(x) := M : N is the only occurrence

of a in that definition; so a does not occur in M (and also not in one of the

types Ai in A, or in N).

We come back later to the issue of how to deal with recursive definitions; see

e.g. Section 14.4, Remark 14.4.2 and Section 14.15.

9.3 The rule for adding a definition

Firstly, we describe how to extend the environment Δ of a judgement which

has already been accepted as correct, say

(i) Δ ; Γ � K : L.

So what we want is to append a new, well-formed definition to Δ. A provision

is, of course, that the definition newly added to Δ is itself ‘well-formed’.

So let’s consider a ‘new’ definition

D ≡ x : A � a(x) := M : N

which we desire to add to Δ at the end.

We should allow that this D itself depends on the environment Δ, since the

defined constants of Δ may be used in A, M or N . So in order that the new

definition D becomes ‘acceptable’, obviously M : N itself must be derivable

with respect to not only the context x : A, but also the environment Δ.

9.4 The rule for instantiating a definition 193

Hence, we have as a requirement that

(ii) Δ ; x : A � M : N .

This leads to the following rule:

Definition 9.3.1 (Derivation rule for adding a definition to an environment)

Let a be a fresh name with respect to Δ, and D ≡ x : A � a(x) := M : N .

(def)
Δ ; Γ � K : L Δ ; x : A � M : N

Δ,D ; Γ � K : L

The requirement that a be fresh implies that a has not yet been defined

in Δ. So when referring to a, there can be no confusion about which a in Δ,D
we mean.

9.4 The rule for instantiating a definition

Now that we know how to insert a definition in an environment, we investi-

gate how to use a definition occurring in an environment. As mentioned in

Section 8.4, this amounts to invoking the defined constant with a proper in-

stantiation of the parameter list.

The instantiation process is not trivial, since instantiating a variable can

change the types in the declaration list. See the boxed example at the end of

Section 8.4, where the instantiation of S with R has as a consequence that the

type of R changes from (S × S)→ ∗ to (R× R)→ ∗, since variable S in that

type must be instantiated as well.

Let’s consider a definition, of the form

D ≡ x1 : A1, . . . , xn : An � a(x1, . . . , xn) := M : N .

Assume now that we wish to instantiate the parameter list (x1, . . . , xn),

replacing the xi by expressions Ui, respectively. What are the requirements

in order that these instantiations work out well, so that a(U1, . . . , Un) is a

well-formed expression?

We consider the Ui one by one.

For U1, instantiating x1, the requirement is easy:

U1 must have type A1.

What about U2? Note that we cannot say simply ‘U2 must have type A2’,

since variable x1 may occur in A2, and consequently this x1 should first be

instantiated by U1.

So the requirement becomes:

U2 must have type A2[x1 := U1].

194 Extension of λC with definitions

Things become more involved for U3, and so on, but it is not so hard to see

what the general pattern is:

U3 must have type A3[x1 := U1, x2 := U2] (since A3 may contain both x1
and x2), and so on.

Remark 9.4.1 The substitutions for A3 and higher are presented as simulta-

neous substitutions; to be executed all together, ‘in one sweep’. This is, however,

not essential, since variables x1 up to xn occurring in the Ai are bound to the

context in D, namely x1 : A1, . . . , xn : An; hence, these variables are unknown

outside D. This brings along that no xi can occur in any Uj.

As a consequence, it does not matter whether we use simultaneous or sequen-

tial substitutions in the expressions above; so we may also say, for example:

U3 must have type A3[x1 := U1][x2 := U2].

So the general requirement is that

Ui : Ai[x1 := U1, . . . , xi−1 := Ui−1].

Although this requirement is clear and well argued, it does not look very

nice. So we try to give it a better appearance. Note that, for each type Ai, the

variables from xi upwards to xn do not occur in Ai. So there is no objection

against extending the substitution list above, leading to:

Ui : Ai[x1 := U1, . . . , xn := Un],

since the added substitutions xi := Ui up to xn := Un are ‘void’; they do

nothing.

Again, we propose an abbreviation (see also Notation 8.5.1):

Notation 9.4.2 We write [x := U] as an abbreviation for the simultaneous

substitution [x1 := U1, . . . , xn := Un].

This enables us to write the requirement discussed above as follows:

Ui : Ai[x := U], for 1 ≤ i ≤ n.

If these requirements have been satisfied, we may instantiate parameter list

x of a(x) with U , obtaining a(U).

So the desired derivation rule for instantiation has the following form:

Δ ; Γ � U1 : A1[x := U]
...

Δ ; Γ � Un : An[x := U]

Δ ; Γ � a(U) : . . .?

in which the type of the a(U) in the conclusion still has to be filled in.

9.4 The rule for instantiating a definition 195

But first, we propose a condensed notation for the list of judgements being

the premisses, by using ‘overlining’ again:

Notation 9.4.3 We write Δ ; Γ � U : V for the list of extended judgements

Δ ; Γ � U1 : V1,
...

Δ ; Γ � Un : Vn.

So the premisses of the rule may be written in the following compact format:

Δ ; Γ � U : A[x := U].

All that’s left to do now, is to find a type for a(U) in the conclusion:

Δ ; Γ � a(U) : . . .?.

Since a(x) has type N and the variables xi may occur in this N , the xi in

N should be instantiated (i.e. substituted for) as well. So the type becomes

N [x := U], and the result is:

Δ ; Γ � a(U) : N [x := U].

So now we are ready to write down the derivation rule for introducing an

instantiation of the parameter list of a constant (below we discuss why we state

this rule for constants with non-empty parameter lists only).

Definition 9.4.4 (Derivation rule for instantiation, 1)

Let a be a constant with non-empty parameter list, and let D ∈ Δ, where

D ≡ x : A � a(x) := M : N . Then:

(inst-pos)
Δ ; Γ � U : A[x := U]

Δ ; Γ � a(U) : N [x := U]

The appearance of this rule is quite convincing, and not too complicated –

in particular by the adequate use of ‘overlining’. However, do not forget that

the upper judgement is in fact an abbreviation for a list of n judgements for

some n > 0.

Remark 9.4.5 We consider here the instantiation a(U1, . . . , Un) with respect

to the environment Δ and the context Γ. It is worth noting that the constant

a, being the head of the instantiation a(U1, . . . , Un), may also occur inside one

or more of the Uj.

For example, when we would have defined a(n), in context n : N, as being

some expression which represents n2, then one instantiation could be a(a(5)),

and another one could be a(plus(a(k), a(l))), for some known k and l; the

meaning of these expressions is obviously (52)2 or (k2 + l2)2, respectively.

196 Extension of λC with definitions

However, we are not yet done: there is a good reason why we forbade the

parameter list of a being empty in the above rule. Because if it were, then there

would be no xi to instantiate, so there would be no Ui as well, and the list of

n judgements on the upper side of the derivation rule would become the empty

list.

The text of Definition 9.4.4 then would become:

Let a be a constant with empty parameter list, and let D ∈ Δ, where

D ≡ ∅ � a() := M : N . Then:

(inst-zero)
〈no requirements〉
Δ ; Γ � a() : N

??

This rule is not what we want, because it permits us to derive the judgement

Δ ; Γ � a() : N for any Δ and Γ: we have no check on the correctness of Δ

and Γ in the conclusion. It is important to recognise that in Definition 9.4.4,

the correctness of Δ and Γ is a consequence of the correctness of the premisses:

each of these already implies the correctness of both Δ and Γ.

So we have to find something to mend these possible sources of incorrectness.

It is obviously sufficient to ensure that environment Δ and context Γ together

are correct.

A clever way out is the following: if we are able to determine the derivability

of any statement with respect to environment Δ and context Γ, then automat-

ically Δ; Γ itself must be well-formed. So why not take the simplest statement

that we know, namely ∗ : � ? Our requirement then becomes:

Δ ; Γ � ∗ : � .

Note that, since the definition under consideration (D ≡ ∅ � a() := M : N)

is an element of this Δ, well-formedness of Δ immediately implies that D is

well-formed.

So now we have a premiss to ensure well-formedness in the case of an empty

parameter list. Hence, for definitions D in which the defined constant has an

empty parameter list, the derivation rule becomes amazingly simple:

Definition 9.4.6 (Derivation rule for instantiation, 2)

Let a be a constant with empty parameter list, and let D ∈ Δ, where

D ≡ ∅ � a() := M : N . Then:

(inst-zero)
Δ ; Γ � ∗ : �

Δ ; Γ � a() : N

We can combine this rule (inst-zero) with the rule (inst-pos) into one, to

obtain the following instantiation rule (inst) for λD0, covering both cases:

9.5 Definition unfolding and δ-conversion 197

Definition 9.4.7 (Derivation rule for instantiation)

Let a be a constant and let D ∈ Δ, where D ≡ x : A � a(x) := M : N . Then:

(inst)
Δ ; Γ � ∗ : � Δ ; Γ � U : A[x := U]

Δ ; Γ � a(U) : N [x := U]

In this combined instantiation rule, we find literally the (inst-zero)-rule in

case the parameter list of a is empty (because then all but the first premiss

vanishes). If this parameter list is non-empty, we recognise the (inst-pos)-rule,

but with an extra requirement: the newly added first premiss. It is not hard

to show, however, that in this case the first premiss is a consequence of each

of the remaining ones; so it does not enlarge the amount of effort required: we

may just ignore that first premiss if the parameter list is not empty.

So the reason to insert the premiss Δ ; Γ � ∗ : � in the general (inst)-rule

is that we desire the rule to have a simple appearance, and yet cover both

cases. In this we succeeded; the additional burden in the latter case is only

apparently a nuisance.

9.5 Definition unfolding and δ-conversion

There is an important aspect of definitions that we have not yet formalised: our

intention that a defined constant ‘takes the place of’ (‘stands for’, ‘abbreviates’)

the definiens. The intended meaning of the definiendum and the definiens is

that they are the same.

For example, in Figure 8.1 we have defined D(n) as follows, considering it

to be an abbreviation for a set depending on natural number n:

n : N+

D(n) := the set of all positive integer divisors of n

We clearly intend that, by this definition, D(n) denotes that set, so – as a

set – they are the same; for arbitrary k in N we obtain (after instantiation)

that:

D(k) = {d ∈ N+ | d | k},
and this remains so for other instantiations, for example:

D(15) = {d ∈ N+ | d | 15} (so D(15) = {1, 3, 5, 15}).
In the same manner, we wish to identify the definiendum ‘total (S,R)’ (see

Definition 8.1) with ‘∀x,y∈S(xRy ∨ yRx)’, and consequently

total (N,≤) ⇔ ∀x,y∈N(x ≤ y ∨ y ≤ x).

These kinds of equalities/equivalencies have not yet found their way into

198 Extension of λC with definitions

our system. This is, however, necessary. For example, if we want to prove that

total (N,≤), then all we can do is to prove that ∀x,y∈N(x ≤ y∨y ≤ x). Suppose

that we succeed in the latter task:

Δ ; ∅ � formalproof : ∀x,y∈N(x ≤ y ∨ y ≤ x).

Then we are apparently ‘almost ready’, but the final step to

Δ ; ∅ � formalproof : total (N,≤)
cannot yet be made.

So our first thought is to introduce a rule that says: if a(x) has been defined as

K, then a(x) may be replaced by K (and vice versa). But this is not enough:

the above example shows that something like this should also hold for an

instantiation a(U):

If we have a definition

D ≡ Γ � a(x) := M : N ,

where D ∈ Δ for some well-formed Δ, then it must be permitted to replace

a(U) by M [x := U].

And there is more: such a replacement of an expression by some definitional

equivalent one should clearly be permitted on a wider scale, since their in-

tended meaning is the same. For example, since the expressions total (N,≤)
and ∀x,y∈N(x ≤ y ∨ y ≤ x) have the same meaning, a replacement of either of

them by the other should be admitted, also when occurring as a subexpression.

This reminds us of the Conversion rule for systems in the λ-cube (cf., for

example, Section 4.7), which permitted replacement of any expression by a

(well-formed) β-convertible one. And indeed, in Section 9.7 we shall adapt

the conversion rule in such a manner that also definitional equivalence will be

covered.

But we have to start with giving a neat description of the mentioned notion of

definitional equivalence, which we shall call δ-conversion. We make this notion

precise in a number of steps, comparable to the transition from β-reduction to

β-conversion, as discussed in Section 1.8.

First, we introduce a relation called one-step definition unfolding or δ-reduct-

ion; note that this unfolding is always relative to the environment Δ in which

the definition occurs.

Definition 9.5.1 (One-step definition unfolding; one-step δ-reduction,
Δ→)

If Γ � a(x) := M : N is an element of environment Δ, then:

(1) (Basis) a(U)
Δ→M [x := U] ,

(2) (Compatibility) If M
Δ→ M ′, then ML

Δ→ M ′L, LM
Δ→ LM ′, λx . M

Δ→
λx . M ′ and b(. . . ,M, . . .)

Δ→ b(. . . ,M ′, . . .).

9.5 Definition unfolding and δ-conversion 199

As usual (cf. Definitions 1.5.2 and 1.8.1), compatibility (2) is the formal

counterpart of the informal desire that (1) extends to subexpressions:

If a(U) is a subexpression of K (say K ≡ . . . a(U) . . .), then a(x) := M

implies:

K ≡ . . . a(U) . . .
Δ→ . . .M [x := U]

Remark 9.5.2 We use the notation
Δ→ for one-step δ-reduction with respect

to environment Δ, without mentioning the δ. This is not consistent with our

notation →β for one-step β-reduction. A better notation would probably be
Δ→δ;

but in the presence of the Δ, we take the liberty to leave out subscript δ, thus

simplifying the image for the human eye.

A similar remark holds for the notations to be introduced below:
Δ� and

Δ
=.

In case M
Δ→M ′, we say that M ′ is obtained from M by one-step unfolding

in M a certain definition registered in Δ. If this regards an occurrence of the

constant a (so a(U) is replaced by M [x := U], as above), then one also says

that this occurrence of constant a gets unfolded.

Remark 9.5.3 Unfolding concerns one occurrence at a time: other occur-

rences of the same constant are left untouched in the described unfolding step.

And this is what we want, since one is usually only ‘locally’ interested in what

a constant represents. This differs from β-reduction in an essential manner,

since β-reduction requires that all bound occurrences of the variable are replaced

by the argument. Hence, although the mechanisms of reduction and unfolding

are tightly connected to the same basic notion, namely substitution, they behave

differently and therefore we treat them in a different manner. That this can be

realised in our formalisation is an advantage of the style with parameters that

we employ, over the style with λ-abstractions as described in Section 8.11.

The process the other way round, corresponding to the inverse relation of
Δ→, is called (one-step) folding: if M

Δ→ M ′, then M is the result of folding a

certain instantiated constant in M ′.

Similarly to what we did in Sections 1.8 and 1.9 regarding →β , which we

extended to �β and =β , we define the notions ‘zero-or-more-step δ-reduction

relative to Δ’, or
Δ�, and ‘δ-conversion relative to Δ’, or

Δ
=:

Definition 9.5.4 (δ-reduction (zero-or-more-step),
Δ�)

M
Δ� N if there is an n and there are expressionsM0 toMn such thatM0 ≡M ,

Mn ≡ N and for all i such that 0 ≤ i < n:

Mi
Δ→Mi+1 .

200 Extension of λC with definitions

Definition 9.5.5 (δ-conversion,
Δ
=)

M
Δ
= N (to be read as: ‘M and N are convertible with respect to Δ’) if there

is an n and there are expressions M0 to Mn such that M0 ≡M , Mn ≡ N and

for all i such that 0 ≤ i < n:

either Mi
Δ→Mi+1 or Mi+1

Δ→Mi .

So M and N are δ-convertible (or M
Δ
= N) if the one can be obtained from

the other by successively folding or unfolding a number of definitions occurring

in it.

Remark 9.5.6 The relation
Δ
= is an equivalence relation on expressions, just

as =β is (cf. Lemma 1.8.6). It is:

− reflexive: for all L: L
Δ
= L,

− symmetric: for all L, M : if L
Δ
= M , then M

Δ
= L, and

− transitive: for all L, M and N : if L
Δ
= M and M

Δ
= N , then L

Δ
= N .

Comparable to what we have said in the case of β-reduction (see Section 1.9),

we define the δ-normal form of an expression, with respect to an environ-

ment Δ:

Definition 9.5.7 (Unfoldable, δ-normal form, δ-nf)

Let Δ be an environment.

(1) A constant a is unfoldable with respect to Δ, if a is bound to a descriptive

definition in Δ, say: x : A � a(x) := M : N .

(2) K is in δ-normal form (or: is in δ-nf) with respect to Δ, if there occurs no

constant in K that is unfoldable with respect to Δ.

(3) K has a δ-normal form (has a δ-nf) with respect to Δ, if there is an L in

δ-nf with respect to Δ such that K
Δ
= L. One also says in this case: K is

δ-normalising, and L is a δ-normal form of K (with respect to Δ).

9.6 Examples of δ-conversion

We continue with giving examples of the notions (un-)folding, δ-reduction and

δ-conversion.

Let’s assume that we have started to compose a mathematics book in λD0, in

which defined constants are included for addition, multiplication and squaring

of integer numbers, and a defined constant for equality on the integers. For

convenience, we denote them with the usual symbols (‘+’, ‘·’, ‘..2’ and ‘=’),

written in infix notation (as to the symbols ‘+’, ‘·’ and ‘=’) and with superscript

(for ‘..2’), respectively.

Then we can add the following λD0-text to our formal mathematics book:

9.6 Examples of δ-conversion 201

(D1) x : Z, y : Z � a(x, y) := x2 + y2 : Z

(D2) x : Z, y : Z � b(x, y) := 2 · (x · y) : Z

(D3) x : Z, y : Z � c(x, y) := a(x, y) + b(x, y) : Z

(D4) x : Z, y : Z � lemma(x, y) := c(x, y) = (x+ y)2 : ∗p
Now take Δ ≡ D1, . . . ,D4 and consider the expression

E ≡ a(a(x, x), a(y, y)),

with respect to Δ, in the context Γ ≡ x : Z, y : Z. This expression E is well-

formed with respect to Γ and Δ, since each of the three occurrences of a is

followed by an instantiated parameter list of the proper length (viz. 2), and in

each case, the two parameters have the proper type (viz. Z).

For example: subexpression a(x, x) of E is a correct instantiation of a(x, y)

as defined in D1; the instantiation substitutions are [x := x] and [y := x]. The

following subtlety is worth noting: in [x := x], the first occurrence of x is the

one bound in D1, but the second occurrence of x is another copy of x: it is the

one bound in the context Γ of E .
The mentioned instantiation a(x, x) has the type Z, again, as is desired by

the rules for well-formedness (w.r.t. Δ and Γ) as given in Section 9.4.

In expression E , there are three ways to start ‘unfolding’, i.e. to apply a

single δ-reduction. We picture these three possibilities in Figure 9.1.

(a(x, x))2 + (a(y, y))2 a(x2 + x2, a(y, y)) a(a(x, x), y2 + y2)

a(a(x, x), a(y, y))
�������������

��������������

Δ
Δ

Δ

Figure 9.1 Possible first steps of unfolding E ≡ a(a(x, x), a(y, y))

From this figure we can see that, for example:

a(x2 + x2, a(y, y))
Δ
= a(a(x, x), y2 + y2).

Continue the diagram yourself, until you have a picture of the complete δ-

reduction behaviour of E with respect to Δ. The bottom expression in that

diagram will be:

(x2 + x2)2 + (y2 + y2)2,

being a δ-normal form of E with respect to Δ. (Such a δ-normal form is unique,

as we shall see in Corollary 10.5.4.)

In Figure 9.2, we picture one of the two possible complete δ-reduction ‘paths’

(cf. Definition 1.9.5) of the expression lemma(u, v), for given u, v : Z. Here the

path ends in the expression (u2+v2)+2 · (u ·v) = (u+v)2, which is a δ-normal

form with respect to Δ, again.

202 Extension of λC with definitions

lemma(u, v)
↓Δ

c(u, v) = (u+ v)2

↓Δ
a(u, v) + b(u, v) = (u+ v)2

↓Δ
(u2 + v2) + b(u, v) = (u+ v)2

↓Δ
(u2 + v2) + 2 · (u · v) = (u+ v)2

Figure 9.2 A reduction path for lemma(u, v)

9.7 The conversion rule extended with
Δ→

Now that we have introduced δ-conversion, we can include it in the Conversion

rule. From the discussion in Section 9.5 it can easily be concluded that this is

what we want:

If Δ; Γ � A : B and B
Δ
= B′, then also Δ; Γ � A : B′.

Now B is well-formed, since it is part of the judgement Δ; Γ � A : B. But

just as in the original Conversion rule dealing with β-conversion only (see e.g.

Section 4.7), it is not guaranteed that B′ is well-formed as well. So again, we

have to add an extra requirement about B′: we require that Δ; Γ � B′ : s, for
s a sort, in order to ensure well-formedness of B′.

Hence, we obtain the following conversion rule for δ-conversion:

(δ-conv)
Δ; Γ � A : B Δ;Γ � B′ : s

Δ;Γ � A : B′ if B
Δ
= B′.

We are not yet done, because it is quite natural to combine this rule for δ-

conversion with the β-conversion rule in λC (see Figure 6.4). So we permit that

B and B′ are related by β-conversion, by δ-conversion, or by a combination

thereof.

Before we discuss this further, we extend the formal definition of one-step

β-reduction (cf. Definitions 1.8.1, 2.11.2, 3.6.2 and the comment to Theo-

rem 6.3.11) to λD0. In particular, we add a compatibility rule for constants

with instantiated parameter lists:

Definition 9.7.1 (One-step β-reduction for expressions in λD0, →β)

(1) (Basis) (λx : K . M)N →β M [x := N].

(2) (Compatibility) Assume M →β N , then also ML →β NL, LM →β

LN , λx : M . K →β λx : N . K, λx : K . M →β λx : K . N , Πx : M . K →β

Πx : N . K, Πx : K . M →β Πx : K . N and a(U,M, V)→β a(U,N, V).

The definitions of zero-or-more-step β-reduction (�β) and β-conversion (=β)

9.8 The derivation rules for λD0 203

can remain as they are (see Definitions 1.8.3 and 1.8.5), albeit that they concern

the new one-step β-reduction as given in the above definition.

Now we can give the appropriate definition for the new relation
Δ
=β , which

combines β- and δ-conversion:

Definition 9.7.2 (βδ-conversion,
Δ
=β)

We say that M βδ-converts to N with respect to Δ, or M
Δ
=β N , if there is

an n and there are expressions M0 to Mn such that M0 ≡ M , Mn ≡ N and

for all i such that 0 ≤ i < n:

Mi →β Mi+1 or Mi
Δ→Mi+1 or Mi+1 →β Mi or Mi+1

Δ→Mi .

This leads us to the following general conversion rule for λD0:

Definition 9.7.3 (Derivation rule for β-δ-conversion):

(βδ-conv)
Δ; Γ � A : B Δ;Γ � B′ : s

Δ;Γ � A : B′ if B
Δ
=β B′.

9.8 The derivation rules for λD0

Now we can summarise what we have developed in this chapter, by giving

the full system of derivation rules for λD0 (see Figure 9.3), as an extension of

λC. All judgements are in the λD0-format, hence in the form Δ;Γ � K : L.

Obviously, the new element in comparison with λC (see Figure 6.4) is the

environment Δ. Let’s inspect the new rules.

(var), (weak), (form), (appl), (abst) As compared with Figure 6.4, the

environment Δ is the only extension for these five rules, which therefore need

no further explanation. Just as in Section 6.2, sort s ranges over ∗ and �, and

the pair (s1, s2) may be each of the pairs composed from these two sorts: (∗, ∗),
(�, ∗), (�,�) or (∗,�).

(def) and (inst) These two rules were treated in Sections 9.3 and 9.4.

(sort) With regard to the (sort)-rule, it will be no surprise that we take

the environment Δ ≡ ∅, reflecting the empty context appearing in the corre-

sponding λC-rule. So both Δ and Γ are empty, which brings along that there

is nothing to be checked when invoking this rule. This is in agreement with the

fact that (sort) acts as the start of every derivation: it is the only rule without

premisses.

(conv) For the conversion rule, we need, apart from the new Δ, another

extension with respect to λC, as we explained in the previous section (see

Definition 9.7.2): the relation =β must be upgraded to
Δ
=β . For the sake of

simplicity, we rename (βδ-conv) to (conv).

204 Extension of λC with definitions

This comment makes the rules in Figure 9.3 understandable and acceptable

as a ‘natural’ extension of the λC-rules, suitable for satisfying our desire to

include definitions.

(sort) ∅ ; ∅ � ∗ : �

(var)
Δ ; Γ � A : s

Δ ; Γ, x : A � x : A
if x �∈ Γ

(weak)
Δ ; Γ � A : B Δ ; Γ � C : s

Δ ; Γ, x : C � A : B
if x �∈ Γ

(form)
Δ ; Γ � A : s1 Δ ; Γ, x : A � B : s2

Δ ; Γ � Πx : A . B : s2

(appl)
Δ ; Γ � M : Πx : A . B Δ ; Γ � N : A

Δ ; Γ � MN : B[x := N]

(abst)
Δ ; Γ, x : A � M : B Δ ; Γ � Πx : A . B : s

Δ ; Γ � λx : A . M : Πx : A . B

(conv)
Δ ; Γ � A : B Δ ; Γ � B′ : s

Δ ; Γ � A : B′ if B
Δ
=β B′

(def)
Δ ; Γ � K : L Δ ; x : A � M : N

Δ , x : A � a(x) := M : N ; Γ � K : L
if a �∈ Δ

(inst)
Δ ; Γ � ∗ : � Δ; Γ � U : A[x := U]

Δ ; Γ � a(U) : N [x := U]
if x : A � a(x) := M : N ∈ Δ

Figure 9.3 Derivation rules for λD0

9.9 A closer look at the derivation rules of λD0

On closer examination, there is more to be said about some of the λD0-rules.

Firstly, we observe that the (weak)-rule and the (def)-rule have notable simi-

larities:

− The (weak)-rule makes it possible to weaken the context Γ of a judgement

Δ; Γ � A : B, by adding a new entry at the end of Γ (viz. the declaration

x : C).

− The (def)-rule makes it possible to weaken the environment Δ of a judge-

ment Δ; Γ � K : L, by adding a new entry at the end of Δ (viz. the

definition x : A � a(x) := M : N).

9.9 A closer look at the derivation rules of λD0 205

This implies that (weak) and (def) may both be considered as weakening

rules (cf. Section 4.3): one for contexts, the other for environments.

Another correspondence exists between the rules (var) and (inst), albeit

more hidden than between (weak) and (def):

− The (var)-rule tells us what the type of a variable x is (namely A), provided

that this variable is the subject of the last declaration x : A in the context

and that A is ‘correct’ with respect to Δ and Γ.

− The (inst)-rule tells us what the type of an instantiated constant a(. . .)

is, provided that a(x) is the definiens of a definition somewhere in Δ and

that the list (. . .) contains an instantiation U of the parameter list x. The

condition is that U must be ‘correct’ with respect to Δ and Γ.

Hence, (var) and (inst) establish types for the ‘basic’ expressions in λD0,

namely: (i) a variable, and (ii) an expression starting with a constant . From

these basic expressions, one builds more complex ones by means of (appl),

(abst), (form) and (inst) (again).

The rules left are the ‘initial’ rule (sort) and the rule for manipulating the

type: (conv).

There is a second view on the (var)-rule: one may also consider this rule as

stating that the final declaration, x : A, in a context Γ is itself derivable with

respect to a ‘legal’ Δ–Γ-pair.

A counterpart of this option for environment Δ appears to be missing. It

would be something like ‘The final definition D ∈ Δ is itself derivable with

respect to “legal” Δ and Γ’. This is, of course, not realisable, since a definition

D ≡ x : A � a(x) := M : N is not a statement , and therefore it does not fit in

the format for what we allow behind the ‘�’.
One can, however, extract two acceptable statements out of this definition,

namely a(x) : N and M : N . Both are intuitively ‘valid’ statements, in a

proper environment and with context x : A, because: (1) M : N is the ob-

servation upon which the definition has been based in the mentioned context,

and (2) a(x) : N follows from our intention that a(x) is a new name for M ,

and hence inherits all its properties.

It turns out that we do not need new derivation rules for this pair of state-

ments: both statements are derivable from the rules we already have. We state

this as a lemma.

Lemma 9.9.1 Assume Δ ; x : A � M : N . Let D ≡ x : A � a(x) := M : N .

Then:

(1) Δ,D ; x : A � M : N , and

(2) Δ,D ; x : A � a(x) : N .

206 Extension of λC with definitions

Proof Consider the (def)-rule. In the first premiss, take Γ ≡ x : A and take

M : N for K : L; then the first and the second premisses are two identical

copies of the assumption. Hence we obtain (1) as an immediate result.

The Start Lemma, to be formulated in the following chapter (Lemma 10.4.7,

part (1b)), gives us (2) (see Exercise 10.6).

As will turn out in the following chapters, the second part of Lemma 9.9.1

is worth singling out as an extra rule. We give it the name (par) because it

is about the typing of a defined constant in its ‘pure’ form – i.e. followed by

a parameter list instantiated in the simplest manner, namely with variables

x1, . . . , xn; these ‘mimic’ exactly the original parameters x1, . . . , xn.

Hence, we add the rule given in Figure 9.4:

(par)
Δ ; x : A � M : N

Δ,D ; x : A � a(x) : N
if D ≡ x : A � a(x) := M : N and a �∈ Δ

Figure 9.4 The derived rule (par) for λD0

Remember that (par) does not belong to the basic rules; so it may be used

whenever we like, but we need not consider it in our theoretical investigations.

9.10 Conclusions

In this chapter we have investigated the formal format for so-called descriptive

definitions, which connect the defined constant a to an explicit definiens M .

Our main concern has been the addition of such definitions to the type system

λC. This eventually results in a formal type system called λD0.

Because of the presence of defined constants in judgements, we have extended

the typing judgements in front with a list of useable definitions (an environ-

ment Δ). This has led to a general format for judgements-with-definitions, also

called extended judgements :

Δ ; Γ � M : N .

We have discussed several derivation rules for such extended judgements.

We started with the rule (def) for adding a definition to an environment of

a judgement. Next, we investigated the conditions necessary for a ‘neat’ in-

stantiation of the parameters of a defined constant. This turned out to be an

intricate process. The rule for describing what appropriate instantiations are

has first been given in two separate versions: one for a non-empty parameter

list and one for an empty list. But it turned out that these two parts can also

be presented together, in one (inst)-rule.

9.11 Further reading 207

Next, we have described the necessity of definition unfolding. We considered

the consequences of the definition mechanism for convertibility: a descriptive

definition naturally may be unfolded in an expression (by replacing a defined

name by its definiens), without altering its meaning. In formalising this process

of unfolding, we have to take the instantiations of the parameters into account.

These instantiations reflect the necessary updating caused by the actual situ-

ation.

For the formalisation of unfolding, we have introduced the notion of (one-

step) δ-reduction, and its generalisation: δ-conversion. The latter was obtained

similarly to the way in which β-conversion has been based on β-reduction.

We have also considered the notion of δ-normal form, being an expression in

which there are no unfoldable constants. After giving examples of δ-reduction,

we have formalised an extended Conversion rule, (conv), which takes both

β-conversion and δ-conversion into account.

Finally, we have given the list of derivation rules of λD0. We observed several

correspondences between these rules. One of these correspondences was the

reason for the formulation of a useful derived rule, called (par).

9.11 Further reading

N.G. de Bruijn was the first to draw explicit attention to definitions and to

make definitions part of the formal language itself, not just a ‘meta-notion’.

Formal rules for definitions in type theory were first spelled out explicitly

in his Automath project (de Bruijn, 1970), which has an elaborate, formal

mechanism of definitions (see also van Daalen, 1973). The rules we give here

are reminiscent of the ones of Automath.

A comparison between the Automath systems and Pure Type Systems (in-

cluding type theories like λC) is given by Kamareddine et al. (2003), where

the notion of parameterised definitions, as we have introduced in the present

chapter, is added to the Pure Type Systems framework.

The type theory λC by Th. Coquand and G. Huet (Coquand & Huet, 1988)

does not include a mechanism for definitions, but the first implementation of

the system as a proof assistant obviously had one. The definitions were seen as

an ‘abbreviation mechanism’ that didn’t need a formal description or analysis;

this opinion differs from our vision on definitions, as we have amply set out in

the previous chapters.

The idea of progressively extending a ‘book’, as a document containing math-

ematical knowledge, by adding ‘lines’, is of course the basis of almost every

mathematical text. In Automath (and in λD) the book consists of definition-

208 Extension of λC with definitions

like expressions; the added lines contain new constructions that are given a

name, via a definition again.

We see the same pattern of development in the flag-style – also called Fitch

style – way of doing natural deduction (see Section 7.8 and Fitch, 1952).

In the present chapter – and the whole book – we employ the transformation

from tree style to flag style in an implicit manner: we give the formal derivation

rules of the type theory in a tree style, writing all the contexts in full. But when

we do examples of type derivations, we mostly prefer to use a flag style. This

saves us from copying the contexts, because they are in the flags. See, for

example, Chapter 7; we shall also employ the flag style in Chapter 11 and

further.

Exercises

9.1 Consider the environment Δ ≡ D1,D2,D3,D4 of Section 9.6. Describe the

dependencies between the four definitions and give all possible linearisa-

tions of the corresponding partial order.

9.2 Consider the following two definitions, Di and Dj :

x : A � a(x) := K : L,

y : B � b(y) := M : N .

Let Δ ; Γ � U : V and assume that Di and Dj are elements of the

list Δ, where Di precedes Dj .

(a) Describe exactly where the constant a may occur in Di and Dj .

(b) Describe where the constant b may occur in Δ.

9.3 The text in Exercise 8.2 contains eight new definitions. Let Δ be the

corresponding environment. Rewrite the type in line (8) in such a manner

that all definitions of Δ have been unfolded.

9.4 See Section 9.6. Let Δ ≡ D1, . . . ,D4.

Give the full δ-reduction diagram of c(a(u, v), b(w,w)).

9.5 Check that all instantiations of the parameters of constants defined and

used in Exercise 8.2 satisfy the requirements imposed by the (inst)-rule.

9.6 Consider the following environment Δ consisting of six definitions, in

which we use, for the sake of convenience, some well-known formats such

as the Σ and infix-notations:

D1 ≡ f : N→ R, n : N � a1(f, n) := Σn
i=0(f i) : R,

D2 ≡ f : N→ R, d : R � a2(f, d) := ∀n:N(f (n+1)− f n = d) : ∗p,
D3 ≡ f : N→ R, d : R, u : a2(f, d), n : N �

a3(f, d, u, n) := formalprf3 : f n = f 0 + n · d,

Exercises 209

D4 ≡ f : N→ R, d : R, u : a2(f, d), n : N �
a4(f, d, u, n) := formalprf4 : a1(f, n) =

1
2 ·(n+1)·(f 0+f n),

D5 ≡ f : N→ R, d : R, u : a2(f, d), n : N �
a5(f, d, u, n) := formalprf5 :

a1(f, n) = (n+ 1) · f 0 + 1
2 · n · (n+ 1) · d,

D6 ≡ ∅ � a6 := formalprf6 : Σ100
i=0(i) = 5050.

Assume that formalprf3 to formalprf6 are meta-terms, standing for

real proof terms.

(a) Rewrite this environment in flag format.

(b) What is a name used for a2 in the standard literature?

(c) Find the δ-normal form with respect to Δ of a5(λx : N . 2x, 2, u, 100),

where u is an inhabitant of a2(λx : N . 2x, 2).

9.7 We call a definition D correct in environment Δ if Δ,D ; ∅ � ∗ : �.

Consider D1 to D6 as in Exercise 9.6.

(a) On what condition can you derive that D1 is correct in environment ∅?
(b) How do you prove that D2 is correct in environment D1?

(c) The same question for D3 in environment D1,D2.

9.8 See Exercises 9.6 and 9.7.

(a) Let Δ′ ≡ D1, . . . ,D5. Assume that D6 is correct in environment Δ′

and Δ′ ; ∅ � (a1(λx : N . x, 100) = (λx : N . x)5050) : ∗p. Derive:

Δ ; ∅ � formalprf6 : a1(λx : N . x, 100) = (λx : N . x)5050 .

(b) Assume that the conditions mentioned in Exercise 9.7(́a) have been

satisfied. What is the fastest manner to prove

D1 ; f : N→ R, n : N � a1(f, n) : R ?

9.9 Let Γ ≡ A : ∗, B : ∗, C : ∗. Prove, by giving full derivations in λD0:

(a) ∅ ; Γ � ∗ : �,

(b) ∅ ; Γ � A : ∗,
(c) ∅ ; Γ � B : ∗,
(d) ∅ ; Γ � C : ∗.

9.10 Let J1, . . . ,Jn be judgements such that, listed in this order, they form a

derivation. Let

Jn ≡ Δn ; Γn � Mn : Nn | Jn
be the final judgement in this derivation, with Jn its justification in λD0.

Assume that for all i < j: if Ji ≡ Δi ; Γi � Mi : Ni, then we have that

Δi ; Γi � ∗ : �.

(a) Let Jn be a case of the (weak)-rule. Prove that

Δn ; Γn � ∗ : �.

(b) The same if Jn is a case of the (var)-rule.

210 Extension of λC with definitions

(c) The same if Jn is a case of the (def)-rule.

(d) The same if Jn is a case of one of the other λD0-rules as given in

Figure 9.3.

10

Rules and properties of λD

10.1 Descriptive versus primitive definitions

As we have explained before, our intention is to switch over from λC to an

extended formal system with definitions that can be fruitfully used for the

formalisation of mathematical texts (including logic).

In the previous chapter we have defined the system λD0, an extension of

λC with definitions as ‘first class citizens’. We have based λD0 on so-called

descriptive definitions. The word ‘descriptive’ means that each defined constant

is connected to an explicit definiens , giving a formal description of what the

constant represents. The new name (the constant), so to say, ‘stands for’ the

‘describing’ expression to which it has been coupled in its definition.

When it comes to mathematics (and logic) in general, there is still one thing

that we miss: the possibility to express so-called primitive notions, necessary

for the incorporation of axioms and axiomatic notions. These appear as soon

as we go beyond the so-called constructive logic (cf. Sections 7.4 and 11.8), or

when we incorporate mathematics in a style based on axioms, as often happens.

The constants introduced in primitive definitions – as opposed to those in de-

scriptive definitions – are not accompanied by a descriptive expression. These

so-called primitive constants are only provided with a type to which the con-

stant belongs, but there is no further restriction or characterisation. Conse-

quently, primitive constants cannot be unfolded, simply because there is noth-

ing to unfold them to.

A primitive definition can be seen as the axiomatic introduction of a logical

or mathematical object one assumes to exist, but cannot construct. It can also

be used for an axiom one assumes to hold but cannot prove in the (limited)

framework of λC. An example is the axiom DN from classical logic, the ‘double

negation law’ (see Section 7.4).

So we are dealing with the following two kinds of definitions:

212 Rules and properties of λD

− descriptive definitions, being the ‘genuine’, well-known ones, which are cou-

pled to a description (the definiens) and a type;

− primitive definitions, not being definitions in the original sense, since they

miss a description and are only confined to a type.

In their formal appearance, the essential difference between the two kinds of

definition is the presence or non-presence of a definiens. The points of agree-

ment are:

− both kinds of constants have similar behaviour as to the instantiation of

their parameter lists; and

− both kinds of constants are connected to a type.

Because of these similarities, we have chosen to put the introduction process

of the two kinds of constants on a par. This implies that we extend the common

meaning of the word ‘definition’ to the primitive or axiomatic names. Hence,

our word ‘definition’ from now on also encompasses the cases where there exists

no description, but only a type.

As you may imagine, descriptive definitions form the great majority in an

average formalised piece of mathematics; primitive definitions tend to be rather

exceptional, particularly in the long run.

In the remainder of the present chapter we extend λD0 with primitive defi-

nitions. The resulting system is called λD.

System λD is our ultimate formal machinery, which we firstly show to be

a nice vehicle for the formalisation of logical notions, together with a corre-

sponding deduction system (see Chapter 11). The system is also very suited for

the formalisation of a larger body of mathematics (as the following chapters

will demonstrate). Hence, λD fulfils our desire to have a powerful machinery

for the formalisation of mathematical theories – the great profit being that

the formalisation process enforces the formal content to become thoroughly

verified.

10.2 Axioms and axiomatic notions

Let’s have a closer look at axioms, or – in general – primitive entities. These

are concepts or principles that are postulated to exist or to hold. They form

the fundamentals of a certain theory, which are necessary as a kind of basis.

They are so elementary that they are not constructible or derivable from other

entities.

Examples of such primitive entities are:

− the set N of natural numbers, as a basis of Peano arithmetic;

− the number 0 in N and the successor function s : N → N, as basic with

respect to N;

10.2 Axioms and axiomatic notions 213

− the axiom of induction in Peano arithmetic;

− the axioms of Zermelo–Fraenkel set theory; for example: the Extensionality

Axiom (sets with the same elements are equal), or the Empty Set Axiom

(there exists a set with no elements).

These entities are all primitive in the respective theories. Note that the en-

tities in the examples are varying in nature: they may be a set (N), an element

of a set (0, s) or the assertion of a proposition which one accepts as elemen-

tary and hence should be accepted without a proof (Induction, Extensionality,

Empty Set).

We have already met such primitive entities in Section 7.4, where we dis-

cussed the laws of the excluded third (ET) and double negation (DN). Both

propositions cannot be proved in constructive logic. So, when we want to do

classical logic, we need to add them (or at least one of them; see the relevant

passages in the beginning of the mentioned section).

In Section 7.4 we proposed to add ET as an assumption in front of the

context – a kind of pre-context . This worked out fine there. However, this

solution of the problem has definitely disadvantages:

− It complicates derivations in more complex situations, in particular when

several primitive entities must be accounted for: then we always need to

drag along a sizeable pre-context.

− It is not immediately clear how to deal with primitive entities that are them-

selves presented in a context. For example, we can express Induction with a

context (instead of with universal quantification over P), as follows:

‘Let P be any predicate on N. We axiomatically assume that induction

holds for P .’

More formally, we can express this as follows:

Induction property : In context P : N→ ∗p , we assume

P 0 ⇒ (∀n∈N(P n⇒ P (s n)) ⇒ ∀n∈N(P n)).

For these reasons, we have chosen another approach to primitive entities: we

do not regard them as overall assumptions, but as a kind of definitions . To be

precise, we regard them as definitions without definientes (see Section 10.1).

We speak in these cases of a definition of a primitive entity or a primitive

definition.

Formally, we use the symbol ⊥⊥ for the non-existing definiens in such a

primitive definition. This enables us to use the same format as for the usual

descriptive definitions (cf. Definition 9.1.2).

Definition 10.2.1 (Primitive definition, definition, environment)

(1) A primitive definition has the form x : A � a(x) := ⊥⊥ : N .

(2) A definition is either a descriptive or a primitive one.

214 Rules and properties of λD

(3) As a consequence, an environment , being a list of definitions, can now also

include primitive definitions.

Example 10.2.2 Some of the above examples can be expressed as follows in

this format (we suppress empty parameter lists):

∅ � N := ⊥⊥ : ∗s
∅ � 0 := ⊥⊥ : N

∅ � s := ⊥⊥ : N→ N

P : N→ ∗p � ind(P) := ⊥⊥ :

P0⇒ (∀n : N . (Pn⇒ P (sn))⇒ ∀n : N . Pn

∅ � iET := ⊥⊥ : Πα : ∗ . (α ∨ ¬(α))
We can now use ind(P) for any predicate P on N, by employing the deriva-

tion rule (inst).

For example: say that we have defined the functions ‘cube’ and + on N, and

that we have derived the relevant properties of arithmetic. Now we want to

prove by induction that

∀n∈N(9 | n3 + (n+ 1)3 + (n+ 2)3), where a | b means: a divides b.

We can define property Q as λn : N . (9 | n3+(n+1)3+(n+2)3), a predicate

of type N→ ∗p, and take as our new goal:

∀n : N . Qn.

Now using the primitive definition ind(P), we get with (inst) that:

ind(Q) : Q 0⇒ (∀n : N . (Qn⇒ Q(s n))) ⇒ ∀n : N . Qn.

Hence, it suffices to find an inhabitant (say r) of Q 0 and an inhabitant

(say t) of ∀n : N . (Qn ⇒ Q(s n)), in order to derive, using (appl) twice, that

ind(Q) r t : ∀n : N . Qn, so ind(Q) r t : ∀n : N . (9 | n3 + (n+ 1)3 + (n+ 2)3)

by (conv). (See Exercise 10.1.)

10.3 Rules for primitive definitions

All we need to make this operational in λD0 is to provide the derivation rules

for primitive definitions. First we give the rule for including a primitive defi-

nition in the environment Δ. This rule is an adapted version of (def), given in

Definition 9.3.1.

It is obvious that we do not copy the second premiss Δ ; x : A � M : N

of the rule (def): in the case of primitive entities there is no M available.

Hence, we switch to a second premiss as given below, which guarantees the

well-formedness of N , with respect to the environment Δ and the context x : A.

(def -prim)
Δ ; Γ � K : L Δ ; x : A � N : s

Δ , x : A � a(x) := ⊥⊥ : N ; Γ � K : L
if a �∈ Δ

10.4 Properties of λD 215

With respect to the instantiation rule (inst), the only modification is the

⊥⊥ in the definition. So we obtain the following (inst-prim)-rule, in which the

first premiss is necessary for the case Γ ≡ ∅, just as in the λD0-rule (see Sec-

tion 9.4):

(inst-prim)
Δ ; Γ � ∗ : � Δ ; Γ � U : A[x := U]

Δ ; Γ � a(U) : N [x := U]

if x : A � a(x) := ⊥⊥ : N ∈ Δ

Since these new rules (def -prim) and (inst-prim) for primitive definitions

are so similar to the ‘general’ rules (def) and (inst) for descriptive definitions,

it is worthwhile to put them side by side. See Figure 10.1, in which we have

boxed the relevant statements, containing the differences between the ‘proper’

and the ‘primitive’ cases.

(def)
Δ ; Γ � K : L Δ ; x : A � M : N

Δ , x : A � a(x) := M : N ; Γ � K : L
if a �∈ Δ

(def -prim)
Δ ; Γ � K : L Δ ; x : A � N : s

Δ , x : A � a(x) := ⊥⊥ : N ; Γ � K : L
if a �∈ Δ

(inst)
Δ ; Γ � ∗ : � Δ; Γ � U : A[x := U]

Δ ; Γ � a(U) : N [x := U]

if x : A � a(x) := M : N ∈ Δ

(inst-prim)
Δ ; Γ � ∗ : � Δ; Γ � U : A[x := U]

Δ ; Γ � a(U) : N [x := U]

if x : A � a(x) := ⊥⊥ : N ∈ Δ

Figure 10.1 Comparing the derivation rules for (def) and (inst) in λD

The system λD0 extended with primitive definitions and the (def -prim)-

and (inst-prim)-rules is called λD.

The full set of derivation rules for λD is listed in Appendix D.

10.4 Properties of λD

When it comes to the properties of λD, it turns out that many of them are

a straightforward extension of the corresponding properties of λC (see Sec-

216 Rules and properties of λD

tion 6.3). Of course, since definitions enter the stage, there is more to be

said. In particular, this concerns statements about definition unfolding and

δ-conversion. Below we give the relevant lemmas for λD.

The statements are very much like the ones in Section 6.3. The proofs are

also very similar, and for the extension with definitions the proofs are like the

ones in Severi & Poll (1994). As λD is not exactly the same as the system

in that paper, we give full proofs of the properties below in the note Geuvers

(2014a). Concerning δ-conversion, we only give the relevant normalisation and

confluence properties.

The set of expressions of λD is the same as the set of expressions of λD0:

EλD (see Definition 9.1.1). So it is important to note that we do not consider

‘⊥⊥’ as an expression: it is a meta-symbol in judgements, on a par with e.g. ‘:=’

and ‘�’.

Next, we establish that λD0 is indeed an extension of λC and that λD, in

its turn, extends λD0. Each of these three systems has its own notion of deriv-

ability, implied by the specific rules of each system. By abuse of notation, we

use the symbol ‘�’ for each of these three notions. If this may cause confusion,

we add a phrase to mend this, such as: ‘Γ;Δ � K : L in λD’.

Lemma 10.4.1 (Inclusion of λC in λD0, and of λD0 in λD.)

(1) If Γ � K : L in λC, then ∅; Γ � K : L in λD0; and

(2) If Δ;Γ � K : L in λD0, then Δ;Γ � K : L in λD.

Next, we focus on λD; we use the notation a(x) := K/⊥⊥ to indicate that

it does not matter whether a is attached to a description, viz. K, or has

primitively been defined as a constant.

The following definition is an extension of Definition 9.1.3.

Definition 10.4.2 (Elements of a definition in λD)

Let D ≡ Γ� a(x) := K/⊥⊥ : L be a definition.

− Γ is the context of D.
− a is the defined constant of D, with x as parameter list.

− a(x) is the definiendum of D.
− K/⊥⊥ : L is the statement of D.
− K resp. ⊥⊥ is the definiens (also called: body) of D.
− L is the type of D.
If D ≡ Γ � a(x) := K : L, then the definition is called a descriptive or proper

definition, and a is a proper constant.

If D ≡ Γ � a(x) := ⊥⊥ : L, then the definition is called a primitive definition,

and a is a primitive constant.

10.4 Properties of λD 217

The following lemma concerns (free) variable and constant occurrences:

Lemma 10.4.3 (Free Variables and Constants Lemma)

Let Δ ; Γ � M : N , where Δ ≡ Δ1,D,Δ2 with D ≡ x : A� a(x) := K/⊥⊥ : L,

and Γ ≡ y : B. Then:

(1) For all i, FV (Ai) ⊆ {x1, . . . , xi−1}; FV (K), FV (L) ⊆ {x}.
(2) For all j, FV (Bj) ⊆ {y1, . . . , yj−1}; FV (M), FV (N) ⊆ {y}.
(3) Constant a does not occur in Δ1.

(4) If constant b occurs in A, K or L, then b �= a and b is the defined constant

of some D ∈ Δ1.

(5) If constant b occurs in B, M or N , then b is the defined constant of some

D ∈ Δ.

Next, we define legality for expressions, environments or contexts, which in

each case means that they are ‘accepted’ in some derivation (cf. Definition 6.3.7

and Lemma 6.3.8):

Definition 10.4.4 (Legal expression, legal environment, legal combination,

legal context)

(1) An expression M is called legal, if there exist an environment Δ, a con-

text Γ, and N such that Δ; Γ � M : N or Δ; Γ � N : M . (For such Δ and Γ,

we call M legal with respect to Δ and Γ.)

(2) An environment Δ is called legal, if there exist a context Γ, and M and N

such that Δ ; Γ �M : N .

(3) An environment Δ and a context Γ form a legal combination, if there exist

M and N such that Δ ; Γ �M : N .

(4) A context Γ is called legal, if there exist an environment Δ, and M and N

such that Δ ; Γ �M : N .

We have the following extension of the Subexpression Lemma (6.3.8):

Lemma 10.4.5 (Legality Lemma)

(1) If Δ ≡ Δ1,Δ2 and Δ is legal, then Δ1 is legal.

(2) If Γ ≡ Γ1,Γ2 and Γ is legal, then Γ1 is legal.

(3) If M is legal, then every subexpression of M is legal.

There is more to be said about legal environments:

Lemma 10.4.6 (Legal Environment Lemma)

If D ≡ x : A � a(x) := M/⊥⊥ : N occurs in a legal Δ, say Δ ≡ Δ1,D,Δ2,

then:

(1) each Ai is legal with respect to Δ1 and x1 : A1, . . . , xi−1 : Ai−1;

(2) both M and N are legal with respect to Δ1 and x : A.

Legality is also used in the following lemmas:

218 Rules and properties of λD

Lemma 10.4.7 (Start Lemma for declarations and definitions)

(1) (Start for contexts) If Δ;Γ is a legal combination and (x : A) ∈ Γ, then

we have Δ ; Γ � x : A.

(2) (Start for environments) Let D ≡ x : A� a(x) := M : N . If Δ is legal

and D ∈ Δ, then both (1a) Δ ; x : A �M : N and (1b) Δ ; x : A � a(x) : N .

Lemma 10.4.8 (Thinning Lemma, Condensing Lemma)

(1) (Thinning) Let Δ1 ⊆ Δ2, Γ1 ⊆ Γ2, and let Δ2; Γ2 be a legal combination.

Now if Δ1 ; Γ1 �M : N , then Δ2 ; Γ2 �M : N .

(2) (Condensing of environments) If Δ1,D,Δ2 ; Γ �M : N , where definition

D is Γ′ � a(x) := K/⊥⊥ : L, and a does not occur in either Δ2, Γ, M or N ,

then Δ1,Δ2 ; Γ �M : N .

(3) (Condensing of contexts) If Δ ; Γ1, x : A, Γ2 � M : N and x does not

occur in Γ2, M or N , then Δ ; Γ1,Γ2 �M : N .

For ‘backtracking’ a derivation from a certain judgement, we have the fol-

lowing lemma; parts (1) to (4) are ‘λD-copies’ of the corresponding parts of

Lemma 6.3.6; part (5), concerning an instantiated constant, is new:

Lemma 10.4.9 (Generation Lemma)

(1) If Δ;Γ � x : C, then there exist a sort s and an expression B such that

B
Δ
=β C, Δ;Γ � B : s and x : B ∈ Γ.

(2) If Δ;Γ �MN : C, then there are A, B such that Δ;Γ �M : Πx : A . B

and Δ;Γ � N : A and C
Δ
=β B[x := N].

(3) If Δ;Γ � λx : A . b : C, then there are a sort s and an expression B such

that C
Δ
=β Πx : A . B and Δ;Γ � Πx : A . B : s and Δ;Γ, x : A � b : B.

(4) If Δ;Γ � Πx : A . B : C, then there are s1 and s2 such that C
Δ
=β s2 and

Δ;Γ � A : s1 and Δ;Γ, x : A � B : s2.

(5) If Δ;Γ � a(U) : C, then constant a must be the defined constant in a

definition D ≡ x : A�a(x) := M/⊥⊥ : N in Δ, and C
Δ
=β N [x := U]; moreover:

− if |Γ| = n > 0, then there is B such that Δ;Γ � U : B and, for all 1 ≤ i ≤ n,

Bi
Δ
=β Ai[x := U];

− if |Γ| = 0 and D is a descriptive definition, then there is N ′ such that

N
Δ
=β N ′ and Δ;Γ �M : N ′;

− if |Γ| = 0 and D is a primitive definition, then Δ;Γ � N : s for some sort s.

The relation β-reduction in λD is the same as in λD0 (see Definition 9.7.1).

In a similar manner we have �β , =β and
Δ
=β for the expressions of λD. We

have the following extension of Lemma 6.3.9:

Lemma 10.4.10 (Uniqueness of Types up to βδ-conversion)

If Δ ; Γ � K : L1 and Δ ; Γ � K : L2, then L1
Δ
=β L2.

10.5 Normalisation and confluence in λD 219

And also (cf. Lemma 6.3.10):

Lemma 10.4.11 (Substitution Lemma)

Let Δ ; Γ1, x : A,Γ2 �M : N and Δ ; Γ1 � L : A.

Then Δ ; Γ1, Γ2[x := L] �M [x := L] : N [x := L].

The importance of the following lemma has already been explained after

Lemma 2.11.5; see also Lemma 6.3.13:

Lemma 10.4.12 (Subject Reduction)

If Δ ; Γ �M : N and M
Δ� M ′ or M �β M ′, then Δ ; Γ �M ′ : N .

Consequently, the lemma also holds ifM
Δ�β M ′, where

Δ�β is the symbol for

a sequence of β- and δ-reductions (with respect to Δ), in an arbitrary mixture.

10.5 Normalisation and confluence in λD

We continue with the investigation of the normalisation and confluence prop-

erties of λD. We don’t give proofs in this section, but refer for those to Geuvers

(2014a). As we saw earlier (e.g. in Sections 1.9 and 6.3), ‘normalisation’ is an-

other word for ‘termination’. So we are interested in the termination behaviour

of the reduction relations →β and
Δ→, both separately and combined. Termi-

nation is desirable as a property, since it prevents infinite reduction paths. We

recall that ‘weak normalisation’ of a term M only ensures the existence of a

reduction path to a term in β-normal form (see Definition 1.9.6); ‘strong nor-

malisation’ holds if all reduction paths terminate after a finite number of steps

– which number may vary according to the path chosen.

Firstly, we consider the new relation
Δ→, which formalises the ‘unfolding’

of a definition. Given a legal expression L in λD, does there always exist a

δ-reduction path starting with L which terminates? This is indeed the case.

(A proof can be given by considering a clever order for unfolding the proper

constants in an expression, and eliminating them one by one.)

Theorem 10.5.1 (Weak Normalisation of
Δ→)

For each legal Δ, the relation
Δ→ is weakly normalising.

It requires more effort to prove that strong normalisation holds for
Δ→:

Theorem 10.5.2 (Strong Normalisation of
Δ→)

For each legal Δ, the relation
Δ→ is strongly normalising.

We also have confluence for λD with respect to definition unfolding; so if

220 Rules and properties of λD

M
Δ� N1 and M

Δ� N2, then there is N3 such that N1
Δ� N3 and N2

Δ� N3

(cf. Theorem 1.9.8):

Theorem 10.5.3 (δ-confluence in (λD,
Δ→))

For each legal Δ, the relation
Δ� is confluent.

And this, in its turn, brings along that δ-normal forms are unique (cf.

Lemma 1.9.10):

Corollary 10.5.4 (Uniqueness of δ-normal forms in (λD,
Δ→))

For every L ∈ λD that is legal with respect to Δ and Γ, there is a unique

expression M such that L
Δ� M and M is in δ-normal form with respect to Δ.

Note that M is in δ-normal form if (and only if) M contains no proper

constants; there may, however, occur primitive constants in such an M .

We have now investigated the behaviour of λD with respect to definition

unfolding (δ-reduction). But we are not yet done, because there still is a more

fundamental reduction relation in λD, namely β-reduction. And although we

observed that both β- and δ-reduction, separately, satisfy nice properties (viz.

WN and SN, i.e. weak and strong normalisation), this is no guarantee that

these properties also hold for a combination of the two reductions,
Δ�β . For a

reduction L0
Δ�β . . ., which may for example start as follows:

L0
Δ→ L1 →β L2 →β L3

Δ→ L4 →β . . .,

it is not clear whether it will end after a finite number of steps. We now turn

to WN and SN for
Δ�β .

Our first concern is whether the property CR (or Confluence; cf. Theo-

rem 1.9.8) holds for
Δ�β .

Theorem 10.5.5 (Church–Rosser for
Δ�β in λD; CR; βδ-confluence)

Suppose that for an expression L ∈ EλD holds that L
Δ�β L1 and L

Δ�β L2.

Then there is an expression L3 ∈ EλD such that L1
Δ�β L3 and L2

Δ�β L3.

A consequence of βδ-confluence is, as before (cf. Lemma 1.9.10 (2)):

Corollary 10.5.6 (Uniqueness of βδ-normal form)

If L ∈ EλD has a βδ-normal form, then this normal form is unique.

What remains are the questions of weak and strong normalisation. Both

properties hold in λD. The first one follows from Weak Normalisation for λC.

10.6 Conclusions 221

The second one is also a consequence of the corresponding theorem for λC, but

the proof is more complicated.

Theorem 10.5.7 (Weak Normalisation for
Δ�β in λD)

If L ∈ EλD and L is legal, then there is a βδ-reduction sequence starting with

L which ends in a βδ-normal form after a finite number of steps.

Theorem 10.5.8 (Strong Normalisation for
Δ�β in λD)

If L ∈ EλD and L is legal, then there is no infinite βδ-reduction sequence

starting with L.

10.6 Conclusions

In this chapter we have argued that it is desirable to have a possibility for the

handling of axioms and axiomatic (also called ‘primitive’) notions. This has

led us to a distinction between the descriptive definitions, as dealt with in the

previous chapter, and the primitive ones.

A descriptive definition Δ ; Γ � a(x) := M : N has a body M , which opens

the possibility to unfold an instantiation a(U) into M [x := U]. In a primitive

definition Δ ; Γ � a(x) := ⊥⊥ : N , however, such unfolding is impossible (and

not intended).

We have given several examples of axioms and primitive notions, to em-

phasise that such entities really form part of a natural build-up of logic and

mathematics.

For the formalisation of such notions, we added two more rules to system

λD0: a (def -prim)-rule for adding a primitive definition to the tail of an en-

vironment, and an (inst-prim)-rule for instantiating the parameter list of a

primitive constant. These rules are similar to the corresponding (def)- and

(inst)-rules already present in λD0, but since they miss the definiens parts in

the definitions, some changes in the shape of the rules are required.

Altogether, we have thus obtained our final system: λD. We have concluded

with an overview of the relevant properties of λD, including the desired normal-

isation and confluence properties, which are very important for λD to behave

well.

10.7 Further reading

The use of a definition-like mechanism for adding parameterised axioms to a

type theory originates from the Automath project (de Bruijn, 1970). There, a

definition without body is called a ‘primitive notion’, PN. So a definiens can

either be an expression or ‘PN’, in which case it is an axiom or an axiomatic

222 Rules and properties of λD

notion. The Automath approach views a formalisation as a book with lines.

Each line builds on the previous ones and contains a definition or a primitive

notion. That is, it contains either a definition with or a definition without a

body. So, from Automath we inherit the idea to treat definitions and axioms

very much on a par, and we formalise them in λD with a similar syntactic

construction.

Normalisation and confluence are important properties to establish the log-

ical consistency of a type theory. They also are crucial to make an implemen-

tation of the type theory as a proof assistant or proof checker possible. Let us

expand on these two issues.

In a type theory like λD, proofs are represented as λ-terms. So in an im-

plementation of λD as a proof checker, the basic functionality would be to

verify the well-formedness of a term, which is done by type-checking the term

(i.e. computing the type of the term). A general description of type check-

ing algorithms (and their correctness) for Pure Type Systems can be found

in van Benthem Jutting (1993) and van Benthem Jutting et al. (1994). The

algorithms and proofs described therein apply directly to λD.

Here we outline the connection with confluence and normalisation of the

reduction relation. The crucial point is that, when type-checking a term, one

has to check βδ-convertibility. For example, to compute the type of the term

F M , one has to

(1) compute the type of M , say A,

(2) compute the type of F , say B,

(3) check if the type B can be βδ-reduced to a type of the shape Πx : C . D,

(4) if yes, then check whether C
Δ
=β A,

(5) if yes, then the type of F M is D[x := M].

In the third step, normalisation guarantees that this check terminates: we

can continue reducing the so-called ‘outermost’ redex (see Terese, 2003) of B

until we either arrive at an expression of the shape Πx : C . D or we arrive

at a normal form which is not of this shape. (The uniqueness of the normal

form is a consequence of confluence.) In the fourth step, normalisation and

confluence guarantee that this check is decidable: just compute the normal

form on both sides and check if they are the same. For this to work, we only

need weak normalisation in steps (3) and (4), because this implies that we have

a strategy (see above) for computing the normal form.

It should be noted that in practice a proof checker would not reduce two

terms to normal form to check their βδ-convertibility, because this would be

too expensive (in time and space). An ‘equality checker ’ tries to decide con-

vertibility as fast as possible without doing too many reductions.

Exercises 223

Strong normalisation is important because it guarantees the termination of

the reduction process, whatever reduction strategy one prefers, so it allows

one to choose the reduction path in order to establish the convertibility of two

terms. This can be profitable, since a clever choice of the reduction path may

speed up the reduction process considerably.

To prove the logical consistency of a type theory, one way to reason is as

follows: suppose the system is inconsistent. Then � M : ⊥ for some M . It

follows that there also is an M ′ in normal form with � M ′ : ⊥, because of

normalisation and subject reduction. And then we derive a contradiction from

the fact that a term of type ⊥ in the empty context cannot be in normal form

(see Proposition 5.2.31 of Barendregt, 1992). For λD, this argument works: we

can show that there is no term of type ⊥ in the empty context. To show that

a specific environment (containing primitive notions) is consistent, a similar

argument can be applied. For example, we can show that the environment

that introduces classical logic as a primitive notion is consistent: there is no

term M in normal form of type ⊥ in this environment.

Exercises

10.1 See Section 10.2. Show that

∀n∈N (9 | n3 + (n+ 1)3 + (n+ 2)3)

by giving an informal proof based on induction.

10.2 A ‘contradiction’ is formalised in λD as being an inhabitant of ⊥.
(a) Show that the following primitive definition causes inconsistency, be-

cause it enables the derivation of a contradiction in λD:

A,B : ∗p � k(A,B) := ⊥⊥ : (A⇒ B)⇒ A.

(b) Show that the following pair of primitive definitions causes inconsis-

tency:

∅ � ιDN := ⊥⊥ : ∀A : ∗p . (¬¬A⇒ A),

∅ � neg-imp := ⊥⊥ : ∀A : ∗p . (A⇒ ¬A).
(c) Show that the following definition, resembling the induction axiom,

causes inconsistency:

P : N→ ∗p � ind -s(P) := ∀n : N . (P n⇒ P (s n))⇒ ∀n : N . P n.

10.3 (a) Give a modified version of Lemma 9.9.1 (1) for primitive definitions

and prove it.

(b) Formulate a (par -prim)-rule for primitive definitions, as a natural

companion to the (par)-rule for descriptive definitions (cf. Figure 9.4).

10.4 Let Δ ; Γ be a legal combination. Give a proof of

Δ ; Γ � ∗ : �.

(Use induction on the structure of the derivation of Δ ; Γ � M : N .)

224 Rules and properties of λD

10.5 Prove Lemma 10.4.7 (1).

10.6 Prove that Lemma 9.9.1 (2) is a consequence of Lemma 9.9.1 (1) and

Lemma 10.4.7 (2).

10.7 Let Δ ; Γ be a legal combination. Prove the following (hint: see Exer-

cise 10.4 and Lemma 10.4.7 (1)):

(a) If (x : A) ∈ Γ, then Δ ; Γ � A : s for some sort s.

(b) If x is fresh, then also Δ ; Γ, x : ∗ is a legal combination.

(c) If (x : ∗) ∈ Γ and y is fresh, then also Δ ; Γ, y : x is a legal combi-

nation.

10.8 Prove Lemma 10.4.5 (1).

11

Flag-style natural deduction in λD

11.1 Formal derivations in λD

Now that we have developed system λD, being the Calculus of Constructions

enriched with definitions and primitive notions, we can do better when express-

ing logic. In particular, we can now do constructive logic in an efficient and

elegant manner. This can be done already in λD0, since there are no axioms

in constructive logic.

In Sections 7.1 and 7.2, we encountered a number of ‘hidden’ definitions

dealing with logic in λC. As examples, we repeat three of them below, now

using the standard format of λD as described in the previous sections.

Absurdity

In Section 7.1, we identified the absurdity ⊥ with Πα : ∗ . α. The symbol ⊥
was not part of the λC syntax; it acted as a ‘new name’ (or shorthand) for the

expression Πα : ∗ . α. This is exactly what a descriptive definition does, so we

write this now as:

∅ � ⊥() := Πα : ∗ . α : ∗.
(Since this is our first exercise with the system λD, we do not omit the empty

parameter list, as would have been allowed by Notation 8.3.3.)

Negation

In the same Section 7.1, we took ¬A as an abbreviation for A → ⊥. This
clearly is a descriptive definition again, but this time one with a non-empty

context, since we silently presupposed that A : ∗ (the definition holds for all

propositions A):

A : ∗ � ¬(A) := A→ ⊥() : ∗.
The flag-manner to write this definition is:

A : ∗
¬(A) := A→ ⊥() : ∗

226 Flag-style natural deduction in λD

Conjunction

In Section 7.2 we considered the second order encodings for ∧ and ∨. Let’s
consider conjunction here. Its definition depends on two parameters, viz. the

free variables A and B. (Note that C is a bound variable, and not a parameter

of the definition.)

A : ∗
B : ∗
∧(A,B) := ΠC : ∗ . (A→ B → C)→ C : ∗

How can logical definitions like the ones above be formally derived in λD?

Let’s consider how they fit into the λD scheme (Figure 9.3).

First look at the absurdity definition ∅ � ⊥() := Πα : ∗ . α : ∗. If we
want to incorporate this definition into an environment, e.g. by means of the

(par)-rule, it suffices to construct a derivation of

∅ ; ∅ � Πα : ∗ . α : ∗.
It will be clear that we can simply start with the corresponding derivation in

λC and ‘copy’ it in λD-style:

λC λD0

(1) ∅ � ∗ : � (sort) ∅ ; ∅ � ∗ : � (sort)
(2) α : ∗ � α : ∗ (var) ∅ ; α : ∗ � α : ∗ (var)
(3) ∅ � Πα : ∗ . α : ∗ (form) ∅ ; ∅ � Πα : ∗ . α : ∗ (form)

Figure 11.1 ‘Copying’ a λC-derivation into λD0

After this, we may append the definition of ⊥ to the (still empty) environ-

ment in line (3), right-hand side. In order to keep things clear for the reader,

we abbreviate the definition by

D1 ≡ ∅ � ⊥() := Πα : ∗ . α : ∗,
and we derive in λD with the rule (par) (see Figure 9.4):

(4) D1 ; ∅ � ⊥() : ∗ (par).

The next task is to incorporate the above definition of ¬ into λD. We ab-

breviate it by D2:

D2 ≡ A : ∗ � ¬(A) := A→ ⊥() : ∗.
As we want to introduce this definition D2 in the environment as well, just

as we did in (4) with D1, we try to derive the following judgement:

D1, D2 ; A : ∗ � ¬(A) : ∗.

11.1 Formal derivations in λD 227

Note that we need D1 in the environment, because we use ⊥ in D2.

The above judgement is indeed derivable, as we demonstrate in Figure 11.2.

D1 ≡ ∅ � ⊥() := Πα : ∗ . α : ∗
D2 ≡ A : ∗ � ¬(A) := A→ ⊥() : ∗

(1) ∅ ; ∅ � ∗ : � (sort)

(2) ∅ ; α : ∗ � α : ∗ (var) on (1)

(3) ∅ ; ∅ � Πα : ∗ . α : ∗ (form) on (1), (2)

(4) D1 ; ∅ � ⊥() : ∗ (par) on (3)

(5) D1 ; ∅ � ∗ : � (def) on (1), (3)

(6) D1 ; A : ∗ � A : ∗ (var) on (5)

(7) D1 ; A : ∗ � ⊥() : ∗ (weak) on (4), (5)

(8) D1 ; A : ∗, y : A � ⊥() : ∗ (weak) on (7), (6)

(9) D1 ; A : ∗ � A→ ⊥() : ∗ (form) on (6), (8)

(10) D1,D2 ; A : ∗ � ¬(A) : ∗ (par) on (9)

Figure 11.2 A λD0-derivation for the definition of ¬

We take some time to look deeper into this derivation. First note that, for

convenience’s sake, we list the two definitions in a kind of preamble at the

beginning of the derivation, together with their ‘meta-names’ D1 and D2. This

permits us to write the derivation in the condensed form as given in Figure 11.2;

officially, the ‘meta-names’ D1 and D2 in lines (4) to (10) should be replaced

by the unabbreviated definitions they represent.

As is usual with the development of derivations (cf. Chapters 2 to 7, and in

particular Section 2.6), we start at the bottom end. So we ask ourselves the

question: how can we arrive at the final judgement, being:

(10) D1, A : ∗ � ¬(A) := A→ ⊥() : ∗ ; A : ∗ � ¬(A) : ∗.
This judgement is a consequence of the (par)-rule, if we can derive:

(9) D1 ; A : ∗ � A→ ⊥() : ∗,
which in its turn, since A → ⊥() is an abbreviation of Πy : A . ⊥(), can be

obtained from the (form)-rule applied on the judgements

(6) D1 ; A : ∗ � A : ∗, and
(8) D1 ; A : ∗, y : A � ⊥() : ∗.
We leave it to the reader to continue this bottom-up analysis of the derivation

above.

In a similar manner, one can derive the formal λD-version of the definition

of conjunction. See Figure 11.3 for an outline; the details are left to the reader

(Exercise 11.2). Note that this derivation does not appeal to definitions D1 or

D2, because neither ⊥ nor ¬ play a role in the definition of ∧. There would

228 Flag-style natural deduction in λD

be, however, no objection against maintaining D1 and D2 in the environment

of the judgement.

D3 ≡ A : ∗, B : ∗ � ∧(A,B) := ΠC : ∗ . (A→ B → C)→ C : ∗
...

...

(..) D3 ; A : ∗, B : ∗ � ∧(A,B) : ∗ (par)

Figure 11.3 The shape of a λC-derivation for the definition of ∧

11.2 Comparing formal and flag-style λD

In Chapter 4 – to be precise, in Section 4.6 – we decided to suppress less inter-

esting steps in derivations, when this does not harm the cogency. In particular,

we tended to omit applications of the rules (sort), (var), (weak) and (form).

This enabled us to develop derivations in flag style that have a nice and con-

vincing appearance, without having to bother about the more administrative

steps that the type systems require. We have maintained this procedure in

later chapters, which includes the examples in λC given in Chapter 7.

We do the same in λD: we suppress, if we desire so, the occurrences of not-

so-interesting steps (in particular, the ones mentioned above, plus (def)), so we

can concentrate on the steps that really matter. Applying this to our derivation

in Figure 11.2, we can skip lines (1), (2), (5) and (7).

An interesting question is how a derivation in the linear format as employed

in Figure 11.2 relates to a flag-style derivation. In order to demonstrate this,

we make a faithful copy in flag format of the derivation in Figure 11.2. We

take the shortened version as described just now, but for ease of reference we

maintain the original line numbers:

(3) Πα : ∗ . α : ∗ (form)

(D1) ⊥() := Πα : ∗ . α : ∗ definition

(4) ⊥() : ∗ (par) on (3) and (D1)

(a) A : ∗
(6) A : ∗ (var)

(b) y : A

(8) ⊥() : ∗ (weak), twice, on (4) and (6)

(9) A→ ⊥() : ∗ (form) on (6) and (8)

(D2) ¬(A) := A→ ⊥() : ∗ definition

(10) ¬(A) : ∗ (par) on (9) and (D2)

11.3 Conventions about flag-style proofs in λD 229

There clearly is a close resemblance between this flag version and the ‘official’

λD0 version of Figure 11.2 (in the shortened form).

When looking closer at the flag version above, it strikes the eye that in

line (D1) there appears an almost-duplication of the information contained in

the embracing lines (3) and (4), and similarly with (D2) and lines (9) and (10).

It appears reasonable to maintain only definitions (D1) and (D2), and erase

lines (3), (4), (9) and (10).

For example, when condensing the triple (3), (D1) and (4) into (D1) alone:

⊥() := Πα : ∗ . α : ∗,
we should agree on the convention that this single line incorporates derivability

of the omitted statements (3) and (4).

A second observation is that lines (6) and (8) are more or less superfluous:

line (9) can also be seen as an obvious consequence of assumption (a) and

line (4). So we may skip lines (6) and (8), and therefore also assumption (b).

Implementing the mentioned adaptations, we obtain the following flag-style

derivation:

(D1) ⊥() := Πα : ∗ . α : ∗ (form) and (par)

(a) A : ∗
(D2) ¬(A) := A→ ⊥() : ∗ (form) and (par)

Hence, by rewriting the λD proof into flag format, and omitting some very

obvious lines, we obtain a flag derivation that is identical to the presentation

of the corresponding definitions in the beginning of Section 11.1. It is tempting

to conjecture, albeit based on very little evidence, that the formal derivation

system λD as we developed it, can be fruitfully employed for a faithful reflection

of the more intuitive approach towards definitions as we have employed, for

example, in Chapter 7.

11.3 Conventions about flag-style proofs in λD

The examples in the previous section, in particular in the ‘condensed form’ of

the final paragraphs, show how specific lines in the flag-style presentation have

a specific ‘meaning’.

For example, a line of the form

c(x) := M : N

in an environment Δ and a context Γ, where parameter list x is the list of the

subject variables in Γ, has a triple meaning:

(1) the statement M : N is derivable with respect to Δ and Γ,

230 Flag-style natural deduction in λD

(2) the definition D ≡ Γ � c(x) := M : N is added at the end of Δ,

(3) the statement c(x) : N is derivable in the extended environment Δ,D
and context Γ.

This kind of ‘multiple meaning’ of assumptions, definitions and other lines

in λD0 can be made more formal by explicitly giving a sort of ‘operational

semantics’ to flag-style derivations. We confine ourselves to an illustrative sit-

uation to show how this semantics works. In this example we record the state

of a derivation as a pair {D | Γ} of an environment and a context. This state

changes when the context changes, and when a new definition is added.

{∅ | ∅}
(a) x1 : A1

{∅ | x1 : A1}
(b) x2 : A2

{∅ | x1 : A1, x2 : A2}
(1) a(x1, x2) := M1 : N1

{x1 : A1, x2 : A2 � a(x1, x2) := M1 : N1 | x1 : A1, x2 : A2}
{x1 : A1, x2 : A2 � a(x1, x2) := M1 : N1 | x1 : A1}

(2) b(x1) := M2 : N2

{x1 : A1, x2 : A2 � a(x1, x2) := M1 : N1, x1 : A1 � b(x1) := M2 : N2 |
x1 : A1}

In this example we see that:

− each time a flag is raised , the context is extended; when the flag is hauled

down (at the end of a flagpole), context Γ accordingly shrinks;

− a definition a(x) := M : N under a context of flags expresses that the

corresponding definition D ≡ Γ � a(x) := M : N is added to the environ-

ment Δ, where Γ corresponds to the flag context.

Moreover, the statements M : N and a(x) : N , implicitly present within D,
correspond to the following two derivable judgements: Δ ; Γ � M : N and

Δ,D ; Γ � a(x) : N .

When constructing a single derivation, either in the official λD format or in

the flag format, we gradually build up an environment Δ. One may choose at

any time to start a new derivation from scratch, thus ‘throwing away’ previous

information; an example of this is given in Section 11.1, where definition D3 did

not depend on the derivations leading to definitions D1 andD2 (see Figures 11.2

and 11.3).

An alternative working method, which we prefer to follow in the chapters to

come, is to condense all obtained derivations into one big overall derivation.

This can easily be done by attaching new derivations to old ones. Such a

11.3 Conventions about flag-style proofs in λD 231

continuous-derivation approach is advantageous, since then all judgements,

including the definitions, stay ‘alive’ (i.e. valid and attainable), and therefore

remain serviceable in a later stage. A disadvantage may of course be that there

is a good chance that we ‘drag along’ judgements (in particular definitions) that

are superfluous.

Remark 11.3.1 In the latter approach, when building one big coherent deriva-

tion, context Γ may grow and shrink from line to line, just like a stack in a

computer, but the environment Δ only becomes bigger and bigger: once added,

a definition is never erased.

This non-erasing situation for definitions is standard in our system λD,

since, as one may easily check, there is no derivation rule for deleting a defi-

nition.

A reader not content with this fact may easily design an extra derivation rule

– being a provable consequence of the official rules – which makes it possible to

eliminate superfluous definitions from an environment. This is allowed by the

Condensing Lemma, 10.4.8 (2).

That we do not erase definitions in λD may be justified as follows. An en-

vironment may be seen as a listing of all facts that matter or may matter: a

judgement recorded as a definition can always be called upon at a later stage,

by using its name and instantiating its parameters. Therefore, the environment

acts as a kind of log-book of our achievements. And indeed, there is a natural

correspondence between the ‘knowledge’ built up in a (logic or mathematics)

book and the mentioned log-book of a derivation. We’ll see this better in the

examples of the following chapters.

In order to streamline the presentation of flag derivations, we shall from now

on only use the definition format . That is, we present derivations consistently

as a list of definitions, in agreement with our informal discussion in Section 8.9.

In a flag derivation, we turn every statement relative to a

certain context, into a definition, by choosing a new defined

name and appending that name in front of the statement.

So instead of Γ �M : N we write Γ� c(x) := M : N in flag derivations.

Remark 11.3.2 This approach is followed in the pioneering system Au-

tomath, devised and exploited in the late 1960s and the 1970s by N.G. de

Bruijn and his group in Eindhoven, the Netherlands. (Cf. de Bruijn, 1970;

Nederpelt et al., 1994.)

We are aware that application of the above convention may introduce non-

232 Flag-style natural deduction in λD

essential defined names; i.e. names that are never used after they have been

defined. On the other hand, this approach enables a simplified version of system

λD, in particular when presented in flag format, since there are no longer

statements-as-such: statements are all embedded into definitions.

11.4 Introduction and elimination rules

In this chapter we consider λD-formalised logic as a start for the exploration

of the usefulness of λD as a system for the formalisation of mathematics. We

go even further: in the present chapter and the ones to come we investigate

whether it is true that such a formalisation can be made in a ‘natural ’ manner;

that is, close to the way a mathematician is used to develop theories.

In order to pave our survey of how to encode logic in λD, we recall our

endeavours in Chapter 7, where we have shown that logic, in particular natu-

ral deduction, can be fruitfully embedded into the Calculus of Constructions,

λC. Presently, with λD, we have more expressive power, which enables us to

precisely register inside the formal derivation which natural deduction rules

are used during the development of a derivation. This makes it easier for the

writer to communicate the logical background of a step in a derivation; and

thereby enables the reader to follow the proof with better understanding.

We demonstrate this point with an example from predicate logic. We give a

λD-derivation in flag format embodying a proof of the following tautology:

if ∀x∈S(A⇒ P (x)), then A⇒ ∀x∈S(P (y)),

for a given predicate P over a set S, and a proposition A.

A formal derivation of this tautology in λD is easy, as the reader can see in

Figure 11.4. As before (see Section 7.6) we write ∀ for Π, and ⇒ for →.

Remark 11.4.1 We have added defined constants to every statement, in

conformity with Remark 11.3.2. The names a1 to a3 do not play a further role

in the present derivation. This is, however, exceptional: defined constants turn

out to be very useful and will regularly be called upon; see, for example, line (5).

There are two lines in this derivation that are a result of the (appl)-rule:

− Line (1) is a consequence of ∀-elimination, since we apply the proposition

∀x∈S(A ⇒ P (x)) to y in S, which results in A ⇒ P (y). Formally: the u

inhabiting the coded ∀-expression is applied to the y inhabiting S, resulting

in u y inhabiting the coded version of A⇒ P (y).

− It is followed by line (2), in which the obtained u y has been applied to v,

being an inhabitant of A. From a logical point of view, we have a case of

⇒-elimination here: A⇒ P (y) and A lead to P (y).

11.4 Introduction and elimination rules 233

(a) S : ∗
(b) P : S → ∗
(c) A : ∗
(d) u : ∀x : S . (A⇒ P x)

(e) v : A

(f) y : S

(1) a1(S, P,A, u, v, y) := u y : A⇒ P y (appl) on (d) and (f)

(2) a2(S, P,A, u, v, y) := u y v : P y (appl) on (1) and (e)

(3) a3(S, P,A, u, v) := λy : S . u y v : ∀y : S . P y (abst) on (2)

(4) a4(S, P,A, u) := λv : A . λy : S . u y v :

A ⇒ ∀y : S . P y (abst) on (3)

(5) a5(S, P,A) := λu : (∀x : S . (A⇒ P x)) . a4(S, P,A, u) :

(∀x : S . (A⇒ P x))⇒ A ⇒ ∀y : S . P y (abst) on (4)

Figure 11.4 A λD-derivation of a logical tautology

Hence, the annotation (appl) used in both lines is in a sense too general: it

hides the information that in line (1) the logical ∀-elimination rule has been

used, and in line (2) the logical ⇒-elimination rule. This makes the given

derivation less transparent than one might desire.

A similar remark can be made about lines (3) to (5): all these are annotated

with (abst), concealing that we have, from a logical point of view, a case of

∀-introduction in line (3) and of ⇒-introduction in lines (4) and (5).

In the present chapter we demonstrate how the definition mechanism may

help us to disclose such information if we wish so, as part of the derivation and

on the spot where it ‘happens’. Therefore it is worthwhile to redo our system-

atic discussion of the so-called ‘logical constants’ that we have discussed earlier,

notably in Chapter 7 and (as examples of definitions) in Section 11.1. We shall

introduce a number of definitions that embody the logical introduction- and

elimination-rules. We have to choose which rules to include: it is not immedi-

ately clear which ones to insert and which to omit. We try to be concise but

also practical.

Another thing is that we do not make the fundamental choice to only con-

sider constructive logic. Hence, we admit the axiom of the excluded third or

that of the double negation – see Section 7.4. The reason is that mathematicians

often employ classical logic, and we respect this preference.

Below, we start with the rules of constructive propositional logic, but cross

over to classical propositional logic as soon as this is appropriate. Definitions

and rules for predicate logic will be given thereafter, again in the two versions.

234 Flag-style natural deduction in λD

In between, we give examples in order to demonstrate how these introduction

and elimination rules ‘work’. A summary of the presented rules for constructive

and classical natural deduction in λD will be given in Appendix A.

11.5 Rules for constructive propositional logic

We start with the connectives closest connected to type theory, namely impli-

cation, absurdity and negation.The logical introduction and elimination rules

for ⇒, ⊥ and ¬ are described in Remarks 7.1.1 and 7.1.2. We recall from

Section 5.4, IV, that A ⇒ B may simply be encoded as A → B, being an

abbreviation for Πx : A . B if x �∈ FV (B) (which is here the case).

In λD we can give a name to each of the corresponding natural deduc-

tion rules. For example, we shall introduce the λD-constant ⊥-in for the ⊥-
introduction rule. See Figures 11.5, 11.6 and 11.7 below.

Notation 11.5.1 For reasons of space, we sometimes combine flags. In Fig-

ure 11.5 we employ such a condensed representation on two occasions:
− we combine the two flags A : ∗p and B : ∗p , concerning declarations that

have the same type ∗p;
− we use a double flag between lines (2) and (3) for the subsequent declarations

u : A⇒ B and v : A, presented horizontally instead of vertically.

In order to emphasise that we are dealing with propositions , we write ∗p
instead of ∗ (see Notation 8.7.1).

A,B : ∗p
(1) ⇒(A,B) := A→ B : ∗p

Notation: A⇒ B for ⇒ (A,B)

u : A→ B

(2) ⇒ -in(A,B, u) := u : A⇒ B

u : A⇒ B | v : A

(3) ⇒ -el(A,B, u, v) := u v : B

Figure 11.5 Definition and rules for ⇒

Notation 11.5.2 We make our formalised versions of mathematics more

readable by inserting notation conventions as extra lines in a derivation. See

the ‘Notation’ following line (1): thereby we agree to write expressions like

⇒ (A,B) as A ⇒ B, in infix notation, which is more reader-friendly. Such

a convention is just made for our comfort; it is not meant to be an actual

extension of the language. Otherwise said: we suppose that such notational

abbreviations have been undone in the ‘real’ λD-text.

11.5 Rules for constructive propositional logic 235

(1) ⊥ := ΠA : ∗p . A : ∗p
A : ∗p

u : A | v : A⇒ ⊥

(2) ⊥-in(A, u, v) := v u : ⊥
u : ⊥

(3) ⊥-el(A, u) := uA : A

Figure 11.6 Definition and rules for ⊥

Note that we could as well have defined ⊥-in(A, u, v) as ⇒ -in(A, u, v) in

line (2) of Figure 11.6, since ⊥-in is a special case of ⇒ -in. The rule ¬ -in in

Figure 11.7 is also a special case of ⇒ -in, with ⊥ for B. Similarly, ¬ -el is a

special case of ⇒ -el . (Cf. Remark 7.1.2.)

A : ∗p
(1) ¬(A) := A⇒ ⊥ : ∗p

Notation: ¬A for ¬(A)
u : A→ ⊥

(2) ¬ -in(A, u) := u : ¬A
u : ¬A | v : A

(3) ¬ -el(A, u, v) := u v : ⊥

Figure 11.7 Definition and rules for ¬

Names for the proof objects corresponding to introduction and elimination

rules, as introduced above, can be particularly informative when we are inter-

ested in the natural deduction background of a derivation. See the following

example, demonstrating that A implies ¬¬A.

A : ∗p
u : A

v : ¬A
(1) a1(A, u, v) := ¬-el(A, v, u) : ⊥
(2) a2(A, u) := ¬-in(¬A, λv : ¬A . a1(A, u, v)) : ¬¬A
(3) a3(A) := ⇒ -in(A,¬¬A, λu : A . a2(A, u)) : A⇒ ¬¬A

Figure 11.8 Derivation of A⇒ ¬¬A in natural deduction style

236 Flag-style natural deduction in λD

In Figure 11.8 we clearly see that the rules ¬-elimination, ¬-introduction
and ⇒-introduction have consecutively been used to obtain the result.

Such a presentation may be useful for the goal described. However, in case

we are dealing with ⇒, ⊥ or ¬, the usual type-theoretic style is often more

attractive. This is particularly the case when one is interested in the derivation

as such, and not so much in the logical structure. The reason is that the original

(unfolded) proof objects are considerably shorter. See Figure 11.9, in which we

condensed the derivation of Figure 11.8 still further by omitting line (1).

A : ∗p
u : A

(2) a2(A, u) := λv : ¬A . v u : ¬¬A
(3) a3(A) := λu : A . a2(A, u) : A⇒ ¬¬A

Figure 11.9 Derivation of A⇒ ¬¬A in type-theoretic style

That the unfolded proof objects are shorter than the folded ones, as we see in

Figures 11.9 vs. 11.8, is not the usual situation. In the natural deduction rules

concerning conjunction, disjunction and biimplication, a definiendum such as

∧(A,B) is considerably shorter than ΠC : ∗p . (A ⇒ B ⇒ C) ⇒ C, the

definiens. In these cases we can make good use of the natural deduction style.

We first give the relevant rules for ∧ and ∨, corresponding to the introduction
and elimination rules as discussed and explained in Section 7.2, I and II. The

proof objects in line (2) of Figure 11.10 and line (4) of Figure 11.11 have been

copied from that section. See also Section 11.1. Check the remaining lines in

these figures yourself.

A,B : ∗p

(1) ∧(A,B) := ΠC : ∗p . (A⇒ B ⇒ C)⇒ C : ∗p
Notation: A ∧B for ∧(A,B)

u : A | v : B

(2) ∧-in(A,B, u, v) := λC : ∗p . λw : A⇒ B ⇒ C . w u v : A ∧B

u : A ∧B

(3) ∧-el1(A,B, u) := uA (λv : A . λw : B . v) : A

(4) ∧-el2(A,B, u) := uB (λv : A . λw : B . w) : B

Figure 11.10 Definition and rules for ∧

11.6 Examples of logical derivations in λD 237

A,B : ∗p
(1) ∨(A,B) := ΠC : ∗p . (A⇒ C)⇒ (B ⇒ C)⇒ C : ∗p

Notation: A ∨B for ∨(A,B)

u : A

(2) ∨-in1(A,B, u) := λC : ∗p . λv : A⇒ C . λw : B ⇒ C . v u : A ∨B

u : B

(3) ∨-in2(A,B, u) := λC : ∗p . λv : A⇒ C . λw : B ⇒ C . w u : A ∨B

C : ∗p
u : A ∨B | v : A⇒ C | w : B ⇒ C

(4) ∨-el(A,B,C, u, v, w) := uC v w : C

Figure 11.11 Definition and rules for ∨

Note that the ∨-el -rule in Figure 11.11 has, exceptionally, a body (uC v w)

that is shorter than the definiendum.

The definition of biimplication as the conjunction of the implications in

both directions immediately leads to the introduction and elimination rules

concerned. See Figure 11.12.

A,B : ∗p
(1) ⇔ (A,B) := (A⇒ B) ∧ (B ⇒ A) : ∗p

Notation: A⇔ B for ⇔ (A,B)

u : A⇒ B | v : B ⇒ A

(2) ⇔ -in(A,B, u, v) := ∧-in(A⇒ B,B ⇒ A, u, v) : A⇔ B

u : A⇔ B

(3) ⇔ -el1(A,B, u) := ∧-el1(A⇒ B,B ⇒ A, u) : A⇒ B

(4) ⇔ -el2(A,B, u) := ∧-el2(A⇒ B,B ⇒ A, u) : B ⇒ A

Figure 11.12 Definition and rules for ⇔

11.6 Examples of logical derivations in λD

We give two examples in order to demonstrate how (constructive) natural

deduction works in λD. For that purpose we firstly revisit the example from

Section 7.3 (see Figure 7.1): a derivation of the logical tautology

(A ∨B)⇒ (¬A⇒ B).

238 Flag-style natural deduction in λD

Having the introduction and elimination rules available in λD (see the previ-

ous section), we first give the derivation in the explicit natural deduction style.

See Figure 11.13. In this presentation, it is clearly visible how the derivation is

driven by natural deduction as the system for logic: in every line we find one

instance of a logical introduction or elimination rule, which is more informative

than the λC-rules (appl) and (abst) used in Figure 7.1.

(a) A,B : ∗p
(b) x : A ∨B

(c) y : ¬A
(d) u : A

(1) a1(A,B, x, y, u) := ¬-el(A, y, u) : ⊥
(2) a2(A,B, x, y, u) := ⊥-el(B, a1(A,B, x, y, u)) : B

(3) a3(A,B, x, y) := ⇒ -in(A,B, λu : A . a2(A,B, x, y, u)) : A⇒ B

(4) a4(A,B, x, y) := ⇒ -in(B,B, λv : B . v) : B ⇒ B

(5) a5(A,B, x, y) := ∨-el(A,B,B, x, a3(A,B, x, y), a4(A,B, x, y)) : B

(6) a6(A,B, x) := ⇒ -in(¬A,B, λy : ¬A . a5(A,B, x, y)) : ¬A⇒ B

(7) a7(A,B) := ⇒ -in(A ∨B,¬A⇒ B, λx : A ∨B . a6(A,B, x)) :

(A ∨B)⇒ (¬A⇒ B)

Figure 11.13 A derivation in natural deduction style of (A∨B)⇒ (¬A⇒ B)

Remark 11.6.1 The names a1 to a3 already appeared in Figures 11.8 and

11.9, although they are obviously intended to refer to other constants than the

ones in Figure 11.13. This is a case of reuse of constant names which is not

in agreement with the rules of λD. We do it nevertheless, in order to keep the

number of constant names within reasonable bounds. We are aware, however,

that such overloading of names is not without danger.

It is worthwhile to compare this derivation with the one expressed in Sec-

tion 7.3. There are many correspondences: the derivation given in Figure 7.1

follows lines similar to those in Figure 11.13, although the reasonings deviate

in some details. In the following section (Figure 11.15) we shall reproduce the

same λD-derivation, but with the shorter proof objects corresponding to the

type-theoretic style, according to the following convention.

In a flag derivation, we shall often use the type-theoretic style for proof

objects corresponding to the natural deduction rules for ⇒, ⊥ and ¬ .

11.7 Suppressing unaltered parameter lists 239

We continue with a second example: the commutativity of ∨. That is, we

prove the simple fact that A ∨B implies B ∨A.

The derivation in Figure 11.14 is based on the two introduction rules for ∨
(lines (1) and (2)) and the elimination rule for ∨ (line (3)). In the proof, we

use the type-theoretic style. We leave it to the reader to formulate the four

proof objects in natural deduction style (Exercise 11.7).

A,B : ∗p
u : A ∨B

(1) a1(A,B, u) := λv : A . ∨-in2 (B,A, v) : A⇒ (B ∨A)

(2) a2(A,B, u) := λw : B . ∨-in1 (B,A,w) : B ⇒ (B ∨A)

(3) a3(A,B, u) := u (B ∨A) a1(A,B, u) a2(A,B, u) : B ∨A

(4) sym-∨(A,B) := λu : A ∨B . a3(A,B, u) : (A ∨B)⇒ (B ∨A)

Figure 11.14 Commutativity of ∨

Note that sym-∨(A,B) inhabits the property (A ∨ B) ⇒ (B ∨ A); it is not

the property itself.

11.7 Suppressing unaltered parameter lists

When looking back at the example derivation in Figure 11.13, we notice that

the presence of parameter lists following the constants a1 to a7 obscures the

general picture. The more so, because in the proof objects occurring in these

examples, the corresponding parameter lists bear no interesting information:

in all cases we see ‘identical’ instantiations for the parameters: A for A, B for

B, and so on.

Hence, no information is lost when we omit such non-interesting parameter

lists, both in the definienda (so before the ‘:=’-sign) as in the proof objects. And

without these lists, we can better concentrate on the things that matter, such as

the course of the derivation. We realise that this contradicts our arguments to

consistently mention the parameter lists in the definienda; see Remark 8.3.2.

The advantages of suppressing unessential parameter lists are, however, too

important to neglect.

To show the effects of this convention, we rewrite the derivation of Fig-

ure 11.13 in this novel format. We also take the opportunity to apply the

type-theoretic style for the ⇒-, ⊥- and ¬-rules, and for the ∨-el -rule. See Fig-

ure 11.15.

Hence, we adopt the following notational option, which we call the parameter

list convention:

240 Flag-style natural deduction in λD

(a) A,B : ∗p
(b) x : A ∨B

(c) y : ¬A
(d) u : A

(1) a†1 := y u : ⊥
(2) a2 := a1 B : B

(3) a3 := λu : A . a2 : A⇒ B

(4) a4 := λv : B . v : B ⇒ B

(5) a5 := xB a3 a4 : B

(6) a6 := λy : ¬A . a5 : ¬A⇒ B

(7) a7 := λx : A ∨B . a6 : (A ∨B)⇒ (¬A⇒ B)
†parameters suppressed

Figure 11.15 Suppressed parameter lists and short proof objects

Notation 11.7.1 (Parameter list convention)

Parameter lists that literally reflect the context in which they have been in-

troduced may be suppressed completely.

This applies not only when introducing a defined constant, as in the left-

hand sides of lines (1) to (7) of Figure 11.13, but also when using a constant

with unaltered parameter list in the proof objects.

The result is convincing. In the text to come, we shall employ the parameter

list convention whenever we consider it useful. This will mostly be in examples,

not in the derivations that are essential for the development of this course. If

we employ the convention, we shall mention this in a footnote accompanying

the first constant with suppressed parameter list (cf. Figure 11.15).

Note, however, that this convention makes it harder to distinguish between

variables and constants: some constants now deceptively resemble variables,

since they do not show their parameter lists.

11.8 Rules for classical propositional logic

When one wishes to do classical logic, we need to add an axiom. In λD we do

this by the addition of a primitive definition. We may choose, as we already

mentioned in Section 7.4, either the law of the excluded third A∨¬A (ET) or

the double negation law ¬¬A⇒ A (DN).

Since we add an axiom, we go beyond λD0 and employ the extra rules of

λD. In Figure 11.16, we formulate axiom ET in λD and subsequently derive

11.8 Rules for classical propositional logic 241

DN. In line (1) we primitively introduce ET, by giving a name, exc-thrd , to

an inhabitant . So exc-third is an axiomatically assumed constant of type ET.

We express it as an axiom in a context , namely A : ∗p. This differs from the

approach in Section 7.4, where we introduced proof object iET of the type

ΠA : ∗ . A ∨ ¬A.

A : ∗p

(1) exc-thrd(A) := ⊥⊥ : A ∨ ¬A
(2) a2(A) := λv : A . v : A⇒ A

u : ¬¬A
v : ¬A

(3) a3(A, u, v) := u v : ⊥
(4) a4(A, u, v) := a3(A, u, v) A : A

(5) a5(A, u) := λv : ¬A . a4(A, u, v) : ¬A⇒ A

(6) a6(A, u) := exc-thrd(A) A a2(A) a5(A, u) : A

(7) doub-neg(A) := λu : ¬¬A . a6(A, u) : ¬¬A⇒ A

Figure 11.16 The law of the excluded third, entailing the double negation law

The derivation resembles the λC version given in Section 7.4. We use the

type-theoretic style discussed in Section 11.5. This enables us to produce a

short derivation, albeit that it is not immediately clear which natural deduction

rules have been applied. Find out yourself which introduction or elimination

rules apply to lines (2) to (7).

Note that doub-neg may be conceived as implying a kind of elimination rule

concerning the double negation symbol (¬¬): if we have a proof of ¬¬A, then
we can obtain a proof of A with the help of doub-neg (by the aid of ⇒ -el).

In the same vein, we may consider an introduction rule for ¬¬, since we have

derived in Figure 11.9 (without the exc-thrd -axiom, hence constructively) that

from A we may conclude ¬¬A.
Since both transitions (from A to ¬¬A and vice versa) occur so often, we

devote two extra rules to them: ¬¬-in and ¬¬-el . See Figure 11.17.

We continue with a derivation of the tautology (¬A ⇒ B) ⇒ (A ∨ B), the

‘reversal’ of the tautology derived in Figure 11.13 (see Figure 11.18). This is

a non-constructive tautology: it can only be proved with the help of DN (or

ET); and indeed, in line (10) of Figure 11.18 we use the non-constructive rule

¬¬-el . We suppress parameters as explained in the previous section, and use

242 Flag-style natural deduction in λD

A : ∗p
u : A

v : ¬A
(1) ¬¬-in(A, u) := λv : ¬A . v u : ¬¬A

u : ¬¬A
(2) ¬¬-el(A, u) := doub-neg(A) u : A

Figure 11.17 Natural deduction rules for ¬¬

a mixture of the type-theoretic style and the natural deduction style, choosing

what is convenient.

(a) A,B : ∗p
(b) u : ¬A⇒ B

(c) v : ¬(A ∨B)

(d) w : A

(1) a†1 := ∨-in1(A,B,w) : A ∨B

(2) a2 := v a1 : ⊥
(3) a3 := λw : A . a2 : ¬A
(e) w : B

(4) a4 := ∨-in2(A,B,w) : A ∨B

(5) a5 := v a4 : ⊥
(6) a6 := λw : B . a5 : ¬B
(7) a7 := u a3 : B

(8) a8 := a6 a7 : ⊥
(9) a9 := λv : ¬(A ∨B) . a8 : ¬¬(A ∨B)

(10) a10 := ¬¬-el(A ∨B, a9) : A ∨B

(11) a11 := λu : (¬A⇒ B) . a10 : (¬A⇒ B)⇒ (A ∨B)
†parameters suppressed

Figure 11.18 A derivation in natural deduction of (¬A⇒ B)⇒ (A ∨B)

We leave most of the reasoning employed in the derivation of Figure 11.18

to the reader. There is only one aspect to which we pay special attention. The

original goal (¬A ⇒ B) ⇒ (A ∨ B), line (11), induces assumption (b) and

the new goal A ∨ B, line (10). For attaining the latter goal, we try proof by

contradiction: we assume the opposite, ¬(A∨B) (see assumption (c)) and try

to derive ⊥ (see line (8)), in which we succeed.

11.9 Alternative natural deduction rules for ∨ 243

Remark 11.8.1 Proof by contradiction (or ‘indirect proof’) is a standard

strategy in classical logic. It has the following pattern.

To prove A, we can try the following scheme:

¬A
...

⊥

It suffices to fill the dots with a proper proof. The motivation in natural

deduction style is that after filling the dots, ¬-in followed by ¬¬-el indeed

gives A as a result (check this; see also lines (9) and (10) in Figure 11.18).

A proof by contradiction may be called upon in every step of a proof. It is,

however, wise to use it with considerable care – namely only when no direct

proof appears to be at hand. The reason for this prudence is that a rash use of

‘proof by contradiction’ may easily lead to an unnecessary detour.

11.9 Alternative natural deduction rules for ∨
The two example derivations we gave in Figures 11.13 and 11.18 may be com-

bined into one derivable biimplication:

(A ∨B)⇔ (¬A⇒ B).

Hence, A ∨ B and ¬A ⇒ B are interchangeable in classical logic. This has

the following strategic consequences for the disjunction:

− If A∨B occurs in a reasoning-under-construction as the goal to be proved, it

is possible to prove the implication ¬A⇒ B instead. This ‘classical’ method

can be applied in many more cases than the original ∨-in-rule, which asks

for a proof of either A or B; such a proof is seldom at hand.

− And vice versa: if we are allowed to use A∨B (it is part of our ‘knowledge’

at a certain point in a reasoning), we may as well appeal to the implication

¬A⇒ B.

Both strategies for dealing with disjunction are current in mathematics.

Therefore, we shall extend our set of introduction and elimination rules in λD

one more time.

Since ∨ is commutative (see Figure 11.14), we may interchange A and B in

A ∨B; this brings along that A ∨B is also equivalent to ¬B ⇒ A. Hence, the

new introduction and elimination rules for ∨ come in pairs, as one can see in

Figure 11.19.

Remark 11.9.1 In several lines of the derivation in Figure 11.19, we re-

fer to constants with non-specific names that were defined earlier. In order to

244 Flag-style natural deduction in λD

prevent confusion, we add an extra subscript to such constants. For example,

a10[Fig. 11.18] in line (1) is the constant a10 in Figure 11.18.

A,B : ∗p

u : ¬A⇒ B

(1) ∨-in-alt1(A,B, u) := a10[Fig. 11.18](A,B, u) : A ∨B

v : ¬B ⇒ A

(2) a2(A,B, v) := ∨-in-alt1(B,A, v) : B ∨A

(3) ∨-in-alt2(A,B, v) := a3[Fig. 11.14](B,A, a2(A,B, v)) : A ∨B

u : A ∨B

v : ¬A
(4) ∨-el -alt1(A,B, u, v) := a5[Fig. 11.13](A,B, u, v) : B

w : ¬B
(5) ∨-el -alt2(A,B, u, w) := ∨-el -alt1(B,A, a3[Fig. 11.14](A,B, u), w) : A

Figure 11.19 Alternative rules for ∨

Remark 11.9.2 The alternative introduction rules ∨-in-alt1 and ∨-in-alt2
start from the assumption that a certain implication holds: in the first case

¬A⇒ B, in the second case ¬B ⇒ A.

In actual usage of these rules, such implications will often result from a

derivation themselves. So, for example, a typical use of the first alternative

introduction rule for ∨ may have the format as depicted below. (We give an

example of this procedure in Figure 11.20.)

...

x : ¬A
...

a(. . . , x) := . . . : B

∨-in-alt1(A,B, λx : ¬A . a(. . . , x)) : A ∨B

We continue with two examples of the use of the alternative ∨-rules, which
together justify the well-known biimplication

¬(A ∧B)⇔ (¬A ∨ ¬B).

We advise the reader to study the content of the derivations in Figures 11.20

and 11.21 ‘from bottom to top’, since that is the way they were devised.

11.9 Alternative natural deduction rules for ∨ 245

A,B : ∗p
u : ¬(A ∧B)

v : ¬¬A
(1) a†1 := ¬¬-el(A, v) : A

w : B

(2) a2 := ∧-in(A,B, a1, w) : A ∧B

(3) a3 := u a2 : ⊥
(4) a4 := λw : B . a3 : ¬B
(5) a5(A,B, u) := ∨-in-alt1(¬A,¬B, λv : ¬¬A . a4) : ¬A ∨ ¬B

†parameters suppressed

Figure 11.20 Proof of the lemma: ¬(A ∧B) entails ¬A ∨ ¬B

A,B : ∗p
u : ¬A ∨ ¬B

v : A ∧B

(1) a†1 := ∧-el1(A,B, v) : A

(2) a2 := ∧-el2(A,B, v) : B

(3) a3 := ¬¬-in(A, a1) : ¬¬A
(4) a4 := ∨-el -alt1(¬A,¬B, u, a3) : ¬B
(5) a5 := a4 a2 : ⊥
(6) a6(A,B, u) := λv : A ∧B . a5 : ¬(A ∧B)

†parameters suppressed

Figure 11.21 Proof of the lemma: ¬A ∨ ¬B entails ¬(A ∧B)

Remark 11.9.3 A proof as in Figure 11.20 can also be read from top to

bottom: start with propositions A and B, make the assumptions ¬(A∧B) and

¬¬A, then conclude to A in line (1); next, assume B, conclude to A ∧ B

in line (2); and so forth. In this manner one may definitely check that the

derivation is correct, from start to end.

This manner of reading a proof does, however, not give much insight into how

such a proof has been constructed and what its intuitive ideas are. Almost every

proof, and certainly the more sophisticated ones, has been devised in a non-

linear manner: one usually starts at the end (the goal), develops intermediate

246 Flag-style natural deduction in λD

results, sets new goals, and so on. Regularly, there have been attempts that have

failed (and therefore have not been recorded).

This art of ‘proof finding’ is illustrated in various parts of this book. Alto-

gether, finding a proof is an ingenuous mixture of routine and bright ideas. And

when studying a proof, it is the task of the reader to value it at its true worth.

11.10 Rules for constructive predicate logic

Predicate logic is the logic obtained by extending propositional logic with the

quantifiers ∀ and ∃. We start with the constructive rules for the universal

quantifier ∀.
As we have already discussed in Section 5.4, V, an expression ∀x∈S(P (x))

is naturally coded as Πx : S . P x in type theory. This makes it easy to find

out what the introduction and elimination rules for ∀ become in λD (see Fig-

ure 11.22). For a clear exposition, we write ∗ as either ∗s (when dealing with

sets) or ∗p (for propositions); see Notation 8.7.1.

S : ∗s | P : S → ∗p

(1) ∀(S, P) := Πx : S . P x : ∗p
Notation: ∀x : S . P x for ∀(S, P)

u : Πx : S . P x

(2) ∀-in(S, P, u) := u : ∀x : S . P x

u : ∀x : S . P x | v : S

(3) ∀-el(S, P, u, v) := u v : P v

Figure 11.22 Definition and rules for ∀

Remark 11.10.1 We only formulate the ∀-rules in the first order case, with

x ranging over a set S, because this is the standard situation. Similar rules

can be developed for the second order case, when the variable ranges over e.g.

propositions. Such a situation occurs, for example, in previously mentioned

second order definitions such as ⊥ := ΠA : ∗p . A : ∗p (see Section 11.5).

We noticed in Section 11.5 that we use the λD-versions of the natural de-

duction rules for ⇒, ⊥ and ¬ only sparingly, since the type-theoretic style

gives shorter proof objects. The same holds for the ∀-rules: we only employ

the rules as defined above if we want to emphasise that a ∀-introduction or a

∀-elimination takes place. So, the constructed proof objects in these cases will

11.10 Rules for constructive predicate logic 247

usually be given in the type-theoretic style, i.e. u instead of ∀-in(S, P, u) and
u v instead of ∀-el(S, P, u, v).
We continue with the constructive rules for the existential quantifier ∃. The

corresponding natural deduction rules are discussed in Section 7.5, together

with their λC-translations.

Below we recapitulate these results, but now in λD. We employ the second

order definition of ∃, which we repeat (with slight adaptations) in line (1). The

proof object in line (2) is easy to find; see Exercise 7.12 (a). The proof object

in line (3) was derived in Section 7.5.

S : ∗s | P : S → ∗p

(1) ∃(S, P) := ΠA : ∗p . ((∀x : S . (P x⇒ A))⇒ A) : ∗p
Notation: ∃x : S . P x for ∃(S, P)

u : S | v : P u

(2) ∃-in(S, P, u, v) := λA : ∗p . λw : (∀x : S . (P x⇒ A)) . w u v :

∃x : S . P x

u : ∃x : S . P x | A : ∗p | v : ∀x : S . (P x⇒ A)

(3) ∃-el(S, P, u,A, v) := uAv : A

Figure 11.23 Definition and rules for ∃

The usage of the ∃-introduction rule will be obvious: in order to establish

that ∃x : S . P x, it suffices to find a u in S satisfying P . This is precisely what

the expression suggests. The ∃-elimination rule is more complicated. For its

justification, see Section 7.5. Note that the five assumptions in line (3) are a

well-formed context. This implies that x does not occur as a free variable in

A, as is required in Section 7.5.

The ∃-elimination rule of Figure 11.23 is commonly used as follows.

Suppose that we are engaged in constructing a derivation and that the reign-

ing goal is proposition A, while we have detected that ∃x : S . P x is a usable

fact. In order to fill the gap between ∃x : S . P x and A, the rule ∃-el suggests
to us to find an inhabitant of ∀x : S . (P x ⇒ A) (becoming the new goal).

A natural strategy to attain this is to assume x : S and P x, and to find an

inhabitant of A. Note that this is the same goal A as before, but now in a

context enlarged with the mentioned two extra assumptions . If we succeed in

fulfilling this assignment, then ∃-el enables us to conclude the original goal A.

A schematic picture of this strategy in type theory is:

248 Flag-style natural deduction in λD

...

a(. . .) := . . . : ∃x : S . P x

x : S

u : P x
...

b(. . . , x, u) := . . . : A

c(. . . , x) := λu : P x . b(. . . , x, u) : P x⇒ A

d(. . .) := λx : S . c(. . . , x) : ∀x : S . (P x⇒ A)

e(. . .) := ∃-el(S, P, a(. . .), A, d(. . .)) : A

We continue with an example in which both ∃-in and ∃-el play a role, and

for which a λC-derivation was asked in Exercise 7.13. See Figure 11.24. The

lemma we prove is:

∃x : S . P x ⇒ ∀y : S . (P y ⇒ Qy) ⇒ ∃z : S . Q z.

In the derivation, the flags x : S and w : P x are raised since we have an

inhabitant (viz. u) of ∃x : S . P x. This conforms with the schematic picture

of the ∃-elimination strategy sketched just now. Check the details.

S : ∗s | P : S → ∗p | Q : S → ∗p
u : ∃x : S . P x | v : ∀y : S . (P y ⇒ Qy)

x : S | w : P x

(1) a†1 := v x : P x⇒ Qx

(2) a2 := a1 w : Qx

(3) a3 := ∃-in(S,Q, x, a2) : ∃z : S . Q z

(4) a4 := λx : S . λw : P x . a3 : ∀x : S . (P x ⇒ ∃z : S . Q z)

(5) a5 := ∃-el(S, P, u,∃z : S . Q z, a4) : ∃z : S . Q z

(6) a6(S, P,Q) := λu : (∃x : S . P x) . λv : (∀y : S . (P y ⇒ Qy)) . a5 :

∃x : S . P x ⇒ ∀y : S . (P y ⇒ Qy) ⇒ ∃z : S . Q z
†parameters suppressed

Figure 11.24 An example concerning the rules for ∃

Remark 11.10.2 The two assumptions in the second flag, viz. ∃x : S . P x

and ∀y : S . (P y ⇒ Qy), do not match the ∃-el -rule: although it appears

tempting to conclude Qy as a result of this rule, this is incorrect since y occurs

free in Qy. See Remark 7.5.2.

11.11 Rules for classical predicate logic 249

As another example, we consider the following well-known proposition:

∃x∈S(P (x)) ⇒ ¬∀x∈S(¬P (x)).

In a λD-derivation of this proposition, the ∃-el -rule can be used directly: see

Figure 11.25.

S : ∗s | P : S → ∗p
u : ∃x : S . P x

v : ∀y : S . ¬(P y)

(1) a†1 := ∃-el(S, P, u,⊥, v) : ⊥
(2) a2 := λv : (∀y : S . ¬(P y)) . a1 : ¬∀y : S . ¬(P y)

(3) a3(S, P) := λu : (∃x : S . P x) . a2 : (∃x : S . P x)⇒ ¬(∀y : S . ¬(P y))
†parameters suppressed

Figure 11.25 Example: ∃ implies ¬∀¬

In setting up this derivation, we have the disposal of ∃x : S . P x in one of

the flags. So, when we wish to apply ∃-elimination, aiming at goal ⊥ in line (1),

we have to derive an inhabitant of ∀x : S . (P x⇒ ⊥). But such an inhabitant

is already at hand , namely v in the last flag, because ¬P y is equivalent to

P y ⇒ ⊥.
The rest of the derivation will speak for itself.

11.11 Rules for classical predicate logic

When combining the introduction and elimination rules for the quantifiers

with constructive propositional logic, we obtain constructive predicate logic. In

that system, similarly to the situation with constructive propositional logic, we

miss some tautologies with quantifiers that mathematicians intuitively accept

to hold. An example is the reversal of the last example in the previous section,

namely:

¬∀x∈S(¬P (x)) ⇒ ∃x∈S(P (x)).

This expression is naturally considered to be true, since it says: ‘If not all

elements of S do not satisfy P , then there must be an element of S that does

so.’ But it is not derivable in (first or second order) constructive predicate

calculus.

Adding the propositional axiom DN (or ET), we obtain classical predicate

logic, in which the above expression can be derived, as we show below. As a

consequence, we may combine the two propositions into the classical predicate-

logical fact (in shorthand): ∃ ⇔ ¬∀¬.

250 Flag-style natural deduction in λD

Remark 11.11.1 There exists a counterpart of the equivalence ∃ ⇔ ¬∀¬
mentioned above, to the effect that also ∀ ⇔ ¬∃¬ is valid in classical predicate

logic. This is left to the reader (Exercise 11.16; see also Exercise 7.12 (b)).

In the proof we make good use of another simple equivalence regarding

quantifiers, which admits a constructive proof:

¬∃x∈S(P (x)) ⇒ ∀x∈S(¬P (x)).

We first give a derivation of the latter proposition (Figure 11.26), and next

for the former one (Figure 11.27).

For the last-mentioned proposition, we have already given a proof in λC

(see Section 7.6). But there we did not yet have a formal definition apparatus.

The derivation in Figure 11.26 enables the reader to compare the λC- and the

λD-approach to formal proof development. It is a simple exercise with natural

deduction. We only mention that the goal ⊥ in line (2) can easily be derived

from assumption ¬∃x : S . P x, and the fact that y : S and v : P y imply

∃z : S . P z (line (1)). The rest is routine.

S : ∗s | P : S → ∗p
u : ¬∃x : S . P x

y : S

v : P y

(1) a†1 := ∃-in(S, P, y, v) : ∃z : S . P z

(2) a2 := u a1 : ⊥
(3) a3 := λv : P y . a2 : ¬(P y)

(4) a4 := λy : S . a3 : ∀y : S . ¬(P y)

(5) a5(S, P) := λu : (¬∃x : S . P x) . a4 : (¬∃x : S . P x) ⇒ ∀y : S . ¬(P y)
†parameters suppressed

Figure 11.26 Example: ¬∃ implies ∀¬

The derivation in Figure 11.27 is a consequence: it uses line (4) of Fig-

ure 11.26. We apply the method proof by contradiction (see Remark 11.8.1)

by adding flag v : ¬∃y : S . P y in order to obtain ∃y : S . P y in line (4), via

line (3) and ¬¬-el . We recall that ¬¬-el is based on the axiom DN, hence the

derivation is non-constructive.

In classical predicate logic it appears advantageous to add alternative rules

for ∃, inspired by the equivalence of ∃ and ¬∀¬ that we have established above.

The motivation for adding these alternative rules is similar to the situation

with disjunction (cf. Section 11.9). In practical proof finding, the constructive

11.11 Rules for classical predicate logic 251

S : ∗s | P : S → ∗p
u : ¬∀x : S . ¬(P x)

v : ¬∃y : S . P y

(1) a†1 := a4[Fig. 11.26](S, P, v) : ∀z : S . ¬(P z)

(2) a2 := u a1 : ⊥
(3) a3 := λv : (¬∃y : S . P y) . a2 : ¬¬∃y : S . P y

(4) a4 := ¬¬-el(∃y : S . P y, a3) : ∃y : S . P y

(5) a5(S, P) := λu : (¬∀x : S . ¬(P x)) . a4 : ¬∀x : S . ¬(P x) ⇒ ∃y : S . P y
†parameters suppressed

Figure 11.27 Example: ¬∀¬ implies ∃

rule ∃-in turns out to be rather restrictive, just as ∨-in is: in order to obtain

a proof of ∃x : S . P x, the procedure suggested by ∃-in is to find a so-called

‘witness’, i.e. a certain entity a of type S that satisfies P . But existence of an

x satisfying P x does not always imply that we can point out a witness.

In classical logic we can derive ∃x : S . P x without a witness if we can prove

¬∀x : S . ¬(P x), as Figure 11.27 demonstrates.

For reasons of symmetry, we also add an alternative ∃-el -rule, leading (the

other way round) from ∃ to ¬∀¬. This rule is based on the constructive example

derivation of Figure 11.25, which uses the original ∃-el .
Both alternative rules for ∃ are given in Figure 11.28.

S : ∗s | P : S → ∗p
u : ¬∀x : S . ¬(P x)

(1) ∃-in-alt(S, P, u) := a4[Fig. 11.27](S, P, u) : ∃x : S . P x

u : ∃x : S . P x

(2) ∃-el -alt(S, P, u) := a2[Fig. 11.25](S, P, u) : ¬∀x : S . ¬(P x)

Figure 11.28 Alternative rules for ∃

We conclude this section with an example concerning the alternative ∃-in-
rule. We prove the following lemma in λD:

¬∀x∈S(P (x))⇒ ∃x∈S(¬P (x)).

The ‘natural’ bottom-up construction of the derivation depicted in Fig-

ure 11.29 soon leads to the goal ∃y : S . ¬(P y) (see line (6)). We replace it by

the goal ¬∀y : S . ¬¬(P y) (line (5)), in order to be able to apply ∃-in-alt .
The rest of the derivation will speak for itself.

252 Flag-style natural deduction in λD

S : ∗s | P : S → ∗p
u : ¬∀x : S . P x

v : ∀y : S . ¬¬(P y)

x : S

(1) a†1 := v x : ¬¬(P x)

(2) a2 := ¬¬-el(P x, a1) : P x

(3) a3 := λx : S . a2 : ∀x : S . P x

(4) a4 := u a3 : ⊥
(5) a5 := λv : (∀y : S . ¬¬(P y)) . a4 : ¬∀y : S . ¬¬(P y)

(6) a6 := ∃-in-alt(S, λy : S . ¬(P y), a5) : ∃y : S . ¬(P y)

(7) a7(S, P) := λu : (¬∀x : S . P x) . a6 : (¬∀x : S . P x)⇒ ∃y : S . ¬(P y)
†parameters suppressed

Figure 11.29 Example: ¬∀ implies ∃¬

Remark 11.11.2 In Figures 11.26 and 11.29 we derived ¬∃ ⇒ ∀¬ and

¬∀ ⇒ ∃¬. These implications are actually biimplications (Exercise 11.15).

11.12 Conclusions

In the present chapter we embarked upon a first investigation into the poten-

tial of λD. We started with logic and discovered that λD is a framework as

convincing for the expression of logical connectives and quantifiers, as λC. It

turned out that, when using the tree format of the λD-rules, one is obliged to

proceed in a meticulous manner. The positive news is that this leads to the

desired results, but this is obviously not so pleasant for a human user.

Therefore, we have reintroduced the flag style that we have already em-

ployed in our λC-presentation. By permitting to omit a number of obvious

derivation steps, and by condensing the steps concerned with definitions, we

have succeeded in developing a useful and feasible flag format for λD.

As we mentioned already in Chapter 7, it is worthwhile to investigate the

precise nature of natural deduction as a logical apparatus. This may facilitate

understanding and clarify what’s really happening in the logical steps of a

proof; insight in these matters makes proofs more convincing, since the logical

background highly contributes to the reliability of a piece of mathematics.

Another tool of logic often used in mathematics is that of rewriting an ex-

pression into a logically equivalent one. For example, an expression such as

¬(x > 0 ∧ x < 10) may be replaced by ¬(x > 0) ∨ ¬(x < 10), and vice versa.

11.13 Further reading 253

The rationale behind this is again logical , since the mentioned proof steps can

be traced back to the logical equivalence ¬(A∧B)⇔ (¬A∨¬B). The validity

of such a logical tautology can well be shown by means of a proof in natural

deduction (cf. Figures 11.20 and 11.21). This is a general observation. Hence,

one may consider natural deduction to be the essential logical framework un-

derlying mathematical reasoning; and rewriting to be a secondary method –

albeit a very useful one.

Natural deduction as a formal logical method has already been a major topic

in Chapter 7, with a view to λC. In the present section we have investigated

whether a definition mechanism in type theory can help to make natural de-

duction still more accessible and usable. It has turned out that, indeed, natural

deduction may be successfully incorporated in λD. We have encapsulated the

λD-versions of the introduction and elimination rules for the basic symbols of

logic (⇒, ⊥, ¬, ∧, ∨, ⇔, ∀ and ∃), and have illustrated their use in (logical)

derivations. The mentioning of the natural deduction rules makes a reasoning

more transparent and understandable for a human being. It turned out, how-

ever, that for the natural deduction rules concerning ⇒, ⊥, ¬ and ∀, and for

the ∨- and ∃-elimination rules, the type-theoretic style of λC is often more

appropriate, since this gives shorter proof objects.

In order to be able to also work with classical logic in λD, we have added

the axiom ET (‘excluded third’) as a primitively inhabited proposition. We

have also given a practical set of alternative rules for the disjunction which

are derivable in classical logic. Examples showed how these alternative rules

may enter into the matter. Other alternative rules were introduced for the

use of quantifiers in classical logic and we added several examples of logical

derivations in which the quantifier rules play a role.

In the process of developing a natural deduction framework in the setting

of type theory, we have furthermore studied several strategies to successfully

exploit the rules presented.

The given examples foreshadow how the natural deduction rules may be

used in mathematics; and indeed, these logical rules are frequently employed

in a mathematical ambiance, as we shall see in the chapters to come.

We recall that the λD-version of all natural deduction rules that have been

discussed in the present section (both constructive and classical) are sum-

marised in Appendix A, as a service to the reader.

11.13 Further reading

The rules we use for natural deduction are the standard ones that can be found

e.g. in van Dalen (1994). The difference is that now they are presented in a

254 Flag-style natural deduction in λD

flag style, which was popularised by F. Fitch (Fitch, 1952), and can also be

found in the textbook of Nederpelt & Kamareddine (2011). The presence of

definitions in λD gives yet more possibilities to apply natural deduction in a

flexible manner.

Natural deduction systems, and other systems for formal logic, have already

been discussed in Section 7.8.

There are various source books in mathematical logic, of which Logic and

Structure (van Dalen, 1994) is still a good introduction. A more philosophical

introduction to logic is Kneale & Kneale (1962), a substantial book which also

nicely describes the history of logic.

Exercises

11.1 Let Δ be an environment containing the definitions of ⊥, ¬,⇒, ∧, ∨ and

∃ as presented in this chapter.

(a) Prove: (∧(⊥,⊥))⊥ Δ
=β ¬(⊥ ⇒ ¬(⊥)).

(b) Give the δ-normal form of ∃(S, λx : S . (P x ∨Qx)).

11.2 Take Γ ≡ A : ∗, B : ∗, C : ∗. For D3 see Figure 11.3. Extend the

derivations given in Exercise 9.9 in order to prove:

(a) ∅ ; Γ � (A→ B → C)→ C : ∗,
(b) D3 ; A : ∗, B : ∗ � ∧(A,B) : ∗.

11.3 Let Γ ≡ S : ∗, P : S → ∗ and D4 ≡ Γ� ∀(S, P) := Πx : S . P x : ∗ .
Give a full derivation in λD0 of D4 ; Γ � ∀(S, P) : ∗.

11.4 Describe the ‘states’ (see Section 11.3) corresponding to the derivation

given in Figure 11.4.

11.5 Let D1 ≡ ∅ � N := ⊥⊥ : ∗ and D2 ≡ ∅ � s := ⊥⊥ : N → N (cf. Exam-

ple 10.2.2).

(a) Prove that D1 is a legal environment in λD.

(b) Derive D1,D2 ; ∅ � s : N→ N in λD.

11.6 Let D′ and D′′ be the definitions in λD-format of ¬ and ∨ as given in

this chapter. Assume that we already have a derivation showing that

D′,D′′ ; ∅ � ∗ : �.

(a) Give a full derivation in λD of the judgement

D′,D′′ ; ∅ � Πα : ∗ . ∨ (α,¬(α)) : ∗ .
(b) Prove that the definition of iET (see Example 10.2.2) may be ap-

pended to D′,D′′; i.e. the resulting environment is legal, again.

11.7 Write the proof objects in the λD-derivation of Figure 11.14 in natural

deduction style (cf. Section 11.5).

Exercises 255

11.8 Write the derivation of (¬A ⇒ B) ⇒ (A ∨ B), as given in Figure 11.18,

in natural deduction style.

11.9 Redo the following exercises of Chapter 7 in the λD-style of Section 11.6,

hence with flags. You may use a mixture of the natural deduction style and

the type-theoretic style, and you may apply the parameter list convention

(Notation 11.7.1).

(a) Exercise 7.6 (b),

(b) Exercise 7.8 (b),

(c) Exercise 7.12 (b).

11.10 Give a λD-derivation in classical logic, in the style as employed from

Section 11.6 onwards, of the following tautology:

((A⇒ B)⇒ A)⇒ A.

(Hint: see Remark 11.8.1 and Exercise 7.1 (b).)

11.11 As the previous exercise (note: Exercises 7.1 (a) and 7.1 (b) and the

alternative rules for ∨ may be helpful):

(a) (A⇒ B) ∨A,

(b) (A⇒ B) ∨ ¬B.

11.12 Give λD-derivations of the following tautologies:

(a) In constructive logic: (A⇔ B)⇒ (¬A⇔ ¬B),

(b) In classical logic: (A⇔ B)⇒ ((A ∧B) ∨ (¬A ∧ ¬B)),

(c) ¬(A ∨B)⇔ (¬A ∧ ¬B). (Can this be done constructively?)

11.13 Give λD0-derivations (so using constructive logic only) of the following

lemmas:

(a) ET implies DN (see also Section 7.4),

(b) DN implies ET.

11.14 Let S and T be sets and R a predicate on S×T , coded R : S → T → ∗p.
Give a λD-derivation of the following tautology of constructive logic:

¬∃x∈S∃y∈T (R(x, y))⇒ ∀x∈S∀y∈T (¬R(x, y)).

11.15 Let S be a set and P a predicate on S. Give λD-derivations for the

following tautologies of classical logic; you may use the alternative rules

given in Figure 11.28:

(a) ∃x∈S(¬P (x))⇒ ¬∀x∈S(P (x)),

(b) ∀x∈S(¬P (x))⇒ ¬∃x∈S(P (x)).

11.16 As the previous exercise:

∀x∈S(P (x))⇔ ¬∃x∈S(¬P (x)).

11.17 As Exercise 11.15:

∀x∈S [¬∃y∈S(P (y))⇒ ∃z∈S(¬P (z))].

256 Flag-style natural deduction in λD

11.18 Let S and T be sets, P and Q predicates on S, and R a predicate on

S × T . Give λD-derivations of the following tautologies:

(a) ∃x∈S(P (x) ∨Q(x))⇒ (∃x∈S(P (x)) ∨ ∃x∈S(Q(x))),

(b) ∃x∈S∀y∈T (R(x, y))⇒ ∀y∈T∃x∈S(R(x, y)).

12

Mathematics in λD: a first attempt

12.1 An example to start with

Logic, a fundamental part of many sciences, can be fruitfully expressed and

used in an appropriate type-theory-with-definitions such as λD. We have dem-

onstrated this extensively in Chapter 11. Our conclusion is that a flag-style

approach, which is still fully formal, is very similar to the common informal

style of deduction which is standard for reasoning in both logic and mathemat-

ics. The type theory λD can be fruitfully exploited for expressing the logical

system of natural deduction in a feasible and practical manner.

In the present chapter, we turn to mathematics. The deductive framework

of logic is essential for doing mathematics, since it embodies the principles of

reasoning, but mathematics itself is much more than logic (or reasoning) alone.

In order to explore these matters, we start with some illustrative examples,

showing the possibilities and the problems connected with doing mathematics

in type theory. Our purpose is to investigate whether (or rather: to show how)

λD ‘works’ in mathematical practice.

It will turn out that a formal translation of a mathematical text into the

λD-format may demand more effort than expected. This is due, of course, to

the very precise nature of the ‘formal language’ λD, requiring all aspects to

be spelled out, sometimes even to an annoying degree of detail; although the

flag style alleviates the burden to some extent.

For the time being, we accept these inconveniences as inevitable – in the

hope that the gains of ultimate precision will prove to be greater than the

losses. We come back to this subject in the course of the following chapters.

We begin with a simple example about partially ordered sets, namely the

proof that there can be at most one minimum in such a set. This proof, based

on the corresponding definition, is straightforward; see below.

We recall that a relation R on a set S is a partial order if it is reflexive,

258 Mathematics in λD: a first attempt

antisymmetric and transitive; see Section 8.5 for the mathematical definitions

of these notions.

Definition 12.1.1 Let S be a set and ≤ a binary relation on S.
Thenm ∈ S is a least element of S with respect to ≤ if ∀n∈S(m ≤ n).

Lemma 12.1.2 Let S be a set, partially ordered by ≤. Assume that
S has a least element with respect to ≤. Then this least element is
unique.

Proof Assume that m1 and m2 are elements of S and that both are
least elements. Then ∀n∈S(m1 ≤ n) and ∀n∈S(m2 ≤ n). In partic-
ular, m1 ≤ m2 and m2 ≤ m1. Hence, m1 = m2, by antisymmetry
of ≤. It follows that, if S has a least element, then this element is
unique.

Let’s formalise this proof in λD. We use the flag format (see Section 11.2).

The first attempt is represented in Figure 12.1, in which we combine the

flags of m1 and m2 (see Notation 11.5.1). In the flags of u and v we express the

assumption that both m1 and m2 are least elements. (See also Remark 12.6.1.)

S : ∗s
m1,m2 : S

u : ∀n : S . (m1 ≤ n)

v : ∀n : S . (m2 ≤ n)

(1) a1(S,m1,m2, u, v) := t1 : m1 ≤ m2

(2) a2(S,m1,m2, u, v) := t2 : m2 ≤ m1

(3) a3(S,m1,m2, u, v) := t3 : m1 = m2

w : S has a least element

(4) a4(S,w) := t4 : the least element is unique

Figure 12.1 A first attempt of proving Lemma 12.1.2 in λD

Browsing through this derivation-like figure, we note several problems. Some

of them can be solved in a straightforward manner:

− The symbol ‘≤’ stands for an arbitrary relation on S, being a partial order.

These implicit assumptions will be made explicit in Section 12.4.

− The ∀-quantifier is not ‘basic’ in λD, but in Section 5.4 we proposed to code

∀ as Π.

− This also solves the question of what to take for the unknown terms t1 and

t2 in lines (1) and (2): these must be instances of the ∀-elimination rule (see

Figure 11.22).

12.2 Equality 259

So we may take

t1 ≡ ∀-el(S, λx : S . m1 ≤ x, u,m2) and

t2 ≡ ∀-el(S, λy : S . m2 ≤ y, v,m1),

or simply t1 ≡ um2 and t2 ≡ vm1.

The remaining problems appear to be more serious. The questions are:

Q1 The symbol ‘=’ in line (3) denotes the basic equality relation, which is

fundamental in all areas of mathematics, but is not yet a part of our

system. How can this be remedied?

Q2 What has to be taken for t3?

Q3 How to express that S has a least element, as required in the last flag?

Q4 What about its uniqueness?

Q5 And how to prove it, i.e. what is the proof object t4?

12.2 Equality

We start with equality (Q1). (Question Q2 will be answered in Section 12.4,

questions Q3 to Q5 in Section 12.6.) An easy way out is to suppose that the

notion ‘equality’ belongs to what we call foreknowledge. But this attitude does

not solve our question, because we have to know the formal rules for dealing

with equality.

Equality obviously is a relation between two arguments: for each pair of

elements x and y, we have a proposition (namely that x = y). But since

we work with a system in type theory , each element should have a type; so

suppose that S is the type of both x and y. Then we can see equality as a

binary predicate on S. We write x =S y for the equality of x and y in S.

So, equality is a parameterised binary relation: for every type S we have

an equality relation =S : S → S → ∗, which is a binary relation on terms of

type S. We may have equality in N, equality in Z, and so on.

Now the core question is: what does it mean that elements x and y of S

are ‘equal’? A fertile philosophical answer, due to the German mathematician

G.W. Leibniz (1646–1716), is that two objects are equal if they are indis-

cernible in all conceivable circumstances. This indiscernibility of x and y can

be expressed more concisely as follows: ‘For any predicate P on S, the validity

of P x is equivalent to the validity of P y ’; that is, for given P either both P x

and P y hold, or neither of them holds. If this is the case, then there is no

possibility to discriminate between x and y. Hence, they are equal.

Now one could decide to take this equality as a primitive relation. In that

case we consider it as a ‘law’ or axiom, which is then usually called Leibniz’s

law . But the nice thing is that Leibniz’s view on equality can be formalised

260 Mathematics in λD: a first attempt

as a descriptive definition in λD, so that we do not need an axiom. We take

the Π for expressing the generalisation over all predicates, and formally define

eq(S, x, y), expressing the equality of x and y (for x, y : S), as

ΠP : S → ∗p . (P x⇔ P y).

See Figure 12.2, line (1).

Remark 12.2.1 Even a simpler definition would do, namely:

ΠP : S → ∗p . (P x⇒ P y),

with ⇒ instead of ⇔. See Exercise 12.2.

We also use Figure 12.2 to show that this defined equality is a reflexive

relation, as expected (see line (3)). We use the name eq-refl(S, x) for the proof

of reflexivity (hence not for the property itself).

S : ∗s
x : S

y : S

(1) eq(S, x, y) := ΠP : S → ∗p . (P x⇔ P y) : ∗p
P : S → ∗p

(2) a2(S, x, P) := . . .? . . . : P x⇔ P x

(3) eq-refl(S, x) := λP : S → ∗p . a2(S, x, P) : eq(S, x, x)

Figure 12.2 Definition of equality, and the reflexivity property for equality

Remark 12.2.2 We obtain a second order definition of equality, since the Π

ranges over predicates P , and P : S→∗ : �. Hence, the Π in the formula is

a second order ∀-quantifier. This cannot be covered by the first order ∀-symbol

dealt with in Sections 5.4, part V, and 7.5. See also Remark 11.10.1.

There is one hole in the derivation: the proof object of line (2) is still open.

We need a proof of P x⇔ P x. There are two obvious strategies to fill the hole:

(1) The ad-hoc approach: immediately find an inhabitant of P x⇔ P x. This

is not hard: we may take the expression

⇔ -in(P x, P x, λu : P x . u, λu : P x . u) ,

which is appropriate since λu : P x . u is an inhabitant of both P x⇒ P x and

P x⇐ P x.

(2) The general approach: first prove a lemma to the effect that A⇔ A holds

for arbitrary A of type ∗p, give its proof a name (say ⇔ -refl(A)), and then fill

the hole with the instantiated expression ⇔ -refl(P x).

The formalisation of such a lemma and its proof is easy; we leave it to the

12.2 Equality 261

reader. Both strategies solve the problem. We suppose that one of these has

been chosen in line (2) of Figure 12.2.

Since formal equality plays such an important role in mathematics, we in-

troduce a notation convention in our λD-text, for a smoother representation

(see Figure 12.3, which replaces Figure 12.2). Denoting eq(S, x, y) as x =S y,

being more reader-friendly, we employ the usual symbol ‘= ’, subscripted with

the set in which the equality is taken; moreover, we use infix notation (see also

Notation 11.5.2).

S : ∗s
x : S

y : S

(1) eq(S, x, y) := ΠP : S → ∗p . (P x⇔ P y) : ∗p
Notation : x =S y for eq(S, x, y)

...

(3) eq-refl(S, x) := λP : S → ∗p . a2(S, x, P) : x =S x

Figure 12.3 A notation convention for equality, and its use

It is not hard to also prove symmetry and transitivity for this equality, by

proving x =S y ⇒ y =S x, and (x =S y ∧ y =S z) ⇒ x =S z, in appropriate

contexts.

These proofs may be based on the corresponding properties for biimplication:

− (symmetry) if A⇔ B, then B ⇔ A, and

− (transitivity) if A⇔ B and B ⇔ C, then A⇔ C.

We leave the corresponding proofs to the reader.

A simple consequence of the definition of equality is that it satisfies substi-

tutivity . This notion can be expressed as follows:

‘One always may substitute equals for equals’,

or, more formally:

‘For all predicates P on S, if x =S y and P holds for x, then P also holds

for y’.

This implies the following: if an expression t1 occurs in any proposition, and

we know that t1 =S t2, then one may replace t1 by t2 without influencing the

truth value. (This explains the name ‘substitutivity’.)

We formalise substitutivity in Figure 12.4.

262 Mathematics in λD: a first attempt

S : ∗s
P : S → ∗p

x, y : S

u : x =S y

(1) a1(S, P, x, y, u) := uP : P x⇔ P y

(2) a2(S, P, x, y, u) := ⇔ -el1(P x, P y, a1(S, P, x, y, u)) : P x⇒ P y

v : P x

(3) eq-subs(S, P, x, y, u, v) := a2(S, P, x, y, u) v : P y

Figure 12.4 Substitutivity as property of equality

12.3 The congruence property of equality

There are several properties of equality that can be derived from the definitions

in the previous section. One of them is called the congruence property . It has

some similarities with substitutivity, but congruence concerns ordinary func-

tions (with a set as co-domain), and not predicates (which are functions with

a proposition as co-domain). But again, the idea is to allow the substitution of

a t1 by a t2 that is equal to t1.

This congruence property can be phrased as follows:

‘For all functions f : S → T and x, y : S, if x =S y, then fx =T fy.’

One says in this case: ‘equality is a congruence for function application’.

Again, this is a property we obviously should have. A promising attempt is to

try substitutivity (see Figure 12.4): use x =S y to derive the result fx =T fy.

Therefore we must find an appropriate predicate.

One possibility is to unfold the goal fx =T fy. This gives:

ΠQ : T → ∗p . (Q(f x)⇔ Q(f y)).

Hence, we raise a flag Q : T → ∗p and try to prove Q(f x) ⇔ Q(f y). This

is easy now: substitutivity (using x =S y) on the predicate λz : S . Q(f z)

transforms a proof of Q(f x) into one of Q(f y) (see line (1) in Figure 12.5).

The final part of this derivation serves to dismiss the last two flags, one with

⇒ -in and one with the (abst)-rule. Note that we cannot take ∀-in instead of

the λ-expression in line (3), since the Π in the unfolding of f x =T f y is second

order (cf. Remark 12.2.2). Line (4) is a consequence of the (conv)-rule.

We can also derive the congruence property directly from substitutivity by

making a smart choice for the predicate involved in substitutivity. This leads

to a second proof of congruence.

12.3 The congruence property of equality 263

S, T : ∗s
f : S → T

x, y : S

u : x =S y

Q : T → ∗p

v : Q(f x)

(1) a†1 := eq-subs(S, λz : S . Q(f z), x, y, u, v) : Q(f y)

(2) a2 := λv : Q(f x) . a1 : Q(f x)⇒ Q(f y)

(3) a3 := λQ : T → ∗p . a2 : ΠQ : T → ∗p . (Q(f x)⇒ Q(f y))

(4) eq-cong1(S, T, f, x, y, u) := a3 : f x =T f y

†parameters suppressed

Figure 12.5 First proof of the congruence property for equality

This time we take predicate Q1, with the following description:

Q1 ≡ λz : S . (f x =T f z),

where Q1 obviously depends on S, T , f and x. Note that x is a ‘free’ variable

in this expression, whereas variable z is bound by the λ; so Q1 is a predicate

‘about’ a z of type S.

Now Q1 x is convertible to f x =T f x, which is valid by reflexivity; and Q1 y

is convertible to f x =T f y, the desired equality in the congruence property.

Substitutivity gives that x =S y and Q1 x imply Q1 y. Hence, substitutivity

gives (again) the result desired (see Figure 12.6).

S, T : ∗s
f : S → T

x : S

(1) Q1(S, T, f, x) := λz : S . (f x =T f z) : S → ∗p
y : S

u : x =S y

(2) eq-cong2(S, T, f, x, y, u) :=

eq-subs(S,Q1(S, T, f, x), x, y, u, eq-refl(T, f x)) : f x =T f y

Figure 12.6 Second proof of the congruence property for equality

264 Mathematics in λD: a first attempt

So we have a formally defined equality, together with three important prop-

erties: reflexivity, substitutivity and the congruence property.

In the previous section we have already mentioned ‘symmetry’ and ‘tran-

sitivity’, two other properties that are very fundamental for equality. In Sec-

tion 12.5 we deal with these. But first we note that (variants of) symmetry

and transitivity are important in a more general setting, namely with respect

to orders. This is the subject of the following section.

12.4 Orders

Now that we know how to code ‘equality’, we need to say more about the

other relation playing a role in the proof of Lemma 12.1.2, namely the ordering

relation denoted ‘≤’. First, ≤ must have a type. For this we take S → S → ∗p,
so the relation between x and y is represented by the twofold application ≤ x y.

We start with a formalisation of this notion ‘partial order’ (see Figure 12.7).

In line (5) is expressed what a partial order means, i.e. what it is as a type

(namely, an antisymmetric preorder).

Remark 12.4.1 We are fairly liberal in employing notation conventions (see

also Chapter 11 and Figure 12.3). For example, we shall take identical binding

symbols (such as quantifiers) ‘together’, as is usual in the mathematical nota-

tion: we write ∀x, y : S . P x instead of ∀x : S . ∀y : S . P x. Similarly, we write

λx, y : S for λx : S . λy : S See e.g. Figure 12.9, line (9).

Earlier (Figure 12.3), we introduced x =S y for eq(S, x, y). We now allow a

similar infix notation x ≤S y (see Figure 12.7) for a very different syntactical

structure: the twofold application ≤ x y (which is (≤ x) y) on elements x and

y of a set S. The symbol S is not part of the original expression ≤ x y.

S : ∗s
≤ : S → S → ∗p
Notation : x ≤S y for ≤ x y (on S)

(1) refl(S,≤) := ∀x : S . (x ≤S x) : ∗p
(2) trans(S,≤) :=

∀x : S . ∀y : S . ∀z : S . (x ≤S y ⇒ y ≤S z ⇒ x ≤S z) : ∗p
(3) pre-ord(S,≤) := refl(S,≤) ∧ trans(S,≤) : ∗p
(4) antisymm(S,≤) := ∀x : S . ∀y : S . (x ≤S y ⇒ y ≤S x ⇒ x =S y) : ∗p
(5) part-ord(S,≤) := pre-ord(S,≤) ∧ antisymm(S,≤) : ∗p

Figure 12.7 Definitions regarding partial orders

12.4 Orders 265

We now try to formalise the proof attempt of Figure 12.1. The final part of

the proof, expressed in line (4) of that figure, will be dealt with in Section 12.6,

in which we explain how to formalise ‘uniqueness’.

First we give a skeleton proof , which only contains the necessary flags and

the types (see Figure 12.8). The proof skeleton expresses the basic ideas and the

course of the derivation being expressed in the informal proof of Lemma 12.1.2

(but for the last sentence).

(a) S : ∗s
(b) ≤ : S → S → ∗p
(c) r : part-ord(S,≤)

(d) m1,m2 : S

(e) u : ∀n : S . (m1 ≤S n) | v : ∀n : S . (m2 ≤S n)

(1) . . . : m1 ≤S m2

(2) . . . : m2 ≤S m1

(3) . . . : pre-ord(S,≤) ∧ antisymm(S,≤)
(4) . . . : antisymm(S,≤)
(5) . . . : ∀x : S . ∀y : S . (x ≤S y ⇒ y ≤S x ⇒ x=S y)

(6) . . . : m1 ≤S m2 ⇒ m2 ≤S m1 ⇒ m1 =S m2

(7) . . . : m2 ≤S m1 ⇒ m1 =S m2

(8) . . . : m1 =S m2

(9) . . . : ∀m1,m2 : S . ((∀n : S . (m1 ≤S n))⇒ (∀n : S . (m2 ≤S n))⇒
(m1 =S m2))

Figure 12.8 A skeleton proof for the first part of Lemma 12.1.2

The proof is a consequence of antisymmetry (line (4), elaborated in line (5)),

combined with lines (1) and (2). This is the leading idea in the incomplete

derivation of Figure 12.8.

We invite the reader to compare the given skeleton proof with the informal

proof in Section 12.1, and with lines (1) to (3) of the proof attempt given

in Figure 12.1. (In flags (d) and (e) we combine flags, as proposed in Nota-

tion 11.5.1.)

In Figure 12.9 we have filled in all proof objects in the skeleton proof, and

given them names. For the sake of clarity, we underline the types, so that this

derivation can be easily compared with the proof skeleton in Figure 12.8.

The problem in this part of the derivation is question Q2 of Section 12.1:

266 Mathematics in λD: a first attempt

to find t3, which is a proof (in the form of an inhabitant) of m1 =S m2. The

solution is the proof object in line (8).

(a) S : ∗s
(b) ≤ : S → S → ∗p
(c) r : part-ord(S,≤)

(d) m1,m2 : S

(e) u : ∀n : S . (m1 ≤S n) | v : ∀n : S . (m2 ≤S n)

(1) a†1 := um2 : m1 ≤S m2

(2) a2 := vm1 : m2 ≤S m1

(3) a3 := r : pre-ord(S,≤) ∧ antisymm(S,≤)
(4) a4 := ∧-el2(pre-ord(S,≤) , antisymm(S,≤) , a3) :

antisymm(S,≤)
(5) a5 := a4 : ∀x : S . ∀y : S . (x ≤S y ⇒ y ≤S x ⇒ x=S y)

(6) a6 := a5 m1 m2 : m1 ≤S m2 ⇒ m2 ≤S m1 ⇒ m1 =S m2

(7) a7 := a6 a1 : m2 ≤S m1 ⇒ m1 =S m2

(8) a8 := a7 a2 : m1 =S m2

(9) a9(S,≤, r) := λm1,m2 : S . λu : λv : a8 :

∀m1,m2 : S . ((∀n : S . (m1 ≤S n))⇒ (∀n : S . (m2 ≤S n))⇒
m1 =S m2)

†parameters suppressed

Figure 12.9 A formal proof of the first part of Lemma 12.1.2 in λD

We give little comment on Figure 12.9, since most of it will speak for itself:

− We suppress parameters, following Notation 11.7.1.

− We use the type-theoretic style whenever we find this convenient.

− Lines (3) and (5) are only meant to help the reader: we repeat earlier state-

ments (given in flag (c) and line (4), respectively), but with an unfolded

type. This is permitted by the (conv)-rule.

12.5 A proof about orders

In Figures 12.2 and 12.4, we have formally introduced the properties reflexivity

and substitutivity for equality. Proofs of the properties symmetry and transi-

tivity are suggested in Section 12.2, but not spelled out. In the present section

we show an alternative manner to obtain these results, since both properties

12.5 A proof about orders 267

can be derived from the first two. We do not claim that the methods presented

here are either shorter or easier than the proofs suggested in Section 12.2 –

on the contrary. Our endeavours appear, however, to be a useful exercise with

substitutivity.

We first show that symmetry follows from reflexivity and substitutivity: see

Figure 12.10 (at the end of this section we do the same for transitivity).

The idea behind the proof is the following. Assume x =S y. Then we have

to prove that also y =S x. Now first recall that reflexivity gives: x =S x.

Secondly, focus on the first x of this equality, which we underline for the sake

of clarity: x =S x. Then apply substitutivity : since x =S y, we may replace x

by y, thus obtaining y =S x. So we are done.

Formally: consider the predicate Q2(S, x) := λz : S . (z =S x), for which

we have that (Q2(S, x))x →β (x =S x) and (Q2(S, x)) y →β (y =S x); the

definition of eq-subs in Figure 12.4, with Q2(S, x) substituted for P , then does

the job.

S : ∗s
x : S

(1) Q2(S, x) := λz : S . (z =S x) : S → ∗p
(2) a2(S, x) := eq-refl(S, x) : x =S x

y : S

u : x =S y

(3) eq-sym(S, x, y, u) :=

eq-subs(S, Q2(S, x) , x, y, u, a2(S, x)) :

y =S x

(4) a4(S) := λx, y : S . λu : (x =S y) . eq-sym(S, x, y, u) :

∀x, y : S . (x =S y ⇒ y =S x)

Figure 12.10 Symmetry of equality follows from reflexivity and substitutivity

In line (4) of Figure 12.10, we give a λ-term as inhabitant, which is shorter

than what we would obtain with the (more natural) logical introduction rules

for ⇒ and ∀.
The definitions in lines (1) and (2) are inserted to make the proof more

comprehensible for a human reader: the formal proof now narrowly follows the

informal explanation given above. There is no objection against condensing

the essence of the proof into one proof term, by the unfolding of the constants

Q2 and a2 in line (3). This permits us to omit lines (1) and (2). The result is

depicted in Figure 12.11.

268 Mathematics in λD: a first attempt

S : ∗s | x, y : S | u : x =S y

eq-sym ′(S, x, y, u) :=

eq-subs(S, λz : S . (z =S x) , x, y, u, eq-refl(S, x)) : y =S x

Figure 12.11 A shorter version of the core of the derivation of Figure 12.10

We conclude this section with the promised derivation of transitivity of equal-

ity, using similar methods as in the above derivation of symmetry.

We give an alternative to the proof suggested in Section 12.2 (see Fig-

ure 12.12). The important thing is, again, to devise an appropriate predi-

cate Q. It turns out that Q3(S, x) := λw : S . (x =S w) does the job together

with Substitutivity, since (Q3(S, x))y converts to x =S y and (Q3(S, x))z to

x =S z. Hence, the essence of the proof is the following: given that x =S y

(i.e. (Q3(S, x))y), then if also y =S z we may substitute z for y in x =S y, to

obtain x =S z (i.e. (Q3(S, x))z).

We leave it to the reader to check the details (Exercise 12.3 (a)).

S : ∗s
x : S

(1) Q3(S, x) := λw : S . (x =S w) : S → ∗p
y, z : S

u : x =S y

v : y =S z

(2) eq-trans(S, x, y, z, u, v) :=

eq-subs(S, Q3(S, x) , y, z, v, u) : x =S z

(3) a3(S) := λx, y, z : S . λu : (x =S y) . λv : (y =S z) . eq-trans(S, x, y, z, u, v) :

∀x, y, z : S . (x =S y ⇒ y =S z ⇒ x =S z)

Figure 12.12 Transitivity of equality follows from substitutivity

12.6 Unique existence

We have succeeded (see Figure 12.9) in translating the main part of the proof

of Lemma 12.1.2, but the final statement of the proof, the lemma itself, and the

related Definition 12.1.1, have not yet been transferred to λD. In this section

we investigate how this can be done.

12.6 Unique existence 269

The first thing that we consider is a formal description of the property ‘being-

a-least-element’, which is the subject of Definition 12.1.1. See Figure 12.13.

(For a ‘least element’ it is not necessary that the relation is a partial order.)

(a) S : ∗s | ≤ : S → S → ∗p | m : S

(1) Least(S,≤,m) := ∀n : S . (m ≤ n) : ∗p

Figure 12.13 A formal version of Definition 12.1.1

We use the name Least , with a capital ‘L’, because m is intended to be a

least element of the type S. Later, we use ‘least’ to denote a least element of a

subset of S (see Figure 15.1).

So now we can express ‘m is a least element of S with respect to relation ≤’.

Remark 12.6.1 This definition also enables us to rephrase the flags in (e)

of Figure 12.9 as u : Least(S,≤,m1) and v : Least(S,≤,m2), thus bringing

our formal proof and the informal one of Section 12.1 closer together.

We have not yet formally expressed that such an m is unique when ≤ is

a partial order, which is the conclusion of Lemma 12.1.2. How about this

uniqueness of existence? Let’s investigate the various modes of existence:

− To begin with, we already have the property existence as such, expressible

by means of the quantifier ∃. (See Section 7.5 for its λC-version and Fig-

ure 11.23, line (1), for its definition in λD.)

− Obviously, ∃x∈S(P (x)) means ‘there exists at least one x in S satisfying P ’.

Hence, we sometimes write ∃≥1 instead of just ∃.
− A counterpart of ∃≥1 is ‘there exists at most one’, which we express as ∃≤1.

So ∃≤1
x∈S(P (x)) means that there either are no x’s in S satisfying P , or just

one. A common way of establishing ‘at most one’ is by proving that ‘two is

impossible’ (and hence also three, four, . . . are impossible). In formal form:

∀y, z : S . (P (y)⇒ P (z)⇒ y =S z);

or, in words: if we observe ‘two’ elements of S satisfying P , then they are

necessarily equal.

− It is now easy to express ‘exactly one’, as the conjunction of ‘at most one’

and ‘at least one’.

It is clear how to formalise all this in λD; see Figure 12.14.

Notation 12.6.2 In Figure 11.23 we agreed to allow the common notation

∃x : S . P x as an alternative notation for ∃(S, P).

Similarly, we allow ∃≤1x : S . P x as alternative notation for ∃≤1(S, P), and

also ∃1x : S . P x for ∃1(S, P).

270 Mathematics in λD: a first attempt

S : ∗s
P : S → ∗p

(1) ∃(S, P) := ΠA : ∗p . ((∀x : S . (P x⇒ A))⇒ A) : ∗p
(2) ∃≥1(S, P) := ∃(S, P) : ∗p
(3) ∃≤1(S, P) := ∀y, z : S . (P y ⇒ P z ⇒ (y =S z)) : ∗p
(4) ∃1(S, P) := ∃≥1(S, P) ∧ ∃≤1(S, P) : ∗p

Figure 12.14 Various existential quantifiers

With respect to the proof in Figure 12.9, we observe that the type in line (9)

of that figure, viz.

∀m1,m2 : S . ((∀n : S . (m1 ≤S n))⇒ (∀n : S . (m2 ≤S n))⇒ m1 =S m2),

corresponds to ∀y, z : S . (P y ⇒ P z ⇒ (y =S z)), if P is the ‘least-element-

predicate’:

λm : S . Least(S,≤,m).

Hence, a9(S,≤, r) of Figure 12.9 is by line (3) of Figure 12.14 and the (conv)-

rule also an inhabitant of ∃≤1x : S . Least(S,≤, x).
So all we need now is the assumption that there is a least element of S

(i.e. ∃≥1x : S . Least(S,≤, x)), to be able to conclude that there is exactly one

least element (∃1x : S . Least(S,≤, x)). This observation corresponds precisely

to the last sentence of the informal proof in Section 12.1.

Hence, we now can express the full Lemma 12.1.2 and its proof in a formal

λD-version (see Figure 12.15, which is an extension of Figure 12.9).

...

(10) a10 := a9[Fig. 12.9] : ∃≤1x : S . Least(S,≤, x)
(d) w : ∃≥1x : S . Least(S,≤, x)

(11) a11(S,≤, r, w) := ∧-in(∃≥1 . . . ,∃≤1 . . . , w, a10) :

∃1x : S . Least(S,≤, x)

Figure 12.15 A completed formal version of Lemma 12.1.2 and its proof

So a11(S,≤, r, w) in Figure 12.15 (or the connected definiens, which has the

same meaning), together with context (a) – (d) of Figure 12.9, is a represen-

tation of the full proof of that lemma. The lemma itself is represented by the

type of line (11) in Figure 12.15, since this line may be read as:

‘In context (a) – (d), a11(S,≤, r, w) inhabits ∃1x : S . Least(S,≤, x).’

12.7 The descriptor ι 271

We have here a good example of the following general observation about

formal theorems and formal proofs in λD, which corresponds to the PAT-

interpretation (see Section 5.4):

Theorems and proofs

Let the following judgements be both derivable in λD:

Γ � a(x) := N : ∗p and

Γ � b(x) := M : N .

Then, in context Γ:

a(x) (or N) represents a theorem and

b(x) (or M) represents a proof of that theorem.

(Remember that a lemma is formally the same as a theorem; the difference

is that a lemma is considered to be less important, or only a stepping stone to

a theorem.)

Remark 12.6.3 In the present chapter we have done a lot of work to achieve

a relatively small result: one definition, one lemma and one proof have been

formalised. This may be disappointing to a newcomer in the area of formal

proving.

Note, however, that our take-off in Section 12.1 was a bit naive. We started

boldly with an example that was simple, but not standing on its own. Hence,

we had to account for several basic notions that had no formal representation

yet: equality was one of these notions, the partial order relation ≤ another one.

Many basic properties of equalities had to be expressed in formal form, which

took some time.

The necessity to deliver every ‘dirty detail’ is sometimes not very pleasant,

but inevitable for a justified formalisation. Some of these annoyances can be

avoided, e.g. by choosing a more deliberate build-up of the mathematical edifice.

For the time being, we are happy with the progress we make.

12.7 The descriptor ι

In the previous section we saw how to express that m is a least element with

respect to relation ≤ on set S: that is the case if we have an inhabitant of

Least (S,≤,m). We proved, informally and formally, that such an m (if it

exists) is unique when ≤ is a partial order on S. In the traditional mathematical

272 Mathematics in λD: a first attempt

setting, this implies that we can identify such a least element with a name: it

is usual to talk about the minimum of S with respect to ≤, or to reserve a

special notation for it, e.g. Min(S) (or rather: Min(S,≤)).
Note that, as long as the uniqueness hasn’t been proved, we only may speak

of a minimum (which is the same as a least element); whereas uniqueness only

allows us to call it the minimum.

In some fields of mathematics, the descriptor ι (pronounced ‘ióta’ and first

proposed by F.L.G. Frege, who lived 1848–1925) is used for naming (‘describ-

ing’) such a uniquely existing element: ιx∈S(P (x)) then represents the (unique)

element x of S that has property P (x).

So in this notation, we have that the minimum of set S with respect to

relation ≤ is ιm∈S(Least(S,≤,m)).

In λD, we can easily add the ι-operator as a primitive constant. This constant

depends on a set S, a predicate P , and a proof u that there exists exactly one

element in S that satisfies predicate P . In Figure 12.16, we call it ι(S, P, u)

(that is: the element of S for which P holds, being unique because of u).

A characteristic property of ι(S, P, u) is that it satisfies predicate P . To

express this, we must also add a primitive inhabitant of P (ι(S, P, u)), being a

(primitive) proof of this property.

In Figure 12.16 we propose an alternative notation ιux:S(P x) that is quite

similar to the usual one: ιx∈S(P (x)), the main difference being that the obliga-

tory proof u for the unique existence of such an x is added as a superscript. In

line (2), we give the name ι-prop(S, P, u) to the primitively assumed inhabitant

of the proposition that P holds for the element described by means of the iota.

S : ∗s
P : S → ∗p

u : (∃1x : S . P x)

(1) ι(S, P, u) := ⊥⊥ : S

Notation : ιux:S(P x) for ι(S, P, u)

(2) ι-prop(S, P, u) := ⊥⊥ : P (ιux:S(P x))

Figure 12.16 The descriptor ι

As a general example of the use of this formal ι-operator, we prove the

following obvious (and useful) property: if there is exactly one element in S

satisfying P , then an element x of S for which P holds must necessarily be

equal to ιux:S(P x). This is expressed in the following lemma.

12.7 The descriptor ι 273

Lemma 12.7.1 Let S be a set, P a predicate on S and assume
∃1x∈S(P (x)). Then ∀z∈S(P (z)⇒ (z =S ιx∈S(P (x)))).

The proof of Lemma 12.7.1 is given in Figure 12.17. The judgements in

lines (1) and (3) are ‘Notes for the reader’, as we have used earlier.

(a) S : ∗s | P : S → ∗p | u : (∃1x : S . P x)

(1) a†1 := u : (∃≥1x : S . P x ∧ ∃≤1x : S . P x)

(2) a2 := ∧-el2 (∃≥1x : S . P x , ∃≤1x : S . P x , u) : ∃≤1x : S . P x

(3) a3 := a2 : ∀x, y : S . (P x⇒ P y ⇒ (x =S y))

(b) z : S | v : P z

(4) a4 := a3 z (ιux:S(P x)) v ι-prop(S, P, u) : z =S ιux:S(P x)

(5) a5(S, P, u) := λz : S . λv : P z . a4 : ∀z : S . (P z ⇒ (z =S ιux:S(P x)))
†parameters suppressed

Figure 12.17 Lemma 12.7.1 and its proof

The proof in Figure 12.17 is not hard to understand. The final result stated

in line (5) is the combined derivation of the lemma (the type) and its proof

(the definiens), both in context (a). This exemplifies the observation about

‘Theorems and proofs’ in the previous section.

Remark 12.7.2 Seemingly, ι(S, P, u) depends on the proof u of ∃1x : S . P x.

Now assume that we have two different proofs u1 and u2 of this uniqueness.

Then it is imaginable that ι(S, P, u1) and ι(S, P, u2) are also different; which

is clearly undesirable. We can easily prove, however, that this does not oc-

cur: both ι(S, P, u1) and ι(S, P, u2) satisfy predicate P , as a consequence of

ι-prop(S, P, u1) and ι-prop(S, P, u2), respectively. But since there is exactly

one element satisfying P (of which fact we even have two proofs!), we can de-

rive in λD that ι(S, P, u1) must be equal to ι(S, P, u2), using either of these

proofs.

One calls such a situation irrelevance of proof: ιux:S(P x) only depends on the

existence of proof u, not on its exact content. See also Section 14.13 for this

matter.

We are now able to define the (unique) minimum of a set S with respect to

the partial order ≤ on S, provided that there is a least element of S. See line (1)

in Figure 12.18. Since we use the ι, we need that ∃1m : S . Least(S,≤,m), which

is a consequence of assumption (b). We proved this in Figure 12.15.

We also take the opportunity to give a compact rephrasing of the original

example, Lemma 12.1.2 (and its proof), with the new minimum-operator. See

274 Mathematics in λD: a first attempt

line (2) of Figure 12.18. This lemma can be expressed in words as follows: ‘Let

≤ be a partial order on S; if S has a least element x, then x is the minimum

of S.’

(a) S : ∗s | ≤ : S → S → ∗p | r : part-ord(S,≤)

(b) w : ∃≥1x : S . Least(S,≤, x)

(1) Min(S,≤, r, w) :=

ι(S, λm : S . Least(S,≤,m), a11 [Fig. 12.15](S,≤, r, w)) : S

(2) a2(S,≤, r, w) :=

a5 [Fig. 12.17](S, λm : S . Least(S,≤,m), a11 [Fig. 12.15](S,≤, r, w)) :

∀x : S . (Least(S,≤, x) ⇒ (x =S Min(S,≤, r, w)))

Figure 12.18 The minimum-operator, and a lemma with proof

12.8 Conclusions

In the present chapter we have given a first introduction to the formalisation of

mathematics in λD. We selected an example from mathematics, dealing with

a definition, a lemma and a proof (all about the notion ‘least element’).

As could be expected, we immediately became confronted with a lack of

formalised foreknowledge about common notions in mathematics that play

a role in this example, such as equality and inequalities. Hence, we had to

introduce these notions.

With regard to equality , it appeared indispensable to also discuss notions

such as reflexivity, substitutivity and the congruence property. For the formal-

isation of more general relations, we have considered orders in general, together

with their characteristic properties: reflexivity, transitivity and antisymmetry.

As another example, we have given a λD-proof of the lemma that symmetry

of equality follows from reflexivity and substitutivity. We also gave a formal

proof that transitivity of equality follows from substitutivity.

As a demonstration of how these formal notions work in practice, we have

elaborated a complete formal proof of the original example, which turned out

well. In the course of the formalisation, we introduced a formal quantifier for

unique existence, which enabled us to accurately express the contents of the

example lemma.

Next, reconsidering the original example, we have noticed that the unique

existence of an entity enables one to identify it. For example, the uniqueness

of a least element permits us to speak about the minimum. Since it is natural

12.9 Further reading 275

to give a name to a uniquely existing entity, we have added the descriptor ι

as a primitive extension to our formal machinery. The unique element of set S

satisfying property P is denoted ι(S, P, u) (or ιux:S(P x)), where u codes a proof

of the uniqueness. We concluded the chapter with a few short demonstrations

of use and utility of the descriptor ι.

Altogether, our first confrontation of λD with a part of mathematics has

led to convincing results. Hence, our investigations described in the present

chapter inspire confidence that we are on the right path with our endeavours

to use λD as a well-designed backbone for the formalisation of mathematics.

In the following chapters we will be fortified in this opinion. But before

we start exploring this in a more systematic manner, in a build-up from the

ground, we consider the relation between sets and subsets. This is basic in

mathematics, but its formalisation seems to conflict with a fundamental prop-

erty of type theory, namely: decidability of typing. The following chapter is

devoted to an adequate formalisation of the set-notion.

12.9 Further reading

In the present chapter we see that some actual mathematics can be done in

λD, but that, in order to do that in a smooth way, we need to introduce a

notion of equality and a description operator, ι. The formal treatment of these

notions, roughly in the way we do in λD, goes back to A. Church (Church,

1940), where he introduces the simple theory of types and uses it to define a

system for higher order logic. The idea of descriptions – also called definite

descriptions – dates further back to 1905 (Russell, 1905). In Church’s system,

equality is also defined as Leibniz-equality. A definite description operator is

introduced axiomatically by Church (1940), similar to our introduction of ι as

a primitive notion.

From a logical point of view, the definite description operator ι can be seen

as a convenient abbreviation mechanism: in case we can prove that there is a

unique x satisfying a certain property P , we give it a name and refer to it via

that name. This does not extend the power of the logic in terms of the formulas

that are provable: it is a conservative extension. This can be seen from the fact

that alternatively one can ‘reason under an ∃-elimination’: suppose one wants

to prove C, given a proof of ∃x : A . (P (x)). Now, one raises flags x : A and

q : P (x) and tries to construct a proof of C. Upon success, one eliminates the

flags and concludes C out of the scope of these flags. With unique existence,

and by the use of the description operator, this becomes simpler, because one

can just refer to ‘the element a : A that satisfies P (a)’, without having to raise

these flags. The uniqueness guarantees that every time we eliminate a proof of

∃x : A . (P (x)), we get the same element of type A that satisfies property P .

276 Mathematics in λD: a first attempt

The ι-operator is related to D. Hilbert’s ε-operator (Hilbert & Bernays,

1939), also called the choice operator , which gives an element εx(P (x)) that

satisfies P in case one can prove ∃x(P (x)). This is stronger than the description

operator, because it does not require uniqueness. However, the ε-operator is

usually only considered in relatively weak logical systems and then the aim

is to show that it can be eliminated. This is also one of the aims of Hilbert’s

Program, where the ε-terms are the ‘ideal elements’; the aim of Hilbert is

to show that these can be eliminated, thus showing that the extension with

ε-terms is a conservative extension. Hilbert & Bernays (1939) show this, for

example, for quantifier-free predicate logic.

It should be noted that both the choice and the description operator are

much weaker than the Axiom of Choice (see van Dalen et al., 1978). This is a

crucial axiom in set theory that states that, if we have a collection of non-empty

sets Ai, indexed by i ∈ I, then there exists a choice function f that assigns to

every i ∈ I an element of Ai. The Axiom of Choice cannot be eliminated in

the way mentioned above and it is debated in the foundation of mathematics.

Exercises

12.1 Give a proof of the symmetry of equality in λD as suggested in Sec-

tion 12.2, by first proving the symmetry property for biimplication.

12.2 Let S : ∗s, x, y : S � eq-alt(S, x, y) := ΠP : S → ∗p . (P x⇒ P y) : ∗p
be a definition.

(a) Prove that eq-alt is a reflexive relation.

(b) Prove that eq-alt is a symmetric relation. (Hint: consider, given x : S

and y : S, the predicate λz : S . eq-alt(S, z, x).)

(c) Prove that eq-alt is a transitive relation.

(d) Check the substitutivity property for eq-alt . What can you conclude

about the predicate eq-alt?

12.3 (a) Check that line (3) of Figure 12.10 and line (2) of Figure 12.12 satisfy

the derivation rules of λD.

(b) The same question for lines (1) and (2) of Figure 12.18.

12.4 Let S be a set, partially ordered by ≤. For m,n ∈ S, define m < n as

m ≤ n ∧ (m �= n).

(a) Formalise the definition of< in λD and introduce the notation x <S y.

Prove the following by giving derivations in λD (in parts (c) and (d) you

may suffice with skeleton proofs, cf. Figure 12.8):

(b) < is irreflexive, i.e. ∀m∈S(¬(m < m)),

(c) < is strictly antisymmetric, i.e. ∀m,n∈S(¬((m < n) ∧ (n < m))),

(d) < is transitive.

Exercises 277

12.5 Let S be a set, P a predicate on S and let n be an element of S such

that P (n) and ∀x∈S(P (x) ⇒ (x = n)). Prove the following by giving

λD-derivations, first as skeleton proofs, and then as complete proofs:

(a) ∃1x∈S(P (x)),

(b) n =S ιx∈S(P (x)). (Hint: use Lemma 12.7.1.)

12.6 Let S be a set, partially ordered by ≤. An element m in S is called a

minimal element of S (with respect to ≤), if ∀x∈S(x ≤ m⇒ x =S m) (cf.

Section 8.6).

(a) If m is a minimal element of S, is this necessarily the only one?

(b) Prove the following (you may suffice with a skeleton proof in λD): if

m is a least element of S (with respect to ≤), then m also is a minimal

element of S.

(c) As in part (b): if m is a least element of S, then m is the only minimal

element of S.

(You may use classical logic and Exercise 12.5.)

12.7 A monoid is a set S with a binary operation ◦ : (S × S) → S that is

associative, i.e. ∀x,y,z∈S((x ◦ y) ◦ z = x ◦ (y ◦ z)).
Let (S, ◦) be a monoid. Assume that (S, ◦) has a unit , i.e. an element

e such that e ◦ x = x and x ◦ e = x, for all x in S.

(a) Formalise these notions by giving the corresponding λD-definitions.

(Take S → S → S as the type of ◦.)
(b) Prove in λD that the unit is unique.

(c) Assume that every element x of S has an inverse, i.e. an element y

such that x◦y = e and y ◦x = e. Give a skeleton proof in λD to show

that every x has a unique inverse.

(d) Raise a flag with x : S and express the inverse of x in λD.

12.8 ‘Invert’ the implication arrow in the type of line (2) of Figure 12.18 and

prove that also this type is inhabited in context (a), (b). (Use substitu-

tivity; see Section 12.2.)

12.9 Assume that the set R of real numbers has been formalised as a type

in λD. Moreover, assume that the number 0 has been formalised as a

term of type R, the binary subtraction operation ‘−’ as a term of type

R→ R→ R, the relations >R, ≥R and <R as terms of type R→ R→ ∗p,
and the unary absolute value operator | . . . | as a term of type R→ R.

Moreover, let the set N be formalised as a type in λD, and the rela-

tion >N as a term of type N→ N→ ∗p.
An (infinite) sequence of reals is then represented by a map f from N

to R.

278 Mathematics in λD: a first attempt

(a) Express in λD the convergence property for a sequence:

f : N→ R has limit l if ∀ε>0∃N∈N∀n>N (|f(n)− l| < ε).

(Hint: formalise ∀ε>0(P (ε)) as ∀ε : R . (ε >R 0⇒ P ε).)

(b) Give a mathematical proof, using classical logic, of the following

proposition:

If sequence f : N→ R has limit l, then this limit is unique.

(Hint: Assume that f has two different limits l1 and l2. Define ε as
1
2 |l1− l2| and derive a contradiction, using the triangle inequality , viz.

∀x,y,z∈R(|x− y|+ |x− z| ≥ |y − z|).)
(c) Transform the proof in (b) into a skeleton proof in λD. (You may

use infix notation.) Indicate where it is not yet possible to provide

an appropriate proof object, because formalised mathematical fore-

knowledge is missing.

13

Sets and subsets

13.1 Dealing with subsets in λD

In type theory, sets are not directly represented, although we have often treated

sets as types (i.e. objects of type ∗) in the previous chapters. We wrote ∗s
instead of ∗ to underline this. However, types and sets have very different

backgrounds. In Chapters 2 to 6, we introduced types as formal expressions,

in order to eliminate undesired properties from the (‘free’) untyped lambda

calculus. Sets, on the other hand, are mathematical constructs, meant to enable

us to talk about collections of mathematical objects.

Until now, considering sets as types has worked out fine. But we may expect

serious problems when it comes to subsets. The reason is that the Uniqueness

of Types property (see e.g. Lemma 10.4.10) conflicts with the ‘natural’ view

on subsets. For example, let S be a set and T a proper subset of S. Now let c

be an element of S. In type theory this could be expressed as c : S. But what

if we wish to express that c is also an element of the subset T? Then c : T

doesn’t work, because types S and T are different, hence Uniqueness of Types

would be violated.

As another example, let P be a property of elements in S. Then one can form

the set {x ∈ S |P x} of all elements of S satisfying P . Now, for c : S, to decide

c : {x ∈ S |P x}, we would have to decide if P c holds, which is undecidable

in general. Hence, treating subsets as types violates decidability of typing.

To make this example more concrete, let S be R, let P be λx : R . x ≥ 0

and suppose F : {x ∈ R | x ≥ 0} → R is the square root function. Now,

if we need to type-check the term F M with M : R, we have to verify that

M : {x ∈ R | x ≥ 0}; that is, we have to find a proof of M ≥ 0. This

is undecidable: following the famous results by Church (1936b) and Turing

(1936) there is no general algorithm to decide if something is provable.

This is a serious issue in type theory. On the one hand, we are content with

decidability of typing, as we argued in earlier chapters. This makes type theory

280 Sets and subsets

strong as a system for proof checking, which can be executed with a definite

answer (either ‘ok’, or ‘not ok’, but never ‘we don’t know’). Decidability of

typing is also helpful in proof finding.

On the other hand, decidability of typing prevents the usual handling of sub-

sets. This is strange for the average mathematician, who is used to considering

an object of a set as naturally belonging to every ‘superset’. So we conclude

that sets cannot be identified with types in a straightforward manner. Re-

searchers have developed several views on how to deal with (sub-)sets in type

theory, leading to different starting points, each with their own advantages and

disadvantages. (We mention the most prominent views in Section 13.8.)

So in order to be able to fruitfully incorporate set theory in our type-theoretic

framework of λD, we have to make a choice about the treatment of subsets. In

doing so, we have to take a decision about one fundamental issue, which has

been mentioned several times before: whether or not to stick to decidability of

typing, and to Uniqueness of Types.

It is tempting to abandon Uniqueness of Types in order to treat types in

the way mathematics treat sets. Then an element can belong to several types;

for example, the number 3 may have type N, and also Z, and R; moreover, the

same 3 may also have type ‘the odd natural numbers’, and ‘the interval of all

reals between −2 and 10’.

This would give us great freedom in typing a term, and would solve many

of our problems with subsets. However, this has serious drawbacks for the

effectivity of a type system as a basis for proof checking.

Remember that we want proof checking to be decidable. In our type-theoretic

framework, this means that given a pre-term p it should be decidable if it is a

well-formed proof term, and if so, what proposition A it is a proof of (so p : A).

In particular, proof checking is decidable, through the fact that type checking

is decidable.

Therefore, we hereby declare to maintain decidability of typing , and conse-

quently to accept all the consequences arising from this choice, in particular

with respect to subsets.

Before describing our choice for the representation of subsets, we mention

a number of notions related to sets in mathematics. Sets are mathematical

entities that embody the idea of ‘collecting objects together’. So a set S may

be thought of as being the collection of its elements. The notion elementhood

is expressed by the symbol ∈; so x ∈ S if and only if x is one of S’s elements.

One says that S is a subset of T (notation: S ⊆ T) if all elements of S are also

elements of T .

Further notions related to sets are equality of sets, subsets, union, intersec-

tion, difference, complement, powerset and Cartesian product.

13.1 Dealing with subsets in λD 281

The notion ‘complement’ of a set is a relative notion: one considers ‘the

complement of S with respect to T ’.

The powerset P(S) of some set S is defined as the set of all its subsets. Note

that the notions ‘set’ and ‘element’ are not absolute: an element of P(S) is

itself a set , which may have elements again. For example, {x ∈ N | x is even}
is both a set and an element (e.g. of P(N)).
Another essential aspect of set theory is the existence of a set building con-

struct (enabling the so-called Set Comprehension). This is usually denoted by

curly brackets: {x ∈ S | P (x)} denotes all elements of set S that satisfy predi-

cate P . For example, {x ∈ R |−2 < x < 10} is the ‘interval’ of all real numbers

between −2 and 10.

Now we discuss how to incorporate subsets in our type theory λD. A smooth

and fruitful manner to do this is to use predicates for representing subsets.

Let’s assume that we have a type S which we consider as our basic set of

entities, and that we want to isolate a subset V of S. Let P be the predicate

describing whether x is element of subset V or not, so we can define P as

P = λx : S . (x ∈ V), having type S → ∗p. There clearly is a straightforward

correspondence between this subset V and the mentioned predicate P , since

for arbitrary x : S we have: x ∈ V ⇔ P (x).

Hence, it is not a great step to consider the predicate P as representing the

subset V . This is a fruitful identification, since predicates are already part of

our formal system λD, so there is no need for new symbols or operations to

deal with the notion of subset.

In this subset-as-predicate view we start with a type, say S, acting as a set.

Next, subsets of S are represented as predicates over S. Consequently, the

powerset ps(S) coincides with the collection S → ∗p of all predicates over S

(see Figure 13.1, line (1)).

How about elementhood? This is easy, again: x is an element of subset V of S

if x satisfies predicate V over S, i.e. if V x holds. We express this in Figure 13.1,

line (2). In order to emphasise the correspondence between ‘x is an element

of subset V ’ and ‘x satisfies predicate V ’, we introduce the new symbol ε ,

resembling the usual elementhood-symbol ∈ , but not being identical: we wish

to keep the difference in mind. We write x εSV in this situation, or x ε V if it

is clear what the type S is (see the Notation following line (2)).

Figure 13.1 also contains the definition of inclusion of a subset in another,

and the definition of the union of subsets. These have a natural appearance,

and the more so if we add some sugaring notation, for example: V ⊆S W and

V ∪S W , for ⊆(S, V,W) and ∪(S, V,W), respectively.

This looks promising. Hence, we follow the subset-is-predicate approach of

Figure 13.1, where subsets of a type S are coded as predicates over this S.

282 Sets and subsets

S : ∗s
(1) ps(S) := S → ∗p : �

x : S

V : ps(S)

(2) element(S, x, V) := V x : ∗p
Notation : x εSV or x ε V for element(S, x, V)

V,W : ps(S)

(3) ⊆(S, V,W) := ∀x : S . (x ε V ⇒ x ε W) : ∗p
(4) ∪(S, V,W) := λx : S . (x ε V ∨ x ε W) : ps(S)

Figure 13.1 Subsets as predicates over a type

13.2 Basic set-theoretic notions

In this section we consider a number of basic notions about (sub-)sets and

see how these can be formalised in λD by means of the subset-as-predicate

approach chosen in the previous section (see Figure 13.1). The crucial point is

that in this approach there are only subsets, which are formalised as predicates.

The notion x ∈ V should not be identified with x : V but with x ε V , which is

a type. To establish x ∈ V we have to give a proof; that is, we have to construct

a proof term p : x ε V .

We now consider quantifications. Let S be a type representing a set. If V is a

subset of S, then we formalise V not as a type, but as a predicate on S. Hence,

we have S : ∗s, but V : S → ∗p. Now suppose that we want to quantify over the

‘subset’ V , for example by expressing that ∀x∈V (P (x)) for some predicate P .

Then we cannot formalise this immediately in λD as ∀x : V . P x, since V is

not a type (cf. the rule (form); recall that ∀ is a sugared version of Π).

An elegant way out is to quantify over the type S, and restrict the domain

of the x’s by means of the extra condition that x must satisfy V . So we have

the following translation convention:

∀x∈V (P (x)) � ∀x : S . (x ε V ⇒ P x).

There is a similar solution for the existential quantifier. This time we need

an ∧ instead of an ⇒ (examine why):

∃x∈V (P (x)) � ∃x : S . (x ε V ∧ P x).

So in our formalisation every quantifier ranges over a type.

Example 13.2.1 The expression ∀x ε V . (x ε W) has an illegal format,

hence we cannot use it for the definition of the inclusion V ⊆ W . But we can

write ∀x : S . (x ε V ⇒ x ε W) (see line (3) of Figure 13.1).

13.2 Basic set-theoretic notions 283

In Figure 13.2 we build further on lines (1) and (2) of Figure 13.1. In order to

get the complete picture, we repeat the definitions of inclusion and union, and

add other ones. We also incorporate the customary notation for subset com-

prehension {x : S | V x} (cf. the previous section) for the subset-as-predicate

λx : S . V x. Writing x ε V instead of V x, we obtain {x : S |x ε V } as a

recognisable notation for the subset-as-predicate.

Inclusion between subsets of S and equality of subsets are propositions (see

lines (1) and (2) of Figure 13.2).

Note that we apply the following translations:

V is a subset of the type S � V : ps(S) (or V : S → ∗p)

V is a subset of W � V ⊆W

for V and W subsets of the type S (or ∀x : S . (x ε V ⇒ x ε W))

Next, we define in Figure 13.2 the union, intersection and difference of two

subsets of S; which are subsets, again. And we consider the complement of a

subset, with respect to S.

S : ∗s
V : ps(S)

Notation : {x : S |x ε V } for λx : S . V x

W : ps(S)

(1) ⊆(S, V,W) := ∀x : S . (x ε V ⇒ x ε W) : ∗p
Notation : V ⊆W for ⊆(S, V,W)

(2) IS (S, V,W) := V ⊆W ∧ W ⊆ V : ∗p
(3) ∪(S, V,W) := {x : S |x ε V ∨ x ε W} : ps(S)

(4) ∩(S, V,W) := {x : S |x ε V ∧ x ε W} : ps(S)

(5) \(S, V,W) := {x : S |x ε V ∧ ¬(x ε W)} : ps(S)

Notation : V = W, V ∪W, V ∩W, V \W, respectively

(6) c(S, V) := {x : S | ¬(x ε V)} : ps(S)

Notation : V c for c(S, V)

Figure 13.2 Propositions and operations concerning sets

The new notation enables us, for example, to define the union of V and W

in a familiar manner:

∪(S, V,W) := {x : S | x ε V ∨ x ε W} : ps(S) .

For convenience’s sake, we allow the usual infix notations in Figure 13.2.

284 Sets and subsets

The base set S is not mentioned in these sugared notations. Furthermore, we

overload the symbol ‘=’, since this equality symbol, earlier having been defined

for elements, is now also employed for subsets.

Consider the expression y ε {x : S |P x}. Undoing the sugaring concerning

both ε and {. . . | . . .}, we obtain (λx : S . P x) y, which is β-equal to P y. This

β-equality is used in Figure 13.3. Line (1) can be considered as an introduction

rule for ε, and line (2) as its elimination rule.

S : ∗s
P : ps(S)

y : S

u : P y

(1) ε -in(S, P, y, u) := u : y ε {x : S |P x}
v : (y ε {x : S |P x})

(2) ε -el(S, P, y, v) := v : P y

Figure 13.3 Introduction and elimination rules for the new element symbol

In order to demonstrate how one works with these set notions, we give the

proof of a simple set-theoretic theorem in λD (see Figure 13.4). We prove the

following:

For all subsets V and W of S: if V ⊆W c, then V \W = V .

Since the proof is an easy exercise with logic and with the definition mech-

anism of λD, we only make some remarks about the way in which the proof

terms are constructed.

We start in Figure 13.4 (lines (1) to (4)) with the first part of the proof,

showing that we always have the inclusion V \W ⊆ V (independent of whether

or not V ⊆W c). In line (1) we use that (x ε V \W)
Δ
=β (x ε V ∧¬(x ε W)). An

alternative to proof term v in line (1) is a proof term based on ε -el (construct

it yourself).

The second part of the proof (lines (5) to (10)), proving V ⊆ V \W , is slightly

more complicated. Now we need that V ⊆ W c. Lines (11) and (12) conclude

the proof.

We omit several proof terms based on logical rules: from Figure 13.4 onwards

we will often only mention the logical rule employed, by giving a hint, without

bothering about the details. We take it that the reader is by now sufficiently

accustomed to the use of the logical (natural deduction) rules in λD. Hence, we

will often omit the detailed arguments for these rules, since they can be easily

13.2 Basic set-theoretic notions 285

constructed following familiar patterns. Of course, a hint can lead to several

solutions; for example, the logical hint . . . use ⇒ -in on a2 . . . in line (3) can

be filled in with

− ⇒-in(x ε V \W,x ε V, λv : (x ε V \W) . a2) (in the natural deduction style),

or directly with

− λv : (x ε V \W) . a2 (in the type-theoretic style).

S : ∗s | V,W : ps(S)

x : S

v : (x ε V \W)

(1) a†1 := v (or : use ε -el) : x ε V ∧ ¬(x ε W)

(2) a2 := . . . use ∧-el1 on a1 . . . : x ε V

(3) a3 := . . . use ⇒ -in on a2 . . . : x ε V \W ⇒ x ε V

(4) a4(S, V,W) := . . . use ∀-in on a3 . . . : V \W ⊆ V

u : V ⊆W c

x : S

v : x ε V

(5) a5 := ux v : x ε W c

(6) a6 := a5 : ¬(x ε W)

(7) a7 := . . . use ∧-in on v and a6 . . . : x ε V ∧ ¬(x ε W)

(8) a8 := a7 : x ε V \W
(9) a9 := . . . use ⇒ -in on a8 . . . : (x ε V)⇒ (x ε V \W)

(10) a10(S, V,W, u) := . . . use ∀-in on a9 . . . : V ⊆ V \W
(11) a11(S, V,W, u) := . . . use ∧-in on a4(S, V,W) and a10(S, V,W, u) . . . :

V \W = V

(12) a12(S, V,W) := . . . use ⇒ -in on a11 . . . :

(V ⊆W c)⇒ (V \W = V)

†parameters suppressed

Figure 13.4 An example proof about sets

We invite the reader to study the details. We confine ourselves to two com-

mentary remarks:

− It would be more in line with logic (but also more involved) to replace the

proof term ux v in line (5) by a ∀-el -step, followed by an ⇒-el -step.

− In lines (6) and (8), we could also have used ε-el and ε-in, respectively.

286 Sets and subsets

A proof as given in Figure 13.4 requires some effort to construct, but on

completion its course is clearly visible, in particular when we omit everything

but the skeleton proof – otherwise said: when we concentrate on the types.

Some conventions for syntactic sugaring make the proof more transparent, as

this derivation demonstrates; using dots or only hints for obvious arguments

simplifies matters considerably.

Remark 13.2.2 A representation of a proof in λD-style can shed light on

interesting aspects. As a small example: in Figure 13.4 we see in line (11) a

reference to two proof objects: a4 and a10. Note that the parameter list of a4
is one entry shorter than that of a10; this corresponds to what we have noticed

earlier: that the proof of V \W ⊆ V does not depend on the assumption of

V ⊆W c, but the proof of V ⊆ V \W does.

Reflecting on the notions introduced in this section, there remains one ques-

tion: we have defined subset-equality IS (S, V,W) (in sugared version: V = W)

in Figure 13.2 as the conjunction of V ⊆ W and W ⊆ V . How does this

equality relate to the Leibniz-equality as discussed in Section 12.2?

Since we have S : ∗p, but ps(S) : �, we cannot write V =ps(S) W for Leibniz-

equality of V and W by using the definition of x =S y as given in line (1) of

Figure 12.3. We can, however, define a similar Leibniz-equality on the powerset

of S as ΠK : ps(S) → ∗p . (K V ⇔ KW) – in words: for all predicates K on

the powerset of S, if V satisfies K, then also W ; and vice versa. Let’s denote

this Leibniz-equality of V and W by V =̂ps(S) W .

Now it would obviously be desirable that the subset-equality V = W implies

the Leibniz-equality V =̂ps(S) W , and vice versa.

It is easy to show (Exercise 13.1) that Leibniz-equality implies subset-equal-

ity. For the implication the other way round, however, no proof can be con-

structed with what we have. So it is necessary to add another axiom. This we

do in Figure 13.5.

S : ∗s
V,W : ps(S)

(1) eq-subset(S, V,W) := ΠK : ps(S)→ ∗p . (K V ⇔ KW) : ∗p
Notation : V =̂ps(S) W for eq-subset(S, V,W)

u : V = W

(2) IS -prop(S, V,W, u) := ⊥⊥ : V =̂ps(S) W

Figure 13.5 V = W implies V =̂ps(S) W

13.3 Special subsets 287

13.3 Special subsets

Another basic notion connected with sets is that of the ‘empty set’, the set

having no elements. In our powerset approach we cannot suffice with one empty

set relative to a universe; we have to define, for every type S : ∗s, an empty

set ∅(S) with respect to that S. Such an ∅(S) (denoted ∅S) is a subset of S,

coded as the predicate λx : S . ⊥ on S (Figure 13.6).

We also define the ‘full subset’ of S, which contains all elements of S. It is

coded as the predicate λx : S . ¬⊥. (Note that full -set(S) is the complement

of ∅S relative to S; see Exercise 13.6 (a).)

S : ∗s
(1) ∅(S) := {x : S | ⊥} : ps(S)

Notation : ∅S for ∅(S)
(2) full -set(S) := {x : S | ¬⊥} : ps(S)

Figure 13.6 The empty set and full set as subsets of a type S

As a simple exercise, we prove that the empty set is included in every subset

of S, and that every subset is included in the full set (see Figure 13.7). In

line (3) we use that x ε ∅S is β-equal to ⊥, and in line (7) that x ε full -set(S)

is β-equal to ¬⊥.

...

V : ps(S)

x : S | u : x ε ∅S
(3) a†3 := u : ⊥
(4) a4 := . . . use ⊥-el on a3 . . . : x ε V

(5) a5 := . . . use ⇒-in and ∀-in . . . : ∅S ⊆ V

x : S | v : x ε V

(6) a6 := λy : ⊥ . y : ¬⊥
(7) a7 := a6 : x ε full -set(S)

(8) a8 := . . . use ⇒-in and ∀-in . . . : V ⊆ full -set(S)
†parameters suppressed

Figure 13.7 Lemma: ∅S ⊆ V ⊆ full -set(S), for all subsets V

In Figure 13.8 we practise with the empty-set notion. We prove that if a

subset of S is not the empty set, then it has at least one element; and vice

288 Sets and subsets

versa. In the derivation we have omitted several proof objects, and replaced

them by hints.

In line (6) we apply ∃-in-alt (see Figure 11.28), making the derivation non-

constructive. So we use classical logic. This is in accordance with our earlier

decision (see Section 11.4) to take classical logic as our basic system for logic.

S : ∗s
V : ps(S)

u : V �= ∅S
v : V ⊆ ∅S

(1) a†1 := . . . use ∧-in on v and a5 [Fig. 13.7] . . . : V = ∅S
(2) a2 := u a1 : ⊥
(3) a3 := . . . use ¬ -in . . . : ¬(V ⊆ ∅S)
(4) a4 := a3 : ¬∀x : S . (x ε V ⇒ x ε ∅S)
(5) a5 := a4 : ¬∀x : S . (¬(x ε V))

(6) a6 := ∃-in-alt(S, λx : S . (x ε V), a5) : ∃x : S . (x ε V)

(7) a7 := . . . use ⇒ -in . . . : (V �= ∅S)⇒ ∃x : S . (x ε V)

u : ∃x : S . (x ε V)

v : V = ∅S
x : S | w : x ε V

(8) a8 := . . . use ∧-el1 on v . . . : V ⊆ ∅S
(9) a9 := a8 xw : x ε ∅S

(10) a10 := a9 : ⊥
(11) a11 := . . . use ∃-el on u and a10 . . . : ⊥
(12) a12 := . . . use ¬-in on a11 . . . : V �= ∅S
(13) a13 := . . . use ⇒ -in on a12 . . . : (∃x : S . (x ε V))⇒ (V �= ∅S)
(14) a14(S, V) := . . . use ⇔ -in on a7 and a13 . . . :

(V �= ∅S)⇔ ∃x : S . (x ε V)
†parameters suppressed

Figure 13.8 Properties of the empty set

13.4 Relations

Now that we have seen how to represent sets in λD, the time has come to look

at notions which are connected with sets. The first matter that we study is the

notion relation.

As we have observed before, a relation on S is a binary predicate over S.

13.4 Relations 289

In line with type theory, we employ Currying for binary functions (see Re-

mark 1.2.6) and write binary predicates over S as composite unary predicates,

of type S → S → ∗p.
We mentioned earlier that relations may have specific properties such as

reflexivity, symmetry or transitivity. These properties are easily expressible

in λD (see Figure 13.9). A relation having all three properties is called an

equivalence relation.

Remark 13.4.1 We have added a bit of sugar in line (4) of Figure 13.9:

ρ ∧ σ ∧ τ is not official syntax; it should be read as (ρ ∧ σ) ∧ τ .

S : ∗s
R : S → S → ∗p

(1) reflexive(S,R) := ∀x : S . (Rxx) : ∗p
(2) symmetric(S,R) := ∀x, y : S . (Rxy ⇒ Ry x) : ∗p
(3) transitive(S,R) := ∀x, y, z : S . (Rxy ⇒ Ry z ⇒ Rxz) : ∗p
(4) equivalence-relation(S,R) :=

reflexive(S,R) ∧ symmetric(S,R) ∧ transitive(S,R) : ∗p

Figure 13.9 Basic notions connected to relations

Remark 13.4.2 We have defined the relations in Figure 13.9 on the ‘full’

S, being a type. If we want to consider such relations for a subset of S (i.e. a

predicate over S), say V , we can employ a coding similar to the one used in

the beginning of Section 13.2. For example, reflexivity on subset V of S can be

defined as:

refl-subset(S, V,R) := ∀x : S . (x ε V ⇒ Rxx).

An equivalence relation enables one to divide a set into non-empty equiva-

lence classes . These can be defined as in Figure 13.10: the equivalence class of

x consists of all y’s related to x. We abbreviate class(S,R, u, x) by [x]R, thus

hiding two parameters.

Equivalence classes have three important characteristics:

(1) ∀x : S . ([x]R �= ∅S),
(2) ∀x, y : S . ([x]R = [y]R ∨ ([x]R ∩ [y]R = ∅S)),
(3) ∀y : S . ∃x : S . (y ε [x]R).

We can express this in words as follows:

(1) No class is empty.

(2) If the intersection of two classes is non-empty, then the classes coincide.

(3) Every element of S belongs to some class; otherwise said: the union of all

classes is the full S. (See also Exercises 13.10 and 13.11.)

290 Sets and subsets

S : ∗s
R : S → S → ∗p

u : equivalence-relation(S,R)

x : S

class(S,R, u, x) := {y : S | Rxy} : ps(S)

Notation : [x]R for class(S,R, u, x)

Figure 13.10 Equivalence classes

Together, (2) and (3) imply: each x belongs to exactly one class.

As a demonstration of what we have achieved now, and also as an exercise,

we prove (2) in the following form, which is equivalent (Exercise 13.9):

∀x, y, z : S . (z ε [x]R ⇒ z ε [y]R ⇒ ([x]R = [y]R)) .

In words: if there is a z that belongs to both class [x]R and class [y]R, then these

classes must be the same – hence, we never have ‘partial overlap’ between two

classes, but either no overlap or full overlap. (Note that this does not imply

that x = y; it only entails that x and y belong to the same class.)

The proof is given as a derivation in Figure 13.11.

Remark 13.4.3 Since we assume that R is an equivalence relation on S,

we have symmetry and transitivity of R. We do not spell this out, but only

mention it (see lines (4)–(6)). Note that we do not need reflexivity.

We only give a short comment and leave it to the reader to study the details

of how this proof has been developed.

− Start from the bottom upwards: the type of line (12) contains our goal.

− Decomposition of the goal leads to a number of flags and to the goals regis-

tered in the types of lines (9) and (10).

− The first of these new goals is rephrased in line (8) and leads to the flags

in (d) and the goal m ε [y]R in line (7). This goal type can be rewritten to

m ε {n : S | Ry n}, so a proof of Rym will do.

− We get Rym by using assumptions w, u and v, which give us Rxm, Rxz

and Ry z (lines (1) to (3)). These three together lead to Rym via symmetry

and transitivity of R (lines (4) to (6)).

− Finally, note how nicely we can use line (9), in order to obtain the ‘mirror

result’ in line (10): a swap of two pairs of parameters suffices.

The rest is routine.

13.5 Maps 291

(a) S : ∗s | R : S → S → ∗p | u : equivalence-relation(S,R)

(b) x, y, z : S

(c) u : (z ε [x]R) | v : (z ε [y]R)

(d) m : S | w : (m ε [x]R)

(1) a†1 := . . . use ε -el on w . . . : Rxm

(2) a2 := . . . use ε -el on u . . . : Rxz

(3) a3 := . . . use ε -el on v . . . : Ry z

(4) a4 := . . . use symmetry on a2 . . . : Rz x

(5) a5 := . . . use transitivity on a3 and a4 . . . : Ry x

(6) a6 := . . . use transitivity on a5 and a1 . . . : Rym

(7) a7 := a6 : m ε [y]R

(8) a8 := . . . use ⇒ -in and ∀-in on a7 . . . :

∀m : S . (m ε [x]R ⇒ m ε [y]R)

(9) a9 := a8 : [x]R ⊆ [y]R

(10) a10(S,R, u, x, y, z, u, v) := a9(S,R, u, y, x, z, v, u) : [y]R ⊆ [x]R

(11) a11 := . . . use ∧-in on a9 and a10 . . . : [x]R = [y]R

(12) a12(S,R, e) := . . . use ⇒ -in and ∀-in on a11 . . . :

∀x, y, z : S . (z ε [x]R ⇒ z ε [y]R ⇒ [x]R = [y]R)
†parameters suppressed

Figure 13.11 Proof of a lemma about equivalence classes

Until now, we have discussed relations R on a single type S, represented as

binary predicates over this S, so R : S → S → ∗p (using Currying). A natural

extension is to consider relations on a pair of types, say S and T . (In such a

case one also speaks of a relation between S and T .) The obvious representation

of such a relation has type S → T → ∗p.

Examples 13.4.4 Assume that we have N and Z as types. Consider the

relation R between N and Z that holds between n : N and x : Z if n = x2 + 1.

So we have R 5 2, R 5 (−2), and ¬(R 5 x) for any other x : Z. This relation

can be coded as R := λn : N . λx : Z . (n = x2 + 1) : N→ Z→ ∗p.

13.5 Maps

A map can be seen as a special kind of relation. To be precise: a map from set

S to set T is a relation F : S → T → ∗p, such that:

∀x∈S∃1y∈T (F x y).

292 Sets and subsets

So the essential property that turns a relation into a map is that each x ∈ S

has a relation with exactly one y ∈ T . We call such a relation a functional

relation. Because of the uniqueness of the y related to such an x, one usually

prefers to consider F as a unary symbol and one writes F (x) = y instead of

F x y.

Remark 13.5.1 One can consider a wider notion of ‘map’ and speak of a

map if there is, for each x, at most one related y (so there may be none). Such

a relation is also called a partial map. In the present text, however, maps are

always ‘total’, in the sense explained above.

We have already seen that the notion of a map is a core concept in type

theory: we write F : A→ B in order to express that F is a map from A to B;

where A→ B is also an abbreviation of Πx : A . B (cf. Notation 5.2.1).

Fortunately, the connection between a map as an inhabitant of a (functional)

Π-type and a map as a functional relation (a predicate) is easy to establish.

Given the map F : S → T , we have the relation R = λx : S . λy : T . (y = F x);

and vice versa, given R : S → T → ∗p with u : ∀x : S . ∃1y : T . R x y, we have

the function F = λx : S . ιuxy:T (Rxy). (For the ι, see Figure 12.16.) This is

expressed in lines (1) and (3) of Figure 13.12. In line (2) we add some more

information (we leave it to the reader to derive the proof object).

S, T : ∗s
F : S → T

(1) R(S, T, F) := λx : S . λy : T . (y =T F x) : S → T → ∗p
(2) a2(S, T, F) := . . . Exerc. 13.12 (a) . . . :

∀x : S . ∃1y : T . (R(S, T, F)x y)

R : S → T → ∗p
u : ∀x : S . ∃1y : T . R x y

(3) F (S, T,R, u) := λx : S . ιuxy:T (Rxy) : S → T

Figure 13.12 The connection between a functional relation and a type-
theoretic function

Remark 13.5.2 In mathematics, the words ‘function’ and ‘map’ often mean

the same thing, albeit that ‘map’ sometimes suggests a more abstract viewpoint.

We shall continue to represent maps in the type-theoretic format, which is

– in our framework – more basic than the functional relation format.

It is easy to express some properties that maps F : S → T may have, such

as injectivity, surjectivity and bijectivity (see Figure 13.13). Another directly

13.5 Maps 293

expressible notion is that of the inverse of a bijective map (again, see Fig-

ure 13.13).

S, T : ∗s
F : S → T

(1) injective(S, T, F) := ∀x1, x2 : S . (F x1 =T F x2 ⇒ x1 =S x2) : ∗p
(2) surjective(S, T, F) := ∀y : T . ∃x : S . (F x =T y) : ∗p
(3) bijective(S, T, F) := injective(S, T, F) ∧ surjective(S, T, F) : ∗p

u : bijective(S, T, F)

(4) a4(S, T, F, u) := . . . Exerc. 13.12 (b) . . . :

∀y : T . ∃1x : S . (F x =T y)

(5) inv(S, T, F, u) := λy : T . ι
a4(S,T,F,u) y
x:S (F x =T y) : T → S

Figure 13.13 Some well-known notions connected with maps

Things become a bit more complicated when the domain of function F is

not the type S, but a subset V of S. Following the line that we have taken

earlier, the type of such an F then becomes Πx : S . ((x ε V) → T), with an

extra argument, x ε V .

As an example of the extra administration necessary for such a function F

on a subset, we give the corresponding definition of injectivity in Figure 13.14.

S, T : ∗s
V : ps(S)

F : Πx : S . ((x ε V)→ T)

(1) inj -subset(S, T, V, F) := ∀x1, x2 : S . Πp : (x1 ε V) . Πq : (x2 ε V) .

((F x1 p =T F x2 q) ⇒ x1 =S x2) : ∗p

Figure 13.14 Injectivity of a map on a subset

Other notions that can relatively easily be formalised, are, given sets S and

T , and a function F : S → T :

− The F -image of a subset V of source set S; the image of V is the subset of T

consisting of all the F -values of elements in V .

− The F -origin of a subset W of range set T ; the origin of W is the subset

of S consisting of all elements which have F -values in W .

294 Sets and subsets

S, T : ∗s
F : S → T

V : ps(S)

(1) image(S, T, F, V) := {y : T | ∃x : S . (x ε V ∧ F x =T y)} : ps(T)

W : ps(T)

(2) origin(S, T, F,W) := {x : S | F x ε W} : ps(S)

Figure 13.15 Image and origin of a subset

See Figure 13.15 for a formal description of image and origin.

We conclude this section with an example concerning these notions. We

prove the following lemma in λD:

For F : S → T and V ⊆ S, we have that V ⊆ origin(image(V)).

The idea behind the proof is simple: let s ε V , then F s ε image(V) (by the

definition of image), hence (by the definition of source) s ε origin(image(V)).

The λD-proof – see Figure 13.16 – is hardly more complicated than that. The

justification for the formal proof is directly based on the definitions of image

and origin as given in Figure 13.15. It is a good exercise for the reader to check

precisely that the given proof is a correct λD-derivation (Exercise 13.16 (a)).

S, T : ∗s
F : S → T

V : ps(S)

s : S | u : (s ε V)

(1) a†1 := eq-refl [Fig. 12.2](T, F s) : F s =T F s

(2) a2 := . . . use ∧-in . . . : s ε V ∧ F s =T F s

(3) a3 := . . . use ∃-in . . . : ∃x : S . (x ε V ∧ F x =T F s)

(4) a4 := a3 : F s ε image(S, T, F, V)

(5) a5 := a4 : s ε origin(S, T, F, image(S, T, F, V))

(6) a6(S, T, F, V) := . . . use ⇒ -in and ∀-in . . . :

V ⊆ origin(S, T, F, image(S, T, F, V))

†parameters suppressed

Figure 13.16 A lemma about image and origin of a subset

13.6 Representation of mathematical notions 295

13.6 Representation of mathematical notions

In the present chapter we have investigated how to represent a subset of a

type S in type theory, and we have decided to identify a subset of S with a

predicate on S, representing both as λx : S . P x. Such a many-to-one map of

mathematical notions into λD-constructs occurs more often. In the diagram

below (Figure 13.17) we give a list of some basic notions which have a differ-

ent meaning in mathematics, but are represented by the same λD-constructs.

(Compare this with the way in which logical notions are represented in type

theory; see Figure 5.2.)

mathematics the type theory of λD

function space A→ B Πx : A . B A : ∗s, B : ∗s
implication A⇒ B Πx : A . B A : ∗p, B : ∗p
universal statement ∀x∈A(B(x)) Πx : A . B A : ∗s, B : ∗p

function from A to B λx : A . t A : ∗s, t : B : ∗s
predicate on A λx : A . t A : ∗s, t : ∗p
subset of A λx : A . t A : ∗s, t : ∗p

two-valued function from A×B to C λx : A . λy : B . t A,B : ∗s, t : C : ∗s
binary relation R over A×B λx : A . λy : B . t A,B : ∗s, t : ∗p

Figure 13.17 Coding mathematics in λD

There are clearly advantages of this ‘compression’ of different notions into

the same form. For example, this enables us to keep the system λD relatively

simple and ‘lean’. Moreover, similar calculational patterns in mathematics and

logic coincide in λD, as we have already noticed before; see e.g. Examples 2.4.8

and 2.4.9.

On the other hand, a clear disadvantage is that the interpretation of λD-

expressions becomes ambiguous. When confronted, for example, with λx : A . t,

it is not clear whether this represents a function, a predicate or a subset. This

can be cumbersome when we want to decipher the mathematical meaning of a

certain text given purely in λD-coded form, without further comment.

This disadvantage disappears almost completely, however, when one takes

the precaution to divide the ∗’s into ∗s and ∗p, as advocated in Section 8.7 (cf.

Notation 8.7.1). This simple sugaring, albeit not official syntax of λD, enables

one to give an unambiguous interpretation of almost all of the mentioned no-

tions (see Figure 13.17, final column). The only exception is that predicates

296 Sets and subsets

over a type and subsets of that type cannot be distinguished, as a consequence

of our choice in Section 13.1 to identify these notions in the λD-coding.

13.7 Conclusions

We have seen that it is not straightforward how to deal with subsets in type

theory, since there is a potential conflict of interests between two visions:

− the liberal view of the mathematical community towards set-membership,

which is undecidable in general and allows an element to be a member of

several sets;

− the strict typing discipline in type theory (and in particular, in λD), which

is decidable and where terms have a unique type.

The differences are explainable because of the divergent perspectives:

− In mathematics, one is usually not focused on a mechanised verification. It

suffices that a fellow mathematician (or a student) can follow the reasoning

and thereby obtains confidence in the correctness of the mathematical con-

tent that is presented. Hence, the conviction that a viable proof path exists

is enough; mathematical training enables one to choose the effective steps

necessary to complete a mathematical argument, and thus one obtains a

great, tradition-honoured trust in the results. The experienced mind makes

the proper choices – in general – for a fruitful processing of the mathematical

material.

− The perspective of type theory, on the other hand, is different. Its centre

of interest is all imaginable proofs, including the extremely complex ones,

or the tedious ones, or the long ones (e.g. concerning the correctness of

computer programs), where humans tend to lose their concentration. Here

the crucial thing is that an automatic verification can be executed by a

computer program. This introduces the point of decidability , which is crucial

for a fluid advancement of the verification process. Human interventions

should be minimised; preferably, to the level of non-interference. Decidability

makes this possible, at least in principle: it may still happen that a decidable

procedure takes an unknown amount of time or space, which may cause

problems as long as the procedure is not finished. So feasibility is another

point. However, experiences with the use of type theory have demonstrated

that the verification of mathematical content in formal form does not tend

to last forbiddingly long or to cost too much memory space.

Decidability and feasibility are particularly important for proof checking, so

also for type checking. Subsets are amply present in mathematics, in particular

in proofs. Hence, a careful treatment of the formalisation of the notions ‘set’

and ‘subset’ is very relevant. We have chosen the subset-as-predicate approach,

13.8 Further reading 297

since there is a direct correspondence between subsets and predicates, and since

predicates are already part of our λD machinery.

We have put the chosen approach to the test by formalising several notions

connected with subsets, such as the basic notions of inclusion, union and inter-

section. Moreover, we have practised with the formal apparatus by considering

examples. We have also formalised a number of relations on (sub-)sets, in par-

ticular equivalence relations and equivalence classes, maps between sets and a

number of notions connected with maps. It worked out well, which gives us

confidence in the rightness of our choice.

In Section 13.6 we explained that there is a many-to-one map of mathematics

into λD, meaning that different mathematical notions are represented by the

same λD-constructs. The interpretation of a piece of λD-code as originally

intended remains, however, possible, if one has added a bit of sugar during the

coding process, in the sense that one writes ∗s instead of ∗ for the type of sets,
and ∗p for the type of propositions.

In the forthcoming chapters we continue the endeavour to deal with subsets

via the subsets-as-predicates approach, as we did in the present chapter. It

will turn out that our choice is fruitful. Sometimes we shall find that it is

not easy to force mathematics into this jacket, but it is doable and does not

create insurmountable problems. The more we practise, the better it goes.

And sometimes, the meticulous formalisation that we pursue has, also when

considering subsets, unexpected consequences: it may evoke new insights and

a deeper view of mathematics and its meaning. These are the real moments of

satisfaction – or beauty, for some of us.

So indeed, there is a price to be paid for maintaining decidability of typing

and Uniqueness of Types, but it appears not to be too high. And we still do

succeed – so we’ve got nothing serious to complain about, the more so as we

realise that the profits of decidability are impressive.

13.8 Further reading

The standard for set theory is Zermelo–Fraenkel axiomatic set theory (ZF),

sometimes extended with the Axiom of Choice (AC). This is a first order

theory about the ∈-relation, that axiomatises which sets exist and how sets

can be formed from other sets. Axiomatic set theory is one of the answers

to the foundational and consistency questions that arose around 1900. The

foundational question is whether all of mathematics can be based on one simple

basic set of assumptions and constructions. G. Cantor (Cantor, 1874) was the

first to develop set theory for this, as early as 1874, where he also showed that

there exist various levels of infinity. Cantor’s first set theory is inconsistent,

as was noticed by C. Burali-Forti and later by B. Russell, using his famous

298 Sets and subsets

paradox, which he discovered in 1901 (see van Heijenoort, 1967, pp. 124–125;

Russell, 1903). Since then the question of creating a consistent foundation for

mathematics has become a major topic of research.

Russell developed his Ramified Type Theory, first in The Principles of Math-

ematics (Russell, 1903), and later it was shown by A.N. Whitehead and Russell

in the famous three volumes of Principia Mathematica (Whitehead & Russell,

1910) that one can actually formalise many essential parts of mathematics in

this type theory. (For a modern view on these matters, see Kamareddine et

al., 2002, 2004.) For Russell, this shows the viability of the so-called logicist

approach, which asserts that all of mathematics can be based on (reduced to)

logic.

The Principia Mathematica has been very influential, even though the subtle

ramification of its type theory is sometimes felt as awkward and Whitehead

and Russell had to resort to an additional ‘axiom of reducibility’ to make their

approach viable. It was later shown, first by F.P. Ramsey (Ramsey, 1926), that

the addition of the axiom of reducibility makes the ramification superfluous.

In 1940, A. Church defined the simple theory of types (Church, 1940), which

can be seen as a ‘deramification’ of Russell’s type theory. Church used it to

define the language of higher order logic. On top of it he defined the natural

deduction derivation rules of higher order logic, so proofs in his system are

‘external’: they are derivation trees. Compared to the simple theory of types,

our system λD internalises derivations as typed λ-terms. On top of that, we

add type dependency (allowing the definition of objects that depend on proofs)

and we add a definition mechanism.

To overcome paradoxes and regain consistency, E.F.F. Zermelo chose another

way: he axiomatised set theory in 1908. His axioms were later (around 1921)

adapted by A.H. Fraenkel, which led to a system now known as ZF (see e.g.

Jech, 2003, or van Heijenoort, 1967, where the original papers of Zermelo and

Fraenkel can be found). This axiom system is widely used, albeit mostly in the-

oretical investigations: mathematicians hardly ever base their work explicitly

on ZF. The system describes which sets exist, where sets are just ‘collections of

things’ that don’t have any structure. So, one can recover the natural numbers

in set theory by describing it as the set {∅, {∅}, {{∅}}, . . .}, but also in different

ways. There is no ‘typing’ involved in the sense that one can recognise a natural

number from the shape of the expression. This makes formalising mathematics

in pure set theory relatively unnatural. See van Dalen et al. (1978) for a clear

exposition of ZF.

The advantage of set theory over type theory is that various ‘natural con-

structions’ are directly available, like the union of two sets. In the present chap-

ter we have looked at ways to also include these in our type theory, starting

from a practical point of view: which set-operations are needed when formal-

13.8 Further reading 299

ising mathematics and how we include them in our type theory by providing

the proper primitive notions.

There are various ways of formalising sets in type theory, each of which has

its own advantages and disadvantages. In the present chapter we have chosen

‘sets as predicates’, which works well, as we have indicated by showing how to

deal with the basic set-theoretic constructions. We now overview some other

possible approaches and we briefly indicate why we have not chosen them.

(1) Follow the approach of Russell and Whitehead to use their Ramified Type

Theory to formalise sets. They also follow the ‘sets-as-predicates’ ap-

proach, but their predicates live in a different type theory. As we have

already indicated above, Ramsey and Church have shown that the ramifi-

cation is unnecessarily complicated, so we don’t follow that approach.

(2) Formalize Zermelo–Fraenkel axiomatic set theory directly, by declaring a

fixed basic type V : ∗ of all sets and letting the sets be terms of this type V .

Then both elements and sets are represented as terms of type V and ele-

menthood is a relation on V , so ∈ : V → V → ∗. By assuming the axioms of

Zermelo and Fraenkel we obtain ZF. The ZF-approach is widely employed

to settle foundational issues, but it is not used for the real formalisation

of mathematics, because the intrinsic untyped behaviour of ZF does not

reflect everyday mathematics, where a type-like classification forms a nat-

ural and widely used concept. The ∈ - relation in ZF set theory relates

entities of the same level, where everyday mathematical practice views it

as relating an object to a collection. This idea is much better reflected in

the type-theoretic framework. Also, using set theory for formalising math-

ematics involves a lot of coding: numbers are encoded as sets and so are

functions, relations, etcetera. In type theory we make an attempt to avoid

too much coding and we feel that using Zermelo–Fraenkel axiomatic set

theory for formal mathematics is not a natural thing.

(3) Treat powersets as types, by letting ps(S), defined as S→∗, be of type ∗.
This is an attractive idea, because now the powerset of a type is again

a type, which feels closer to axiomatic set theory. We then immediately

have ps(ps(S)) : ∗, etcetera, so all powersets of types are again types.

In van Benthem Jutting (1977) it is shown that this formalization of set

theory, together with a number of primitive definitions about equality and

pairing, is enough to deal with sets as they occur in the foundations of

mathematics precisely described by E. Landau in his early and influential

book Foundations of Analysis (Landau, 1930). It is a bit unusual that in

this approach an element a of type S is on the same level as an element V

of type ps(S), while V plays the role of a set (namely a subset of S). This

300 Sets and subsets

mixture of elements and sets on the same level does not cause problems

in Jutting’s formalisation, using the system Automath, since Automath

has a logical strength that is comparable to λP . However, when copying

Jutting’s primitive definitions to λD (or λC), the resulting system turns

out to be inconsistent, as J.H. Geuvers has proved (see Geuvers, 2013). The

problem arises here since we basically have S→∗ : ∗. This is comparable

to ∗ : ∗, which is known to cause inconsistency.

(4) Formalize subsets as Σ-types. A much-used solution in type theory to deal

with subsets is to add so-called Σ-types (we have already mentioned them

in Sections 5.7 and 6.5). A Σ-type consists of dependent pairs. To be precise,

for S : ∗, and P : S → ∗, the Σ-type Σx : S . P x is the type of all pairs

〈a, q〉 where a : S and q : P a. One can view Σx : S . P x as the subset of

S consisting of all elements a for which P a holds, where the proof of P a,

i.e. the term q of type P a, is attached to a. So, if a : S and q : P a, we

don’t just have a : Σx : S . P x, but 〈a, q〉 : Σx : S . P x.

To have Σ-types in λD, we need four new derivation rules:

(Σ-form)
Δ; Γ � S : ∗s Δ;Γ, x : S � B : ∗p

Δ;Γ � Σx : S . B : ∗s

(Σ-pair)
Δ; Γ � M :S Δ;Γ � N :B[x := M] Δ; Γ � Σx : S . B : ∗s

Δ;Γ � 〈M,N〉 : Σx : S . B

(Σ-proj 1)
Δ; Γ � K : Σx : S . B

Δ;Γ � π1K : S

(Σ-proj 2)
Δ; Γ � K : Σx : S . B

Δ;Γ � π2K : B[x := π1K]

The rule (Σ-form) serves for the formation of Σ-types. The rule (Σ-pair)

states that if M is of type S and it satisfies the predicate λx : S . B,

which is proved by N (since N : B[x := M]), then the pair 〈M,N〉 is
of type Σx : S . B. The rules (Σ-proj 1) and (Σ-proj 2) tell how to project

information out of a pair: one can either project to the first component

(via π1) or the second component (via π2) of a pair.

The type system of the well-known proof assistant Coq (see Coq Develop-

ment Team, 2012) contains Σ-types, which are defined as inductive types.

The usual notation {x : S | B} is used there for Σx : S . B.

13.8 Further reading 301

In a competing system, called PVS (see PVS, 1992), a term M of type S

may be of type {x : S | B} as well. The derivation rule in PVS is:

M : S N : B[x := N]

M : {x : S |B}
Although this looks a lot more familiar, this approach has serious draw-

backs: one does not have decidability of typing and there is no Uniqueness

of Types.

In both approaches, one needs to add symbols and rules to λD if one wants

to have Σ-types. Since we intend to keep the system as simple as possible,

we choose not to use Σ-types.

(5) Subsets via embeddings. Yet another approach is to simulate a subset of S

by considering a different type, V , that is related to S by an injective

embedding in : V → S. The image in(V) of V is the subset of S that we

wish to capture. This image may be considered to be a ‘copy’ of V , since

V and in(V) are bijectively (‘one-to-one’) related. One may also define

the map out : in(V) → V as the inverse of in, and we have, among other

things, that out(in(y)) =V y. Given such an embedding in of V into S,

we may consider V itself to represent the subset (instead of in(V)), thus

avoiding a ‘typing clash’ caused by the situation that a term both has

type in(V) and S (which is impossible, since in(V) is not a type). If one

wants to see a y of type V as also having type S, then this can be done

via the injection in: consider the ‘copy’ in(y) of y. Hence, by shifting back

and forth between V and in(V), we can deal with elements of type V

as if they were of type S as well. Of course, this involves a lot of extra

administration; but it works, and we don’t have to abandon decidability

of typing and Uniqueness of Types.

This approach can be applied nicely to the general situation where we

wish to represent a set {x : S | P x}. Suppose S : ∗ and P : S → ∗. We

can now primitively assume a type subtype(S, P) : ∗, which takes the role

of V above. We declare, primitively again, the embedding function in from

subtype(S, P) to S, having the property of being an injection. If desired,

we may combine this with the inverse function out, defined on those x’s

in S for which P holds. A concrete implementation of this approach in

type theory was given by L.S. van Benthem Jutting (see Nederpelt et al.,

1994, pp. 763/4). There are close correspondences between Σ-types and the

subtypes obtained via embeddings. For example, the Σ-type Σx : S . P x

finds its counterpart in the type subtype(S, P).

Because a lot more primitive notions have to be added to λD, we have

not followed this approach.

302 Sets and subsets

Exercises

13.1 Let V and W be subsets of S that are Leibniz-equal (V =̂ps(S) W) as

described in the final part of Section 13.2. Give a λD-derivation to prove

that V and W are also subset-equal (V = W ; see Figure 13.2).

If a λD-derivation is required in this exercise or one of the following ones,

you may suffice with only mentioning the logical arguments in ‘hints’, as

we have done regularly in the present chapter (cf. Section 13.2).

13.2 Let S : ∗s and V,W : ps(S).

(a) Show that the following is an immediate consequence of eq-refl (see

Figure 12.2):

∀x : S . ((x ε V c)⇔ ¬(x ε V)).

(b) Prove in λD: (V ⊆W)⇒ (W c ⊆ V c).

13.3 Let S : ∗s.
(a) We have that full -set(S) : ps(S). Why is S itself not a subset of S,

i.e. not S : ps(S)?

(b) Show that S not a member of its own powerset (i.e. show that S ε ps(S)

is not derivable).

(c) Explain why we cannot code the powerset of the powerset of S as

ps(ps(S)).

(d) For T : �, define PS (T) as T → ∗p. Give a legal λD-expression

representing the powerset of the powerset of the powerset of S.

13.4 Prove in λD, for S : ∗s and V : ps(S):

(a) V ∪ ∅S = V ,

(b) V ∩ ∅S = ∅S ,
(c) V ∪ full -set(S) = full -set(S),

(d) V ∩ full -set(S) = V .

13.5 Prove in λD, for S : ∗s and V : ps(S):

(a) V ∪ V c = full -set(S),

(b) V ∩ V c = ∅S .
13.6 Let S be a type.

(a) Prove in λD: full -set(S) = (∅S)c.
(b) Let V be a subset of S. Prove: V �= full -set(S)⇔ ∃x : S . ¬(x ε V).

13.7 Prove the following lemmas in λD, for S : ∗s and V,W : ps(S):

(a) (V ∩W = V)⇒ V ⊆W ,

(b) V \W = V ∩W c,

(c) V ⊆W ⇔ V \W = ∅S (see Figure 13.7).

Exercises 303

13.8 Let R be a binary relation on the set S that is symmetric and transitive.

Assume that ∀x : S . ∃y : S . (Rxy). Prove in λD that R is also reflexive.

13.9 See Section 13.4. Prove in λD that the following two versions of the second

characteristic of an equivalence class are indeed equivalent:

(2a) ∀x, y : S . ([x]R = [y]R ∨ ([x]R ∩ [y]R = ∅S)),
(2b) ∀x, y, z : S . (z ε [x]R ⇒ z ε [y]R ⇒ ([x]R = [y]R)).

13.10 Let the binary relation R be an equivalence relation on S. Prove the

following lemmas in λD:

(a) No class is empty (hint: see Figure 13.8),

(b) ∀x, y, z : S . ((y ε [x]R ∧ z ε [x]R)⇒ Ry z),

(c) ∀y : S . ∃x : S . (y ε [x]R).

13.11 (a) Let S, T : ∗s and F : T → ps(S). Give a λD-definition of the ‘big

union’
⋃
(S, T, F), notation

⋃
z:T (F z), being the subset of S consist-

ing of all ‘elements’ of the subsets F (z), for all z : T .

(b) Rewrite characteristic (3) for a partition in equivalence classes, as

described in Section 13.4, using the
⋃
-symbol.

(c) Prove in λD that this new version of characteristic (3) is equivalent

to the original one.

13.12 Fill the following gaps:

(a) In line (2) of Figure 13.12.

(b) In line (4) of Figure 13.13.

13.13 Let S1, S2, S3 : ∗s. Let F : S1 → S2 and G : S2 → S3. Then the

composition of F and G is the function G◦F := λx : S1 . (G(F x)). Prove

the following lemmas in λD:

(a) If F and G are injective, then G ◦ F is injective.

(b) If F and G are surjective, then G ◦ F is surjective.

13.14 Let S, T : ∗s, F : S → T and assume that u proves that F is a bijection.

Prove in λD:

∀y : T . (F (inv(S, T, F, u) y) =T y).

13.15 (a) Extend Figure 13.14 with definitions for surjectivity and bijectivity

of a function F on subset V , i.e. F : Πx : S . ((x ε V)→ T).

(b) Also give a definition of the inverse in case F is bijective (cf. Fig-

ure 13.13); first prove that such an inverse is indeed a function, i.e.

each y of type T has a unique function value under ‘inverse’.

13.16 (a) Check lines (4) and (5) of Figure 13.16.

(b) Let S, T : ∗s, let F : S → T be an injection and V : ps(S). Prove the

following in λD:

∀x : S . (F x ε image(S, T, F, V)⇒ x ε V).

14

Numbers and arithmetic in λD

14.1 The Peano axioms for natural numbers

In the previous chapters we have become acquainted with the use of λD for

doing mathematics, by selecting a few examples and investigating the issues

that we came across.

Let’s now make a fresh start by thoroughly exploring the most fundamental

entities in mathematics: natural and integer numbers. This will not be easy,

since in the process of development we have to pretend that we ‘know nothing’

about subjects we are so familiar with. As a consequence, we have to build up

our knowledge from scratch, which may seem cumbersome, but it is also quite

interesting, since we are obliged to scrutinise the foundations of mathematics.

In the present section, we start with the basis: natural numbers. Integers

will be the main topic of following sections.

In Chapter 1 we saw how natural numbers, and operations on naturals such

as addition and multiplication, can be coded in untyped lambda calculus, as so-

called Church numerals (see Exercise 1.10). There also exist encodings of these

notions in typed lambda calculi: in the chapter about λ2 we have discussed

the so-called polymorphic Church numerals ; see, for example, Section 3.8 and

Exercise 3.13. (For Church numerals in λ→: see Section 2.14.)

Therefore, it would be a type-theoretically justified choice to introduce the

natural numbers in this manner. This can be done by writing down the ap-

propriate definitions, since λ2 is a subsystem of λD. An immediate advantage

of this choice is that calculations using basic operations such as addition and

multiplication may be handed over to the inherent β-reduction mechanism

of λD.

There are, however, several objections against this choice.

− Firstly, it has been shown that induction, one of the most fundamental proof

principles of natural numbers, cannot be derived by means of the poly-

306 Numbers and arithmetic in λD

morphic Church numerals, not in λ2 or λP2 (Geuvers, 2001), and also not

in λD. Hence, we need an extra axiom to represent it.

− Secondly, the representation of some basic functions on the naturals is diffi-

cult. For example, the encoding of the predecessor in Church-numeral style

is inefficient and far from natural (see e.g. Geuvers & Nederpelt, 1994, Exer-

cise 32.11). The reason is that Church numerals facilitate iteration, but not

primitive recursion as a construction scheme.

− Thirdly, the Church numerals are not appropriate to also deal with integers,

so we have to introduce integers in a different manner, which appears neither

elegant nor convenient.

− Finally, the approach to introduce naturals in the Church format is not very

‘natural’ for mathematicians, who are used to older and more intuitively

acceptable formats. The most accepted one is via the axioms of G. Peano

(Peano, 1889), which include induction. This is the approach that we will

follow henceforth.

We now elucidate this fundamental view of the mathematician G. Peano

(1858–1932). He introduces the natural numbers as a set equipped with a

zero element and a successor function, similar to Church’s set-up, but with a

different elaboration. Formally, Peano postulates the existence of a set N, a

singled-out element 0 in it and a function s from N to N. So in N we have

elements 0, s(0), s(s(0)), etcetera, representing the numbers we are acquainted

with: 0, 1, 2, etcetera. Of course, it is quite sensible to identify these two lists.

Next, Peano enforces by means of axioms that these formal numbers behave

as expected. An important property is that the successor function must deliver

new numbers, over and over again. Therefore, Peano adds two axioms. The aim

of these axioms is to prevent the ‘chain of numbers’ retracing its own footsteps:

ax -nat1 : ∀x∈N(s(x) �= 0),

ax -nat2 : ∀x,y∈N(s(x) = s(y)⇒ x = y).

By ax -nat1, none of the elements s(s(. . . (0) . . .)) (i.e. with at least one s),

can be equal to 0. By ax -nat2, two elements of the form s(s(. . . (0) . . .)) with

a different number of s’s are unequal. (Check this informally; you will need

ax -nat1.) Axiom ax -nat2 expresses that s is an injective function (cf. Fig-

ure 13.13), but ax -nat1 implies that s is not surjective.

Remark 14.1.1 Although natural numbers are fundamental, there are things

that are still ‘more fundamental’, namely logic and equality: see the nega-

tion sign occurring in ax-nat1, the implication symbol in ax-nat2 and the ∀-
quantifiers and the equality symbols appearing in both axioms. Of course, also

the rules of logic and the characteristic properties of equality belong to this

primeval material. (See Chapters 7, 11 and 12 for the formal representation of

these matters.)

14.1 The Peano axioms for natural numbers 307

Peano recognised another thing as essential for the set of natural numbers,

namely the possibility to establish a property for all natural numbers by (math-

ematical) induction. Induction is the well-known principle which enables the

transfer of the validity of both P (0) and P (n) → P (n + 1), for all n ∈ N, to

the validity of P on the full N (see also Section 10.2). Formally:

axiom of induction for N : for all predicates P on N,

(P (0) ∧ ∀x∈N(P (x)⇒P (s(x)))) ⇒ ∀x∈N(P (x)).

In Figure 14.1 you find the fundamental notions and the three axioms of

Peano for the naturals, in the setting of λD.

(1) N := ⊥⊥ : ∗s
(2) 0 := ⊥⊥ : N

(3) s := ⊥⊥ : N→ N

(4) ax -nat1 := ⊥⊥ : ∀x : N . ¬(s x =N 0)

(5) ax -nat2 := ⊥⊥ : ∀x : N . ∀y : N . (s x =N s y ⇒ x =N y)

P : N→ ∗p
(6) ax -nat3(P) := ⊥⊥ : (P 0 ∧ ∀x : N . (P x⇒ P (s x))) ⇒ ∀x : N . P x

Figure 14.1 The Peano-axioms for natural numbers

Remark 14.1.2 The names ax-nat1 and ax-nat2 are given to inhabitants

of the axioms (which themselves are expressed as types); similarly, ax -nat3(P)

names an inhabitant of the induction property for P , not the property itself.

Apparently, we have succeeded in formalising the Peano-naturals in λD. Note

that we need six primitive definitions in Figure 14.1, which are only ‘justified’

by a nowadays generally accepted view on the basics of natural numbers. This

gives us a sufficient guarantee with regards to their acceptability.

Remark 14.1.3 We remind the reader that all primitive definitions have to

be scrupulously accounted for, since they contain notions or statements of an

axiomatic nature; hence, their content is not formally justified (and more than

that: formal justification is mostly impossible).

So we have to be very careful with primitive definitions. For example, there

is no formal objection against a primitive definition declaring that true (¬⊥)
is equivalent to false (⊥); nor is there any formal objection against an axiom

stating that 0 =N s(0). But in both cases we have a big problem: either logic

collapses (since ⊥≡¬⊥ implies that ‘everything is provable’), or mathematics

breaks down (because 0 =N s(0) implies that all natural numbers are equal).

Hence, there are several lessons to learn from this discussion:

308 Numbers and arithmetic in λD

(1) There should be a separate justification for all primitive definitions in a

λD-text.

(2) It appears wise to use primitive definitions only sparingly.

(3) Even a full check of a λD-text on its compliance to the syntactical require-

ments imposed by the derivation rules, does not guarantee that it contains

sensible mathematical content, since the primitive notions could be contra-

dictory or meaningless.

These observations do by no means hold exclusively for λD: every mathe-

matical exposition has the same provisos, and to the same extent, since there

are always fundamental concepts that must be introduced without formal jus-

tification.

It is obvious that each s(s(. . . (0) . . .)), including 0 itself, has type N. One

might wonder whether the Peano-axioms are not too weak , in the sense that

there may be more elements in N than the ones of the form s(s(. . . (0) . . .)).

This fear is taken away by the following lemma:

Lemma 14.1.4 For all n ∈ N: n = 0 ∨ ∃m∈N(n = s(m)).

A proof of this lemma is amazingly simple, even when formalised in λD: all

we have to do is apply induction on the predicate

P ≡ λn : N . (n =N 0 ∨ ∃m : N . (n =N sm)).

We sketch the proof of Lemma 14.1.4 in the usual mathematical style, albeit

with flags (see Figure 14.2). Note that induction works perfectly, although we

do not appeal to the induction hypothesis P (k) in the body of the proof. This

is exceptional, but yet in accordance with the induction principle.

The formal λD-version follows exactly the same pattern, although it needs

more explicit proof terms. We leave it to the reader.

14.2 Introducing integers the axiomatic way

In the previous section we investigated how natural numbers can be dealt with

in type theory, on the basis of the Peano-axioms. The basic number system

in many mathematical applications, however, is the larger set Z of integer

numbers. In particular, most of number theory is about integer numbers. In

mathematical analysis, one prefers even larger systems, such as real numbers

or complex numbers.

Since this book aims at giving an impression of how type theory can be

used for mathematics and proofs, we decide to focus on integer numbers. Our

justification is that we analyse one major example in the following chapter,

namely Bézout’s Lemma (cf. Remark 8.7.2), for which we need more than

natural numbers alone, but no more than integer arithmetic.

14.2 Introducing integers the axiomatic way 309

Define, for n ∈ N, P (n) := (n = 0 ∨ ∃m∈N(n = s(m)))

step (i) P (0), since 0 = 0; use ∨-in.
step (ii) k ∈ N

P (k)

s(k) = s(k) (by reflexivity of =)

∃m∈N(s(k) = s(m)) (by ∃-in)
s(k) = 0 ∨ ∃m∈N(s(k) = s(m)) (by ∨-in)
P (s(k)) (by definition of P)

∀k∈N(P (k)⇒ P (s(k))) (by ⇒ -in and ∀-in)
step (iii) ∀n∈N(P (n)) (by induction on (i) and (ii))

Figure 14.2 An informal proof of Lemma 14.1.4

Hence, we take the integers as our basic number system, of which the naturals

are a subset. In the remainder of the present chapter we find out how that vision

can be expressed in type theory, borrowing the formal notion ‘subset’ from the

previous chapter.

So we put aside the Peano-axioms for the naturals as dealt with in Sec-

tion 14.1 (in particular: Figure 14.1) and start from scratch. As with the natu-

rals, we prefer to introduce the integer numbers primitively, by giving a number

of determining axioms. It will not come as a surprise that these axioms are a

kind of extension of the Peano-axioms.

The five primitive definitions for the introduction of integers that we present

below are an adaptation of the ones given by A. Margaris (Margaris, 1961),

elaborated with the help of A. Visser and R. Iemhoff (2009, pers. comm.).

The axiomatisation of the integers postulates a set (Z) with a specific element

(0) and again a successor function (s), this time from Z to Z (see Figure 14.3,

lines (1) to (3)).

The axiom ax -int1 in line (4) declares that s is a bijection: not only an

injection (cf. ax -nat2), but also a surjection (cf. Figure 13.13).

A consequence of surjectivity is that for all y in Z there is an x in Z such

that s(x) = y; see line (7). So Z not only stretches out to the right, but also

to the left. This is of course what we expect.

By the injectivity , such an x with s(x) = y is unique. This is proven in

lines (8) to (12). So we conclude (line (13)):

∀y∈Z∃1x∈Z(s(x) = y).

Consequently (cf. Section 12.7), we may give a name to such an x, uniquely

310 Numbers and arithmetic in λD

existing as a companion for each y in Z. Clearly, this x is the predecessor of y,

which we call p(y) (see line (14)).

Then ι-prop (see Figure 12.16, line (2)) immediately gives: s(p(y)) = y

(line (15)), and an easy consequence is that also p(s(y)) = y (line (17)). Hence,

successor and predecessor cancel each other, which is obvious since p is the

inverse of s. We call this s-p-annihilation and p-s-annihilation, respectively.

(1) Z := ⊥⊥ : ∗s
(2) 0 := ⊥⊥ : Z

(3) s := ⊥⊥ : Z→ Z

(4) ax -int1 := ⊥⊥ : bijective(Z,Z, s)

(5) inj -suc := . . . use ∧ -el1 . . . : injective(Z,Z, s)

(6) surj -suc := . . . use ∧ -el2 . . . : surjective(Z,Z, s)

y : Z

(7) a7(y) := surj -suc y : ∃≥1x : Z . (s x =Z y)

x1, x2 : Z | u : s x1 =Z y | v : s x2 =Z y

(8) a8(. . .) := eq-sym(Z, s x2, y, v) : y =Z s x2

(9) a9(. . .) := eq-trans(Z, s x1, y, s x2, u, a8(. . .)) : s x1 =Z s x2

(10) a10(. . .) := inj -suc x1 x2 a9(. . .) : x1 =Z x2

(11) a11(y) := . . . use ⇒ -in and ∀-in . . . : ∃≤1x : Z . (s x =Z y)

(12) a12(y) := . . . use ∧-in on a7(y) and a11(y) . . . :

∃1x : Z . (s x =Z y)

(13) a13 := . . . use ∀-in . . . : ∀y : Z . ∃1x : Z . (s x =Z y)

(14) p := λy : Z . ι(Z, λx : Z . (s x =Z y), a12(y)) : Z→ Z

y : Z

(15) s-p-ann(y) := ι-prop(Z, λx : Z . (sx =Z y), a12(y)) : s(p y) =Z y

(16) a16(y) := s-p-ann(s y) : s(p(s y)) =Z s y

(17) p-s-ann(y) := inj -suc (p(s y)) y a16(y) : p(s y) =Z y

Figure 14.3 A formal set-up for integer numbers in λD and some consequences

In Appendix B we give a list of the interesting statements and lemmas

dealt with in the present chapter, starting with the ones in Figure 14.3.

We obviously also want an axiom about induction for the integers, ax -int2,

which replaces ax -nat3 in Figure 14.1. For Z we need the so-called ‘symmetric

induction’ axiom, extending the usual induction axiom in ‘both directions’:

apart from the prerequisites P (0) and ∀x∈Z(P (x)⇒ P (s(x))), we also require

14.2 Introducing integers the axiomatic way 311

the implication in the ‘opposite’ direction: ∀x∈Z(P (x)⇒ P (p(x))). Only then,

one is allowed to conclude the universal validity of P on Z. This leads to the

following induction axiom for Z (compare it with the induction axiom for N as

given in the previous section):

axiom of induction for Z : for all predicates P on Z,

[P (0) ∧ ∀x∈Z(P (x)⇒ (P (s(x)) ∧ P (p(x))))] ⇒ ∀x∈Z(P (x)).

We introduce this as a primitive proposition in Figure 14.4, with proof object

ax -int2.

P : Z→ ∗p
ax -int2(P) := ⊥⊥ :

[P 0 ∧ ∀x : Z . (P x⇒(P (s x) ∧ P (p x)))] ⇒ ∀x : Z . P x

Figure 14.4 The induction axiom for integer numbers

Remark 14.2.1 In this axiom, the ‘starting point’ of the induction is 0, since

we must have P 0. But any other integer number than 0 would do as well. Prove

this variant of induction for Z yourself (Exercise 14.18).

Next, we single out the integers from 0 ‘upwards’, the natural numbers, as

a subset N of Z. This asks for one definition and an axiom, as expressed in

Figures 14.5 and 14.6.

In line (2) of Figure 14.5, we present N as a predicate over Z (i.e. a subset),

by means of a definition:

N := λx : Z . ΠP : Z→ ∗p . (nat-cond(P)⇒ P x).

We explain what this definition expresses. First, we look at the condition

nat-cond := P 0 ∧ ∀y : Z . (P y ⇒ P (s y))

occurring in N. If nat-cond holds for P , then, in particular, 0 and all its suc-

cessors satisfy P . This implies intuitively that P contains all natural numbers.

Now the above definition says that N satisfies x if all predicates P over Z

satisfying nat-cond also satisfy x. Hence, under the subset-interpretation, N is

included in all P ’s that satisfy nat-cond .

Remark 14.2.2 If we imagine Z in the usual manner as a straight line, infi-

nite in both directions, then each predicate P that satisfies nat-cond represents

an interval [x,∞), i.e. a set of integers greater than or equal to a certain x.

Since 0 is an element of all these P ’s, we always have x ≤ 0. The predicate N

is the intersection of all these P .

It is not hard to prove that N itself satisfies nat-cond , since N 0 holds and

∀x : Z . (Nx ⇒ N(s x)) (Exercise 14.2). See lines (3) and (4) of Figure 14.5.

312 Numbers and arithmetic in λD

(Recall that x ε N is an alternative notation for Nx; see Figure 13.1.) It follows

in line (6) that N is the smallest subset of Z satisfying nat-cond (Exercise 14.3).

P : Z→ ∗p
(1) nat-cond(P) := P 0 ∧ ∀x : Z . (P x⇒ P (s x)) : ∗p
(2) N := λx : Z . ΠP : Z→ ∗p . (nat-cond(P)⇒ P x) : Z→ ∗p
(3) zero-prop := . . . [Exerc. 14.2 (a)] . . . : 0 ε N

(4) clos-prop := . . . [Exerc. 14.2 (b)] . . . : ∀x : Z . (x ε N⇒ s x ε N)

(5) a5 := . . . use ∧ -in . . . : nat-cond(N)

(6) nat-smallest := . . . [Exerc. 14.3] . . . :

ΠQ : Z→ ∗p . (nat-cond(Q)⇒ (N ⊆ Q))

Figure 14.5 The natural numbers as a subset of Z

There is still one fundamental problem with the formal presentation of Z

as given up to now: it does not enforce that this Z conforms to the intuitive

‘picture’ of Z, in which it stretches out infinitely to the right and to the left –

without loops or repetitions. There are models (i.e. mathematical structures)

satisfying the formal axioms of Z as we have presented so far that do not comply

with this picture. For example, every finite set satisfies the above formalisation,

if we choose one element as representing 0 and let the successor function s

‘rotate’ through this set. Take e.g. S ≡ {a, b, c, d}, take a = 0 and s such that

s(a) = b, s(b) = c, s(c) = d and s(d) = a, again. Then 0 is in S, the function s

is bijective and symmetric induction holds. So S is a model of the axioms of Z

we have given so far. In this model, the N as defined above coincides with Z.

This means that our formalisation so far does not capture the integers as we

imagine them. So we have to do something about it. The solution is simple,

as follows from Margaris (1961) and Visser and Iemhoff (2009): add one extra

axiom to the effect that p 0, the predecessor of 0, is not in N. This prevents

loops as above, and finite models in general (Exercise 14.4).

And this is what we do in Figure 14.6.

ax -int3 := ⊥⊥ : ¬(p 0 ε N)

Figure 14.6 The third axiom for natural numbers

So now we have the integers (expressions of type Z), the natural numbers

(being those n of type Z for which n ε N)) and the negative integers (the n of

type Z for which ¬(n ε N)).

14.3 Basic properties of the ‘new’ N 313

14.3 Basic properties of the ‘new’ N

The next thing that we have to do is to convince ourselves that the Peano-

axioms (see Figure 14.1) ‘hold’ for the new N.

Let’s consider them one by one:

ax -nat1: ∀x : N . ¬(sx =N 0).

In the new setting, this expression becomes: ∀x : Z . (x ε N⇒ ¬(sx =Z 0)).

This is easy to prove: let x : Z, assume x ε N. If s x =Z 0, then p(s x) =Z p 0,

hence x =Z p 0 (since p and s annihilate each other; Figure 14.3, line (17)). It

follows that p 0 ε N, contradicting ax -int3. So ¬(s x =Z 0). (Fill in the details

by giving the corresponding λD-derivation.)

The next Peano-axiom is:

ax -nat2: ∀x : N . ∀y : N . (s x =N s y ⇒ x =N y).

This becomes: ∀x, y : Z . (x ε N⇒ (y ε N⇒ (s x =Z s y ⇒ x =Z y))), which

follows directly from ax -int1 (cf. line (5) in Figure 14.3).

We record the Z-equivalents of ax -nat1 and ax -nat2, being theorems now,

as nat-prop1 and nat-prop2 in Figure 14.7. (We omit the corresponding proof

objects.)

(1) nat-prop1 := . . . : ∀x : Z . (x ε N⇒ ¬(sx =Z 0))

(2) nat-prop2 := . . . : ∀x, y : Z . (x ε N⇒ (y ε N⇒ (s x =Z s y ⇒ x =Z y)))

Figure 14.7 The first two Peano-axioms for N in the new setting

Finally, we have the third Peano-axiom:

ax -nat3(induction): for all predicates P of type N→ ∗p:
(P 0 ∧ ∀x : N . (P x⇒ P (s x))) ⇒ ∀x : N . P x.

First, we note that the type N → ∗p, which is Πx : N . ∗p, is not available

now (N is no longer a type, so Π-abstraction over N is not permitted).

In the present setting, all predicates must be over the type of the integers.

For predicates over N, we apply the solution developed in the beginning of Sec-

tion 13.2: we include the condition x ε N in the body of the two ∀-expressions.

This leads to the following rephrasing of the induction axiom:

induction for N as subset of Z: for all predicates P of type Z→ ∗p:
(P 0 ∧ ∀x : Z . (x ε N⇒ (P x⇒ P (s x)))) ⇒ ∀x : Z . (x ε N⇒ P x).

Again, it is not necessary to formulate this as an extra axiom, because it is

a theorem: it can be derived from our axioms for integers and the definition

of N. The proof is given in Figure 14.8.

314 Numbers and arithmetic in λD

The start is familiar by now: we raise a flag with an arbitrary P and a

second one assuming the left-hand side of the main implication. We have to

prove the right-hand side of this implication, namely ∀x : Z . (x ε N ⇒ P x).

However, assuming an x of type Z such that x ε N does not immediately lead

to the desired result P x: an obvious option is to use the definition of N for

this x and P , but this does not work. The reason is that the definition of N

has ∀x : Z . (P x ⇒ P (s x)) in its ‘condition’, whereas we have in the second

flag the weaker statement ∀x : Z . (x ε N⇒ (P x⇒ P (s x))).

The solution that works is to ‘upgrade’ the predicate P by adding z ε N,

and consider the predicate Q := λz : Z . (z ε N ∧ P z) (see line (1) of the

derivation), for which we can prove ∀x : Z . (Qx ⇒ Q(s x)) (line (11)). This

enables us to apply the definition of N (see line (13), where w inhabits Nx).

The remainder of the proof is mainly technique.

P : Z→ ∗p
(1) Q† := λz : Z . (z ε N ∧ P z) : Z→ ∗p

u : P 0 ∧ ∀x : Z . (x ε N⇒ (P x⇒ P (s x)))

(2) a2 := . . . use ∧ -el1 on u . . . : P 0

(3) a3 := . . . use ∧ -el2 on u . . . : ∀x : Z . (x ε N⇒ (P x⇒ P (s x)))

(4) a4 := . . . use ∧ -in on zero-prop and a2 . . . : Q 0

y : Z | v : Qy

(5) a5 := . . . use ∧ -el1 on v . . . : y ε N

(6) a6 := . . . use ∧ -el2 on v . . . : P y

(7) a7 := clos-prop y a5 : s y ε N

(8) a8 := a3 y a5 : P y ⇒ P (s y)

(9) a9 := a8 a6 : P (s y)

(10) a10 := . . . use ∧ -in on a7 and a9 . . . : Q(s y)

(11) a11 := . . . use ⇒ -in and ∀-in . . . : ∀y : Z . (Qy ⇒ Q(s y))

(12) a12 := . . . use ∧ -in on a4 and a11 . . . : nat-cond(Q)

x : Z | w : x ε N

(13) a13 := w Q a12 : Qx

(14) a14 := . . . use ∧ -el2 on a13 . . . : P x

(15) a15 := . . . use ⇒ -in and ∀-in . . . : ∀x : Z . (x ε N⇒ P x)

(16) nat-ind(P) := . . . use ⇒ -in on a15 . . . :

(P 0 ∧ ∀x : Z . (x ε N⇒ (P x⇒ P (s x)))) ⇒ ∀x : Z . (x ε N⇒ P x)
†parameters suppressed

Figure 14.8 Induction over the natural numbers

14.3 Basic properties of the ‘new’ N 315

So we have adapted versions of all three Peano-axioms for natural numbers

available as theorems in Z, with proofs nat-prop1, nat-prop2 (see Figure 14.7)

and nat-ind (Figure 14.8, line (16)).

We recall an important property of natural numbers, given in Lemma 14.1.4:

for all n ∈ N we have n = 0 or ∃m∈N(n = s(m)). Obviously, we now may replace

the part ∃m∈N(n = s(m)) by p(n) ∈ N.

In order to make this formal, we again quantify over Z (not over N) and

add n ε N as a condition. This leads to the following λD-reformulation of

Lemma 14.1.4:

Lemma 14.3.1 ∀x : Z . (x ε N⇒ (x =Z 0 ∨ p x ε N)).

A proof of this lemma uses nat-ind (see Figure 14.8). For the predicate P

we take:

P := λx : Z . (x =Z 0 ∨ p x ε N),

since induction for N as a subset of Z, which we described above, eventually

leads to ∀x : Z . (x ε N⇒ P x), and this is the content of Lemma 14.3.1 after

substitution of P .

A formal proof in λD, following these lines, is not too hard. We leave it to

the reader (Exercise 14.5). In order to be able to give a formal reference to

Lemma 14.3.1, we register the λD-version (without proof object) under the

name nat-split in line (1) of Figure 14.9.

Using elementary logic, we can rewrite this as in line (2). Since we may view

p x ε N as ‘x is positive’, and ¬(x ε N) as ‘x is negative’, line (2) expresses

that an integer is negative, zero or positive. This is known as the tripartition

property of the integers. See line (5) of Figure 14.9.

(1) nat-split := . . . : ∀x : Z . (x ε N⇒ (x =Z 0 ∨ p x ε N))

(2) nat-split-alt := . . . : ∀x : Z . (¬(x ε N) ∨ x =Z 0 ∨ p x ε N)

x : Z

(3) pos(x) := p x ε N

(4) neg(x) := ¬(x ε N)

(5) trip := nat-split-alt : ∀x : Z . (neg(x) ∨ x =Z 0 ∨ pos(x))

Figure 14.9 Positive and negative numbers, and the tripartition property

Below, we list a number of useful lemmas about positive and negative num-

bers. The proofs are left to the reader (Exercise 14.7). By combining parts (a)

and (b) of Lemma 14.3.2, we see that the ‘⇒’ in nat-split can be replaced by

a ‘⇔’.

316 Numbers and arithmetic in λD

Lemma 14.3.2 (a) ∀x : Z . (pos(s x)⇔ x ε N),

(b) ∀x : Z . (pos(s x)⇔ (x =Z 0 ∨ pos(x))),

(c) ∀x : Z . (neg(p x)⇔ (x =Z 0 ∨ neg(x))).

Lemma 14.3.3 implies that the disjunctions in trip are ‘exclusive’: an integer

is either negative, or 0, or positive.

Lemma 14.3.3 (a) ∀x : Z . (pos(x) ⇔ x �=Z 0 ∧ ¬neg(x)),
(b) ∀x : Z . (neg(x) ⇔ x �=Z 0 ∧ ¬pos(x)),
(c) ∀x : Z . (x =Z 0 ⇔ ¬pos(x) ∧ ¬neg(x)).

14.4 Integer addition

Now that we have formalised the integers in λD, with the naturals as a subset,

the next thing is to investigate how arithmetical operations can be formalised

for these numbers, since we want to compute with them. Our first aim is

addition: the computation of a sum of two numbers. Usually, computational

operations are introduced by means of a recursive definition. That’s also the

case with addition.

Let’s consider the recursive definition for adding two natural numbers. The

standard approach is the following. In order to compute x + y, one uses recur-

sion over the second argument, i.e. y. (This is an arbitrary choice: it could just

as well be the first argument.) One then distinguishes two cases for this argu-

ment, in accordance with Lemma 14.1.4: it may be either 0 or the successor of

another natural number (see also nat-split in Figure 14.9).

The standard recursive definition then has the following shape:

(i) m+ 0 = m,

(ii) m+ s(n) = s(m+ n).

We do an example to see how this works.

Example 14.4.1 For the computation of the sum 2 + 3, or, more precisely,

s(s(0)) + s(s(s(0))), we obtain from (ii) that

2 + 3 = s(s(0)) + s(s(s(0))) = s[s(s(0)) + s(s(0))].

(In the third expression we use one pair of square brackets, for clarity.)

Repetition of the procedure on s(s(0)) + s(s(0)) results in s[s(s(0)) + s(0)],

hence 2 + 3 = s(s[s(s(0)) + s(0)]).

One step further, we get 2 + 3 = s(s(s[s(s(0)) + 0])).

Then, finally, we use (i) for the computation of the subexpression s(s(0))+0.

Hence, 2 + 3 = s(s(s(s(s(0))))), which is 5 by definition; so altogether we get

2 + 3 = 5, just as expected.

Note that we have used substitutivity and transitivity of = in this calcula-

tion.

14.4 Integer addition 317

Since the number m in (i) and (ii) does not change in the recursion, we can

view this recursive definition as a family of many unary +-operations, one for

each m ∈ N. To make this explicit, we write down the recursive equations for

each of these +m-operations separately, as follows:

(i) +m(0) = m,

(ii) +m(s(n)) = s(+m(n)).

Hence, the recursive equations tell us, for fixed m, what function +m does

with n:

− in (i), the case n = 0 is given;

− in (ii), the situation for n is ‘scaled up’ to the situation for s(n): if we know

what +m does with n, then the equation tells us the effect on s(n).

The word ‘recursion’ literally refers to the reverse process: not scaling ‘up’,

but scaling ‘down’. (Recursion literally means ‘walking back’.) This is how an

actual computation works. In the example above, for the computation of +2(3),

we need (by (ii)) to compute +2(2). But in order to compute this +2(2), we

need +2(1). Finally we have to compute +2(0); for this, (i) gives an answer.

So the recursion stops and delivers a result.

Remark 14.4.2 Characteristic for recursive definitions is that the definiens

occurs left and right of the definitional =-sign. See equation (ii), where the +m

occurs on both sides. So the function +m is not expressed as a ‘new’ symbol:

it is defined in terms of itself.

It is essential for recursion that the process comes to a halt. When the re-

cursion stops, there should be a unique ‘outcome’, in which the definiens is no

longer present. In general, this requires a so-called well-founded recursion. Such

a well-founded recursion delivers a ‘proper’ function as a result – in this case:

an operator +m that gives a unique answer when applied to an argument n.

Until now, we have silently assumed that m and n are natural numbers.

It will be clear that the same recursive equations also apply to integers, but

they apparently do not suffice. The scheme above appears to be tailored for

‘upwards’ counting from 0 via (ii): +m(1) = s(+m(0)), +m(2) = s(+m(1)),

etcetera. When extending m and n to the integers, it is not immediately clear

what +m does when applied to a negative number.

Since we want to be able to add integer numbers, our first impulse is to add

a third entry to the recursion scheme, allowing ‘downwards’ counting:

(iii) m+ p(n) = p(m+ n).

However, this turns out to be superfluous, since (iii) is a consequence of (ii),

as we show now. Assume (ii) m+ s(n) = s(m+n)). Since this equation holds

for all n, also m + s(p(n)) = s(m + p(n)). By s-p-ann, m + n = s(m + p(n)),

so p(m+ n) = p(s(m+ p(n))), which is m+ p(n) by p-s-ann.

318 Numbers and arithmetic in λD

So also for Z, equations (i) and (ii) are enough.

To incorporate definitions such as +m by well-founded recursion (see Re-

mark 14.4.2; see also Exercise 14.9) into the format of λD, we need a kind

of Recursion Theorem for Z. Such a theorem indeed exists, as an immediate

generalisation of the Recursion Theorem for natural numbers (see van Dalen

et al., 1978). Both theorems, the original one and the generalised one, are

provable in λD with the formalised knowledge that we have developed in the

previous sections and chapters. We do not demonstrate this here because of

the complexity of the proofs. See Geuvers (2014b) for details.

The theorem for Z reads as follows:

Theorem 14.4.3 (Recursion Theorem for Z)

Let A be a type, a : A and let f1, f2 : A→ A.

Then there exists exactly one function g : Z→ A such that

− g 0 =A a,

− g(s x) =A f1(g x) if x : Z and pos(s x),

− g(p x) =A f2(g x) if x : Z and neg(p x).

Let’s investigate the content of the theorem. For the unique g that must

exist according to this theorem, we have:

g 0 =A a,

g 1 =A g(s 0) =A f1(g 0) =A f1 a since s 0 is positive,

g 2 =A g(s 1) =A f1(g 1) =A f1(f1 a), etcetera.

How about g(k) for negative k?

g(−1) =A g(p 0) =A f2(g 0) =A f2(a) since p 0 is negative,

g(−2) =A . . . =A f2(f2 a), etcetera.

So a is the value of g in 0, function f1 provides the g-values for positive

numbers and f2 for negative numbers. The theorem says that the recursive

process produces a unique g-value for each integer, so g is indeed a function

on Z.

Remark 14.4.4 Theorem 14.4.3 enables one to recursively define a function

with different descriptions for positive and negative numbers. For example, the

absolute-value-function abs, with

abs(x) :=

{
x if x ≥ 0,

−x if x < 0,

can easily be defined by means of the Recursion Theorem for Z (Exercise 14.6).

Although we give no proof of Theorem 14.4.3, we state it in λD, under the

name spec-rec-th, but without a proof object (see Figure 14.10).

14.4 Integer addition 319

A : ∗s | a : A | f1, f2 : A→ A

spec-rec-th(A, a, f1, f2) := . . . :

∃1g : Z→ A . [g 0 =A a ∧
∀x : Z . [(pos(s x)⇒ (g(s x) =A f1(g x))) ∧

(neg(p x)⇒ (g(p x) =A f2(g x)))]]

Figure 14.10 The Recursion Theorem for Z in λD

When recursively defining addition +m as we have done above, we apparently

have to take Z for A, integer m for a, the successor function s for f1 and the

predecessor function p for f2. The Recursion Theorem for Z then states that

there exists exactly one g : Z→ Z such that

– g 0 =Z m,

– ∀x : Z . (pos(s x) ⇒ g(s x) =Z s(g x)) and

– ∀x : Z . (neg(p x) ⇒ g(p x) =Z p(g x)).

By giving the name +m to this g, we get what we want, albeit that we like

to omit the conditions ‘pos(s x)’ and ‘neg(p x)’, respectively. This is indeed

permitted, because s is a bijection according to ax -int1, and function p is

the inverse of function s. What we thus obtain is a restricted version of the

Recursion Theorem for Z :

Theorem 14.4.5 (Recursion Theorem for Z, with bijection)

Let A be a type, a : A and f : A→ A, a bijection.

Then there exists exactly one function g : Z→ A such that

− g 0 =A a,

− g(s x) =A f(g x) for all x : Z.

This theorem is an immediate consequence of Theorem 14.4.3: given a bijec-

tive f , take f1 := f and f2 := f−1 in that theorem (see Exercise 14.10).

The restricted theorem is suitable for the addition operator +m, since s is a

bijection. It permits applying the simple recursion scheme that we had before,

when taking m for a, function s for f and writing +m for g:

− +m 0 =Z m,

− ∀x : Z . (+m(s x) =Z s(+m x)).

Formally, we can express this as in Figure 14.11. For convenience’s sake,

in line (2) we have given a name to the predicate involved: rec-add -prop(m).

In line (4), the function plus(m) is defined as the function that satisfies the

predicate, i.e. the unique function satisfying the properties plus(m) 0 = m

and, for all integers n, plus(m) (s(n)) = s(plus(m)n). By means of a Notation

Convention, we introduce +m as notation for plus(m).

320 Numbers and arithmetic in λD

(1) a1 := ax -int1 : bijective(Z,Z, s)

m : Z

(2) rec-add -prop(m) := λg : Z→ Z . (g 0 =Z m ∧ ∀x : Z . (g(s x) =Z s(g x))) :

(Z→ Z)→ ∗p
(3) rec-add -lem(m) := . . . use Theorem 14.4.5 . . . :

∃1g : Z→ Z . (rec-add -prop(m) g)

(4) plus(m) := ι(Z→ Z, rec-add -prop(m), rec-add -lem(m)) : Z→ Z

Notation : +m for plus(m)

Figure 14.11 Addition +m : Z→ Z in λD

Now we are in the position to define the binary plus-operation; see line (1) of

Figure 14.12. In lines (2) and (3), the recursive equations for + are expressed,

which can be derived since +m has been defined as the function satisfying

rec-add-prop. Line (4) contains the consequence that we have discussed above.

We leave the proof terms in lines (2) to (4) to the reader (Exercise 14.11).

(1) + := λx : Z . λy : Z . (+x y) : Z→ Z→ Z

Notation : x+ y for + x y

x : Z

(2) plus-i(x) := . . . : x+ 0 =Z x

y : Z

(3) plus-ii(x, y) := . . . : x+ s y =Z s(x+ y)

(4) plus-iii(x, y) := . . . : x+ p y =Z p(x+ y)

Figure 14.12 Properties of addition in Z, formalised in λD

14.5 An example of a basic computation in λD

In order to show how computations are executed on this fundamental level, we

give a formal λD-proof for the statement that 1+2 equals 3. This is not simple

(see Figure 14.13). For eq-refl , eq-trans and eq-cong1, see Figures 12.2, 12.12

and 12.5, respectively.

In the proof, there are only three really interesting lines, namely lines (2), (4)

and (5), in which we appeal to the two definition lines for addition, with con-

stants plus-i and plus-ii (see Figure 14.12). The other eight lines in the proof

are meant to establish the necessary ‘administration’ related to the naming of

numbers 1, 2 and 3, and to the use of reflexivity, transitivity and congruence

as properties of equality.

14.5 An example of a basic computation in λD 321

Notation 14.5.1 Since equality of numbers concerns integers only in the

remainder of this book, we simply write ‘=’ instead of ‘=Z’ in the λD-texts to

come.

(i) 1 := s 0 : Z

(ii) 2 := s 1 : Z

(iii) 3 := s 2 : Z

(1) a1 := eq-refl(Z, 1 + 2) : 1 + 2 = 1 + s1

(2) a2 := plus-ii(1, 1) : 1 + s1 = s(1 + 1)

(3) a3 := eq-refl(Z, s(1 + 1)) : s(1 + 1) = s(1 + s 0)

(4) a4 := eq-cong1(Z,Z, s, 1 + s0, s(1 + 0), plus-ii(1, 0)) :

s(1 + s0) = s(s(1 + 0))

(5) a5 := eq-cong1(Z,Z, λn : Z . s(s(n)), 1 + 0, 1, plus-i(1)) :

s(s(1 + 0)) = s(s 1)

(6) a6 := eq-refl(Z, s(s 1)) : s(s(1)) = 3

(7) a7 := eq-trans(Z, 1 + 2, 1 + s1, s(1 + 1), a1, a2) : 1 + 2 = s(1 + 1)

(8) a8 := eq-trans(Z, 1 + 2, s(1 + 1), s(1 + s 0), a7, a3) : 1 + 2 = s(1 + s 0)

(9) a9 := eq-trans(Z, 1 + 2, s(1 + s 0), s(s(1 + 0)), a8, a4) : 1 + 2 = s(s(1 + 0))

(10) a10 := eq-trans(Z, 1 + 2, s(s(1 + 0)), s(s 1), a9, a5) : 1 + 2 = s(s1)

(11) a11 := eq-trans(Z, 1 + 2, s(s 1), 3, a10, a6) : 1 + 2 = 3

Figure 14.13 A proof in λD that 1 + 2 = 3

A condensed version of the proof reads as follows:

1+2
(1)
= 1+ s1

(2)
= s(1+1)

(3)
= s(1+ s 0)

(4)
= s(s(1+0))

(5)
= s(s(1))

(6)
= 3.

The lines (1), (3) and (6) use reflexivity of equality, together with the defi-

nitions in lines (i) to (iii), which imply that

− s 1
Δ
= 2, hence 1 + 2 = 1 + s 1,

− 1
Δ
= s 0, hence s(1 + 1) = s(1 + s0), and

− s(s(1))
Δ
= 3, respectively.

The underlying derivation rule is (conv) in all three cases.

The conclusions based on the transitivity of equality (lines (7) to (11)) are

straightforward – albeit annoying.

Remark 14.5.2 A human text writer would immediately (even without men-

tioning this) infer A = G from the chain of equalities A = B = C = D = E =

F = G (see above).

But formally, we have to do this step by step:

− from A = B and B = C, follows A = C (line (7));

322 Numbers and arithmetic in λD

− from A = C and C = D, follows A = D (line (8)); and so on, until

− from A = F and F = G, follows A = G (line (11)).

This makes the derivation in Figure 14.13 rather lengthy.

It might help to generalise transitivity (eq-trans) to several lemmas for many-

fold transitivity, expressing e.g. that:

− Lemma eq-trans-4. From A = B = C = D follows A = D;

− Lemma eq-trans-5. From A = B = C = D = E follows A = E; and so on,

to a reasonable limit.

(Find out yourself how, for example, eq-trans-4 can be defined by a double

use of eq-trans.)

With eq-trans-7, we can condense lines (7) to (11) into one line, of the form:

eq-trans-7 (. . .) : 1 + 2 = 3.

14.6 Arithmetical laws for addition

We continue with an exposition in λD-style of several arithmetical laws con-

cerning addition. First, as a preparation for the proof that + is a commutative

operation, we establish the ‘reversals’ of plus-i , plus-ii and plus-iii as defined

in Figure 14.12. The proofs of parts (a) and (b) are by (symmetric) induction,

hence based on the axiom ax -int2 (Figure 14.4) for integers. In order to give a

good impression of how this symmetric induction works, we spell out these in-

duction proofs in words. We leave it to the reader to provide the corresponding

λD-proofs.

Lemma 14.6.1 (a) ∀x : Z . (0 + x = x),

(b) ∀x, y : Z . (s x+ y = s(x+ y)),

(c) ∀x, y : Z . (p x+ y = p(x+ y)).

Proof (a) We use symmetric induction for integers.

Take P ≡ λx : Z . (0 + x = x), then:

(1) P 0 because 0 + 0 = 0 by plus-i .

(2) Induction hypothesis: P x, i.e. 0 + x = x.

Then P (s x), since 0 + s x = s(0 + x) = s x, by plus-ii and the induction

hypothesis, respectively.

Also P (p x), since 0 + p x = p(0 + x) = p x, by plus-iii and the induction

hypothesis.

Hence: ∀x : Z . (P x⇒ (P (s x) ∧ P (p x))).

Final conclusion by ax -int2: ∀x : Z . (P x), i.e. ∀x : Z . (0 + x = x).

(b) Let x be fixed in Z. We proceed by symmetric induction on y in Z. Let

Q := λy : Z . (s x+ y = s(x+ y)). Then:

14.6 Arithmetical laws for addition 323

(1) Q 0, since s x+ 0 = s x = s(x+ 0) by plus-i (twice).

(2) Induction hypothesis: Qy, i.e. s x+ y = s(x+ y).

Then Q(s y), since s x + s y = s(s x + y) = s(s(x + y)) = s(x + s y), by

plus-ii , induction hypothesis and plus-ii , respectively.

Also Q(p y), since on the one hand: s x+ p y = p(s x+ y) = p(s(x+ y)) =

x+ y by plus-iii , induction hypothesis and p-s-annihilation. On the other

hand: s(x+ p y) = s(p(x+ y)) = x+ y, by plus-iii and s-p-annihilation. It

follows that s x+ p y = s(x+ p y), i.e. Q(p y).

Hence ∀y : Z . (Qy ⇒ (Q(s y) ∧Q(p y))).

Conclusion by induction (ax -int2): ∀y : Z . (s x+ y = s(x+ y)).

Final conclusion by ∀-in: ∀x, y : Z . (s x+ y = s(x+ y)).

(c) We have shown in Section 14.4 that +m(p n) = p(+m(n)) is a conse-

quence of +m(s n) = s(+m(n)). Similarly, ∀x, y : Z . (p x + y = p(x + y)) is a

consequence of (b) (show it yourself).

We leave it to the reader (Exercise 14.12 (a)) to give a proof of the commu-

tativity of addition; that is:

Lemma 14.6.2 ∀x, y : Z . (x+ y = y + x).

We give two more properties of addition:

Lemma 14.6.3 (a) ∀x, y : Z . (p x+ s y = x+ y),

(b) ∀x, y : Z . (s x+ p y = x+ y).

Proof (a) We have: p x + s y = p(x + s y) = p(s(x + y)) = x + y, by

Lemma 14.6.1 (c), plus-ii and annihilation.

(b) Prove it yourself.

Addition is also associative:

Lemma 14.6.4 ∀x, y, z : Z . (x+ (y + z) = (x+ y) + z).

The proof of associativity is straightforward and therefore omitted. Do it

yourself (Exercise 14.12 (b)).

We continue with the so-called Cancellation Laws, which allow us to ‘strike

out’ an identical added value at both sides of an equality:

Lemma 14.6.5 (Cancellation Laws for addition)

(a) (Right Cancellation) ∀x, y, z : Z . (x+ z = y + z ⇒ x = y),

(b) (Left Cancellation) ∀x, y, z : Z . (x+ y = x+ z ⇒ y = z).

A proof of the Right Cancellation Law is left to the reader (Exercise 14.12 (c)).

The Left Cancellation Law then follows directly from the commutativity of ad-

dition (Lemma 14.6.2).

324 Numbers and arithmetic in λD

Note that the converses of both Cancellation Laws also hold:

∀x, y, z : Z . (x = y ⇒ x+ z = y + z)

and

∀x, y, z : Z . (y = z ⇒ x+ y = x+ z),

since both are a consequence of the congruence property of functions (see

Figure 12.6).

We list most of the extra results obtained in this section, in λD-format but

without proof objects, in Figure 14.14.

x : Z

(1) plus-i -alt(x) := . . . : 0 + x = x

y : Z

(2) plus-ii -alt(x, y) := . . . : s x+ y = s(x+ y)

(3) plus-iii -alt(x, y) := . . . : p x+ y = p(x+ y)

(4) comm-add(x, y) := . . . : x+ y = y + x

z : Z

(5) assoc-add(x, y, z) := . . . : x+ (y + z) = (x+ y) + z

(6) right-canc-add(x, y, z) := . . . : x+ z = y + z ⇒ x = y

(7) left-canc-add(x, y, z) := . . . : x+ y = x+ z ⇒ y = z

Figure 14.14 More properties of addition in Z

14.7 Closure under addition for natural and negative numbers

We now focus on an important property of addition for elements of the subset

N, namely the nice property that N is closed under addition; that is:

Lemma 14.7.1 (Closure of N under addition)

∀x, y : Z . ((x ε N ∧ y ε N)⇒ x+ y ε N).

Proof The proof is by induction for the natural numbers (nat-ind ; see Fig-

ure 14.8). We take x fixed and apply induction on y. Therefore we first re-

formulate Lemma 14.7.1 in order to facilitate induction (check that the two

expressions are equivalent):

To prove: ∀x : Z . (x ε N⇒ ∀y : Z . (y ε N⇒ x+ y ε N)).

So take x of type Z fixed, and assume x ε N. To prove:

∀y : Z . (y ε N⇒ x+ y ε N).

For the proof by induction on y, we consider an appropriate induction pred-

icate, viz. P := λy : Z . (x+ y ε N).

We now obtain:

14.7 Closure under addition for natural and negative numbers 325

(1) P 0, since x+ 0 = x and x ε N, by assumption.

(2) Let y : Z such that y ε N and P y. To prove: P (s y). Now P y means

x+ y ε N; then also s(x+ y) ε N by clos-prop (Figure 14.5), so x+ s y ε N,

which is P (s y).

Hence, ∀y : Z . (y ε N⇒ (P y ⇒ P (s y))).

By nat-ind we may conclude that ∀y : Z . (y ε N⇒ P y), as desired.

We formalise this proof and its conclusion in Figure 14.15, in the style to

which we are now used: many proof objects are not actually given, but only

hinted at. Note that P depends on the ‘fixed’ x: the parameter list, (x), has

been suppressed in accordance with Notation 11.7.1.

x : Z

(1) P † := λy : Z . (x+ y ε N) : Z→ ∗p
u : x ε N

(2) a2 := . . . use plus-i and eq-sym . . . : x = x+ 0

(3) a3 := . . . use eq-subs on a2 and u . . . : P 0

y : Z | v : y ε N

w : P y

(4) a4 := clos-prop (x+ y) w : s(x+ y) ε N

(5) a5 := . . . use plus-ii and eq-sym . . . : s(x+ y) = x+ s y

(6) a6 := . . . use eq-subs on a5 and a4 . . . : P (s y)

(7) a7 := . . . use ⇒ -in twice, and ∀-in, on a6 . . . :

∀y : Z . (y ε N⇒ (P y ⇒ P (s y)))

(8) a8 := . . . use ∧-in on a3 and a7, and ⇒ -el on nat-ind(P) . . . :

∀y : Z . (y ε N⇒ x+ y ε N)

(9) a9 := . . . use ⇒ -in and ∀-in on a8 . . . :

∀x : Z . (x ε N⇒ ∀y : Z . (y ε N⇒ x+ y ε N))

x, y : Z | u : x ε N | v : y ε N

(10) plus-clos-nat := a9 x u y v : x+ y ε N

†parameters suppressed

Figure 14.15 Closure property of addition in N

We also give the fully formalised version, so without hints and with complete

parameter lists. This we do in Appendix C, Section C.1. Thus we enable the

reader to compare the complete and the shortened versions.

326 Numbers and arithmetic in λD

There is a companion to the closure of the natural numbers under addition,

namely the closure of the negative numbers under addition. In order to prove

this, we first give the following characterisation of negative numbers:

Lemma 14.7.2 (Characterisation of negative numbers)

∀x : Z . (neg(x)⇔ ∃y : Z . (pos(y) ∧ x+ y = 0)).

We give the proof below as an extra exercise with symmetric induction for

integer numbers (see Figure 14.4). Since it is a bit involved, we suffice with a

proof in words.

Proof (Part I: left to right) ∀x : Z . (neg(x)⇒ ∃y : Z . (pos(y) ∧ x+ y = 0))?

The induction predicate P is λx : Z . (neg(x)⇒ ∃y : Z . (pos(y)∧ x+y = 0)).

(1) P 0? Yes, since 0 ε N, hence ¬(neg(0)).
(2) ∀x : Z . (P x⇒ (P (s x) ∧ P (p x)))? Assume x : Z and P x.

(a) To prove: P (s x).

So assume neg(s x). Is there a z : Z such that pos(z) and s x+ z = 0?

Since neg(s x), also neg(p(s x)) (Lemma 14.3.2 (c)), so neg(x). From the

induction hypothesis P x then follows: there is y : Z such that pos(y) and

x+ y = 0, hence s x+ p y = 0 by Lemma 14.6.3 (b).

It follows that p y �= 0, since otherwise s x = 0, contradicting neg(s x).

Lemma 14.3.2 (b) implies (take p y for x) that from pos(y) and p y �= 0 we can

infer that pos(p y).

Hence, p y is a witness showing that ∃z : Z . (pos(z) ∧ s x+ z = 0).

(b) To prove: P (p x).

So assume neg(p x). Is there a z : Z such that pos(z) and p x+ z = 0?

We can use Lemma 14.3.2 (c) to derive x = 0 ∨ neg(x). We continue with

using ∨-el :
Case x = 0: then p x + s 0 = x + 0 = 0 by Lemma 14.6.3 (a), and pos(s 0),

so s 0 is a witness for ∃z : Z . (pos(z) ∧ p x+ z = 0).

Case neg(x): then by induction hypothesis P x there is y : Z such that

pos(y) and x + y = 0. Hence, pos(s y) (Lemma 14.3.2 (b)) and p x + s y = 0

(Lemma 14.6.3 (a)), so s y is a witness for ∃z : Z . (pos(z) ∧ p x+ z = 0).

So altogether, with ∨-el we obtain ∃z : Z . (pos(z) ∧ p x+ z = 0).

(Part II: right to left) ∀x : Z . ((∃y : Z . (pos(y) ∧ x+ y = 0))⇒ neg(x))?

Left to the reader (Exercise 14.13).

As a consequence, we have the closure property for negative integers:

Lemma 14.7.3 (Closure for negative integers)

∀x, y : Z . (neg(x) ∧ neg(y) ⇒ neg(x+ y)).

14.8 Integer subtraction 327

Proof Let x and y be negative integers. Then by Lemma 14.7.2:

− there is z1 : Z such that pos(z1) and x+ z1 = 0, and

− there is z2 : Z such that pos(z2) and y + z2 = 0.

Use commutativity and associativity of addition to get (x+y)+(z1+z2) = 0.

From pos(z1) and pos(z2) follows p z1 ε N (so s(p z1) = z1 ε N by clos-prop)

and p z2 ε N. Hence, by Lemma 14.7.1, z1 + p z2 ε N, so p(z1 + z2) ε N, i.e.

pos(z1 + z2). It follows that there is z : Z (namely z1 + z2) such that pos(z)

and (x+ y) + z = 0. So neg(x+ y) by Lemma 14.7.2.

14.8 Integer subtraction

After we have studied addition for integers, it is natural to consider its inverse:

subtraction. Note that subtraction is easier for integers than for natural num-

bers: each pair of integers has a difference in Z, but not every pair of natural

numbers has a difference in N.

The difference of x and y in Z is a unique number, namely the number z

such that when y is added to it, gives x:

x− y := ιz:Z(z + y = x).

Since the ι is part of our λD-syntax (see Section 12.6), we define subtraction

in this manner, but first we have to prove the uniqueness of such a z:

Lemma 14.8.1 (Uniqueness of difference)

∀x, y : Z . ∃1z : Z . (z + y = x).

We prove this lemma below in the informal style to which we are now used. (It

can be transformed relatively easily into a formal λD-derivation.) As expected,

we split the proof of this lemma into two parts: first we show existence, then

uniqueness of existence.

Proof (Part I: Existence) ∀x, y : Z . ∃z : Z . (z + y = x)?

Take x in Z fixed; we proceed by symmetric induction on y. As a shorthand,

we write P for λy : Z . ∃z : Z . (z + y = x). To prove: ∀y : Z . (P y).

(1) P 0? Since x+0 = x, we have by ∃-in that ∃z : Z . (z+0 = x). Hence P 0.

(2) ∀y : Z . (P y ⇒ (P (s y)∧P (p y)))? Assume y : Z and P y. To prove: P (s y)

(i.e. ∃z′ : Z . (z′ + s y = x)) and P (p y) (i.e. ∃z′′ : Z . (z′′ + p y = x)).

We assumed P y, which means ∃z : Z . (z + y = x). Use ∃-el , or in words:

take a z in Z with z + y = x.

Now p z+ s y = z+ y and s z+ p y = z+ y (see Lemma 14.6.3 (b) and (c)).

Hence we found the z′ such that z′+s y = x (viz. z′ = p z) and the z′′ such
that z′′ + p y = x (viz. z′′ = s z). Consequently P (s y) and P (p y) hold, as

desired.

328 Numbers and arithmetic in λD

Hence, by symmetric induction, ∀y : Z . (P y).

Final conclusion: ∀x, y : Z . ∃z : Z . (z + y = x).

(Part II: Uniqueness of existence) ∀x, y : Z . ∃1z : Z . (z + y = x)?

Let x and y be in Z. Assume z1 and z2 in Z such that z1+y = x and z2+y = x.

Obviously, z1+y = z2+y, so (by Right Cancellation, Lemma 14.6.5 (a)) z1 = z2.

This implies the uniqueness of the z such that z+ y = x (cf. Section 12.6).

The corresponding λD-proof is straightforward, but slightly involved because

of the instances of ∃-in and ∃-el . We shall not give it here.

Since x − y is the z in Z such that z + y = x, it follows from ι-prop (cf.

Figure 12.16) that x− y satisfies the last-mentioned equation; hence we have:

Lemma 14.8.2 ∀x, y : Z . ((x− y) + y = x).

The following counterpart is an easy consequence:

Lemma 14.8.3 ∀x, y : Z . ((x+ y)− y = x).

Proof Since ((x+ y)− y) + y = x+ y by Lemma 14.8.2, the result follows by

Right Cancellation.

In Figure 14.16 we record all this in λD-format.

x : Z

y : Z

(1) uni -dif (x, y) := . . . see Lemma 14.8.1 . . . : ∃1z : Z . (z + y = x)

(2) minus(x, y) := ι
uni-dif (x,y)
z:Z (z + y = x) : Z

Notation : x− y for minus(x, y)

(3) subtr -prop1 (x, y) := ι-prop(Z, λz : Z . (z + y = x), uni -dif (x, y)) :

(x− y) + y = x

(4) subtr -prop2 (x, y) := . . . see Lemma 14.8.3 . . . : (x+ y)− y = x

Figure 14.16 Subtraction of integers

It follows from Lemma 14.8.2 that, for every x in Z: (x − x) + x = x. And

since we also know that 0 + x = x (Lemma 14.6.1 (a)), we may conclude that

∀x : Z . ((x − x) + x = 0 + x), by symmetry and transitivity of =. Hence, by

Right Cancellation:

Lemma 14.8.4 ∀x : Z . (x− x = 0).

Another consequence of Lemma 14.8.2 is:

Lemma 14.8.5 ∀x : Z . (x− 0 = x).

14.8 Integer subtraction 329

The proof is easy: x− 0 = (x− 0) + 0 = x, by plus-i and Lemma 14.8.2.

The same Lemma 14.8.2 can also be used for proofs of the following coun-

terparts of plus-ii and plus-iii :

Lemma 14.8.6 (a) ∀x, y : Z . (x− s y = p(x− y)),

(b) ∀x, y : Z . (x− p y = s(x− y)).

Proof of part (a):

− First consider the left-hand side: x − s y. It is a subtraction, so its charac-

teristic property (cf. Lemma 14.8.2) is that adding s y to it delivers x:

(x− s y) + s y = x.

− Adding s y to the right-hand side of the equation gives p(x− y) + s y, which

may be rewritten by Lemmas 14.6.3 (a) and 14.8.2 to:

p(x− y) + s y = (x− y) + y = x.

Combining this, we get that (x − s y) + s y = p(x − y) + s y, so by Right

Cancellation: x− s y = p(x− y).

The proof of part (b) is similar.

Counterparts of plus-ii -alt and plus-iii -alt are:

Lemma 14.8.7 (a) ∀x, y : Z . (s x− y = s(x− y)),

(b) ∀x, y : Z . (p x− y = p(x− y)).

Prove this lemma yourself.

As a consequence (Exercise 14.15 (a)), we have the following facts, which

will not come as a surprise (recall from Figure 14.13 that 1 has been defined

as s 0):

Lemma 14.8.8 (a) ∀x : Z . (x+ 1 = s x),

(b) ∀x : Z . (x− 1 = p x).

There are many arithmetical lemmas concerning addition and subtraction,

which can be proved using our definitions. Each new lemma, once proved,

has the potential to simplify proofs of further lemmas and theorems. If one

desires to formally develop a substantial body of arithmetic in λD-style, it is

worthwhile to formulate and prove a considerable number of these arithmetical

laws. (See also some of the exercises at the end of the present chapter.) An

example are the Cancellation Laws for subtraction, which are similar to the

ones for addition (Lemma 14.6.5):

Lemma 14.8.9 (Cancellation Laws for subtraction)

(a) (Right Cancellation) ∀x, y, z : Z . (x− z = y − z ⇒ x = y),

(b) (Left Cancellation) ∀x, y, z : Z . (x− y = x− z ⇒ y = z).

330 Numbers and arithmetic in λD

Proof The proof of part (a) is easy: if x− z = y − z, then by the congruence

property for plus: (x − z) + z = (y − z) + z, hence by Lemma 14.8.2 (twice):

x = y.

The proof of part (b) is more complicated; it is left to the reader (Exer-

cise 14.15 (b)).

The following lemma contains variants of associativity (Lemma 14.6.4), but

now with subtraction involved. Prove it yourself (Exercise 14.16), following the

strategy employed in the proof of Lemma 14.8.6.

Lemma 14.8.10 (a) ∀x, y, z : Z . (x+ (y − z) = (x+ y)− z),

(b) ∀x, y, z : Z . (x− (y + z) = (x− y)− z),

(c) ∀x, y, z : Z . (x− (y − z) = (x− y) + z).

Finally, we mention and prove the following lemma, which we can use well

in the following section:

Lemma 14.8.11 ∀x, y : Z . (pos(x− y)⇔ neg(y − x)).

Proof Let x, y : Z.

(Part I: left to right) Assume pos(x− y), so p(x− y) ε N.

Assume y − x ε N. Then by closure, p(x − y) + (y − x) ε N. After some

calculational steps, using the lemmas given earlier, we obtain from this: p 0 ε N,

contradicting ax -int3. Hence neg(y − x).

(Part II: right to left) Assume neg(y − x).

Then by Lemma 14.7.2, there is z : Z such that pos(z) and (y − x) + z = 0.

Calculation (do it yourself) leads to z = x− y. Hence, pos(x− y).

14.9 The opposite of an integer

The minus-sign, employed for subtraction of two integers, is also used as a

sign for constructing the opposite of an integer: to make −m out of m. This is

clearly ‘overloading’ of the symbol ‘−’. In practice, however, this is no problem,

since the parsing of an arithmetical expression should make it clear whether an

occurrence of a minus-sign is meant as a binary symbol (denoting subtraction)

or a unary one (for ‘taking-the-opposite’).

A standard definition for the opposite is: −x is the number that, when added

to x, delivers 0. (It is not hard to show that there always is such a number, and

that it is unique; Exercise 14.17.) Another approach is to define the opposite as

a special case of subtraction, namely: −x is 0− x. We follow the latter option,

which is easier to implement in λD (see Figure 14.17).

Again, there are many basic arithmetical laws that can be proved now, about

(a combination of) addition, subtraction and opposites of integers. We only

14.9 The opposite of an integer 331

discuss a few of them in Lemma 14.9.1, but a useful ‘library’ of arithmetical

facts should contain many more. (See again the exercises for some other laws

of arithmetic.) Proofs are only sketched; the details and λD-versions of the

proofs are left to the reader.

Lemma 14.9.1 (a) ∀x : Z . ((−x) + x = 0),

(b) ∀x, y : Z . (x+ (−y) = x− y),

(c) ∀x, y : Z . (−(x+ y) = (−x)− y).

Proof sketch

(a) (−x) + x = (0− x) + x = 0 by subtr -prop1 (see Figure 14.16).

(b) (x+(−y))+y = x+((−y)+y) = x+0 = x by associativity and part (a),

and (x− y) + y = x by subtr -prop1 ; use Right Cancellation.

(c) (−(x+y))+(x+y) = 0, and ((−x)−y)+(x+y) = ((−x)−y)+(y+x) =

(((−x) − y) + y) + x = (−x) + x = 0 by subtr -prop1 and part (a); use Right

Cancellation.

The equalities mentioned in Lemma 14.9.1 are entered in Figure 14.17.

x : Z

(1) opp(x) := 0− x : Z

Notation : −x for opp(x)

(2) a2(x) := . . . : (−x) + x = 0

y : Z

(3) a3(x, y) := . . . : x+ (−y) = x− y

(4) a4(x, y) := . . . : −(x+ y) = (−x)− y

Figure 14.17 The opposite of an integer number and some lemmas

It will turn out in the following chapter that when dealing with an exam-

ple of a mathematical theorem of importance (‘Bézout’s Lemma’), we need

more properties concerning the opposite of an integer. Therefore, we list some

fundamental properties of opposites in the following lemmas.

Informal proofs of these lemmas, and formal proofs in λD, are left to the

reader (cf. Exercise 14.19).

Lemma 14.9.2 (a) −0 = 0,

(b) ∀x : Z . (−(−x) = x),

(c) ∀x : Z . (x = 0⇔ −x = 0).

Lemma 14.9.3 (a) ∀x : Z . (−(s x) = p(−x)),
(b) ∀x : Z . (−(p x) = s(−x)).

332 Numbers and arithmetic in λD

We conclude this section with a number of useful lemmas. In the first lemma,

we make good use of Lemma 14.8.11.

Lemma 14.9.4 (a) ∀x : Z . (pos(x)⇔ neg(−x)),
(b) ∀x : Z . (neg(x)⇔ pos(−x)).

Proof of part (b): neg(x) if and only if neg(x−0) by Lemma 14.8.5, if and only

if pos(0− x) by Lemma 14.8.11, if and only if pos(−x) by definition of −x.
Part (a) is an easy consequence (use Lemma 14.9.2 (b)).

From trip (Figure 14.9) we may now infer:

Lemma 14.9.5 (a) ∀x : Z . (pos(x) ∨ pos(−x) ∨ x = 0),

(b) ∀x : Z . (neg(x) ∨ neg(−x) ∨ x = 0).

The following lemma describes a characterising condition, in terms of earlier

sections, for the opposite of x to be a natural number.

Lemma 14.9.6 ∀x : Z . (−x ε N⇔ (neg(x) ∨ x = 0)).

Proof Let x : Z.

(Part I: left to right) Assume −x ε N.

Assume x �= 0. Then −x �= 0 (see Lemma 14.9.2 (a)), hence p(−x) ε N by

Lemma 14.3.1. So pos(−x), hence neg(x) by Lemma 14.9.4.

So neg(x) ∨ x = 0 by ∨-in-alt2.
(Part II: right to left) Assume neg(x) ∨ x = 0.

(1) Case neg(x): then by Lemma 14.9.4 (b): pos(−x), i.e. p(−x) ε N. Hence,

also s(p(−x)) = −x ε N.

(2) Case x = 0: then −x = 0 by Lemma 14.9.2 (a), so −x ε N.

So altogether we obtain −x ε N by ∨-el .

Consequences are (Exercise 14.19 (c)):

Lemma 14.9.7 (a) ∀x : Z . (x ε N ∨ −x ε N),

(b) ∀x : Z . ((x ε N ∧ −x ε N)⇒ x = 0).

Notice that this brings along that Z consists of all natural numbers together

with their opposites, where −0 is the only opposite of a natural number that

remains a natural number; just as we had in mind when setting out the for-

malisation of integers in λD.

14.10 Inequality relations on Z

We now consider the inequality relations ≤ and < and how to include them

in the λD-version of Z. A standard approach is to define ≤ in the following

manner:

14.10 Inequality relations on Z 333

x ≤Z y := ∃z : Z . (z ε N ∧ x+ z = y).

An easier way of defining inequalities, without the ∃-quantifier, is by making

a direct use of subtraction and the natural numbers (see Figure 14.18).

(1) ≤Z := λx : Z . λy : Z . (y − x ε N) : Z→ Z→ ∗p
Notation : x ≤Z y or x ≤ y for ≤Z x y

(2) <Z := λx : Z . λy : Z . (x ≤Z y ∧ x �=y) : Z→ Z→ ∗p
Notation : x <Z y or x < y for <Z x y

Figure 14.18 Inequalities between integer numbers in λD

Again, there are many lemmas about inequalities, containing addition, sub-

traction and opposites. We restrict ourselves to some examples.

Lemma 14.10.1 (a) ∀x : Z . (x ≤ x),

(b) ∀x, y, z : Z . ((x ≤ y ∧ y ≤ z)⇒ (x ≤ z)),

(c) ∀x, y, z : Z . ((x+ z ≤ y + z)⇔ (x ≤ y)),

(d) ∀x, y, z : Z . ((x < y ∧ y ≤ z)⇒ (x < z)),

(e) ∀x, y, z : Z . ((x+ z < y + z)⇔ (x < y)).

In order to demonstrate how inequalities work in the present setting, we give

informal proofs of the first three parts; these proofs can be transposed without

too much effort into formal λD-proofs.

Proof (a) Let x : Z. Then x ≤ x if and only if x− x ε N, and Lemma 14.8.4

implies that x− x = 0 ε N.

(b) Let x, y, z : Z, with x ≤ y and y ≤ z. This means that y − x ε N

and z − y ε N, so by the closure of N under addition (Figure 14.15) also

(y−x)+ (z− y) ε N. It is not hard to show that (y−x)+ (z− y) = z−x (use

e.g. Lemmas 14.6.2, 14.8.10 and 14.8.2). Hence, x ≤ z.

(c) Let x, y, z : Z, with x+ z ≤ y + z. Then (y + z)− (x+ z) ε N.

We can prove that (y + z) − (x + z) = y − x, for example in the following

manner: add x+ z to both sides, then:

− ((y + z)− (x+ z)) + (x+ z) is equal to y + z;

− and (y − x) + (x+ z) = ((y − x) + x) + z by Lemma 14.6.4, which is equal

to y + z by Lemma 14.8.2.

Hence, Right Cancellation gives the desired equality, hence also y − x ε N.

This proves (x+ z ≤ y + z)⇒ (x ≤ y).

A proof of the reverse, (x ≤ y)⇒ (x+ z ≤ y + z), follows immediately.

(d), (e) Proofs are left to the reader (Exercise 14.26).

334 Numbers and arithmetic in λD

It is now straightforward to show that ≤ is a partial order (see Figure 8.2)

and that < is a strict partial order (see Section 2.5), both on Z. We leave this

to the reader.

We can define the related notions ≥ and > directly as the reverses of ≤
and < (see Figure 14.19).

(1) ≥Z := λx : Z . λy : Z . (y ≤Z x) : Z→ Z→ ∗p
Notation : x ≥Z y or x ≥ y for ≥Z x y

(2) >Z := λx : Z . λy : Z . (y <Z x) : Z→ Z→ ∗p
Notation : x >Z y or x > y for >Z x y

Figure 14.19 More inequalities between integers

The following lemma is a consequence (Exercise 14.27):

Lemma 14.10.2 (a) ∀x : Z . (pos(x)⇔ x > 0),

(b) ∀x : Z . (neg(x)⇔ x < 0),

(c) ∀x : Z . (x < 0 ∨ x = 0 ∨ x > 0).

Finally, we give two examples of the interplay between the inequality relation

and the opposites of integers:

Lemma 14.10.3 (a) ∀x, y : Z . (x < y ⇔ −y < −x),
(b) ∀x : Z . (x < 0⇔ −x > 0).

Again, we give informal proofs in order to demonstrate what the relevant

proof steps are (see also Exercise 14.28).

Proof (a) On the one hand, x < y is equivalent to (y−x ε N)∧ (x �= y), and

on the other hand, −y < −x is equivalent to (−x− (−y) ε N) ∧ (−y �= −x).
Now it is not hard to show that y − x = −x − (−y) (use a3 of Figure 14.17,

and Lemma 14.9.2 (b)).

Moreover, x �= y ⇔ −y �= −x.
(b) This is an easy consequence of part (a).

As an application, we give the definition of lower bound for a subset of a

set S relative to a relation R on S. Often we take Z for S and ≤ for R. We

introduce a separate name for the lower bound in this special case, in order

to shorten the parameter list. We also prove that 0 is a lower bound for every

subset of Z that consists of natural numbers only (see Figure 14.20).

14.11 Multiplication of integers 335

S : ∗s | R : S → S → ∗p | T : ps(S) | l : S

(1) lw -bnd(S,R, T, l) := ∀t : S . (t ε T ⇒ R l t) : ∗p
T : ps(Z) | l : Z

(2) lw -bndZ(T, l) := lw -bnd(Z,≤Z, T, l) : ∗p
T : ps(Z) | u : T ⊆ N

t : Z | w : t ε T

(3) a3(T, u, t, w) := u tw : t ε N

(4) a4(T, u, t, w) := . . . use Lemma 14.8.5 . . . : 0 ≤ t

(5) a5(T, u) := . . . use ⇒ -in and ∀-in . . . : lw -bndZ(T, 0)

Figure 14.20 The number 0 is lower bound of every subset of N

14.11 Multiplication of integers

We also consider multiplication of integers, in a similar manner as we have

done in Section 14.4 for addition. This is the basic recursion scheme for mul-

tiplication:

(i) m · 0 = 0,

(ii) m · s(n) = (m · n) +m.

Obviously, the recursion takes place in the second operand of m · n, again,
so taking m constant we obtain for integers m and n:

(i) ×m(0) = 0,

(ii) ×m(s(n)) = ×m(n) +m.

The same question arises as with addition: is this ‘upward’ definition of

multiplication sufficient to also cover the negative numbers? Otherwise said:

do we need a third recursive equation, to the effect that:

(iii) m · p(n) = (m · n)−m ?

The answer is no, again, just as in the addition case (cf. Section 14.4). We

leave a proof of this to the reader (Exercise 14.30).

We can define multiplication for integers similarly to what we have done for

addition in Section 14.4. In Figure 14.21 we give the relevant lines, in which

we refer to the Recursion Theorem 14.4.5 (for Z). In line (1), we define f as

λv : Z . (v+m), which is a bijective function (prove it yourself; the inverse of f

is λv : Z . (v −m)).

In Figure 14.22 we define the binary multiplication operation and we list the

most important properties of multiplication.

336 Numbers and arithmetic in λD

m : Z

(1) f := λv : Z . (v +m) : Z→ Z

(2) a2 := . . . : bijective(Z,Z, f)

(3) rec-mult-prop(m) := λg : Z→ Z . (g 0 = 0 ∧ ∀x : Z . (g(s x) = f(g x))) :

(Z→ Z)→ ∗p
(4) rec-mult-lem(m) := . . . use Theorem 14.4.5 . . . :

∃1g : Z→ Z . (rec-mult-prop(m) g)

(5) times(m) := ι(Z→ Z, rec-mult-prop(m), rec-mult-lem(m)) : Z→ Z

Notation : ×m for times(m)

Figure 14.21 Multiplication ×m : Z→ Z in λD

(1) × := λx : Z . λy : Z . (×x y) : Z→ Z→ Z

Notation : x · y for × x y

x : Z

(2) times-i(x) := . . . : x · 0 = 0

y : Z

(3) times-ii(x, y) := . . . : x · s y = (x · y) + x

(4) times-iii(x, y) := . . . : x · p y = (x · y)− x

Figure 14.22 Properties of multiplication in Z

Again, we may consider the ‘reversals’ of (2), (3) and (4) in Figure 14.22 (cf.

Lemma 14.6.1):

Lemma 14.11.1 (a) ∀x : Z . (0 · x = 0),

(b) ∀x, y : Z . (s x · y = (x · y) + y),

(c) ∀x, y : Z . (p x · y = (x · y)− y).

The proofs are left to the reader (Exercise 14.31).

There is an important lemma that considers the combining of addition and

multiplication in Z. This lemma is called Distributivity . It tells us how mul-

tiplication distributes over addition; this means that the x together with the

multiplication symbol ‘·’ in the left-hand side of the following equation may be

distributed over both operands of the ‘+’-symbol: x · (y + z) = (x · y) + (x · z).
Multiplication also distributes over subtraction. Both facts are expressed in

the following lemma.

Lemma 14.11.2 (Right Distributivity Laws for multiplication)

(a) ∀x, y, z : Z . (x · (y + z) = (x · y) + (x · z)),
(b) ∀x, y, z : Z . (x · (y − z) = (x · y)− (x · z)).

14.11 Multiplication of integers 337

There are, of course, also Left Distributivity Laws. All proofs are left to the

reader again (cf. Exercise 14.32).

Consequences of Lemmas 14.11.1 and 14.11.2 are the commutativity and

associativity of multiplication:

Lemma 14.11.3 (a) ∀x, y : Z . (x · y = y · x),
(b) ∀x, y, z : Z . ((x · y) · z = x · (y · z)).
Again, the proofs are omitted (Exercise 14.33).

Various other lemmas about multiplication in combination with addition,

subtraction, opposites and inequality relations can be formulated. Some of

them you may find in the exercises at the end of this chapter.

We conclude with a selection of interesting examples of such lemmas, with

instructive (informal) proofs. We start with a lemma about the interplay be-

tween multiplication and the opposite of an integer:

Lemma 14.11.4 ∀x, y : Z . (x · (−y) = −(x · y)).

Proof On the one hand, x · (−y) + x · y = x · ((−y) + y) = x · 0 = 0 (by

Lemma 14.11.2 (a), a2 of Figure 14.17 and times-i). On the other hand, also

−(x · y) + x · y = 0 (by a2 of Figure 14.17, again). So x · (−y) = −(x · y) by

Right Cancellation.

We prove that N is closed under multiplication (cf. Lemma 14.7.1), and some

related matters:

Lemma 14.11.5 (a) ∀x, y : Z . ((x ε N ∧ y ε N)⇒ x · y ε N),

(b) ∀x, y : Z . ((x > 0 ∧ y > 0)⇒ x · y > 0),

(c) ∀x, y : Z . ((x > 0 ∧ y < 0)⇒ x · y < 0),

(d) ∀x, y : Z . ((x < 0 ∧ y < 0)⇒ x · y > 0).

Proof (a) The proof can be given by induction, similarly to the proof of

closure under addition (cf. Figure 14.15). Do it yourself (Exercise 14.36; you

can use the addition-closure property in the multiplication-closure proof).

(b) Let x, y : Z. Assume x > 0 and y > 0. The latter implies that p y ε N

by Lemma 14.10.2 (a). Hence (use Lemma 14.10.1 (e)): x · y = x · s(p y) =

x · (p y) + x > x · (p y) + 0 = x · (p y). Since both x and p y are in N, we have

by part (a) that x · p y ε N, so x · p y ≥ 0. Using Lemma 14.10.1 (d), we obtain

that x · y > 0.

(c) Let x, y : Z. Assume x > 0 and y < 0. Then Lemma 14.10.3 (b) implies

that −y > 0, hence x · (−y) > 0 by part (b). But x · (−y) = −(x · y) by

Lemma 14.11.4, hence −(x ·y) > 0, so x ·y < 0 (use Lemma 14.10.3 (b), again).

(d) Prove it yourself. (Hint: use Lemma 14.10.3 (b) and part (b).)

338 Numbers and arithmetic in λD

The following lemma says that a product is zero if and only if one of the

factors is zero:

Lemma 14.11.6 ∀x, y : Z . (x · y = 0⇒ (x = 0 ∨ y = 0)).

Prove it yourself (Exercise 14.37).

There are also Cancellation Laws for multiplication. They have an extra

condition compared to the Cancellation Laws for addition (Lemma 14.6.5),

namely that the ‘cancelled’ argument should not be zero:

Lemma 14.11.7 (Right Cancellation Law for multiplication)

∀x, y, z : Z . ((x · z = y · z ∧ z �= 0)⇒ x = y).

A counterpart is, of course, the Left Cancellation Law for multiplication.

These laws can be proved using Lemma 14.11.6 (cf. Exercise 14.38).

14.12 Divisibility

Another relation between integers is divisibility : m divides n (or m is a divisor

of n) if there exists q in Z such that m · q = n. The relation, called div(m,n),

can easily be defined in λD, as demonstrated in Figure 14.23, line (1). We

employ the usual notation m |n for this.

Note that this definition concerns all integer numbers, including 0. Check

the following properties for divisibility in relation with the number zero:

Lemma 14.12.1 (a) ∀m : Z . (m | 0),
(b) In particular: 0 | 0,
(c) ∀n : Z . (0 |n ⇒ n = 0).

So all integers divide 0, whereas 0 divides no integer number except itself.

It is also worthwhile to derive some more basic lemmas about divisibility,

such as the following ones:

Lemma 14.12.2 (a) ∀l,m : Z . (l |m⇔ −l |m),

(b) ∀m : Z . (1 |m).

The following lemma implies that | is a partial order (see Figure 12.7) on

the naturals.

Lemma 14.12.3 (a) ∀m : Z . (m |m),

(b) ∀l,m, n : Z . ((l |m ∧m |n)⇒ l |n),
(c) ∀m,n : Z . ((m ε N ∧ n ε N)⇒ ((m |n ∧ n |m)⇒ m = n)).

Remark 14.12.4 Parts (a) and (b) of Lemma 14.12.3 hold for arbitrary

integers, but the integer variant for part (c) is:

14.12 Divisibility 339

∀m,n : Z . ((m |n ∧ n |m) ⇒ (m = n ∨ m = −n)).
Hence, the relation | is not a partial order on the integers.

A proof of Lemma 14.12.3 is left to the reader (cf. Exercise 14.42).

We can define several notions related to divisibility, and prove lemmas about

them. In Figure 14.23 we define the common divisor property (line (2)), co-

primality (see Section 8.7; line (4)) and the greatest common divisor (‘gcd ’)

of two numbers (line (7)). We restrict the definition of gcd to positive natural

numbers m and n, as is usual in mathematics. (It is possible to extend the

gcd-notion to integers, but we shall not do that here.)

m,n : Z

(1) div(m,n) := ∃q : Z . (m · q = n) : ∗p
Notation : m |n for div(m,n)

k,m, n : Z

(2) com-div(k,m, n) := k |m ∧ k |n : ∗p
(3) gcd -prop(k,m, n) := com-div(k,m, n) ∧

∀l : Z . (com-div(l,m, n)⇒ l ≤ k) : ∗p
m,n : Z

(4) coprime(m,n) := ∀k : Z . ((com-div(k,m, n) ∧ k > 0)⇒ k = 1) : ∗p
s : m > 0 | t : n > 0

(5) gcd -unq(m,n, s, t) := . . . : ∃1k : Z . gcd -prop(k,m, n)

(6) gcd(m,n, s, t) := ι(Z, λk : Z . gcd -prop(k,m, n), gcd -unq(m,n, s, t)) : Z

(7) gcd -pos(m,n, s, t) := . . . : gcd(m,n, s, t) > 0

Figure 14.23 Notions related to divisibility

The definition we use is the most commonly used: a gcd of two positive

naturals m and n is a common divisor that is larger than all other common

divisors. Such a number is unique (see line (6)), according to a fact about

integers that we mention without proof: each non-empty subset of Z that has

an upper bound also has a (unique) maximum. (This theorem and its mirror

image, the Minimum Theorem, are discussed and proved in λD-style in the

following chapter.) The set that we consider here is the set of all common

divisors of m and n, which is non-empty because it always contains 1, and

bounded above by m (or n) (Exercise 14.44). Its maximum is the unique gcd

that we are looking for.

We note, again without proof (Exercise 14.45), that the gcd of (positive) m

and n is positive.

340 Numbers and arithmetic in λD

14.13 Irrelevance of proof

We have argued that proofs-as-terms (one of the two meanings of ‘PAT’) is

an important feature for the formalisation of mathematics. With proofs-as-

terms, proofs become ‘first-class citizens’ of the system, which can be studied,

manipulated and checked. This also means that when we define an object that

depends on a property (e.g. the definition of 1/x, which depends on the fact

that x �= 0), then we make this dependency explicit by carrying a proof of

x �= 0 into the definition of 1/x. But of course, the number 1/x should not

really depend on that proof.

We have also encountered such a situation in the previous section (Fig-

ure 14.23, line (6)), when defining the greatest common divisor: we have intro-

duced gcd(m,n, s, t) as an integer number that depends on integers m and n

which are positive, s and t being proofs of the positivity of m and n, respec-

tively. Now it is undesirable that the value of the gcd can be influenced by the

nature of the proofs s and t: even if s1 and t1 are ‘essentially different’ (i.e.

not βΔ-convertible) proofs of the positivity of m and n, then we do not want

that gcd(m,n, s1, t1) differs from gcd(m,n, s, t). The only thing that matters for

such proofs s and t should be that they exist . It should be irrelevant what these

proofs exactly look like: one must be free to trade one proof for another, without

external effects. For the gcd , this is the case: gcd(m,n, s1, t1) = gcd(m,n, s2, t2)

for any s1, s2 : m > 0 and t1, t2 : n > 0.

That gcd is proof-irrelevant is a consequence of a similar observation we

have made in Section 12.7: in Remark 12.7.2 we have shown that ι(S, P, u) (the

unique object of type S satisfying P , where u is a proof of the uniqueness) does

not depend on the nature of the proof u: for proofs u1 and u2 we can formally

prove that ι(S, P, u1) =S ι(S, P, u2). This is a general phenomenon in this case:

if we always use the ι-operator to define an object that depends on a proof,

there is never a real dependency on a proof. This conforms with mathematical

practice: we only allow ourselves to talk about ‘the object x that satisfies P ’

if we have first shown that there is a unique object satisfying P .

The fact that objects can depend on proofs is a consequence of the use of

type theory for formalising mathematics and is often considered unnatural and

even undesirable from a mathematical perspective. Therefore, one sometimes

introduces a principle of proof-irrelevance in type theory to avoid an effective

dependency of objects on proofs. In all our examples, we use the ι-operator (of

unique existence) in cases where we define an object (or function) that depends

on a proof (see Section 12.7). Therefore, these objects are proof-irrelevant and

we don’t need to add a separate principle.

In more complicated circumstances it may well happen that ‘irrelevance of

proof’ is not a natural consequence of the theory being developed in λD. In

14.14 Conclusions 341

such cases, it should be handled with care and – if necessary – proof irrelevance

may be explicitly stipulated, for example by means of an axiom. It may also

happen that one encounters a situation where the dependency of an object on

a proof is desired, and one doesn’t want irrelevance of proofs. Therefore we

don’t wish to add proof irrelevance as a general principle to λD.

Remark 14.13.1 The terminology irrelevance of proof was introduced by

N.G. de Bruijn in the 1970s. More about ‘irrelevance of proof’ can be found

in Nederpelt et al. (1994); see for example the following reprints in that book:

Zucker, 1977, Section 3; de Bruijn, 1980, Section 24; van Benthem Jutting,

1977, Sections 4.0.1 and 4.0.2.

14.14 Conclusions

In the present section we have formally constructed a set-up for arithmetic,

right from the ground. One of the most fundamental concepts in mathematics is

that of number , so we have first investigated how to represent natural numbers

in λD. The standard approach of Peano apparently provides a good foundation,

including the important method of induction.

We soon abandoned this view, however, and changed the focus to integer

numbers, being the basis of many mathematical disciplines. For integers there

also exists a Peano-like set-up, which we have discussed in detail before for-

malising it in λD. This axiomatisation of the integers was inspired by Margaris

(1961) and elaborated by the authors, with valuable help from A. Visser and

R. Iemhoff (Visser and Iemhoff, 2009). The idea is to introduce the operation

predecessor on a par with the successor of a number. In this formalisation,

every integer has exactly one successor and exactly one predecessor. A core

notion in this approach, mathematical induction for the integers, turns out to

have the form of a ‘symmetric’ axiom, expanding to both sides on the number

line. The natural numbers (N) can now be defined as a subset of the integers

(Z). It turns out that Z and N only have the desired behaviour if we add one

more axiom, stating that the predecessor of 0 is not a natural number.

The given axiomatisation possesses the relevant basic properties. It enables,

for example, suitable translations of the original Peano-axioms for natural

numbers (including induction for N) into provable theorems. We have also

mentioned the tripartition property of the integers.

Altogether, this test case for our earlier chosen manner to formalise sets and

subsets works out well, with satisfactory results.

But there is more to say about numbers as operational objects in math-

ematics. The first thing is the wish to compute with integer (and natural)

numbers. Therefore one needs the usual operations addition and multiplica-

342 Numbers and arithmetic in λD

tion. The usual recursive definitions of these operations cannot immediately

be translated to λD, since λD does not have recursion in its definition appa-

ratus. However, by appealing to (a special form of) the Recursion Theorem,

derivable in λD (albeit with a proof too complex for the present book), we

have succeeded in incorporating both arithmetical operations in a smooth and

convincing manner.

An example computation shows that proofs of even the simplest facts of

arithmetic (‘1 + 2 = 3’) require quite some effort in this approach. This is

unpleasant, but does not come as a surprise: we know that every single step

must be accounted for in λD. It is good to realise that this is intentionally

so, being a consequence of our starting point. We recall that our original plan

was to build a formal system with a limited number of built-in principles, that

gives a maximal guarantee of correctness for everything expressible in it. So it

is almost unavoidable to encounter a number of obstacles.

We have also explored the formalisation of some other basic notions concern-

ing integers, such as subtraction, taking the opposite, inequalities and divis-

ibility. We have accompanied the definitions with helpful lemmas, often with

informal proofs and sometimes with (a sketch of) a λD-derivation. Induction,

of course, plays a central role in the definitions and proofs concerning these

operations.

We finally discussed the notion ‘irrelevance of proof’, which has consequences

for type theory in general, but not for the investigations of λD that we en-

counter in this book. This is due to our introduction of the descriptor ι, which

prevents many of the difficulties connected with the possible dependency of

objects on proofs.

The general lemmas and theorems that have been discussed in this chapter

are useful in a wider mathematical environment, as we shall show in Chap-

ter 15.

On several occasions we have decided in this chapter not to give all the

precise, formal details. The reason is definitely not that this is insurmountable

or not feasible. On the contrary, it is precisely the definition mechanism that

enables the user of λD to provide a complete formalisation and yet stay in

control of the mathematical material being formalised, concentrating on the

overall picture.

It is, however, no more than honest to realise that the gains of formalisation

also have a counterpart. Therefore we have decided to sometimes adapt the

formal presentation of a derivation by omitting proof objects or by restricting

ourselves to only give hints concerning the holes in the derivations.

In the present chapter we went even further by often not giving the λD-

proofs, but only informal proofs, assuming that the reader is by now capable

of transforming these into real λD-proofs. The reason is that we want to protect

14.15 Further reading 343

readers from an overdose of formal information, keeping their attention focused

on the things that really matter. In the following chapter, however, we will turn

back to formal λD-proofs (albeit with hints and holes).

This is not the place for a deeper examination of the advantages or disadvan-

tages for humans confronted with proofs that have been presented in λD. Nor

do we try to find solutions at this moment, in order to alleviate the negative

effects of a λD-translation on ‘understanding’. We come back to these matters

in the conclusive chapter of this book (Chapter 16), without pretending to

have the final say in the matter.

14.15 Further reading

The formal treatment of natural numbers goes back to G. Peano in 1889 (a

translation of the original paper of Peano can be found in van Heijenoort,

1967). This description is axiomatic, so it does not describe functions as pro-

grams or algorithms, but as symbols that satisfy certain equations. In the

beginning of the twentieth century, the issues of computability and decidability

came up, when D. Hilbert asked the question whether there exists a procedure

to mechanically decide whether a formula is true or not. Later this was further

refined by differentiating between the question whether a formula A is true (in

all models or in some specific model) and the question whether a formula A

is derivable in a certain formal system. It was shown by A.M. Turing (Turing,

1936) and A. Church (Church, 1936b) that these questions are undecidable:

there is no machine (computer program) that will decide on input A whether

it is true, respectively derivable (unless one restricts to a logic of limited ex-

pressivity, like proposition calculus). With respect to ‘truth’ the situation is

even more subtle: the famous incompleteness theorem of K.F. Gödel (Gödel,

1932) shows that there is no derivation system that can capture all formulas

that are true in N.

This also gave rise to a characterisation of the computable functions, first

by Turing (Turing, 1936), as the class of functions that can be computed via

(what later became known as) a Turing machine. After Turing, various ‘models’

of computation have been defined with the remarkable property that they all

capture the same class of computable functions. This led Turing and Church to

formulate the thesis that any function that can be computed by a mechanical

device can be computed by a Turing machine. See e.g. Lewis & Papadimitriou

(1981) or Sudkamp (2006) for an introduction.

The class of computable functions can be defined in various ways. A popular

way that abstracts from a ‘machine model’ is to define it as the class of μ-

recursive functions. This is the class of functions that contains the zero function

and the successor and is closed under the operations of function composition,

344 Numbers and arithmetic in λD

primitive recursion and minimisation. Again, see Sudkamp (2006). The scheme

of primitive recursion basically states that a function f that has a value for

input 0, and for input n + 1 only uses its output on input n (i.e. f(n)), is

computable.

Our text is not about computability of functions but merely about well-

definedness. We use recursive definitions as a mechanism to define a function,

e.g. addition. To make sure that such a recursive definition actually defines

something meaningful, we have to ensure that recursive calls in the definitions

have ‘smaller’ arguments. Therefore we use a simple instance of the scheme for

primitive recursion to have a proper mechanism for defining functions by recur-

sion. Our Recursion Theorem for Z (Theorem 14.4.3) states that an instance

of the scheme for primitive recursion yields a well-defined function. In the text

of Section 14.4, we have argued this in detail for the example of addition.

In real mathematics, and notably in number theory, one works more often

with the integers than with the natural numbers. However, the natural numbers

are a nice inductively defined set, which gives rise to proofs by induction and

definitions by well-founded recursion. In the present chapter we use the work

of A. Margaris (Margaris, 1961) to axiomatically introduce the integers, an

induction principle over the integers and also a scheme for defining functions

by recursion over the integers. As a matter of fact, the approach of Margaris

is very close in style to Peano’s original one for the natural numbers.

A possible alternative is to define the set of integers Z as a quotient of the

set of pairs of natural numbers N × N. This approach can be found in e.g.

van Dalen et al., 1978, Chapter 11. We repeat the essential points: one defines

the equivalence relation ∼ over N × N by (k, l) ∼ (m,n) if k + n = l + m.

(Intuitively: the difference between k and l is the same as between m and n.)

Now one defines Z as the set of equivalence classes of N × N modulo ∼. In
abstract mathematics, this works fine, but if one really needs to use this in

type theory, it is cumbersome. First of all, this needs the notion ‘equivalence

class’. This can be introduced (see Section 13.4), but we prefer not to do it if

it isn’t needed. A second disadvantage is that one has to define all functions

‘modulo the equivalence relation’ ∼ : a function from N × N to N × N only

gives rise to a function from Z to Z if it respects ∼ and this is a property to

check every time.

Exercises

14.1 (a) See Section 14.2. Prove in λD: ∀x : Z . (¬(x ε N)⇒ ¬(p x ε N)).

(b) Give an informal proof of the following: if x = p(. . . (p 0) . . .), with at

least one occurrence of p in the right-hand side, then ¬(x ε N).

Exercises 345

Just as in the exercises for the previous chapter, you may confine your-

self in these exercises to only mentioning the logical rules you use in λD-

derivations (cf. Section 13.2). This also applies to instances of equality-

rules, such as eq-subs, eq-cong1 and eq-subs. In proving a numbered

lemma from the book text, you may appeal to earlier lemmas, but not

to later ones.

14.2 See Figure 14.5. Derive proof terms corresponding to:

(a) zero-prop,

(b) clos-prop.

(You may add intermediate judgements.)

14.3 See Figure 14.5. Prove in λD that N is the smallest subset satisfying

nat-cond , by finding an inhabitant of

ΠQ : Z→ ∗p . (nat-cond(Q)⇒ N ⊆ Q).

14.4 If Z has been formalised as in Section 14.2, including ax -int3, then all

models for Z are infinite. Give an informal proof for this.

14.5 Give a λD-proof of Lemma 14.3.1.

14.6 Give a λD-proof of: ∀x : Z . (neg(p x) ∨ pos(s x)).

14.7 Give λD-proofs of all parts of Lemma 14.3.2.

14.8 Give a λD-proof of Lemma 14.3.3 (a).

14.9 See Remark 14.4.2. A relation R : S → S → ∗p is called well-founded if

there exists no infinite ‘descending’ sequence x0, x1, x2, . . . of elements of

S such that xi+1Rxi for all i.

(a) Give an informal description of a well-founded relation on Z that

corresponds to the recursion scheme in Theorem 14.4.3.

(b) Explain why the relation defined in part (a) is no longer well-founded

when we delete the conditions ‘pos(s x)’ and ‘neg(p x)’ from the re-

cursion scheme in Theorem 14.4.3.

14.10 (a) Let A be a type, f : A→ A a bijection and g : Z→ A. Consider the

following statements:

(1) ∀x : Z . [(pos(s x) ⇒ g(s x) =A f(g x)) ∧
(neg(p x) ⇒ g(p x) =A f−1(g x))],

(2) ∀x : Z . (g(s x) =A f(g x)).

Prove (1)⇔(2) (hint for (1)⇒(2): see Exercise 14.6, Lemma 14.3.2 (c)

and Exercise 13.14).

(b) Prove informally that Theorem 14.4.5 is a consequence of the Recur-

sion Theorem for Z, i.e. Theorem 14.4.3.

14.11 Fill the holes in lines (2) to (4) of Figure 14.12.

346 Numbers and arithmetic in λD

14.12 Give informal proofs of the following properties of addition:

(a) Commutativity (Lemma 14.6.2) (hint: take x fixed, and apply sym-

metric induction on y; use Lemma 14.6.1),

(b) Associativity (Lemma 14.6.4) (hint: take x and y fixed, and apply

symmetric induction on z),

(c) the Right Cancellation Law (Lemma 14.6.5 (a)).

14.13 Give a proof in λD-format of part II of Lemma 14.7.2.

14.14 Represent the proof of Lemma 14.8.6 (b) in λD-format.

14.15 Give informal proofs of:

(a) Lemma 14.8.8 (a) and (b),

(b) the Left Cancellation Law for subtraction (Lemma 14.8.9 (b)) (hint:

start with using Lemma 14.8.2 twice).

14.16 Give informal proofs of Lemma 14.8.10 (a) and (c).

14.17 Prove in λD that for each x in Z, there exists exactly one y in Z such

that x+ y = 0.

14.18 See Remark 14.2.1. Prove in λD that ax -int2 implies the following vari-

ant of induction for Z, with an arbitrary P l instead of P 0:

((∃l : Z . P l) ∧ ∀x : Z . (P x⇒(P (s x) ∧ P (p x)))) ⇒ ∀x : Z . P x.

14.19 Give informal proofs and sketches of the λD-versions for:

(a) the three parts of Lemma 14.9.2,

(b) the two parts of Lemma 14.9.3,

(c) the two parts of Lemma 14.9.7.

14.20 Give proof sketches in λD-style of the following lemmas:

(a) ∀x, y : Z . (x− (−y) = x+ y),

(b) ∀x, y : Z . (−(x− y) = (−x) + y),

(c) ∀x, y : Z . (x− y = −(y − x)).

14.21 See Remark 14.4.4.

(a) Define the absolute-value-function abs : Z → Z by the aid of the

Recursion Theorem for Z.

(b) Prove in λD that ∀x : Z . (x ε N ⇒ abs x = x).

(c) Prove in λD that ∀x : Z . (x ε N ⇒ abs(−x) = x).

14.22 Give a proof sketch of the following lemma:

∀x, y : Z . (abs(x− y) = abs(y − x)).

(Hint: see Exercise 14.20 (c) and Lemma 14.8.11).

14.23 Prove in λD:

(a) ∀x : Z . (x < sx),

(b) ∀x : Z . (x > px).

Exercises 347

14.24 Prove in λD:

(a) ∀x, y : Z . (x < y ⇔ s x < s y),

(b) ∀x, y : Z . (x < y ⇔ p x < p y).

14.25 Give proof sketches in λD-style of the following lemmas:

(a) ∀x, y : Z . ((x ε N ∧ x ≤ y)⇒ y ε N),

(b) ∀x, y : Z . ((neg(y) ∧ x ≤ y)⇒ neg(x)).

14.26 Give proof sketches of Lemma 14.10.1 (d) and (e).

14.27 Give proof sketches of Lemma 14.10.2 (a) and (b).

14.28 Convert the informal proofs of Lemma 14.10.3 (a) and (b) into λD-

proofs.

14.29 Give proof sketches in λD-style of the following lemmas:

(a) ∀x, y : Z . ((x ≤ y ∧ y ≤ x)⇒ x = y),

(b) ∀x, y : Z . (x < y ⇒ s x ≤ y).

14.30 In the beginning of Section 14.11 we claimed that the recursive equation

(ii) m · s(n) = (m · n) +m

implies the equation

(iii) m · p(n) = (m · n)−m.

Show this.

14.31 Give informal proofs and give sketches of the λD-versions for the three

parts of Lemma 14.11.1.

14.32 Give informal proofs of the two parts of Lemma 14.11.2.

14.33 Give informal proofs of the two parts of Lemma 14.11.3.

14.34 Give sketches of λD-proofs for:

(a) 1 · 1 = 1,

(b) 2 · 2 = 4,

(c) (−1) · (−1) = 1.

14.35 Give derivations in λD of the following lemmas:

(a) ∀x : Z . (x · 1 = x),

(b) ∀x : Z . (x · (−1) = −x).
14.36 Give an informal proof and a proof sketch in λD for the statement that

N is closed under multiplication (Lemma 14.11.5 (a)).

14.37 Give an informal proof of Lemma 14.11.6 (hint: use Lemmas 14.10.2 (c)

and 14.11.5).

14.38 Give an informal proof of Lemma 14.11.7.

14.39 Give informal proofs of the following lemmas:

(a) ∀x, y, z : Z . ((x ≤ y ∧ z ε N) ⇒ x · z ≤ y · z),
(b) ∀x, y, z : Z . ((x · z ≤ y · z ∧ pos(z))⇒ x ≤ y),

(c) ∀x, y, z : Z . ((x · z ≤ y · z ∧ neg(z))⇒ x ≥ y).

348 Numbers and arithmetic in λD

14.40 Give informal proofs of:

(a) Lemma 14.12.1 (a) and (c),

(b) Lemma 14.12.2 (a).

14.41 Give informal proofs of the following lemmas:

(a) ∀x : Z . (x ε N⇒ (x = 0 ∨ x ≥ 1)),

(b) ∀x, y : Z . (x ε N⇒ (x · y = 1⇒ x = 1)) (hint: use part (a)).

14.42 Give an informal proof of Lemma 14.12.3 (c).

(Hint: use Exercise 14.41 (b).)

14.43 Prove the following in λD:

∀m,n : Z . (coprime(m,n)⇒ coprime(n,m)).

14.44 Let k,m : Z be such that k > 0, m > 0 and k|m. Prove that k ≤ m.

(Hint: use Exercises 14.41 (a) and 14.39 (a).)

14.45 Give an informal proof of the lemma expressed in Figure 14.23, line (7).

15

An elaborated example

15.1 Formalising a proof of Bézout’s Lemma

In Section 8.7, we considered a well-known theorem from number theory, and

we have given a mathematical proof of it in Section 8.8. We now revisit this

theorem and its proof, which are reproduced below, and translate it into the

formal λD-format.

A thorough inspection of what we need for the formalisation of the proof in

its entirety will take up the space of a full chapter: the present one. It acts as

a final exercise, showing several important aspects of λD.

In the process, we will encounter various questions and problems. We’ll try

to foresee some of these questions and solve them before we start the actual

proof. Other problems we solve ‘on the fly’. On some occasions, we come across

situations of missing foreknowledge that is either too laborious or too uninspir-

ing to be dealt with in this book; in those cases we resort to only summarising

what is lacking. Hence, we decide neither to fill every gap, nor to always supply

the relevant details.

The mentioned theorem reads as follows:

‘Theorem (“Bézout’s Lemma”, restricted version)

Let m,n ∈ N+ be coprime. Then ∃x,y∈Z(mx+ ny = 1).’

Remark 15.1.1 The lemma has been attributed to the French mathematician

É. Bézout (1730–1783), although it already appeared in earlier work of others.

Actually, in order to make our example less complicated, we have chosen a

special case of Bézout’s Lemma, by adding the restriction that m and n be

coprime, i.e. their greatest common divisor is 1. The original version applies

to all pairs of positive natural numbers m and n, and expresses that there exist

integer numbers x and y such that mx+ ny = gcd(m,n).

The general version with the gcd is only seemingly more general: in fact, it

350 An elaborated example

easily follows from the restricted version that we consider in this chapter (see

Exercise 15.1).

There is a well-known constructive manner (i.e. a procedure) to find such

x and y for given positive numbers m and n. This procedure works for both

the restricted and the general version of the lemma. It is called the Euclidean

algorithm, based on a method attributed to Euclid, a mathematician who lived

around 300 BC in Alexandria (Egypt).

Euclid became famous for his standard work ‘The Elements’, which is a

bundle of 13 books on geometry and number theory. The theorem-and-proof

approach he employed is now a standard in the mathematical world, as is also

demonstrated in the present book. Another notion that Euclid introduced, is

that of axiom, which corresponds to our notion of ‘primitive definition’ (see

Section 10.2).

We restate the proof of Bézout’s Lemma (restricted version) as given in

Figure 8.6:

Proof Let m and n be positive natural numbers that have no other
positive common divisor than 1.

Consider the set of all integers mx + ny, where x ∈ Z and y ∈ Z.
Call this set S.

Define S+ as S ∩ N+. This S+ has a minimum, call it d.

Since d ∈ S+, also d ∈ S, hence (i) d = mx0 + ny0 for certain
x0, y0 ∈ Z. Moreover, d > 0 since d ∈ N+.

Divide m by d. This gives q and r such that (ii) m = qd + r, with
0 ≤ r < d.

By inserting d of (i) into (ii) we get m = q(mx0 + ny0) + r, from
which follows that r = m(1− qx0)− n(qy0). Hence r ∈ S.

Suppose r > 0. Then r ∈ S+, so r ≥ d since d = min(S+). But
r < d: contradiction. Hence, r = 0.

From (ii) now follows that m = qd, hence d|m.
In a similar manner we can prove that d|n.
Since m and n are coprime, d must be 1, implying that 1 ∈ S.

Hence there exist x, y ∈ Z such that mx+ ny = 1.

Browsing through this proof with a view to a λD-formalisation, there are

certain things that catch the eye. First of all, we observe that there are two

number systems involved in this proof: we encounter integers (elements of Z)

and positive natural numbers (elements of N+).

Since N+ is a subset of Z, and also the other sets defined in the proof (S, S+),

our choice in Chapter 14 to take Z as our basic set appears to be appropriate.

We shall consider these subsets as predicates on Z (cf. Section 13.1).

We recall that Chapter 14 contains a number of notions connected with inte-

15.1 Formalising a proof of Bézout’s Lemma 351

ger numbers, many of which are used in this proof, such as the basic operations

addition, subtraction and multiplication, and the inequality relations.

By observing the above proof somewhat closer, we notice the following de-

tails. Some of these appear to be problematic and should preferably be solved

before we give a formalisation in λD:

− For the notions common divisor , coprime and the divisibility operator ‘ | ’,
see Section 14.12.

− The notion intersection (∩) of subsets was dealt with in Figure 13.2.

− The proof mentions aminimum d of subset S+. We have dealt with minimum

values before (Section 12.7), but only for a type ∗s, not for a subset of type

Z→ ∗p. So we have to adapt this notion to the new situation.

− In order to be able to speak about the minimum d, we have to prove its ex-

istence and uniqueness. This requires a piece of ‘foreknowledge’, in the form

of the so-called Minimum Theorem, stating that each non-empty subset of

Z that is bounded from below, has a (unique) minimum. These two require-

ments (non-emptiness, being bounded from below) are neither mentioned

nor explicitly verified in the informal proof text. In the λD-formalisation,

however, this is indispensable.

− For the Minimum Theorem we need the notion of ‘non-emptiness’. But empty

sets were discussed in Section 13.3, so non-emptiness appears to be no prob-

lem.

− Another property of numbers was used when dividing m by d (both in N+):

there exist (unique) q and r such that m = q · d + r, where 0 ≤ r < d.

This amounts, again, to an important theorem (the Division Theorem) that

belongs to the necessary foreknowledge.

− Finally, several computations are executed, based on properties of arithmetic.

It appears instructive to unravel what these properties are, and how they

can be proved; the lemmas developed in Chapter 14 may be convenient.

We treat the mentioned points of interest that we miss as foreknowledge, in

the preparatory Section 15.2:

− We first redefine the minimum operator, this time for subsets.

− Next, we formulate the Minimum Theorem and the Division Theorem in λD,

in order to be able to use them in the proof of Bézout’s Lemma; we do not

(yet) give formal proofs of these theorems: this we postpone to Sections 15.7

and 15.8, respectively. (A full proof of the Minimum Theorem will be given

in Appendix C, Section C.2.)

The remainder of the chapter will be devoted to a λD-formalisation of the

proof of Bézout’s Lemma and related subjects:

(1) We provide a thorough description of the full λD-proof of Bézout’s

352 An elaborated example

Lemma in Sections 15.3 to 15.5. For many subjects in these sections, we refer

to earlier chapters, in particular to Chapter 14 for a number of arithmetical

laws.

(2) We reserve Section 15.6 for discussing a variety of ‘loose ends’ concerning

computational laws and other special subjects that we encounter in the proof

of Bézout’s Lemma, and which have not yet been covered by earlier chapters.

15.2 Preparatory work

I. The minimum operator for subsets

The minimum operator Min developed in Section 12.7 (see Figure 12.18) does

not suffice for our present purposes: it denotes a global minimum operator for

the ≤-ordered type S; it is not immediately transferable to subsets of S.

Hence, we start by reformulating the notion ‘minimum’ for subsets of S. We

assume a type S : ∗s that is partially ordered by a relation R : S → S → ∗p.
(The letter R we use instead of the symbol ≤ in order to emphasise the general

character of this relation; for the notion ‘partial order’, see Figure 12.7.)

Now we express for subset T : ps(S) what it means to have a minimum;

this is done by defining when m is a least element of T with respect to R, or

formally: least(S,R, T,m). This is the case if m belongs to subset T and is a

lower bound of T (see Figure 14.20 for the notion ‘lower bound’). We express

this in Figure 15.1, line (1); compare this with the proposition Least(S,≤,m) in

Figure 12.13. In line (2) we introduce constant leastZ with a shorter parameter

list, for the special case that S is Z and R is ≤ on Z (compare this with lw -bndZ

in Figure 14.20).

Next, we can prove that there is at most one least element of T . Conse-

quently, if we also assume that there is at least one such element of T , then

there is exactly one such element, and we can baptise this unique element ‘the

minimum of the subset’, min(S,R, T, r, w), by the aid of the descriptor ι in-

troduced in Section 12.7. This is done quite similarly to what we have done in

Figures 12.15 and 12.18.

Summarising this, we obtain Figure 15.1; as in Figure 12.15, we leave the

proof objects in lines (3) and (4) to the reader (Exercise 15.2).

II. Formulation of the Minimum Theorem

The Minimum Theorem says that every non-empty set of integers that is

bounded from below has a (unique) minimum. The theorem can be expressed

in λD as in Figure 15.2. We use the ≤-relation as defined in Figure 14.18. For

lw -bndZ, see Figure 14.20; for leastZ and min, see Figure 15.1.

The existence of a minimum is the Minimum Theorem; it is expressed in

15.2 Preparatory work 353

S : ∗s | R : S → S → ∗p | T : ps(S) | m : S

(1) least(S,R, T,m) := m ε T ∧ lw -bnd(S,R, T,m) : ∗p
T : ps(Z) | m : Z

(2) leastZ(T,m) := least(Z,≤, T,m) : ∗p
S : ∗s | R : S → S → ∗p | T : ps(S) | r : part-ord(S,R)

(3) a3(S,R, T, r) := . . . : ∃≤1m : S . least(S,R, T,m)

w : ∃m : S . least(S,R, T,m)

(4) a4(S,R, T, r, w) := . . . : ∃1m : S . least(S,R, T,m)

(5) min(S,R, T, r, w) := ι(S, λm : S. least(S,R, T,m), a4(S,R, T, r, w)) : S

Figure 15.1 The minimum of a subset of a partially ordered set

line (1) of Figure 15.2 and will be proved in Section 15.7. The uniqueness of

such a minimum (line (2)) is stated in Figure 15.1, hence we can name that

minimum (line (3)). A proof that ≤ is a partial order on Z is left open in the

proof objects of lines (2) and (3); we call it hole#1 and come back to it in

Section 15.6. In line (4) we derive a decisive property of the minimum. Check

yourself that this derivation is correct, assuming that the omitted parts have

been properly filled.

Note again that constant names such as min-the and min-uni -the are some-

what deceiving, since they are inhabitants (proofs) of the two theorems, not

the theorems themselves.

T : ps(Z) | u : T �= ∅Z | v : ∃x : Z . lw -bndZ(T, x)

(1) min-the(T, u, v) := . . . see Figure 15.18, line (29) . . . :

∃m : Z . leastZ(T,m)

(2) min-uni -the(T, u, v) := a4[Fig.15.1](Z,≤, T, hole#1,min-the(T, u, v)) :

∃1m : Z . leastZ(T,m)

(3) minimum(T, u, v) := min(Z,≤, T, hole#1,min-the(T, u, v)) : Z

(4) min-prop(T, u, v) :=

ι-prop(Z, λm : Z . leastZ(T,m),min-uni -the(T, u, v)) :

minimum(T, u, v) ε T ∧ lw -bndZ(T,minimum(T, u, v))

Figure 15.2 Formulation of the Minimum Theorem, and some consequences

III. Formulation of the Division Theorem

It is obvious how to formulate the Division Theorem in λD; see Figure 15.3.

For ‘addition’ and ‘multiplication’ we refer to Sections 14.4 and 14.11.

354 An elaborated example

The expression 0 ≤ r < d is obviously an abbreviation of (0 ≤ r) ∧ (r < d).

The Division Theorem expresses the possibility to divide a positive m by

a positive d in such a manner that the ‘remainder’ after division is a natural

number smaller than this d. Otherwise said, when inspecting the infinite series

0 · d, 1 · d, 2 · d . . ., from left to right, and comparing each entry with m, there

comes a point where q · d is smaller than or equal to m, whereas (q + 1) · d
is greater than m. That q is called the quotient . It has the property that the

difference m− q · d (which is the remainder r) is a natural number that is less

than d itself.

Note that the Division Theorem holds for all integer numbers m and positive

naturals d. We restrict it here to m > 0, since that is what we need in Bézout’s

Lemma.

The proof of this theorem is postponed to Section 15.8.

m, d : Z | u : m > 0 | v : d > 0

div -the(m, d, u, v) := . . . see Section 15.8 . . . :

∃q, r : Z . (m = q · d+ r ∧ 0 ≤ r < d)

Figure 15.3 Formulation of the Division Theorem

Remark 15.2.1 The Division Theorem only expresses the existence of q and

r with the mentioned properties; it does not state that both are unique (for

given m, d ∈ N+). This uniqueness can be shown to hold. (Try yourself to give

a proof sketch.) So we may speak about the quotient q and the remainder r. But

the proof of the uniqueness is not particularly useful for our present purposes:

in the proof of Bézout’s Lemma, the pure existence of q and r is enough.

15.3 Part I of the proof of Bézout’s Lemma

The proof of Bézout’s Lemma (see Section 15.1) starts quite naturally, with

the introduction of two variables and an assumption:

‘Let m and n be positive natural numbers that have no other

positive common divisors than 1.’

Hence, the overall context consists of two numbers m and n, both positive

and being coprime (see Figure 14.23, line (4)). Since Z is our basic set, we

take m,n : Z. We express the positiveness of a number x as ‘x > 0’, which is

permitted by Lemma 14.10.2 (a).

Hence, we commence our formal version as follows:

15.3 Part I of the proof of Bézout’s Lemma 355

m,n : Z | ass1 : m > 0 | ass2 : n > 0 | ass3 : coprime(m,n)

...

Figure 15.4 Start of the proof of Bézout’s Lemma

Remark 15.3.1 The assumption coprime(m,n) is not used in the proof of

Figure 8.6 until the second but last sentence. Hence, in order to save on pa-

rameters, we could decide to postpone the corresponding flag until the final part

of the formalisation (Section 15.5). Since we want to keep close to the proof

text, we do not choose this option.

It is clear that an important part of the proof-to-come will depend on the

parameter list (m,n, ass1, ass2, ass3) containing the five parameters of the

overall context of Bézout’s Lemma, although they will never be instantiated

in the proof. Since we have adopted the parameter list convention (see Sec-

tion 11.7), this is no problem: we simply write S, for example, instead of

S(m,n, ass1, ass2, ass3) (see Figure 15.5).

The proof continues with the definition of the subset S of Z consisting of all

so-called linear combinations of m and n:

‘Consider the set of all integers mx + ny, where x ∈ Z and

y ∈ Z. Call this set S.’

The corresponding subset S coincides with the predicate ‘being a linear

combination of m and n ’. For the subset-notation, {. . . | . . .}, see Figure 13.2.

...

(1) S† := {k : Z | ∃x, y : Z . (k = m · x+ n · y)} : ps(Z)
†parameters suppressed

Figure 15.5 Step 1 of the proof

Remark 15.3.2 Since S depends on m and n only, we could have restricted

ourselves to a shorter context. However, we have decided to follow the proof

text as closely as possible. The longer parameter list does not bother us because

of the parameter list convention.

The following paragraph of the proof of Bézout’s Lemma starts by defining

the subset S+, containing the positive elements of S. It is constructed as the

intersection of S and N+:

356 An elaborated example

‘Define S+ as S ∩ N+.’

So another well-known subset of Z is required, next to N, namely the set

of positive naturals, N+. This set has obviously been ‘imported’ in the proof,

so we may assume that it was defined earlier, outside the context. In order

to record this, we temporarily suppress the flagpole started in Figure 15.4; see

Figure 15.6, line (2). After that, we reopen the flagpole and define S+, with the

help of the formal intersection operator ∩ introduced in Figure 13.2. (These

manipulations of the flag poles are permitted; cf. Sections 2.5 and 11.1.)

...

(2) N+ := {k : Z | k > 0}
(3) S+ := S ∩ N+ : ps(Z)

Figure 15.6 Step 2 of the proof

Recall that S ∩N+ is an abbreviation of ∩(Z, S,N+), being of type ps(Z) by

the (inst)-rule.

The next sentence in the proof is only a short observation followed by a

definition:

‘This S+ has a minimum, call it d.’

This proof step requires the Minimum Theorem, as we have explained in the

previous sections (S+ has a minimum because it is a non-empty subset of Z

being bounded from below). So we try to use Figure 15.2, line (3), and define

d as minimum(S+, ?1, ?2), where ?1 must be of type S+ �= ∅Z and ?2 of type

∃x : Z . lw -bndZ(S
+, x).

For the first proof object, ?1, it suffices to provide a positive element of S.

This set is, as we recall, the collection of all linear combinations of m and n.

Now m itself is such a linear combination, since m = m · 1 + n · 0, and m is

positive by the assumption named ass1, so m is a witness for the non-emptiness

of S+. We do not spell out here the arithmetical proof of m = m · 1 + n · 0,
since this is an easy consequence of what we discussed in the previous chapter.

We leave it open in line (4) of Figure 15.7, marking it as hole#2.

The second required proof object, ?2, is not hard to find, since 1 acts as a

lower bound of S+. We decide to also leave this proof open, since the derivation

is straightforward. We therefore register it as hole#3. We come back to all open

‘holes’ in Section 15.6.

As a result of all this, we can formalise the above proof sentence and many

of the needed details as in Figure 15.7.

15.4 Part II of the proof 357

...

(4) a4 := hole#2 : m = m · 1 + n · 0
(5) a5 := . . . use ∃-in (twice) on a4 and use that 1 : Z and 0 : Z . . . :

∃x, y : Z . (m = m · x+ n · y)
(6) a6 := a5 : m ε S

(7) a7 := ass1 : m ε N+

(8) a8 := . . . use ∧-in on a6 and a7 . . . : m ε S+

(9) a9 := . . . use ∃-in on m and a8 . . . : ∃k : Z . (k ε S+)

(10) a10 := a13 [Fig.13.8](Z, S
+) a9 : S+ �= ∅Z

(11) a11 := hole#3 : ∃x : Z . lw -bndZ(S
+, x)

(12) d := minimum(S+, a10, a11) : Z

Figure 15.7 Step 3 of the proof

15.4 Part II of the proof

The proof of Bézout’s Lemma continues with a number of observations con-

cerning the minimum d defined just now:

‘Since d ∈ S+, also d ∈ S, hence (i) d = mx0 + ny0 for certain

x0, y0 ∈ Z. Moreover, d > 0 since d ∈ N+.’

Proofs of these things are formalised in Figure 15.8, in a straightforward

manner. For min-prop, see Figure 15.2. In line (18) we add a simple conse-

quence of line (13) that we need later (line (29)).

...

(13) a13 := min-prop(S+, a10, a11) : d ε S+ ∧ lw -bndZ(S
+, d)

(14) a14 := . . . use ∧-el1 on a13 . . . : d ε S ∧ d ε N+

(15) a15 := . . . use ∧-el1 on a14 . . . : d ε S

(16) a16 := a15 : ∃x0, y0 : Z . (d = m · x0 + n · y0)
(17) a17 := . . . use ∧-el2 on a14 . . . : d > 0

(18) a18 := . . . use ∧-el2 on a13 . . . : ∀x : Z . (x ε S+ ⇒ d ≤ x)

Figure 15.8 Step 4 of the proof

Next, the informal proof appeals to the Division Theorem:

‘Divide m by d. This gives q and r such that (ii) m = qd+ r,

with 0 ≤ r < d.’

This is an easy application of Figure 15.3; see Figure 15.9. Recall that ass1
is the assumption that m > 0.

358 An elaborated example

...

(19) a19 := div -the(m, d, ass1, a17) :

∃q, r : Z . (m = q · d+ r ∧ (0 ≤ r ∧ r < d))

Figure 15.9 Step 5 of the proof

The informal proof goes on with a computation, leading to the result that

the remainder r must be in S:

‘By inserting d of (i) into (ii) we get m = q(mx0 + ny0) + r,

from which follows that r = m(1−qx0)−n(qy0). Hence r ∈ S. ’

This part of the proof is formally expressed in Figure 15.10.

Remember that the mentioned equation (i) was formalised in the type of

line (16), stating that ∃x0, y0 : Z . (d = m · x0 + n · y0). So we have a double

existential quantifier. Moreover, equation (ii), expressing that m = q · d + r,

is part of the type of line (19), within the scope of another double existence

quantifier: ∃q, r : Z. Hence, we have four ∃-quantifiers and hence we have to

employ the structure of ∃-el four times in order to be able to ‘work’ with the

mentioned x0, y0, q and r. Therefore we start with extra flags introducing these

variables and their properties (see Figure 15.10).

Remark 15.4.1 The statement ∃x0, y0 : Z . (d = m · x0 + n · y0) in line (16)

should actually read ∃x0 : Z . (∃y0 : Z). Hence, a proper usage of the ∃-el
procedure obliges us to introduce four flags, two for the first ∃-quantifier:
− x0 : Z,

− v0 : ∃y0 : Z . (d = m · x0 + n · y0),
and subsequently, two for the second ∃-quantifier:
− y0 : Z,

− v : d = m · x0 + n · y0.
This is one more flag (with variable v0) than we give in Figure 15.10. We

expect, however, that the reader can deal with this omission (Exercise 15.4 (b)).

A similar observation holds for the double ∃-proposition in line (19).

The equality m = q(mx0 + ny0) + r obtained in the informal proof can be

formally derived by the aid of substitutivity , as described in Section 12.2 (see

Figure 12.4). This is done in line (23).

For the other equality, r = m(1 − qx0) − n(qy0), we need arithmetical (or

computational) laws. For the time being, we denote the relevant proof term as

a hole; see line (24). In line (25) we slightly modify the result of line (24) in

order to make it ready for line (26). Again, we mark the proof term in line (25)

as a hole.

15.4 Part II of the proof 359

...

x0, y0 : Z | v : (d = m · x0 + n · y0)

q, r : Z | w : (m = q · d+ r ∧ (0 ≤ r ∧ r < d))

(20) a20 := . . . use ∧-el1 on w . . . : m = q · d+ r

(21) a21 := . . . use ∧-el2 and ∧-el1 on w . . . : 0 ≤ r

(22) a22 := . . . use ∧-el2, twice, on w . . . : r < d

(23) a23 := eq-subs(Z, λz : Z . m = q · z + r, d, m · x0 + n · y0, v, a20) :

m = q · (m · x0 + n · y0) + r

(24) a24 := hole#4 : r = m · (1− q · x0)− n · (q · y0)
(25) a25 := hole#5 : r = m · (1− q · x0) + n · (−(q · y0))
(26) a26 := . . . use ∃-in (twice) on a25 . . . :

∃x, y : Z . (r = m · x+ n · y)
(27) a27 := a26 : r ε S

Figure 15.10 Step 6 of the proof

The proof continues with the following text:

‘Suppose r > 0. Then r ∈ S+, so r ≥ d since d = min(S+).

But r < d: contradiction. Hence, r = 0.’

It is not hard to formalise this piece of text; see Figure 15.11. The holes in

Step 7 of the proof are:

− hole#6: a proof that r < d and d ≤ r entail ⊥;
− hole#7: a proof that 0 ≤ r and ¬(r > 0) result in r = 0.

...

z : r > 0

(28) a28 := . . . use ∧-in on a27 and z . . . : r ε S+

(29) a29 := . . . use ∀-el and ⇒ -el on a18, r and a28 . . . : d ≤ r

(30) a30 := hole#6 (math on a22 and a29) : ⊥
(31) a31 := . . . use ¬-in on a30 . . . : ¬(r > 0)

(32) a32 := hole#7 (math on a21 and a31) : r = 0

Figure 15.11 Step 7 of the proof

360 An elaborated example

15.5 Part III of the proof

The informal proof goes on with the sentence:

‘From (ii) now follows that m = q · d, hence d|m.’

This can be formalised in the λD-format as illustrated in Figure 15.12 (see

Figure 14.23 for the divisibility operator ‘ | ’).

...

(33) a33 := hole#8 (math on a20 and a32) : d · q = m

(34) a34 := . . . use ∃-in on a33 . . . : ∃x : Z . (d · x = m)

(35) a35 := a34 : d |m
(36) a36 := . . . use ∃-el on a19 . . . : d |m
(37) a37 := . . . use ∃-el on a16 . . . : d |m

Figure 15.12 Step 8 of the proof

The informal proof continues with:

‘In a similar manner we can prove that d |n.’
This statement is not accompanied by an explanation. Clearly, the proof

author supposes that the reader can easily see that a proof of d |n is very

similar to the one of d |m, given in line (37).

And this is indeed the case, if we realise that interchanging m and n delivers

the result desired. For example, n = n · 1 +m · 0 is the ‘mirror image’ of the

equation m = m · 1 + n · 0 stated in line (4), and proceeding with copying the

derivation above with a swap of m and n eventually gives what we want.

This is, however, a long way to go, and it neglects one of the powerful aspects

of λD: the definitional structure, and the use of parameter lists. Recall that a37
is actually accompanied by a parameter list, marked by the flag pole preceding

it: it should read a37(m,n, ass1, ass2, ass3). Now all we have to do is to swap

m and n in this parameter list and perform appropriate substitutions for ass1,

ass2 and ass3); so we have to solve the question marks in a37(n,m, ?1, ?2, ?3).

Check that the derivation rule (inst) (see Section 9.8) requires that ?1 must

be of type n > 0 and ?2 of type m > 0. Hence, we may simply take ?1 ≡ ass2
and ?2 ≡ ass1 (hence, ass1 and ass2 are swapped, as well). Finally, ?3 must

be of type coprime(n,m). But we already have the assumption ass3 of type

coprime(m,n). From this easily follows coprime(n,m), which we denote as a

hole in line (38) of Figure 15.13.

This solves all our problems and we are ready in no time (see Figure 15.13).

15.5 Part III of the proof 361

...

(38) a38 := hole#9 : coprime(n,m)

(39) a39 := a37(n,m, ass2, ass1, a38) : d |n

Figure 15.13 Step 9 of the proof

The remainder of the informal proof is:

‘Since m and n are coprime, d must be 1, implying that 1 ∈ S.

Hence there exist x, y ∈ Z such that mx+ ny = 1. ’

The formalisation of this final part of the proof is given in Figure 15.14. It

is an easy consequence of the assumption ass3 that m and n are coprime, and

the fact that d ε S (line (15)). (For com-div and coprime, see Figure 14.23.)

...

(40) a40 := . . . use ∧-in on a37 and a39, and again on a17 . . . :

com-div(d,m, n) ∧ d > 0

(41) a41 := ass3 d a40 : d = 1

(42) a42 := . . . use eq-subs on a15 and a41 . . . : 1 ε S

(43) a43 := a42 : ∃x, y : Z . (1 = m · x+ n · y)
(44) a44 := . . . use symmetry of = on a43 . . . :

∃x, y : Z . (m · x+ n · y = 1)

Figure 15.14 Step 10 of the proof of Bézout’s Lemma

So we have brought the formalisation of Bézout’s Lemma to a conclusion: the

informal proof reproduced in Section 15.1 has (almost) completely been for-

malised in λD. By following the text as a guideline, we succeeded in expressing

the details of the proof in a formalised setting.

The formal proof is not yet ready for computer verification, for two reasons:

− The many shortcuts we made by inserting ‘hints’ , introduced by the phrase

‘use . . .’, must be adjusted by providing the intended formal expressions.

This can be done straightforwardly; it just requires a certain amount of

precise administrative work.

− There are a number of specific holes in the described formalisation. Most

of these are due to the absence of a sufficient amount of arithmetical fore-

knowledge. In Section 15.6 we discuss these holes one by one and suggest

how they may be filled.

362 An elaborated example

We conclude this section with a number of general remarks.

It is good to realise that the simple expression a44(m,n, ass1, ass2, ass3) in

the final line is a condensed version of the full (and completely formalised)

proof of Bézout’s Lemma. Hence, an extremely short answer to the assignment

‘prove Bézout’s Lemma’ could consist of one judgement only, composed of an

appropriate environment Δ, the five relevant declarations (corresponding to

the five parameters), plus the statement

a44(m,n, ass1, ass2, ass3) : ∃x, y : Z . (m · x+ n · y = 1).

By repeatedly unfolding the visible constants, starting with a44 itself, we

obtain more and more details of the proof as it has been presented in this

chapter. In principle, we may proceed this unfolding until all of a4 to a44,

plus S, N+, S+ and d, have disappeared. As a final result of such a complete

unfolding, we obtain one (very long) expression containing all the details that

were reviewed in this chapter. This, of course, is the other extreme.

Both extremes themselves are not very revealing: they are either too com-

pact or too detailed to convey what the essential elements of the proof are.

Somewhere in between these extremes is the full flag-style proof represented

in Figures 15.4 up to 15.14. We hope that the reader agrees with the authors

that the presented derivation, albeit rather elaborate, contains a clear and

instructive formal exposition of the proof.

Another interesting observation is that the final result in line (44), named

a44(m,n, ass1, ass2, ass3), may be instantiated in accordance with the deriva-

tion rules of λD. For example, we may take 55 for m and 28 for n. Next, we

need proofs for the positivity of 55 and 28, plus a proof for coprime(55, 28).

When we have these proofs, we can extend the 44 lines of the proof above

with the four lines given in Figure 15.15, which can be derived in the empty

context.

(45) a45 := . . . : 55 > 0

(46) a46 := . . . : 28 > 0

(47) a47 := . . . : coprime(55, 28)

(48) a48 := a44(55, 28, a45, a46, a47) : ∃x, y : Z . (55 · x+ 28 · y = 1)

Figure 15.15 Specialising the proof of Bézout’s Lemma

So as a consequence of Bézout’s Lemma, we have obtained the proof object

a48(55, 28, a45, a46, a47), coding a proof of

∃x,y∈Z(55 · x+ 28 · y = 1).

Note that a48 (with empty parameter list) stands for the specialised proof

15.6 The holes in the proof of Bézout’s Lemma 363

described in Figure 8.7, just as a44(m,n, ass1, ass2, ass3), together with the

accompanying context, abbreviates the general proof of Bézout’s Lemma as

expressed in Figure 8.6. A suitable unfolding of a44(m,n, ass1, ass2, ass3) gives

us all details described in Figure 8.6; the corresponding unfolding of a48 gives

us the content of Figure 8.7.

So now our attempts to fully formalise the proof of Bézout’s Lemma have

come to an end. As already said, there remain a number of promises that

we must hold: in particular, to deal with several loose ends that have to be

tied together, and to give proofs of the Minimum Theorem and the Division

Theorem. These will be the subjects of the remaining sections of the present

chapter.

15.6 The holes in the proof of Bézout’s Lemma

In the previous four sections we have given a formal λD-proof of Bézout’s

Lemma, in which we have skipped a number of details, called holes. We now

come back to these holes in order to fill them.

Altogether, we have recorded nine holes. They all have the status of proof

objects that still have to be found. The propositions they prove are of different

character, but none of them is really difficult to prove, as we show below.

We list the propositions-to-prove one by one and discuss what the λD-proofs

of these (mostly small) problems look like by describing them informally. These

proofs should be inserted in the respective holes.

All variables mentioned below (m,n, x, y, q, r . . .) have type Z.

I. Hole #1 (line (2), Figure 15.2): Z is partially ordered by ≤
For the notion of partial order: see Figure 12.7, line (5). Informal proofs of

reflexivity and transitivity of ≤ are given in Section 14.10 (Lemma 14.10.1 (a)

and (b)). Antisymmetry of (Z,≤) was dealt with in Exercise 14.29 (a).

II. Hole #2 (line (4), Figure 15.7): m = m · 1 + n · 0
This follows directly from (1) m · 1 = m, (2) n · 0 = 0 and (3) m+ 0 = m.

For the proof of equation (1): note that m · s 0 = (m · 0) +m = 0 +m = m

(use times-ii , times-i (Figure 14.22) and plus-i -alt (Figure 14.14)).

For (2): use times-i , again; and for (3): plus-i (Figure 14.12).

III. Hole #3 (line (11), Figure 15.7): ∃x : Z . lw -bndZ(S
+, x)

See Exercise 15.3.

IV. Hole #4 (line (24), Figure 15.10): m = q · (m · x0 + n · y0) + r implies

r = m · (1− q · x0)− n · (q · y0)
This is the result of simple computation steps. It is good to realise that the

364 An elaborated example

number of basic steps involved is larger than one might expect. To illustrate

this, we give some of the intermediate results below:

(1) m = q · (m · x0 + n · y0) + r,

(2) m = (q · (m · x0) + q · (n · y0)) + r,

(3) (m−m · (q · x0))− n · (q · y0) = r,

(4) r = m · (1− q · x0)− n · (q · y0).
We have left out several easy steps, in particular all necessary calls to asso-

ciativity and commutativity of both multiplication and addition. When writing

out the full proof, these calls would add about ten more steps to the chain of

computations.

V. Hole #5 (line (25), Figure 15.10): r = m · (1 − q · x0) − n · (q · y0) implies

r = m · (1− q · x0) + n · (−(q · y0))
This is a consequence of x − y · z = x + (y · (−z)). Informal proof, based on

Figure 14.17, line (3) and Lemma 14.11.4:

x− y · z = x+ (−(y · z)) = x+ (y · (−z)).

VI. Hole #6 (line (30), Figure 15.11): r < d and d ≤ r imply ⊥
See Exercise 15.4 (a).

VII. Hole #7 (line (32), Figure 15.11): 0 ≤ r and ¬(r > 0) imply r = 0

See Exercise 15.4 (a).

VIII. Hole #8 (line (33), Figure 15.12): m = q ·d+ r and r = 0 imply d · q = m

See Exercise 15.4 (b).

IX. Hole #9 (line (38), Figure 15.13): coprime(m,n)⇒ coprime(n,m)

See Exercise 14.43.

15.7 The Minimum Theorem for Z

In Section 15.1 we noticed that the proof of Bézout’s Lemma uses a form of the

Minimum Theorem, a basic theorem in integer arithmetic. We gave a formal

version of this theorem, but without a proof, in Figure 15.2. Note that this

Minimum Theorem has a complementary Maximum Theorem for non-empty

subsets of Z being bounded from above (Exercise 15.7).

We consider it instructive to investigate the Minimum Theorem more thor-

oughly and give a formal proof, independently from the rest of this chapter.

So we have to convince ourselves by means of a λD-proof that each non-empty

subset of Z, if bounded from below, has a minimum with respect to the relation

≤ (defined in Figure 14.18). We recall that ≤ is a partial order on Z, as we

already mentioned in Section 14.10. See also Hole #1 discussed in Section 15.6.

15.7 The Minimum Theorem for Z 365

So let T be a non-empty subset of Z, bounded from below. Then it’s intu-

itively clear that it must have a minimum value. But why? We have to ground

our argument on the formal version of Z as given in Chapter 14 (in particular,

Section 14.2), together with the fact that the relation ≤ on Z is a partial order.

Let’s start with a sketch of the situation in λD-format (see Figure 15.16).

We have subset T of Z, a proof that T is non-empty and the assumption

that T is bounded from below. By the aid of Figure 13.8, we may rewrite the

non-emptiness of T as in line (1).

Assumption v and conclusion a1 both have ∃-expressions as types. Hence,

the ∃-el -rule suggests to add two pairs of new flags, as depicted below.

T : ps(Z) | u : T �= ∅Z | v : ∃x : Z . lw -bndZ(T, x)

(1) a†1 := . . . use a6 [Fig.13.8] on u . . . : ∃n : Z . n ε T

l : Z | ass1 : lw -bndZ(T, l)

n : Z | ass2 : n ε T

...
†parameters suppressed

Figure 15.16 Start of the proof of the Minimum Theorem

Our goal is to find a least element of T in this setting.

There are several ways to achieve this. One possibility is to prove this by

contradiction: assume that T does not have a least element and derive ⊥. This
approach works well and was elaborated in Exercise 15.5.

In order to demonstrate the flexibility of the λD-format, we follow another

strategy for the continuation of our proof attempt, which goes as follows. In

order to find the minimum of T , we start with the lower bound l of T , which

is ‘below’ (to be precise: ≤) all elements of T . Now we climb upwards through

the integer numbers, one by one, until we strike upon a member of T . This

element must be the minimum of T .

Another way of expressing this method is that we browse upward, from l,

through other lower bounds of T , until we meet an element of T . This is a

lower bound which belongs to T , and consequently is the desired minimum of

T (cf. Figures 15.1 and 15.2). Note that all integers greater than this minimum

are no longer lower bounds of T . So, we can also phrase our strategy in terms

of lower bounds only: we look for a lower bound of T such that its successor is

not a lower bound of T .

Hence our upward search may be expressed as follows: we try to prove that

(i) ∃y : Z . (lw -bndZ(T, y) ∧ ¬lw -bndZ(T, s y)).

366 An elaborated example

We prove this by contradiction: we assume that such a y does not exist, and

derive ⊥. The negation of (i) can be rewritten by means of logical equivalences

to:

(ii) ∀y : Z . (lw -bndZ(T, y)⇒ lw -bndZ(T, s y)).

So (ii) is our assumption and our goal is to prove ⊥. We derive a contradic-

tion by showing that from (ii) we can derive that every x : Z is a lower bound

of T , i.e. ∀x : Z . lw -bndZ(T, x); and this can be easily refuted.

So we take the predicate

P := λx : Z . lw -bndZ(T, x),

and first prove from assumption (ii) by (symmetric) induction over Z, that

∀x : Z . P x.

Clearly, P holds for the lower bound l introduced above, so ∃x : Z . P x by

∃-in. To make a good use of that fact, we take the variant of induction for Z

as mentioned in Remark 14.2.1, with l as the ‘start value’ for P . Then left to

prove is

(iii) ∀x : Z . (P x⇒ (P (s x) ∧ P (p x))).

Now (ii), our extra assumption, is ∀x : Z . (P x ⇒ P (s x)). So in order to

obtain (iii) we only have to prove ∀x : Z . (P x ⇒ P (p x)). The proof of the

latter expression is not difficult: if x is a lower bound of T , then a predecessor

of x must clearly also be a lower bound of T .

The conclusion by induction is ∀x : Z . P x. This conflicts with the non-

emptiness of T : we have n ε T (see ass2 of Figure 15.16) and albeit that n

itself may happen to be a lower bound of T , this is certainly not the case for

s n, which is greater than n ε T and hence not a lower bound of T .

This argumentation was formalised in Figure 15.17, which is a continuation

of Figure 15.16.

So now our proof has reached an important point: we have shown that there

exists an integer z such that z itself is a lower bound of T , but its successor s z

is not. Hence, this z is a good candidate for being the minimum of T . We prove

this conjecture in Figure 15.18, which we shall discuss in more detail below.

Recall (see Figure 15.2, line (1)) that we have to find a proof for the expres-

sion

∃m : Z . leastZ(T,m),

where leastZ has been defined in Figure 15.1, line (2).

Triggered by the ∃-quantifier in the type of line (14) of Figure 15.17, we first

raise flags for assumptions with variables z and ass6, in order to be able to

appeal to ∃-el with respect to line (14) (what we shall do in line (27)).

It suffices to show that z satisfies the predicate of being a minimum of T , so

15.7 The Minimum Theorem for Z 367

...

(2) P := λx : Z . lw -bndZ(T, x) : Z→ ∗p
(3) a3 := . . . use ∃-in on l and ass1 . . . : ∃x : Z . P x

ass3 : ∀x : Z . (P x⇒ P (s x))

x : Z | ass4 : P x

(4) a4 := . . . use Exercise 14.23 (b) . . . : p x ≤ x

t : Z | ass5 : t ε T

(5) a5 := . . . use ∀-el and ⇒ -el on ass4, t and ass5 . . . : x ≤ t

(6) a6 := . . . use Lemma 14.10.1 (b) on a4 and a5 . . . : p x ≤ t

(7) a7 := . . . use ⇒-in and ∀-in on a6 . . . : P (p x)

(8) a8 := . . . use ⇒-in and ∀-in on a7 . . . : ∀x : Z . (P x⇒ P (p x))

(9) a9 := . . . use logical laws on ass3 and a8 . . . :

∀x : Z . (P x⇒ (P (s x) ∧ P (p x)))

(10) a10 := . . . use variant of induction for Z on a3 and a9 . . . :

∀x : Z . P x

(11) a11 := . . . use ∀-el on a10 and s n . . . : P (s n)

(12) a12 := . . . use ∀-el and ⇒ -el on a11, n and ass2 . . . : s n ≤ n

(13) a13 := . . . use arithmetic on a12 . . . : ⊥
(14) a14 := . . . use ¬-in and logic on a13 . . . :

∃z : Z . (lw -bndZ(T, z) ∧ ¬lw -bndZ(T, s z))

Figure 15.17 The existence of a maximal lower bound of T

leastZ(T, z) (see line (25)), because from this follows line (26) via ∃-in. A triple

use of ∃-el then permits us to let the type of line (26) ‘descend’ to the original

context consisting of T , u and v, and we have proved the Minimum Theorem:

see the concluding line (29).

But how can we obtain leastZ(T , z), being the proof obligation in line (25)?

Let’s unfold it:

z ε T ∧ ∀t : Z . (t ε T ⇒ z ≤ t).

The part behind the ∧ in the last-mentioned expression is δ-equivalent to

lw -bndZ(T, z), which is the left-hand side of the assumption called ass6. So all

that’s left to prove is z ε T (see line (24)). This we prove by contradiction:

if ¬(z ε T), then we can show that not only z, but also s z is a lower bound

of T (line (22)); and this contradicts the right-hand side of the assumption

called ass6.

368 An elaborated example

(A more complete proof of the Minimum Theorem, with the ‘hints’ worked

out, can be found in Appendix C, Section C.2.)

...

z : Z | ass6 : (lw -bndZ(T, z) ∧ ¬lw -bndZ(T, s z))

(15) a15 := . . . use ∧-el1 on ass6 . . . : lw -bndZ(T, z)

(16) a16 := . . . use ∧-el2 on ass6 . . . : ¬lw -bndZ(T, s z)

ass7 : ¬(z ε T)

y : Z | ass8 : y ε T

(17) a17 := . . . use ∀-el and ⇒ -el on a15, y and ass8 . . . :

z ≤ y

ass9 : z = y

(18) a18 := . . . use ass9, ass7 and ass8 . . . : ⊥
(19) a19 := . . . use ¬-in on a18 . . . : ¬(z = y)

(20) a20 := . . . use ∧ -in on a17 and a19 . . . : z < y

(21) a21 := . . . use Exercise 14.29 (b) on a20 . . . : s z ≤ y

(22) a22 := . . . use ⇒ -in and ∀-in on a21 . . . : lw -bndZ(T, s z)

(23) a23 := use ¬-el on a16 and a22 . . . : ⊥
(24) a24 := . . . use ¬-in and ¬¬-el on a23 . . . : z ε T

(25) a25 := . . . use ∧-in on a24 and a15 . . . : leastZ(T, z)

(26) a26 := . . . use ∃-in on z and a25 . . . : ∃m : Z . leastZ(T,m)

(27) a27 := . . . use ∃-el on a14 . . . : . . .

(28) a28 := . . . use ∃-el on a1 . . . : . . .

(29) min-the(T, u, v) := . . . use ∃-el on v . . . : ∃m : Z . leastZ(T,m)

Figure 15.18 The remaining part of the proof of the Minimum Theorem

The proof as described in Figures 15.16 to 15.18 is not difficult to follow.

The reader is invited to study it in detail and compare it with the full proof

in Appendix C.

We recall from Figure 15.2 that the existence of the minimum of T implies its

uniqueness (line (2)), so that we can give it a name, viz. minimum(T, u, v) (see

line (3)). Moreover, this minimum has some obvious characteristic properties,

which are also accounted for in the same figure (line (4)).

15.8 The Division Theorem 369

15.8 The Division Theorem

In Section 15.1 we also mentioned a second fundamental theorem from arith-

metic needed in the proof of Bézout’s Lemma, namely the Division Theorem.

For a formal version, see Figure 15.3. It expresses that, for integers m and d

both greater than 0, there exist integers q and r such that m = q · d + r and

0 ≤ r < d. It can also be shown that such a q must be non-negative and that

the numbers q and r are unique.

Otherwise said: when dividing the so-called dividend m by divisor d, we

obtain the quotient q ≥ 0 and the remainder r. The quotient q is such that q ·d
is the greatest multiple of d that is ≤ m. This implies that r, the difference

between m and q · d, is ≥ 0 but < d.

How can we formally prove this theorem? We have to show the existence of

q and r with the desired properties.

A promising approach is to consider multiples of d: start with 0 · d, which
is 0 so less than m, and continue with 1 · d, 2 · d, and so on. Since d > 0, we

must have 0 · d < 1 · d < 2 · d < . . ., so somewhere these multiples must cross

the ‘border’ m: then (k+1) ·d exceeds m, whereas k ·d did not yet do so. This

k is then the quotient desired, and m− k · d is the remainder of the division.

This process recalls what we did in the previous section, when searching

for the minimum of a non-empty subset T of N. There we also looked for a

maximal element with a certain property (namely: to be a lower bound of T).

Obviously, we might give a proof of the Division Theorem by copying the

ideas described in the previous section. But we prefer not to redo the work we

already have done before. It appears more profitable, and more in the line of

type theory, to apply the results of the previous section.

One way of doing this is to appeal to the mirror-image of the Minimum

Theorem, called the Maximum Theorem (which we have mentioned already in

the beginning of the previous section):

Each non-empty subset of Z that is bounded from above, has a maximum.

The theorem can be proven by the aid of the Minimum Theorem; see Exer-

cise 15.7.

In order to be able to refer formally to the Maximum Theorem and its

consequences, we list the relevant notions, without proofs, in Figure 15.19.

Note that an upper bound for T ⊆ Z with respect to relation ‘≤’ can be defined

as a lower bound for T with respect to the reverse relation ‘≥’. Similarly, a

greatest element of T with respect to ≤ is a least element for ≥.

The Maximum Theorem implies that the set of all multiples l · d that are

smaller than or equal to m, has a maximum. And this, with a view to our

discussion above, suffices for the proof of the Division Theorem.

370 An elaborated example

T : ps(Z)

l : Z

(1) up-bndZ(T, l) := lw -bnd(Z,≥, T, l) : ∗p
(2) grtstZ(T, l) := least(Z,≥, T, l) : ∗p

u : T �= ∅Z | v : ∃x : Z . up-bndZ(T, x)

(3) max -the(T, u, v) := . . . : ∃m : Z . grtstZ(T,m)

(4) max -uni -the(T, u, v) := . . . : ∃1m : Z . grtstZ(T,m)

(5) maximum(T, u, v) := . . . : Z

(6) max -prop(T, u, v) := . . . :

maximum(T, u, v) ε T ∧ up-bndZ(T,maximum(T, u, v))

Figure 15.19 The Maximum Theorem, related notions and consequences

We limit ourselves, again, to an elaborate sketch of the formalised proof

in λD, leaving a full formalisation to the reader. We start the proof of the

Division Theorem with a context consisting of two positive integers, m and d,

and divide the proof into three parts:

I. We define the set D of all multiples of d that are ≤ m

This subset D of Z is: D := {x : Z | (∃k : Z . (x = k · d)) ∧ x ≤ m}.
See Figure 15.20 for a formalisation. We also prove that D is non-empty and

bounded from above: we show that 0 ε D (line (5)), so D �= ∅ (line (7)), and

that there is an upper bound of D, namely m (lines (9) and (10)).

m, d : Z | u : m > 0 | v : d > 0

(1) D† := {x : Z | (∃k : Z . (x = k · d)) ∧ x ≤ m} : ps(Z)

(2) a2 := . . . use Lemma 14.11.1 (a) . . . : 0 = 0 · d
(3) a3 := . . . use ∃-in . . . : ∃k : Z . (0 = k · d)
(4) a4 := . . . use ∧ -el1 on u . . . : 0 ≤ m

(5) a5 := . . . use ∧ -in on a3 and a4 . . . : 0 ε D

(6) a6 := . . . use ∃-in on a5 . . . : ∃z : Z . (z ε D)

(7) a7 := a12[Fig. 13.8](Z, D, a6) : D �= ∅Z
x : Z | w : x ε D

(8) a8 := . . . use ∧ -el2 on w . . . : x ≤ m

(9) a9 := . . . use ⇒-in and ∀-in on a8 . . . : up-bndZ(D,m)

(10) a10 := . . . use ∃-in on a9 . . . : ∃x : Z . up-bndZ(D,x)
†parameters suppressed

Figure 15.20 The set D and some of its properties

15.9 Conclusions 371

II. We define the maximum l of D and define the quotient q

The Maximum Theorem implies that D has a unique maximum, say l. We list

some relevant properties of l; among other things, l belongs to D, hence there

is a k such that l = k · d. We prove that this k is unique and call it q (see

Figure 15.21).

...

(11) l := maximum(D, a7, a10) : Z

(12) a12 := max-prop(D, a7, a10) : l ε D ∧ up-bndZ(D, l)

(13) a13 := . . . use ∧ -el1 on a12 . . . : (∃k : Z . (l = k · d)) ∧ l ≤ m

(14) a14 := . . . use ∧ -el2 on a12 . . . : ∀t : Z . (t ε D ⇒ t ≤ l)

(15) a15 := . . . use ∧ -el1 on a13 . . . : ∃k : Z . (l = k · d)
(16) a16 := . . . use ∧ -el2 on a13 . . . : l ≤ m

k1, k2 : Z | w1 : l = k1 · d | w2 : l = k2 · d
(17) a17 := . . . use properties of = on w1 and w2 : k1 · d = k2 · d
(18) a18 := . . . use ∧ -el2 on v . . . : d �= 0

(19) a19 := . . . use Lemma 14.11.7 on a17 and a18 . . . : k1 = k2

(20) a20 := . . . use ⇒-in and ∀-in . . . : ∃≤1k : Z . (l = k · d)
(21) a21 := . . . use ∧ -in on a15 and a20 . . . : ∃1k : Z . (l = k · d)
(22) q := ι(Z, λx : Z . (l = x · d), a21) : Z

Figure 15.21 The maximum l of D and its properties

III. We define the remainder r and prove that 0 ≤ r < d

We define r as the difference m− q · d. Since q · d is equal to the maximum l of

D, which is ≤ m, we conclude that r ≥ 0. What is left, is to prove that r < d.

We show this by contradiction: if r ≥ d, then (q + 1) · d would also be in D,

implying that q · d is not the maximum of D (see Figure 15.22).

Hence our investigation of how to prove the Division Theorem in λD-style

has come to an end. The transformation of the presented proof into a complete

λD-proof is not difficult.

15.9 Conclusions

In the present chapter we have put system λD to the test, by trying to formalise

a substantial piece of mathematics, namely Bézout’s Lemma; to be more pre-

cise: a proof of it. The proof itself is not very sizeable; but it involves a number

of implicit notions that require a more explicit treatment, prior to the formali-

sation of the lemma itself. Altogether, this has accumulated into a challenging

372 An elaborated example

...

(23) a23 := ι-prop(Z, λx : Z . (l = x · d), a21) : l = q · d
(24) a24 := . . . use eq-subs on a16 and a23 . . . : q · d ≤ m

(25) r := m− q · d : Z

(26) a26 := . . . use arithm. on a24 and r . . . : r ≥ 0

(27) a27 := . . . use arithm. on the definition of r . . . : m = q · d+ r

w : d ≤ r

(28) a28 := . . . use arithm. on w and a27 . . . : q · d+ d ≤ m

(29) a29 := . . . use arithm. on a28 . . . : (q + 1) · d ≤ m

(30) a30 := . . . use eq-refl . . . : (q + 1) · d = (q + 1) · d
(31) a31 := . . . use ∃-in on a30 . . . : ∃k : Z . ((q + 1) · d = k · d)
(32) a32 := . . . use ∧-in on a31 and a29 . . . : (q + 1) · d ε D

(33) a33 := a14 ((q + 1) · d) a32 : (q + 1) · d ≤ l

(34) a34 := . . . use eq-subs on a33 and a23 . . . : (q + 1) · d ≤ q · d
(35) a35 := . . . use arithm. on a34 . . . : d ≤ 0

(36) a36 := . . . use arithm. on v and a35 . . . : ⊥
(37) a37 := . . . use ¬-in and arithm. . . . : r < d

(38) a38 := . . . use ∧ -in (twice) on a27, a26 and a37 . . . :

(m = q · d+ r) ∧ (r ≥ 0 ∧ r < d)

(39) div -the(m, d, n, v) := use ∃-in (twice) on a38 :

∃q, r : Z . ((m = q · d+ r) ∧ (r ≥ 0 ∧ r < d))

Figure 15.22 The completion of the proof of the Division Theorem

exercise, in which various aspects of the formalisation process have come to the

surface. Hence, the task we have set ourselves has appeared to be a good test

case; and now, in retrospect, it is sensible to conclude that we have succeeded

in this investigation concerning the useability of λD.

We may well conclude, albeit provisionally due to the restricted test set-

ting, that λD has sufficient power to formalise large amounts of mathematical

content. What convinces us still more is that previous endeavours with the λD-

like system Automath have shown that a large corpus of mathematical texts

could effectively and successfully be translated into formal form, without in-

surmountable problems (see also de Bruijn, 1968, 1970; van Benthem Jutting,

1977). Hence, such formal translations are not only theoretically possible, but

also practically feasible.

We have started the ‘real work’ in this chapter with the formal definition

of a general minimum operator for certain subsets. We continued with λD-

15.10 Further reading 373

formulations (provisionally without proofs) of the Minimum Theorem and the

Division Theorem, to be used in the proof of Bézout’s Lemma.

Then we embarked upon the proof of Bézout’s Lemma, which we have split

into three parts: Sections 15.3 to 15.5. In the process of developing the proof,

we took the liberty to introduce several shortcuts, for reasons of economy and

readability:

− We have applied the parameter list convention (Notation 11.7.1).

− As in previous chapters, we did not write out proof terms based on logical

(natural deduction) rules, but instead we only gave hints about the relevant

rules.

− We introduced ‘holes’, being omitted proof terms, to be constructed at a later

stage; many of these holes are based on mathematical (or computational)

lemmas being more or less out of scope for the progress of the proof, or too

complex to be filled in on the spot.

At the end of Section 15.5 it turned out that our formalisation task had

come to a successful end. We could immediately use this to derive a formal

proof of the instantiated Bézout Lemma, in which we have chosen specific m

and n. This shows all the more how powerful the parameter system of λD is

when it comes to ‘specialising’ a theorem or a lemma.

We have also seen in which manner the holes in the proof may be filled; this

was the subject of Section 15.6. Many small tasks of a varying nature have

been reviewed, with satisfactory results.

In Section 15.7 we considered the Minimum Theorem and how to prove it. A

formal approach by the aid of symmetric induction has delivered a viable solu-

tion, which could be formalised in λD, as required. The notion ‘lower bound’

played a prominent role in the process.

The Division Theorem was the focus in Section 15.8. It turned out that

a formal proof of this theorem could be built on the Maximum Theorem, a

‘mirror image’ of the Minimum Theorem, by choosing the proper perspective

on the mathematical content of the theorem. The proof, presented in three

parts, turned out to be, again, a fruitful exercise in formalisation.

15.10 Further reading

This chapter shows that a real mathematical proof of a real mathematical result

can be fully formalised in λD. An early successful attempt of a formalisation

of a serious piece of mathematics into a λD-like setting was made by L.S. van

Benthem Jutting and is described in his PhD thesis (van Benthem Jutting,

1977).

In today’s proof assistants there are a number of formalisations of Bézout’s

374 An elaborated example

Lemma, which is often called Bézout’s Theorem or occurs without being ex-

plicitly named. F. Wiedijk has a web-page called Formalizing 100 Theorems,

(Wiedijk, 2013), where he keeps a list of the ‘top 100’ mathematical theorems

and the systems in which they have been formalised. Bézout’s Theorem is num-

ber 60 in the list, so we can see that it has been formalised (status of November

2013) in

− HOL Light, by J. Harrison,

− Mizar, by R. Kwiatek,

− Isabelle, by A. Chaieb,

− Coq, in the standard library,

− ProofPower, by R.D. Arthan.

The precise statement varies in the various systems, so it is interesting to

see what exactly has been formalised. We first recall that in our setting (see

Figure 14.23) we define, for m,n : Z with m > 0 and n > 0, the gcd(m,n) to

be the unique k : Z for which

k |m ∧ k |n ∧ ∀l : Z . (l |m ∧ l |n⇒ l ≤ k)

and we have introduced the name gcd -prop in the same figure for this deter-

mining property of the gcd .

In various proof assistants (e.g. Mizar) the notion of gcd that is used is

different from ours. (Ours seems to be the standard one and can be found

in various textbooks.) The alternative definition, which we denote for clarity

as gcd ′(m,n), is that, given m,n : Z, gcd ′(m,n) is defined to be the unique

natural number k for which

k |m ∧ k |n ∧ ∀l : Z . (l |m ∧ l |n ⇒ l | k).
So, gcd ′(m,n) is again the ‘greatest’ common divisor of m and n, but now

greatest in the ordering of ‘divisibility’. (Note that, if we allow k to be an

integer instead of a natural number, then the uniqueness is lost.) Let us use

gcd -prop ′(k,m, n) for the alternative gcd property displayed above.

It can be proved that, for m,n > 0, the definitions of gcd and gcd ′ coincide.
The nice thing about gcd ′ is that it also works for m = n = 0: we have

gcd ′(0, 0) = 0, because 0 is the ‘greatest’ factor of 0 in the ‘divides’ relation.

The general form of Bézout’s Theorem states that for m,n : Z with m > 0

and n > 0,

∃x, y : Z . (mx+ ny = gcd(m,n)).

In the present chapter we prove the ‘restricted form’, which states that for

m,n : Z with m > 0 and n > 0 and coprime(m,n),

∃x, y : Z . (mx+ ny = 1),

where coprime(m,n) is defined as ∀k : Z . ((k |m ∧ k |n ∧ k > 0)⇒ k = 1) (see

15.10 Further reading 375

Figure 14.23, again). (It can be proved that coprime(m,n) ⇔ gcd(m,n) = 1

for either one of the definitions of gcd.) So we prove Bézout’s Theorem for the

case where gcd(m,n) = 1.

Let’s now look at the formalisations of the theorem in the various proof

assistants.

HOL Light The theorem is called INT GCD EXISTS POS, and it states in

mathematical terms:

∀ a b ∃d (0 ≤ d ∧ d | a ∧ d | b ∧ ∃x y (d = ax+ by)).

Here, a, b, d, x, y range over the integers. The theorem does not explicitly refer

to the notion of gcd , but states that there exists a positive d that is a linear

combination of a and b.

It can be proven that, if 0 ≤ d ∧ d | a ∧ d | b ∧ ∃ x y (d = ax + by), then d

satisfies gcd -prop ′(d, a, b) (and also the other way around), which implies the

uniqueness of the d in the theorem.

Mizar The theorem is called NEWTON:67 and occurs in Kwiatek (1990). It

states in mathematical terms:

∀m,n : nat (m > 0 ∨ n > 0⇒ ∃ i, i1 : Z (im+ i1n = gcd ′(m,n))).

Note that m,n range over nat and i, i1 range over Z and that the theorem is

proved under the hypothesis that m > 0 or n > 0, which is a bit more liberal

than in our case (m > 0 and n > 0). The general form of Bézout’s Theorem is

proved, for the natural numbers.

The notion of greatest common divisor in Mizar is the one that we called gcd ′

above, so we have used that notation in the mathematical statement (where

Mizar of course writes gcd).

Isabelle The Isabelle system has its own list of the 100 formalised theorems

(Klein, 2013). Bézout’s Theorem states in mathematical terms:

∀ a, b ∃ d, x, y (d | a ∧ d | b ∧ (ax− by = d ∨ bx− ay = d)),

where a, b, d, x, y range over nat . So, just like in HOL Light, the theorem does

not use the notion of gcd explicitly. The Isabelle formalisation circumvents hav-

ing to deal with integers (instead of the naturals) by making a case distinction:

either ax ≥ by or bx ≥ ay.

Coq The Coq system also has its own list of the 100 formalised theorems

(Madiot, 2013). Bézout’s Theorem is part of the standard library, and it is

formalised using inductive types. We translate it in standard mathematical

terms:

∀ a, b, d : Z (gcd -prop ′(d, a, b)⇒ ∃u, v : Z (ua+ vb = d)),

where gcd -prop ′(d, a, b) denotes the alternative gcd property discussed above

376 An elaborated example

(uniqueness is not explicitly proven). So, Coq has the same definition of gcd

as Mizar, using the ‘divisibility’ ordering.

ProofPower The ProofPower system (Arthan, 2013) by R.D. Arthan also

maintains a web-page (Jones, 2013) of the theorems from the ‘famous 100 the-

orems’ list that have been formalised in it. Bézout’s Theorem in mathematical

form reads

∀m,n (0 < m ∧ 0 < n⇒
∃ a, b (bn ≤ am ∧ gcd(m,n) = am− bn) ∨
∃ a, b (am ≤ bn ∧ gcd(m,n) = bn− am)).

The variables m,n, a, b range over nat , and just like in Isabelle, the integers

are circumvented by making a case distinction in the conclusion.

Exercises

15.1 Let m,n ∈ N+ and define d as gcd(m,n).

(a) Prove in λD that d|m and d|n.
(b) Let m = k · d and n = l · d. Give an informal proof of gcd(k, l) = 1.

(c) Give an informal proof to show that the restricted version of Bézout’s

Lemma entails the general version (cf. Remark 15.1.1).

15.2 Find the proof objects in lines (3) and (4) of Figure 15.1.

15.3 See Section 15.6. Give a λD-proof leading to the missing proof object in

Hole #3.

15.4 Give a complete λD-version of the following derivations, by elaborating

the hints and filling the holes:

(a) Figure 15.11,

(b) Figure 15.12. (Apply ∃-el two times to obtain line (36), and two times

for line (37), in accordance with Remark 15.4.1.)

15.5 Consider the Minimum Theorem, as stated in Section 15.2, part II.

(a) Show that the following biimplication holds:

¬∃x : Z . leastZ(T, x) ⇔ ∀x : Z . (x ε T ⇒ ∃t : Z . (t ε T ∧ t < x)),

by ‘rewriting’ the left-hand side in a number of steps to the right-hand

side, using definition unfolding and logical and arithmetical lemmas.

(b) Extend Figure 15.16 with the assumption ¬∃x : Z . leastZ(T, x).

Give a λD-proof of ∀x : Z . ∃y : Z . (y ε T ∧ y < k) in this setting.

(Hint: use part (a) and the variant of induction for Z as described in

Remark 14.2.1.)

(c) Prove the Minimum Theorem by taking Figure 15.16 as the proof

setting, and showing that the assumption ¬∃x : Z . leastZ(T, x) then

leads to a contradiction.

Exercises 377

15.6 Give a proof sketch for the uniqueness of the quotient and the remainder

in the Division Theorem.

15.7 Give a proof sketch of the Maximum Theorem, by making use of the

Minimum Theorem. (Hint: for subset T of Z, define T ′ as the set of all

opposites of elements of T , i.e. T ′ ≡ {x : Z | −x ε T}.)
15.8 Replace all hints in Figure 15.20 by proof objects in λD-style.

15.9 Give a full description of the arithmetical lemmas used in the hints of

Figure 15.22 and give informal proofs for each of them.

16

Further perspectives

16.1 Useful applications of λD

The type theory λD provides a system in which mathematical definitions,

statements and proofs can be completely spelled out in a very structured way

that is still close to ordinary mathematical practice. This enables and facilitates

the formalisation of mathematics and the checking of its correctness. Below,

we summarise the main features of type theory, and in particular λD, as a

system for formalising mathematics.

Formalisation of mathematics via type theory In λD-like type theory, a

mathematical notion can be defined precisely in full detail and the definition

can be reasoned with in a logically sound way. The type system enforces a very

high level of precision, which gives additional insight into mathematical and

logical constructs. Nevertheless, formalising mathematics in λD is still very

close to what is standard in mathematics.

Checking of mathematics The high level of precision of type theory greatly

improves the level of correctness of the formalised mathematics: incomplete

proofs, or proofs using illegal logical steps, are not accepted and a definition

has to be syntactically correct. The soundness of course still depends on the

axioms that one has assumed: if the axioms do not correspond to what one

wants to formalise, or if they are inconsistent, the derived results are still

useless. This already applies to informal mathematics, so the formalisation in

type theory is separate from the question of whether the axioms are sound. So

in general, one should use axioms sparingly.

Also the relevance of the results is up to the user, that is: do the defi-

nitions and theorems correspond to notions that are considered interesting?

Here again, the fact that the formalised mathematics in λD is close to stan-

dard mathematics makes it easier to verify the correspondence between the

formalised notions and the intended ones. In summary, type theory shifts atten-

tion from correctness (which is dealt with by the system and therefore doesn’t

380 Further perspectives

have to be discussed anymore) to relevance. Once formalised, the correctness

of a piece of mathematics can be left to λD.

Proof development The precision of λD guides the proof development. The

context structure (that we have depicted using flags) clearly indicates the hy-

potheses and the variables that are ‘in scope’ and clarifies and guides the

thought process. This is particularly helpful for students that start to learn

logic or mathematics: at any time in the proof development it is clear what

has already been done (the definitions that are in scope), what is still left to

do (the open goals) and what is available to proceed (the previous theorems

and lemmas plus the assumptions that are in scope). The context structure of

proofs with flags to indicate the scope of variables and assumptions provides

a partial proof, which is ready to be completed in a step-wise process.

Libraries In mathematics, the basic activities are doing proofs and giving

definitions. Both should be stored for reuse and it should be possible to refer

to them. The system λD provides these facilities: both definitions and the-

orems are stored in a perspicuous way, for easy access and referral. In λD,

definitions can depend on a context of parameters that are instantiated when

the definition is used. A crucial point of type theory is that giving proofs and

introducing definitions is very much the same type of activity: when proving,

one creates a ‘proof-term’ of a certain type, and then a name is introduced

for that proof-term. This name is what is being referred to later when using

the proved result. The specific situation in which a result is used is reflected

by the instantiations of the parameter list. (A difference between defining a

proof and defining a mathematical notion is that in the latter case one wants

to be able to unfold the definition, whereas in the case of a proof, one hardly

ever wants to do that.) Due to the naming of definitions and proofs, it is also

easy to find the dependencies: which proof depends on which notion or other

result? All together, one obtains a large ‘environment’: a library of formalised

mathematics, consisting of definitions of mathematical concepts and theorems

with proofs.

16.2 Proof assistants based on type theory

We have shown that the type theory λD can be used to formalise mathematics.

The system includes various basic constructs to define mathematical notions

and also a mechanism to declare primitive notions that one wants to add. The

power of such a system does not just lie in doing formalisations on paper.

Its real strength lies in the fact that the theory can be cast into a computer

program that can serve as a proof assistant to interactively build up theorems

16.2 Proof assistants based on type theory 381

and proofs, eventually leading to a computer-supported library of formalised

and computer-checked mathematics.

Computer-checked proofs A crucial aspect of λD (and type theory in general)

is that a term can be type-checked by a computer: there is a – not too difficult –

algorithm that, given a term p, an environment Δ of definitions and a context Γ

of declarations, can compute the type of p in Γ, if it exists, and decide that p

is not typable in case no such type exists. This means that a user doesn’t have

to provide the type, but can leave that to the computer. So, λD is a system

that allows proof checking: an alleged proof (a term p) can be proposed and an

algorithm can check what formula it is a proof of (the type of p), if any.

Schematically we depict the proof checking situation as follows:

informal proof p informal statement A

� �
formal proof p formal statement A

�
�

�
�

�
�

�
�

find
type

�
�

�
�

�
�

�
�

find
type

� �

 failure
report

failure
report

success success

p ok,
type is T

A ok

�
�

�
�

�
�

�
�

check
T=A

�

failure

success

report

p has type A,
p proves A

Figure 16.1 Checking correctness by means of type theory

Figure 16.1 describes the following procedure. The informal proof p and the

statement it is supposed to prove, A, are translated to formal expressions p

and A. This step itself is not carried out by the computer – hence the dashed

arrows. (Of course, there can be computer support for this step, but at present

there are no computer programs that can fully translate a proof in natural

382 Further perspectives

language to a formal proof term.) Then the type of p is computed, which

returns T . (If p is not typable, the computer will report that.) Also, A is

checked for well-formedness, which is also done by computing the type of A.

These steps are carried out by the computer. After this, we know that T and

A are well-formed types, and T is a type for p. The final step, which is also

carried out by the computer, is to check whether T and A are equal; that is,

whether these types are βΔ-convertible. If so, then the computer has executed

proof checking successfully, which entails that p indeed proves A.

This was the basic idea behind the Automath project, started around 1970

by N.G. de Bruijn (de Bruijn, 1970, 1980; Nederpelt et al., 1994): develop

a computer program that can check mathematics and mathematical proofs

for their correctness. For an expression, this means checking whether it is

syntactically well-formed and what its type is. For a proof, this means checking

whether it is indeed a well-formed proof and what formula it is a proof of. The

system λD is a direct successor of the systems that were developed in the

Automath project of the 1970s.

Interactive proving In the meantime, computers have become more powerful,

and apart from letting the computer just check a given proof, one can let the

computer assist in constructing the proof. The technology of proof checking

has developed into interactive theorem proving and the systems used are called

proof assistants. Well-known proof assistants based on type theory are Coq

(Coq Development Team, 2012), Nuprl (Constable et al., 1986) and Agda (Bove

et al., 2009). These systems, which are based on different variations of λD (that

we will not go into here) use the computer not just to check the type, but also to

construct a term. A basic concept in these systems is that of term refinement.

One starts with a type A in a context Γ and an ‘open place’ (a ‘hole’), where

a term (of type A) has to be filled in. The system provides refinement steps to

fill a term in the hole in a sequence of steps. Basically, this provides computer

support for the formalisations we have done in the previous chapters, where we

have developed proofs of mathematical results in a step-wise manner. The idea

is that the computer does the administration, by providing the bookkeeping of

assumptions and variables that can be used, and by showing the open goals,

while the user tells it which step to take next.

In the Agda system, one is editing the term directly: one starts from just a

hole, which is then replaced by a part of a term, with still some holes left; then

one focuses on another hole and fills that in until there are no holes left. The

Agda system gives support for what can be filled in the hole (which depends

on the type of the hole) and checks the types of the unfinished proof terms

along the way. In the Coq system, one just looks at the holes themselves: these

are filled in by refinement steps, but the user doesn’t see the term that is being

16.2 Proof assistants based on type theory 383

constructed (in the background): the user only sees a sequence of holes with

their own context.

Automation and tactics In proof assistants based on type theory, the com-

puter is used to check the types and to store the terms, plus the environment of

definitions and the context of declarations. But maybe most importantly, the

system is used to construct terms. For example, the Coq system has powerful

tactics to refine proof terms, and users are supported to write their own tac-

tics in a special ‘tactic language’ (or directly in the implementation language

of Coq). In this way, a significant amount of automation can be (and has been)

added to the various proof assistants. A crucial aspect of a system like Coq is

that, no matter what (smart) tactic one writes to create proof terms, in the

end the completed term has to be typable in the type theory, with as type

the formula that one claims to prove. So, in the end everything is checked by

the kernel, which is just the type-checking algorithm for the type theory of

Coq. This feature, that a proof assistant generates proof terms that can be

checked for correctness by a small kernel, was named the ‘de Bruijn criterion’

by H.P. Barendregt (Barendregt & Geuvers, 2001), in honour of the pioneering

work of Automath, whose systems all satisfy this property.

Technical assistance The computer can provide various additional features

for theorem-proving support. An obvious desire is to enable sugared notation,

such as, for example, infix notation for defined binary operation and relation

symbols. Current proof assistants provide that. They also provide shorthand fa-

cilities for invoking standard techniques for definitions or proofs and sometimes

pull-down menus to select applicable tactics. Basically, these are all interface

features that are important for enhancing the proof process, but do not affect

the underlying type theory and the formalised mathematics that is stored. The

primitives of the type theory already provide the mechanisms for type check-

ing and definition look-up, so one can always ask for the type of a term and

of the definiens of a defined notion. Slightly more advanced proof assistants

also provide ‘search’ mechanisms, e.g. to search for a lemma about a certain

relation, or a lemma of a certain shape.

Additional type-theoretic features The type theory of λD is simpler than that

of Coq, which also has a scheme for inductive types (see Bertot & Castéran,

2004). These are important for defining e.g. data types from computer science,

but also mathematical notions like the closure of a property, or ‘the smallest

set X satisfying property Φ’. For mathematical applications, this is not crucial,

because in λD one can define ‘closure’ or ‘smallest set satisfying . . . ’ using the

higher order predicate logic that is included. Data types can be encoded using

higher order logic as well, but one doesn’t get the full computation rules for

these data types as term-conversion. To be more precise: in the presence of an

384 Further perspectives

inductive type for the natural numbers with an associated scheme for structural

recursion, one has a (small) programming language, and the evaluation of

programs is part of the term-reduction, just like β-reduction in λD. In λD

we can specify recursive functions using equations, but these do not compute

within λD: computation is done using equational reasoning. Given our focus

on the formalisation of mathematics in this book, we don’t see that as a serious

limitation.

State of the art In recent times, proof assistants have become more mature

and the research and development of the systems have enabled various big

formalisations, both in mathematics and computer science. The topics range

from formalisations of pure mathematics to correctness of software or operating

systems. Usually, these are not isolated formalisation efforts anymore, but part

of the building up of a large library of formalised mathematical results.

The practical work on implementing proof assistants based on type theory

has gone hand in hand with foundational studies of the underlying theory. Also,

results in computer science, concerning the variety of type notions present

in programming languages, have stimulated research in the essence and the

‘power’ of these type systems, and into the connections between the various

notions of type. The theoretical consequences for implementing mathematics

and logic, as sketched above, provide a firm backbone to these investigations.

16.3 Future of the field

Various impressive computer formalisations of substantial bodies of mathemat-

ics have been done, which shows the maturity of this field. We mention the for-

malisation of the Four Color Theorem in Coq by G. Gonthier (Gonthier, 2005,

2008). Another impressive result is the formalisation of the Feit-Thompson

Theorem in Coq by a team led by G. Gonthier (Gonthier et al., 2013). The

latter theorem, an important step in the classification of finite simple groups,

is also known as the Odd-Order Theorem, and it states that every finite group

of odd order is solvable. Yet another major formalisation of mathematics is the

Flyspeck project led by T.C. Hales (Hales, 2006; Hales et al., 2010), in order

to formalise a proof of the Kepler Conjecture in the proof assistant HOL Light

(HOL system, 1988; Gordon & Melham, 1993; Gordon, 2000).

All older proof assistants have a basic ‘standard library’ of formalised math-

ematics and a number of larger ‘deep’ results based on that. Mizar (Mizar,

1989) is the system with the largest library of formalised mathematics.

An important application of proof assistants is in verifying computer sys-

tems: software and hardware. The ultimate level of correctness of a program

or a hardware design is obtained by proving it formally correct using a proof

16.3 Future of the field 385

assistant. In recent years we have seen a strong increase of computer-formalised

correctness proofs of artefacts from computer science.

Increasing use of proof assistants In the future, we expect an enormous

increase in the use of proof assistants. Our vision is that formalising a mathe-

matical proof may become as easy as writing mathematics in a mathematical

text editor such as LATEX (Lamport, 1985) and that a mathematical proof will

only be accepted for publication when it has been formally checked. This means

that a large library of formalised mathematics will be built up, which allows

all results now appearing in journals and books to be accompanied by formal

proof code. Such formalised proofs can be inspected, experimented with and

be used in other proofs. This will vastly increase the use of formal (computer-

supported) verification of computer science artefacts.

Right now, the above vision is far from a reality. There are some clear chal-

lenges ahead.

Automation All proof assistants provide a basic level of automation, but

this is not enough to let a large part of mathematical reasoning be done by

the machine. Proof steps that the average mathematician would skip and leave

unexplained are often not understood by the proof assistant and need further

elaboration. This is felt as a hindrance by users. Also, the proof assistant is

mostly unable to propose useful lemmas (from the library of known results).

We believe that these problems can be solved by a combination of powerful

automated theorem proving (using symbolic techniques) and machine learning

(using statistical inference). A considerable part of undergraduate mathematics

should be ‘known’ to the proof assistant, in the sense that it can use it instantly

without further assistance.

High-level explanation of formal proofs There is a considerable gap between

what a user of a proof assistant sees on the screen and what the mathematics

looks like on paper. This is to a great extent a direct consequence of the fact

that a proof assistant is a computer program that deals with formal syntax

(computer code), whereas mathematics on paper is informal text (in natural

language), with snippets of formal text (formulas) inside it. Some users can

easily relate the computer code to the informal mathematics, but in general

this turns out to be difficult. So there is a need for better relating formalised

mathematics and formal proofs to their informal counterparts.

Also, fully detailed formal proofs and definitions contain so much detail that

the overview is lost and the ‘message’ of a proof (e.g. the crucial important

step) gets hidden. It is important that parts of proofs can be made invisible,

being available for further inspection on demand. So, one needs to be able to

fold and unfold sub-parts.

386 Further perspectives

Step-wise proof development A mathematical proof is usually presented

(and also often found) by starting from a high-level argument and then filling

in the various details, which may take several iterations. This is close to a

step-wise refinement method of programming. In type theory, this amounts

to constructing terms with holes which can later be selected to be filled in

further. In the proof assistant community this is known as a formal proof

sketch: an outline of a formal proof, with precise statements and definitions

that are formally verified for syntactic correctness by the proof assistant, with

a clear indication of which parts of the argument need to be filled in. A proof

assistant that provides this method of working is also easier for novice users

that currently experience a steep learning curve.

Export between proof assistants Mathematical research consists of develop-

ing new notions and results on top of existing ones, reusing and referring to

earlier work in the literature. With formalised mathematics, the situation is

different. Various proof assistants have impressive libraries of formal mathe-

matics and proofs of deep mathematical theorems. However, it is not possible

to reuse results between different proof assistants. It is even difficult in prac-

tice to reuse an existing library in the same proof assistant. The latter issue is

related to the lack of high-level explanation of formal proofs, which we have

already addressed. The impossibility to reuse results between different proof

assistants is more fundamental and due to the use of different mathematical

foundations (set theory, higher order logic, type theory) and different computer

representations (e.g. the language the proof assistant is programmed in). This

means that a proven theorem in one proof assistant cannot easily be transferred

to another; it may even be inconsistent to do so. The seamless combining of

results from different proof assistants is a big challenge.

Didactics As we have already pointed out, for novices the learning curve

to use a proof assistant is very steep. One should know a bit of mathematics

and logic and quite a bit of the peculiarities of the system before one can start

using a proof assistant. In our ideal vision, that situation should be turned

around: a proof assistant should be easy to start using and would help to learn

logic and mathematics.

16.4 Conclusions

In this book, we have advocated the use of type theory as a vehicle for formal-

ising mathematics. In particular, we have introduced the system λD for that

purpose and we have shown how to do mathematics in it: logic, sets, arithmetic.

We highlight the main points that support the formalisation of mathematics

in λD.

16.5 Further reading 387

− We have a relatively simple syntax that is built on the λ-calculus, and there-

fore well suited to the function-based approach underlying many mathemat-

ical topics.

− We use types that are appropriate for a natural translation of the set-and-

element ideas present in a great number of mathematical fields.

− We use propositions-as-types, proofs-as-terms and hence we incorporate the

usually informal notion of ‘proof’ into the formal system, so theorems and

proofs become first-class citizens.

− We have decidability of type checking and, consequently, decidability of proof

checking; every well-typed term has a unique type that can be computed by

a relatively simple algorithm.

− Definitions are formally incorporated, so they are also first-class citizens.

− We use explicit contexts to record assumptions and free variables.

− The economic display of contexts via flags provides a feasible mechanism of

developing and representing proofs; this is close to the mathematical practice

using a natural deduction format.

In the present chapter we first highlighted the further applications of λD,

starting by answering the questions: why formalise mathematics and why use

type theory for it? An important bonus of a formal system is that one can

develop a computer tool to actually work with the formal system. For type

theory, that has been one of the goals from the start: to implement the for-

mal system as a proof checker. This has developed into mature proof assistants

based on type theory. We have reviewed the developments in this field. Then,

of course, we have asked the question of where this is all heading. Proof assis-

tants have not yet developed into a standard tool for mathematicians, but we

strongly believe they will in the future.

16.5 Further reading

Type theory appears in various forms in the literature and has a variety of

purposes, mostly related to programming languages, logic and proof theory,

or formalising mathematics. B. Russell and A.N. Whitehead were the first to

use type theory as a language for mathematics in their Principia Mathematica

(Whitehead & Russell, 1910), but the Ramified Theory of Types of Russell

(Russell, 1908) is now seen as unnecessarily complicated. The introduction of

Russell and Whitehead’s book still provides a nice motivation and discussion

of the problems with paradoxes that were manifest at the time and that they

tried to circumvent with their system. A. Church’s simple theory of types is a

simpler system that uses type theory to define higher order logic; the article

(Church, 1940) is still very readable.

388 Further perspectives

Interest in type theory has grown in the past decades, both in university

curricula and in circles of researchers (computer scientists, logicians, mathe-

maticians). In this section we make no attempt at giving a complete historic

overview. Instead we mention the important ideas and point to further litera-

ture in which these ideas are developed and discussed in more detail.

The Automath system by N.G. de Bruijn and his co-workers was the first to

use type theory for formalising mathematics. The book (Nederpelt et al., 1994)

is an overview of the scientific work, including descriptions of formalisations.

See also the Automath Archive (2004). The article (Dechesne & Nederpelt,

2012) explores de Bruijn’s motivation for the development of Automath. The

paper (Geuvers & Nederpelt, 2013) gives a high-level introduction to the ideas

of de Bruijn and the concepts of Automath.

Around the same time as de Bruijn, P. Martin Löf developed his intuitionistic

theory of types, which was originally intended to give a constructive account of

the foundations of mathematics, in the style of L.E.J. Brouwer and A. Heyting

(see Troelstra & van Dalen, 1988), but it also turned out to serve as a logi-

cal framework that incorporates programming and proving. There have been

various implementations of Martin-Löf type theory (Martin-Löf, 1980) devel-

oped in Göteborg (Magnusson & Nordström, 1994), as ALF and Agda, and in

Ithaca (NY), as the Nuprl proof development system of R.L. Constable and

his team (Constable et al., 1986). The notes from Padova (Martin-Löf, 1980)

give a good introduction into the system, while Nordström et al. (1990) also

provide various examples from programming.

A third source of influential research in type theory is the work of J.-Y. Gi-

rard (Girard, 1972), from the beginning of the 1970s, who introduced the con-

cept of impredicativity into type theory, which enables various data types (like

the Church numerals) and logical connectives (like ∧ and ∨) to be definable

inside the type system. A good reference text is Proofs and Types (Girard et

al., 1989).

Research in type theory has gained momentum by the efforts of various re-

search groups to build interactive proof assistants based on type theory. As we

have already remarked, λD has, as a type theory, most resemblances with the

Calculus of Constructions, first implemented as a proof assistant by Th. Co-

quand and G. Huet (Coquand & Huet, 1988). The mentioned paper is still a

good reference and well readable. Later, the Calculus of Constructions was ex-

tended with inductive types, obtaining the Calculus of Inductive Constructions,

CIC, which is also implemented in the proof assistant Coq (Coq Development

Team, 2012). There is not really a standard reference for the rules of CIC,

but the introductory book to Coq (Bertot & Castéran, 2004) provides a very

comprehensible overview of Coq and CIC.

16.5 Further reading 389

Another system is Lego (Pollack, 1994; Pollack et al., 2001), implemented

by R. Pollack (Edinburgh) and based on the so-called Extended Calculus of

Constructions of Z. Luo (Luo, 1990). Coq and Lego originate from the end of

the 1980s.

We also mention the Logical Framework implementation, based on the type

theory λP in Edinburgh (Harper et al., 1987; see also Pfenning, 2002).

In the last decades of the twentieth century, types have also obtained a

prominent role in programming language research, especially due to the pio-

neering work of R. Milner (Milner, 1978), J.R. Hindley (Hindley, 1969) and

J.C. Reynolds (Reynolds, 1974) in the 1970s, who firmly based functional pro-

gramming languages on typed λ-calculus. Milner also developed the so-called

LCF approach to theorem proving (Milner, 1972), which uses – basically – an

abstract data type approach: there is an abstract data type ‘theorem’ and the

only way to create an object of this type is by using the rules of logic. The

proof assistants from the HOL family (HOL system, 1988; Gordon & Melham,

1993; Gordon, 2000) and the interactive theorem prover Isabelle (Paulson,

1993; Nipkow et al., 2002) are based on this approach and also originate from

the 1980s.

There are various other proof assistants, some of them based purely on type

theory, others based on higher order logic (which uses type theory as its lan-

guage) and others based on set theory. Apart from Coq, the proof assistants

closest to using a type theory like λD are Agda (Bove et al., 2009), Matita

(Asperti et al., 2011) and Nuprl (Constable et al., 1986). For a more general

account of proof assistants (with a focus on the ones using dependent types),

presenting general ideas and comparison of approaches, see Barendregt & Geu-

vers (2001) and Geuvers (2009). Wiedijk (2006) also gives a nice comparison

of proof assistants by showing how the irrationality of
√
2 can be proved in 17

different systems. Interesting overview papers can be found in the Special Issue

on Formal Proof published in the Notices of the American Mathematical So-

ciety (AMS, 2008), with contributions of T.C. Hales, G. Gonthier, J. Harrison

and F. Wiedijk.

Type theory is still developing, both within computer science (theory of

programming languages) and within mathematics. Also on the level of non-

dependent type theory, there is still a lot of research going on (see e.g. Baren-

dregt et al., 2013).

The focus of the present book is the formalisation of mathematics. A series

of papers on this matter can be found in the Journal of Automated Reasoning:

Special Issue on Formal Mathematics for Mathematicians (JAR, 2013). In this

direction, the latest development is ‘Homotopy Type Theory’, a field founded

by V.A. Voevodsky, who interprets objects a, b : A as points in a space and a

390 Further perspectives

proof of the identity a =A b as a path from a to b. This gives a new perspective

on formalising mathematics and on the foundations of mathematics, the so-

called ‘Univalent Foundations’. A good reference is the Univalent Foundations

Program (2013). See also the introductory lecture of Voevodsky (2014).

We observe that nowadays type theory is a mature and respected topic, and

that a lot of research is going on in the field, ranging from foundational studies

to applications in computer science, proof assistants and mathematical logic.

Appendix A

Logic in λD

A.1 Constructive propositional logic

Implication (cf. Figure 11.5)

A,B : ∗p
(1) ⇒ (A,B) := A→ B : ∗p

Notation: A⇒ B for ⇒ (A,B)

u : A→ B

(2) ⇒ -in(A,B, u) := u : A⇒ B (see (2)∗)

u : A⇒ B | v : A

(3) ⇒ -el(A,B, u, v) := u v : B

(2)∗ Strategy for ⇒-introduction:

...

x : A
...

a(. . . , x) := . . . : B

b(. . .) := λx : A . a(. . . , x) : A⇒ B

392 Logic in λD

Absurdity (cf. Figure 11.6)

(4) ⊥ := ΠA : ∗p . A : ∗
A : ∗p
u : A | v : A⇒ ⊥

(5) ⊥-in(A, u, v) := v u : ⊥
u : ⊥

(6) ⊥-el(A, u) := uA : A

Negation (cf. Figure 11.7)

A : ∗p
(7) ¬(A) := A⇒ ⊥ : ∗p

Notation: ¬A for ¬(A)
u : A→ ⊥

(8) ¬-in(A, u) := u : ¬A
u : ¬A | v : A

(9) ¬-el(A, u, v) := u v : ⊥

Conjunction (cf. Figure 11.10)

A,B : ∗p
(10) ∧(A,B) := ΠC : ∗p . (A⇒ B ⇒ C)⇒ C : ∗p

Notation: A ∧B for ∧ (A,B)

u : A | v : B

(11) ∧-in(A,B, u, v) := λC : ∗p . λw : A⇒ B ⇒ C . w u v : A ∧B

u : A ∧B

(12) ∧-el1(A,B, u) := uA (λv : A . λw : B . v) : A

(13) ∧-el2(A,B, u) := uB (λv : A . λw : B . w) : B

A.2 Classical propositional logic 393

Disjunction (cf. Figure 11.11)

A,B : ∗p
(14) ∨(A,B) := ΠC : ∗ . (A⇒ C)⇒ (B ⇒ C)⇒ C : ∗p

Notation: A ∨B for ∨ (A,B)

u : A

(15) ∨-in1(A,B, u) := λC : ∗p . λv : A⇒C . λw : B⇒C . v u : A ∨B

u : B

(16) ∨-in2(A,B, u) := λC : ∗p . λv : A⇒C . λw : B⇒C . w u : A ∨B

C : ∗p
u : A ∨B | v : A⇒ C | w : B ⇒ C

(17) ∨-el(A,B,C, u, v, w) := uC v w : C

Biimplication (cf. Figure 11.12)

A,B : ∗p
(18) ⇔ (A,B) := (A⇒ B) ∧ (B ⇒ A) : ∗p

Notation: A⇔ B for ⇔ (A,B)

u : A⇒ B | v : B ⇒ A

(19) ⇔ -in(A,B, u, v) := ∧-in(A⇒ B,B ⇒ A, u, v) : A⇔ B

u : A⇔ B

(20) ⇔ -el1(A,B, u) := ∧-el1(A⇒ B,B ⇒ A, u) : A⇒ B

(21) ⇔ -el2(A,B, u) := ∧-el2(A⇒ B,B ⇒ A, u) : B ⇒ A

A.2 Classical propositional logic

Excluded Third axiom (cf. Figure 11.16)

A : ∗p
(22) exc-thrd(A) := ⊥⊥ : A ∨ ¬A

394 Logic in λD

Double Negation (cf. Figure 11.17)

A : ∗p
u : A

(23) ¬¬-in(A, u) := λv : ¬A . v u : ¬¬A
(24) doub-neg(A) := . . . see Figure 11.16 . . . : ¬¬A⇒ A

u : ¬¬A
(25) ¬¬-el(A, u) := doub-neg(A) u : A

Alternatives for Disjunction (cf. Figure 11.19)

A,B : ∗p
u : ¬A⇒ B

(26) ∨-in-alt1(A,B, u) := a10[Fig. 11.18](A,B, u) : A ∨B (see (26)∗)

v : ¬B ⇒ A

(27) ∨-in-alt2(A,B, v) := . . . see Figure 11.19 . . . : A ∨B

u : A ∨B

v : ¬A
(28) ∨-el -alt1(A,B, u, v) := a5[Fig. 11.13](A,B, u, v) : B

w : ¬B
(29) ∨-el -alt2(A,B, u, w) := . . . see Figure 11.19 . . . : A

(26)∗ Strategy for alternative ∨-introduction, first version:

...

x : ¬A
...

a(. . . , x) := . . . : B

b(. . .) := ∨-in-alt1(A,B, λx : ¬A . a(. . . , x)) : A ∨B

A.3 Constructive predicate logic 395

A.3 Constructive predicate logic

Universal Quantification (cf. Figure 11.22)

S : ∗s | P : S → ∗p
(30) ∀(S, P) := Πx : S . P x : ∗p

Notation: ∀x : S . P x for ∀(S, P)

u : Πx : S . P x

(31) ∀-in(S, P, u) := u : ∀x : S . P x (see (31)∗)

u : ∀x : S . P x | v : S

(32) ∀-el(S, P, u, v) := u v : P v

(31)∗ Strategy for ∀-introduction:

...

x : S
...

a(. . . , x) := . . . : P x

b(. . .) := λx : S . a(. . . , x) : ∀x : S . P x

Existential Quantification (cf. Figure 11.23)

S : ∗s | P : S → ∗p
(33) ∃(S, P) := ΠA : ∗p . ((∀x : S . (P x⇒ A))⇒ A) : ∗p

Notation: ∃x : S . P x for ∃(S, P)

u : S | v : P u

(34) ∃-in(S, P, u, v) := λA : ∗p . λw : (∀x : S . (P x⇒ A)) . w u v :

∃x : S . P x

u : ∃x : S . P x | A : ∗p | v : ∀x : S . (P x⇒ A)

(35) ∃-el(S, P, u,A, v) := uAv : A (see (35)∗)

396 Logic in λD

(35)∗ Strategy for ∃-elimination:

...

a(. . .) := . . . : ∃x : S . P x

x : S

u : P x
...

b(. . . , x, u) := . . . : A

c(. . . , x) := λu : P x . b(. . . , x, u) : P x⇒ A

d(. . .) := λx : S . c(. . . , x) : ∀x : S . (P x⇒ A)

e(. . .) := ∃-el(S, P, a(. . .), A, d(. . .)) : A

A.4 Classical predicate logic

Alternatives for Existential Quantification (cf. Figure 11.28)

S : ∗s | P : S → ∗p
u : ¬∀x : S . ¬(P x)

(36) ∃-in-alt(S, P, u) := a4[Fig. 11.27](S, P, u) : ∃x : S . P x

u : ∃x : S . P x

(37) ∃-el -alt(S, P, u) := a2[Fig. 11.25](S, P, u) : ¬∀x : S . ¬(P x)

Appendix B

Arithmetical axioms, definitions and lemmas

Below we list axioms, definitions and lemmas concerning arithmetic in Z and

its subset N, as stated in Chapter 14.

Axiom (Fig. 14.3)

s is a bijection (ax -int1).

Lemma (Fig. 14.3)

(a) s is an injection (inj -suc),

(b) s is a surjection (surj -suc).

Lemma (Fig. 14.3)

(a) ∀y : Z . (s(p y) = y) (s-p-ann),

(b) ∀y : Z . (p(s y) = y) (p-s-ann).

Axiom (Fig. 14.4)

For all P : Z→ ∗p, [P 0∧ ∀x : Z . (P x⇒(P (s x)∧P (p x)))]⇒ ∀x : Z . P x

(ax -int2, symmetric induction over Z).

Definition (Fig. 14.5)

(a) For P : Z→ ∗p, nat-cond(P) := P 0 ∧ ∀x : Z . (P x⇒ P (s x)),

(b) N := λx : Z . ΠP : Z→ ∗p . (nat-cond(P)⇒ P x).

Lemma (Fig. 14.5)

(a) 0 ε N (zero-prop),

(b) ∀x : Z . (x ε N⇒ s x ε N) (clos-prop),

(c) ΠQ : Z→ ∗p . (nat-cond(Q)⇒ (N ⊆ Q)) (nat-smallest).

Axiom (Fig. 14.6)

¬(p 0 ε N) (ax -int3).

Lemma (Fig. 14.7)

(a) ∀x : Z . (x ε N⇒ ¬(sx = 0)) (nat-prop1),

(b) ∀x, y : Z . (x ε N⇒ (y ε N⇒ (s x = s y ⇒ x = y))) (nat-prop2).

398 Arithmetical axioms, definitions and lemmas

Lemma (Fig. 14.8)

For all P : Z→ ∗p,
[P 0 ∧ ∀x : Z . (x ε N⇒ (P x⇒ P (s x)))]⇒ ∀x : Z . (x ε N⇒ P x)

(nat-ind , induction over N).

Lemma 14.3.1

∀x : Z . (x ε N⇒ (x = 0 ∨ p x ε N)).

Definition (Fig. 14.9) For x : Z:

(a) pos(x) := p x ε N,

(b) neg(x) := ¬(x ∈ N).

Lemma (Fig. 14.9)

(a) ∀x : Z . (x ε N⇒ (x = 0 ∨ p x ε N)) (nat-split),

(b) ∀x : Z . (¬(x ε N) ∨ x = 0 ∨ p x ε N) (nat-split-alt),

(c) ∀x : Z . (neg(x) ∨ x = 0 ∨ pos(x)) (trip).

Lemma 14.3.2

(a) ∀x : Z . (pos(s x)⇔ x ε N),

(b) ∀x : Z . (pos(s x)⇔ (x = 0 ∨ pos(x))),

(c) ∀x : Z . (neg(p x)⇔ (x = 0 ∨ neg(x))).

Lemma 14.3.3

(a) ∀x : Z . (pos(x) ⇔ x �= 0 ∧ ¬neg(x)),
(b) ∀x : Z . (neg(x) ⇔ x �= 0 ∧ ¬pos(x)),
(c) ∀x : Z . (x = 0 ⇔ ¬pos(x) ∧ ¬neg(x)).
Lemma (Fig. 14.12)

(a) ∀x : Z . (x+ 0 = x) (plus-i),

(b) ∀x, y : Z . (x+ s y = s(x+ y)) (plus-ii),

(c) ∀x, y : Z . (x+ p y = p(x+ y)) (plus-iii).

Lemma 14.6.1

(a) ∀x : Z . (0 + x = x) (plus-i -alt , Fig. 14.14),

(b) ∀x, y : Z . (s x+ y = s(x+ y)) (plus-ii -alt , Fig. 14.14),

(c) ∀x, y : Z . (p x+ y = p(x+ y)) (plus-iii -alt , Fig. 14.14).

Lemma 14.6.2

∀x, y : Z . (x+ y = y + x) (comm-add , Fig. 14.14).

Lemma 14.6.3

(a) ∀x, y : Z . (p x+ s y = x+ y),

(b) ∀x, y : Z . (s x+ p y = x+ y).

Lemma 14.6.4

∀x, y, z : Z . (x+ (y + z) = (x+ y) + z) (assoc-add , Fig. 14.14).

Lemma 14.6.5 (Cancellation Laws for addition)

(a) ∀x, y, z : Z . (x+ z = y + z ⇒ x = y) (right-canc-add , Fig. 14.14),

(b) ∀x, y, z : Z . (x+ y = x+ z ⇒ y = z) (left-canc-add , Fig. 14.14).

Arithmetical axioms, definitions and lemmas 399

Lemma 14.7.1 (Closure of N under addition)

∀x, y : Z . ((x ε N ∧ y ε N)⇒ x+ y ε N) (plus-clos-nat , Fig. 14.15).

Lemma 14.7.2 (Characterisation of negative numbers)

∀x : Z . (neg(x)⇔ ∃y : Z . (pos(y) ∧ x+ y = 0)).

Lemma 14.7.3 (Closure for negative integers)

∀x, y : Z . (neg(x) ∧ neg(y) ⇒ neg(x+ y)).

Lemma 14.8.1 (Uniqueness of difference)

∀x, y : Z . ∃1z : Z . (z + y = x) (uni -dif , Fig. 14.16).

Lemma 14.8.2

∀x, y : Z . ((x− y) + y = x) (subtr -prop1 , Fig. 14.16).

Lemma 14.8.3

∀x, y : Z . ((x+ y)− y = x) (subtr -prop2 , Fig. 14.16).

Lemma 14.8.4

∀x : Z . (x− x = 0).

Lemma 14.8.5

∀x : Z . (x− 0 = x).

Lemma 14.8.6

(a) ∀x, y : Z . (x− s y = p(x− y)),

(b) ∀x, y : Z . (x− p y = s(x− y)).

Lemma 14.8.7

(a) ∀x, y : Z . (s x− y = s(x− y)),

(b) ∀x, y : Z . (p x− y = p(x− y)).

Lemma 14.8.8

(a) ∀x : Z . (x+ 1 = s x),

(b) ∀x : Z . (x− 1 = p x).

Lemma 14.8.9 (Cancellation Laws for subtraction)

(a) ∀x, y, z : Z . (x− z = y − z ⇒ x = y),

(b) ∀x, y, z : Z . (x− y = x− z ⇒ y = z).

Lemma 14.8.10

(a) ∀x, y, z : Z . (x+ (y − z) = (x+ y)− z),

(b) ∀x, y, z : Z . (x− (y + z) = (x− y)− z),

(c) ∀x, y, z : Z . (x− (y − z) = (x− y) + z).

Lemma 14.8.11

∀x, y : Z . (pos(x− y)⇔ neg(y − x)).

Lemma 14.9.1

(a) ∀x : Z . ((−x) + x = 0),

(b) ∀x, y : Z . (x+ (−y) = x− y),

(c) ∀x, y : Z . (−(x+ y) = (−x)− y).

400 Arithmetical axioms, definitions and lemmas

Lemma 14.9.2

(a) −0 = 0,

(b) ∀x : Z . (−(−x) = x),

(c) ∀x : Z . (x = 0⇔ −x = 0).

Lemma 14.9.3

(a) ∀x : Z . (−(s x) = p(−x)),
(b) ∀x : Z . (−(p x) = s(−x)).
Lemma 14.9.4

(a) ∀x : Z . (pos(x)⇔ neg(−x)),
(b) ∀x : Z . (neg(x)⇔ pos(−x)).
Lemma 14.9.5

(a) ∀x : Z . (pos(x) ∨ pos(−x) ∨ x = 0),

(b) ∀x : Z . (neg(x) ∨ neg(−x) ∨ x = 0).

Lemma 14.9.6

∀x : Z . (−x ε N⇔ (neg(x) ∨ x = 0)).

Lemma 14.9.7

(a) ∀x : Z . (x ε N ∨ −x ε N),

(b) ∀x : Z . ((x ε N ∧ −x ε N)⇒ x = 0).

Definition (Fig. 14.18)

(a) ≤Z := λx : Z . λy : Z . (y − x ε N),

(b) <Z := λx : Z . λy : Z . (x ≤Z y ∧ x �=y).

Definition (Fig. 14.19)

(a) ≥Z := λx : Z . λy : Z . (y ≤Z x),

(b) >Z := λx : Z . λy : Z . (y <Z x).

Lemma 14.10.1

(a) ∀x : Z . (x ≤ x),

(b) ∀x, y, z : Z . ((x ≤ y ∧ y ≤ z)⇒ (x ≤ z)),

(c) ∀x, y, z : Z . ((x+ z ≤ y + z)⇔ (x ≤ y)),

(d) ∀x, y, z : Z . ((x < y ∧ y ≤ z)⇒ (x < z)),

(e) ∀x, y, z : Z . ((x+ z < y + z)⇔ (x < y)).

Lemma 14.10.2

(a) ∀x : Z . (pos(x)⇔ x > 0),

(b) ∀x : Z . (neg(x)⇔ x < 0),

(c) ∀x : Z . (x < 0 ∨ x = 0 ∨ x > 0).

Lemma 14.10.3

(a) ∀x, y : Z . (x < y ⇔ −y < −x),
(b) ∀x : Z . (x < 0⇔ −x > 0).

Arithmetical axioms, definitions and lemmas 401

Lemma (Fig. 14.22)

(a) ∀x : Z . (x · 0 = 0) (times-i),

(b) ∀x, y : Z . (x · s y = (x · y) + x) (times-ii),

(c) ∀x, y : Z . (x · p y = (x · y)− x) (times-iii).

Lemma 14.11.1

(a) ∀x : Z . (0 · x = 0),

(b) ∀x, y : Z . (s x · y = (x · y) + y),

(c) ∀x, y : Z . (p x · y = (x · y)− y).

Lemma 14.11.2 (Right Distributivity Laws for multiplication)

(a) ∀x, y, z : Z . (x · (y + z) = (x · y) + (x · z)),
(b) ∀x, y, z : Z . (x · (y − z) = (x · y)− (x · z)).
Lemma 14.11.3

(a) ∀x, y : Z . (x · y = y · x),
(b) ∀x, y, z : Z . ((x · y) · z = x · (y · z)).
Lemma 14.11.4

∀x, y : Z . (x · (−y) = −(x · y)).
Lemma 14.11.5

(a) ∀x, y : Z . ((x ε N ∧ y ε N)⇒ x · y ε N),

(b) ∀x, y : Z . ((x > 0 ∧ y > 0)⇒ x · y > 0),

(c) ∀x, y : Z . ((x > 0 ∧ y < 0)⇒ x · y < 0),

(d) ∀x, y : Z . ((x < 0 ∧ y < 0)⇒ x · y > 0).

Lemma 14.11.6

∀x, y : Z . (x · y = 0⇒ (x = 0 ∨ y = 0)).

Lemma 14.11.7 (Right Cancellation Law for multiplication)

∀x, y, z : Z . ((x · z = y · z ∧ z �= 0)⇒ x = y).

Definition (Fig. 14.23)

For m,n : Z,

div(m,n) := ∃q : Z . (m · q = n) (Notation: m |n).
Lemma 14.12.1

(a) ∀m : Z . (m | 0),
(b) 0 | 0,
(c) ∀n : Z . (0 |n ⇒ n = 0).

Lemma 14.12.2

(a) ∀l,m : Z . (l |m⇔ −l |m),

(b) ∀m : Z . (1 |m).

Lemma 14.12.3

(a) ∀m : Z . (m |m),

(b) ∀l,m, n : Z . ((l |m ∧m |n)⇒ l |n),
(c) ∀m,n : Z . ((m ε N ∧ n ε N)⇒ ((m |n ∧ n |m)⇒ m = n)).

402 Arithmetical axioms, definitions and lemmas

Definition (Fig. 14.23)

For k,m, n : Z,

(a) com-div(k,m, n) := k |m ∧ k |n,
(b) gcd -prop(k,m, n) :=

com-div(k,m, n) ∧ ∀l : Z . (com-div(l,m, n)⇒ l ≤ k),

(c) coprime(m,n) := ∀k : Z . ((com-div(k,m, n) ∧ k > 0)⇒ k = 1).

Lemma (Fig. 14.23)

For m,n : Z, s : m > 0, t : n > 0,

∃1k : Z . gcd -prop(k,m, n) (gcd -unq).

Definition (Fig. 14.23)

For m,n : Z, s : m > 0, t : n > 0,

gcd(m,n, s, t) := ι(Z, λk : Z . gcd -prop(k,m, n), gcd -unq(m,n, s, t)).

Lemma (Fig. 14.23)

For m,n : Z, s : m > 0, t : n > 0,

gcd(m,n, s, t) > 0 (gcd -pos).

Appendix C

Two complete example proofs in λD

In this appendix we repeat two λD-derivations, but now with the ‘hints’ having

been worked out. The examples give an impression of what one might come

across in this process.

C.1 Closure under addition in N

We start with a full proof of the Closure property of addition in N, correspond-

ing to Figure 14.15. In the logical steps, we apply the rules for natural deduction

in λD-format as summarised in Appendix A. We do not use the short versions

of the proof objects as explained in Sections 11.5 and 11.10. Notational con-

ventions such as infix notation are maintained in the λD-derivation, in order

to keep a good view on the mathematical background.

x : Z

(1) P (x) := λy : Z . (x+ y ε N) : Z→ ∗p
u : x ε N

(2) a2(x, u) := eq-sym(Z, x+ 0, x, plus-i(x)) : x = x+ 0

(3) a3(x, u) := eq-subs(Z,N, x, x+ 0, a2(x, u), u) : P (x) 0

y : Z

v : y ε N

w : P (x) y

(4) a4(x, u, y, v, w) := clos-prop (x+ y)w : s(x+ y) ε N

(5) a5(x, u, y, v, w) := eq-sym(Z, x+ s y, s(x+ y), plus-ii(x, y)) :

s(x+ y) = x+ s y

404 Two complete example proofs in λD

...

(6) a6(x, u, y, v, w) := eq-subs(Z,N, s(x+ y), x+ s y,

a5(x, u, y, v, w), a4(x, u, y, v, w)) :

P (x) (s y)

(6a) a6a(x, u, y, v) :=⇒ -in(P (x) y, P (x) (s y),

λw : P (x) y . a6(x, u, y, v, w)) :

P (x) y ⇒ P (x) (s y)

(6b) a6b(x, u, y) :=⇒ -in(y ε N, P (x) y ⇒ P (x) (s y),

λv : y ε N . a6a(x, u, y, v)) :

y ε N⇒ (P (x) y ⇒ P (x) (s y))

(7) a7(x, u) := ∀-in(Z, λy : Z . (y ε N⇒ (P (x) y ⇒ P (x) (s y))),

λy : Z . a6b(x, u, y)) :

∀y : Z . (y ε N⇒ (P (x) y ⇒ P (x)(s y)))

(7a) a7a(x, u) := ∧-in(P (x) 0, ∀y : Z . (y ε N⇒ (P (x) y ⇒ P (x)(s y))),

a3(x, u), a7(x, u)) :

P (x) 0 ∧ ∀y : Z . (y ε N⇒ (P (x) y ⇒ P (x)(s y)))

(8) a8(x, u) := nat-ind(P (x)) a7a(x, u) :

∀y : Z . (y ε N⇒ x+ y ε N)

(8a) a8a(x) := ⇒ -in(x ε N, ∀y : Z . (y ε N⇒ x+ y ε N),

λu : x ε N . a8(x, u)) :

x ε N⇒ ∀y : Z . (y ε N⇒ x+ y ε N)

(9) a9 := ∀-in(Z, λx : Z . (x ε N⇒ ∀y : Z . (y ε N⇒ x+ y ε N)),

λx : Z . a8a(x)) :

∀x : Z . (x ε N⇒ ∀y : Z . (y ε N⇒ x+ y ε N))

C.2 The Minimum Theorem 405

C.2 The Minimum Theorem

We now give a full proof of the Minimum Theorem (see Section 15.7). The

only incompletions that we tolerate are the justifications of ‘foreknowledge’

that were dealt with earlier in this book: we regard these results as proven

facts.

We start with a list in λD-format of the lemmas and exercises that are used

in the proof, leaving out the proof objects. Then we give an elaborated proof

of the Minimum Theorem, as a completion of Figures 15.16–15.18.

We use the notational conventions that we described and employed earlier,

for example in making free use of infix notations (cf. Chapter 12, in particu-

lar Remark 12.4.1) and by omitting unaltered parameter lists in part II (cf.

Section 11.7).

In the logical steps, we apply the rules for natural deduction in λD-format

as described in Chapter 11 and summarised in Appendix A. In order to save on

space, we often employ the ‘shorter’ version of the proof terms accompanying

these rules, as mentioned in Sections 11.5 and 11.10.

I. Foreknowledge: lemmas and exercises

A,B : ∗p
(1) Exerc-7.5.(b)(A,B) := . . . : ¬(A⇒ B) ⇒ (A ∧ ¬B)

S : ∗s
P,Q,R : S → ∗p

(2) Exerc-7.10 (S, P,Q,R) := . . . : (∀x : S . (P x⇒ Qx)) ⇒
(∀y : S . (P y ⇒ Ry)) ⇒ ∀z : S . (P z ⇒ (Qz ∧Rz))

P,Q : S → ∗p
(3) Exerc-7.13 (S, P,Q) := . . . :

(∃x : S . P x) ⇒ (∀y : S . (P y ⇒ Qy)) ⇒ ∃z : S . Q z

P : S → ∗p
(4) Fig-11.29 (S, P) := . . . : (¬∀x : S . P x)⇒ (∃y : S . ¬(P y))

(5) Lem-14.8.4 := . . . : ∀x : Z . (x− x = 0)

(6) Lem-14.8.6.(a) := . . . : ∀x, y : Z . (x− s y = p(x− y))

(7) Lem-14.10.1.(b) := . . . : ∀x, y, z : Z . ((x ≤ y ∧ y ≤ z)⇒ x ≤ z)

P : Z→ ∗p
(8) Exerc-14.18 (P) := . . . :

((∃l : Z . P l) ∧ ∀x : Z . (P x⇒ (P (s x) ∧ P (p x))))⇒ ∀x : Z . P x

(9) Exerc-14.23.(b) := . . . : ∀x : Z . (x > px)

(10) Exerc-14.29.(b) := . . . : ∀x, y : Z . (x < y ⇒ s x ≤ y)

406 Two complete example proofs in λD

II. A full proof of the Minimum Theorem

T : ps(Z) | u : T �= ∅Z | v : ∃x : Z . lw -bndZ(T, x)

(1) a1 := a6 [Fig.13.8](Z, T, u) : ∃n : Z . n ε T

l : Z | ass1 : lw -bndZ(T, l)

n : Z | ass2 : n ε T

(2) P := λx : Z . lw -bndZ(T, x) : Z→ ∗p
(3) a3 := ∃-in(Z, P, l, ass1) : ∃x : Z . P x

ass3 : ∀x : Z . (P x⇒ P (s x))

x : Z | ass4 : P x

(4) a4 := ∧-el1(p x ≤ x, p x �= x,Exerc-14.23.(b) x) : p x ≤ x

t : Z | ass5 : t ε T

(5) a5 := ass4 t ass5 : x ≤ t

(5a) a5a := ∧-in(p x ≤ x, x ≤ t, a4, a5) := p x ≤ x ∧ x ≤ t

(6) a6 := Lem-14.10.1.(b) (p x) x t a5a : p x ≤ t

(7) a7 := λt : Z . λ ass5 : (t ε T) . a6 : P (p x)

(8) a8 := λx : Z . λ ass4 : P x . a7 : ∀x : Z . (P x⇒ P (p x))

(9) a9 := Exerc-7.10 (Z, P, λx : Z . P (s x), λx : Z . P (p x)) ass3 a8 :

∀x : Z . (P x⇒ (P (s x) ∧ P (p x)))

(9a) a9a := ∧-in(∃x : Z . P x,

∀x : Z . (P x⇒ (P (s x) ∧ P (p x))), a3, a9) :

(∃x : Z . P x) ∧ ∀x : Z . (P x⇒ (P (s x) ∧ P (p x)))

(10) a10 := Exerc-14.18(P) a9a : ∀x : Z . P x

(11) a11 := a10 (s n) : P (s n)

(12) a12 := a11 n ass2 : s n ≤ n

(12a) a12a := eq-subs(Z, λx : Z . (x ε N), n− s n, p(n− n),

Lem-14.8.6.(a) nn, a12) : p(n− n) ε N

(12b) a12b := eq-subs(Z, λx : Z . (p x ε N), n− n, 0,

Lem-14.8.4 n, a12a) : p 0 ε N

(13) a13 := ax -int3 a12b : ⊥
(13a) a13a := λ ass3 : (∀x : Z . (P x⇒ P (s x))) . a13 :

¬∀x : Z . (P x⇒ P (s x))

C.2 The Minimum Theorem 407

(13b) a13b := Fig-11.29 (Z, λy : Z . (P y ⇒ P (s y))) a13a :

∃x : Z . ¬(P x⇒ P (s x))

(13c) a13c := λy : Z . Exerc-7.5.(b)(P y, P (s y)) :

∀y : Z . (¬(P y ⇒ P (s y))⇒ (P y ∧ ¬P (s y)))

(14) a14 := Exerc-7.13 (Z, λx : Z . ¬(P x⇒ P (s x)),

λz : Z . (P z ∧ ¬P (s z))) a13b a13c :

∃z : Z . (lw -bndZ(T, z) ∧ ¬lw -bndZ(T, s z))

z : Z | ass6 : (lw -bndZ(T, z) ∧ ¬lw -bndZ(T, s z))

(15) a15 := ∧-el1(lw -bndZ(T, z),¬lw -bndZ(T, s z), ass6) :

lw -bndZ(T, z)

(16) a16 := ∧-el2(lw -bndZ(T, z),¬lw -bndZ(T, s z), ass6) :

¬lw -bndZ(T, sz)

ass7 : ¬(z ε T)

y : Z | ass8 : y ε T

(17) a17 := a15 y ass8 : z ≤ y

ass9 : z = y

(18) a18 := eq-subs(Z, λx : Z . ¬(x ε T), z, y, ass9, ass7) ass8 :

⊥
(19) a19 := λ ass9 : (z = y) . a18 : ¬(z = y)

(20) a20 := ∧-in(z ≤ y,¬(z = y), a17, a19) : z < y

(21) a21 := Exerc-14.29.(b) z y a20 : s z ≤ y

(22) a22 := λy : Z . λ ass8 : (y ε T) . a21 : lw -bndZ(T, s z)

(23) a23 := a16 a22 : ⊥
(24) a24 := ¬¬-el(z ε T, λ ass7 : ¬(z ε T) . a23) : z ε T

(25) a25 := ∧-in(z ε T, lw -bndZ(T, z), a24, a15) : leastZ(T, z)

(26) a26 := ∃-in(Z, λy : Z . leastZ(T, y), z, a25) :

∃m : Z . leastZ(T,m)

(27) a27 := ∃-el(Z, λx : Z . (lw -bndZ(T, z) ∧ ¬lw -bndZ(T, sz)), a14,

∃m : Z . leastZ(T,m),

λz : Z . λ ass6 : (lw -bndZ(T, z) ∧ ¬lw -bndZ(T, sz)) . a26) :

∃m : Z . leastZ(T,m)

408 Two complete example proofs in λD

(28) a28 := ∃-el(Z, λx : Z . (x ε T), a1, ∃m : Z . leastZ(T,m),

λn : Z . λ ass2 : (n ε T) . a27) :

∃m : Z . leastZ(T,m)

(29) min-the(T, u, v) := ∃-el(Z, λx : Z . lw -bndZ(T, x), v,

∃m : Z . leastZ(T,m), λl : Z . λ ass1 : lw -bndZ(T, l) . a28) :

∃m : Z . leastZ(T,m)

Appendix D

Derivation rules for λD

(sort) ∅ ; ∅ � ∗ : �

(var)
Δ ; Γ � A : s

Δ ; Γ, x : A � x : A
if x �∈ Γ

(weak)
Δ ; Γ � A : B Δ ; Γ � C : s

Δ ; Γ, x : C � A : B
if x �∈ Γ

(form)
Δ ; Γ � A : s1 Δ ; Γ, x : A � B : s2

Δ ; Γ � Πx : A . B : s2

(appl)
Δ ; Γ � M : Πx : A . B Δ ; Γ � N : A

Δ ; Γ � MN : B[x := N]

(abst)
Δ ; Γ, x : A � M : B Δ ; Γ � Πx : A . B : s

Δ ; Γ � λx : A . M : Πx : A . B

(conv)
Δ ; Γ � A : B Δ ; Γ � B′ : s

Δ ; Γ � A : B′ if B
Δ
=β B′

(def)
Δ ; Γ � K : L Δ ; x : A � M : N

Δ , x : A � a(x) := M : N ; Γ � K : L
if a �∈ Δ

(def -prim)
Δ ; Γ � K : L Δ ; x : A � N : s

Δ , x : A � a(x) := ⊥⊥ : N ; Γ � K : L
if a �∈ Δ

(inst)
Δ ; Γ � ∗ : � Δ; Γ � U : A[x := U]

Δ ; Γ � a(U) : N [x := U]
if x : A � a(x) := M : N ∈ Δ

(inst-prim)
Δ ; Γ � ∗ : � Δ; Γ � U : A[x := U]

Δ ; Γ � a(U) : N [x := U]
if x : A � a(x) :=⊥⊥ :N ∈ Δ

Derived rule:

(par)
Δ ; x : A � M : N

Δ,D ; x : A � a(x) : N
if D ≡ x : A � a(x) := M : N and a �∈ Δ

References

AMS, 2008: Notices of the American Mathematical Society , 55 (11).

Arthan, R.D., 2013: ProofPower,
www.lemma-one.com/ProofPower/index/index.html .

Asperti, A., Ricciotti, W., Sacerdoti Coen, C. and Tassi, E., 2011: The Matita
Interactive Theorem Prover. In Bjørner, N. and Sofronie-Stokkermans, V., eds,
Automated Deduction: CADE 23 , 23rd International Conference on Automated
Deduction, Wroclaw, Poland, 31 July – 5 August 2011, pp. 64–69, Springer. See
also matita.cs.unibo.it/.

Automath Archive, 2004: Home Page, www.win.tue.nl/automath/.

Barendregt, H.P., 1981: The Lambda Calculus: Its Syntax and Semantics ,
North-Holland Publishing Company.

Barendregt, H.P., 1992: Lambda calculi with types. In Abramski, S., Gabbay, D. and
Maibaum, T., eds, Handbook of Logic in Computer Science, pp. 117–309,
Oxford University Press.

Barendregt, H. and Geuvers, H., 2001: Proof assistants using dependent type
systems. In Robinson, A. and Voronkov, A., eds, Handbook of Automated
Reasoning , Vol. 2, pp. 1149–1238, Elsevier.

Barendregt, H.P., Dekkers, W. and Statman, R., eds, 2013: Lambda Calculus with
Types , Cambridge University Press.

van Benthem Jutting, L.S., 1977: Checking Landau’s ‘Grundlagen’ in the
AUTOMATH system, PhD thesis, Eindhoven University of Technology. See also
Nederpelt et al., 1994, pp. 763–780.

van Benthem Jutting, L.S., 1993: Typing in Pure Type Systems, Information and
Computation, 105 (1), pp. 30–41.

van Benthem Jutting, L.S., McKinna, J. and Pollack, R., 1994: Checking algorithms
for Pure Type Systems. In Barendregt, H.P. and Nipkow, T., eds, Types for
Proofs and Programs , International Workshop TYPES’93, Nijmegen, The
Netherlands, pp. 19–61, Springer.

Bertot, Y. and Castéran, P., 2004: Interactive Theorem Proving and Program
Development: Coq’Art: the Calculus of Inductive Constructions, Springer.

Böhm, C. and Berarducci, A., 1985: Automatic synthesis of typed Λ-programs on
term algebras, Theoretical Computer Science, 39, pp. 135–154.

Bove, A., Dybjer, P. and Norell, U., 2009: A brief overview of Agda: a functional
language with dependent types. In Ierghofer, S., Nipkow, T., Irban, C. and
Wenzel, M., eds, Proceedings of the 22nd International Conference on Theorem

412 References

Proving in Higher Order Logics , TPHOLs 2009, Munich, Germany, 17–20
August 2009, pp. 73–78, Springer. See also wiki.portal.chalmers.se/agda/.

de Bruijn, N.G., 1968: Example of a text written in Automath. In Nederpelt et al.,
1994, pp. 687–700.

de Bruijn, N.G., 1970: The mathematical language AUTOMATH, its usage and
some of its extensions. In Laudet, M., Lacombe, D., Nolin, L. and
Schützenberger, M., eds, Symposium on Automatic Demonstration, Versailles,
pp. 29–61, Springer. Reprinted in Nederpelt et al., 1994, pp. 73–100.

de Bruijn, N.G., 1972: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church–Rosser
Theorem, Indagationes Mathematicae, 34 (5), pp. 381–392, Elsevier.

de Bruijn, N.G., 1980: A survey of the project AUTOMATH . In Seldin & Hindley,
1980, pp. 579–606.

Cantor, G., 1874: Über eine Eigenschaft des Inbegriffes aller reellen algebraischen
Zahlen, Journal für die Reine und Angewandte Mathematik , 77, pp. 258–262,
Georg Reimer Verlag. English translation in Ewald, W., ed., From Kant to
Hilbert: A Source Book in the Foundations of Mathematics , 1996, pp. 840–843,
Clarendon Press.

Cardone, F. and Hindley, J.R., 2009: Lambda-calculus and combinators in the 20th
century. In Gabbay, D.M. and Woods, J., eds, Handbook of the History of Logic,
Vol. 5, pp. 723–817, Elsevier.

Church, A., 1933: A set of postulates for the foundation of logic, Annals of
Mathematics , 33, pp. 346–366, and 34, pp. 839–864.

Church, A., 1935: An unsolvable problem of elementary number theory, preliminary
report (abstract), Bulletin of the American Mathematical Society , 41,
pp. 332–333.

Church, A., 1936a: A note on the Entscheidungsproblem, Journal of Symbolic Logic,
1, pp. 40–41.

Church, A., 1936b: An unsolvable problem of elementary number theory, American
Journal of Mathematics , 58, pp. 345–363.

Church, A., 1940: A formulation of the simple theory of types, Journal of Symbolic
Logic, 5, pp. 56–68.

Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F.,
Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P.,
Sasaki, J.T. and Smith, S.F., 1986: Implementing Mathematics with the Nuprl
Development System, Prentice-Hall.

Coq Development Team, 2012: The Coq Proof Assistant, Reference Manual , Version
8.4. See coq.inria.fr/refman/.

Coquand, Th., 1985: Une théorie des constructions , PhD thesis, University of Paris
VII.

Coquand, Th. and Huet, G., 1988: The Calculus of Constructions, Information and
Computation, 76, pp. 95–120.

Curry, H.B., 1930: Grundlagen der Kombinatorischen Logik, American Journal of
Mathematics , 52 (3), pp. 509–536, and (4), pp. 789–834.

Curry, H.B., 1969: Modified basic functionality in combinatory logic, Dialectica, 23,
pp. 83–92.

Curry, H.B. and Feys, R., 1958: Combinatory Logic, Vol. 1, North-Holland
Publishing Company.

van Daalen, D.T., 1973: A description of AUTOMATH and some aspects of its
language theory. In Braffort, P., ed., Proceedings of the Symposium APLASM ,
Orsay, France. Reprinted in Nederpelt et al., 1994, pp. 101–126.

References 413

van Dalen, D., 1994: Logic and Structure, 3rd augmented edition, Springer.
van Dalen, D., Doets, H.C. and de Swart, H., 1978: Sets: Naive, Axiomatic and

Applied , Pergamon Press.
Damas, L. and Milner, R., 1982: Principal type-schemes for functional programs. In

DeMillo, R.A., ed., POPL ’82: Proceedings of the 9th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 207–212, ACM.

Davis, M., ed., 1965: The Undecidable, Basic Papers on Undecidable Propositions,
Unsolvable Problems and Computable Functions, Raven Press.

Dechesne, F. and Nederpelt, R.P., 2012: N.G. de Bruijn (1918–2012) and his road to
Automath, the earliest proof checker, The Mathematical Intelligencer , 34 (4),
pp. 4–11.

Fitch, F., 1952: Symbolic Logic, An Introduction, The Ronald Press Company.
Frege, F.L.G., 1893: Grundgesetze der Arithmetik , Verlag Hermann Pohle. Facsimile

reprints in 1962 and 1998, Georg Olms Verlag.
Gandy, R.O., 1980: An early proof of normalization by A.M. Turing . In Seldin &

Hindley, 1980, pp. 453–455, Academic Press.
Gentzen, G., 1934/5: Untersuchungen über das logische Schliessen, I, Mathematische

Zeitschrift , 39 (2).
Geuvers, J.H., 1995: A short and flexible proof of Strong Normalization for the

Calculus of Constructions. In Dybjer, P., Nordström, B. and Smith, J., eds,
Types for Proofs and Programs , International Workshop TYPES ’94, Bastad,
Sweden, pp. 14–38, Springer.

Geuvers, J.H., 2001: Induction is not derivable in second order dependent type
theory. In Abramsky, S., ed., Proceedings of Typed Lambda Calculus and
Applications , TLCA 2001, Krakow, Poland, May 2001, pp. 166–181, Springer.

Geuvers, J.H., 2009: Proof assistants: history, ideas and future, Sadahana Journal,
Academy Proceedings in Engineering Sciences, Indian Academy of Sciences , 34
(1), Special Issue on Interactive Theorem Proving and Proof Checking, pp. 3–25.

Geuvers, J.H., 2013: Inconsistency of ‘Automath powersets’ in impredicative type
theory , Short note, www.cs.ru.nl/∼herman/PUBS/InconsAutSetTh.pdf .

Geuvers, J.H., 2014a: Properties of a lambda calculus with definitions, Short note,
www.cs.ru.nl/∼herman/PUBS/PropLamCDef.pdf .

Geuvers, J.H., 2014b: A formalization of the integers , Short note,
www.cs.ru.nl/∼herman/PUBS/FormInt.pdf .

Geuvers, J.H. and Nederpelt, R.P., 1994: Typed λ-calculus. In de Swart, H.C.M.,
Logic: Mathematics, Language, Computer Science and Philosophy , Vol. 2,
Section 33, pp. 168–199, Peter Lang GmbH.

Geuvers, J.H. and Nederpelt, R.P., 2004: Rewriting for Fitch style natural
deductions. In van Oostrom, V., ed., Proceedings of RTA 2004 , 15th
International Conference on Rewriting Techniques and Applications, Aachen,
Germany, pp. 134–154, Springer.

Geuvers, J.H. and Nederpelt, R.P., 2013: N.G. de Bruijn’s contribution to the
formalization of mathematics, Indagationes Mathematicae, 24, pp. 1034–1049.

Girard, J.-Y., 1971: Une extension de l’interprétation de Gödel à l’analyse et son
application à l’élimination des coupures dans l’analyse et la théorie des types.
In Fenstad, J.E., ed., Proceedings of the Second Scandinavian Logic Symposium,
pp. 63–92, North-Holland Publishing Company.

Girard, J.-Y., 1972: Interprétation fonctionelle et élimination des coupures dans
l’arithmétique d’ordre supérieur , PhD thesis, Université Paris VII.

Girard, J.-Y., 1986: The system F of variable types, fifteen years later, Theoretical
Computer Science, 45, pp. 159–192.

414 References

Girard, J.-Y., Lafont, Y. and Taylor, P., 1989: Proofs and Types, Cambridge
University Press.

Gödel, K., 1932: Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme, I, Monatshefte für Mathematik und Physik , 38,
pp. 173–198. Also in van Heijenoort, 1967.

Gonthier, G., 2005: A Computer-checked Proof of the Four Colour Theorem,
research.microsoft.com/en-us/people/gonthier/4colproof.pdf .

Gonthier, G., 2008: Formal proof: the Four Color Theorem, Notices of the American
Mathematical Society , 55 (11), pp. 1370–1381.

Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le
Roux, S., Mahboubi, A., O’Connor, R., Ould Biha, S., Pasca, I., Rideau, L.,
Solovyev, A., Tassi, E. and Théry, L., 2013: A machine-checked proof of the odd
order theorem. In Blazy, S., Paulin-Mohring, C. and Pichardie, D., eds,
Interactive Theorem Proving: 4th International Conference, ITP 2013, 22–26
July 2013, Rennes, France, pp. 163–179, Springer.

Gordon, M.J.C., 2000: From LCF to HOL: a short history. In Plotkin, G., Stirling,
C.P. and Tofte, M., eds, Proof, Language, and Interaction, Essays in Honour of
Robin Milner (Foundations of Computing), pp. 169–185, MIT Press.

Gordon, M.J.C. and Melham, T.F., eds, 1993: Introduction to HOL: A
Theorem-Proving Environment for Higher-Order Logic, Cambridge University
Press.

Gupta, A., 2014: Definitions. In Zalta, E.N., ed., The Stanford Encyclopedia of
Philosophy ,
plato.stanford.edu/archives/spr2014/entries/definitions/.

Hales, T.C., 2006: Introduction to the Flyspeck Project , Dagstuhl Seminar
Proceedings 05021, Mathematics, Algorithms, Proofs,
pdf.aminer.org/000/137/477/
introduction to the flyspeck project.pdf .

Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S. and Zumkeller, R.,
2010: A revision of the proof of the Kepler conjecture, Discrete &
Computational Geometry, 44 (1), pp. 1–34.

Harper, R., Honsell, F. and Plotkin, G., 1987: A framework for defining logics. In
Proceedings of the Second Annual Symposium on Logic in Computer Science,
Ithaca, NY, pp. 194–204, IEEE.

van Heijenoort, J., 1967: From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931 , Harvard University Press.

Hilbert, D., 1927: The Foundations of Mathematics . Reproduced in van Heijenoort,
1967.

Hilbert, D. and Bernays, P., 1939: Grundlagen der Mathematik , Vol. 2, Springer.

Hindley, J.R., 1969: The principal type-scheme of an object in combinatory logic,
Transactions of the American Mathematical Society , 146, pp. 29–60.

Hindley, J.R., 1997: Basic Simple Type Theory , Cambridge University Press.

Hindley, J.R. and Seldin, J.P., 2008: Lambda-Calculus and Combinators, an
Introduction, Cambridge University Press.

HOL system, 1988: www.cl.cam.ac.uk/research/hvg/HOL/.

Howard, W., 1980: The formulas-as-types notion of construction. In Seldin &
Hindley, 1980, pp. 479–490.

JAR, 2013: Journal of Automated Reasoning , 50 (2), Special Issue: Formal
Mathematics for Mathematicians.

References 415

Jaśkowski, S., 1934: On the rules of suppositions in formal logic, Studia Logica, 1,
pp. 5–32. Reprinted in McCall, S., ed., Polish Logic 1920–1939 , Oxford
University Press, 1967, pp. 232–258.

Jech, Th., 2003: Set Theory: The Third Millennium Edition, revised and expanded
edition, Springer.

Jones, R.B., 2013: 42 Famous Theorems in ProofPower,
www.rbjones.com/rbjpub/pp/rda001.html .

Kamareddine, F.D., Laan, T.D.L. and Nederpelt, R.P., 2002: Types in logic and
mathematics before 1940, The Bulletin of Symbolic Logic, 8 (2), pp. 185–245.
Reprinted as ‘A history of types’ in Gabbay, D.M., Pelletier, F.J. and Woods,
J., eds, Handbook of the History of Logic, Vol. 11, pp. 451–511, Elsevier, 2012.

Kamareddine, F.D., Laan, T.D.L. and Nederpelt, R.P., 2003: De Bruijn’s Automath
and Pure Type Systems. In Kamareddine, F.D., ed., Thirty Five Years of
Automating Mathematics, pp. 71–123, Kluwer.

Kamareddine, F.D., Laan, T.D.L. and Nederpelt, R.P., 2004: A Modern Perspective
on Type Theory, From its Origins until Today , Kluwer.

Klein, G., 2013: Isabelle Top 100, www.cse.unsw.edu.au/∼kleing/top100/.
Kneale, W. and Kneale, M., 1962: The Development of Logic, Clarendon Press.
Kwiatek, R., 1990: Factorial and Newton coefficients, Journal of Formalized

Mathematics, 1 (5), pp. 887–890.
Lamport, L., 1985: LATEX: A Document Preparation System, Addison-Wesley

Publishing Company.
Landau, E., 1930: Grundlagen der Analysis , Akademische Verlagsgesellschaft; 3rd

edition, 1960, Chelsea Publishing Company.
Lewis, H. and Papadimitriou, C.H., 1981: Elements of the Theory of Computation,

Prentice-Hall.
Luo, Z., 1990: An Extended Calculus of Constructions , PhD thesis, University of

Edinburgh.
Luo, Z., 1994: Computation and Reasoning: A Type Theory for Computer Science,

Oxford University Press.
Madiot, J.-M., 2013: Formalizing 100 theorems in Coq,

perso.ens-lyon.fr/jeanmarie.madiot/coq100/.
Magnusson, L. and Nordström, B., 1994: The ALF proof editor and its proof engine.

In Barendregt, H. and Nipkow, T., eds, Types for Proofs and Programs ,
International Workshop TYPES’93, Nijmegen, The Netherlands, pp. 213–237,
Springer.

Margaris, A., 1961: Axioms for the integers, American Mathematical Monthly , 68
(5), pp. 441–444.

Martin-Löf, P., 1980: Intuitionistic Type Theory, Bibliopolis.
McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P. and Levin, M.I., 1985:

LISP 1.5 Programmer’s Manual , MIT Press.
Mendelson, E., 2009: Introduction to Mathematical Logic, 5th edition, Chapman and

Hall/CRC.
Milner, R., 1972: Logic for Computable Functions: Description of a Machine

Implementation, Technical Report, Stanford University.
Milner, R., 1978: A theory of type polymorphism in programming, Journal of

Computer and System Sciences , 17, pp. 348–375.
Mizar, 1989: Home Page, www.mizar.org .
Nederpelt, R.P., 1987: De Taal van de Wiskunde (The Language of Mathematics),

Versluys.

416 References

Nederpelt, R.P., Geuvers, J.H. and de Vrijer, R.C., eds, 1994: Selected Papers on
Automath, North-Holland, Elsevier.

Nederpelt, R.P. and Kamareddine, F.D., 2011: Logical Reasoning: A First Course,
2nd revised edition, College Publications.

Nipkow, T., Paulson, L.C. and Wenzel, M., 2002: Isabelle/HOL – A Proof Assistant
for Higher-Order Logic, Springer.

Nordström, B., Petersson, K. and Smith, J., 1990: Programming in Martin-Löf ’s
Type Theory, An Introduction, Oxford University Press.

Paulson, L.C., 1993: The Isabelle Reference Manual , Computer Laboratory,
University of Cambridge.

Peano, G., 1889: The Principles of Arithmetic, Presented by a New Method .
Reproduced in van Heijenoort, 1967, pp. 83–97.

Pelletier, F.J., 1999: A brief history of natural deduction, History and Philosophy of
Logic, 20, pp. 1–31.

Peyton Jones, S. et al., eds, 1998: Revised Report on Haskell 98 ,
haskell.org/onlinereport/.

Pfenning, F., 2002: Logical frameworks: a brief introduction. In Schwichtenberg, H.
and Steinbrüggen, R., eds, Proof and System-Reliability , Kluwer.

Pierce, B.C., 2002: Types and Programming Languages, MIT Press.
Pierce, B.C., 2004: Advanced Topics in Types and Programming Languages, MIT

Press.
Plotkin, G., 1977: LCF considered as a programming language, Theoretical

Computer Science, 5, pp. 223–255.
Pollack, R., 1994: The Theory of LEGO: A Proof Checker for the Extended Calculus

of Constructions , PhD thesis, University of Edinburgh.
Pollack, R. et al., 2001: The LEGO Proof Assistant,

www.dcs.ed.ac.uk/home/lego/.
Prawitz, D., 1965: Natural Deduction, A Proof-Theoretic Study , Almqvist & Wiksell.
PVS, 1992: pvs-wiki.csl.sri.com/index.php/Main Page.
Ramsey, F.P., 1926: The foundations of mathematics, Proceedings of the London

Mathematical Society , 2nd series, 25, pp. 338–384.
Reynolds, J.C., 1974: Towards a theory of type structure. In Robinet, B., ed.,

Programming Symposium, Proceedings Colloque sur la Programmation, Paris,
France, 9–11 April 1974, pp. 408–423, Springer.

Reynolds, J.C., 1984: Polymorphism is not set-theoretic. In Kahn, G., MacQueen,
D.B. and Plotkin, G., eds, Semantics of Data Types, International Symposium,
Sophia-Antipolis, France, 27–29 June 1984, pp. 145–156, Springer.

Robinson, J.A., 1965: A machine-oriented logic based on the resolution principle,
Journal of the ACM, 12 (1), pp. 23–41.

Russell, B., 1903: The Principles of Mathematics , Cambridge University Press.
Russell, B., 1905: On Denoting, Mind , 14, pp. 479–493.
Russell, B., 1908: Mathematical logic as based on the theory of types, American

Journal of Mathematics , 30, pp. 222–262.
Sanchis, L.E., 1967: Functionals defined by recursion, Notre Dame Journal of Formal

Logic, 8, pp. 161–174.
Schönfinkel, M., 1924: Über die Bausteine der mathematischen Logik . Translated as

‘On the building blocks of mathematical logic’ in van Heijenoort, 1967.
Schwichtenberg, H., 1976: Definierbare Funktionen im λ-Kalkül mit Typen, Archiv

für Mathematische Logik und Grundlagenforschung , 17, pp. 113–114.
Seldin, J.P., 1979: Progress report on generalized functionality, Annals of

Mathematical Logic, 17, pp. 29–59.

References 417

Seldin, J.P. and Hindley, J.R., eds, 1980: To H.B. Curry: Essays on Combinatory
Logic, Lambda-Calculus and Formalism, Academic Press.

Severi, P.G. and Poll, E., 1994: Pure Type Systems with definitions. In Nerode, A.
and Matiyasevich, Yu. V., eds, Proceedings of the Symposium on Logical
Foundations of Computer Science, LFCS ’94 , pp. 316–328, Springer.

Simmons, H., 2000: Derivation and Computation: Taking the Curry–Howard
Correspondence Seriously , Cambridge University Press.

Sørensen, M.H. and Urzyczyn, P., 2006: Lectures on the Curry–Howard
Isomorphism, Elsevier.

Sudkamp, Th., 2006: Languages and Machines: An Introduction to the Theory of
Computer Science, 3rd edition, Addison-Wesley Publishing Company.

Tait, W.W., 1967: Intensional interpretation of functionals of finite type, Journal of
Symbolic Logic, 32 (2), pp. 187–199.

Takahashi, M., 1995: Parallel reductions in lambda calculus, Information and
Computation, 118 (1), pp. 120–127.

Terese (Bezem, M.A., Klop, J.W. and de Vrijer, R.C., eds), 2003: Term Rewriting
Systems , Cambridge University Press.

Troelstra, A.S. and van Dalen, D., 1988: Constructivism in Mathematics: An
Introduction, 2 vols, Elsevier.

Turing, A.M., 1936: On computable numbers, with an application to the
Entscheidungsproblem, Proceedings of the London Mathematical Society , 42 (2),
pp. 230–265; a correction, 43 (1937), pp. 544–546.

Twelf Project, 1999: twelf.plparty.org/wiki/Main Page .
Univalent Foundations Program, 2013: Homotopy Type Theory, Univalent

Foundations of Mathematics , Institute for Advanced Study,
homotopytypetheory.org/book/.

Visser, A. and Iemhoff, R., 2009: personal communication.
Voevodsky, V.A., 2014: Univalent Foundations: New Foundations of Mathematics ,

video lecture, Institute for Advanced Study, Princeton,
video.ias.edu/node/6395.

Wand, M., 1987: A simple algorithm and proof for type inference, Fundamenta
Informaticae, X, pp. 115–122.

Wells, J.B., 1994: Typability and type-checking in the second-order λ-calculus are
equivalent and undecidable, Proceedings of the 9th Annual Symposium on Logic
in Computer Science, Paris, France, pp. 176–185, IEEE Computer Society
Press.

Whitehead, A.N. and Russell, B., 1910: Principia Mathematica, 3 vols, Cambridge
University Press, 1910, 1912 and 1913. 2nd edition, 1925 (Vol. 1), 1927
(Vols 2, 3).

Wiedijk, F., 1999: Automath, Home Page: www.cs.ru.nl/∼freek/aut/.
Wiedijk, F., ed., 2006: The Seventeen Provers of the World , Springer.
Wiedijk, F., 2013: Formalizing 100 Theorems,

www.cs.ru.nl/∼freek/100/index.html.
Zermelo, E., 1908: Untersuchungen über die Grundlagen der Mengenlehre, I,

Mathematische Annalen, 65, pp. 261–281.
Zucker, J., 1977: Formalization of classical mathematics in Automath. In Colloque

International de Logique, Colloques Internationaux du Centre National de la
Recherche Scientifique, 249. Reprinted in Nederpelt et al., 1994, pp. 127–139.

Index of names

Arthan, R.D., 374, 376

Barendregt, H.P., xvi, xviii, 5, 15, 21, 28, 125,
383

van Benthem Jutting, L.S., xxii, 301, 373
Berardi, S., 124
Berarducci, A., 80
Bézout, É., 349
Böhm, C., 80
Brouwer, L.E.J., 388
de Bruijn, N.G., xvi, 28, 119, 126, 133, 189, 207,

231, 341, 382, 388
Burali-Forti, C., 297

Cantor, G., 297
Chaieb, A., 374
Church, A., xvi, xviii, 5, 21, 27, 34, 36, 65, 131,

133, 275, 298, 343, 387
Constable, R.L., 388
Coquand, Th., 123, 207, 388
Curry, H.B., xviii, 4, 16, 31, 36, 65, 119

Fitch, F., 161, 254
Fraenkel, A.H., 298
Frege, F.L.G., xv, 272

Gandy, R.O., 66
Gentzen, G., 159
Geuvers, J.H., 300
Girard, J.-Y., xvi, 80, 81, 100, 133, 388
Gödel, K.F., 343
Gonthier, G., 384, 389

Hales, T.C., 384, 389
Harrison, J., 374, 389
Heyting, A., 388
Hilbert, D., xv, 159, 276, 343
Hindley, J.R., 5, 65, 389
Howard, W., 119
Huet, G., 207, 388

Iemhoff, R., 309, 341

Jaśkowski, S., 159

Kwiatek, R., 374

Landau, E., xxii, 299

Leibniz, G.W., 259
Luo, Z., 133, 389

Margaris, A., 309
Martin-Löf, P., xvi, 120, 133, 388
McCarthy, J., 28
Milner, R., 65, 82, 389

Peano, G., 306, 343
Pierce, B.C., 65
Plotkin, G., 66
Poll, E., 184
Pollack, R., 389
Prawitz, D., 161

Ramsey, F.P., 298
Reynolds, J.C., 81, 82, 389
Robinson, J.A., 65
Rosser, J.B., 21
Russell, B., xv, 65, 80, 297, 387

Sanchis, L.E., 66
Schönfinkel, M., 4, 27
Seldin, J.P., 5, 119
Severi, P.G., 184
Sørensen, M.H., 120

Tait, W.W., 66, 82
Terlouw, J., 124
Turing, A.M., 27, 31, 66, 131, 343

Urzyczyn, P., 120

Visser, A., 309, 341
Voevodsky, V.A., 389

Wand, M., 65
Wells, J.B., 82
Whitehead, A.N., 80, 298, 387
Wiedijk, F., 374, 389

Zermelo, E.F.F., 298

Index of definitions

+, Fig.14.12, 320
×, Fig.14.22, 336
−, Fig.14.16/14.17, 328, 331
| , Fig.14.23, 339
0, Fig.14.1/14.3, 307, 310
1, Fig.14.13, 321
2, Fig.14.13, 321
3, Fig.14.13, 321

∩, Fig.13.2, 283
∪, Fig.13.2, 283
\, Fig.13.2, 283
. . .c, Fig.13.2, 283
∅, Fig.13.6, 287
∅S , Fig.13.6, 287
⊆, Fig.13.2, 283
=, Fig.13.2, 283
[. . .]R, Fig.13.10, 290
ε, Fig.13.1, 282
εS , Fig.13.1, 282
ε-el , Fig.13.3, 284
ε-in, Fig.13.3, 284

≤, Fig.14.18, 333
≤Z, Fig.14.18, 333
<, Fig.14.18, 333
≥, Fig.14.19, 334
≥Z, Fig.14.19, 334
>, Fig.14.19, 334

⇒, Fig.11.5, 234
⇒ -el , Fig.11.5, 234
⇒ -in, Fig.11.5, 234
⊥, Fig.11.6, 235
⊥-el , Fig.11.6, 235
⊥-in, Fig.11.6, 235
¬, Fig.11.7, 235
¬-el , Fig.11.7, 235
¬-in, Fig.11.7, 235
¬¬-el , Fig.11.17, 242
¬¬-in, Fig.11.17, 242
∧, Fig.11.10, 236
∧-el1, Fig.11.10, 236
∧-el2, Fig.11.10, 236

∧-in, Fig.11.10, 236
∨, Fig.11.11, 237
∨-el , Fig.11.11, 237
∨-el-alt1, Fig.11.19, 244
∨-el-alt2, Fig.11.19, 244
∨-in1, Fig.11.11, 237
∨-in2, Fig.11.11, 237
∨-in-alt1, Fig.11.19, 244
∨-in-alt2, Fig.11.19, 244
⇔, Fig.11.12, 237
⇔ -el1, Fig.11.12, 237
⇔ -el2, Fig.11.12, 237
⇔ -in, Fig.11.12, 237
∀, Fig.11.22, 246
∀-el , Fig.11.22, 246
∀-in, Fig.11.22, 246
∃, Fig.11.23/12.14, 247, 270
∃1, Fig.12.14, 270
∃≥1, Fig.12.14, 270
∃≤1, Fig.12.14, 270
∃-el , Fig.11.23, 247
∃-el-alt , Fig.11.28, 251
∃-in, Fig.11.23, 247
∃-in-alt , Fig.11.28, 251
antisymm, Fig.12.7, 264
antisymmetric, Fig.8.2, 173
assoc-add , Fig.14.14, 324
ax -int1, Fig.14.3, 310
ax -int2, Fig.14.4, 311
ax -int3, Fig.14.6, 312
ax -nat1, Fig.14.1, 307
ax -nat2, Fig.14.1, 307
ax -nat3, Fig.14.1, 307
bijective, Fig.13.13, 293
class, Fig.13.10, 290
clos-prop, Fig.14.5, 312
com-div , Fig.14.23, 339
comm-add , Fig.14.14, 324
coprime, Fig.14.23, 339
d , Fig.15.7, 357
D , Fig.8.1/15.20, 169, 370
div , Fig.14.23, 339

422 Index of definitions

div -the, Fig.15.3/15.22, 354, 372
doub-neg , Fig.11.16, 241
element , Fig.13.1, 282
eq , Fig.12.3, 261
eq-cong1, Fig.12.5, 263
eq-cong2, Fig.12.6, 263
eq-refl , Fig.12.3, 261
eq-subs, Fig.12.4, 262
eq-subset , Fig.13.5, 286
eq-sym, Fig.12.10, 267
eq-sym ′, Fig.12.11, 268
eq-trans, Fig.12.12, 268
equivalence-relation, Fig.13.9, 289
exc-thrd , Fig.11.16, 241
full-set , Fig.13.6, 287
gcd , Fig.14.23, 339
gcd-pos, Fig.14.23, 339
gcd-prop, Fig.14.23, 339
gcd-unq , Fig.14.23, 339
grtstZ, Fig.15.19, 370
ι, Fig.12.16, 272
ι-prop, Fig.12.16, 272
image, Fig.13.15, 294
increasing , Fig.8.1, 169
injective, Fig.13.13, 293
inj -subset , Fig.13.14, 293
inj -suc, Fig.14.3, 310
inv , Fig.13.13, 293
inverse, Fig.8.8, 181
Id , Fig.8.8, 181
IS , Fig.13.2, 283
IS -prop, Fig.13.5, 286
least , Fig.15.1, 353
Least , Fig.12.13, 269
leastZ, Fig.15.1, 353
left-canc-add , Fig.14.14, 324
lw -bnd , Fig.14.20, 335
lw -bndZ, Fig.14.20, 335
max -prop, Fig.15.19, 370
max -the, Fig.15.19, 370
max -uni-the, Fig.15.19, 370
maximum, Fig.15.19, 370
min, Fig.15.1, 353
Min, Fig.12.18, 274
min-prop, Fig.15.2, 353
min-the, Fig.15.2/15.18, 353, 368
min-uni-the, Fig.15.2, 353
minimal-element , Fig.8.3, 175
minimum, Fig.15.2, 353
minus, Fig.14.16, 328
N, Fig.14.1/14.5, 307, 312
N+, Fig.15.5, 356
nat-cond , Fig.14.5, 312
nat-ind , Fig.14.8, 314
nat-prop1, Fig.14.7, 313
nat-prop2, Fig.14.7, 313
nat-smallest , Fig.14.5, 312
nat-split , Fig.14.9, 315
nat-split-alt , Fig.14.9, 315

neg , Fig.14.9, 315
opp, Fig.14.17, 331
origin, Fig.13.15, 294
p, Fig.14.3, 310
part-ord , Fig.12.7, 264
partially-ordered , Fig.8.2, 173
plus, Fig.14.11, 320
plus-clos-nat , Fig.14.15, 325
plus-i , Fig.14.12, 320
plus-i-alt , Fig.14.14, 324
plus-ii , Fig.14.12, 320
plus-ii-alt , Fig.14.14, 324
plus-iii , Fig.14.12, 320
plus-iii-alt , Fig.14.14, 324
pos, Fig.14.9, 315
pre-ord , Fig.12.7, 264
ps, Fig.13.1, 282
p-s-ann, Fig.14.3, 310
q, Fig.15.21, 371
r, Fig.15.22, 372
rec-add-lem, Fig.14.11, 320
rec-add-prop, Fig.14.11, 320
rec-mult-lem, Fig.14.21, 336
rec-mult-prop, Fig.14.21, 336
refl , Fig.12.7, 264
reflexive, Fig.8.2/13.9, 173, 289
right-canc-add , Fig.14.14, 324
s, Fig.14.1/14.3, 307, 310
S , Fig.15.5, 355
S+, Fig.15.5, 356
s-p-ann, Fig.14.3, 310
spec-rec-th, Fig.14.10, 319
subtr -prop1, Fig.14.16, 328
subtr -prop2, Fig.14.16, 328
surjective, Fig.13.13, 293
surj -suc, Fig.14.3, 310
sym-∨, Fig.11.14, 239
symmetric, Fig.13.9, 289
times, Fig.14.21, 336
times-i , Fig.14.22, 336
times-ii , Fig.14.22, 336
times-iii , Fig.14.22, 336
total , Fig.8.1/8.8, 169, 181
trans, Fig.12.7, 264
transitive, Fig.8.2/13.9, 173, 289
trip, Fig.14.9, 315
uni-dif , Fig.14.16, 328
up-bndZ, Fig.15.19, 370
Z, Fig.14.3, 310
zero-prop, Fig.14.5, 312

Index of symbols

=, 261, 283
=α, 9, 10
=β , 18, 61, 202
Δ
=, 199
Δ
=β , 203
≡, 6

→, 42
→β , 16, 61, 79, 202
�β , 17, 61, 202
Δ→, 198, 219

∗, 70, 189
∗p, 175
∗s, 175
�, 87, 189

�, 38
⊥⊥, 213
◦, 71, 303
∈, 114, 280
∼, 344
�, 53
+, 320
+m, 317
×, 336
×m, 336
− (binary), 328
− (unary), 331
| , 339
0, 307, 310
1, 321
2, 321
3, 321

∩, 283
∪, 283
\, 283
. . .c, 283
∅, 287
∅S , 287
⊆, 283
[. . .]R, 290

≤, 333
≤Z, 333
<, 333
≥, 334
≥Z, 334
>, 334

⇒, 43, 111, 114, 144, 234
⊥, 82, 137, 144, 225, 235
¬, 144, 225, 235
¬¬, 241, 242
∧, 144, 226, 236
∨, 144, 237
⇔, 144, 237
∀, 112, 114, 150, 246
∃, 150, 247, 270
∃1, 270
∃≥1, 270
∃≤1, 270

β-nf, 19
δ-nf, 200
ε, 276, 282
εS , 282
ι, 271, 275, 292
λ, 1, 5
λ→, 40, 125
λ2, 69, 73, 125
λC, 123, 125, 232
λD, 165, 211, 212, 215
λD0, 189, 192, 204, 211
λP, 103, 105, 125
λP2, 125
λω, 125
λω, 86, 125

Δ, 190
Λ, 5
Λ0, 9
ΛT, 39
ΛT2, 74
Π, 72
Σ, 72
Ω, 20

424 Index of symbols

d, 357
iET , 147
q, 371
r, 372
s, 71, 87, 306, 309
s1, 124
s2, 124
s3, 124

D, 169, 370
Mx→y , 9
S, 355
S+, 356
V , 5
Y , 25, 31
Yσ , 66
Z, 31

K, 86
L, 35
N, 33, 306, 307, 311, 312
N+, 356
T, 34
T2, 73
V, 34, 73
Z, 308, 309

B, 30
I, 30
K, 28, 30, 66, 83
List, 101
S, 28, 30, 66, 83

D, 190, 192
E, 128
EλD, 190
P, 80, 281

A, 160, 172
x, 172
x : A, 172
U : V , 195
[x := U], 194

conclusion, 40
dom, 53, 75
premiss, 40
Sub, 6

add , 30
false, 31
gcd , 339, 340
gcd ′, 374
if -then-else, 31
iszero, 31
mult , 30
not , 31
one, 30
suc, 30
true, 31
two, 30
zero, 30

Add , 83
Bool , 84

False, 84
FV , 8
Iszero, 84
Mult , 83
Nat , 83
Neg , 84
One, 83
Suc, 83
Tree, 84
True, 84
Two, 83
Zero, 83

(abst), 40, 94, 111, 203
(abst2), 72
(appl), 40, 94, 111, 203
(appl2), 73
(βδ-conv), 203
(conv), 97, 203
(δ-conv), 202
(def), 193
(def -prim), 214
(form), 76, 93, 123, 203
(func-abst), 42
(func-appl), 42
(inst), 197
(inst-pos), 195
(inst-prim), 215
(inst-zero), 196
(par), 206
(sort), 88, 203
(var), 40, 75, 89, 203
(weak), 90, 203

(⇒-elim), 43, 114
(⇒-intro), 43, 114
(⊥-elim), 138
(⊥-intro), 138
(¬-elim), 139
(¬-intro), 139
(∧-elim-left), 140
(∧-elim-left-sec), 140
(∧-elim-right), 140
(∧-elim-right-sec), 140
(∧-intro), 140
(∧-intro-sec), 140
(∨-elim), 142
(∨-elim-sec), 143
(∨-intro-left), 142
(∨-intro-left-sec), 143
(∨-intro-right), 142
(∨-intro-right-sec), 143
(∀-elim), 112, 114
(∀-intro), 113, 114
(∃-elim), 151
(∃-elim-sec), 152
(∃-intro), 153
(∃-intro-sec), 153

Index of subjects

α-conversion, 9, 10
extended, 78

α-convertible, 11
α-equivalence, 9, 10

extended, 78
α-equivalent, 11
α-variant, 11
abbreviation, 183
abbreviation mechanism, 207
absolute value, 318
abstract data type, 389
abstract syntax, 5
abstraction, 2, 5, 35

first order, 69, 74
second order, 70, 72, 74
type-, 69, 71

absurdity, 137, 225, 392
AC, 297
accumulated dependency, 191
adding a definition, 192
addition, 80, 305

associativity of, 323
commutativity of, 323
integer, 316
left cancellation for, 323
right cancellation for, 323

addition in N

closure under, 324, 403
addition of axiom, 147
Agda, 120, 382, 388, 389
ALF, 120, 388
algebraic data type, 80
Algol 60, 63
algorithm

Euclidean, 350
type checking, 222
typing, 82

alpha-conversion, 9, 10
extended, 78

alpha-convertible, 11
alpha-equivalence, 9, 10

extended, 78

alpha-equivalent, 11
alpha-variant, 11
alphabet

Greek, xxviii
alternative rules for ∨, 243
alternatives for disjunction, 394
alternatives for existential quantification, 396
antisymmetric, 258
application, 2, 4, 5, 35

second order, 70, 73
twofold, 264
type-, 69

argument, 1, 16
arithmetic, 305

integer, 308
arithmetical laws for addition, 322
arithmetical operation, 316
arrow type, 34
associativity of addition, 323
associativity of multiplication, 337
assumption, 174

overall, 213
asymmetric, 45
at least one, 269
at most one, 269
AUT-68, 119
AUT-QE, 119
Automath, xvi, 119, 126, 231, 372, 382, 383, 388
Automath project, 207, 221
automatic verification, 296
axiom, 147, 211, 212, 221, 350

addition of, 147
parameterised, 221

Axiom of Choice, 276, 297
axiom of induction for N, 307
axiom of induction for Z, 311
axiom scheme, 160
axiomatic method, 161
axiomatic notion, 211, 212, 222
axiomatic set theory, 297
axiomatic system, 159
axiomatisation of integers, 309

426 Index of subjects

axioms
Peano-, 306, 307, 309

axioms for N, 313

β-conversion, 18, 97
β-convertible, 18
β-equality, 18
β-normal form, 19, 63
β-normalising, 19
β-reduction, 3, 5, 16, 59, 61, 97, 220

extended, 78
one-step, 16, 61, 79
zero-or-more-step, 17, 61

β-reduction for λD0

one-step, 202
β-reduction step, 16
βδ-confluence, 220
βδ-conversion, 203
backward rule, 139
Barendregt convention, 15
Barendregt cube, 125, 133
base, 57
basic type, 34
basis, 16, 38, 61
beta-conversion, 18
beta-convertible, 18
beta-delta-confluence, 220
beta-delta-conversion, 203
beta-equality, 18
beta-nf, 19
beta-normal form, 19, 63
beta-reduction, 3, 16, 59, 61, 220

one-step, 16, 61, 79
zero-or-more-step, 17, 61

beta-reduction for λD0

one-step, 202
beta-reduction step, 16
Bézout’s Theorem, 374
Bézout’s Lemma, 176, 349

proof of, 350, 354
biimplication, 393
bijective map, 292
binary minus-operator for Z, 327
binary plus-operation, 320
binary predicate, 115, 289
binary relation, 288, 295
binder

Π-, 72
type-, 72

binding occurrence, 8
body, 16
body of definition, 190, 216
book, 120, 222, 231
bound occurrence, 8
bound variable, 8
Brouwer–Heyting–Kolmogorov, 120
de Bruijn criterion, 383
de Bruijn index, 28

calculus
λ-, 1

Calculus of Constructions, 100, 123, 133, 232,
388

Calculus of Inductive Constructions, 120, 133,
388

call-by-name, 66
call-by-value, 66
cancel, 310
cancellation for addition

left, 323
right, 323

cancellation for multiplication, 338
cancellation for subtraction

left, 329
right, 329

capture, 120
Cartesian product, 107, 115, 280
case distinction, 142
CC, 133
choice function, 276
choice operator, 276
Church-computability, 27
Church numerals, 27, 65, 305

polymorphic, 80, 305
Church–Rosser for �βδ in λD, 220
Church–Rosser Theorem, 21, 61, 79, 130
Church’s λ→, 40
Church’s thesis, 27
Church–Turing thesis, 27, 343
Church–Turing Undecidability Theorem, 131
Church-typing, 36, 65
CIC, 133, 167, 388
class

equivalence, 289
classical logic, 146, 233
classical predicate logic, 249, 396
classical propositional logic, 240, 393
closed λ-term, 9
closure under addition in N, 324, 403
closure under multiplication in N, 337
combination

legal, 217
combination of flags, 234
combinator, 9

fixed point, 25, 31, 66
combinatory logic, 27
common divisor, 176, 339, 351

greatest, 176, 339, 340
commutativity of ∨, 239
commutativity of addition, 323
commutativity of multiplication, 337
compatibility, 10, 16, 61
compatibility rule, 3
complement, 280, 283
composite unary predicate, 289
composition, 67, 70, 303

function, 71, 303, 343
computability, 343

Church-, 27
effective, 27

Index of subjects 427

Herbrand–Gödel-, 27
Turing-, 27

computable function, 343
computation, 351

model of, 343
compute, 316
computer program

correctness of, 132
conclusion, 40, 160
condensed derivation, 229
Condensing Lemma, 56, 79, 129, 218
condition, 174

side, 35
confluence, 19, 21, 61, 130, 220, 222
congruence property, 262
conjunction, 139, 226, 392
conservative extension, 275
consistency

logical, 81, 222, 223
consistent, 81, 298
constant, 168, 172, 189

defined, 168
introduction of, 172
primitive, 211, 216
proper, 216
reuse of, 238
use of, 172

construction scheme for typing problems, 53
constructive logic, 146, 211, 225
constructive predicate logic, 246, 395
constructive propositional logic, 234, 391
constructor, 87

proper, 87
type, 85, 101

context, 38, 39, 57
empty, 39, 170
λ2-, 75
legal, 217
well-formed, 129

context of definition, 169, 190, 216
contractum, 16
contradiction, 137
convention

Barendregt, 15
parameter list, 239, 240

conversion, 61, 98
α-, 9, 10
β-, 18, 97
βδ-, 203
δ-, 197, 199

conversion rule, 97, 202
convertible

α-, 11
β-, 18
δ-, 200

coprime, 176, 339, 351, 354
Coq, 120, 134, 161, 374, 375, 382–384, 388
correct instantiation, 201
correctness of computer program, 132

CR, 21, 61, 130, 220
cube

Barendregt 121, 123, 125, 133
cumulativity, 133
Curry fixed point operator, 31
Curry–Howard interpretation, 119
Curry–Howard isomorphism, 119
Curry–Howard–de Bruijn embedding, 119
Currying, 115, 289, 291
Curry-typing, 36, 65
cut elimination, 161

δ-confluence in (λD,
Δ→), 220

δ-conversion, 197, 199
δ-convertible, 200
δ-normal form, 200
δ-reduction, 199

one-step, 198
zero-or-more-step, 199

data type, 80, 120, 388
abstract, 389
algebraic, 80
polymorphic, 133

decidability, 59, 65, 279, 280, 296, 343
Decidability of Term Finding, 59
Decidability of Type Assignment, 59
Decidability of Type Checking, 59
decidability of typing, 280
Decidability of Well-Typedness, 59
decidable, 47
declaration, 39, 74
deduction

natural, 43, 157, 208
definability

lambda-, 27
defined constant, 168
defined constant of definition, 190, 216
defined name, 166, 168
definiendum, 168, 172, 190, 216
definiens, 168, 172, 216
definiens of definition, 190, 216
definite description, 275
definite description operator, 275
definition, 126, 165, 189, 213

adding of, 192
body of, 190, 216
context of, 169, 190, 216
defined constant of, 190, 216
definiens of, 190, 216
descriptive, 189, 190, 211, 212, 216
element of, 190, 216
format for, 168
inductive, xx, 5, 55, 167
instantiation of, 170, 193
linguistic, 184
local, 185
mathematical, 184
parameterised, 207
primitive, 211–214, 216
proper, 216

428 Index of subjects

recursive, 167, 192, 316, 344
statement of, 190, 216
type of, 190, 216
well-formed, 183

definition format, 231
definition in a context, 169
definition of a primitive entity, 213
definition unfolding, 197, 220

one-step, 198
definitional equivalence, 198

delta-confluence in (λD,
Δ→), 220

delta-conversion, 197, 199
delta-normal form, 200
delta-reduction, 199

one-step, 198
zero-or-more-step, 199

dependency, 45
accumulated, 191
first order, 69
second order, 69

dependent product, 106, 120
dependent type, 121, 124
deramification, 298
derivability, 38
derivable, 343
derivable rule, 140
derivation, 41, 44

condensed, 229
shortened, 95, 96, 98, 116
state of, 230

derivation in λD, 225
derivation in natural deduction, 238
derivation rule, 40, 160
derivation rules for Church’s λ→, 40
derivation rules for λ2, 76
derivation rules for λD, 409
derivation rules for λD0, 204
derivation rules for λP, 105
derivation rules for the λ-cube, 127
derivation scheme, 40
derivation system, 39
derivation tree, 161
descending sequence, 345
description

definite, 275
description operator, 275

definite, 275
descriptive definition, 189, 190, 211, 212, 216
descriptor, 271
diagram, 45
difference, 280, 283, 327

uniqueness of, 327
disjunction, 139, 142, 393

alternatives for, 394
distributivity

left, 337
right, 336

divide, 338
dividend, 369

divisibility, 338
divisibility operator, 351
division, 351, 354
Division Theorem, 351, 353, 369
divisor, 338, 369

common, 176, 339, 351
DN, 213, 240, 249
domain, 53, 75
double negation, 213, 233, 240, 394
double negation law, 146

ε-operator, 276
ECC, 133
Edinburgh LF, 120
effective computability, 27
element, 110, 280

least, 258, 269, 352
minimal, 174

element of definition, 190
element of definition in λD, 216
element of subset, 281
elementhood, 280
Elements, 350
elimination rule, 160, 232
elimination rule for ⇒, 43, 111
elimination rule for ⊥, 138
embedding, 301
empty context, 39, 170
empty parameter list, 196
empty type, 81
environment, 190

legal, 217
equality, 259, 275

β-, 18
Leibniz, 275, 286
parameterised, 259
reflexivity of, 260
transitivity of, 268

equality checker, 222
equality of subsets, 283
equality relation, 259
equivalence

α-, 9, 10
definitional, 198

equivalence class, 289
equivalence relation, 10, 289
equivalent

α-, 11
ET, 213, 240, 249
Euclidean algorithm, 350
evaluation rule, 2
evaluation strategy, 28
ex falso, 137
exactly one, 269, 272
excluded third, 213, 233, 240, 393
excluded third law, 146
existence, 251
existence quantifier

unique, 269
existential quantification, 395

Index of subjects 429

alternatives for, 396
existential quantifier, 269

second order encoding of, 150
explicit typing, 36, 65
expression, 189

legal, 130, 217
expressions of λC, 128
expressions of λD, 190
expressions of λD0, 190
extended α-conversion, 78
extended α-equivalence, 78
extended β-reduction, 78
Extended Calculus of Constructions, 133, 389
extended judgement, 191
extensional type theory, 120

F, 100
Fω, 100
factorial, 26
family of types, 104
feasibility, 296
finite reduction path, 20
first order abstraction, 69, 74
first order dependency, 69
Fitch style, 208
Fitch style natural deduction, 161
fixed point, 24, 63
fixed point combinator, 25, 31, 66

Curry, 31
Turing, 31

Fixed Point Theorem, 24
fixpoint, 24
flag, 43, 45
flag format, 45
flag notation, 45
flag pole, 43, 45
flag style, 208
flag-style λD0, 228
flag-style natural deduction, 161, 225
flag-style proof, 229
flags

combination of, 234
Flyspeck project, 384
folding, 199
foreknowledge, 259, 274
formal λD0, 228
formal logic, xv
formal mathematics, xv
format

flag, 45
linear, 44
tree, 44

format for definition, 168
formation rule, 76, 93, 107, 123
forward rule, 139
free occurrence, 8
free variable, 8
Free Variables and Constants Lemma, 217
Free Variables Lemma, 54, 79, 128
fresh, 193

function, 1, 42, 292, 295
computable, 343
general recursive, 27
identity, 36, 69
injective, 306
μ-recursive, 343
polymorphic, 71
proposition-valued, 104
recursive, xxii, 27
set-valued, 103
successor, 24, 71, 167, 212, 306
surjective, 306
two-place, 4
two-valued, 295
type-valued, 103

function composition, 71, 303, 343
function evaluation, 3
function of two variables, 4
function space, 295
function type, 34, 35, 111
functional language, 100
functional program, 120
functional programming language, 28, 65, 81
functional relation, 292

general recursive function, 27
generalised polynomial, 66
generalised term, 85
generalised type, 85, 124
Generation Lemma, 58, 79, 129, 218
Gentzen style natural deduction, 161
grammar, 5
greatest common divisor, 176, 339, 340
Greek alphabet, xxviii

Haskell, 100
Herbrand–Gödel-computability, 27
high level programming language, 63
higher order predicate logic, 133
Hilbert style system, 159
Hilbert’s Program, 276
hint, 284, 361
HOL, 389
HOL Light, 374, 375, 384
hole, 260, 361, 363, 382
Homotopy Type Theory, 389
hypothesis, 160

induction, 55

ι-operator, 272, 276
ideal element, 276
identity

syntactical, 6
identity function, 36, 69

polymorphic, 70
identity instantiation, 173
illative logic, 119
image, 293
implication, 43, 109, 111, 295, 391
implicit typing, 36, 65, 81
impredicative Σ-type, 133
impredicativity, 80, 388

430 Index of subjects

inclusion, 283
inclusion of λC in λD0, 216
inclusion of λD0 in λD, 216
incompleteness theorem, 343
inconsistent, 80, 133, 297
index

de Bruijn, 28
indexed type, 104
indirect proof, 243
indiscernibility, 259
induction, 213

mathematical, 307
structural, 55
symmetric, 310

induction for N, 213, 313
induction for Z, 311

variant of, 311, 346, 366
induction hypothesis, 55
induction on the generation, 62
induction property, 213
inductive definition, xxii, 5, 55, 167
inductive type, 120, 133, 161, 167, 383
inequality in Z, 332
inference

type, 81, 82
infinite reduction path, 20, 219
inhabitant, 51
Inhabitation, 47
initialisation rules, 126
injective function, 306
injective map, 292
input value, 1
instance, 40
instantiate, 183
instantiation

correct, 201
identity, 173

instantiation of parameter, 170
instantiation of definition, 170, 193
integer

opposite of, 330
integer addition, 316
integer arithmetic, 308
integer multiplication, 335
integer number, 308
integer subtraction, 327
integers

axiomatisation of, 309
negative, 312

intensional type theory, 120
interpretation

Brouwer–Heyting–Kolmogorov, 120
intersection, 280, 283, 351
introduction of constant, 172
introduction rule, 160, 232
introduction rule for ⇒, 43, 111
introduction rule for ⊥, 138
intuitionistic logic, 146
intuitionistic type theory, 120, 388

inverse map, 293
irreflexive, 45
irrelevance of proof, 273, 340, 341
Isabelle, 374, 375, 389
iteration, 70

judgement, 38, 39, 160, 190
extended, 191
typing, 190

judgement chain, 87
judgement with definitions, 190
junk, 56

kernel, 383
kind, 86, 87

λ-abstraction
second order, 71

λ-calculus, 1
simply typed, 33, 121
untyped, 1, 2, 5

λ-Coquand, 123
λ-cube, 121, 123, 125, 133
λ-definability, 27
λ-term, 5

closed, 9
pre-typed, 39

λ→
properties of, 53

λ→-term
legal, 43

λ2-context, 75
λ2-term, 74

legal, 76
lambda calculus, 1

polymorphic, 81
simply typed, 33, 121
untyped, 1, 2, 5

lambda-cube, 121, 123, 125, 133
lambda-definability, 27
lambda-term, 4, 5

closed, 9
pre-typed, 39

law
arithmetical, 322
double negation, 146
excluded third, 146

LCF, 389
leaf, 7, 9
least element, 258, 269, 352
least-element-predicate, 270
left-associative, 8, 34, 36
left cancellation for addition, 323
left cancellation for multiplication, 338
left cancellation for subtraction, 329
left distributivity, 337
left-most redex, 28
legal, 217
legal λ→-term, 43
legal λ2-term, 76
legal combination, 217
legal context, 217

Index of subjects 431

legal environment, 217
Legal Environment Lemma, 217
legal expression, 130, 217
legal term, 43, 58
Legality Lemma, 217
Lego, 389
Leibniz’s law, 259
Leibniz-equality, 275, 286
lemma, 271
Lemma

Bézout’s, 176, 349
Condensing, 56, 79, 129, 218
Free Variables, 54, 79, 128
Generation, 58, 79, 129, 218
Permutation, 56, 79, 129
Subject Reduction, 61, 79, 98, 130, 219
Substitution, 59, 79, 130, 219
Subterm, 58, 79
Thinning, 56, 79, 129, 218
Uniqueness of Types, 59, 79, 99, 130, 218, 280

level, 87
LF, 120
library, 380
line, 120, 222
linear combination, 355
linear format, 44
linguistic definition, 184
Lisp, 28
list, 80
local definition, 185
log-book, 231
logic

classical, 146, 233
combinatory, 27
constructive, 146, 211, 225
formal, xv
illative, 119
intuitionistic, 146
predicate, 150
propositional, 144

logic in λC, 137
logic in λD, 232
logical consistency, 81, 222, 223
logical framework, 119, 388, 389
logical operation, 111
logicist approach, 298

μ-recursive function, 343
many-to-one map, 295
map, 291, 292

bijective, 292
injective, 292
inverse, 293
many-to-one, 295
partial, 292
surjective, 292
total, 292

Martin-Löf type theory, 388
mathematical definition, 184
mathematical induction, 307

mathematical statement, 180
mathematics

formal, xv
mathematics in λD, 257
Matita, 389
maximum, 339, 371
Maximum Theorem, 364, 369, 377
meta-level abbreviation, 183
meta-notation, 12
mini reduction, 185
minimal element, 174
minimal predicate logic, 109, 114
minimal propositional logic, 137
minimisation, 344
minimum, 272, 273, 351, 364, 368
minimum operator, 274, 351, 352
Minimum Theorem, 351, 352, 356, 364, 376, 405
minus-operator

binary, 327
unary, 330

Mizar, xvi, 374, 375, 384
mnemonic, 167
model, 29
model of computation, 343
modulo α-equivalence, 15
modus ponens, 43, 161
most general type, 81
most general unifier, 65
multiplication, 80, 305

associativity of, 337
commutativity of, 337
integer, 335
left cancellation for, 338
right cancellation for, 338

multiplication in N

closure under, 337
multiset, 6

Naive Set Theory, 80
name, 9

defined, 166, 168
temporary, 166

name of proof, 176, 178
naming of a unique element, 272
natural deduction, 43, 157, 208

derivation in, 238
Fitch style, 161
flag-style, 161, 225
Gentzen style, 161
tree-style, 161

natural deduction system, 159
natural number, 305, 311
negation, 137, 138, 225, 392
negative integers, 312
nf, 19
node, 7
non-emptiness, 351
normal form, 19

β-, 19, 63
δ-, 200

432 Index of subjects

normal forms in (λD,
Δ→)

uniqueness of, 220
normalisation, 222

strong, 21, 66, 131, 219
weak, 21, 66, 219

normalising
β-, 19

notation convention, 234
notion

axiomatic, 211, 212, 222
primitive, 211, 221

number, 305
integer, 308
natural, 305, 311

number theory, 308
numerals

Church, 27, 65, 305
polymorphic, 305

Nuprl, 120, 382, 388, 389

occurrence, 6
binding, 8
bound, 8
free, 8

one
at least, 269
at most, 269
exactly, 269, 272

one-step β-reduction, 16, 61, 79
one-step β-reduction for Λ2, 79
one-step β-reduction for λD0, 202
one-step δ-reduction, 198
one-step definition unfolding, 198
one-step folding, 199
one-step unfolding, 199
operation

arithmetical, 316
operator

choice, 276
description, 275
ε-, 276
ι-, 272, 276

opposite of an integer, 330
order, 264

partial, 257, 264, 334, 363
pre-, 264

order between definitions, 174
origin, 293
outcome, 19, 63, 317
output value, 1
overall assumption, 213
overlap, 290
overloading, 81, 174

Π-binder, 72
Π-type, 71, 106
pair, 115
pair of types, 291
paradox

Russell’s, 298
parameter, 169

instantiation of, 170
parameter list, 169, 172

empty, 196
parameter list convention, 239, 240
parameterised axiom, 221
parameterised definition, 207
parameterised equality, 259
parameters

suppressed, 240
parametricity, 81
parenthesis, 7, 74
partial map, 292
partial order, 257, 264, 334, 363

strict, 45, 334
PAT, 53, 81, 104, 340
PAT-interpretation, 53, 104, 110
path

reduction, 20
PCF, 66
Peano arithmetic, 212
Peano-axioms, 306, 307, 309
permutation, 53
Permutation Lemma, 56, 79, 129
plus-operation

binary, 320
unary, 317

PN, 221
polymorphic, 70
polymorphic Church numerals, 80, 305
polymorphic data type, 133
polymorphic function, 71
polymorphic identity function, 70
polymorphic lambda calculus, 81
polynomial

generalised, 66
postulated concept, 212
powerset, 80, 280, 281
powersets-as-types, 299
preamble, 227
pre-context, 213
predecessor, 306, 310
predicate, 104, 110, 114, 295

binary, 115, 289
composite unary, 289

predicate logic, 150
classical, 249, 396
constructive, 246, 395
higher order, 133
minimal, 109
quantifier free, 276

premiss, 40
preorder, 264
pre-typed λ-term, 39

second order, 74
primitive constant, 211, 216
primitive definition, 211–214, 216
primitive entity, 212

definition of, 213
primitive notion, 211, 221

Index of subjects 433

primitive recursion, 344
principal type, 65
principal type algorithm, 65
Principia Mathematica, xv, 80, 298, 387
product, 72

Cartesian, 107, 115, 280
dependent, 106, 120

product rule, 107
product type, 72
program

functional, 120
programming language, 63

functional, 28, 65, 81
high level, 63

projection, 53
proof, 53, 110, 114, 271

flag-style, 229
irrelevance of, 273, 340, 341
name of, 176, 178
skeleton, 265
specialised, 362

proof assistance, 158
proof assistant, 131, 133, 158, 161, 207, 222,

380, 388
proof by contradiction, 242, 243, 250
proof by induction, 55
proof checker, 133, 222
proof checking, 158, 280, 381
proof development, 380
proof irrelevance, 340
proof object, 110, 117, 363
proof of a proposition, 52
proof of Bézout’s Lemma, 350, 354
proof term, 161
proof theory, 161
ProofPower, 374, 376
proofs-as-terms, 53, 110
proper constant, 216
proper constructor, 87
proper definition, 216
proper subterm, 7
properties of λ→, 53
properties of λ2, 78
properties of λC, 128
proposition, 51, 110, 114

proof of, 52
proposition-valued function, 104
propositional logic, 144

classical, 240, 393
constructive, 234, 391
minimal, 137

propositions-as-types, 53, 81, 104, 110
provable correctness, 132
PTS, 124, 207
Pure Type System, x, 124, 207
PVS, 301

quantification
existential, 395, 396
universal, 109, 112, 395

quantifier
existential, 269
unique existence, 269

quantifier free predicate logic, 276
quotient, 344, 354, 369, 371

Ramified Type Theory, 65, 298, 299, 387
recursion, 317

primitive, 344
well-founded, 120, 317

recursion scheme, 167
Recursion Theorem for Z, 318, 344

restricted, 319
recursive call, 344
recursive definition, 167, 192, 316, 344
recursive function, xxii, 27
redex, 16
reduction, 5, 59

β-, 3, 5, 16, 59, 61, 97, 220
mini, 185
one-step δ-, 198
zero-or-more-step δ-, 199

reduction path, 20
finite, 20
infinite, 20, 219

reduction strategy, 28
refinement step, 382
reflexive, 6, 10, 257, 289
reflexivity of equality, 260
relation, 288

binary, 288, 295
equality, 259
equivalence, 10, 289
functional, 292
well-founded, 345

remainder, 354, 369, 371
renaming, 9, 10, 78
representation

tree, 7
restricted Recursion Theorem for Z, 319
reuse of constant, 238
rewriting in logic, 252
right-associative, 8, 34, 36
right cancellation for addition, 323
right cancellation for multiplication, 338
right cancellation for subtraction, 329
right distributivity, 336
root, 9
root path, 9
RTT, 65, 299
rule

derivable, 140
derivation, 40, 160
elimination, 160, 232
introduction, 160, 232

Russell’s paradox, 298

Σ-type, 120, 133, 300
Σ-type

impredicative, 133
second order abstraction, 70, 72, 74

434 Index of subjects

second order application, 70, 73
second order dependency, 69
second order encoding of conjunction, 140
second order encoding of disjunction, 142
second order encoding of ∃, 150
second order λ-abstraction, 71
second order pre-typed λ-term, 74
second order typed lambda calculus, 69
self-application, 27, 63, 81
separation marker, 38
sequent calculus, 121, 159
sequential substitution, 13
set, 110, 114, 279
set building, 281
set comprehension, 281
set of all sets, 80
set theory

axiomatic, 297
Zermelo–Fraenkel, 213, 297, 299

set-valued function, 103
shortened derivation, 95, 96, 98, 116
side condition, 35
simple theory of types, xvi, 275, 387
simple type, 34
simply typed λ-calculus, 33, 121
simultaneous substitution, 194
skeleton proof, 265
SN, 220
sort, 87
specialised proof, 362
Start Lemma for declarations and definitions,

218
state of a derivation, 230
statement, 35, 39, 74, 231

mathematical, 180
typing, 35
universal, 295

statement of definition, 190, 216
step

β-reduction, 16
strict partial order, 45, 334
strong normalisation, 21, 66, 131, 219

strong normalisation of
Δ→, 219

strong normalisation for �βδ in λD, 221
Strong Normalisation Theorem, 79, 131
Strong Normalisation Theorem for λ→, 62
structural induction, 55
subcontext, 53
Subexpression Lemma, 130
subject, 39
Subject Reduction, 61, 79, 98, 130, 219
subset, 279, 280, 295, 350

element of, 281
subset-as-predicate, 281
subset-equality, 283, 286
subsets via embedding, 301
substitution, 3, 11, 12, 59

sequential, 13
simultaneous, 194

Substitution Lemma, 59, 79, 130, 219
substitutivity, 261
subterm, 6

proper, 7
Subterm Lemma, 58, 79
subtraction

integer, 327
left cancellation for, 329
right cancellation for, 329

subtree, 7
successor, 30, 309
successor function, 24, 71, 167, 212, 306
sum, 72, 316
super-kind, 133
super-super-type, 87
super-type, 85
suppressed parameters, 240
surjective function, 306
surjective map, 292
symmetric, 10, 289
symmetric induction, 310, 313
syntactical identity, 6
syntax

abstract, 5
syntax-directed, 58
system F, 80, 100
system Fω, 100

tactic, 162, 383
tautology, 52
temporary name, 166
term

generalised, 85
λ2-, 74
legal, 43, 58, 76
typable, 36, 58, 81

Term Construction, 47
term depending on term, 69, 124
term depending on type, 69, 124
Term Finding, 47, 51, 59, 131
term variable

renaming of, 78
termination, 219
Termination Theorem, 131
Termination Theorem for λ→, 62
theorem, 271
Theorem

Division, 351, 353, 369
Maximum, 364, 369, 377
Minimum, 351, 352, 356, 364, 376, 405
Undecidability, 131

theory of types
intuitionistic, 120, 388
simple, xvi, 275, 387

thinning, 91
Thinning Lemma, 56, 79, 129, 218
total map, 292
transitive, 6, 10, 45, 258, 289
transitivity of equality, 268
tree, 80

Index of subjects 435

tree format, 44
tree representation, 7
tree-style natural deduction, 161
tripartition property, 315
true, 343
Turing-complete, 26–28
Turing-computability, 27
Turing fixed point operator, 31
Turing machine, 27, 343
Twelf, 120
twofold application, 264
two-place function, 4
two-valued function, 295
Typability, 46
typable term, 36, 58, 81
type, 33, 39

arrow, 34
basic, 34
data, 80, 120, 388
dependent, 121, 124
empty, 81
function, 34, 35, 111
generalised, 85, 124
indexed, 104
inductive, 120, 133, 161, 167, 383
most general, 81
Π-, 71, 106
principal, 65
Σ-, 120, 133, 300
simple, 34
super-, 85
super-super-, 87

type-abstraction, 69, 71
type-application, 69
Type Assignment, 46, 59
Type Checking, 47, 50, 59, 131
type checking, 158, 222, 280
type checking algorithm, 222
type constructor, 85, 101
type depending on term, 103, 124
type depending on type, 85, 86, 124
type inference, 81, 82
type of all kinds, 87
type of all types, 70
type of definition, 190, 216
Type Reduction, 98
Type System

Pure, xvi, 124, 207
type theory, xv

extensional, 120
intensional, 120
intuitionistic, 120, 388
Martin-Löf, 388
ramified, 65, 298, 299, 387
simple, xvi, 275, 387

type-valued function, 103
type variable, 34

renaming of, 78
type-binder, 72

typed lambda calculus
second order, 69
simply, 33, 121

types
family of, 104

typing
Church-, 36, 65
Curry-, 36, 65
explicit, 36, 65
implicit, 36, 65, 81

typing à la Church, 36
typing à la Curry, 36
typing algorithm, 82
typing judgement, 190
typing problems, 53
typing statement, 35

unary minus-operator for Z, 330
unary plus-operation, 317
unary predicate

composite, 289
Undecidability Theorem, 131
undecidable, 47, 343
unfold, 183
unfoldable, 200
unfolding, 220

definition, 197, 220
one-step, 198, 199

unification, 65
unification algorithm, 65
union, 280, 283
unique element, 272

naming of, 272
unique existence, 268
unique existence quantifier, 269
Uniqueness of βδ-normal form, 220

uniqueness of δ-normal forms in (λD,
Δ→), 220

uniqueness of difference, 327
Uniqueness of Types, 59, 79, 280
Uniqueness of Types up to βδ-conversion, 218
Uniqueness of Types up to Conversion, 99, 130
Univalent Foundations, 390
universal quantification, 109, 112, 395
universal statement, 295
universe, 133
untyped λ-calculus, 1, 2, 5
use of constant, 172

variable, 1, 5, 34, 167
bound, 8
free, 8
type, 34

variant of induction for Z, 311, 346, 366
vector, 104
verification

automatic, 296

weak normalisation, 21, 66, 219
weak normalisation for �βδ in λD, 221

weak normalisation of
Δ→, 219

weaken, 90

436 Index of subjects

weakening, 90, 91
well-definedness, 344
well-formed context, 129
well-formed definition, 183
well-formedness, 222
well-founded, 318
well-founded recursion, 120, 317
well-founded relation, 345
Well-typedness, 46, 47, 59, 131
witness, 251
WN, 220

Zermelo–Fraenkel set theory, 213, 297, 299
zero element, 306
zero-or-more-step β-reduction, 17, 61
zero-or-more-step δ-reduction, 199
zero-test, 26
ZF, 297, 298

	Contents
	Foreword
	Preface
	Acknowledgements
	Greek alphabet
	Untyped lambda calculus
	Simply typed lambda calculus
	Second order typed lambda calculus
	Types dependent on types
	Types dependent on terms
	The Calculus of Constructions
	The encoding of logical notions in
	Definitions
	Extension of λC with definitions
	Rules and properties of
	Flag-style natural deduction in
	Mathematics in
	Sets and subsets
	Numbers and arithmetic in λD
	An elaborated example
	Further perspectives
	Appendix ALogic in λD
	Appendix B Arithmetical axioms, definitions and lemmas
	Appendix C Two complete example proofs in
	Appendix DDerivation rules for λD
	References
	Index of names
	Index of definitions
	Index of symbols
	Index of subjects

