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Foreword

It	 is	 nearly	 a	 century	 ago	 that	Alonzo	Church	 introduced	 the	 lambda	 calculus,
and	 over	 half	 a	 century	 ago	 that	 John	McCarthy	 introduced	 Lisp,	 the	world’s
second	oldest	programming	language	and	the	first	functional	language	based	on
the	 lambda	 calculus.	 By	 now,	 every	 major	 programming	 language	 including
JavaScript,	 C++,	 Swift,	 Python,	 PHP,	 Visual	 Basic,	 Java,	 ...	 has	 support	 for
lambda	expressions	or	anonymous	higher-order	functions.

As	 with	 any	 idea	 that	 becomes	 mainstream,	 inevitably	 the	 underlying
foundations	 and	 principles	 get	 watered	 down	 or	 forgotten.	 Lisp	 allowed
mutation,	 yet	 today	 many	 confuse	 functions	 as	 first-class	 citizens	 with
immutability.	 At	 the	 same	 time,	 other	 effects	 such	 as	 exceptions,	 reflection,
communication	 with	 the	 outside	 world,	 and	 concurrency	 go	 unmentioned.
Adding	 recursion	 in	 the	 form	of	 feedback-loops	 to	pure	 combinational	 circuits
lets	us	implement	mutable	state	via	flip-flops.	Similarly,	using	one	effect	such	as
concurrency	 or	 input/output	 we	 can	 simulate	 other	 effects	 such	 as	 mutability.
John	Hughes	famously	stated	in	his	classic	paper	Why	Functional	Programming
Matters	that	we	cannot	make	a	language	more	powerful	by	eliminating	features.
To	 that,	we	 add	 that	 often	we	 cannot	 even	make	 a	 language	 less	 powerful	 by
removing	features.	In	this	book,	Graham	demonstrates	convincingly	that	the	true
value	 of	 functional	 programming	 lies	 in	 leveraging	 first-class	 functions	 to
achieve	compositionality	and	equational	reasoning.	Or	in	Graham’s	own	words,
“functional	programming	can	be	viewed	as	a	style	of	programming	in	which	the
basic	 method	 of	 computation	 is	 the	 application	 of	 functions	 to	 arguments”.
These	functions	do	not	necessarily	have	to	be	pure	or	statically	typed	in	order	to
realise	the	simplicity,	elegance,	and	conciseness	of	expression	that	we	get	from
the	functional	style.

While	 you	 can	 code	 like	 a	 functional	 hacker	 in	 a	 plethora	 of	 languages,	 a
semantically	 pure	 and	 lazy,	 and	 syntactically	 lean	 and	 terse	 language	 such	 as
Haskell	 is	still	 the	best	way	 to	 learn	how	to	 think	 like	a	 fundamentalist.	Based
upon	 decades	 of	 teaching	 experience,	 and	 backed	 by	 an	 impressive	 stream	 of
research	papers,	in	this	book	Graham	gently	guides	us	through	the	whole	gambit
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of	 key	 functional	 programming	 concepts	 such	 as	 higher-order	 functions,
recursion,	 list	 comprehensions,	 algebraic	 datatypes	 and	 pattern	 matching.	 The
book	does	not	shy	away	from	more	advanced	concepts.	If	you	are	still	confused
by	the	n-th	blog	post	that	attempts	to	explain	monads,	you	are	in	the	right	place.
Gently	 starting	 with	 the	 IO	 monad,	 Graham	 progresses	 from	 functors	 to
applicatives	using	many	concrete	 examples.	By	 the	 time	he	arrives	at	monads,
every	reader	will	feel	that	they	themselves	could	have	come	up	with	the	concept
of	 a	 monad	 as	 a	 generic	 pattern	 for	 composing	 functions	 with	 effects.	 The
chapter	on	monadic	parsers	brings	everything	together	in	a	compelling	use-case
of	parsing	arithmetic	expressions	in	the	implementation	of	a	simple	calculator.

This	 new	 edition	 not	 only	 adds	 many	more	 concrete	 examples	 of	 concepts
introduced	throughout	the	book,	it	also	introduces	the	novel	Haskell	concepts	of
foldable	and	 traversable	 types.	Readers	 familiar	with	object-oriented	 languages
routinely	use	iterables	and	visitors	to	enumerate	over	all	values	in	a	container,	or
respectively	 to	 traverse	 complex	 data	 structures.	 Haskell’s	 higher-kinded	 type
classes	 allow	 for	 a	 very	 concise	 and	 abstract	 treatment	 of	 these	 concepts	 by
means	 of	 the	 Foldable	 and	 Traversable	 classes.	 Last	 but	 not	 least,	 the	 final
chapters	of	the	book	give	an	in-depth	overview	of	lazy	evaluation	and	equational
reasoning	 to	 prove	 and	 derive	 programs.	 The	 capstone	 chapter	 on	 calculating
compilers	 especially	 appeals	 to	me	because	 it	 touches	 a	 topic	 that	has	had	my
keen	interest	for	many	decades,	ever	since	my	own	PhD	thesis	on	the	same	topic.

While	 there	 are	 plenty	 of	 alternative	 textbooks	 on	Haskell	 in	 particular	 and
functional	 programming	 in	 general,	 Graham’s	 book	 is	 unique	 amongst	 all	 of
these	in	that	it	uses	Haskell	simply	as	a	tool	for	thought,	and	never	attempts	to
sell	Haskell	or	functional	programming	as	a	silver	bullet	that	magically	solves	all
programming	problems.	 It	 focuses	 on	 elegant	 and	 concise	 expression	of	 intent
and	thus	makes	a	strong	case	of	how	pure	and	lazy	functional	programming	is	an
intelligible	medium	for	efficiently	reasoning	about	algorithms	at	a	high	level	of
abstraction.	The	skills	you	acquire	by	studying	this	book	will	make	you	a	much
better	programmer	no	matter	what	 language	you	use	 to	actually	program	in.	 In
the	past	decade,	using	 the	first	edition	of	 this	book	I	have	 taught	many	tens	of
thousands	 of	 students	 how	 to	 juggle	 with	 code.	 With	 this	 new	 edition,	 I	 am
looking	forward	to	extending	this	streak	for	at	least	another	10	years.

Erik	Meijer
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Preface

What	is	this	book?
Haskell	 is	 a	 purely	 functional	 language	 that	 allows	 programmers	 to	 rapidly
develop	software	that	is	clear,	concise	and	correct.	The	book	is	aimed	at	a	broad
spectrum	 of	 readers	 who	 are	 interested	 in	 learning	 the	 language,	 including
professional	 programmers,	 university	 students	 and	 high-school	 students.
However,	no	programming	experience	is	required	or	assumed,	and	all	concepts
are	explained	from	first	principles	with	the	aid	of	carefully	chosen	examples	and
exercises.	Most	of	the	material	in	the	book	should	be	accessible	to	anyone	over
the	age	of	around	sixteen	with	a	reasonable	aptitude	for	scientific	ideas.

How	is	it	structured?
The	book	is	divided	into	two	parts.	Part	I	introduces	the	basic	concepts	of	pure
programming	 in	 Haskell	 and	 is	 structured	 around	 the	 core	 features	 of	 the
language,	 such	 as	 types,	 functions,	 list	 comprehensions,	 recursion	 and	 higher-
order	 functions.	 Part	 II	 covers	 impure	 programming	 and	 a	 range	 of	 more
advanced	 topics,	 such	 as	monads,	 parsing,	 foldable	 types,	 lazy	 evaluation	 and
reasoning	 about	 programs.	 The	 book	 contains	 many	 extended	 programming
examples,	and	each	chapter	includes	suggestions	for	further	reading	and	a	series
of	 exercises.	 The	 appendices	 provide	 solutions	 to	 selected	 exercises,	 and	 a
summary	 of	 some	 of	 the	 most	 commonly	 used	 definitions	 from	 the	 Haskell
standard	prelude.

What	is	its	approach?
The	 book	 aims	 to	 teach	 the	 key	 concepts	 of	 Haskell	 in	 a	 clean	 and	 simple
manner.	As	this	is	a	textbook	rather	than	a	reference	manual	we	do	not	attempt
to	cover	all	aspects	of	the	language	and	its	libraries,	and	we	sometimes	choose	to
define	functions	from	first	principles	rather	than	using	library	functions.	As	the
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book	progresses	 the	 level	of	generality	 that	 is	 used	 is	gradually	 increased.	For
example,	in	the	beginning	most	of	the	functions	that	are	used	are	specialised	to
simple	 types,	 and	 later	 on	 we	 see	 how	many	 functions	 can	 be	 generalised	 to
larger	classes	of	types	by	exploiting	particular	features	of	Haskell.

How	should	it	be	read?
The	 basic	material	 in	 part	 I	 can	 potentially	 be	worked	 through	 fairly	 quickly,
particularly	 for	 those	with	 some	 prior	 programming	 experience,	 but	 additional
time	and	effort	may	be	 required	 to	absorb	some	of	material	 in	part	 II.	Readers
are	 recommended	 to	 work	 through	 all	 the	 material	 in	 part	 I,	 and	 then	 select
appropriate	material	from	part	II	depending	on	their	own	interests.	It	 is	vital	 to
write	Haskell	code	for	yourself	as	you	go	along,	as	you	can’t	 learn	to	program
just	 by	 reading.	 Try	 out	 the	 examples	 from	 each	 chapter	 as	 you	 proceed,	 and
solve	the	exercises	for	each	chapter	before	checking	the	solutions.

What’s	new	in	this	edition?
The	book	is	an	extensively	revised	and	expanded	version	of	the	first	edition.	It
has	 been	 extended	 with	 new	 chapters	 that	 cover	 more	 advanced	 aspects	 of
Haskell,	 new	 examples	 and	 exercises	 to	 further	 reinforce	 the	 concepts	 being
introduced,	and	solutions	to	selected	exercises.	The	remaining	material	has	been
completely	reworked	in	response	to	changes	in	the	language	and	feedback	from
readers.	The	new	edition	uses	the	Glasgow	Haskell	Compiler	(GHC),	and	is	fully
compatible	 with	 the	 latest	 version	 of	 the	 language,	 including	 recent	 changes
concerning	applicative,	monadic,	foldable	and	traversable	types.

How	can	it	be	used	for	teaching?
An	introductory	course	might	cover	all	of	part	I	and	a	few	selected	topics	from
part	II;	my	first-year	course	covers	chapters	1–9,	10	and	15.	An	advanced	course
might	 start	with	 a	 refresher	 of	 part	 I,	 and	 cover	 a	 selection	 of	more	 advanced
topics	from	part	II;	my	second-year	course	focuses	on	chapters	12	and	16,	and	is
taught	interactively	on	the	board.	The	website	for	the	book	provides	a	range	of
supporting	 materials,	 including	 PowerPoint	 slides	 and	 Haskell	 code	 for	 the
extended	 examples.	 Instructors	 can	 obtain	 a	 large	 collection	 of	 exams	 and
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solutions	based	on	material	in	the	book	from	solutions@cambridge.org.
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1

Introduction

In	this	chapter	we	set	the	stage	for	the	rest	of	the	book.	We	start	by	reviewing	the
notion	 of	 a	 function,	 then	 introduce	 the	 concept	 of	 functional	 programming,
summarise	 the	 main	 features	 of	 Haskell	 and	 its	 historical	 background,	 and
conclude	with	three	small	examples	that	give	a	taste	of	Haskell.

1.1 Functions
In	 Haskell,	 a	 function	 is	 a	 mapping	 that	 takes	 one	 or	 more	 arguments	 and
produces	a	single	result,	and	is	defined	using	an	equation	that	gives	a	name	for
the	function,	a	name	for	each	of	its	arguments,	and	a	body	that	specifies	how	the
result	can	be	calculated	in	terms	of	the	arguments.
For	 example,	 a	 function	double	 that	 takes	 a	 number	x	 as	 its	 argument,	 and

produces	the	result	x	+	x,	can	be	defined	by	the	following	equation:
double	x	=	x	+	x

When	 a	 function	 is	 applied	 to	 actual	 arguments,	 the	 result	 is	 obtained	 by
substituting	 these	 arguments	 into	 the	 body	 of	 the	 function	 in	 place	 of	 the
argument	names.	This	process	may	immediately	produce	a	result	that	cannot	be
further	simplified,	such	as	a	number.	More	commonly,	however,	 the	result	will
be	 an	 expression	 containing	 other	 function	 applications,	 which	 must	 then	 be
processed	in	the	same	way	to	produce	the	final	result.
For	example,	the	result	of	the	application	double	3	of	the	function	double	to

the	number	3	can	be	determined	by	the	following	calculation,	in	which	each	step
is	explained	by	a	short	comment	in	curly	parentheses:

double	3

= {	applying	double	}
3	+	3

= {	applying	+	}
6
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Similarly,	the	result	of	the	nested	application	double	(double	2)	in	which	the
function	double	is	applied	twice	can	be	calculated	as	follows:

double	(double	2)

= {	applying	the	inner	double	}
double	(2	+	2)

= {	applying	+	}
double	4

= {	applying	double	}
4	+	4

= {	applying	+	}
8

Alternatively,	 the	 same	 result	 can	 also	be	 calculated	by	 starting	with	 the	outer
application	of	the	function	double	rather	than	the	inner:

double	(double	2)

= {	applying	the	outer	double	}
double	2	+	double	2

= {	applying	the	first	double	}
(2	+	2)	+	double	2

= {	applying	the	first	+	}
4	+	double	2

= {	applying	double	}
4	+	(2	+	2)

= {	applying	the	second	+	}
4	+	4

= {	applying	+	}
8

However,	 this	 approach	 requires	 two	 more	 steps	 than	 our	 original	 version,
because	 the	 expression	 double	 2	 is	 duplicated	 in	 the	 first	 step	 and	 hence
simplified	 twice.	 In	 general,	 the	 order	 in	 which	 functions	 are	 applied	 in	 a
calculation	 does	 not	 affect	 the	 value	 of	 the	 final	 result,	 but	 it	 may	 affect	 the
number	of	steps	required,	and	whether	the	calculation	process	terminates.	These
issues	 are	 explored	 in	 more	 detail	 when	 we	 consider	 how	 expressions	 are
evaluated	in	chapter	15.

1.2 Functional	programming
What	 is	 functional	 programming?	Opinions	 differ,	 and	 it	 is	 difficult	 to	 give	 a
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precise	definition.	Generally	speaking,	however,	functional	programming	can	be
viewed	as	a	style	of	programming	in	which	the	basic	method	of	computation	is
the	 application	 of	 functions	 to	 arguments.	 In	 turn,	 a	 functional	 programming
language	is	one	that	supports	and	encourages	the	functional	style.
To	illustrate	these	ideas,	let	us	consider	the	task	of	computing	the	sum	of	the

integers	 (whole	 numbers)	 between	 one	 and	 some	 larger	 number	 n.	 In	 many
current	 programming	 languages,	 this	 would	 normally	 be	 achieved	 using	 two
integer	 variables	 whose	 values	 can	 be	 changed	 over	 time	 by	 means	 of	 the
assignment	operator	=,	with	one	such	variable	used	to	accumulate	the	total,	and
the	other	used	to	count	from	1	to	n.	For	example,	in	Java	the	following	program
computes	the	required	sum	using	this	approach:
int	total	=	0;

for	(int	count	=	1;	count	<=	n;	count++)

total	=	total	+	count;

That	is,	we	first	initialise	an	integer	variable	total	to	zero,	and	then	enter	a	loop
that	ranges	an	integer	variable	count	from	1	to	n,	adding	the	current	value	of	the
counter	to	the	total	each	time	round	the	loop.
In	 the	 above	 program,	 the	 basic	method	 of	 computation	 is	 changing	 stored

values,	 in	 the	 sense	 that	 executing	 the	 program	 results	 in	 a	 sequence	 of
assignments.	 For	 example,	 the	 case	 of	 n	 =	 5	 gives	 the	 following	 sequence,	 in
which	the	final	value	assigned	to	the	variable	total	is	the	required	sum:
total	=	0;

count	=	1;

total	=	1;

count	=	2;

total	=	3;

count	=	3;

total	=	6;

count	=	4;

total	=	10;

count	=	5;

total	=	15;

In	general,	programming	 languages	such	as	Java	 in	which	 the	basic	method	of
computation	is	changing	stored	values	are	called	imperative	languages,	because
programs	 in	 such	 languages	 are	 constructed	 from	 imperative	 instructions	 that
specify	precisely	how	the	computation	should	proceed.
Now	 let	 us	 consider	 computing	 the	 sum	of	 the	 numbers	 between	one	 and	n

using	Haskell.	This	would	normally	be	achieved	using	two	library	functions,	one
called	[..]	that	is	used	to	produce	the	list	of	numbers	between	1	and	n,	and	the
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other	called	sum	that	is	used	to	produce	the	sum	of	this	list:
sum	[1..n]

In	 this	 program,	 the	 basic	 method	 of	 computation	 is	 applying	 functions	 to
arguments,	 in	 the	 sense	 that	 executing	 the	 program	 results	 in	 a	 sequence	 of
applications.	 For	 example,	 the	 case	 of	 n	 =	 5	 gives	 the	 following	 sequence,	 in
which	the	final	value	in	the	sequence	is	the	required	sum:

sum	[1..5]

= {	applying	[..]	}
sum	[1,2,3,4,5]

= {	applying	sum	}
1	+	2	+	3	+	4	+	5

= {	applying	+	}
15

Most	 imperative	 languages	 provide	 some	 form	 of	 support	 for	 programming
with	functions,	so	the	Haskell	program	sum	[1..n]	could	be	translated	into	such
languages.	 However,	 many	 imperative	 languages	 do	 not	 encourage
programming	 in	 the	 functional	 style.	 For	 example,	 many	 such	 languages
discourage	 or	 prohibit	 functions	 from	 being	 stored	 in	 data	 structures	 such	 as
lists,	from	constructing	intermediate	structures	such	as	the	list	of	numbers	in	the
above	 example,	 from	 taking	 functions	 as	 arguments	 or	 producing	 functions	 as
results,	 or	 from	 being	 defined	 in	 terms	 of	 themselves.	 In	 contrast,	 Haskell
imposes	no	such	restrictions	on	how	functions	can	be	used,	and	provides	a	range
of	features	to	make	programming	with	functions	both	simple	and	powerful.

1.3 Features	of	Haskell
For	 reference,	 the	 main	 features	 of	 Haskell	 are	 listed	 below,	 along	 with
particular	chapters	of	this	book	that	give	further	details.

Concise	programs	(chapters	2	and	chapters	4)
Due	to	the	high-level	nature	of	the	functional	style,	programs	written	in
Haskell	 are	 often	 much	 more	 concise	 than	 programs	 written	 in	 other
languages,	 as	 illustrated	 by	 the	 example	 in	 the	 previous	 section.
Moreover,	 the	 syntax	 of	 Haskell	 has	 been	 designed	 with	 concise
programs	 in	 mind,	 in	 particular	 by	 having	 few	 keywords,	 and	 by
allowing	 indentation	 to	 be	 used	 to	 indicate	 the	 structure	 of	 programs.
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Although	 it	 is	 difficult	 to	 make	 an	 objective	 comparison,	 Haskell
programs	 are	 often	 between	 two	 and	 ten	 times	 shorter	 than	 programs
written	in	other	languages.

Powerful	type	system	(chapters	3	and	chapters	8)
Most	modern	programming	languages	include	some	form	of	type	system
to	detect	incompatibility	errors,	such	as	erroneously	attempting	to	add	a
number	and	a	character.	Haskell	has	a	type	system	that	usually	requires
little	type	information	from	the	programmer,	but	allows	a	large	class	of
incompatibility	errors	in	programs	to	be	automatically	detected	prior	to
their	execution,	using	a	sophisticated	process	called	type	inference.	The
Haskell	 type	 system	 is	 also	 more	 powerful	 than	 most	 languages,
supporting	 very	 general	 forms	 of	polymorphism	 and	overloading,	 and
providing	a	wide	range	of	special	purpose	features	concerning	types.

List	comprehensions	(chapter	5)
One	 of	 the	 most	 common	 ways	 to	 structure	 and	 manipulate	 data	 in
computing	is	using	lists	of	values.	To	this	end,	Haskell	provides	lists	as
a	 basic	 concept	 in	 the	 language,	 together	 with	 a	 simple	 but	 powerful
comprehension	 notation	 that	 constructs	 new	 lists	 by	 selecting	 and
filtering	 elements	 from	 one	 or	 more	 existing	 lists.	 Using	 the
comprehension	notation	allows	many	common	 functions	on	 lists	 to	be
defined	 in	 a	 clear	 and	 concise	 manner,	 without	 the	 need	 for	 explicit
recursion.

Recursive	functions	(chapter	6)
Most	 programs	 involve	 some	 form	 of	 looping.	 In	 Haskell,	 the	 basic
mechanism	by	which	looping	is	achieved	is	through	recursive	functions
that	 are	 defined	 in	 terms	 of	 themselves.	 It	 can	 take	 some	 time	 to	 get
used	 to	 recursion,	 particularly	 for	 those	 with	 experience	 of
programming	 in	other	 styles.	But	 as	we	 shall	 see,	many	 computations
have	 a	 simple	 and	 natural	 definition	 in	 terms	 of	 recursive	 functions,
especially	 when	 pattern	 matching	 and	 guards	 are	 used	 to	 separate
different	cases	into	different	equations.

Higher-order	functions	(chapter	7)
Haskell	 is	 a	 higher-order	 functional	 language,	 which	 means	 that
functions	can	freely	take	functions	as	arguments	and	produce	functions
as	 results.	Using	 higher-order	 functions	 allows	 common	programming
patterns,	 such	 as	 composing	 two	 functions,	 to	 be	 defined	 as	 functions
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within	 the	 language	 itself.	More	 generally,	 higher-order	 functions	 can
be	used	to	define	domain-specific	languages	within	Haskell	itself,	such
as	for	list	processing,	interactive	programming,	and	parsing.

Effectful	functions	(chapters	10	and	chapters	12)
Functions	 in	 Haskell	 are	 pure	 functions	 that	 take	 all	 their	 inputs	 as
arguments	 and	 produce	 all	 their	 outputs	 as	 results.	 However,	 many
programs	 require	 some	 formof	 side	 effect	 that	 would	 appear	 to	 be	 at
odds	with	purity,	 such	 as	 reading	 input	 from	 the	keyboard,	 or	writing
output	 to	 the	screen,	while	 the	program	is	 running.	Haskell	provides	a
uniform	 framework	 for	 programming	 with	 effects,	 without
compromising	 the	 purity	 of	 functions,	 based	 upon	 the	 use	 of	monads
and	applicatives.

Generic	functions	(chapters	12	and	chapters	14)
Most	 languages	 allow	 functions	 to	 be	 defined	 that	 are	generic	 over	 a
range	of	simple	types,	such	as	different	forms	of	numbers.	However,	the
Haskell	type	system	also	supports	functions	that	are	generic	over	much
richer	kinds	of	 structures.	For	example,	 the	 language	provides	a	 range
of	 library	 functions	 that	 can	 be	 used	with	 any	 type	 that	 is	 functorial,
applicative,	 monadic,	 foldable,	 or	 traversable,	 and	 moreover,	 allows
new	structures	and	generic	functions	over	them	to	be	defined.

Lazy	evaluation	(chapter	15)
Haskell	programs	are	executed	using	a	technique	called	lazy	evaluation,
which	is	based	upon	the	idea	that	no	computation	should	be	performed
until	 its	 result	 is	 actually	 required.	 As	 well	 as	 avoiding	 unnecessary
computation,	lazy	evaluation	ensures	that	programs	terminate	whenever
possible,	 encourages	 programming	 in	 a	 modular	 style	 using
intermediate	data	structures,	and	even	allows	programming	with	infinite
structures.

Equational	reasoning	(chapters	16	and	chapters	17)
Because	 programs	 in	 Haskell	 are	 pure	 functions,	 simple	 equational
reasoning	 techniques	 can	 be	 used	 to	 execute	 programs,	 to	 transform
programs,	 to	 prove	 properties	 of	 programs,	 and	 even	 to	 calculate
programs	 directly	 from	 specifications	 of	 their	 intended	 behaviour.
Equational	 reasoning	 is	particularly	powerful	when	combined	with	 the
use	 of	 induction	 to	 reason	 about	 functions	 that	 are	 defined	 using
recursion.
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1.4 Historical	background
Many	of	the	features	of	Haskell	are	not	new,	but	were	first	introduced	by	other
languages.	 To	 help	 place	 Haskell	 in	 context,	 some	 of	 the	 key	 historical
developments	related	to	the	language	are	briefly	summarised	below:

In	the	1930s,	Alonzo	Church	developed	the	lambda	calculus,	a	simple	but
powerful	mathematical	theory	of	functions.
In	the	1950s,	John	McCarthy	developed	Lisp	(“LISt	Processor”),	generally
regarded	 as	 being	 the	 first	 functional	 programming	 language.	 Lisp	 had
some	influences	from	the	lambda	calculus,	but	still	retained	the	concept	of
variable	assignment	as	a	central	feature	of	the	language.
In	the	1960s,	Peter	Landin	developed	ISWIM	(“If	you	See	What	I	Mean”),
the	 first	 pure	 functional	 programming	 language,	 based	 strongly	 on	 the
lambda	calculus	and	having	no	variable	assignments.
In	 the	 1970s,	 John	 Backus	 developed	 FP	 (“Functional	 Programming”),	 a
functional	programming	 language	 that	particularly	emphasised	 the	 idea	of
higher-order	functions	and	reasoning	about	programs.
Also	 in	 the	 1970s,	 Robin	 Milner	 and	 others	 developed	 ML	 (“Meta-
Language”),	 the	 first	 of	 the	 modern	 functional	 programming	 languages,
which	introduced	the	idea	of	polymorphic	types	and	type	inference.
In	 the	 1970s	 and	 1980s,	 David	 Turner	 developed	 a	 number	 of	 lazy
functional	 programming	 languages,	 culminating	 in	 the	 commercially
produced	language	Miranda	(meaning	“admirable”).
In	1987,	an	 international	committee	of	programming	 language	 researchers
initiated	 the	 development	 of	 Haskell	 (named	 after	 the	 logician	 Haskell
Curry),	a	standard	lazy	functional	programming	language.
In	 the	 1990s,	 Philip	 Wadler	 and	 others	 developed	 the	 concept	 of	 type
classes	to	support	overloading,	and	the	use	of	monads	to	handle	effects,	two
of	the	main	innovative	features	of	Haskell.
In	 2003,	 the	 Haskell	 committee	 published	 the	 Haskell	 Report,	 which
defined	a	long-awaited	stable	version	of	the	language.
In	2010,	a	revised	and	updated	of	the	Haskell	Report	was	published.	Since
then	 the	 language	 has	 continued	 to	 evolve,	 in	 response	 to	 both	 new
foundational	developments	and	new	practical	experience.

It	is	worthy	of	note	that	three	of	the	above	individuals	—	McCarthy,	Backus,	and
Milner	 —	 have	 each	 received	 the	 ACM	 Turing	 Award,	 which	 is	 generally
regarded	as	being	the	computing	equivalent	of	a	Nobel	prize.
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1.5 A	taste	of	Haskell
We	 conclude	 this	 chapter	 with	 three	 small	 examples	 that	 give	 a	 taste	 of
programming	 in	 Haskell.	 The	 examples	 involve	 processing	 lists	 of	 values	 of
different	types,	and	illustrate	different	features	of	the	language.

Summing	numbers
Recall	the	function	sum	used	earlier	in	this	chapter,	which	produces	the	sum	of	a
list	of	numbers.	In	Haskell,	sum	can	be	defined	using	two	equations:

sum	[] =	0

sum	(n:ns)	=	n	+	sum	ns

The	first	equation	states	that	the	sum	of	the	empty	list	is	zero,	while	the	second
states	 that	 the	 sum	 of	 any	 non-empty	 list	 comprising	 a	 first	 number	 n	 and	 a
remaining	 list	 of	 numbers	 ns	 is	 given	 by	 adding	 n	 and	 the	 sum	 of	 ns.	 For
example,	the	result	of	sum	[1,2,3]	can	be	calculated	as	follows:

sum	[1,2,3]

= {	applying	sum	}
1	+	sum	[2,3]

= {	applying	sum	}
1	+	(2	+	sum	[3])

= {	applying	sum	}
1	+	(2	+	(3	+	sum	[]))

= {	applying	sum	}
1	+	(2	+	(3	+	0))

= {	applying	+	}
6

Note	 that	 even	 though	 the	 function	 sum	 is	 defined	 in	 terms	 of	 itself	 and	 is
hence	recursive,	 it	does	not	 loop	forever.	 In	particular,	each	application	of	sum
reduces	the	length	of	the	argument	list	by	one,	until	the	list	eventually	becomes
empty,	 at	 which	 point	 the	 recursion	 stops	 and	 the	 additions	 are	 performed.
Returning	 zero	 as	 the	 sum	of	 the	 empty	 list	 is	 appropriate	 because	 zero	 is	 the
identity	for	addition.	That	is,	0	+	x	=	x	and	x	+	0	=	x	for	any	number	x.
In	Haskell,	every	function	has	a	type	that	specifies	the	nature	of	its	arguments

and	results,	which	 is	automatically	 inferred	from	the	definition	of	 the	function.
For	example,	the	function	sum	defined	above	has	the	following	type:
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Num	a	=>	[a]	->	a

This	type	states	that	for	any	type	a	of	numbers,	sum	is	a	function	that	maps	a	list
of	such	numbers	to	a	single	such	number.	Haskell	supports	many	different	types
of	numbers,	including	integers	such	as	123,	and	floating-point	numbers	such	as
3.14159.	Hence,	for	example,	sum	could	be	applied	to	a	list	of	integers,	as	in	the
calculation	above,	or	to	a	list	of	floating-point	numbers.
Types	 provide	 useful	 information	 about	 the	 nature	 of	 functions,	 but,	 more

importantly,	 their	 use	 allows	 many	 errors	 in	 programs	 to	 be	 automatically
detected	 prior	 to	 executing	 the	 programs	 themselves.	 In	 particular,	 for	 every
occurrence	of	function	application	in	a	program,	a	check	is	made	that	the	type	of
the	 actual	 arguments	 is	 compatible	 with	 the	 type	 of	 the	 function	 itself.	 For
example,	 attempting	 to	 apply	 the	 function	sum	 to	 a	 list	 of	 characters	would	be
reported	as	an	error,	because	characters	are	not	a	type	of	numbers.

Sorting	values
Now	 let	 us	 consider	 a	 more	 sophisticated	 function	 concerning	 lists,	 which
illustrates	 a	 number	 of	 other	 aspects	 of	 Haskell.	 Suppose	 that	 we	 define	 a
function	called	qsort	by	the	following	two	equations:

In	this	definition,	++	is	an	operator	that	appends	two	lists	together;	for	example,
[1,2,3]	++	[4,5]	=	[1,2,3,4,5].	In	turn,	where	is	a	keyword	that	introduces
local	definitions,	 in	this	case	a	list	smaller	comprising	all	elements	a	from	the
list	xs	that	are	less	than	or	equal	to	x,	together	with	a	list	larger	comprising	all
elements	 b	 from	 xs	 that	 are	 greater	 than	 x.	 For	 example,	 if	 x	 =	 3	 and	 xs	 =
[5,1,4,2],	then	smaller	=	[1,2]	and	larger	=	[5,4].
What	does	qsort	actually	do?	First	of	all,	we	note	that	it	has	no	effect	on	lists

with	a	single	element,	in	the	sense	that	qsort	[x]	=	[x]	for	any	x.	It	is	easy	to
verify	this	property	using	a	simple	calculation:

qsort	[x]

= {	applying	qsort	}
qsort	[]	++	[x]	++	qsort	[]

= {	applying	qsort	}
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[]	++	[x]	++	[]

= {	applying	++	}
[x]

In	turn,	we	now	work	through	the	application	of	qsort	to	an	example	list,	using
the	above	property	to	simplify	the	calculation:

qsort	[3,5,1,4,2]

= {	applying	qsort	}
qsort	[1,2]	++	[3]	++	qsort	[5,4]

= {	applying	qsort	}
(qsort	[]	++	[1]	++	qsort	[2])	++	[3]

++	(qsort	[4]	++	[5]	++	qsort	[])

= {	applying	qsort,	above	property}
([]	++	[1]	++	[2])	++	[3]	++	([4]	++	[5]	++	[])

= {	applying	++	}
[1,2]	++	[3]	++	[4,5]

= {	applying	++	}
[1,2,3,4,5]

In	 summary,	 qsort	 has	 sorted	 the	 example	 list	 into	 numerical	 order.	 More
generally,	 this	 function	 produces	 a	 sorted	 version	 of	 any	 list	 of	 numbers.	 The
first	 equation	 for	 qsort	 states	 that	 the	 empty	 list	 is	 already	 sorted,	 while	 the
second	states	that	any	non-empty	list	can	be	sorted	by	inserting	the	first	number
between	 the	 two	 lists	 that	 result	 from	 sorting	 the	 remaining	 numbers	 that	 are
smaller	 and	 larger	 than	 this	 number.	 This	 method	 of	 sorting	 is	 called
quicksort,	and	is	one	of	the	best	such	methods	known.
The	above	implementation	of	quicksort	is	an	excellent	example	of	the	power

of	Haskell,	being	both	clear	and	concise.	Moreover,	 the	 function	qsort	 is	 also
more	 general	 than	might	 be	 expected,	 being	 applicable	 not	 just	with	 numbers,
but	with	any	type	of	ordered	values.	More	precisely,	the	type
qsort	::	Ord	a	=>	[a]	->	[a]

states	 that,	 for	 any	 type	 a	 of	 ordered	 values,	 qsort	 is	 a	 function	 that	 maps
between	 lists	of	 such	values.	Haskell	 supports	many	different	 types	of	ordered
values,	 including	 numbers,	 single	 characters	 such	 as	 ’a’,	 and	 strings	 of
characters	such	as	"abcde".	Hence,	for	example,	 the	function	qsort	could	also
be	used	to	sort	a	list	of	characters,	or	a	list	of	strings.

Sequencing	actions
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Our	 third	 and	 final	 example	 further	 emphasises	 the	 level	 of	 precision	 and
generality	that	can	be	achieved	in	Haskell.	Consider	a	function	called	seqn	that
takes	a	list	of	input/output	actions,	such	as	reading	or	writing	a	single	character,
performs	each	of	these	actions	in	sequence,	and	returns	a	list	of	resulting	values.
In	Haskell,	this	function	can	be	defined	as	follows:

These	two	equations	state	that	if	the	list	of	actions	is	empty	we	return	the	empty
list	of	results,	otherwise	we	perform	the	first	action	in	the	list,	then	perform	the
remaining	actions,	and	 finally	 return	 the	 list	of	 results	 that	were	produced.	For
example,	 the	 expression	 seqn	 [getChar,getChar,getChar]	 reads	 three
characters	 from	 the	 keyboard	 using	 the	 action	 getChar	 that	 reads	 a	 single
character,	and	returns	a	list	containing	the	three	characters.
The	interesting	aspect	of	the	function	seqn	is	its	type.	One	possible	type	that

can	inferred	from	the	above	definition	is	the	following:
seqn	::	[IO	a]	->	IO	[a]

This	 type	 states	 that	seqn	maps	a	 list	of	IO	 (input/output)	actions	 that	produce
results	of	some	type	a	 to	a	single	IO	action	that	produces	a	 list	of	such	results,
which	captures	the	high-level	behaviour	of	seqn	in	a	clear	and	concise	manner.
More	importantly,	however,	the	type	also	makes	explicit	that	the	function	seqn
involves	 the	 side	 effect	 of	 performing	 input/output	 actions.	Using	 types	 in	 this
manner	to	keep	a	clear	distinction	between	functions	that	are	pure	and	those	that
involve	side	effects	is	a	central	aspect	of	Haskell,	and	brings	important	benefits
in	terms	of	both	programming	and	reasoning.
In	 fact,	 the	 function	 seqn	 is	 more	 general	 than	 it	 may	 initially	 appear.	 In

particular,	the	manner	in	which	the	function	is	defined	is	not	specific	to	the	case
of	 input/output	 actions,	 but	 is	 equally	valid	 for	 other	 forms	of	 effects	 too.	For
example,	it	can	also	be	used	to	sequence	actions	that	may	change	stored	values,
fail	 to	 succeed,	 write	 to	 a	 log	 file,	 and	 so	 on.	 This	 flexibility	 is	 captured	 in
Haskell	by	means	of	the	following	more	general	type:

seqn	::	Monad	m	=>	[m	a]	->	m	[a]

That	is,	for	any	monadic	 type	m,	of	which	IO	 is	just	one	example,	seqn	maps	a
list	of	actions	of	type	m	a	into	a	single	action	that	returns	a	list	of	values	of	type
a.	 Being	 able	 to	 define	 generic	 functions	 such	 as	 seqn	 that	 can	 be	 used	with
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different	kinds	of	effects	is	a	key	feature	of	Haskell.

1.6 Chapter	remarks
The	 Haskell	 Report	 is	 freely	 available	 from	 http://www.haskell.org.	 More
detailed	 historical	 accounts	 of	 the	 development	 of	 functional	 languages	 in
general,	and	Haskell	in	particular,	are	given	in	[1]	and	[2].

1.7 Exercises
1. Give	another	possible	calculation	for	the	result	of	double	(double	2).

2. Show	that	sum	[x]	=	x	for	any	number	x.

3. Define	a	function	product	that	produces	the	product	of	a	list	of	numbers,
and	show	using	your	definition	that	product	[2,3,4]	=	24.

4. How	 should	 the	 definition	 of	 the	 function	 qsort	 be	modified	 so	 that	 it
produces	a	reverse	sorted	version	of	a	list?

5. What	would	be	the	effect	of	replacing	<=	by	<	in	the	original	definition	of
qsort?	Hint:	consider	the	example	qsort	[2,2,3,1,1].

Solutions	to	exercises	1–3	are	given	in	appendix	A.
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2

First	steps

In	 this	 chapter	 we	 take	 our	 first	 proper	 steps	 with	 Haskell.	 We	 start	 by
introducing	the	GHC	system	and	the	standard	prelude,	then	explain	the	notation
for	 function	 application,	 develop	 our	 first	 Haskell	 script,	 and	 conclude	 by
discussing	a	number	of	syntactic	conventions	concerning	scripts.

2.1 Glasgow	Haskell	Compiler
As	we	saw	in	the	previous	chapter,	small	Haskell	programs	can	be	executed	by
hand.	 In	 practice,	 however,	 we	 usually	 require	 a	 system	 that	 can	 execute
programs	automatically.	 In	 this	book	we	use	 the	Glasgow	Haskell	Compiler,	 a
state-of-the-art,	open	source	implementation	of	Haskell.
The	system	has	two	main	components:	a	batch	compiler	called	GHC,	and	an

interactive	interpreter	called	GHCi.	We	will	primarily	use	the	interpreter	in	this
book,	as	its	interactive	nature	makes	it	well	suited	for	teaching	and	prototyping
purposes,	 and	 its	 performance	 is	 sufficient	 for	 most	 of	 our	 applications.
However,	 if	 greater	 performance	 or	 a	 stand-alone	 executable	 version	 of	 a
Haskell	 program	 is	 required,	 the	 compiler	 itself	 can	be	used.	For	 example,	we
will	use	the	compiler	in	extended	programming	examples	in	chapters	9	and	11.

2.2 Installing	and	starting
The	 Glasgow	 Haskell	 Compiler	 is	 freely	 available	 for	 a	 range	 of	 operating
systems	from	the	Haskell	home	page,	http://www.haskell.org.	For	 first	 time
users	 we	 recommend	 downloading	 the	 Haskell	 Platform,	 which	 provides	 a
convenient	 means	 to	 install	 the	 system	 and	 a	 collection	 of	 commonly	 used
libraries.	 More	 advanced	 users	 may	 prefer	 to	 install	 the	 system	 and	 libraries
manually.
Once	installed,	the	interactive	GHCi	system	can	be	started	from	the	terminal
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command	prompt,	such	as	$,	by	simply	typing	ghci:
$	ghci

All	being	well,	a	welcome	message	will	then	be	displayed:
GHCi,	 version	 A.B.C:	 http://www.haskell.org/ghc/	 :?	 for	 help

Prelude>

The	GHCi	prompt	>	 indicates	 that	 the	system	is	now	waiting	for	 the	user	 to
enter	an	expression	to	be	evaluated.	For	example,	it	can	be	used	as	a	calculator
to	evaluate	simple	numeric	expressions:
>	2+3*4

14	

>	(2+3)*4

20	

>	sqrt	(3^2	+	4^2)

5.0

Following	 normal	 mathematical	 convention,	 in	 Haskell	 exponentiation	 is
assumed	to	have	higher	priority	 than	multiplication	and	division,	which	in	 turn
have	higher	priority	than	addition	and	subtraction.	For	example,	2*3^4	means	2*
(3^4),	 while	 2+3*4	 means	 2+(3*4).	 Moreover,	 exponentiation	 associates	 (or
brackets)	to	the	right,	while	the	other	four	main	arithmetic	operators	associate	to
the	 left.	 For	 example,	 2^3^4	 means	 2^(3^4),	 while	 2-3+4	 means	 (2-3)+4.	 In
practice,	 however,	 it	 is	 often	 clearer	 to	 use	 explicit	 parentheses	 in	 such
expressions,	rather	than	relying	on	the	above	rules.

2.3 Standard	prelude
Haskell	comes	with	a	large	number	of	built-in	functions,	which	are	defined	in	a
library	file	called	the	standard	prelude.	In	addition	to	familiar	numeric	functions
such	as	+	and	*,	the	prelude	also	provides	a	range	of	useful	functions	that	operate
on	lists.	In	Haskell,	the	elements	of	a	list	are	enclosed	in	square	parentheses	and
are	separated	by	commas,	as	in	[1,2,3,4,5].	Some	of	the	most	commonly	used
library	functions	on	lists	are	illustrated	below.

Select	the	first	element	of	a	non-empty	list:
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>	head	[1,2,3,4,5]

1

Remove	the	first	element	from	a	non-empty	list:
>	tail	[1,2,3,4,5]

[2,3,4,5]

Select	the	nth	element	of	list	(counting	from	zero):
>	[1,2,3,4,5]	!!	2

3

Select	the	first	n	elements	of	a	list:
>	take	3	[1,2,3,4,5]

[1,2,3]

Remove	the	first	n	elements	from	a	list:
>	drop	3	[1,2,3,4,5]

[4,5]

Calculate	the	length	of	a	list:
>	length	[1,2,3,4,5]

5

Calculate	the	sum	of	a	list	of	numbers:
>	sum	[1,2,3,4,5]

15

Calculate	the	product	of	a	list	of	numbers:
>	product	[1,2,3,4,5]

120

Append	two	lists:
>	[1,2,3]	++	[4,5]

[1,2,3,4,5]

Reverse	a	list:
>	reverse	[1,2,3,4,5]

[5,4,3,2,1]

As	a	useful	reference	guide,	appendix	B	presents	some	of	the	most	commonly
used	definitions	from	the	standard	prelude.

2.4 Function	application
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In	mathematics,	the	application	of	a	function	to	its	arguments	is	usually	denoted
by	 enclosing	 the	 arguments	 in	 parentheses,	 while	 the	 multiplication	 of	 two
values	 is	often	denoted	silently,	by	writing	 the	 two	values	next	 to	one	another.
For	example,	in	mathematics	the	expression

f(a,	b)	+	c	d

means	apply	the	function	 f	 to	 two	arguments	a	and	b,	and	add	the	result	 to	 the
product	 of	 c	 and	 d.	 Reflecting	 its	 central	 status	 in	 the	 language,	 function
application	in	Haskell	is	denoted	silently	using	spacing,	while	the	multiplication
of	 two	 values	 is	 denoted	 explicitly	 using	 the	 operator	 *.	 For	 example,	 the
expression	above	would	be	written	in	Haskell	as	follows:
f	a	b	+	c*d

Moreover,	function	application	has	higher	priority	than	all	other	operators	in	the
language.	For	example,	f	a	+	b	means	(f	a)	+	b	rather	than	f	(a	+	b).	The
following	table	gives	a	few	further	examples	to	illustrate	the	differences	between
function	application	in	mathematics	and	in	Haskell:

Note	that	parentheses	are	still	required	in	the	Haskell	expression	f	(g	x)	above,
because	f	g	x	on	its	own	would	be	interpreted	as	the	application	of	the	function
f	 to	 two	 arguments	 g	 and	 x,	 whereas	 the	 intention	 is	 that	 f	 is	 applied	 to	 one
argument,	 namely	 the	 result	 of	 applying	 the	 function	 g	 to	 an	 argument	 x.	 A
similar	remark	holds	for	the	expression	f	x	(g	y).

2.5 Haskell	scripts
As	well	as	 the	functions	provided	in	 the	standard	prelude,	 it	 is	also	possible	 to
define	 new	 functions.	 New	 functions	 are	 defined	 in	 a	 script,	 a	 text	 file
comprising	 a	 sequence	 of	 definitions.	 By	 convention,	 Haskell	 scripts	 usually
have	 a	 .hs	 suffix	 on	 their	 filename	 to	 differentiate	 them	 from	 other	 kinds	 of
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files.	This	is	not	mandatory,	but	is	useful	for	identification	purposes.

My	first	script
When	developing	a	Haskell	 script,	 it	 is	useful	 to	keep	 two	windows	open,	one
running	 an	 editor	 for	 the	 script,	 and	 the	 other	 running	GHCi.	As	 an	 example,
suppose	 that	 we	 start	 a	 text	 editor	 and	 type	 in	 the	 following	 two	 function
definitions,	and	save	the	script	to	a	file	called	test.hs:

double	x	=	x	+	x	

quadruple	x	=	double	(double	x)

In	 turn,	suppose	 that	we	 leave	 the	editor	open,	and	 in	another	window	start	up
the	GHCi	system	and	instruct	it	to	load	the	new	script:
$	ghci	test.hs

Now	both	the	standard	prelude	and	the	script	test.hs	are	loaded,	and	functions
from	both	can	be	freely	used.	For	example:
>	quadruple	10

40	

>	take	(double	2)	[1,2,3,4,5]

[1,2,3,4]

Now	suppose	that	we	leave	GHCi	open,	return	to	the	editor,	add	the	following
two	function	definitions	to	those	already	typed	in,	and	resave	the	file:

factorial	n	=	product	[1..n]	

average	ns	=	sum	ns	‘div‘	length	ns

We	could	 also	have	defined	average	ns	=	div	(sum	ns)	(length	ns),	 but
writing	div	between	its	two	arguments	is	more	natural.	In	general,	any	function
with	two	arguments	can	be	written	between	its	arguments	by	enclosing	the	name
of	the	function	in	single	back	quotes	‘	‘.
GHCi	 does	 not	 automatically	 reload	 scripts	 when	 they	 are	 modified,	 so	 a

reload	command	must	be	executed	before	the	new	definitions	can	be	used:

>	:reload	
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>	factorial	10

3628800	

>	average	[1,2,3,4,5]

3

For	reference,	the	table	in	figure	2.1	summarises	the	meaning	of	some	of	the
most	 commonly	 used	 GHCi	 commands.	 Note	 that	 any	 command	 can	 be
abbreviated	by	its	first	character.	For	example,	:load	can	be	abbreviated	by	:l.
The	 command	 :set	 editor	 is	 used	 to	 set	 the	 text	 editor	 that	 is	 used	 by	 the
system.	For	example,	if	you	wish	to	use	vim	you	would	enter	:set	editor	vim.
The	command	:type	is	explained	in	more	detail	in	the	next	chapter.

Figure	2.1	Useful	GHCi	commands

Naming	requirements
When	defining	a	new	function,	the	names	of	the	function	and	its	arguments	must
begin	with	a	lower-case	letter,	but	can	then	be	followed	by	zero	or	more	letters
(both	lower-	and	upper-case),	digits,	underscores,	and	forward	single	quotes.	For
example,	the	following	are	all	valid	names:

myFun fun1 arg_2 x’

The	 following	 list	 of	 keywords	 have	 a	 special	 meaning	 in	 the	 language,	 and
cannot	be	used	as	the	names	of	functions	or	their	arguments:
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By	convention,	list	arguments	in	Haskell	usually	have	the	suffix	s	on	their	name
to	indicate	that	they	may	contain	multiple	values.	For	example,	a	list	of	numbers
might	be	named	ns,	 a	 list	of	arbitrary	values	might	be	named	xs,	 and	a	 list	of
lists	of	characters	might	be	named	css.

The	layout	rule
Within	 a	 script,	 each	 definition	 at	 the	 same	 level	 must	 begin	 in	 precisely	 the
same	column.	This	 layout	 rule	makes	 it	 possible	 to	 determine	 the	grouping	of
definitions	from	their	indentation.	For	example,	in	the	script
a	=	b	+	c

where

b	=	1

c	=	2

d	=	a	*	2

it	is	clear	from	the	indentation	that	b	and	c	are	local	definitions	for	use	within	the
body	 of	 a.	 If	 desired,	 such	 grouping	 can	 be	 made	 explicit	 by	 enclosing	 a
sequence	of	definitions	in	curly	parentheses	and	separating	each	definition	by	a
semi-colon.	For	example,	the	above	script	could	also	be	written	as
a	=	b	+	c

where

{b	=	1;

c	=	2};

d	=	a	*	2

or	even	be	combined	into	a	single	line:
a	=	b	+	c	where	{b	=	1;	c	=	2};	d	=	a	*	2

In	 general,	 however,	 it	 is	 usually	 preferable	 to	 rely	 on	 the	 layout	 rule	 to
determine	the	grouping	of	definitions,	rather	than	using	explicit	syntax.

Tabs
Tab	characters	 can	 cause	problems	 in	 scripts,	 because	 layout	 is	 significant	 but
different	 text	 editors	 interpret	 tabs	 in	 different	 ways.	 For	 this	 reason,	 it	 is
recommended	 to	 avoid	 using	 tabs	 when	 indenting	 definitions,	 and	 the	 GHC
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system	issues	a	warning	message	if	they	are	used.	If	you	do	wish	to	use	tabs	in
your	scripts,	it	is	best	to	configure	your	editor	to	automatically	convert	them	to
spaces.	Haskell	assumes	that	tab	stops	are	8	characters	wide.

Comments
In	 addition	 to	 new	 definitions,	 scripts	 can	 also	 contain	 comments	 that	will	 be
ignored	 by	 the	 compiler.	 Haskell	 supports	 two	 kinds	 of	 comments,	 called
ordinary	and	nested.	Ordinary	comments	begin	with	the	symbol	--	and	extend	to
the	end	of	the	current	line,	as	in	the	following	examples:
--	Factorial	of	a	positive	integer:

factorial	n	=	product	[1..n]	

--	Average	of	a	list	of	integers:

average	ns	=	sum	ns	‘div‘	length	ns

Nested	comments	begin	and	end	with	the	symbols	{-	and	-},	may	span	multiple
lines,	 and	 may	 be	 nested	 in	 the	 sense	 that	 comments	 can	 contain	 other
comments.	 Nested	 comments	 are	 particularly	 useful	 for	 temporarily	 removing
sections	of	definitions	from	a	script,	as	in	the	following	example:

{–
double	x	=	x	+	x	

quadruple	x	=	double	(double	x)

–}

2.6 Chapter	remarks
In	addition	to	the	GHC	system,	http://www.haskell.org	contains	a	wide	range
of	 other	 useful	 resources	 concerning	 Haskell,	 including	 community	 activities,
language	documentation,	and	news	items.

2.7 Exercises
1. Work	through	the	examples	from	this	chapter	using	GHCi.
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2. Parenthesise	the	following	numeric	expressions:

2^3*4	

2*3+4*5	

2+3*4^5

3. The	script	below	contains	three	syntactic	errors.	Correct	these	errors	and
then	check	that	your	script	works	properly	using	GHCi.

N	=	a	’div’	length	xs

where

a	=	10

xs	=	[1,2,3,4,5]

4. The	library	function	last	selects	the	last	element	of	a	non-empty	list;	for
example,	last	[1,2,3,4,5]	=	5.	Show	how	the	function	last	could	be
defined	in	terms	of	the	other	library	functions	introduced	in	this	chapter.
Can	you	think	of	another	possible	definition?

5. The	library	function	init	removes	the	last	element	from	a	non-empty	list;
for	 example,	 init	 [1,2,3,4,5]	 =	 [1,2,3,4].	 Show	 how	 init	 could
similarly	be	defined	in	two	different	ways.

Solutions	to	exercises	2–4	are	given	in	appendix	A.
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3

Types	and	classes

In	 this	 chapter	 we	 introduce	 types	 and	 classes,	 two	 of	 the	 most	 fundamental
concepts	 in	Haskell.	We	 start	 by	 explaining	what	 types	 are	 and	 how	 they	 are
used	in	Haskell,	 then	present	a	number	of	basic	 types	and	ways	 to	build	 larger
types	 by	 combining	 smaller	 types,	 discuss	 function	 types	 in	 more	 detail,	 and
conclude	with	the	concepts	of	polymorphic	types	and	type	classes.

3.1 Basic	concepts
A	type	is	a	collection	of	related	values.	For	example,	the	type	Bool	contains	the
two	 logical	 values	False	 and	True,	while	 the	 type	Bool	->	Bool	 contains	 all
functions	that	map	arguments	from	Bool	to	results	from	Bool,	such	as	the	logical
negation	function	not.	We	use	the	notation	v	::	T	to	mean	that	v	is	a	value	in
the	type	T,	and	say	that	v	has	type	T.	For	example:
False	::	Bool

True	::	Bool

not	::	Bool	->	Bool

More	generally,	 the	symbol	::	can	also	be	used	with	expressions	that	have	not
yet	been	evaluated,	in	which	case	the	notation	e	::	T	means	that	evaluation	of
the	expression	e	will	produce	a	value	of	type	T.	For	example:
not	False	::	Bool

not	True	::	Bool

not	(not	False)	::	Bool

In	Haskell,	 every	 expression	must	 have	 a	 type,	which	 is	 calculated	 prior	 to
evaluating	 the	 expression	 by	 a	 process	 called	 type	 inference.	 The	 key	 to	 this
process	is	the	following	simple	typing	rule	for	function	application,	which	states
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that	if	f	is	a	function	that	maps	arguments	of	type	A	to	results	of	type	B,	and	e	is
an	expression	of	type	A,	then	the	application	f	e	has	type	B:

For	example,	the	typing	not	False	::	Bool	can	be	inferred	from	this	rule	using
the	fact	that	not	::	Bool	->	Bool	and	False	::	Bool.	On	the	other	hand,	the
expression	not	3	does	not	have	a	type	under	the	above	rule,	because	this	would
require	 that	 3	 ::	 Bool,	 which	 is	 not	 valid	 because	 3	 is	 not	 a	 logical	 value.
Expressions	 such	 as	 not	 3	 that	 do	 not	 have	 a	 type	 are	 said	 to	 contain	 a	 type
error,	and	are	deemed	to	be	invalid	expressions.
Because	 type	 inference	precedes	evaluation,	Haskell	programs	are	 type	 safe,

in	the	sense	that	type	errors	can	never	occur	during	evaluation.	In	practice,	type
inference	 detects	 a	 very	 large	 class	 of	 program	 errors,	 and	 is	 one	 of	 the	most
useful	features	of	Haskell.	Note,	however,	that	the	use	of	type	inference	does	not
eliminate	 the	possibility	 that	other	kinds	of	error	may	occur	during	evaluation.
For	 example,	 the	 expression	 1	 ‘div‘	 0	 is	 well-typed,	 but	 produces	 an	 error
when	evaluated	because	the	result	of	division	by	zero	is	undefined.
The	 downside	 of	 type	 safety	 is	 that	 some	 expressions	 that	 evaluate

successfully	 will	 be	 rejected	 on	 type	 grounds.	 For	 example,	 the	 conditional
expression	if	True	then	1	else	False	evaluates	to	the	number	1,	but	contains
a	 type	 error	 and	 is	 hence	 deemed	 invalid.	 In	 particular,	 the	 typing	 rule	 for	 a
conditional	 expression	 requires	 that	 both	 possible	 results	 have	 the	 same	 type,
whereas	in	this	case	the	first	such	result,	1,	is	a	number	and	the	second,	False,	is
a	 logical	 value.	 In	practice,	 however,	 programmers	quickly	 learn	how	 to	work
within	the	limits	of	the	type	system	and	avoid	such	problems.
In	 GHCi,	 the	 type	 of	 any	 expression	 can	 be	 displayed	 by	 preceding	 the

expression	by	the	command	:type.	For	example:
>	:type	not

not	::	Bool	->	Bool

>	:type	False

False	::	Bool

>	:type	not	False

not	False	::	Bool
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3.2 Basic	types
Haskell	 provides	 a	 number	 of	 basic	 types	 that	 are	 built-in	 to	 the	 language,	 of
which	the	most	commonly	used	are	described	below.

Bool	–	logical	values
This	type	contains	the	two	logical	values	False	and	True.

Char	–	single	characters
This	type	contains	all	single	characters	in	the	Unicode	system,	the	international
standard	 for	 representing	 text-based	 information.	 For	 example,	 it	 contains	 all
characters	on	a	normal	English	keyboard,	such	as	’a’,	’A’,	’3’	and	’_’,	as	well
as	a	number	of	control	characters	that	have	a	special	effect,	such	as	’\n’	(move
to	a	new	 line)	and	’\t’	 (move	 to	 the	next	 tab	 stop).	As	 in	most	programming
languages,	single	characters	must	be	enclosed	in	single	forward	quotes	’	’.

String	–	strings	of	characters
This	type	contains	all	sequences	of	characters,	such	as	"abc",	"1+2=3",	and	the
empty	string	"".	Again,	as	is	standard	in	most	programming	languages,	strings	of
characters	must	be	enclosed	in	double	quotes	"	".

Int	–	fixed-precision	integers
This	 type	 contains	 integers	 such	 as	 -100,	 0,	 and	 999,	 with	 a	 fixed	 amount	 of
memory	being	used	for	their	storage.	For	example,	the	GHC	system	has	values
of	 type	 Int	 in	 the	 range	 –263	 to	 263	 –	 1.	 Going	 outside	 this	 range	 can	 give
unexpected	 results.	 For	 example,	 evaluating	 2^63	 ::	 Int	 gives	 a	 negative
number	as	 the	 result,	which	 is	 incorrect.	 (The	use	of	::	 in	 this	example	 forces
the	result	to	be	an	Int	rather	than	some	other	numeric	type.)

Integer	–	arbitrary-precision	integers
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This	 type	contains	all	 integers,	with	as	much	memory	as	necessary	being	used
for	their	storage,	 thus	avoiding	the	imposition	of	lower	and	upper	limits	on	the
range	of	numbers.	For	example,	evaluating	2^63	::	Integer	using	any	Haskell
system	will	produce	the	correct	result.
Apart	 from	the	different	memory	requirements	and	precision	for	numbers	of

type	 Int	 and	 Integer,	 the	 choice	 between	 these	 two	 types	 is	 also	 one	 of
performance.	 In	 particular,	 most	 computers	 have	 built-in	 hardware	 for	 fixed-
precision	 integers,	 whereas	 arbitrary-precision	 integers	 are	 usually	 processed
using	the	slower	medium	of	software,	as	sequences	of	digits.

Float	–	single-precision	floating-point	numbers
This	 type	 contains	 numbers	 with	 a	 decimal	 point,	 such	 as	 -12.34,	 1.0,	 and
3.1415927,	 with	 a	 fixed	 amount	 of	memory	 being	 used	 for	 their	 storage.	 The
term	floating-point	comes	from	the	fact	that	the	number	of	digits	permitted	after
the	decimal	point	depends	upon	the	size	of	the	number.	For	example,	evaluating
sqrt	2	::	Float	using	GHCi	gives	the	result	1.4142135	 (the	library	function
sqrt	 calculates	 the	 square	 root	 of	 a	 floating-point	 number),	 which	 has	 seven
digits	after	 the	decimal	point,	whereas	sqrt	99999	::	Float	gives	316.2262,
which	only	has	four	digits	after	the	point.

Double	–	double-precision	floating-point	numbers
This	 type	 is	 similar	 to	 Float,	 except	 that	 twice	 as	 much	memory	 is	 used	 for
storage	 of	 these	 numbers	 to	 increase	 their	 precision.	 For	 example,	 evaluating
sqrt	2	::	Double	gives	1.4142135623730951.	Using	floating-point	numbers	is
a	 specialist	 topic	 that	 requires	 a	 careful	 treatment	 of	 rounding	 errors,	 and	 we
don’t	often	use	such	numbers	in	this	book.

We	conclude	this	section	by	noting	that	a	single	number	may	have	more	than
one	 numeric	 type.	 For	 example,	 the	 number	 3	 could	 have	 type	 Int,	 Integer,
Float	or	Double.	This	raises	the	interesting	question	of	what	type	such	numbers
should	be	assigned	during	the	process	of	type	inference,	which	will	be	answered
later	in	this	chapter	when	we	consider	type	classes.
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3.3 List	types
A	 list	 is	 a	 sequence	 of	 elements	 of	 the	 same	 type,	 with	 the	 elements	 being
enclosed	in	square	parentheses	and	separated	by	commas.	We	write	[T]	for	the
type	of	all	lists	whose	elements	have	type	T.	For	example:

[False,True,False]	::	[Bool]

[’a’,’b’,’c’,’d’]	::	[Char]

["One","Two","Three"]	::	[String]

The	number	of	elements	in	a	list	is	called	its	length.	The	list	[]	of	length	zero
is	called	 the	empty	 list,	while	 lists	of	 length	one,	 such	as	[False],	[’a’],	 and
[[]]	 are	 called	 singleton	 lists.	 Note	 that	 [[]]	 and	 []	 are	 different	 lists,	 the
former	being	a	singleton	list	comprising	the	empty	list	as	its	only	element,	and
the	latter	being	simply	the	empty	list	that	has	no	elements.
There	are	three	further	points	to	note	about	list	types.	First	of	all,	the	type	of	a

list	conveys	no	information	about	its	length.	For	example,	the	lists	[False,True]
and	 [False,True,False]	 both	 have	 type	 [Bool],	 even	 though	 they	 have
different	lengths.	Secondly,	there	are	no	restrictions	on	the	type	of	the	elements
of	 a	 list.	At	 present	we	 are	 limited	 in	 the	 range	 of	 examples	 that	we	 can	 give
because	 the	 only	 non-basic	 type	 that	 we	 have	 introduced	 at	 this	 point	 is	 list
types,	but	we	can	have	lists	of	lists,	such	as:

[[’a’,’b’],[’c’,’d’,’e’]]	::	[[Char]]

Finally,	there	is	no	restriction	that	a	list	must	have	a	finite	length.	In	particular,
due	to	the	use	of	lazy	evaluation	in	Haskell,	lists	with	an	infinite	length	are	both
natural	and	practical,	as	we	shall	see	in	chapter	15.

3.4 Tuple	types
A	tuple	 is	a	finite	sequence	of	components	of	possibly	different	types,	with	the
components	being	enclosed	in	round	parentheses	and	separated	by	commas.	We
write	(T1,T2,...,Tn)	for	the	type	of	all	tuples	whose	ith	components	have	type
Ti	for	any	i	in	the	range	1	to	n.	For	example:

(False,True)	::	(Bool,Bool)
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(False,’a’,True)	::	(Bool,Char,Bool)

("Yes",True,’a’)	::	(String,Bool,Char)

The	number	of	components	in	a	tuple	is	called	its	arity.	The	tuple	()	of	arity
zero	is	called	the	empty	tuple,	tuples	of	arity	two	are	called	pairs,	tuples	of	arity
three	are	called	triples,	and	so	on.	Tuples	of	arity	one,	such	as	(False),	are	not
permitted	because	 they	would	conflict	with	 the	use	of	parentheses	 to	make	 the
evaluation	order	explicit,	such	as	in	(1+2)*3.
In	a	 similar	manner	 to	 list	 types,	 there	are	 three	 further	points	 to	note	about

tuple	 types.	First	of	 all,	 the	 type	of	 a	 tuple	conveys	 its	 arity.	For	example,	 the
type	(Bool,Char)	contains	all	pairs	comprising	a	first	component	of	 type	Bool
and	a	second	component	of	type	Char.	Secondly,	there	are	no	restrictions	on	the
types	 of	 the	 components	 of	 a	 tuple.	 For	 example,	we	 can	 now	 have	 tuples	 of
tuples,	tuples	of	lists,	and	lists	of	tuples:

(’a’,(False,’b’))	::	(Char,(Bool,Char))

([’a’,’b’],[False,True])	::	([Char],[Bool])

[(’a’,False),(’b’,True)]	::	[(Char,Bool)]

Finally,	 note	 that	 tuples	must	 have	 a	 finite	 arity,	 in	 order	 to	 ensure	 that	 tuple
types	can	always	be	inferred	prior	to	evaluation.

3.5 Function	types
A	function	is	a	mapping	from	arguments	of	one	type	to	results	of	another	type.
We	write	T1	->	T2	for	the	type	of	all	functions	that	map	arguments	of	type	T1	to
results	of	type	T2.	For	example,	we	have:

not	::	Bool	->	Bool

even	::	Int	->	Bool

(The	 library	 function	even	decides	 if	 an	 integer	 is	even.)	Because	 there	are	no
restrictions	on	 the	 types	of	 the	arguments	and	 results	of	a	 function,	 the	 simple
notion	 of	 a	 function	 with	 a	 single	 argument	 and	 a	 single	 result	 is	 already
sufficient	 to	 handle	 the	 case	 of	 multiple	 arguments	 and	 results,	 by	 packaging
multiple	values	using	lists	or	tuples.	For	example,	we	can	define	a	function	add
that	calculates	the	sum	of	a	pair	of	integers,	and	a	function	zeroto	 that	returns
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the	list	of	integers	from	zero	to	a	given	limit,	as	follows:
add	::	(Int,Int)	->	Int

add	(x,y)	=	x+y

zeroto	::	Int	->	[Int]

zeroto	n	=	[0..n]

In	 these	 examples	 we	 have	 followed	 the	 Haskell	 convention	 of	 preceding
function	definitions	by	 their	 types,	which	serves	as	useful	documentation.	Any
such	types	provided	manually	by	the	user	are	checked	for	consistency	with	the
types	calculated	automatically	using	type	inference.
Note	that	there	is	no	restriction	that	functions	must	be	total	on	their	argument

type,	in	the	sense	that	there	may	be	some	arguments	for	which	the	result	is	not
defined.	For	example,	the	result	of	the	library	function	head	that	selects	the	first
element	of	a	list	is	undefined	if	the	list	is	empty:

>	head	[]

***	Exception:	Prelude.head:	empty	list

3.6 Curried	functions
Functions	with	multiple	arguments	can	also	be	handled	in	another,	perhaps	less
obvious	way,	by	exploiting	the	fact	that	functions	are	free	to	return	functions	as
results.	For	example,	consider	the	following	definition:

add’	::	Int	->	(Int	->	Int)

add’	x	y	=	x+y

The	type	states	 that	add’	 is	a	function	 that	 takes	an	argument	of	 type	Int,	and
returns	a	result	that	is	a	function	of	type	Int	->	Int.	The	definition	itself	states
that	add’	takes	an	integer	x	followed	by	an	integer	y,	and	returns	the	result	x+y.
More	 precisely,	 add’	 takes	 an	 integer	 x	 and	 returns	 a	 function,	which	 in	 turn
takes	an	integer	y	and	returns	the	result	x+y.
Note	that	the	function	add’	produces	the	same	final	result	as	the	function	add

from	the	previous	section,	but	whereas	add	takes	its	two	arguments	at	the	same
time	packaged	as	a	pair,	add’	takes	its	two	arguments	one	at	a	time,	as	reflected
in	the	different	types	of	the	two	functions:

add	::	(Int,Int)	->	Int

46



add’	::	Int	->	(Int	->	Int)

Functions	with	more	 than	 two	 arguments	 can	 also	 be	 handled	 using	 the	 same
technique,	by	returning	functions	that	return	functions,	and	so	on.	For	example,	a
function	mult	that	takes	three	integers	x,	y	and	z,	one	at	a	time,	and	returns	their
product,	can	be	defined	as	follows:

mult	::	Int	->	(Int	->	(Int	->	Int))

mult	x	y	z	=	x*y*z

This	definition	states	that	mult	takes	an	integer	x	and	returns	a	function,	which
in	 turn	 takes	 an	 integer	y	 and	 returns	 another	 function,	which	 finally	 takes	 an
integer	z	and	returns	the	result	x*y*z.
Functions	such	as	add’	and	mult	 that	 take	 their	arguments	one	at	a	 time	are

called	curried	functions.	As	well	as	being	interesting	in	their	own	right,	curried
functions	 are	 also	 more	 flexible	 than	 functions	 on	 tuples,	 because	 useful
functions	 can	often	be	made	by	partially	 applying	 a	 curried	 function	with	 less
than	its	full	complement	of	arguments.	For	example,	a	function	that	increments
an	integer	can	be	given	by	the	partial	application	add’	1	::	Int	->	Int	of	the
curried	function	add’	with	only	one	of	its	two	arguments.
To	avoid	excess	parentheses	when	working	with	curried	functions,	two	simple

conventions	are	adopted.	First	of	all,	the	function	arrow	->	in	types	is	assumed	to
associate	to	the	right.	For	example,	the	type

Int	->	Int	->	Int	->	Int

means
Int	->	(Int	->	(Int	->	Int))

Consequently,	 function	 application,	which	 is	 denoted	 silently	 using	 spacing,	 is
assumed	to	associate	to	the	left.	For	example,	the	application

mult	x	y	z

means
((mult	x)	y)	z

Unless	 tupling	 is	 explicitly	 required,	 all	 functions	 in	 Haskell	 with	 multiple
arguments	 are	 normally	 defined	 as	 curried	 functions,	 and	 the	 two	 conventions
above	are	used	to	reduce	the	number	of	parentheses	that	are	required.	In	chapter
4	we	will	see	how	the	meaning	of	curried	function	definitions	can	be	formalised
in	a	simple	manner	using	the	notion	of	lambda	expressions.
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3.7 Polymorphic	types
The	library	function	length	calculates	the	length	of	any	list,	irrespective	of	the
type	 of	 the	 elements	 of	 the	 list.	 For	 example,	 it	 can	 be	 used	 to	 calculate	 the
length	of	a	list	of	integers,	a	list	of	strings,	or	even	a	list	of	functions:

>	length	[1,3,5,7]

4

>	length	["Yes","No"]

2

>	length	[sin,cos,tan]

3

The	 idea	 that	length	 can	 be	 applied	 to	 lists	whose	 elements	 have	 any	 type	 is
made	precise	in	its	type	by	the	inclusion	of	a	type	variable.	Type	variables	must
begin	with	a	lower-case	letter,	and	are	usually	simply	named	a,	b,	c,	and	so	on.
For	example,	the	type	of	length	is	as	follows:

length	::	[a]	->	Int

That	 is,	 for	any	 type	a,	 the	 function	length	has	 type	[a]	->	Int.	A	 type	 that
contains	one	or	more	type	variables	is	called	polymorphic	(“of	many	forms”),	as
is	an	expression	with	such	a	type.	Hence,	[a]	->	Int	is	a	polymorphic	type	and
length	 is	 a	 polymorphic	 function.	 More	 generally,	 many	 of	 the	 functions
provided	in	the	standard	prelude	are	polymorphic.	For	example:

fst	::	(a,b)	->	a

head	::	[a]	->	a

take	::	Int	->	[a]	->	[a]

zip	::	[a]	->	[b]	->	[(a,b)]

id	::	a	->	a

The	 type	 of	 a	 polymorphic	 function	 often	 gives	 a	 strong	 indication	 about	 the
function’s	behaviour.	For	example,	from	the	type	[a]	->	[b]	->	[(a,b)]	we
can	conclude	that	zip	pairs	up	elements	from	two	lists,	although	the	type	on	its
own	doesn’t	capture	the	precise	manner	in	which	this	is	done.
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3.8 Overloaded	types
The	 arithmetic	 operator	+	 calculates	 the	 sum	of	 any	 two	numbers	 of	 the	 same
numeric	type.	For	example,	it	can	be	used	to	calculate	the	sum	of	two	integers,
or	the	sum	of	two	floating-point	numbers:

>	1	+	2

3

>	1.0	+	2.0

3.0

The	idea	that	+	can	be	applied	to	numbers	of	any	numeric	type	is	made	precise	in
its	type	by	the	inclusion	of	a	class	constraint.	Class	constraints	are	written	in	the
form	C	a,	where	C	is	the	name	of	a	class	and	a	is	a	type	variable.	For	example,
the	type	of	the	addition	operator	+	is	as	follows:

(+)	::	Num	a	=>	a	->	a	->	a

That	is,	for	any	type	a	that	is	an	instance	of	the	class	Num	of	numeric	types,	the
function	(+)	has	type	a	->	a	->	a.	(Parenthesising	an	operator	converts	it	into	a
curried	function,	as	we	shall	see	in	chapter	4.)
A	type	that	contains	one	or	more	class	constraints	is	called	overloaded,	as	is

an	expression	with	such	a	type.	Hence,	Num	a	=>	a	->	a	->	a	is	an	overloaded
type	 and	 (+)	 is	 an	 overloaded	 function.	More	 generally,	most	 of	 the	 numeric
functions	provided	in	the	prelude	are	overloaded.	For	example:

(*)	::	Num	a	=>	a	->	a	->	a

negate	::	Num	a	=>	a	->	a

abs	::	Num	a	=>	a	->	a

Numbers	themselves	are	also	overloaded.	For	example,	3	::	Num	a	=>	a	means
that	for	any	numeric	type	a,	 the	value	3	has	type	a.	In	this	manner,	the	value	3
could	be	an	 integer,	a	 floating-point	number,	or	more	generally	a	value	of	any
numeric	type,	depending	on	the	context	in	which	it	is	used.

3.9 Basic	classes
Recall	that	a	type	is	a	collection	of	related	values.	Building	upon	this	notion,	a
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class	 is	 a	 collection	 of	 types	 that	 support	 certain	 overloaded	 operations	 called
methods.	 Haskell	 provides	 a	 number	 of	 basic	 classes	 that	 are	 built-in	 to	 the
language,	 of	 which	 the	 most	 commonly	 used	 are	 described	 below.	 (More
advanced	built-in	classes	are	considered	in	part	II	of	the	book.)

Eq	–	equality	types
This	 class	 contains	 types	 whose	 values	 can	 be	 compared	 for	 equality	 and
inequality	using	the	following	two	methods:

(==)	::	a	->	a	->	Bool

(/=)	::	a	->	a	->	Bool

All	 the	 basic	 types	 Bool,	 Char,	 String,	 Int,	 Integer,	 Float,	 and	 Double	 are
instances	of	the	Eq	class,	as	are	list	and	tuple	types,	provided	that	their	element
and	component	types	are	instances.	For	example:

>	False	==	False

True

>	’a’	==	’b’

False

>	"abc"	==	"abc"

True

>	[1,2]	==	[1,2,3]

False

>	(’a’,False)	==	(’a’,False)

True

Note	that	function	types	are	not	in	general	instances	of	the	Eq	class,	because	it	is
not	feasible	in	general	to	compare	two	functions	for	equality.

Ord	–	ordered	types
This	 class	 contains	 types	 that	 are	 instances	 of	 the	 equality	 class	 Eq,	 but	 in
addition	 whose	 values	 are	 totally	 (linearly)	 ordered,	 and	 as	 such	 can	 be
compared	and	processed	using	the	following	six	methods:
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(<)	::	a	->	a	->	Bool

(<=)	::	a	->	a	->	Bool

(>)	::	a	->	a	->	Bool

(>=)	::	a	->	a	->	Bool

min	::	a	->	a	->	a

max	::	a	->	a	->	a

All	 the	 basic	 types	 Bool,	 Char,	 String,	 Int,	 Integer,	 Float,	 and	 Double	 are
instances	of	 the	Ord	 class,	 as	are	 list	 types	and	 tuple	 types,	provided	 that	 their
element	and	component	types	are	instances.	For	example:

>	False	<	True

True

>	min	’a’	’b’

’a’

>	"elegant"	<	"elephant"

True

>	[1,2,3]	<	[1,2]

False

>	(’a’,2)	<	(’b’,1)

True

>	(’a’,2)	<	(’a’,1)

False

Note	 that	 strings,	 lists	 and	 tuples	 are	 ordered	 lexicographically;	 that	 is,	 in	 the
same	way	as	words	in	a	dictionary.	For	example,	two	pairs	of	the	same	type	are
in	 order	 if	 their	 first	 components	 are	 in	 order,	 in	 which	 case	 their	 second
components	are	not	considered,	or	if	 their	first	components	are	equal,	 in	which
case	their	second	components	must	be	in	order.

Show	–	showable	types
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This	 class	 contains	 types	 whose	 values	 can	 be	 converted	 into	 strings	 of
characters	using	the	following	method:

show	::	a	->	String

All	 the	 basic	 types	 Bool,	 Char,	 String,	 Int,	 Integer,	 Float,	 and	 Double	 are
instances	of	the	Show	class,	as	are	list	types	and	tuple	types,	provided	that	their
element	and	component	types	are	instances.	For	example:

>	show	False

"False"

>	show	’a’

"’a’"

>	show	123

"123"

>	show	[1,2,3]

"[1,2,3]"

>	show	(’a’,False)

"(’a’,False)"

Read	–	readable	types
This	 class	 is	 dual	 to	 Show,	 and	 contains	 types	whose	 values	 can	 be	 converted
from	strings	of	characters	using	the	following	method:

read	::	String	->	a

All	 the	 basic	 types	 Bool,	 Char,	 String,	 Int,	 Integer,	 Float,	 and	 Double	 are
instances	of	the	Read	class,	as	are	list	types	and	tuple	types,	provided	that	their
element	and	component	types	are	instances.	For	example:

>	read	"False"	::	Bool

False

>	read	"’a’"	::	Char

’a’

>	read	"123"	::	Int

123

52



>	read	"[1,2,3]"	::	[Int]

[1,2,3]

>	read	"(’a’,False)"	::	(Char,Bool)

(’a’,False)

The	 use	 of	 ::	 in	 these	 examples	 resolves	 the	 type	 of	 the	 result,	which	would
otherwise	 not	 be	 able	 to	 be	 inferred	 by	 GHCi.	 In	 practice,	 however,	 the
necessary	 type	 information	 can	 usually	 be	 inferred	 automatically	 from	 the
context.	For	example,	 the	expression	not	(read	"False")	 requires	no	explicit
type	 information,	 because	 the	 application	 of	 the	 logical	 negation	 function	 not
implies	that	read	"False"	must	have	type	Bool.
Note	 that	 the	 result	 of	read	 is	 undefined	 if	 its	 argument	 is	 not	 syntactically

valid.	For	example,	 the	expression	not	(read	"abc")	produces	an	error	when
evaluated,	because	"abc"	cannot	be	read	as	a	logical	value:

>	not	(read	"abc")

***	Exception:	Prelude.read:	no	parse

Num	–	numeric	types
This	 class	 contains	 types	 whose	 values	 are	 numeric,	 and	 as	 such	 can	 be
processed	using	the	following	six	methods:

(+)	::	a	->	a	->	a

(-)	::	a	->	a	->	a

(*)	::	a	->	a	->	a

negate	::	a	->	a

abs	::	a	->	a	signum	::	a	->	a

(The	method	negate	returns	the	negation	of	a	number,	abs	returns	the	absolute
value,	while	signum	returns	the	sign.)	The	basic	types	Int,	Integer,	Float,	and
Double	are	instances	of	the	Num	class.	For	example:

>	1	+	2

3

53



>	1.0	+	2.0

3.0

>	negate	3.0

-3.0

>	abs	(-3)

3

>	signum	(-3)

-1

As	 illustrated	 above,	 negative	 numbers	 must	 be	 parenthesised	 when	 used	 as
arguments	to	functions,	to	ensure	the	correct	interpretation	of	the	minus	sign.	For
example,	 abs	 -3	 without	 parentheses	 means	 abs	 -	 3,	 which	 is	 both	 the
incorrect	meaning	here	and	an	ill-typed	expression.
Note	 that	 the	Num	 class	does	not	 provide	 a	division	method,	 but	 as	we	 shall

now	see,	division	is	handled	separately	using	two	special	classes,	one	for	integral
numbers	and	one	for	fractional	numbers.

Integral	–	integral	types
This	 class	 contains	 types	 that	 are	 instances	 of	 the	 numeric	 class	 Num,	 but	 in
addition	whose	values	are	 integers,	and	as	such	support	 the	methods	of	 integer
division	and	integer	remainder:

div	::	a	->	a	->	a

mod	::	a	->	a	->	a

In	practice,	these	two	methods	are	often	written	between	their	two	arguments	by
enclosing	 their	names	 in	 single	back	quotes.	The	basic	 types	Int	 and	Integer
are	instances	of	the	Integral	class.	For	example:

>	7	‘div‘	2

3

>	7	‘mod‘	2

1

For	efficiency	 reasons,	a	number	of	prelude	 functions	 that	 involve	both	 lists
and	 integers	 (such	 as	 take	 and	 drop)	 are	 restricted	 to	 the	 type	 Int	 of	 finite-
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precision	integers,	rather	than	being	applicable	to	any	instance	of	the	Integral
class.	If	required,	however,	such	generic	versions	of	these	functions	are	provided
as	part	of	an	additional	library	file	called	Data.List.

Fractional	–	fractional	types
This	 class	 contains	 types	 that	 are	 instances	 of	 the	 numeric	 class	 Num,	 but	 in
addition	 whose	 values	 are	 non-integral,	 and	 as	 such	 support	 the	 methods	 of
fractional	division	and	fractional	reciprocation:

(/)	::	a	->	a	->	a

recip	::	a	->	a

The	basic	types	Float	and	Double	are	instances.	For	example:
>	7.0	/	2.0

3.5

>	recip	2.0

0.5

3.10 Chapter	remarks
The	 term	Bool	 for	 the	 type	of	 logical	values	celebrates	 the	pioneering	work	of
George	Boole	on	symbolic	logic,	while	the	term	curried	for	functions	that	take
their	arguments	one	at	a	time	celebrates	the	work	of	Haskell	Curry	(after	whom
the	 language	 Haskell	 itself	 is	 named)	 on	 such	 functions.	 The	 relationship
between	 the	 type	of	 a	polymorphic	 function	and	 its	behaviour	 is	 formalised	 in
[3].	A	more	detailed	account	of	 the	 type	system	is	given	in	 the	Haskell	Report
[4],	and	a	formal	description	of	the	type	system	can	be	found	in	[5].

3.11 Exercises
1. What	are	the	types	of	the	following	values?

[’a’,’b’,’c’]
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(’a’,’b’,’c’)

[(False,’O’),(True,’1’)]

([False,True],[’0’,’1’])

[tail,	init,	reverse]

2. Write	down	definitions	 that	have	 the	 following	 types;	 it	does	not	matter
what	the	definitions	actually	do	as	long	as	they	are	type	correct.
bools	::	[Bool]

nums	::	[[Int]]

add	::	Int	->	Int	->	Int	->	Int

copy	::	a	->	(a,a)

apply	::	(a	->	b)	->	a	->	b

3. What	are	the	types	of	the	following	functions?
second	xs	=	head	(tail	xs)

swap	(x,y)	=	(y,x)

pair	x	y	=	(x,y)

double	x	=	x*2

palindrome	xs	=	reverse	xs	==	xs

twice	f	x	=	f	(f	x)

Hint:	take	care	to	include	the	necessary	class	constraints	in	the	types	if	the
functions	are	defined	using	overloaded	operators.

4. Check	your	answers	to	the	preceding	three	questions	using	GHCi.

5. Why	is	it	not	feasible	in	general	for	function	types	to	be	instances	of	the
Eq	 class?	When	 is	 it	 feasible?	Hint:	 two	 functions	 of	 the	 same	 type	 are
equal	if	they	always	return	equal	results	for	equal	arguments.

Solutions	to	exercises	1	and	2	are	given	in	appendix	A.
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4

Defining	functions

In	 this	 chapter	 we	 introduce	 a	 range	 of	mechanisms	 for	 defining	 functions	 in
Haskell.	 We	 start	 with	 conditional	 expressions	 and	 guarded	 equations,	 then
introduce	 the	simple	but	powerful	 idea	of	pattern	matching,	and	conclude	with
the	concepts	of	lambda	expressions	and	operator	sections.

4.1 New	from	old
Perhaps	 the	 most	 straightforward	 way	 to	 define	 new	 functions	 is	 simply	 by
combining	one	or	more	existing	functions.	For	example,	a	few	library	functions
that	can	be	defined	in	this	way	are	shown	below.

Decide	if	an	integer	is	even:
even	::	Integral	a	=>	a	->	Bool

even	n	=	n	‘mod‘	2	==	0

Split	a	list	at	the	nth	element:
splitAt	::	Int	->	[a]	->	([a],[a])

splitAt	n	xs	=	(take	n	xs,	drop	n	xs)

Reciprocation:
recip	::	Fractional	a	=>	a	->	a

recip	n	=	1/n

Note	 the	 use	 of	 the	 class	 constraints	 in	 the	 types	 for	 even	 and	 recip	 above,
which	make	precise	 the	 idea	 that	 these	 functions	can	be	applied	 to	numbers	of
any	integral	and	fractional	types,	respectively.

4.2 Conditional	expressions
Haskell	 provides	 a	 range	 of	 different	 ways	 to	 define	 functions	 that	 choose
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between	a	number	of	possible	results.	The	simplest	are	conditional	expressions,
which	use	a	logical	expression	called	a	condition	to	choose	between	two	results
of	the	same	type.	If	the	condition	is	True,	then	the	first	result	is	chosen,	and	if	it
is	False,	then	the	second	result	is	chosen.	For	example,	the	library	function	abs
that	returns	the	absolute	value	of	an	integer	can	be	defined	as	follows:
abs	::	Int	->	Int

abs	n	=	if	n	>=	0	then	n	else	-n

Conditional	 expressions	 may	 be	 nested,	 in	 the	 sense	 that	 they	 can	 contain
other	 conditional	 expressions.	 For	 example,	 the	 library	 function	 signum	 that
returns	the	sign	of	an	integer	can	be	defined	as	follows:
signum	::	Int	->	Int

signum	n	=	if	n	<	0	then	-1	else

if	n	==	0	then	0	else	1

Note	that	unlike	in	some	programming	languages,	conditional	expressions	in
Haskell	 must	 always	 have	 an	 else	 branch,	 which	 avoids	 the	 well-known
dangling	 else	 problem.	 For	 example,	 if	else	 branches	were	 optional,	 then	 the
expression	 if	 True	 then	 if	 False	 then	 1	 else	 2	 could	 either	 return	 the
result	2	or	produce	an	error,	depending	upon	whether	the	single	else	branch	was
assumed	to	be	part	of	the	inner	or	outer	conditional	expression.

4.3 Guarded	equations
As	an	alternative	to	using	conditional	expressions,	functions	can	also	be	defined
using	 guarded	 equations,	 in	 which	 a	 sequence	 of	 logical	 expressions	 called
guards	is	used	to	choose	between	a	sequence	of	results	of	the	same	type.	If	the
first	 guard	 is	 True,	 then	 the	 first	 result	 is	 chosen;	 otherwise,	 if	 the	 second	 is
True,	 then	 the	 second	 result	 is	 chosen,	 and	 so	 on.	 For	 example,	 the	 library
function	abs	can	also	be	defined	using	guarded	equations	as	follows:

The	 symbol	|	 is	 read	 as	 such	 that,	 and	 the	 guard	otherwise	 is	 defined	 in	 the
standard	 prelude	 simply	 by	 otherwise	 =	 True.	 Ending	 a	 sequence	 of	 guards
with	otherwise	is	not	necessary,	but	provides	a	convenient	way	of	handling	all
other	 cases,	 as	well	 as	 avoiding	 the	 possibility	 that	 none	 of	 the	 guards	 in	 the
sequence	is	True,	which	would	otherwise	result	in	an	error.
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The	main	 benefit	 of	 guarded	 equations	 over	 conditional	 expressions	 is	 that
definitions	 with	 multiple	 guards	 are	 easier	 to	 read.	 For	 example,	 the	 library
function	signum	is	easier	to	understand	when	defined	as	follows:

4.4 Pattern	matching
Many	functions	have	a	simple	and	intuitive	definition	using	pattern	matching,	in
which	 a	 sequence	 of	 syntactic	 expressions	 called	 patterns	 is	 used	 to	 choose
between	a	sequence	of	 results	of	 the	same	 type.	 If	 the	 first	pattern	 is	matched,
then	 the	 first	 result	 is	 chosen;	 otherwise,	 if	 the	 second	 is	 matched,	 then	 the
second	 result	 is	 chosen,	 and	 so	 on.	 For	 example,	 the	 library	 function	not	 that
returns	the	negation	of	a	logical	value	can	be	defined	as	follows:
not	::	Bool	->	Bool

not	False	=	True

not	True =	False

Functions	 with	 more	 than	 one	 argument	 can	 also	 be	 defined	 using	 pattern
matching,	 in	 which	 case	 the	 patterns	 for	 each	 argument	 are	matched	 in	 order
within	 each	 equation.	 For	 example,	 the	 library	 operator	 &&	 that	 returns	 the
conjunction	of	two	logical	values	can	be	defined	as	follows:

However,	this	definition	can	be	simplified	by	combining	the	last	three	equations
into	 a	 single	 equation	 that	 returns	False	 independent	 of	 the	 values	 of	 the	 two
arguments,	using	the	wildcard	pattern	_	that	matches	any	value:

This	 version	 also	 has	 the	 benefit	 that,	 under	 lazy	 evaluation	 as	 discussed	 in
chapter	 15,	 if	 the	 first	 argument	 is	 False,	 then	 the	 result	 False	 is	 returned
without	 the	 need	 to	 evaluate	 the	 second	 argument.	 In	 practice,	 the	 prelude
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defines	 &&	 using	 equations	 that	 have	 this	 same	 property,	 but	make	 the	 choice
about	which	equation	applies	using	the	value	of	the	first	argument	only:

True	&&	b =	b

False	&&	_	=	False

That	 is,	 if	 the	 first	argument	 is	True,	 then	 the	 result	 is	 the	value	of	 the	second
argument,	and,	if	the	first	argument	is	False,	then	the	result	is	False.
Note	that	Haskell	does	not	permit	the	same	name	to	be	used	for	more	than	one

argument	 in	 a	 single	 equation.	 For	 example,	 the	 following	 definition	 for	 the
operator	&&	is	based	upon	the	observation	that,	if	the	two	logical	arguments	are
equal,	 then	 the	 result	 is	 the	 same	 value,	 otherwise	 the	 result	 is	 False,	 but	 is
invalid	because	of	the	above	naming	requirement:
b	&&	b	=	b

_	&&	_	=	False

If	desired,	however,	a	valid	version	of	this	definition	can	be	obtained	by	using	a
guard	to	decide	if	the	two	arguments	are	equal:

So	far,	we	have	only	considered	basic	patterns	that	are	either	values,	variables,
or	the	wildcard	pattern.	In	the	remainder	of	this	section	we	introduce	two	useful
ways	to	build	larger	patterns	by	combining	smaller	patterns.

Tuple	patterns
A	tuple	of	patterns	is	itself	a	pattern,	which	matches	any	tuple	of	the	same	arity
whose	components	all	match	the	corresponding	patterns	in	order.	For	example,
the	 library	 functions	 fst	 and	 snd	 that	 respectively	 select	 the	 first	 and	 second
components	of	a	pair	are	defined	as	follows:
fst	::	(a,b)	->	a

fst	(x,_)	=	x

snd	::	(a,b)	->	b

snd	(_,y)	=	y

List	patterns
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Similarly,	a	list	of	patterns	is	itself	a	pattern,	which	matches	any	list	of	the	same
length	 whose	 elements	 all	 match	 the	 corresponding	 patterns	 in	 order.	 For
example,	a	function	test	that	decides	if	a	list	contains	precisely	three	characters
beginning	with	the	letter	’a’	can	be	defined	as	follows:

Up	to	this	point,	we	have	viewed	lists	as	a	primitive	notion	in	Haskell.	In	fact
they	are	not	primitive	as	such,	but	are	constructed	one	element	at	a	time	starting
from	the	empty	list	[]	using	an	operator	:	called	cons	that	constructs	a	new	list
by	prepending	a	new	element	to	the	start	of	an	existing	list.	For	example,	the	list
[1,2,3]	can	be	decomposed	as	follows:

[1,2,3]

= {	list	notation	}
1	:	[2,3]

= {	list	notation	}
1	:	(2	:	[3])

= {	list	notation	}
1	:	(2	:	(3	:	[]))

That	 is,	 [1,2,3]	 is	 just	 an	 abbreviation	 for	 1:(2:(3:[])).	 To	 avoid	 excess
parentheses	 when	 working	 with	 such	 lists,	 the	 cons	 operator	 is	 assumed	 to
associate	to	the	right.	For	example,	1:2:3:[]	means	1:(2:(3:[])).
As	well	as	being	used	to	construct	lists,	the	cons	operator	can	also	be	used	to

construct	 patterns,	which	match	 any	 non-empty	 list	whose	 first	 and	 remaining
elements	match	 the	corresponding	patterns	 in	order.	For	example,	we	can	now
define	 a	 more	 general	 version	 of	 the	 function	 test	 that	 decides	 if	 a	 list
containing	any	number	of	characters	begins	with	the	letter	’a’:

Similarly,	 the	 library	 functions	 head	 and	 tail	 that	 respectively	 select	 and
remove	the	first	element	of	a	non-empty	list	are	defined	as	follows:
head	::	[a]	->	a

head	(x:_)	=	x

tail	::	[a]	->	[a]

tail	(_:xs)	=	xs
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Note	that	cons	patterns	must	be	parenthesised,	because	function	application	has
higher	 priority	 than	 all	 other	 operators	 in	 the	 language.	 For	 example,	 the
definition	head	x:_	=	x	without	parentheses	means	(head	x):_	=	x,	which	is
both	the	incorrect	meaning	and	an	invalid	definition.

4.5 Lambda	expressions
As	 an	 alternative	 to	 defining	 functions	 using	 equations,	 functions	 can	 also	 be
constructed	using	lambda	expressions,	which	comprise	a	pattern	for	each	of	the
arguments,	a	body	that	specifies	how	the	result	can	be	calculated	in	terms	of	the
arguments,	but	do	not	give	a	name	for	the	function	itself.	In	other	words,	lambda
expressions	are	nameless	functions.
For	 example,	 the	 nameless	 function	 that	 takes	 a	 single	 number	 x	 as	 its

argument,	and	produces	the	result	x	+	x,	can	be	constructed	as	follows:
\x	->	x	+	x

The	symbol	\	represents	the	Greek	letter	 lambda,	written	as	λ.	Despite	the	fact
that	they	have	no	names,	functions	constructed	using	lambda	expressions	can	be
used	in	the	same	way	as	any	other	functions.	For	example:
>	(\x	->	x	+	x)	2

4

As	well	 as	 being	 interesting	 in	 their	 own	 right,	 lambda	 expressions	 have	 a
number	of	practical	applications.	First	of	all,	 they	can	be	used	 to	formalise	 the
meaning	of	curried	function	definitions.	For	example,	the	definition
add	::	Int	->	Int	->	Int

add	x	y	=	x	+	y

can	be	understood	as	meaning
add	::	Int	->	(Int	->	Int)

add	=	\x	->	(\y	->	x	+	y)

which	makes	precise	that	add	is	a	function	that	takes	an	integer	x	and	returns	a
function,	 which	 in	 turn	 takes	 another	 integer	 y	 and	 returns	 the	 result	 x	 +	 y.
Moreover,	 rewriting	 the	 original	 definition	 in	 this	manner	 also	 has	 the	 benefit
that	the	type	for	the	function	and	the	manner	in	which	it	is	defined	now	have	the
same	syntactic	form,	namely	?	->	(?	->	?).
Secondly,	 lambda	 expressions	 are	 also	 useful	 when	 defining	 functions	 that
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return	functions	as	results	by	their	very	nature,	rather	than	as	a	consequence	of
currying.	For	example,	the	library	function	const	that	returns	a	constant	function
that	always	produces	a	given	value	can	be	defined	as	follows:
const	::	a	->	b	->	a

const	x	_	=	x

However,	it	is	more	appealing	to	define	const	in	a	way	that	makes	explicit	that	it
returns	a	function	as	its	result,	by	including	parentheses	in	the	type	and	using	a
lambda	expression	in	the	definition	itself:
const	::	a	->	(b	->	a)

const	x	=	\_	->	x

Finally,	 lambda	expressions	can	be	used	 to	avoid	having	 to	name	a	 function
that	 is	 only	 referenced	 once	 in	 a	 program.	 For	 example,	 a	 function	 odds	 that
returns	the	first	n	odd	integers	can	be	defined	as	follows:
odds	::	Int	->	[Int]

odds	n	=	map	f	[0..n-1]

where	f	x	=	x*2	+	1

(The	library	function	map	applies	a	function	to	all	elements	of	a	list.)	However,
because	the	locally	defined	function	f	is	only	referenced	once,	the	definition	for
odds	can	be	simplified	by	using	a	lambda	expression:
odds	::	Int	->	[Int]

odds	n	=	map	(\x	->	x*2	+	1)	[0..n-1]

4.6 Operator	sections
Functions	 such	 as	 +	 that	 are	 written	 between	 their	 two	 arguments	 are	 called
operators.	As	we	 have	 already	 seen,	 any	 function	with	 two	 arguments	 can	 be
converted	into	an	operator	by	enclosing	the	name	of	the	function	in	single	back
quotes,	as	 in	7	‘div‘	2.	However,	 the	converse	 is	also	possible.	 In	particular,
any	operator	 can	be	 converted	 into	 a	 curried	 function	 that	 is	written	before	 its
arguments	by	enclosing	the	name	of	the	operator	in	parentheses,	as	in	(+)	1	2.
Moreover,	this	convention	also	allows	one	of	the	arguments	to	be	included	in	the
parentheses	if	desired,	as	in	(1+)	2	and	(+2)	1.
In	general,	if	#	is	an	operator,	then	expressions	of	the	form	(#),	(x	#),	and	(#

y)	for	arguments	x	and	y	are	called	sections,	whose	meaning	as	functions	can	be
formalised	using	lambda	expressions	as	follows:
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(#)	=	\x	->	(\y	->	x	#	y)

(x	#)	=	\y	->	x	#	y

(#	y)	=	\x	->	x	#	y

Sections	 have	 three	 primary	 applications.	 First	 of	 all,	 they	 can	 be	 used	 to
construct	a	number	of	simple	but	useful	functions	in	a	particularly	compact	way,
as	shown	in	the	following	examples:

(+)	is	the	addition	function	\x	->	(\y	->	x+y)

(1+)	is	the	successor	function	\y	->	1+y

(1/)	is	the	reciprocation	function	\y	->	1/y

(*2)	is	the	doubling	function	\x	->	x*2

(/2)	is	the	halving	function	\x	->	x/2

Secondly,	sections	are	necessary	when	stating	 the	 type	of	operators,	because
an	operator	itself	is	not	a	valid	expression	in	Haskell.	For	example,	the	type	of
the	addition	operator	+	for	integers	is	stated	as	follows:
(+)	::	Int	->	Int	->	Int

Finally,	 sections	 are	 also	 necessary	 when	 using	 operators	 as	 arguments	 to
other	functions.	For	example,	the	library	function	sum	that	calculates	the	sum	of
a	 list	of	 integers	can	be	defined	by	using	 the	operator	+	 as	an	argument	 to	 the
library	function	foldl,	which	is	itself	discussed	in	chapter	7:
sum	::	[Int]	->	Int

sum	=	foldl	(+)	0

4.7 Chapter	remarks
A	 formal	 meaning	 for	 pattern	 matching	 by	 translation	 using	 more	 primitive
features	of	 the	 language	 is	given	 in	 the	Haskell	Report	 [4].	The	Greek	 letter	λ
used	when	defining	nameless	functions	comes	from	the	lambda	calculus	[6],	the
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mathematical	theory	of	functions	upon	which	Haskell	is	founded.

4.8 Exercises
1. Using	 library	functions,	define	a	function	halve	::	[a]	->	([a],[a])

that	splits	an	even-lengthed	list	into	two	halves.	For	example:
>	halve	[1,2,3,4,5,6]

([1,2,3],[4,5,6])

2. Define	a	function	third	::	[a]	->	a	that	returns	the	third	element	in	a
list	that	contains	at	least	this	many	elements	using:

a. head	and	tail;
b. list	indexing	!!;
c. pattern	matching.

3. Consider	a	function	safetail	::	[a]	->	[a]	 that	behaves	in	the	same
way	 as	 tail	 except	 that	 it	 maps	 the	 empty	 list	 to	 itself	 rather	 than
producing	an	error.	Using	tail	and	 the	function	null	::	[a]	->	Bool
that	decides	if	a	list	is	empty	or	not,	define	safetail	using:

a. a	conditional	expression;
b. guarded	equations;
c. pattern	matching.

4. In	a	similar	way	to	&&	 in	section	4.4,	show	how	the	disjunction	operator
||	can	be	defined	in	four	different	ways	using	pattern	matching.

5. Without	 using	 any	 other	 library	 functions	 or	 operators,	 show	 how	 the
meaning	 of	 the	 following	 pattern	 matching	 definition	 for	 logical
conjunction	&&	can	be	formalised	using	conditional	expressions:

Hint:	use	two	nested	conditional	expressions.

6. Do	 the	 same	 for	 the	 following	 alternative	 definition,	 and	 note	 the
difference	in	the	number	of	conditional	expressions	that	are	required:

True	&&	b =	b

False	&&	_	=	False

7. Show	how	the	meaning	of	the	following	curried	function	definition	can	be
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formalised	in	terms	of	lambda	expressions:
mult	::	Int	->	Int	->	Int	->	Int

mult	x	y	z	=	x*y*z

8. The	Luhn	algorithm	is	used	to	check	bank	card	numbers	for	simple	errors
such	as	mistyping	a	digit,	and	proceeds	as	follows:

consider	each	digit	as	a	separate	number;
moving	left,	double	every	other	number	from	the	second	last;
subtract	9	from	each	number	that	is	now	greater	than	9;
add	all	the	resulting	numbers	together;
if	the	total	is	divisible	by	10,	the	card	number	is	valid.

Define	a	 function	luhnDouble	::	Int	->	Int	 that	doubles	 a	digit	 and
subtracts	9	if	the	result	is	greater	than	9.	For	example:
>	luhnDouble	3

6

>	luhnDouble	6

3

Using	 luhnDouble	 and	 the	 integer	 remainder	 function	 mod,	 define	 a
function	luhn	::	Int	->	Int	->	Int	->	Int	->	Bool	that	decides	if	a
four-digit	bank	card	number	is	valid.	For	example:
>	luhn	1	7	8	4

True

>	luhn	4	7	8	3

False

In	the	exercises	for	chapter	7	we	will	consider	a	more	general	version	of
this	function	that	accepts	card	numbers	of	any	length.

Solutions	to	exercises	1–4	are	given	in	appendix	A.
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5

List	comprehensions

In	this	chapter	we	introduce	list	comprehensions,	which	allow	many	functions	on
lists	 to	 be	 defined	 in	 simple	 manner.	 We	 start	 by	 explaining	 generators	 and
guards,	 then	 introduce	 the	 function	zip	 and	 the	 idea	of	 string	comprehensions,
and	conclude	by	developing	a	program	to	crack	the	Caesar	cipher.

5.1 Basic	concepts
In	mathematics,	 the	comprehension	notation	can	be	used	 to	construct	new	sets
from	existing	sets.	For	example,	the	comprehension	{x2	|	x	∈	{1	.	.	5}}	produces
the	set	{1,	4,	9,	16,	25}	of	all	numbers	x2	such	that	x	is	an	element	of	the	set	{1	.
.	5}.	In	Haskell,	a	similar	comprehension	notation	can	be	used	to	construct	new
lists	from	existing	lists.	For	example:
>	[x^2	|	x	<-	[1..5]]

[1,4,9,16,25]

The	 symbol	 |	 is	 read	 as	 such	 that,	 <-	 is	 read	 as	 is	 drawn	 from,	 and	 the
expression	x	<-	[1..5]	 is	 called	 a	generator.	A	 list	 comprehension	can	have
more	than	one	generator,	with	successive	generators	being	separated	by	commas.
For	example,	the	list	of	all	possible	pairings	of	an	element	from	the	list	[1,2,3]
with	an	element	from	the	list	[4,5]	can	be	produced	as	follows:
>	[(x,y)	|	x	<-	[1,2,3],	y	<-	[4,5]]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

Changing	the	order	of	the	two	generators	in	this	example	produces	the	same	set
of	pairs,	but	arranged	in	a	different	order:
>	[(x,y)	|	y	<-	[4,5],	x	<-	[1,2,3]]

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

In	 particular,	whereas	 in	 this	 case	 the	x	 components	 of	 the	 pairs	 change	more
frequently	than	the	y	components	(1,2,3,1,2,3	versus	4,4,4,5,5,5),	in	the	previous
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case	 the	 y	 components	 change	 more	 frequently	 than	 the	 x	 components
(4,5,4,5,4,5	versus	1,1,2,2,3,3).	These	behaviours	can	be	understood	by	thinking
of	later	generators	as	being	more	deeply	nested,	and	hence	changing	the	values
of	their	variables	more	frequently	than	earlier	generators.
Later	 generators	 can	 also	 depend	 upon	 the	 values	 of	 variables	 from	 earlier

generators.	 For	 example,	 the	 list	 of	 all	 possible	 ordered	 pairings	 of	 elements
from	the	list	[1..3]	can	be	produced	as	follows:
>	[(x,y)	|	x	<-	[1..3],	y	<-	[x..3]]

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

As	 a	 more	 practical	 example	 of	 this	 idea,	 the	 library	 function	 concat	 that
concatenates	a	list	of	lists	can	be	defined	by	using	one	generator	to	select	each
list	in	turn,	and	another	to	select	each	element	from	each	list:
concat	::	[[a]]	->	[a]

concat	xss	=	[x	|	xs	<-	xss,	x	<-	xs]

The	wildcard	 pattern	 _	 is	 sometimes	 useful	 in	 generators	 to	 discard	 certain
elements	from	a	list.	For	example,	a	function	that	selects	all	the	first	components
from	a	list	of	pairs	can	be	defined	as	follows:
firsts	::	[(a,b)]	->	[a]

firsts	ps	=	[x	|	(x,_)	<-	ps]

Similarly,	the	library	function	that	calculates	the	length	of	a	list	can	be	defined
by	replacing	each	element	by	one	and	summing	the	resulting	list:
length	::	[a]	->	Int

length	xs	=	sum	[1	|	_	<-	xs]

In	 this	 case,	 the	 generator	 _	 <-	 xs	 simply	 serves	 as	 a	 counter	 to	 govern	 the
production	of	the	appropriate	number	of	ones.

5.2 Guards
List	comprehensions	can	also	use	logical	expressions	called	guards	 to	filter	the
values	produced	by	earlier	generators.	If	a	guard	is	True,	then	the	current	values
are	 retained;	 if	 it	 is	 False,	 then	 they	 are	 discarded.	 For	 example,	 the
comprehension	[x	|	x	<-	[1..10],	even	x]	produces	the	list	[2,4,6,8,10]
of	 all	 even	 numbers	 from	 the	 list	 [1..10].	 Similarly,	 a	 function	 that	 maps	 a
positive	integer	to	its	list	of	positive	factors	can	be	defined	by:
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factors	::	Int	->	[Int]

factors	n	=	[x	|	x	<-	[1..n],	n	‘mod‘	x	==	0]

For	example:
>	factors	15

[1,3,5,15]

>	factors	7

[1,7]

Recall	that	an	integer	greater	than	one	is	prime	if	its	only	positive	factors	are
one	 and	 the	 number	 itself.	 Hence,	 by	 using	 factors,	 a	 simple	 function	 that
decides	if	an	integer	is	prime	can	be	defined	as	follows:
prime	::	Int	->	Bool

prime	n	=	factors	n	==	[1,n]

For	example:
>	prime	15

False

>	prime	7

True

Note	 that	 deciding	 that	 a	number	 such	 as	15	 is	 not	prime	does	not	 require	 the
function	prime	 to	 produce	 all	 of	 its	 factors,	 because	 under	 lazy	 evaluation	 the
result	False	is	returned	as	soon	as	any	factor	other	than	one	or	the	number	itself
is	produced,	which	for	this	example	is	given	by	the	factor	3.
Returning	to	list	comprehensions,	using	prime	we	can	now	define	a	function

that	produces	the	list	of	all	prime	numbers	up	to	a	given	limit:
primes	::	Int	->	[Int]

primes	n	=	[x	|	x	<-	[2..n],	prime	x]

For	example:
>	primes	40

[2,3,5,7,11,13,17,19,23,29,31,37]

In	 chapter	 15	 we	 will	 present	 a	 more	 efficient	 program	 to	 generate	 prime
numbers	using	the	famous	sieve	of	Eratosthenes,	which	has	a	particularly	clear
and	concise	implementation	in	Haskell	using	the	idea	of	lazy	evaluation.
As	 a	 final	 example	 concerning	 guards,	 suppose	 that	 we	 represent	 a	 lookup

table	by	a	list	of	pairs	of	keys	and	values.	Then	for	any	type	of	keys	that	supports
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equality,	a	function	find	that	returns	the	list	of	all	values	that	are	associated	with
a	given	key	in	a	table	can	be	defined	as	follows:
find	::	Eq	a	=>	a	->	[(a,b)]	->	[b]

find	k	t	=	[v	|	(k’,v)	<-	t,	k	==	k’]

For	example:
>	find	’b’	[(’a’,1),(’b’,2),(’c’,3),(’b’,4)]

[2,4]

5.3 The	zip	function
The	library	function	zip	produces	a	new	list	by	pairing	successive	elements	from
two	existing	lists	until	either	or	both	lists	are	exhausted.	For	example:
>	zip	[’a’,’b’,’c’]	[1,2,3,4]

[(’a’,1),(’b’,2),(’c’,3)]

The	 function	zip	 is	often	useful	when	programming	with	 list	 comprehensions.
For	example,	suppose	that	we	define	a	function	that	returns	the	list	of	all	pairs	of
adjacent	elements	from	a	list	as	follows:
pairs	::	[a]	->	[(a,a)]

pairs	xs	=	zip	xs	(tail	xs)

For	example:
>	pairs	[1,2,3,4]

[(1,2),(2,3),(3,4)]

Then	using	pairs	we	can	now	define	a	function	that	decides	if	a	list	of	elements
of	 any	 ordered	 type	 is	 sorted	 by	 simply	 checking	 that	 all	 pairs	 of	 adjacent
elements	from	the	list	are	in	the	correct	order:
sorted	::	Ord	a	=>	[a]	->	Bool

sorted	xs	=	and	[x	<=	y	|	(x,y)	<-	pairs	xs]

For	example:
>	sorted	[1,2,3,4]

True

>	sorted	[1,3,2,4]

False
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Similarly	 to	 the	 function	 prime,	 deciding	 that	 a	 list	 such	 as	 [1,3,2,4]	 is	 not
sorted	 may	 not	 require	 the	 function	 sorted	 to	 produce	 all	 pairs	 of	 adjacent
elements,	because	the	result	False	is	returned	as	soon	as	any	non-ordered	pair	is
produced,	which	in	this	example	is	given	by	the	pair	(3,2).
Using	zip	we	can	also	define	a	function	that	returns	the	list	of	all	positions	at

which	 a	 value	 occurs	 in	 a	 list,	 by	 pairing	 each	 element	with	 its	 position,	 and
selecting	those	positions	at	which	the	desired	value	occurs:
positions	::	Eq	a	=>	a	->	[a]	->	[Int]

positions	x	xs	=	[i	|	(x’,i)	<-	zip	xs	[0..],	x	==	x’]

For	example:
>	positions	False	[True,	False,	True,	False]

[1,3]

Within	 the	definition	 for	positions,	 the	 expression	[0..]	 produces	 the	 list	 of
indices	[0,1,2,3,...].	This	list	is	notionally	infinite,	but	under	lazy	evaluation
only	as	many	elements	of	the	list	as	required	by	the	context	in	which	it	is	used,
in	this	case	zipping	with	the	input	list	xs,	will	actually	be	produced.	Exploiting
lazy	 evaluation	 in	 this	 manner	 avoids	 the	 need	 to	 explicitly	 produce	 a	 list	 of
indices	of	the	same	length	as	the	input	list.

5.4 String	comprehensions
Up	to	this	point	we	have	viewed	strings	as	a	primitive	notion	in	Haskell.	In	fact
they	are	not	primitive,	but	are	constructed	as	lists	of	characters.	For	example,	the
string	 "abc"	 ::	 String	 is	 just	 an	 abbreviation	 for	 the	 list	 of	 characters
[’a’,’b’,’c’]	::	[Char].	Because	strings	are	lists,	any	polymorphic	function
on	lists	can	also	be	used	with	strings.	For	example:
>	"abcde"	!!	2

’c’

>	take	3	"abcde"

"abc"

>	length	"abcde"

5

>	zip	"abc"	[1,2,3,4]
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[(’a’,1),(’b’,2),(’c’,3)]

For	the	same	reason,	list	comprehensions	can	also	be	used	to	define	functions	on
strings,	 such	 as	 functions	 that	 return	 the	 number	 of	 lower-case	 letters	 and
particular	characters	that	occur	in	a	string,	respectively:
lowers	::	String	->	Int

lowers	xs	=	length	[x	|	x	<-	xs,	x	>=	’a’	&&	x	<=	’z’]

count	::	Char	->	String	->	Int

count	x	xs	=	length	[x’	|	x’	<-	xs,	x	==	x’]

For	example:
>	lowers	"Haskell"

6

>	count	’s’	"Mississippi"

4

5.5 The	Caesar	cipher
We	conclude	this	chapter	with	an	extended	programming	example.	Consider	the
problem	 of	 encoding	 a	 string	 in	 order	 to	 disguise	 its	 contents.	 A	 well-known
encoding	method	is	the	Caesar	cipher,	named	after	its	use	by	Julius	Caesar	more
than	2,000	years	ago.	To	encode	a	string,	Caesar	simply	replaced	each	letter	in
the	 string	 by	 the	 letter	 three	 places	 further	 down	 in	 the	 alphabet,	 wrapping
around	at	the	end	of	the	alphabet.	For	example,	the	string
"haskell	is	fun"

would	be	encoded	as
"kdvnhoo	lv	ixq"

More	generally,	the	specific	shift	factor	of	three	used	by	Caesar	can	be	replaced
by	any	integer	between	one	and	twenty-five,	thereby	giving	twenty-five	different
ways	of	encoding	a	string.	For	example,	with	a	shift	 factor	of	 ten,	 the	original
string	above	would	be	encoded	as	follows:
"rkcuovv	sc	pex"

In	 the	 remainder	 of	 this	 section	 we	 show	 how	 Haskell	 can	 be	 used	 to
implement	the	Caesar	cipher,	and	how	the	cipher	itself	can	easily	be	cracked	by
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exploiting	information	about	letter	frequencies	in	English	text.

Encoding	and	decoding
We	will	use	a	number	of	standard	functions	on	characters	that	are	provided	in	a
library	called	Data.Char,	which	can	be	loaded	into	a	Haskell	script	by	including
the	following	declaration	at	the	start	of	the	script:
import	Data.Char

For	 simplicity,	 we	 will	 only	 encode	 the	 lower-case	 letters	 within	 a	 string,
leaving	other	characters	 such	as	upper-case	 letters	 and	punctuation	unchanged.
We	 begin	 by	 defining	 a	 function	 let2int	 that	 converts	 a	 lower-case	 letter
between	’a’	and	’z’	into	the	corresponding	integer	between	0	and	25,	together
with	a	function	int2let	that	performs	the	opposite	conversion:
let2int	::	Char	->	Int

let2int	c	=	ord	c	-	ord	’a’

int2let	::	Int	->	Char

int2let	n	=	chr	(ord	’a’	+	n)

(The	library	functions	ord	::	Char	->	Int	and	chr	::	Int	->	Char	convert
between	characters	and	their	Unicode	numbers.)	For	example:
>	let2int	’a’

0

>	int2let	0

’a’

Using	 these	 two	 functions,	we	can	define	 a	 function	shift	 that	 applies	 a	 shift
factor	 to	 a	 lower-case	 letter	 by	 converting	 the	 letter	 into	 the	 corresponding
integer,	 adding	 on	 the	 shift	 factor	 and	 taking	 the	 remainder	 when	 divided	 by
twenty-six	(thereby	wrapping	around	at	the	end	of	the	alphabet),	and	converting
the	resulting	integer	back	into	a	lower-case	letter:
shift	::	Int	->	Char	->	Char

shift	n	c	|	isLower	c	=	int2let	((let2int	c	+	n)	‘mod‘	26)

|	otherwise	=	c

(The	 library	 function	 isLower	 ::	 Char	 ->	 Bool	 decides	 if	 a	 character	 is	 a
lower-case	letter.)	Note	that	this	function	accepts	both	positive	and	negative	shift
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factors,	and	that	only	lower-case	letters	are	changed.	For	example:
>	shift	3	’a’

’d’

>	shift	3	’z’

’c’

>	shift	(-3)	’c’

’z’

>	shift	3	’	’

’	’

Using	shift	within	a	list	comprehension,	it	 is	now	easy	to	define	a	function
that	encodes	a	string	using	a	given	shift	factor:
encode	::	Int	->	String	->	String

encode	n	xs	=	[shift	n	x	|	x	<-	xs]

A	 separate	 function	 to	 decode	 a	 string	 is	 not	 required,	 because	 this	 can	 be
achieved	by	simply	using	a	negative	shift	factor.	For	example:
>	encode	3	"haskell	is	fun"

"kdvnhoo	lv	ixq"

>	encode	(-3)	"kdvnhoo	lv	ixq"

"haskell	is	fun"

Frequency	tables
The	 key	 to	 cracking	 the	Caesar	 cipher	 is	 the	 observation	 that	 some	 letters	 are
used	more	frequently	than	others	in	English	text.	By	analysing	a	large	volume	of
such	 text,	 one	 can	 derive	 the	 following	 table	 of	 approximate	 percentage
frequencies	of	the	twenty-six	letters	of	alphabet:
table	::	[Float]

table	=	[8.1,	1.5,	2.8,	4.2,	12.7,	2.2,	2.0,	6.1,	7.0,

0.2,	0.8,	4.0,	2.4,	6.7,	7.5,	1.9,	0.1,	6.0,

6.3,	9.0,	2.8,	1.0,	2.4,	0.2,	2.0,	0.1]

For	example,	the	letter	’e’	occurs	most	often,	with	a	frequency	of	12.7%,	while
’q’	and	’z’	occur	least	often,	with	a	frequency	of	just	0.1%.	It	is	also	useful	to
produce	 frequency	 tables	 for	 individual	 strings.	 To	 this	 end,	we	 first	 define	 a
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function	 that	 calculates	 the	 percentage	 of	 one	 integer	 with	 respect	 to	 another,
returning	the	result	as	a	floating-point	number:
percent	::	Int	->	Int	->	Float

percent	n	m	=	(fromIntegral	n	/	fromIntegral	m)	*	100

(The	library	function	fromIntegral	::	Int	->	Float	converts	an	integer	into	a
floating-point	number.)	For	example:
>	percent	5	15

33.333336

Using	 percent	 within	 a	 list	 comprehension,	 together	 with	 the	 functions
lowers	and	count	from	the	previous	section,	we	can	now	define	a	function	that
returns	a	frequency	table	for	any	given	string:
freqs	::	String	->	[Float]

freqs	xs	=	[percent	(count	x	xs)	n	|	x	<-	[’a’..’z’]]

where	n	=	lowers	xs

For	example:
>	freqs	"abbcccddddeeeee"

[6.666667,	13.333334,	20.0,	26.666668,	...,	0.0]

That	is,	the	letter	’a’	occurs	with	a	frequency	of	approximately	6.6%,	the	letter
’b’	with	a	 frequency	of	13.3%,	and	so	on.	The	use	of	 the	 local	definition	n	=
lowers	 xs	 within	 freqs	 ensures	 that	 the	 number	 of	 lower-case	 letters	 in	 the
argument	string	is	calculated	once,	rather	than	each	of	the	twenty-six	times	that
this	number	is	used	within	the	list	comprehension.

Cracking	the	cipher
A	standard	method	for	comparing	a	list	of	observed	frequencies	os	with	a	list	of
expected	 frequencies	 es	 is	 the	 chi-square	 statistic,	 defined	 by	 the	 following
summation	in	which	n	denotes	the	length	of	the	two	lists,	and	xsi	denotes	the	ith
element	of	a	list	xs	counting	from	zero:

The	details	of	the	chi-square	statistic	need	not	concern	us	here,	only	the	fact	that
the	smaller	the	value	it	produces	the	better	the	match	between	the	two	frequency
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lists.	 Using	 the	 library	 function	 zip	 and	 a	 list	 comprehension,	 it	 is	 easy	 to
translate	the	above	formula	into	a	function	definition:
chisqr	::	[Float]	->	[Float]	->	Float

chisqr	os	es	=	sum	[((o-e)^2)/e	|	(o,e)	<-	zip	os	es]

In	turn,	we	define	a	function	that	rotates	the	elements	of	a	list	n	places	to	the
left,	 wrapping	 around	 at	 the	 start	 of	 the	 list,	 and	 assuming	 that	 the	 integer
argument	n	is	between	zero	and	the	length	of	the	list:
rotate	::	Int	->	[a]	->	[a]

rotate	n	xs	=	drop	n	xs	++	take	n	xs

For	example:
>	rotate	3	[1,2,3,4,5]

[4,5,1,2,3]

Now	suppose	that	we	are	given	an	encoded	string,	but	not	the	shift	factor	that
was	used	to	encode	it,	and	wish	to	determine	this	number	 in	order	 that	we	can
decode	the	string.	This	can	usually	be	achieved	by	producing	the	frequency	table
of	 the	 encoded	 string,	 calculating	 the	 chi-square	 statistic	 for	 each	 possible
rotation	of	this	table	with	respect	to	the	table	of	expected	frequencies,	and	using
the	position	of	the	minimum	chi-square	value	as	the	shift	factor.	For	example,	if
we	let	table’	=	freqs	"kdvnhoo	lv	ixq",	then
[chisqr	(rotate	n	table’)	table	|	n	<-	[0..25]]

gives	the	result
[1408.8524,	640.0218,	612.3969,	202.42024,	...,	626.4024]

in	which	 the	minimum	value,	202.42024,	 appears	 at	 position	 three	 in	 this	 list.
Hence,	we	 conclude	 that	 three	 is	 the	most	 likely	 shift	 factor	 that	was	 used	 to
encode	the	string.	Using	the	function	positions	from	earlier	in	this	chapter,	this
procedure	can	be	implemented	as	follows:
crack	::	String	->	String

crack	xs	=	encode	(-factor)	xs

where

factor	=	head	(positions	(minimum	chitab)	chitab)

chitab	=	[chisqr	(rotate	n	table’)	table	|	n	<-	[0..25]]

table’	=	freqs	xs

For	example:
>	crack	"kdvnhoo	lv	ixq"
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"haskell	is	fun"

>	crack	"vscd	mywzboroxcsyxc	kbo	ecopev"

"list	comprehensions	are	useful"

More	generally,	 the	crack	 function	 can	decode	most	 strings	produced	using
the	Caesar	cipher.	Note,	however,	 that	 it	may	not	be	 successful	 if	 the	 string	 is
short	or	has	an	unusual	distribution	of	letters.	For	example:
>	crack	(encode	3	"haskell")

"piasmtt"

>	crack	(encode	3	"boxing	wizards	jump	quickly")

"wjsdib	rduvmyn	ephk	lpdxfgt"

5.6 Chapter	remarks
The	term	comprehension	comes	from	the	axiom	of	comprehension	in	set	theory,
which	makes	precise	 the	 idea	of	 constructing	 a	 set	 by	 selecting	 all	 values	 that
satisfy	 a	 particular	 property.	 A	 formal	 meaning	 for	 list	 comprehensions	 by
translation	using	more	primitive	features	of	the	language	is	given	in	the	Haskell
Report	 [4].	 A	 popular	 account	 of	 the	 Caesar	 cipher,	 and	 many	 other	 famous
cryptographic	methods,	is	given	in	The	Code	Book	[7].

5.7 Exercises
1. Using	a	list	comprehension,	give	an	expression	that	calculates	the	sum	12

+	22	+	...	1002	of	the	first	one	hundred	integer	squares.

2. Suppose	 that	 a	coordinate	 grid	 of	 size	m	 ×	n	 is	 given	 by	 the	 list	 of	 all
pairs	 (x,	 y)	 of	 integers	 such	 that	 	 Using	 a	 list
comprehension,	define	a	function	grid	::	Int	->	Int	->	[(Int,Int)]
that	returns	a	coordinate	grid	of	a	given	size.	For	example:

>	grid	1	2

[(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)]

3. Using	a	list	comprehension	and	the	function	grid	above,	define	a	function
square	::	Int	->	[(Int,Int)]	that	returns	a	coordinate	square	of	size
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n,	excluding	the	diagonal	from	(0,	0)	to	(n,	n).	For	example:
>	square	2

[(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)]

4. In	 a	 similar	way	 to	 the	 function	length,	 show	how	 the	 library	 function
replicate	 ::	 Int	 ->	 a	 ->	 [a]	 that	 produces	 a	 list	 of	 identical
elements	can	be	defined	using	a	list	comprehension.	For	example:

>	replicate	3	True

[True,True,True]

5. A	 triple	 (x,	 y,	 z)	 of	 positive	 integers	 is	 Pythagorean	 if	 it	 satisfies	 the
equation	x2	+	y2	=	z2.	Using	a	 list	comprehension	with	 three	generators,
define	a	function	pyths	::	Int	->	[(Int,Int,Int)]	that	returns	the	list
of	 all	 such	 triples	 whose	 components	 are	 at	 most	 a	 given	 limit.	 For
example:

>	pyths	10

[(3,4,5),(4,3,5),(6,8,10),(8,6,10)]

6. A	 positive	 integer	 is	 perfect	 if	 it	 equals	 the	 sum	 of	 all	 of	 its	 factors,
excluding	the	number	itself.	Using	a	list	comprehension	and	the	function
factors,	define	a	 function	perfects	::	Int	->	[Int]	 that	 returns	 the
list	of	all	perfect	numbers	up	to	a	given	limit.	For	example:

>	perfects	500

[6,28,496]

7. Show	how	the	list	comprehension	[(x,y)	|	x	<-	[1,2],	y	<-	[3,4]]
with	two	generators	can	be	re-expressed	using	two	comprehensions	with
single	 generators.	 Hint:	 nest	 one	 comprehension	 within	 the	 other	 and
make	use	of	the	library	function	concat	::	[[a]]	->	[a].

8. Redefine	the	function	positions	using	the	function	find.

9. The	scalar	product	of	two	lists	of	integers	xs	and	ys	of	length	n	is	given
by	the	sum	of	the	products	of	corresponding	integers:

In	 a	 similar	manner	 to	 chisqr,	 show	 how	 a	 list	 comprehension	 can	 be
used	 to	 define	 a	 function	scalarproduct	::	[Int]	->	[Int]	->	Int
that	returns	the	scalar	product	of	two	lists.	For	example:

>	scalarproduct	[1,2,3]	[4,5,6]
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10. Modify	the	Caesar	cipher	program	to	also	handle	upper-case	letters.

Solutions	to	exercises	1–5	are	given	in	appendix	A.
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6

Recursive	functions

In	 this	 chapter	 we	 introduce	 recursion,	 the	 basic	 mechanism	 for	 looping	 in
Haskell.	We	start	with	recursion	on	integers,	then	extend	the	idea	to	recursion	on
lists,	consider	multiple	arguments,	multiple	recursion,	and	mutual	recursion,	and
conclude	with	some	advice	on	defining	recursive	functions.

6.1 Basic	concepts
As	we	have	seen	in	previous	chapters,	many	functions	can	naturally	be	defined
in	terms	of	other	functions.	For	example,	a	function	that	returns	the	factorial	of	a
non-negative	 integer	 can	be	defined	by	using	 library	 functions	 to	 calculate	 the
product	of	the	integers	between	one	and	the	given	number:
fac	::	Int	->	Int

fac	n	=	product	[1..n]

In	Haskell,	it	is	also	permissible	to	define	functions	in	terms	of	themselves,	in
which	case	the	functions	are	called	recursive.	For	example,	the	factorial	function
can	be	defined	in	this	manner	as	follows:
fac	::	Int	->	Int

fac	0	=	1

fac	n	=	n	*	fac	(n-1)

The	 first	 equation	 states	 that	 the	 factorial	 of	 zero	 is	 one,	 and	 is	 called	 a	base
case.	The	second	equation	states	that	the	factorial	of	any	other	number	is	given
by	the	product	of	that	number	and	the	factorial	of	its	predecessor,	and	is	called	a
recursive	case.	For	example,	 the	following	calculation	shows	how	the	factorial
of	three	can	be	computed	using	this	definition:

fac	3

= {	applying	fac	}
3	*	fac	2

= {	applying	fac	}
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3	*	(2	*	fac	1)

= {	applying	fac	}
3	*	(2	*	(1	*	fac	0))

= {	applying	fac	}
3	*	(2	*	(1	*	1))

= {	applying	*	}
6

Note	 that	even	 though	 the	fac	 function	 is	defined	 in	 terms	of	 itself	 it	does	not
loop	forever.	In	particular,	each	application	of	fac	decreases	the	(non-negative)
integer	 argument	 by	 one,	 until	 it	 eventually	 reaches	 zero	 at	 which	 point	 the
recursion	 stops	 and	 the	 multiplications	 are	 performed.	 Returning	 one	 as	 the
factorial	 of	 zero	 is	 appropriate	 because	 one	 is	 the	 identity	 for	 multiplication.
That	is,	1	*	x	=	x	and	x	*	1	=	x	for	any	integer	x.
For	 the	 case	 of	 the	 factorial	 function,	 the	 original	 definition	 using	 library

functions	is	simpler	than	the	definition	using	recursion.	However,	as	we	shall	see
in	 the	 remainder	 of	 this	 book,	 many	 functions	 have	 a	 simple	 and	 natural
definition	using	recursion.	For	example,	many	of	the	library	functions	in	Haskell
are	 defined	 in	 this	 way.	 Moreover,	 as	 we	 shall	 see	 in	 chapter	 16,	 defining
functions	using	recursion	also	allows	properties	of	those	functions	to	be	proved
using	the	simple	but	powerful	technique	of	induction.
As	 another	 example	 of	 recursion	 on	 integers,	 consider	 the	 multiplication

operator	 *	 used	 above.	 For	 efficiency	 reasons,	 this	 operator	 is	 provided	 as	 a
primitive	 in	Haskell.	However,	 for	non-negative	 integers	 it	can	also	be	defined
using	recursion	on	either	of	its	two	arguments,	such	as	the	second:
(*)	::	Int	->	Int	->	Int

m	*	0	=	0

m	*	n	=	m	+	(m	*	(n-1))

For	example:
4	*	3

= {	applying	*	}
4	+	(4	*	2)

= {	applying	*	}
4	+	(4	+	(4	*	1))

= {	applying	*	}
4	+	(4	+	(4	+	(4	*	0)))

= {	applying	*	}
4	+	(4	+	(4	+	0))

= {	applying	+	}
12
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That	 is,	 the	 recursive	 definition	 for	 the	 *	 operator	 formalises	 the	 idea	 that
multiplication	can	be	reduced	to	repeated	addition.

6.2 Recursion	on	lists
Recursion	is	not	restricted	to	functions	on	integers,	but	can	also	be	used	to	define
functions	 on	 lists.	 For	 example,	 the	 library	 function	 product	 used	 in	 the
preceding	section	can	be	defined	as	follows:
product	::	Num	a	=>	[a]	->	a

product	[] =	1

product	(n:ns)	=	n	*	product	ns

The	 first	 equation	 states	 that	 the	 product	 of	 the	 empty	 list	 of	 numbers	 is	 one,
which	 is	appropriate	because	one	 is	 the	 identity	 for	multiplication.	The	second
equation	states	that	the	product	of	any	non-empty	list	is	given	by	multiplying	the
first	number	and	the	product	of	the	remaining	list.	For	example:

product	[2,3,4]

= {	applying	product	}
2	*	product	[3,4]

= {	applying	product	}
2	*	(3	*	product	[4])

= {	applying	product	}
2	*	(3	*	(4	*	product	[]))

= {	applying	product	}
2	*	(3	*	(4	*	1))

= {	applying	*	}
24

Recall	that	lists	in	Haskell	are	actually	constructed	one	element	at	a	time	using
the	cons	operator.	Hence,	[2,3,4]	is	just	an	abbreviation	for	2:(3:(4:[])).	As
another	simple	example	of	recursion	on	lists,	the	library	function	length	can	be
defined	using	the	same	pattern	of	recursion	as	product:
length	::	[a]	->	Int

length	[] =	0

length	(_:xs)	=	1	+	length	xs

That	is,	the	length	of	the	empty	list	is	zero,	and	the	length	of	any	non-empty	list
is	the	successor	of	the	length	of	its	tail.	Note	the	use	of	the	wildcard	pattern	_	in
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the	recursive	case,	which	reflects	the	fact	that	calculating	the	length	of	a	list	does
not	depend	upon	the	values	of	its	elements.
Now	let	us	consider	the	library	function	that	reverses	a	list.	This	function	can

be	defined	using	recursion	as	follows:
reverse	::	[a]	->	[a]

reverse	[] =	[]

reverse	(x:xs)	=	reverse	xs	++	[x]

That	is,	the	reverse	of	the	empty	list	is	simply	the	empty	list,	and	the	reverse	of
any	non-empty	list	 is	given	by	appending	the	reverse	of	its	 tail	and	a	singleton
list	comprising	the	head	of	the	list.	For	example:

reverse	[1,2,3]

= {	applying	reverse	}
reverse	[2,3]	++	[1]

= {	applying	reverse	}
(reverse	[3]	++	[2])	++	[1]

= {	applying	reverse	}
((reverse	[]	++	[3])	++	[2])	++	[1]

= {	applying	reverse	}
(([]	++	[3])	++	[2])	++	[1]

= {	applying	++	}
[3,2,1]

In	 turn,	 the	append	operator	++	 used	 in	 the	above	definition	of	reverse	 can
itself	be	defined	using	recursion	on	its	first	argument:
(++)	::	[a]	->	[a]	->	[a]

[] ++	ys	=	ys

(x:xs)	++	ys	=	x	:	(xs	++	ys)

For	example:
[1,2,3]	++	[4,5]

= {	applying	++	}
1	:	([2,3]	++	[4,5])

= {	applying	++	}
1	:	(2	:	([3]	++	[4,5]))

= {	applying	++	}
1	:	(2	:	(3	:	([]	++	[4,5])))

= {	applying	++	}
1	:	(2	:	(3	:	[4,5]))

= {	list	notation	}
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[1,2,3,4,5]

That	 is,	 the	recursive	definition	for	++	 formalises	 the	 idea	 that	 two	lists	can	be
appended	by	copying	elements	from	the	first	 list	until	 it	 is	exhausted,	at	which
point	the	second	list	is	joined	on	at	the	end.
We	conclude	this	section	with	two	examples	of	recursion	on	sorted	lists.	First

of	all,	a	function	that	inserts	a	new	element	of	any	ordered	type	into	a	sorted	list
to	give	another	sorted	list	can	be	defined	as	follows:

That	 is,	 inserting	a	new	element	 into	an	empty	 list	gives	a	singleton	 list,	while
for	a	non-empty	list	the	result	depends	upon	the	ordering	of	the	new	element	x
and	 the	 head	 of	 the	 list	 y.	 In	 particular,	 if	 x	 <=	 y	 then	 the	 new	 element	 x	 is
simply	prepended	to	the	start	of	the	list,	otherwise	the	head	y	becomes	the	first
element	of	the	resulting	list,	and	we	then	proceed	to	insert	the	new	element	into
the	tail	of	the	given	list.	For	example,	we	have:

insert	3	[1,2,4,5]

= {	applying	insert	}
1	:	insert	3	[2,4,5]

= {	applying	insert	}
1	:	2	:	insert	3	[4,5]

= {	applying	insert	}
1	:	2	:	3	:	[4,5]

= {	list	notation	}
[1,2,3,4,5]

Using	insert	we	can	now	define	a	function	that	implements	insertion	sort,	in
which	 the	 empty	 list	 is	 already	 sorted,	 and	 any	 non-empty	 list	 is	 sorted	 by
inserting	its	head	into	the	list	that	results	from	sorting	its	tail:
isort	::	Ord	a	=>	[a]	->	[a]

isort	[] =	[]

isort	(x:xs)	=	insert	x	(isort	xs)

For	example:
isort	[3,2,1,4]

= {	applying	isort	}
insert	3	(insert	2	(insert	1	(insert	4	[])))
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= {	applying	insert	}
insert	3	(insert	2	(insert	1	[4]))

= {	applying	insert	}
insert	3	(insert	2	[1,4])

= {	applying	insert	}
insert	3	[1,2,4]

= {	applying	insert	}
[1,2,3,4]

6.3 Multiple	arguments
Functions	with	multiple	arguments	can	also	be	defined	using	recursion	on	more
than	one	argument	at	 the	same	time.	For	example,	the	library	function	zip	 that
takes	two	lists	and	produces	a	list	of	pairs	is	defined	as	follows:

For	example:
zip	[’a’,’b’,’c’]	[1,2,3,4]

= {	applying	zip	}
(’a’,1)	:	zip	[’b’,’c’]	[2,3,4]

= {	applying	zip	}
(’a’,1)	:	(’b’,2)	:	zip	[’c’]	[3,4]

= {	applying	zip	}
(’a’,1)	:	(’b’,2)	:	(’c’,3)	:	zip	[]	[4]

= {	applying	zip	}
(’a’,1)	:	(’b’,2)	:	(’c’,3)	:	[]

= {	list	notation	}
[(’a’,1),	(’b’,2),	(’c’,3)]

Note	that	two	base	cases	are	required	in	the	definition	of	zip,	because	either	of
the	 two	 argument	 lists	 may	 be	 empty.	 As	 another	 example	 of	 recursion	 on
multiple	 arguments,	 the	 library	 function	drop	 that	 removes	 a	 given	 number	 of
elements	from	the	start	of	a	list	is	defined	as	follows:
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Again,	two	base	cases	are	required,	one	for	removing	zero	elements,	and	one	for
attempting	to	remove	elements	from	the	empty	list.

6.4 Multiple	recursion
Functions	 can	also	be	defined	using	multiple	 recursion,	 in	which	a	 function	 is
applied	more	than	once	in	its	own	definition.	For	example,	recall	the	Fibonacci
sequence	0,	1,	1,	2,	3,	5,	8,	13,...,	in	which	the	first	two	numbers	are	0	and	1,	and
each	 subsequent	number	 is	 given	by	 adding	 the	preceding	 two	numbers	 in	 the
sequence.	A	 function	 that	calculates	 the	nth	Fibonacci	number	 for	any	 integer	

	can	be	defined	using	double	recursion	as	follows:
fib	::	Int	->	Int

fib	0	=	0

fib	1	=	1

fib	n	=	fib	(n-2)	+	fib	(n-1)

As	another	example,	in	chapter	1	we	showed	how	to	implement	another	well-
known	method	of	sorting	a	list,	known	as	quicksort:

That	is,	the	empty	list	is	already	sorted,	and	any	non-empty	list	can	be	sorted	by
placing	its	head	between	the	two	lists	that	result	from	sorting	those	elements	of
its	tail	that	are	smaller	and	larger	than	the	head.

6.5 Mutual	recursion
Functions	 can	 also	 be	 defined	 using	mutual	 recursion,	 in	 which	 two	 or	 more
functions	 are	 all	 defined	 recursively	 in	 terms	 of	 each	 other.	 For	 example,
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consider	 the	 library	functions	even	and	odd.	For	efficiency,	 these	functions	are
normally	defined	using	the	remainder	after	dividing	by	two.	However,	for	non-
negative	integers	they	can	also	be	defined	using	mutual	recursion:
even::	Int	->	Bool

even	0	=	True

even	n	=	odd	(n-1)

odd	::	Int	->	Bool

odd	0	=	False

odd	n	=	even	(n-1)

That	is,	zero	is	even	but	not	odd,	and	any	other	number	is	even	if	its	predecessor
is	odd,	and	odd	if	its	predecessor	is	even.	For	example:

even	4

= {	applying	even	}
odd	3

= {	applying	odd	}
even	2

= {	applying	even	}
odd	1

= {	applying	odd	}
even	0

= {	applying	even	}
True

Similarly,	 functions	 that	 select	 the	 elements	 from	 a	 list	 at	 all	 even	 and	 odd
positions	(counting	from	zero)	can	be	defined	as	follows:

For	example:
evens	"abcde"

= {	applying	evens	}
’a’	:	odds	"bcde"

= {	applying	odds	}
’a’	:	evens	"cde"
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= {	applying	evens	}
’a’	:	’c’	:	odds	"de"

= {	applying	odds	}
’a’	:	’c’	:	evens	"e"

= {	applying	evens	}
’a’	:	’c’	:	’e’	:	odds	[]

= {	applying	odds	}
’a’	:	’c’	:	’e’	:	[]

= {	string	notation	}
"ace"

Recall	 that	 strings	 in	 Haskell	 are	 actually	 constructed	 as	 lists	 of	 characters.
Hence,	"abcde"	is	just	an	abbreviation	for	[’a’,’b’,’c’,’d’,’e’].

6.6 Advice	on	recursion
Defining	recursive	functions	is	like	riding	a	bicycle:	it	looks	easy	when	someone
else	 is	 doing	 it,	may	 seem	 impossible	when	you	 first	 try	 to	do	 it	 yourself,	 but
becomes	simple	and	natural	with	practice.	In	this	section	we	offer	some	advice
for	defining	 functions	 in	general,	 and	 recursive	 functions	 in	particular,	using	a
five-step	process	that	we	introduce	by	means	of	three	examples.

Example	–	product
As	 a	 simple	 first	 example,	 we	 show	 how	 the	 definition	 given	 earlier	 in	 this
chapter	for	the	library	function	that	calculates	the	product	of	a	list	of	numbers
can	be	systematically	constructed	in	a	stepwise	manner.

Step	1:	define	the	type
Thinking	 about	 types	 is	 very	 helpful	 when	 defining	 functions,	 so	 it	 is	 good
practice	 to	define	 the	 type	of	a	 function	prior	 to	starting	 to	define	 the	 function
itself.	In	this	case,	we	begin	with	the	type
product	::	[Int]	->	Int

that	states	that	product	takes	a	list	of	integers	and	produces	a	single	integer.	As
in	 this	 example,	 it	 is	 often	 useful	 to	 begin	 with	 a	 simple	 type,	 which	 can	 be
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refined	or	generalised	later	on	in	the	process.

Step	2:	enumerate	the	cases
For	most	 types	of	 argument,	 there	are	a	number	of	 standard	cases	 to	consider.
For	 lists,	 the	 standard	 cases	 are	 the	 empty	 list	 and	 non-empty	 lists,	 so	we	 can
write	down	the	following	skeleton	definition	using	pattern	matching:

product	[] =

product	(n:ns)	=

For	non-negative	integers,	the	standard	cases	are	0	and	n,	for	logical	values	they
are	False	and	True,	and	so	on.	As	with	the	type,	we	may	need	to	refine	the	cases
later	on,	but	it	is	useful	to	begin	with	the	standard	cases.

Step	3:	define	the	simple	cases
By	definition,	the	product	of	zero	integers	is	one,	because	one	is	the	identity	for
multiplication.	Hence	it	is	straightforward	to	define	the	empty	list	case:

product	[] =	1

product	(n:ns)	=

As	in	this	example,	the	simple	cases	often	become	base	cases.

Step	4:	define	the	other	cases
How	can	we	calculate	the	product	of	a	non-empty	list	of	integers?	For	this	step,
it	is	useful	to	first	consider	the	ingredients	that	can	be	used,	such	as	the	function
itself	(product),	the	arguments	(n	and	ns),	and	library	functions	of	relevant	types
(+,	-,	*,	 and	 so	 on.)	 In	 this	 case,	we	 simply	multiply	 the	 first	 integer	 and	 the
product	of	the	remaining	list	of	integers:

product	[] =	1

product	(n:ns)	=	n	*	product	ns

As	in	this	example,	the	other	cases	often	become	recursive	cases.
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Step	5:	generalise	and	simplify
Once	a	function	has	been	defined	using	the	above	process,	it	often	becomes	clear
that	it	can	be	generalised	and	simplified.	For	example,	the	function	product	does
not	depend	on	the	precise	kind	of	numbers	to	which	it	is	applied,	so	its	type	can
be	generalised	from	integers	to	any	numeric	type:
product	::	Num	a	=>	[a]	->	a

In	terms	of	simplification,	we	will	see	in	chapter	7	that	the	pattern	of	recursion
used	in	product	is	encapsulated	by	a	library	function	called	foldr,	using	which
product	can	be	redefined	by	a	single	equation:
product	=	foldr	(*)	1

In	conclusion,	our	final	definition	for	product	is	as	follows:
product	::	Num	a	=>	[a]	->	a

product	=	foldr	(*)	1

This	is	precisely	the	definition	for	lists	from	the	standard	prelude	in	appendix	B,
except	 that	 for	 efficiency	 reasons	 the	 use	 of	 foldr	 is	 replaced	 by	 the	 related
function	foldl,	which	is	also	discussed	in	chapter	7.

Example	–	drop
As	a	more	 substantial	 example,	we	now	show	how	 the	definition	given	earlier
for	the	library	function	drop	that	removes	a	given	number	of	elements	from	the
start	of	a	list	can	be	constructed	using	the	five-step	process.

Step	1:	define	the	type
Let	us	begin	with	a	type	that	states	that	drop	takes	an	integer	and	a	list	of	values
of	some	type	a,	and	produces	another	list	of	such	values:
drop	::	Int	->	[a]	->	[a]

Note	 that	 we	 have	 already	 made	 four	 design	 decisions	 in	 defining	 this	 type:
using	 integers	 rather	 than	 a	 more	 general	 numeric	 type,	 for	 simplicity;	 using
currying	rather	than	taking	the	arguments	as	a	pair,	for	flexibility;	supplying	the
integer	argument	before	 the	 list	argument,	 for	 readability	 (an	expression	of	 the
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form	drop	n	xs	can	be	read	as	drop	n	elements	from	xs);	and,	finally,	making
the	function	polymorphic	in	the	type	of	the	list	elements,	for	generality.

Step	2:	enumerate	the	cases
As	there	are	two	standard	cases	for	the	integer	argument	(0	and	n)	and	two	for
the	 list	 argument	 ([]	 and	 x:xs),	 writing	 down	 a	 skeleton	 definition	 for	 the
function	using	pattern	matching	requires	four	cases	in	total:

Step	3:	define	the	simple	cases
By	definition,	removing	zero	elements	from	the	start	of	any	list	gives	the	same
list,	so	it	is	straightforward	to	define	the	first	two	cases:

Attempting	to	remove	one	or	more	elements	from	the	empty	list	is	invalid,	so
the	third	case	could	be	omitted,	which	would	result	in	an	error	being	produced	if
this	situation	arises.	In	practice,	however,	we	choose	to	avoid	the	production	of
an	error	by	returning	the	empty	list	in	this	case:

Step	4:	define	the	other	cases
How	can	we	 remove	one	or	more	 elements	 from	a	non-empty	 list?	By	 simply
removing	one	fewer	elements	from	the	tail	of	the	list:
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Step	5:	generalise	and	simplify
Because	 the	 function	drop	 does	 not	 depend	 on	 the	 precise	 kind	 of	 integers	 to
which	it	 is	applied,	 its	 type	could	be	generalised	to	any	integral	 type,	of	which
Int	and	Integer	are	the	standard	instances:
drop	::	Integral	b	=>	b	->	[a]	->	[a]

For	 efficiency	 reasons,	 however,	 this	 generalisation	 is	 not	 in	 fact	made	 in	 the
standard	prelude,	as	noted	in	section	3.9.	In	terms	of	simplification,	the	first	two
equations	 for	 drop	 can	 be	 combined	 into	 a	 single	 equation	 that	 states	 that
removing	zero	elements	from	any	list	gives	the	same	list:

Moreover,	 the	 variable	 n	 in	 the	 second	 equation	 and	 x	 in	 the	 third	 can	 be
replaced	by	 the	wildcard	pattern	_,	 because	 these	variables	are	not	used	 in	 the
bodies	 of	 their	 equations.	 In	 conclusion,	 our	 final	 definition	 for	 drop	 is	 as
follows,	which	is	precisely	the	definition	from	the	standard	prelude.

Example	–	init
As	a	final	example,	let	us	consider	how	the	definition	for	library	function	init
that	removes	the	last	element	from	a	non-empty	list	can	be	constructed.

Step	1:	define	the	type
We	begin	with	a	type	that	states	that	init	takes	a	list	of	values	of	some	type	a,
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and	produces	another	list	of	such	values:
init	::	[a]	->	[a]

Step	2:	enumerate	the	cases
As	 the	 empty	 list	 is	 not	 a	 valid	 argument	 for	 init,	 writing	 down	 a	 skeleton
definition	using	pattern	matching	requires	just	one	case:
init	(x:xs)	=

Step	3:	define	the	simple	cases
Whereas	 in	 the	 previous	 two	 examples	 defining	 the	 simple	 cases	 was
straightforward,	 a	 little	 more	 thought	 is	 required	 for	 the	 function	 init.	 By
definition,	 however,	 removing	 the	 last	 element	 from	 a	 list	 with	 one	 element
gives	the	empty	list,	so	we	can	introduce	a	guard	to	handle	this	simple	case:

(The	library	function	null	::	[a]	->	Bool	decides	if	a	list	is	empty.)

Step	4:	define	the	other	cases
How	can	we	remove	the	last	element	from	a	list	with	at	least	two	elements?	By
simply	retaining	the	head	and	removing	the	last	element	from	the	tail:

Step	5:	generalise	and	simplify
The	type	for	init	 is	already	as	general	as	possible,	but	the	definition	itself	can
now	be	simplified	by	using	pattern	matching	rather	than	guards,	and	by	using	a
wildcard	pattern	in	the	first	equation	rather	than	a	variable:
init	::	[a]	->	[a]

init	[_] =	[]
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init	(x:xs)	=	x	:	init	xs

Again,	this	is	precisely	the	definition	from	the	standard	prelude.

6.7 Chapter	remarks
The	recursive	definitions	presented	 in	 this	chapter	emphasise	clarity,	but	many
can	be	improved	in	terms	of	efficiency	or	generality,	as	we	shall	see	later	on	in
the	book.	The	five-step	process	for	defining	functions	is	based	on	[8].

6.8 Exercises
1. How	does	the	recursive	version	of	the	factorial	function	behave	if	applied

to	a	negative	argument,	 such	as	(-1)?	Modify	 the	definition	 to	prohibit
negative	arguments	by	adding	a	guard	to	the	recursive	case.

2. Define	a	recursive	function	sumdown	::	Int	->	Int	that	returns	the	sum
of	 the	 non-negative	 integers	 from	 a	 given	 value	 down	 to	 zero.	 For
example,	sumdown	3	should	return	the	result	3+2+1+0	=	6.

3. Define	 the	exponentiation	operator	^	 for	non-negative	 integers	using	 the
same	pattern	of	recursion	as	the	multiplication	operator	*,	and	show	how
the	expression	2	^	3	is	evaluated	using	your	definition.

4. Define	 a	 recursive	 function	 euclid	 ::	 Int	 ->	 Int	 ->	 Int	 that
implements	 Euclid’s	 algorithm	 for	 calculating	 the	 greatest	 common
divisor	 of	 two	non-negative	 integers:	 if	 the	 two	numbers	 are	 equal,	 this
number	is	the	result;	otherwise,	the	smaller	number	is	subtracted	from	the
larger,	and	the	same	process	is	then	repeated.	For	example:

>	euclid	6	27

3

5. Using	 the	 recursive	 definitions	 given	 in	 this	 chapter,	 show	how	length
[1,2,3],	drop	3	[1,2,3,4,5],	and	init	[1,2,3]	are	evaluated.

6. Without	 looking	at	 the	definitions	 from	 the	 standard	prelude,	define	 the
following	library	functions	on	lists	using	recursion.

a. Decide	if	all	logical	values	in	a	list	are	True:
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and	::	[Bool]	->	Bool

b. Concatenate	a	list	of	lists:
concat	::	[[a]]	->	[a]

c. Produce	a	list	with	n	identical	elements:
replicate	::	Int	->	a	->	[a]

d. Select	the	nth	element	of	a	list:
(!!)	::	[a]	->	Int	->	a

e. Decide	if	a	value	is	an	element	of	a	list:
elem	::	Eq	a	=>	a	->	[a]	->	Bool

Note:	 most	 of	 these	 functions	 are	 defined	 in	 the	 prelude	 using	 other
library	 functions	 rather	 than	 using	 explicit	 recursion,	 and	 are	 generic
functions	rather	than	being	specific	to	the	type	of	lists.

7. Define	a	recursive	function	merge	::	Ord	a	=>	[a]	->	[a]	->	[a]	that
merges	two	sorted	lists	to	give	a	single	sorted	list.	For	example:

>	merge	[2,5,6]	[1,3,4]

[1,2,3,4,5,6]

Note:	your	definition	should	not	use	other	functions	on	sorted	lists	such	as
insert	or	isort,	but	should	be	defined	using	explicit	recursion.

8. Using	 merge,	 define	 a	 function	 msort	 ::	 Ord	 a	 =>	 [a]	 ->	 [a]	 that
implements	merge	 sort,	 in	 which	 the	 empty	 list	 and	 singleton	 lists	 are
already	 sorted,	 and	 any	other	 list	 is	 sorted	by	merging	 together	 the	 two
lists	that	result	from	sorting	the	two	halves	of	the	list	separately.
Hint:	first	define	a	function	halve	::	[a]	->	([a],[a])	that	splits	a	list
into	two	halves	whose	lengths	differ	by	at	most	one.

9. Using	the	five-step	process,	construct	the	library	functions	that:

a. calculate	the	sum	of	a	list	of	numbers;
b. take	a	given	number	of	elements	from	the	start	of	a	list;
c. select	the	last	element	of	a	non-empty	list.

Solutions	to	exercises	1–4	are	given	in	appendix	A.
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7

Higher-order	functions

In	 this	 chapter	 we	 introduce	 higher-order	 functions,	 which	 allow	 common
programming	 patterns	 to	 be	 encapsulated	 as	 functions.	We	 start	 by	 explaining
what	 higher-order	 functions	 are	 and	 why	 they	 are	 useful,	 then	 introduce	 a
number	 of	 higher-order	 functions	 from	 the	 standard	 prelude,	 and	 conclude	 by
implementing	a	binary	string	transmitter	and	two	voting	algorithms.

7.1 Basic	concepts
As	we	 have	 seen	 in	 previous	 chapters,	 functions	 with	multiple	 arguments	 are
usually	defined	 in	Haskell	using	 the	notion	of	currying.	That	 is,	 the	arguments
are	taken	one	at	a	time	by	exploiting	the	fact	that	functions	can	return	functions
as	results.	For	example,	the	definition
add	::	Int	->	Int	->	Int

add	x	y	=	x	+	y

means
add	::	Int	->	(Int	->	Int)

add	=	\x	->	(\y	->	x	+	y)

and	 states	 that	add	 is	 a	 function	 that	 takes	an	 integer	x	 and	 returns	a	 function,
which	in	turn	takes	another	integer	y	and	returns	their	sum	x	+	y.	In	Haskell,	it
is	 also	 permissible	 to	 define	 functions	 that	 take	 functions	 as	 arguments.	 For
example,	a	 function	 that	 takes	a	 function	and	a	value,	and	 returns	 the	 result	of
applying	the	function	twice	to	the	value,	can	be	defined	as	follows:
twice	::	(a	->	a)	->	a	->	a

twice	f	x	=	f	(f	x)

For	example:
>	twice	(*2)	3

12
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>	twice	reverse	[1,2,3]

[1,2,3]

Moreover,	because	twice	 is	a	curried	 function,	 it	 can	be	partially	applied	with
just	one	argument	 to	build	other	useful	 functions.	For	example,	a	 function	 that
quadruples	 a	 number	 is	 given	 by	 twice	 (*2),	 and	 the	 fact	 that	 reversing	 a
(finite)	list	twice	has	no	effect	i	captured	by	the	equation	twice	reverse	=	id,
where	id	is	the	identity	function	defined	by	id	x	=	x.
Formally	speaking,	a	function	that	takes	a	function	as	an	argument	or	returns	a

function	 as	 a	 result	 is	 called	 a	 higher-order	 function.	 In	 practice,	 however,
because	 the	 term	 curried	 already	 exists	 for	 returning	 functions	 as	 results,	 the
term	higher-order	is	often	just	used	for	taking	functions	as	arguments.	It	 is	this
latter	interpretation	that	is	the	subject	of	this	chapter.
Using	higher-order	functions	considerably	increases	the	power	of	Haskell,	by

allowing	common	programming	patterns	to	be	encapsulated	as	functions	within
the	language	itself.	More	generally,	higher-order	functions	can	be	used	to	define
domain-specific	 languages	 within	 Haskell.	 For	 example,	 in	 this	 chapter	 we
present	a	simple	language	for	processing	lists,	and	in	part	II	of	the	book	we	will
develop	 languages	 for	 a	 range	 of	 other	 domains,	 including	 interactive
programming,	effectful	programming,	and	building	parsers.

7.2 Processing	lists
The	 standard	 prelude	 defines	 a	 number	 of	 useful	 higher-order	 functions	 for
processing	 lists.	Many	of	 these	 are	 actually	generic	 functions	 that	 can	be	used
with	a	range	of	different	types,	but	here	we	restrict	our	attention	to	lists.	As	our
first	example,	the	function	map	applies	a	function	to	all	elements	of	a	list,	and	can
be	defined	using	a	list	comprehension	as	follows:
map	::	(a	->	b)	->	[a]	->	[b]

map	f	xs	=	[f	x	|	x	<-	xs]

That	is,	map	f	xs	returns	the	list	of	all	values	f	x	such	that	x	is	an	element	of
the	argument	list	xs.	For	example,	we	have:
>	map	(+1)	[1,3,5,7]

[2,4,6,8]

>	map	even	[1,2,3,4]
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[False,True,False,True]

>	map	reverse	["abc","def","ghi"]

["cba","fed","ihg"]

There	 are	 three	 further	 points	 to	 note	 about	 map.	 First	 of	 all,	 it	 is	 a
polymorphic	function	that	can	be	applied	to	lists	of	any	type,	as	are	most	higher-
order	 functions	 on	 lists.	 Secondly,	 it	 can	 be	 applied	 to	 itself	 to	 process	 nested
lists.	For	example,	 the	 function	map	(map	(+1))	 increments	each	number	 in	a
list	of	lists	of	numbers,	as	shown	in	the	following	calculation:

map	(map	(+1))	[[1,2,3],[4,5]]

= {	applying	the	outer	map	}
[map	(+1)	[1,2,3],	map	(+1)	[4,5]]

= {	applying	the	inner	maps	}
[[2,3,4],[5,6]]

And,	finally,	the	function	map	can	also	be	defined	using	recursion:
map	::	(a	->	b)	->	[a]	->	[b]

map	f	[] =	[]

map	f	(x:xs)	=	f	x	:	map	f	xs

That	is,	applying	a	function	to	all	elements	of	the	empty	list	gives	the	empty	list,
while	for	a	non-empty	list	the	function	is	simply	applied	to	the	head	of	the	list,
and	we	then	proceed	to	apply	the	function	to	all	elements	of	the	tail.	The	original
definition	 for	 map	 using	 a	 list	 comprehension	 is	 simpler,	 but	 the	 recursive
definition	is	preferable	for	reasoning	purposes	(see	chapter	16.)
Another	 useful	 higher-order	 library	 function	 is	 filter,	 which	 selects	 all

elements	 of	 a	 list	 that	 satisfy	 a	 predicate,	where	 a	 predicate	 (or	 property)	 is	 a
function	that	returns	a	logical	value.	As	with	map,	the	function	filter	also	has	a
simple	definition	using	a	list	comprehension:
filter	::	(a	->	Bool)	->	[a]	->	[a]

filter	p	xs	=	[x	|	x	<-	xs,	p	x]

That	is,	filter	p	xs	returns	the	list	of	all	values	x	such	that	x	is	an	element	of
the	list	xs	and	the	value	of	p	x	is	True.	For	example:
>	filter	even	[1..10]

[2,4,6,8,10]

>	filter	(>	5)	[1..10]

[6,7,8,9,10]
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>	filter	(/=	’	’)	"abc	def	ghi"

"abcdefghi"

As	with	map,	the	function	filter	can	be	applied	to	lists	of	any	type,	and	can
be	defined	using	recursion	for	the	purposes	of	reasoning:

That	 is,	selecting	all	elements	 that	satisfy	a	predicate	from	the	empty	list	gives
the	empty	 list,	while	 for	 a	non-empty	 list	 the	 result	depends	upon	whether	 the
head	 satisfies	 the	 predicate.	 If	 it	 does	 then	 the	 head	 is	 retained	 and	 we	 then
proceed	to	filter	elements	from	the	tail	of	the	list,	otherwise	the	head	is	discarded
and	we	simply	filter	elements	from	the	tail.
The	 functions	 map	 and	 filter	 are	 often	 used	 together	 in	 programs,	 with

filter	being	used	 to	select	certain	elements	 from	a	 list,	each	of	which	 is	 then
transformed	 using	 map.	 For	 example,	 a	 function	 that	 returns	 the	 sum	 of	 the
squares	of	the	even	integers	from	a	list	could	be	defined	as	follows:
sumsqreven	::	[Int]	->	Int

sumsqreven	ns	=	sum	(map	(^2)	(filter	even	ns))

We	 conclude	 this	 section	 by	 illustrating	 a	 number	 of	 other	 higher-order
functions	for	processing	lists	that	are	defined	in	the	standard	prelude.

Decide	if	all	elements	of	a	list	satisfy	a	predicate:
>	all	even	[2,4,6,8]

True

Decide	if	any	element	of	a	list	satisfies	a	predicate:
>	any	odd	[2,4,6,8]

False

Select	elements	from	a	list	while	they	satisfy	a	predicate:
>	takeWhile	even	[2,4,6,7,8]

[2,4,6]

Remove	elements	from	a	list	while	they	satisfy	a	predicate:
>	dropWhile	odd	[1,3,5,6,7]

[6,7]
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7.3 The	foldr	function
Many	 functions	 that	 take	 a	 list	 as	 their	 argument	 can	 be	 defined	 using	 the
following	simple	pattern	of	recursion	on	lists:

f	[] =	v

f	(x:xs)	=	x	#	f	xs

That	is,	the	function	maps	the	empty	list	to	a	value	v,	and	any	non-empty	list	to
an	 operator	 #	 applied	 to	 the	 head	 of	 the	 list	 and	 the	 result	 of	 recursively
processing	the	tail.	For	example,	a	number	of	familiar	library	functions	on	lists
can	be	defined	using	this	pattern	of	recursion:

sum	[] =	0

sum	(x:xs)	=	x	+	sum	xs

product	[] =	1

product	(x:xs)	=	x	*	product	xs

or	[] =	False

or	(x:xs)	=	x	||	or	xs

and	[] =	True

and	(x:xs)	=	x	&&	and	xs

The	higher-order	library	function	foldr	(abbreviating	fold	right)	encapsulates
this	pattern	of	recursion	for	defining	functions	on	lists,	with	the	operator	#	and
the	value	v	as	arguments.	For	example,	using	foldr	 the	 four	definitions	above
can	be	rewritten	more	compactly	as	follows:
sum	::	Num	a	=>	[a]	->	a

sum	=	foldr	(+)	0

product	::	Num	a	=>	[a]	->	a

product	=	foldr	(*)	1

or	::	[Bool]	->	Bool

or	=	foldr	(||)	False

and	::	[Bool]	->	Bool

and	=	foldr	(&&)	True

(Recall	 that	 operators	must	 be	 parenthesised	when	 used	 as	 arguments.)	 These
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new	definitions	could	also	include	explicit	list	arguments,	as	in
sum	xs	=	foldr	(+)	0	xs

but	we	prefer	the	above	definitions	in	which	these	arguments	are	made	implicit
using	partial	application	because	they	are	simpler.
The	foldr	function	itself	can	be	defined	using	recursion:
foldr	::	(a	->	b	->	b)	->	b	->	[a]	->	b

foldr	f	v	[] =	v

foldr	f	v	(x:xs)	=	f	x	(foldr	f	v	xs)

That	is,	the	function	foldr	f	v	maps	the	empty	list	to	the	value	v,	and	any	non-
empty	 list	 to	 the	 function	f	 applied	 to	 the	 head	 of	 the	 list	 and	 the	 recursively
processed	tail.	In	practice,	however,	it	is	best	to	think	of	the	behaviour	of	foldr
f	v	 in	a	non-recursive	manner,	as	simply	replacing	each	cons	operator	in	a	list
by	 the	 function	f,	 and	 the	 empty	 list	 at	 the	 end	 by	 the	 value	v.	 For	 example,
applying	the	function	foldr	(+)	0	to	the	list
1	:	(2	:	(3	:	[]))

gives	the	result
1	+	(2	+	(3	+	0))

in	 which	 :	 and	 []	 have	 been	 replaced	 by	 +	 and	 0,	 respectively.	 Hence,	 the
definition	sum	=	foldr	(+)	0	states	that	summing	a	list	of	numbers	amounts	to
replacing	each	cons	by	addition	and	the	empty	list	by	zero.
Even	though	foldr	encapsulates	a	simple	pattern	of	recursion,	it	can	be	used

to	define	many	more	 functions	 than	might	 first	be	expected.	First	of	all,	 recall
the	following	definition	for	the	library	function	length:
length	::	[a]	->	Int

length	[] =	0

length	(_:xs)	=	1	+	length	xs

For	example,	applying	length	to	the	list
1	:	(2	:	(3	:	[]))

gives	the	result
1	+	(1	+	(1	+	0))

That	 is,	 calculating	 the	 length	 of	 a	 list	 amounts	 to	 replacing	 each	 cons	 by	 the
function	that	adds	one	to	its	second	argument,	and	the	empty	list	by	zero.	Hence,
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the	definition	for	length	can	be	rewritten	using	foldr:
length	::	[a]	->	Int

length	=	foldr	(\_	n	->	1+n)	0

Now	 let	 us	 consider	 the	 library	 function	 that	 reverses	 a	 list,	 which	 can	 be
defined	in	a	simple	manner	using	explicit	recursion	as	follows:
reverse	::	[a]	->	[a]

reverse	[] =	[]

reverse	(x:xs)	=	reverse	xs	++	[x]

For	example,	applying	reverse	to	the	list
1	:	(2	:	(3	:	[]))

gives	the	result
(([]	++	[3])	++	[2])	++	[1]

It	is	perhaps	not	clear	from	the	definition,	or	the	example,	how	reverse	can	be
defined	using	foldr.	However,	if	we	define	a	function	snoc	x	xs	=	xs	++	[x]
that	adds	a	new	element	at	the	end	of	a	list	rather	than	at	the	start	(snoc	is	cons
backwards),	then	reverse	can	be	redefined	as

reverse	[] =	[]

reverse	(x:xs)	=	snoc	x	(reverse	xs)

from	which	a	definition	using	foldr	is	then	immediate:
reverse	::	[a]	->	[a]

reverse	=	foldr	snoc	[]

We	conclude	this	section	by	noting	that	the	name	fold	right	reflects	the	use	of
an	 operator	 that	 is	 assumed	 to	 associate	 to	 the	 right.	 For	 example,	 evaluating
foldr	 (+)	 0	 [1,2,3]	 gives	 the	 result	 1+(2+(3+0)),	 in	which	 the	 bracketing
specifies	 that	addition	 is	assumed	 to	associate	 to	 the	 right.	More	generally,	 the
behaviour	of	foldr	can	be	summarised	as	follows:

foldr	(#)	v	[x0,x1,...,xn]	=	x0	#	(x1	#	(...	(xn	#	v)	...))

7.4 The	foldl	function
It	is	also	possible	to	define	recursive	functions	on	lists	using	an	operator	that	is
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assumed	to	associate	to	the	left.	For	example,	the	function	sum	can	be	redefined
in	this	manner	by	using	an	auxiliary	function	sum’	that	takes	an	extra	argument	v
that	is	used	to	accumulate	the	final	result:

For	example:
sum	[1,2,3]

= {	applying	sum	}
sum’	0	[1,2,3]

= {	applying	sum’	}
sum’	(0+1)	[2,3]

= {	applying	sum’	}
sum’	((0+1)+2)	[3]

= {	applying	sum’	}
sum’	(((0+1)+2)+3)	[]

= {	applying	sum’	}
((0+1)+2)+3

= {	applying	+	}
6

The	 bracketing	 in	 this	 calculation	 specifies	 that	 addition	 is	 now	 assumed	 to
associate	to	the	left.	In	practice,	however,	the	order	of	association	does	not	affect
the	value	of	 the	 result	 in	 this	 case,	 because	 addition	 is	 associative.	That	 is,	x+
(y+z)	=	(x+y)+z	for	any	numbers	x,	y,	and	z.
Generalising	 from	 the	sum	 example,	many	 functions	 on	 lists	 can	 be	 defined

using	the	following	simple	pattern	of	recursion:

f	v	[] =	v

f	v	(x:xs)	=	f	(v	#	x)	xs

That	 is,	 the	 function	maps	 the	 empty	 list	 to	 the	accumulator	 value	v,	 and	 any
non-empty	 list	 to	 the	 result	 of	 recursively	 processing	 the	 tail	 using	 a	 new
accumulator	value	obtained	by	applying	an	operator	#	 to	 the	current	value	and
the	head	of	 the	 list.	The	higher-order	 library	 function	foldl	 (abbreviating	 fold
left)	 encapsulates	 this	 pattern	 of	 recursion,	 with	 the	 operator	 #	 and	 the
accumulator	v	as	arguments.	For	example,	using	foldl	the	above	definition	for
the	function	sum	can	be	rewritten	more	compactly	as	follows:
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sum	::	Num	a	=>	[a]	->	a

sum	=	foldl	(+)	0

Similarly,	we	have:
product	::	Num	a	=>	[a]	->	a

product	=	foldl	(*)	1

or	::	[Bool]	->	Bool

or	=	foldl	(||)	False

and	::	[Bool]	->	Bool

and	=	foldl	(&&)	True

The	 other	 foldr	 examples	 from	 the	 previous	 section	 can	 also	 be	 redefined
using	foldl,	by	supplying	the	appropriate	operators:
length	::	[a]	->	Int

length	=	foldl	(\n	_	->	n+1)	0

reverse	::	[a]	->	[a]

reverse	=	foldl	(\xs	x	->	x:xs)	[]

For	example,	with	these	new	definitions,

length	[1,2,3]	=	((0	+	1)	+	1)	+	1	=	3

reverse	[1,2,3]	=	3	:	(2	:	(1	:	[]))	=	[3,2,1]

When	a	function	can	be	defined	using	both	foldr	and	foldl,	as	in	the	above
examples,	 the	 choice	 of	 which	 definition	 is	 preferable	 is	 usually	 made	 on
grounds	 of	 efficiency	 and	 requires	 careful	 consideration	 of	 the	 evaluation
mechanism	underlying	Haskell,	which	is	discussed	in	chapter	15.
The	foldl	function	itself	can	be	defined	using	recursion:
foldl	::	(a	->	b	->	a)	->	a	->	[b]	->	a

foldl	f	v	[] =	v

foldl	f	v	(x:xs)	=	foldl	f	(f	v	x)	xs

In	practice,	however,	as	with	foldr	it	is	best	to	think	of	the	behaviour	of	foldl
in	a	non-recursive	manner,	in	terms	of	an	operator	#	that	is	assumed	to	associate
to	the	left,	as	summarised	by	the	following	equation:

foldl	(#)	v	[x0,x1,...,xn]	=	(...	((v	#	x0)	#	x1)	...)	#	xn
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7.5 The	composition	operator
The	higher-order	library	operator	.	returns	the	composition	of	two	functions	as	a
single	function,	and	can	be	defined	as	follows:
(.)	::	(b	->	c)	->	(a	->	b)	->	(a	->	c)

f	.	g	=	\x	->	f	(g	x)

That	is,	f	.	g,	which	is	read	as	f	composed	with	g,	is	the	function	that	takes	an
argument	x,	applies	the	function	g	to	this	argument,	and	applies	the	function	f	to
the	 result.	 This	 operator	 could	 also	 be	 defined	 by	 (f	 .	 g)	 x	 =	 f	 (g	 x).
However,	we	prefer	the	above	definition	in	which	the	x	argument	is	shunted	to
the	body	of	the	definition	using	a	lambda	expression,	because	it	makes	explicit
the	idea	that	composition	returns	a	function	as	its	result.
Composition	can	be	used	to	simplify	nested	function	applications,	by	reducing

parentheses	and	avoiding	the	need	to	explicitly	refer	to	the	initial	argument.	For
example,	using	composition	the	definitions
odd	n	=	not	(even	n)

twice	f	x	=	f	(f	x)

sumsqreven	ns	=	sum	(map	(^2)	(filter	even	ns))

can	be	rewritten	more	simply:
odd	=	not	.	even

twice	f	=	f	.	f

sumsqreven	=	sum	.	map	(^2)	.	filter	even

The	last	definition	exploits	the	fact	that	composition	is	associative.	That	is,	f	.
(g	.	h)	=	(f	.	g)	.	h	for	any	functions	f,	g,	and	h	of	the	appropriate	types.
Hence,	in	a	composition	of	three	of	more	functions,	as	in	sumsqreven,	there	is	no
need	 to	 include	 parentheses	 to	 indicate	 the	 order	 of	 association,	 because
associativity	ensures	that	this	does	not	affect	the	result.
Composition	also	has	an	identity,	given	by	the	identity	function:
id	::	a	->	a

id	=	\x	->	x

That	 is,	id	 is	 the	function	 that	simply	returns	 its	argument	unchanged,	and	has
the	property	 that	id	.	f	=	f	 and	f	.	id	=	f	 for	any	 function	f.	The	 identity
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function	 is	 often	 useful	 when	 reasoning	 about	 programs,	 and	 also	 provides	 a
suitable	 starting	 point	 for	 a	 sequence	 of	 compositions.	 For	 example,	 the
composition	of	a	list	of	functions	can	be	defined	as	follows:
compose	::	[a	->	a]	->	(a	->	a)

compose	=	foldr	(.)	id

7.6 Binary	string	transmitter
We	conclude	this	chapter	with	two	extended	programming	examples.	First	of	all,
we	consider	the	problem	of	simulating	the	transmission	of	a	string	of	characters
in	low-level	form	as	a	list	of	binary	digits.

Binary	numbers
As	a	consequence	of	having	ten	fingers,	people	normally	find	it	most	convenient
to	 use	 numbers	written	 in	 base-ten	 or	 decimal	 notation.	 A	 decimal	 number	 is
sequence	of	digits	 in	 the	range	zero	 to	nine,	 in	which	 the	rightmost	digit	has	a
weight	 of	 one,	 and	 successive	 digits	 as	 we	 move	 to	 the	 left	 in	 the	 number
increase	in	weight	by	a	factor	of	ten.	For	example,	the	decimal	number	2345	can
be	understood	in	these	terms	as	follows:

2345	=	(1000	*	2)	+(100	*	3)	+(10	*	4)	+(1	*	5)

That	is,	2345	represents	the	sum	of	the	products	of	the	weights	1000,	100,	10,	1
with	the	digits	2,	3,	4,	5,	which	evaluates	to	the	integer	2345.
In	 contrast,	 computers	 normally	 find	 it	 more	 convenient	 to	 use	 numbers

written	in	the	more	primitive	base-two	or	binary	notation.	A	binary	number	is	a
sequence	of	zeros	and	ones,	called	binary	digits	or	bits,	in	which	successive	bits
as	we	move	 to	 the	 left	 increase	 in	weight	by	a	 factor	of	 two.	For	example,	 the
binary	number	1101	can	be	understood	as	follows:

1101	=	(8	*	1)	+(4	*	1)	+(2	*	0)	+(1	*	1)

That	is,	1101	represents	the	sum	of	the	products	of	the	weights	8,	4,	2,	1	with	the
bits	1,	1,	0,	1,	which	evaluates	to	the	integer	13.
To	simplify	the	definition	of	certain	functions,	we	assume	for	the	remainder	of

this	 example	 that	 binary	 numbers	 are	 written	 in	 reverse	 order	 to	 normal.	 For
example,	1101	would	now	be	written	as	1011,	with	successive	bits	as	we	move
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to	the	right	increasing	in	weight	by	a	factor	of	two:

1011	=	(1	*	1)	+(2	*	0)	+(4	*	1)	+(8	*	1)

Base	conversion
We	begin	by	importing	the	library	of	useful	functions	on	characters:
import	Data.Char

To	make	the	types	of	the	functions	that	we	define	more	meaningful,	we	declare	a
type	for	bits	as	a	synonym	for	the	type	of	integers:
type	Bit	=	Int

A	binary	number,	represented	as	a	list	of	bits,	can	be	converted	into	an	integer
by	simply	evaluating	the	appropriate	weighted	sum:
bin2int	::	[Bit]	->	Int

bin2int	bits	=	sum	[w*b	|	(w,b)	<-	zip	weights	bits]

where	weights	=	iterate	(*2)	1

The	higher-order	library	function	iterate	produces	an	infinite	list	by	applying	a
function	an	increasing	number	of	times	to	a	value:

iterate	f	x	=	[x,	f	x,	f	(f	x),	f	(f	(f	x)),	...]

Hence	the	expression	iterate	(*2)	1	in	the	definition	of	bin2int	produces	the
list	of	weights	[1,2,4,8,...],	which	is	then	used	to	compute	the	weighted	sum
by	means	of	a	list	comprehension.	For	example:
>	bin2int	[1,0,1,1]

13

There	 is,	 however,	 a	 simpler	way	 to	define	bin2int,	which	can	be	 revealed
with	the	aid	of	some	algebra.	Consider	an	arbitrary	four-bit	binary	number	[a,	b,
c,	d].	Applying	bin2int	to	this	list	will	produce	the	weighted	sum

(1	*	a)	+(2	*	b)	+(4	*	c)	+(8	*	d)

which	can	be	restructured	as	follows:

(1	*	a)	+(2	*	b)	+(4	*	c)	+(8	*	d)
= {	simplifying	1	*	a	}
a	+(2	*	b)	+(4	*	c)	+(8	*	d)
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= {	factoring	out	2	*}
a	+	2	*	(b	+(2	*	c)	+(4	*	d))

= {	factoring	out	2	*}
a	+	2	*	(b	+	2	*	(c	+(2	*	d)))

= {	complicating	d	}
a	+	2	*	(b	+	2	*	(c	+	2	*	(d	+	2	*	0)))

The	 final	 result	 shows	 that	 converting	 a	 list	 of	 bits	 [a,	 b,	 c,	 d]	 into	 an	 integer
amounts	 to	 replacing	 each	 cons	 by	 the	 function	 that	 adds	 its	 first	 argument	 to
twice	its	second	argument,	and	replacing	the	empty	list	by	zero.	More	generally,
we	conclude	that	bin2int	can	be	rewritten	using	foldr:
bin2int	::	[Bit]	->	Int

bin2int	=	foldr	(\x	y	->	x	+	2*y)	0

Now	let	us	consider	the	opposite	conversion,	from	a	non-negative	integer	into
a	binary	number.	This	can	be	achieved	by	repeatedly	dividing	the	integer	by	two
and	taking	the	remainder,	until	 the	integer	becomes	zero.	For	example,	starting
with	the	integer	13,	we	proceed	as	follows:

The	 sequence	 of	 remainders,	 1011,	 provides	 the	 binary	 representation	 of	 the
integer	13.	It	is	easy	to	implement	this	procedure	using	recursion:
int2bin	::	Int	->	[Bit]

int2bin	0	=	[]

int2bin	n	=	n	‘mod‘	2	:	int2bin	(n	‘div‘	2)

For	example:
>	int2bin	13

[1,0,1,1]

We	will	ensure	that	all	our	binary	numbers	have	the	same	length,	in	this	case
eight	bits,	by	using	a	function	make8	that	truncates	or	extends	a	binary	number	as
appropriate	to	make	it	precisely	eight	bits:
make8	::	[Bit]	->	[Bit]

make8	bits	=	take	8	(bits	++	repeat	0)

The	library	function	repeat	::	a	->	[a]	produces	an	infinite	list	of	copies	of	a
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value,	but	lazy	evaluation	ensures	that	only	as	many	elements	as	required	by	the
context	will	actually	be	produced.	For	example:
>	make8	[1,0,1,1]

[1,0,1,1,0,0,0,0]

Transmission
We	can	now	define	a	function	that	encodes	a	string	of	characters	as	a	list	of	bits
by	 converting	 each	 character	 into	 a	 Unicode	 number,	 converting	 each	 such
number	 into	 an	 eight-bit	 binary	 number,	 and	 concatenating	 each	 of	 these
numbers	together	to	produce	a	list	of	bits.	Using	the	higher-order	functions	map
and	composition,	this	conversion	can	be	implemented	as	follows:
encode	::	String	->	[Bit]

encode	=	concat	.	map	(make8	.	int2bin	.	ord)

For	example:
>	encode	"abc"

[1,0,0,0,0,1,1,0,0,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0]

To	 decode	 a	 list	 of	 bits	 produced	 using	 encode,	 we	 first	 define	 a	 function
chop8	that	chops	such	a	list	up	into	eight-bit	binary	numbers:
chop8	::	[Bit]	->	[[Bit]]

chop8	[] =	[]

chop8	bits	=	take	8	bits	:	chop8	(drop	8	bits)

It	 is	 now	 easy	 to	 define	 a	 function	 that	 decodes	 a	 list	 of	 bits	 as	 a	 string	 of
characters	by	chopping	the	list	up,	and	converting	each	resulting	binary	number
into	a	Unicode	number	and	then	a	character:
decode	::	[Bit]	->	String

decode	=	map	(chr	.	bin2int)	.	chop8

For	example:
>	decode	[1,0,0,0,0,1,1,0,0,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0]

"abc"

Finally,	we	 define	 a	 function	transmit	 that	 simulates	 the	 transmission	 of	 a
string	of	characters	as	a	list	of	bits,	using	a	perfect	communication	channel	that
we	model	using	the	identity	function:
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transmit	::	String	->	String

transmit	=	decode	.	channel	.	encode

channel	::	[Bit]	->	[Bit]

channel	=	id

For	example:
>	transmit	"higher-order	functions	are	easy"

"higher-order	functions	are	easy"

7.7 Voting	algorithms
For	 our	 second	 extended	 programming	 example,	 we	 consider	 two	 different
algorithms	for	deciding	the	winner	in	an	election:	 the	simple	 first	past	 the	post
system,	and	the	more	refined	alternative	vote	system.

First	past	the	post
In	 this	 system,	 each	 person	 has	 one	 vote,	 and	 the	 candidate	 with	 the	 largest
number	of	votes	is	declared	the	winner.	For	example,	if	we	define
votes	::	[String]

votes	=	["Red",	"Blue",	"Green",	"Blue",	"Blue",	"Red"]

then	 candidate	 "Green"	 has	 one	 vote,	 "Red"	 has	 two	 votes,	 while	 "Blue"	 has
three	 votes	 and	 is	 hence	 the	 winner.	 Rather	 than	 making	 our	 implementation
specific	to	candidate	names	represented	as	strings,	we	exploit	the	class	system	of
Haskell	to	define	our	functions	in	a	more	general	manner.
First	of	all,	we	define	a	function	that	counts	the	number	of	times	that	a	given

value	occurs	in	a	list,	for	any	type	whose	values	can	be	compared	for	equality.
This	 function	 could	 be	 defined	 using	 recursion,	 but	 a	 simpler	 definition	 is
possible	using	higher-order	functions	by	selecting	all	elements	from	the	list	that
are	equal	to	the	target	value,	and	taking	the	length	of	the	resulting	list:
count	::	Eq	a	=>	a	->	[a]	->	Int

count	x	=	length	.	filter	(==	x)

For	example:
>	count	"Red"	votes
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In	turn,	the	higher-order	function	filter	can	also	be	used	to	define	a	function
that	removes	duplicate	values	from	a	list:
rmdups	::	Eq	a	=>	[a]	->	[a]

rmdups	[] =	[]

rmdups	(x:xs)	=	x	:	filter	(/=	x)	(rmdups	xs)

For	example:
>	rmdups	votes

["Red",	"Blue",	"Green"]

The	 functions	 count	 and	 rmdups	 can	 then	 be	 combined	 using	 a	 list
comprehension	to	define	a	function	that	returns	the	result	of	a	first-past-the-post
election	in	increasing	order	of	the	number	of	votes	received:
result	::	Ord	a	=>	[a]	->	[(Int,a)]

result	vs	=	sort	[(count	v	vs,	v)	|	v	<-	rmdups	vs]

For	example:
>	result	votes

[(1,"Green"),	(2,"Red"),	(3,"Blue")]

The	sorting	function	sort	::	Ord	a	=>	[a]	->	[a]	used	above	is	provided	in
the	 library	 Data.List.	 Note	 that	 because	 pairs	 are	 ordered	 lexicographically,
candidates	with	the	same	number	of	votes	are	returned	in	order	of	the	candidate
name	by	result.	Finally,	the	winner	of	an	election	can	now	be	obtained	simply
by	selecting	the	second	component	of	the	last	result:
winner	::	Ord	a	=>	[a]	->	a

winner	=	snd	.	last	.	result

For	example:
>	winner	votes

"Blue"

Alternative	vote
In	this	voting	system,	each	person	can	vote	for	as	many	or	as	few	candidates	as
they	 wish,	 listing	 them	 in	 preference	 order	 on	 their	 ballot	 (1st	 choice,	 2nd
choice,	and	so	on).	To	decide	 the	winner,	any	empty	ballots	are	 first	 removed,
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then	 the	 candidate	with	 the	 smallest	 number	 of	 1st-choice	 votes	 is	 eliminated
from	the	ballots,	and	same	process	is	repeated	until	only	one	candidate	remains,
who	is	then	declared	the	winner.	For	example,	if	we	define

ballots	::			[[String]]
ballots	=	[["Red",	"Green"],

["Blue"],
["Green",	"Red",	"Blue"],
["Blue",	"Green",	"Red"],
["Green"]]

then	 the	 first	 ballot	 has	 "Red"	 as	 1st	 choice	 and	 "Green"	 as	 2nd,	 while	 the
second	has	"Blue"	as	 the	only	choice,	and	so	on.	Now	let	us	consider	how	the
winner	is	decided	for	this	example.	First	of	all,	"Red"	has	the	smallest	number	of
1st-choice	votes	(just	one),	and	is	therefore	eliminated:
[["Green"],

["Blue"],

["Green",	"Blue"],

["Blue",	"Green"],

["Green"]]

Within	these	revised	ballots,	candidate	"Blue"	now	has	the	smallest	number	of
1st-choice	votes	(just	two),	and	is	therefore	also	eliminated:
[["Green"],

[],

["Green"],

["Green"],

["Green"]]

After	 removing	 the	 second	 ballot,	 which	 is	 now	 empty,	 "Green"	 is	 the	 only
remaining	candidate	and	is	hence	the	winner.
Using	 filter	 and	 map,	 it	 is	 easy	 to	 define	 functions	 that	 remove	 empty

ballots,	and	eliminate	a	given	candidate	from	each	ballot:
rmempty	::	Eq	a	=>	[[a]]	->	[[a]]

rmempty	=	filter	(/=	[])

elim	::	Eq	a	=>	a	->	[[a]]	->	[[a]]

elim	x	=	map	(filter	(/=	x))

As	 before,	 we	 define	 such	 functions	 in	 a	 general	 manner	 rather	 than	 just	 for
strings.	 In	 turn,	 using	 the	 function	 result	 from	 the	 previous	 section,	 we	 can
define	a	function	that	ranks	the	1st-choice	candidates	in	each	ballot	in	increasing
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order	of	the	number	of	such	votes	that	were	received:
rank	::	Ord	a	=>	[[a]]	->	[a]

rank	=	map	snd	.	result	.	map	head

For	example:
>	rank	ballots

["Red",	"Blue",	"Green"]

Finally,	 it	 is	 now	 straightforward	 to	 define	 a	 recursive	 function	 that
implements	the	alternative	vote	algorithm,	as	follows:
winner’	::	Ord	a	=>	[[a]]	->	a

winner’	bs	=	case	rank	(rmempty	bs)	of

[c] ->	c

(c:cs)	->	winner’	(elim	c	bs)

That	 is,	 we	 first	 remove	 empty	 ballots,	 then	 rank	 the	 remaining	 1st-choice
candidates	in	increasing	order	of	votes.	If	only	one	such	candidate	remains,	they
are	the	winner,	otherwise	we	eliminate	the	candidate	with	the	smallest	number	of
1st-choice	votes	and	repeat	the	process.	For	example:
>	winner’	ballots

"Green"

We	conclude	by	noting	 that	 the	case	mechanism	of	Haskell	 that	 is	used	 in	 the
above	definition	allows	pattern	matching	to	be	used	in	the	body	of	a	definition,
and	 is	 sometimes	 useful	 for	 avoiding	 the	 need	 to	 introduce	 an	 extra	 function
definition	just	for	the	purposes	of	performing	pattern	matching.

7.8 Chapter	remarks
Further	 applications	 of	 higher-order	 functions,	 including	 the	 production	 of
computer	 music,	 financial	 contracts,	 graphical	 images,	 hardware	 descriptions,
logic	programs,	and	pretty	printers	can	be	found	in	The	Fun	of	Programming	[9].
A	more	in-depth	tutorial	on	foldr	is	given	in	[10].

7.9 Exercises
1. Show	 how	 the	 list	 comprehension	 [f	 x	 |	x	 <-	 xs,	 p	 x]	 can	 be	 re-
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expressed	using	the	higher-order	functions	map	and	filter.

2. Without	 looking	at	 the	definitions	 from	 the	 standard	prelude,	define	 the
following	higher-order	library	functions	on	lists.

a. Decide	if	all	elements	of	a	list	satisfy	a	predicate:
all	::	(a	->	Bool)	->	[Bool]	->	Bool

b. Decide	if	any	element	of	a	list	satisfies	a	predicate:
any	::	(a	->	Bool)	->	[Bool]	->	Bool

c. Select	elements	from	a	list	while	they	satisfy	a	predicate:
takeWhile	::	(a	->	Bool)	->	[a]	->	[a]

d. Remove	elements	from	a	list	while	they	satisfy	a	predicate:
dropWhile	::	(a	->	Bool)	->	[a]	->	[a]

Note:	in	the	prelude	the	first	two	of	these	functions	are	generic	functions
rather	than	being	specific	to	the	type	of	lists.

3. Redefine	the	functions	map	f	and	filter	p	using	foldr.

4. Using	foldl,	define	a	function	dec2int	::	[Int]	->	Int	that	converts	a
decimal	number	into	an	integer.	For	example:

>	dec2int	[2,3,4,5]

2345

5. Without	 looking	at	 the	definitions	 from	 the	 standard	prelude,	define	 the
higher-order	library	function	curry	that	converts	a	function	on	pairs	into	a
curried	 function,	 and,	 conversely,	 the	 function	 uncurry	 that	 converts	 a
curried	function	with	two	arguments	into	a	function	on	pairs.
Hint:	first	write	down	the	types	of	the	two	functions.

6. A	 higher-order	 function	 unfold	 that	 encapsulates	 a	 simple	 pattern	 of
recursion	for	producing	a	list	can	be	defined	as	follows:

That	 is,	 the	 function	 unfold	 p	 h	 t	 produces	 the	 empty	 list	 if	 the
predicate	p	is	true	of	the	argument	value,	and	otherwise	produces	a	non-
empty	list	by	applying	the	function	h	 to	 this	value	 to	give	 the	head,	and
the	function	t	to	generate	another	argument	that	is	recursively	processed
in	the	same	way	to	produce	the	tail	of	the	list.	For	example,	the	function
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int2bin	can	be	rewritten	more	compactly	using	unfold	as	follows:
int2bin	=	unfold	(==	0)	(‘mod‘	2)	(‘div‘	2)

Redefine	the	functions	chop8,	map	f	and	iterate	f	using	unfold.

7. Modify	 the	 binary	 string	 transmitter	 example	 to	 detect	 simple
transmission	errors	using	the	concept	of	parity	bits.	That	is,	each	eight-bit
binary	number	produced	during	encoding	is	extended	with	a	parity	bit,	set
to	 one	 if	 the	 number	 contains	 an	 odd	 number	 of	 ones,	 and	 to	 zero
otherwise.	 In	 turn,	 each	 resulting	 nine-bit	 binary	 number	 consumed
during	decoding	is	checked	to	ensure	that	its	parity	bit	is	correct,	with	the
parity	 bit	 being	 discarded	 if	 this	 is	 the	 case,	 and	 a	 parity	 error	 being
reported	otherwise.
Hint:	 the	 library	 function	 error	 ::	 String	 ->	 a	 displays	 the	 given
string	as	an	error	message	and	 terminates	 the	program;	 the	polymorphic
result	type	ensures	that	error	can	be	used	in	any	context.

8. Test	 your	 new	 string	 transmitter	 program	 from	 the	 previous	 exercise
using	a	faulty	communication	channel	that	forgets	the	first	bit,	which	can
be	modelled	using	the	tail	function	on	lists	of	bits.

9. Define	a	function	altMap	::	(a	->	b)	->	(a	->	b)	->	[a]	->	[b]
that	alternately	applies	its	two	argument	functions	to	successive	elements
in	a	list,	in	turn	about	order.	For	example:

>	altMap	(+10)	(+100)	[0,1,2,3,4]

[10,101,12,103,14]

10. Using	 altMap,	 define	 a	 function	 luhn	 ::	 [Int]	 ->	 Bool	 that
implements	the	Luhn	algorithm	 from	the	exercises	in	chapter	4	for	bank
card	numbers	of	any	length.	Test	your	new	function	using	your	own	bank
card.

Solutions	to	exercises	1–5	are	given	in	appendix	A.
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8

Declaring	types	and	classes

In	this	chapter	we	introduce	mechanisms	for	declaring	new	types	and	classes	in
Haskell.	 We	 start	 with	 three	 approaches	 to	 declaring	 types,	 then	 consider
recursive	 types,	 show	how	 to	declare	classes	and	 their	 instances,	and	conclude
by	developing	a	tautology	checker	and	an	abstract	machine.

8.1 Type	declarations
The	 simplest	way	 of	 declaring	 a	 new	 type	 is	 to	 introduce	 a	 new	 name	 for	 an
existing	type,	using	the	type	mechanism	of	Haskell.	For	example,	the	following
declaration	 from	 the	 standard	 prelude	 states	 that	 the	 type	 String	 is	 just	 a
synonym	for	the	type	[Char]	of	lists	of	characters:
type	String	=	[Char]

As	in	this	example,	the	name	of	a	new	type	must	begin	with	a	capital	letter.	Type
declarations	 can	 be	 nested,	 in	 the	 sense	 that	 one	 such	 type	 can	 be	 declared	 in
terms	of	another.	For	example,	 if	we	were	defining	a	number	of	 functions	 that
transform	coordinate	positions,	we	might	declare	a	position	as	a	pair	of	integers,
and	a	transformation	as	a	function	on	positions:
type	Pos	=	(Int,Int)

type	Trans	=	Pos	->	Pos

However,	 type	 declarations	 cannot	 be	 recursive.	 For	 example,	 consider	 the
following	recursive	declaration	for	a	type	of	trees:
type	Tree	=	(Int,[Tree])

That	 is,	a	 tree	 is	a	pair	comprising	an	 integer	and	a	 list	of	subtrees.	While	 this
declaration	 is	perfectly	 reasonable,	with	 the	 empty	 list	 of	 subtrees	 forming	 the
base	case	for	the	recursion,	it	is	not	permitted	in	Haskell	because	it	is	recursive.
If	 required,	 recursive	 types	 can	 be	 declared	 using	 the	 more	 powerful	 data
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mechanism,	which	will	be	introduced	in	the	next	section.
Type	declarations	can	also	be	parameterised	by	other	 types.	For	 example,	 if

we	were	defining	a	number	of	 functions	 that	manipulate	pairs	of	values	of	 the
same	type,	we	could	declare	a	synonym	for	such	pairs:
type	Pair	a	=	(a,a)

Finally,	type	declarations	with	more	than	one	parameter	are	possible	too.	For
example,	 a	 type	 of	 lookup	 tables	 that	 associate	 keys	 of	 one	 type	 to	 values	 of
another	type	can	be	declared	as	a	list	of	(key,value)	pairs:
type	Assoc	k	v	=	[(k,v)]

Using	 this	 type,	 a	 function	 that	 returns	 the	 first	 value	 that	 is	 associated	with	 a
given	key	in	a	table	can	then	be	defined	as	follows:
find	::	Eq	k	=>	k	->	Assoc	k	v	->	v

find	k	t	=	head	[v	|	(k’,v)	<-	t,	k	==	k’]

8.2 Data	declarations
A	completely	new	 type,	 as	opposed	 to	a	 synonym	for	an	existing	 type,	 can	be
declared	 by	 specifying	 its	 values	 using	 the	 data	 mechanism	 of	 Haskell.	 For
example,	the	following	declaration	from	the	standard	prelude	states	that	the	type
Bool	comprises	two	new	values,	named	False	and	True:
data	Bool	=	False	|	True

In	such	declarations,	the	symbol	|	is	read	as	or,	and	the	new	values	of	the	type
are	 called	 constructors.	 As	 with	 new	 types	 themselves,	 the	 names	 of	 new
constructors	 must	 begin	 with	 a	 capital	 letter.	 Moreover,	 the	 same	 constructor
name	cannot	be	used	in	more	than	one	type.
Note	 that	 the	 names	 given	 to	 new	 types	 and	 constructors	 have	 no	 inherent

meaning	 to	 the	 Haskell	 system.	 For	 example,	 the	 above	 declaration	 could
equally	well	be	written	as	data	A	=	B	|	C,	because	 the	precise	details	of	 the
names	are	not	relevant,	other	than	the	fact	that	they	have	not	been	used	before.
The	 meaning	 of	 names	 such	 as	 Bool,	 False,	 and	 True	 is	 assigned	 by	 the
programmer,	via	the	functions	that	they	define	on	new	types.
Values	of	new	types	in	Haskell	can	be	used	in	precisely	the	same	way	as	those

of	 built-in	 types.	 In	 particular,	 they	 can	 freely	 be	 passed	 as	 arguments	 to
functions,	returned	as	results	from	functions,	stored	in	data	structures,	and	used
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in	patterns.	For	example,	given	the	declaration
data	Move	=	North	|	South	|	East	|	West

functions	that	apply	a	move	to	a	position,	apply	a	list	of	moves	to	a	position,	and
reverse	the	direction	of	a	move,	can	be	defined	as	follows:
move	::	Move	->	Pos	->	Pos

move	North	(x,y)	=	(x,y+1)

move	South	(x,y)	=	(x,y-1)

move	East	(x,y) =	(x+1,y)

move	West	(x,y) =	(x-1,y)

moves	::	[Move]	->	Pos	->	Pos

moves	[]	p	=	p

moves	(m:ms)	p	=	moves	ms	(move	m	p)

rev	::	Move	->	Move

rev	North	=	South

rev	South	=	North

rev	East =	West

rev	West =	East

(If	you	wish	to	try	out	such	examples	in	GHCi,	the	phrase	deriving	Show	must
be	 added	 to	 the	 end	 of	 the	data	 declaration,	 to	 ensure	 the	 system	 can	 display
values	of	 the	new	type;	 the	deriving	mechanism	itself	will	be	covered	in	later
on	in	this	chapter	when	we	consider	type	classes.)
The	constructors	in	a	data	declaration	can	also	have	arguments.	For	example,

a	 type	 of	 shapes	 that	 comprise	 circles	with	 a	 given	 radius	 and	 rectangles	with
given	dimensions	can	be	declared	by:
data	Shape	=	Circle	Float	|	Rect	Float	Float

That	is,	the	type	Shape	has	values	of	the	form	Circle	r,	where	r	is	a	floating-
point	number,	and	Rect	x	y,	where	x	and	y	are	floating-point	numbers.	These
constructors	can	then	be	used	to	define	functions	on	shapes,	such	as	to	produce	a
square	of	a	given	size,	and	to	calculate	the	area	of	a	shape:
square	::	Float	->	Shape

square	n	=	Rect	n	n

area	::	Shape	->	Float

area	(Circle	r)	=	pi	*	r^2

area	(Rect	x	y)	=	x	*	y
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Because	 of	 their	 use	 of	 arguments,	 the	 constructors	 Circle	 and	 Rect	 are
actually	 constructor	 functions,	 which	 produce	 results	 of	 type	 Shape	 from
arguments	of	type	Float,	as	can	be	demonstrated	using	GHCi:
>	:type	Circle

Circle	::	Float	->	Shape

>	:type	Rect

Rect	::	Float	->	Float	->	Shape

The	 difference	 between	 normal	 functions	 and	 constructor	 functions	 is	 that	 the
latter	have	no	defining	equations,	and	exist	purely	for	 the	purposes	of	building
pieces	 of	 data.	 For	 example,	 whereas	 the	 expression	 negate	 1.0	 can	 be
evaluated	 to	-1.0	 by	applying	 the	definition	of	negate,	 the	 expression	Circle
1.0	is	already	fully	evaluated	and	cannot	be	further	simplified,	because	there	are
no	defining	 equations	 for	Circle.	Rather,	 the	 expression	Circle	1.0	 is	 just	 a
piece	of	data,	in	the	same	way	that	1.0	itself	is	just	data.
Not	surprisingly,	data	declarations	themselves	can	also	be	parameterised.	For

example,	the	standard	prelude	declares	the	following	type:
data	Maybe	a	=	Nothing	|	Just	a

That	 is,	 a	 value	of	 type	Maybe	a	 is	 either	Nothing,	 or	 of	 the	 form	Just	x	 for
some	value	x	of	type	a.	We	can	think	of	values	of	type	Maybe	a	as	being	values
of	type	a	that	may	either	fail	or	succeed,	with	Nothing	representing	failure,	and
Just	 representing	 success.	 For	 example,	 using	 this	 type	 we	 can	 define	 safe
versions	of	the	library	functions	div	and	head,	which	return	Nothing	in	the	case
of	invalid	arguments,	rather	than	producing	an	error:
safediv	::	Int	->	Int	->	Maybe	Int

safediv	_	0	=	Nothing

safediv	m	n	=	Just	(m	‘div‘	n)

safehead	::	[a]	->	Maybe	a

safehead	[]	=	Nothing

safehead	xs	=	Just	(head	xs)

8.3 Newtype	declarations
If	a	new	type	has	a	single	constructor	with	a	single	argument,	then	it	can	also	be
declared	using	the	newtype	mechanism.	For	example,	a	type	of	natural	numbers
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(non-negative	integers)	could	be	declared	as	follows:
newtype	Nat	=	N	Int

In	this	case,	the	single	constructor	N	takes	a	single	argument	of	type	Int,	and	it	is
then	up	to	the	programmer	to	ensure	that	this	is	always	non-negative.	Of	course,
it	 is	 natural	 to	 ask	 how	 the	 above	 declaration	 using	 newtype	 compares	 to	 the
following	alternative	versions	using	type	and	data:
type	Nat	=	Int

data	Nat	=	N	Int

First	of	all,	using	newtype	rather	than	type	means	that	Nat	and	Int	are	different
types	rather	 than	synonyms,	and	hence	 the	 type	system	of	Haskell	ensures	 that
they	cannot	accidentally	be	mixed	up	in	our	programs,	for	example	by	using	an
integer	when	we	expect	a	natural	number.	And	secondly,	using	newtype	 rather
than	data	brings	an	efficiency	benefit,	because	newtype	constructors	such	as	N
do	 not	 incur	 any	 cost	when	 programs	 are	 evaluated,	 as	 they	 are	 automatically
removed	by	 the	compiler	once	 type	checking	 is	completed.	 In	 summary,	using
newtype	helps	improve	type	safety,	without	affecting	performance.

8.4 Recursive	types
New	 types	 declared	 using	 the	 data	 and	 newtype	 mechanisms	 can	 also	 be
recursive.	 As	 a	 simple	 first	 example,	 the	 type	 of	 natural	 numbers	 from	 the
previous	section	can	also	be	declared	in	a	recursive	manner:
data	Nat	=	Zero	|	Succ	Nat

That	is,	a	value	of	type	Nat	is	either	Zero,	or	of	the	form	Succ	n	for	some	value
n	of	type	Nat.	Hence,	this	declaration	gives	rise	to	an	infinite	sequence	of	values,
starting	with	the	value	Zero,	and	continuing	by	applying	the	constructor	function
Succ	to	the	previous	value	in	the	sequence:
Zero

Succ	Zero

Succ	(Succ	Zero)

Succ	(Succ	(Succ	Zero))

.

.

.
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In	 this	 manner,	 values	 of	 type	 Nat	 correspond	 to	 natural	 numbers	 with	 Zero
representing	 the	 number	 0,	 and	 Succ	 representing	 the	 successor	 function	 (1+).
For	example,	Succ	(Succ	(Succ	Zero))	 represents	1	+(1	+(1	+	0))	=	3.	More
formally,	we	can	define	the	following	conversion	functions:
nat2int	::	Nat	->	Int

nat2int	Zero =	0

nat2int	(Succ	n)	=	1	+	nat2int	n

int2nat	::	Int	->	Nat

int2nat	0	=	Zero

int2nat	n	=	Succ	(int2nat	(n-1))

For	example,	using	these	functions,	two	natural	numbers	can	be	added	together
by	first	converting	them	into	integers,	adding	these	integers,	and	then	converting
the	result	back	into	a	natural	number:
add	::	Nat	->	Nat	->	Nat

add	m	n	=	int2nat	(nat2int	m	+	nat2int	n)

However,	using	recursion	the	function	add	can	be	redefined	without	the	need	for
such	conversions,	and	hence	more	efficiently:
add	::	Nat	->	Nat	->	Nat

add	Zero	n =	n

add	(Succ	m)	n	=	Succ	(add	m	n)

This	 definition	 formalises	 the	 idea	 that	 two	 natural	 numbers	 can	 be	 added	 by
copying	 Succ	 constructors	 from	 the	 first	 number	 until	 they	 are	 exhausted,	 at
which	point	the	Zero	at	the	end	is	replaced	by	the	second	number.	For	example,
showing	that	2	+	1	=	3	proceeds	as	follows:

add	(Succ	(Succ	Zero))	(Succ	Zero)

= {	applying	add	}
Succ	(add	(Succ	Zero)	(Succ	Zero))

= {	applying	add	}
Succ	(Succ	(add	Zero	(Succ	Zero)))

= {	applying	add	}
Succ	(Succ	(Succ	Zero))

As	 another	 example,	 the	 data	 mechanism	 can	 be	 used	 to	 declare	 our	 own
version	of	the	built-in	type	of	lists,	parameterised	by	an	arbitrary	type:
data	List	a	=	Nil	|	Cons	a	(List	a)
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That	is,	a	value	of	type	List	a	is	either	Nil,	representing	the	empty	list,	or	of	the
form	Cons	x	xs	for	some	values	x	::	a	and	xs	::	List	a,	representing	a	non-
empty	list.	Using	this	type,	we	can	then	also	define	our	own	versions	of	library
functions	on	lists,	such	as	to	calculate	the	length	of	a	list:
len	::	List	a	->	Int

len	Nil =	0

len	(Cons	_	xs)	=	1	+	len	xs

While	lists	are	one	of	the	most	commonly	used	data	structure	in	computing,	it
is	often	useful	to	store	data	in	a	two-way	branching	structure,	or	binary	tree,	as
depicted	in	the	following	example	tree:

In	this	example,	the	numbers	1,	4,	6,	9	appear	at	the	external	leaves	of	the	tree,
and	the	numbers	5,	3,	7	appear	at	the	internal	nodes.	Using	recursion,	a	suitable
type	for	representing	such	trees	can	be	declared	by
data	Tree	a	=	Leaf	a	|	Node	(Tree	a)	a	(Tree	a)

and	the	tree	pictured	above	can	then	be	represented	as	follows:
t	::	Tree	Int

t	=	Node	(Node	(Leaf	1)	3	(Leaf	4))	5

(Node	(Leaf	6)	7	(Leaf	9))

We	now	consider	a	number	of	functions	on	such	trees.	First	of	all,	we	define	a
function	that	decides	if	a	given	value	occurs	in	a	tree:

That	is,	a	value	occurs	in	a	leaf	if	it	matches	the	value	at	the	leaf,	and	occurs	in	a
node	 if	 it	 either	 matches	 the	 value	 at	 the	 node,	 occurs	 in	 the	 left	 subtree,	 or
occurs	in	the	right	subtree.	Note	that	under	lazy	evaluation,	if	either	of	the	first
two	conditions	in	the	node	case	is	True,	then	the	result	True	is	returned	without
the	need	to	evaluate	the	remaining	conditions.
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In	 the	worst	case,	however,	 the	 function	occurs	may	still	 traverse	 the	entire
tree,	 in	 particular	 when	 the	 given	 value	 does	 not	 occur	 anywhere	 in	 the	 tree.
Now	consider	a	function	that	flattens	a	tree	to	a	list:

If	 applying	 this	 function	 to	 a	 tree	 gives	 a	 sorted	 list,	 then	 the	 tree	 is	 called	 a
search	tree.	For	instance,	our	example	tree	is	a	search	tree,	because:

flatten	t	=	[1,3,4,5,6,7,9]

Search	trees	have	the	important	property	that,	when	trying	to	decide	if	a	given
value	occurs	in	a	tree,	which	of	the	two	subtrees	of	a	node	it	may	occur	in	can
always	be	determined	in	advance.	In	particular,	if	the	value	is	less	than	the	value
at	the	node,	then	it	can	only	occur	in	the	left	subtree,	and	if	it	is	greater	than	this
value,	it	can	only	occur	in	the	right	subtree.	Hence,	for	search	trees	the	occurs
function	can	be	rewritten	as	follows:

This	 definition	 is	 more	 efficient	 than	 the	 previous	 version,	 because	 it	 only
traverses	one	path	down	the	tree,	rather	than	potentially	the	entire	tree.
We	conclude	this	section	by	noting	that,	as	in	nature,	trees	in	computing	come

in	many	different	forms.	For	example,	we	can	declare	 types	for	 trees	 that	have
data	only	in	their	leaves,	data	only	in	their	nodes,	data	of	different	types	in	their
leaves	and	nodes,	or	have	a	list	of	subtrees:
data	Tree	a	=	Leaf	a	|	Node	(Tree	a)	(Tree	a)

data	Tree	a	=	Leaf	|	Node	(Tree	a)	a	(Tree	a)

data	Tree	a	b	=	Leaf	a	|	Node	(Tree	a	b)	b	(Tree	a	b)

data	Tree	a	=	Node	a	[Tree	a]

Which	form	of	tree	is	most	appropriate	depends	upon	the	situation.	Note	that	in
the	 last	 example,	 there	 is	 no	 constructor	 for	 leaves,	 because	 a	 node	 with	 an
empty	list	of	subtrees	can	play	the	role	of	a	leaf.
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8.5 Class	and	instance	declarations
We	now	turn	our	attention	from	types	to	classes.	In	Haskell,	a	new	class	can	be
declared	using	the	class	mechanism.	For	example,	the	class	Eq	of	equality	types
is	declared	in	the	standard	prelude	as	follows:
class	Eq	a	where

(==),	(/=)	::	a	->	a	->	Bool

x	/=	y	=	not	(x	==	y)

This	declaration	states	that	for	a	type	a	to	be	an	instance	of	the	class	Eq,	it	must
support	equality	and	inequality	operators	of	the	specified	types.	In	fact,	because
a	default	definition	has	already	been	 included	 for	 the	/=	operator,	declaring	an
instance	 only	 requires	 a	 definition	 for	 the	 ==	 operator.	 For	 example,	 the	 type
Bool	can	be	made	into	an	equality	type	as	follows:

Only	types	that	are	declared	using	the	data	and	newtype	mechanisms	can	be
made	 into	 instances	 of	 classes.	 Note	 also	 that	 default	 definitions	 can	 be
overridden	 in	 instance	 declarations	 if	 desired.	 For	 example,	 for	 some	 equality
types	 there	may	be	a	more	efficient	or	appropriate	way	to	decide	if	 two	values
are	different	than	simply	checking	if	they	are	not	equal.
Classes	can	also	be	extended	to	form	new	classes.	For	example,	the	class	Ord

of	types	whose	values	are	totally	ordered	is	declared	in	the	standard	prelude	as
an	extension	of	the	class	Eq	as	follows:

That	 is,	 for	 a	 type	 to	 be	 an	 instance	 of	Ord	 it	must	 be	 an	 instance	 of	Eq,	 and
support	 six	additional	operators.	Because	default	definitions	have	already	been
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included	for	min	and	max,	declaring	an	equality	type	(such	as	Bool)	as	an	ordered
type	only	requires	defining	the	four	comparison	operators:

Derived	instances
When	 new	 types	 are	 declared,	 it	 is	 usually	 appropriate	 to	 make	 them	 into
instances	of	a	number	of	built-in	classes.	Haskell	provides	a	simple	facility	for
automatically	making	new	types	into	instances	of	the	classes	Eq,	Ord,	Show,	and
Read,	 in	 the	 form	 of	 the	 deriving	mechanism.	 For	 example,	 the	 type	 Bool	 is
actually	declared	in	the	standard	prelude	as	follows:
data	Bool	=	False	|	True

deriving	(Eq,	Ord,	Show,	Read)

As	a	result,	all	the	member	functions	from	the	four	derived	classes	can	then	be
used	with	logical	values.	For	example:
>	False	==	False

True

>	False	<	True

True

>	show	False

"False"

>	read	"False"	::	Bool

False

The	use	of	::	 in	 the	 last	 example	 is	 required	 to	 resolve	 the	 type	of	 the	 result,
which	in	 this	case	cannot	be	 inferred	from	the	context	 in	which	the	function	is
used.	Note	that	for	the	purposes	of	deriving	instances	of	the	class	Ord	of	ordered
types,	the	ordering	on	the	constructors	of	a	type	is	determined	by	their	position
in	its	declaration.	Hence,	the	above	declaration	for	the	type	Bool,	in	which	False

125



appears	before	True,	results	in	the	ordering	False	<	True.
In	the	case	of	constructors	with	arguments,	the	types	of	these	arguments	must

also	be	 instances	of	any	derived	classes.	For	example,	recall	 the	following	two
declarations	from	earlier	in	this	chapter:
data	Shape	=	Circle	Float	|	Rect	Float	Float

data	Maybe	a	=	Nothing	|	Just	a

To	 derive	 Shape	 as	 an	 equality	 type	 requires	 that	 the	 type	 Float	 is	 also	 an
equality	 type,	 which	 is	 indeed	 the	 case.	 Similarly,	 to	 derive	 Maybe	 a	 as	 an
equality	type	requires	that	the	type	a	is	also	such	a	type,	which	then	becomes	a
class	constraint	on	this	parameter.	In	the	same	manner	as	lists	and	tuples,	values
built	 using	 constructors	 with	 arguments	 are	 ordered	 lexicographically.	 For
example,	if	Shape	is	also	derived	as	an	ordered	type,	then	we	have:
>	Rect	1.0	4.0	<	Rect	2.0	3.0

True

>	Rect	1.0	4.0	<	Rect	1.0	3.0

False

8.6 Tautology	checker
We	 conclude	 this	 chapter	with	 two	 extended	 programming	 examples.	 For	 our
first	example,	we	develop	a	function	that	decides	if	simple	logical	propositions
are	always	true.	Such	propositions	are	called	tautologies.
Consider	 a	 language	of	propositions	built	up	 from	basic	values	 (False,True)

and	variables	(A,	B,	 ...,	Z)	using	negation	(¬),	conjunction	(^),	 implication	(⇒),
and	parentheses.	For	example,	the	following	are	all	propositions:

The	meaning	of	the	logical	operators	can	be	defined	using	truth	tables,	which
give	the	resulting	value	for	each	combination	of	argument	values:
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(To	save	space	in	such	tables,	we	abbreviate	the	basic	values	by	F	and	T	.)	For
example,	the	truth	table	for	conjunction	states	that	A	^	B	returns	True	if	both	A
and	B	are	True,	and	False	otherwise.	Using	these	definitions,	the	truth	table	for
any	 proposition	 can	 then	 be	 constructed.	 In	 the	 case	 of	 our	 four	 example
propositions,	the	resulting	tables	are	as	follows:

These	 tables	 show	 that	 the	 second	 and	 fourth	 propositions	 are	 tautologies,
because	 their	 result	 value	 is	 always	 True,	 while	 the	 first	 and	 third	 are	 not
tautologies,	because	their	result	is	False	in	at	least	one	case.
The	 first	 step	 towards	 defining	 a	 function	 that	 decides	 if	 a	 proposition	 is	 a

tautology	is	to	declare	a	type	for	propositions,	with	one	constructor	for	each	of
the	five	possible	forms	that	a	proposition	can	have:

Note	 that	an	explicit	constructor	for	parentheses	 is	not	required,	as	parentheses
within	 Haskell	 itself	 can	 be	 used	 to	 indicate	 grouping.	 For	 example,	 the	 four
propositions	above	can	be	represented	as	follows:
p1	::	Prop
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p1	=	And	(Var	’A’)	(Not	(Var	’A’))

p2	::	Prop

p2	=	Imply	(And	(Var	’A’)	(Var	’B’))	(Var	’A’)

p3	::	Prop

p3	=	Imply	(Var	’A’)	(And	(Var	’A’)	(Var	’B’))

p4	::	Prop

p4	=	Imply	(And	(Var	’A’)	(Imply

(Var	’A’)	(Var	’B’)))	(Var	’B’)

In	 order	 to	 evaluate	 a	 proposition	 to	 a	 logical	 value,	 we	 need	 to	 know	 the
value	 of	 each	 of	 its	 variables.	 For	 this	 purpose,	we	 declare	 a	 substitution	 as	 a
lookup	 table	 that	 associates	 variable	 names	 to	 logical	 values,	 using	 the	 Assoc
type	that	was	introduced	at	the	start	of	this	chapter:
type	Subst	=	Assoc	Char	Bool

For	example,	the	substitution	[(’A’,False),(’B’,True)]	assigns	the	variable	A
to	 False,	 and	 B	 to	 True.	 A	 function	 that	 evaluates	 a	 proposition	 given	 a
substitution	for	its	variables	can	now	be	defined	by	pattern	matching	on	the	five
possible	forms	that	the	proposition	can	have:

For	example,	the	value	of	a	constant	proposition	is	simply	the	constant	itself,	the
value	of	a	variable	is	obtained	by	looking	up	its	value	in	the	substitution,	and	the
value	of	a	conjunction	is	given	by	taking	the	conjunction	of	the	values	of	the	two
argument	 propositions.	 Note	 that	 the	 logical	 implication	 operator	 ⇒	 is
implemented	simply	by	the	<=	ordering	on	logical	values.
To	 decide	 if	 a	 proposition	 is	 a	 tautology,	 we	 will	 consider	 all	 possible

substitutions	for	 the	variables	 that	 it	contains.	First	of	all,	we	define	a	function
that	returns	a	list	of	all	the	variables	in	a	proposition:
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For	 example,	 vars	 p2	 =	 [’A’,’B’,’A’].	 Note	 that	 this	 function	 does	 not
remove	duplicates,	which	will	be	done	separately	later	on.
The	 key	 to	 generating	 substitutions	 is	 producing	 lists	 of	 logical	 values	 of	 a

given	length.	Hence	we	seek	to	define	a	function	bools	::	Int	->	[[Bool]]
which,	for	example,	will	return	all	eight	lists	of	three	logical	values:
>	bools	3

[[False,	False,	False],

[False,	False,	True],

[False,	True,	False],

[False,	True,	True],

[True,	False,	False],

[True,	False,	True],

[True,	True,	False],

[True,	True,	True]]

One	 way	 to	 achieve	 this	 behaviour	 is	 to	 observe	 that	 each	 component	 list
corresponds	 to	 a	 binary	 number,	 by	 interpreting	False	 and	True	 as	 the	 binary
digits	 0	 and	 1.	 For	 example,	 the	 list	 [True,False,True]	 corresponds	 to	 the
binary	number	101.	Given	this	interpretation,	we	can	think	of	the	function	bools
as	simply	counting	in	binary	over	the	appropriate	range	of	numbers.
This	idea	leads	to	the	following	definition	for	bools,	in	terms	of	the	function

int2bin	::	Int	->	[Bit]	from	chapter	7	that	converts	a	non-negative	integer
into	a	binary	number	represented	as	a	list	of	bits:

There	is,	however,	a	simpler	way	to	define	bools,	which	can	be	revealed	by
thinking	about	 the	structure	of	 the	resulting	 lists.	For	example,	we	can	observe
that	bools	3	contains	two	copies	of	bools	2,	the	first	preceded	by	False	in	each
case,	and	the	second	preceded	by	True	in	each	case:
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This	 observation	 leads	 to	 a	 recursive	 definition	 for	 bools.	 In	 the	 base	 case,
bools	0,	we	return	all	lists	of	zero	logical	values,	of	which	the	empty	list	is	the
only	 one.	 In	 the	 recursive	 case,	 bools	 n,	 we	 take	 two	 copies	 of	 the	 lists
produced	 by	 bools	 (n-1),	 place	 False	 in	 front	 of	 each	 list	 in	 the	 first	 copy,
True	in	front	of	each	list	in	the	second,	and	append	the	results:
bools	::	Int	->	[[Bool]]

bools	0	=	[[]]

bools	n	=	map	(False:)	bss	++	map	(True:)	bss

where	bss	=	bools	(n-1)

Using	bools,	 it	 is	now	straightforward	to	define	a	function	that	generates	all
possible	 substitutions	 for	 a	 proposition	 by	 extracting	 its	 variables,	 removing
duplicates	from	this	 list	(using	the	function	rmdups	 from	chapter	7),	generating
all	possible	 lists	of	 logical	values	for	 this	many	variables,	and	then	zipping	the
list	of	variables	with	each	of	the	resulting	lists:
substs	::	Prop	->	[Subst]

substs	p	=	map	(zip	vs)	(bools	(length	vs))

where	vs	=	rmdups	(vars	p)

For	example:
>	substs	p2

[[(’A’,False),(’B’,False)],

[(’A’,False),(’B’,True)],

[(’A’,True),(’B’,False)],

[(’A’,True),(’B’,True)]]

Finally,	we	define	a	 function	 that	decides	 if	 a	proposition	 is	 a	 tautology,	by
simply	checking	if	it	evaluates	to	True	for	all	possible	substitutions:
isTaut	::	Prop	->	Bool

isTaut	p	=	and	[eval	s	p	|	s	<-	substs	p]

For	example:
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>	isTaut	p1

False

>	isTaut	p2

True

>	isTaut	p3

False

>	isTaut	p4

True

8.7 Abstract	machine
For	 our	 second	 extended	 example,	 consider	 a	 type	 of	 simple	 arithmetic
expressions	 built	 up	 from	 integers	 using	 an	 addition	 operator,	 together	with	 a
function	that	evaluates	such	an	expression	to	an	integer	value:
data	Expr	=	Val	Int	|	Add	Expr	Expr

value	::	Expr	->	Int

value	(Val	n) =	n

value	(Add	x	y)	=	value	x	+	value	y

For	example,	the	expression	(2	+	3)	+	4	is	evaluated	as	follows:
value	(Add	(Add	(Val	2)	(Val	3))	(Val	4))

= {	applying	value	}
value	(Add	(Val	2)	(Val	3))	+	value	(Val	4)

= {	applying	the	first	value	}
(value	(Val	2)	+	value	(Val	3))	+	value	(Val	4)

= {	applying	the	first	value	}
(2	+	value	(Val	3))	+	value	(Val	4)

= {	applying	the	first	value	}
(2	+	3)	+	value	(Val	4)

= {	applying	the	first	+	}
5	+	value	(Val	4)

= {	applying	value	}
5	+	4

= {	applying	+	}
9
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Note	 that	 the	 definition	 of	 the	value	 function	 does	 not	 specify	 that	 the	 left
argument	of	an	addition	should	be	evaluated	before	the	right,	or,	more	generally,
what	 the	 next	 step	 of	 evaluation	 should	 be	 at	 each	 point.	Rather,	 the	 order	 of
evaluation	 is	 determined	 by	 Haskell.	 If	 desired,	 however,	 such	 control
information	 can	 be	 made	 explicit	 by	 defining	 an	 abstract	 machine	 for
expressions,	which	specifies	the	step-by-step	process	of	their	evaluation.
To	this	end,	we	first	declare	a	type	of	control	stacks	for	the	abstract	machine,

which	 comprise	 a	 list	 of	 operations	 to	 be	 performed	 by	 the	machine	 after	 the
current	evaluation	has	been	completed:
type	Cont	=	[Op]

data	Op	=	EVAL	Expr	|	ADD	Int

The	meaning	of	the	two	operations	will	be	explained	shortly.	We	now	define	a
function	that	evaluates	an	expression	in	the	context	of	a	control	stack:

That	is,	if	the	expression	is	an	integer,	it	is	already	fully	evaluated,	and	we	begin
executing	the	control	stack.	If	the	expression	is	an	addition,	we	evaluate	the	first
argument,	x,	placing	the	operation	EVAL	y	on	top	of	the	control	stack	to	indicate
that	 the	 second	 argument,	 y,	 should	 be	 evaluated	 once	 evaluation	 of	 the	 first
argument	 is	 completed.	 In	 turn,	we	define	 the	 function	 that	 executes	 a	 control
stack	in	the	context	of	an	integer	argument:

That	is,	if	the	control	stack	is	empty,	we	return	the	integer	argument	as	the	result
of	the	execution.	If	the	top	of	the	stack	is	an	operation	EVAL	y,	we	evaluate	the
expression	 y,	 placing	 the	 operation	 ADD	 n	 on	 top	 of	 the	 remaining	 stack	 to
indicate	that	the	current	integer	argument,	n,	should	be	added	together	with	the
result	of	evaluating	y	once	this	is	completed.	And,	finally,	if	the	top	of	the	stack
is	an	operation	ADD	n,	evaluation	of	the	two	arguments	of	an	addition	expression
is	now	complete,	and	we	execute	 the	 remaining	control	 stack	 in	 the	context	of
the	sum	of	the	two	resulting	integer	values.
Finally,	we	 define	 a	 function	 that	 evaluates	 an	 expression	 to	 an	 integer,	 by

invoking	eval	with	the	given	expression	and	the	empty	control	stack:
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value	::	Expr	->	Int

value	e	=	eval	e	[]

The	fact	that	our	abstract	machine	uses	two	mutually	recursive	functions,	eval
and	exec,	 reflects	 the	 fact	 that	 it	has	 two	modes	of	operation,	depending	upon
whether	it	is	being	driven	by	the	structure	of	the	expression	or	the	control	stack.
To	illustrate	the	machine,	here	is	how	it	evaluates	(2	+	3)	+4:

value	(Add	(Add	(Val	2)	(Val	3))	(Val	4))

= {	applying	value	}
eval	(Add	(Add	(Val	2)	(Val	3))	(Val	4))	[]

= {	applying	eval	}
eval	(Add	(Val	2)	(Val	3))	[EVAL	(Val	4)]

= {	applying	eval	}
eval	(Val	2)	[EVAL	(Val	3),	EVAL	(Val	4)]

= {	applying	eval	}
exec	[EVAL	(Val	3),	EVAL	(Val	4)]	2

= {	applying	exec	}
eval	(Val	3)	[ADD	2,	EVAL	(Val	4)]

= {	applying	eval	}
exec	[ADD	2,	EVAL	(Val	4)]	3

= {	applying	exec	}
exec	[EVAL	(Val	4)]	5

= {	applying	exec	}
eval	(Val	4)	[ADD	5]

= {	applying	eval	}
exec	[ADD	5]	4

= {	applying	exec	}
exec	[]	9

= {	applying	exec	}
9

Note	 how	eval	 proceeds	 downwards	 to	 the	 leftmost	 integer	 in	 the	 expression,
maintaining	a	trail	of	the	pending	right-hand	expressions	on	the	control	stack.	In
turn,	exec	 then	proceeds	upwards	through	the	trail,	 transferring	control	back	to
eval	and	performing	additions	as	appropriate.

8.8 Chapter	remarks
The	 abstract	 machine	 example	 is	 derived	 from	 [11],	 and	 the	 type	 of	 control
stacks	 used	 in	 this	 example	 is	 a	 special	 case	 of	 the	 zipper	 data	 structure	 for
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traversing	values	of	 recursive	 types	 [12].	As	well	 as	 the	basic	mechanisms	 for
declaring	new	types	and	classes	introduced	in	this	chapter,	the	GHC	system	also
supports	 a	 number	 of	 more	 advanced	 and	 experimental	 typing	 features;	 see
http://www.haskell.org/ghc	for	further	details.

8.9 Exercises
1. In	a	similar	manner	to	the	function	add,	define	a	recursive	multiplication

function	mult	::	Nat	->	Nat	->	Nat	 for	 the	recursive	 type	of	natural
numbers:
Hint:	make	use	of	add	in	your	definition.

2. Although	not	included	in	appendix	B,	the	standard	prelude	defines
data	Ordering	=	LT	|	EQ	|	GT

together	with	a	function
compare	::	Ord	a	=>	a	->	a	->	Ordering

that	decides	if	one	value	in	an	ordered	type	is	less	than	(LT),	equal	to	(EQ),
or	 greater	 than	 (GT)	 another	 value.	 Using	 this	 function,	 redefine	 the
function	occurs	::	Ord	a	=>	a	->	Tree	a	->	Bool	 for	search	 trees.
Why	is	this	new	definition	more	efficient	than	the	original	version?

3. Consider	the	following	type	of	binary	trees:
data	Tree	a	=	Leaf	a	|	Node	(Tree	a)	(Tree	a)

Let	us	say	that	such	a	tree	is	balanced	if	the	number	of	leaves	in	the	left
and	 right	 subtree	 of	 every	 node	 differs	 by	 at	 most	 one,	 with	 leaves
themselves	being	trivially	balanced.	Define	a	function	balanced	::	Tree
a	->	Bool	that	decides	if	a	binary	tree	is	balanced	or	not.
Hint:	first	define	a	function	that	returns	the	number	of	leaves	in	a	tree.

4. Define	a	function	balance	::	[a]	->	Tree	a	that	converts	a	non-empty
list	into	a	balanced	tree.	Hint:	first	define	a	function	that	splits	a	list	into
two	halves	whose	length	differs	by	at	most	one.

5. Given	the	type	declaration
data	Expr	=	Val	Int	|	Add	Expr	Expr

define	a	higher-order	function
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folde	::	(Int	->	a)	->	(a	->	a	->	a)	->	Expr	->	a

such	that	folde	f	g	replaces	each	Val	constructor	in	an	expression	by	the
function	f,	and	each	Add	constructor	by	the	function	g.

6. Using	folde,	define	a	function	eval	::	Expr	->	Int	 that	evaluates	an
expression	to	an	integer	value,	and	a	function	size	::	Expr	->	Int	that
calculates	the	number	of	values	in	an	expression.

7. Complete	the	following	instance	declarations:
instance	Eq	a	=>	Eq	(Maybe	a)	where

...

instance	Eq	a	=>	Eq	[a]	where

...

8. Extend	the	tautology	checker	to	support	the	use	of	logical	disjunction	
and	equivalence	(⇔)	in	propositions.

9. Extend	the	abstract	machine	to	support	the	use	of	multiplication.

Solutions	to	exercises	1–4	are	given	in	appendix	A.
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9

The	countdown	problem

In	 this	 chapter	we	 conclude	 part	 I	 of	 the	 book,	 by	 showing	 how	 the	 concepts
introduced	so	far	can	be	used	to	develop	an	efficient	program	to	solve	a	simple
numbers	 game.	 We	 start	 by	 defining	 some	 types	 and	 utility	 functions,	 then
formalise	 the	 rules	 of	 the	 game	 in	Haskell,	 and	 finally	 present	 a	 simple	 brute
force	solution,	whose	performance	is	then	improved	in	two	steps.

9.1 Introduction
Countdown	 is	 a	 popular	 quiz	 programme	 that	 has	 been	 running	 on	 British
television	since	1982,	and	includes	a	numbers	game	that	we	shall	refer	to	as	the
countdown	problem.	The	essence	of	the	problem	is	as	follows:

Given	a	sequence	of	numbers	and	a	target	number,	attempt	to	construct
an	expression	whose	value	is	the	target,	by	combining	one	or	more
numbers	from	the	sequence	using	addition,	subtraction,	multiplication,
division	and	parentheses.

Each	number	in	the	sequence	can	only	be	used	at	most	once	in	the	expression,
and	all	of	the	numbers	involved,	including	intermediate	values,	must	be	positive
natural	numbers	(1,	2,	3,	 .	 .	 .).	In	particular,	 the	use	of	negative	numbers,	zero,
and	proper	fractions	such	as	2	÷	3,	is	not	permitted.
For	example,	suppose	that	we	are	given	the	sequence	1,	3,	7,	10,	25,	50,	and

the	 target	 765.	 Then	 one	 possible	 solution	 is	 given	 by	 the	 expression
(1+50)∗(25–10),	as	verified	by	the	following	simple	calculation:

(1	+	50)	∗	(25	–	10)
= {	applying	+	}
51	∗	(25	–	10)

= {	applying	–	}
51	∗	15

= {	applying	∗	}
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765

In	fact,	for	this	example	it	can	be	shown	that	there	are	780	different	solutions.
On	 the	 other	 hand,	 keeping	 the	 same	 sequence	 but	 changing	 the	 target	 to	 831
gives	an	example	that	can	be	shown	to	have	no	solutions.
In	 the	 television	 version	 of	 the	 problem,	 a	 number	 of	 additional	 rules	 are

adopted	 to	 make	 it	 suitable	 for	 human	 players	 on	 a	 quiz	 programme.	 In
particular,	there	are	always	six	numbers	selected	from	the	sequence	1–10,	1–10,
25,	50,	75,	100,	 the	 target	 is	always	 in	 the	 range	100–999,	and	 there	 is	a	 time
limit	 of	 30	 seconds.	 It	 is	 natural	 to	 abstract	 from	 such	 constraints	 when
developing	a	computer	player,	so	none	of	the	programs	that	we	develop	enforces
or	depends	upon	these	extra	rules.	Note,	however,	that	we	do	not	abstract	from
the	 positive	 naturals	 to	 a	 richer	 numeric	 domain,	 such	 as	 the	 integers	 or	 the
rationals,	as	this	would	change	the	computational	complexity	of	the	problem.

9.2 Arithmetic	operators
We	start	by	declaring	a	type	for	the	four	arithmetic	operators,	and	making	values
of	this	type	showable	using	a	simple	instance	declaration:
data	Op	=	Add	|	Sub	|	Mul	|	Div

instance	Show	Op	where

show	Add	=	"+"

show	Sub	=	"-"

show	Mul	=	"*"

show	Div	=	"/"

In	 turn,	 we	 define	 a	 function	 valid	 that	 decides	 if	 the	 application	 of	 an
operator	 to	 two	positive	naturals	gives	 another	positive	natural,	 and	a	 function
apply	that	actually	performs	such	a	valid	application:
valid	::	Op	->	Int	->	Int	->	Bool

valid	Add	_	_	=	True

valid	Sub	x	y	=	x	>	y

valid	Mul	_	_	=	True

valid	Div	x	y	=	x	‘mod‘	y	==	0

apply	::	Op	->	Int	->	Int	->	Int

apply	Add	x	y	=	x	+	y

apply	Sub	x	y	=	x	-	y

137



apply	Mul	x	y	=	x	*	y

apply	Div	x	y	=	x	‘div‘	y

For	example,	the	application	Sub	2	3	is	invalid	because	2	–	3	is	negative,	while
Div	2	3	is	invalid	because	2	÷	3	is	a	rational	number.

9.3 Numeric	expressions
We	now	declare	a	type	for	numeric	expressions,	which	can	either	be	an	integer
value	 or	 the	 application	 of	 an	 operator	 to	 two	 argument	 expressions,	 together
with	a	simple	pretty-printer	for	expressions:

For	example,	1	+	 (2	∗	3)	can	be	 represented	as	a	value	of	 type	Expr	 and	 then
shown	in	more	readable	form	as	a	string	as	follows:
>	show	(App	Add	(Val	1)	(App	Mul	(Val	2)	(Val	3)))

"1+(2*3)”

Using	 this	 type,	 we	 define	 a	 function	 that	 returns	 the	 list	 of	 values	 in	 an
expression,	and	a	function	eval	 that	returns	the	overall	value	of	an	expression,
provided	that	this	value	is	a	positive	natural	number:

Note	that	 the	possibility	of	failure	within	eval	 is	handled	by	returning	a	 list	of
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results,	with	the	convention	that	a	singleton	list	denotes	success,	and	the	empty
list	denotes	failure.	For	example,	for	2	+	3	and	2	–	3,	we	have:
>	eval	(App	Add	(Val	2)	(Val	3))

[5]

>	eval	(App	Sub	(Val	2)	(Val	3))

[]

Failure	within	eval	could	also	be	handled	by	using	the	Maybe	type,	but	we	prefer
to	 use	 the	 list	 type	 because	 the	 comprehension	 notation	 then	 provides	 a
convenient	way	to	define	the	eval	function.

9.4 Combinatorial	functions
We	 now	 define	 a	 number	 of	 useful	 combinatorial	 functions	 that	 return	 all
possible	 lists	 that	 satisfy	 certain	 properties.	 The	 function	 subs	 returns	 all
subsequences	 of	 a	 list,	 which	 are	 given	 by	 all	 possible	 combinations	 of
excluding	or	including	each	element	of	the	list,	interleave	returns	all	possible
ways	 of	 inserting	 a	 new	 element	 into	 a	 list,	 and	 finally,	 perms	 returns	 all
permutations	 of	 a	 list,	 which	 are	 given	 by	 all	 possible	 reorderings	 of	 the
elements:

For	example:
>	subs	[1,2,3]

[[],[3],[2],[2,3],[1],[1,3],[1,2],[1,2,3]]
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>	interleave	1	[2,3,4]

[[1,2,3,4],[2,1,3,4],[2,3,1,4],[2,3,4,1]]

>	perms	[1,2,3]

[[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]]

In	turn,	a	function	that	returns	all	choices	from	a	list,	which	are	given	by	all
possible	 ways	 of	 selecting	 zero	 or	 more	 elements	 in	 any	 order,	 can	 then	 be
defined	simply	by	considering	all	permutations	of	all	subsequences:
choices	::	[a]	->	[[a]]

choices	=	concat	.	map	perms	.	subs

For	example:
>	choices	[1,2,3]

[[],[3],[2],[2,3],[3,2],[1],[1,3],[3,1],[1,2],[2,1],

[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]]

9.5 Formalising	the	problem
Finally,	we	can	now	define	a	function	solution	that	formalises	what	it	means	to
solve	an	instance	of	the	countdown	problem:
solution	::	Expr	->	[Int]	->	Int	->	Bool

solution	e	ns	n	=

elem	(values	e)	(choices	ns)	&&	eval	e	==	[n]

That	is,	an	expression	is	a	solution	for	a	given	list	of	numbers	and	a	target	if	the
list	 of	 values	 in	 the	 expression	 is	 chosen	 from	 the	 list	 of	 numbers,	 and	 the
expression	successfully	evaluates	to	give	the	target.	For	example,	if	e	::	Expr
represents	the	expression	(1	+	50)	∗	(25	–	10),	then	we	have:
>	solution	e	[1,3,7,10,25,50]	765

True

The	efficiency	of	solution	could	be	improved	by	using	a	function	isChoice
that	 decides	 directly	 if	 one	 list	 is	 chosen	 from	 another,	 rather	 than	 doing	 so
indirectly	using	the	function	choices	that	returns	all	possible	choices	from	a	list.
However,	efficiency	is	not	important	at	this	stage,	and	choices	itself	is	used	to
define	a	number	of	other	functions	in	this	chapter.
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9.6 Brute	force	solution
Our	first	approach	to	solving	the	countdown	problem	is	by	brute	force,	using	the
idea	of	 generating	 all	 possible	 expressions	over	 the	given	 list	 of	 numbers.	We
start	by	defining	a	function	split	that	returns	all	possible	ways	of	splitting	a	list
into	two	non-empty	lists	that	append	to	give	the	original	list:

For	example:
>	split	[1,2,3,4]

[([1],[2,3,4]),([1,2],[3,4]),([1,2,3],[4])]

Using	 split	 we	 can	 then	 define	 the	 key	 function,	 exprs,	 which	 returns	 all
possible	expressions	whose	list	of	values	is	precisely	a	given	list:

That	is,	for	the	empty	list	of	numbers	there	are	no	possible	expressions,	while	for
a	single	number	there	is	a	single	expression	comprising	that	number.	Otherwise,
for	a	list	of	two	or	more	numbers	we	first	produce	all	splittings	of	the	list,	then
recursively	calculate	all	possible	expressions	for	each	of	these	lists,	and,	finally,
combine	each	pair	of	expressions	using	each	of	the	four	numeric	operators,	using
an	auxiliary	function	that	is	defined	as	follows:
combine	::	Expr	->	Expr	->	[Expr]

combine	l	r	=	[App	o	l	r	|	o	<-	ops]

ops	::	[Op]

ops	=	[Add,Sub,Mul,Div]

In	 conclusion,	 we	 can	 now	 define	 a	 function	 solutions	 that	 returns	 all
possible	 expressions	 that	 solve	 an	 instance	of	 the	 countdown	problem,	by	 first
generating	all	expressions	over	each	choice	from	the	given	list	of	numbers,	and
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then	selecting	those	expressions	that	successfully	evaluate	to	give	the	target:
solutions	::	[Int]	->	Int	->	[Expr]

solutions	ns	n	=

[e	|	ns’	<-	choices	ns,	e	<-	exprs	ns’,	eval	e	==	[n]]

9.7 Performance	testing
For	 the	 purposes	 of	 testing	 our	 countdown	 programs	 in	 this	 chapter,	 the
performance	of	the	GHCi	interpreter	is	somewhat	limited,	so	instead	we	use	the
GHC	compiler.	The	first	step	is	to	put	all	the	necessary	definitions	into	a	script
called	countdown.hs,	 together	with	 a	 top-level	definition	main	 that	 applies	 the
function	solutions	to	an	example	and	displays	the	result:
main	::	IO	()

main	=	print	(solutions	[1,3,7,10,25,50]	765)

(The	library	function	print	writes	a	value	of	a	showable	type	to	the	screen,	and
the	type	for	main	will	be	explained	in	further	detail	in	chapter	10.)	The	compiler
itself	can	then	be	executed	from	the	command	prompt	simply	by	typing	ghc,	and
using	the	-O2	flag	to	turn	on	compiler	optimisations:
$	ghc	-O2	countdown.hs

[1	of	1]	Compiling	Main

Linking	countdown	...

Finally,	the	resulting	executable	file	can	then	be	run:
$	./countdown

[3*((7*(50-10))-25),	((7*(50-10))-25)*3,	...]

For	 example,	 running	 some	 simple	 performance	 tests	 using	 GHC	 version
7.10.2	on	a	2.8GHz	Intel	Core	2	Duo	with	4GB	of	RAM,	this	example	returns
the	first	solution	to	the	problem	in	0.108	seconds,	and	all	780	solutions	in	12.224
seconds,	 while	 if	 the	 target	 is	 changed	 to	 831,	 the	 empty	 list	 of	 solutions	 is
returned	 in	 12.802	 seconds.	 More	 generally,	 our	 brute	 force	 program	 already
performs	well	 enough	 to	 solve	 countdown	 problems	 from	 the	 television	 show
within	the	30	second	time	limit.	But	surely	we	can	do	better	than	this?

9.8 Combining	generation	and	evaluation
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The	 function	 solutions	 generates	 all	 possible	 expressions	 over	 the	 given
numbers,	but	in	practice	many	of	these	expressions	will	fail	 to	evaluate,	due	to
the	fact	that	subtraction	and	division	are	not	always	valid	operations	for	positive
naturals.	 For	 example,	 it	 can	 be	 shown	 that	 there	 are	 33,665,406	 possible
expressions	 over	 the	 numbers	 1,	 3,	 7,	 10,	 25,	 50,	 but	 only	 4,672,540	 of	 these
expressions	evaluate	successfully,	which	is	just	under	14%.
Based	upon	 this	observation,	our	second	approach	 to	solving	 the	countdown

problem	is	to	improve	our	brute	force	program	by	combining	the	generation	of
expressions	 with	 their	 evaluation,	 such	 that	 both	 tasks	 are	 performed
simultaneously.	 In	 this	way,	expressions	 that	 fail	 to	evaluate	are	 rejected	at	 an
earlier	stage,	and,	more	importantly,	are	not	used	to	generate	further	expressions
that	will	fail	to	evaluate.	We	start	by	declaring	a	type	Result	of	expressions	that
evaluate	successfully	paired	with	their	overall	values:
type	Result	=	(Expr,Int)

Using	 this	 type,	 we	 then	 define	 a	 function	 results	 that	 returns	 all	 possible
results	comprising	expressions	whose	list	of	values	is	precisely	a	given	list:

That	is,	for	the	empty	list	there	are	no	possible	results,	while	for	a	single	number
there	is	a	single	result	formed	from	that	number,	provided	that	the	number	itself
is	 a	 positive	 natural	 number.	 Otherwise,	 for	 two	 or	 more	 numbers	 we	 first
produce	all	splittings	of	the	list,	then	recursively	calculate	all	possible	results	for
each	of	 these	 lists,	 and,	 finally,	 combine	each	pair	of	 results	using	each	of	 the
four	 numeric	 operators	 that	 are	 valid,	 by	 means	 of	 the	 following	 auxiliary
function:
combine’	::	Result	->	Result	->	[Result]

combine’	(l,x)	(r,y)	=

[(App	o	l	r,	apply	o	x	y)	|	o	<-	ops,	valid	o	x	y]

Using	results	we	can	now	define	a	new	function	solutions’	that	returns	all
possible	 expressions	 that	 solve	 an	 instance	of	 the	 countdown	problem,	by	 first
generating	 all	 results	 over	 each	 choice	 from	 the	 given	 numbers,	 and	 then
selecting	those	expressions	whose	value	is	the	target:
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solutions’	::	[Int]	->	Int	->	[Expr]

solutions’	ns	n	=

[e	|	ns’	<-	choices	ns,	(e,m)	<-	results	ns’,	m	==	n]

In	 terms	of	performance,	solutions’	[1,3,7,10,25,50]	765	 returns	 the	 first
solution	 in	 0.014	 seconds	 (7	 times	 faster	 than	solutions)	 and	 all	 solutions	 in
1.312	seconds	(9	times	faster),	while	if	 the	target	is	changed	to	831,	the	empty
list	 is	 returned	 in	1.134	seconds	 (11	 times	 faster).	That	 is,	our	new	program	 is
approximately	 10	 times	 faster	 than	 the	 original	 version.	 But	 we	 can	 still	 do
better,	by	using	some	simple	high-school	algebra.

9.9 Exploiting	algebraic	properties
The	 function	 solutions’	 generates	 all	 possible	 expressions	 over	 the	 given
numbers	 whose	 evaluation	 is	 successful,	 but	 in	 practice	 many	 of	 these
expressions	 will	 be	 essentially	 the	 same,	 due	 to	 the	 fact	 that	 the	 numeric
operators	have	algebraic	properties.	For	example,	the	expressions	2	+	3	and	3	+	2
are	essentially	the	same	because	the	result	of	an	addition	does	not	depend	upon
the	 order	 of	 the	 two	 arguments,	 while	 2	 ÷	 1	 and	 2	 are	 essentially	 the	 same
because	dividing	any	number	by	one	has	no	effect	on	that	number.
Based	 upon	 this	 observation,	 our	 final	 approach	 to	 solving	 the	 countdown

problem	 is	 to	 improve	 our	 second	 program	 by	 exploiting	 such	 algebraic
properties	 to	 reduce	 the	 number	 of	 generated	 expressions.	 In	 particular,	 we
exploit	the	following	five	commutativity	and	identity	properties:

We	start	by	recalling	the	function	valid	 that	decides	if	 the	application	of	an
operator	to	two	positive	naturals	gives	another	such:
valid	::	Op	->	Int	->	Int	->	Bool

valid	Add	_	_	=	True

valid	Sub	x	y	=	x	>	y

valid	Mul	_	_	=	True

valid	Div	x	y	=	x	‘mod‘	y	==	0
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This	 definition	 can	 be	 modified	 to	 exploit	 the	 commutativity	 of	 addition	 and
multiplication	 simply	 by	 requiring	 that	 their	 arguments	 are	 in	 numeric	 order	

	 and	 the	 identity	 properties	 of	 multiplication	 and	 division	 simply	 by
requiring	that	the	appropriate	arguments	are	non-unitary	(≠	1):
valid	Add	x	y	=	x	<=	y

valid	Sub	x	y	=	x	>	y

valid	Mul	x	y	=	x	/=	1	&&	y	/=	1	&&	x	<=	y

valid	Div	x	y	=	y	/=	1	&&	x	‘mod‘	y	==	0

For	 example,	 using	 this	 new	 definition,	 Add	 3	 2	 is	 now	 invalid	 because	 it	 is
essentially	the	same	as	Add	2	3	using	the	commutativity	property	for	addition,
while	Div	2	1	is	now	invalid	because	it	is	essentially	the	same	as	the	number	2
on	its	own	using	the	identity	property	for	division.
Using	the	new	version	of	valid	gives	a	new	version	of	solutions’	that	solves

the	 countdown	 problem,	 which	 we	 write	 as	 solutions’’.	 Using	 this	 new
function	can	considerably	 reduce	 the	number	of	generated	expressions	 and	 the
number	 of	 solutions.	 For	 example,	solutions’’	[1,3,7,10,25,50]	765	 only
generates	245,644	expressions,	of	which	just	49	are	solutions,	which	is	just	over
5%	and	6%	respectively	of	the	numbers	using	solutions’.
As	 regards	 performance,	 solutions’’	 [1,3,7,10,25,50]	 765	 now	 returns

the	first	solution	in	0.007	seconds	(twice	as	fast	as	solutions’)	and	all	solutions
in	0.119	seconds	(11	times	faster),	while	for	the	target	number	831	the	empty	list
is	returned	in	0.115	seconds	(9	times	faster).	More	generally,	given	any	numbers
from	the	television	version	of	the	countdown	problem,	our	final	program	usually
returns	all	solutions	in	a	fraction	of	a	second,	and	is	around	100	times	faster	than
the	original	brute	force	version	—	quite	an	improvement!

9.10 Chapter	remarks
Countdown	 is	 based	 upon	 an	 original	 version	 on	 French	 television	 called	Des
Chiffres	 et	 des	 Lettres,	 while	 the	 countdown	 problem	 itself	 is	 related	 to	 the
children’s	arithmetic	games	called	krypto	and	 four	 fours.	This	chapter	 is	based
upon	[13],	which	also	includes	proofs	of	correctness	of	the	three	programs	that
were	 produced.	 A	 number	 of	 more	 advanced	 approaches	 to	 solving	 the
countdown	problem	are	explored	by	Bird	and	Mu	[14].
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9.11 Exercises
1. Redefine	the	combinatorial	function	choices	using	a	 list	comprehension

rather	than	using	composition,	concat	and	map.

2. Define	a	recursive	function	isChoice	::	Eq	a	=>	[a]	->	[a]	->	Bool
that	 decides	 if	 one	 list	 is	 chosen	 from	 another,	 without	 using	 the
combinatorial	functions	perms	and	subs.	Hint:	start	by	defining	a	function
that	removes	the	first	occurrence	of	a	value	from	a	list.

3. What	 effect	 would	 generalising	 the	 function	 split	 to	 also	 return	 pairs
containing	the	empty	list	have	on	the	behaviour	of	solutions?

4. Using	 the	 functions	 choices,	 exprs,	 and	 eval,	 verify	 that	 there	 are
33,665,406	possible	expressions	over	the	numbers	1,	3,	7,	10,	25,	50,	and
that	only	4,672,540	of	these	expressions	evaluate	successfully.

5. Similarly,	verify	that	the	number	of	expressions	that	evaluate	successfully
increases	to	10,839,369	if	the	numeric	domain	is	generalised	to	arbitrary
integers.	Hint:	modify	the	definition	of	valid.

6. Modify	the	final	program	to:

a. allow	the	use	of	exponentiation	in	expressions;
b. produce	the	nearest	solutions	if	no	exact	solution	is	possible;
c. order	the	solutions	using	a	suitable	measure	of	simplicity.

Solutions	to	exercises	1–3	are	given	in	appendix	A.
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10

Interactive	programming

In	this	chapter	we	show	how	Haskell	can	be	used	to	write	interactive	programs.
We	start	by	explaining	 the	problem	of	handling	 interaction	 in	a	pure	 language,
present	 the	 solution	 that	 is	 adopted	 in	Haskell,	 introduce	 a	 range	of	primitives
and	derived	functions	for	interactive	programming,	and	conclude	by	developing
three	interactive	games:	hangman,	nim	and	life.

10.1 The	problem
In	the	early	days	of	computing,	most	programs	were	batch	programs	 that	were
run	in	isolation	from	their	users,	 to	maximise	the	amount	of	time	the	computer
was	performing	useful	work.	For	 example,	 a	 compiler	 is	 a	 batch	program	 that
takes	 a	 high-level	 program	 as	 its	 input,	 silently	 performs	 a	 large	 number	 of
operations,	and	then	produces	a	low-level	program	as	its	output.
In	 part	 I	 of	 the	 book,	 we	 showed	 how	 Haskell	 can	 be	 used	 to	 write	 batch

programs.	 In	 Haskell	 such	 programs,	 and	 more	 generally	 all	 programs,	 are
modelled	as	pure	 functions	 that	 take	all	 their	 inputs	as	explicit	 arguments,	 and
produce	all	their	outputs	as	explicit	results,	as	depicted	below:

For	 example,	 a	 compiler	 such	as	GHC	may	be	modelled	as	 a	 function	of	 type
Prog	->	Code	that	transforms	a	high-level	program	into	low-level	code.
In	the	modern	era	of	computing,	most	programs	are	now	interactive	programs

that	 are	 run	 as	 an	 ongoing	 dialogue	 with	 their	 users,	 to	 provide	 increased
flexibility	 and	 functionality.	 For	 example,	 an	 interpreter	 is	 an	 interactive
program	 that	 allows	 expressions	 to	 be	 entered	 using	 the	 keyboard,	 and
immediately	displays	the	result	of	evaluating	such	expressions	on	the	screen:
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How	can	such	programs	be	modelled	as	pure	functions?	At	first	sight,	this	may
seem	impossible,	because	 interactive	programs	by	 their	very	nature	 require	 the
side	 effects	 of	 taking	 additional	 inputs	 and	 producing	 additional	 outputs	while
the	program	 is	 running.	For	example,	how	can	an	 interpreter	 such	as	GHCi	be
viewed	as	a	pure	function	from	arguments	to	results?
Over	the	years	many	approaches	to	the	problem	of	combining	the	use	of	pure

functions	with	the	need	for	side	effects	have	been	developed.	In	the	remainder	of
this	chapter	we	present	the	solution	that	is	used	in	Haskell,	which	is	based	upon
a	new	type	together	with	a	small	number	of	primitive	operations.	As	we	shall	see
in	 later	chapters,	 the	underlying	approach	is	not	specific	 to	 interaction,	but	can
also	be	used	to	program	with	other	forms	of	effects.

10.2 The	solution
In	Haskell,	 an	 interactive	 program	 is	 viewed	 as	 a	 pure	 function	 that	 takes	 the
current	state	of	the	world	as	its	argument,	and	produces	a	modified	world	as	its
result,	in	which	the	modified	world	reflects	any	side	effects	that	were	performed
by	the	program	during	its	execution.	Hence,	given	a	suitable	type	World	whose
values	represent	states	of	the	world,	the	notion	of	an	interactive	program	can	be
represented	by	a	function	of	 type	World	->	World,	which	we	abbreviate	as	IO
(short	for	input/output)	using	the	following	type	declaration:
type	IO	=	World	->	World

In	 general,	 however,	 an	 interactive	 program	 may	 return	 a	 result	 value	 in
addition	 to	 performing	 side	 effects.	 For	 example,	 a	 program	 for	 reading	 a
character	 from	 the	 keyboard	 may	 return	 the	 character	 that	 was	 read.	 For	 this
reason,	we	 generalise	 our	 type	 for	 interactive	 programs	 to	 also	 return	 a	 result
value,	with	the	type	of	such	values	being	a	parameter	of	the	IO	type:
type	IO	a	=	World	->	(a,World)
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Expressions	of	type	IO	a	are	called	actions.	For	example,	IO	Char	is	the	type	of
actions	that	return	a	character,	while	IO	()	is	the	type	of	actions	that	return	the
empty	tuple	()	as	a	dummy	result	value.	Actions	of	the	latter	type	can	be	thought
of	as	purely	side-effecting	actions	that	return	no	result	value,	and	are	often	useful
in	 interactive	programming.	For	example,	 the	countdown	program	in	chapter	9
used	a	top-level	definition	main	of	type	IO	().
In	addition	to	returning	a	result	value,	 interactive	programs	may	also	require

argument	values.	However,	there	is	no	need	to	generalise	the	IO	type	further	to
take	 account	 of	 this,	 because	 this	 behaviour	 can	 already	 be	 achieved	 by
exploiting	currying.	For	example,	an	 interactive	program	 that	 takes	a	character
and	returns	an	integer	would	have	type	Char	->	IO	Int,	which	abbreviates	the
curried	function	type	Char	->	World	->	(Int,World).
At	 this	 point	 the	 reader	 may,	 quite	 reasonably,	 be	 concerned	 about	 the

feasibility	 of	 passing	 around	 the	 entire	 state	 of	 the	 world	 when	 programming
with	 actions!	 Of	 course,	 this	 isn’t	 possible,	 and	 in	 reality	 the	 type	 IO	 a	 is
provided	as	 a	primitive	 in	Haskell,	 rather	 than	being	 represented	 as	 a	 function
type.	However,	 the	 above	 explanation	 is	 useful	 for	 understanding	 how	 actions
can	be	viewed	as	pure	functions,	and	the	implementation	of	actions	in	Haskell	is
consistent	with	this	view.	For	the	remainder	of	this	chapter,	we	will	consider	IO
a	as	a	built-in	type	whose	implementation	details	are	hidden:
data	IO	a	=	...

10.3 Basic	actions
We	now	introduce	three	basic	IO	actions	that	are	provided	in	Haskell.	First	of	all,
the	action	getChar	reads	a	character	from	the	keyboard,	echoes	it	to	the	screen,
and	returns	the	character	as	its	result	value.
getChar	::	IO	Char

getChar	=	...

(The	actual	definition	for	getChar	is	built	into	the	GHC	system.)	If	there	are	no
characters	 waiting	 to	 be	 read	 from	 the	 keyboard,	 getChar	 waits	 until	 one	 is
typed.	 The	 dual	 action,	 putChar	 c,	 writes	 the	 character	 c	 to	 the	 screen,	 and
returns	no	result	value,	represented	by	the	empty	tuple:
putChar	::	Char	->	IO	()

putChar	c	=	...
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Our	 final	 basic	 action	 is	return	v,	which	 simply	 returns	 the	 result	 value	v
without	performing	any	interaction	with	the	user:
return	::	a	->	IO	a

return	v	=	...

The	 function	 return	 provides	 a	 bridge	 from	 pure	 expressions	 without	 side
effects	to	impure	actions	with	side	effects.	Crucially,	there	is	no	bridge	back	—
once	we	are	impure	we	are	impure	for	ever,	with	no	possibility	for	redemption!
As	a	result,	we	may	suspect	that	impurity	quickly	permeates	entire	programs,	but
in	 practice	 this	 is	 usually	 not	 the	 case.	 For	 most	 Haskell	 programs,	 the	 vast
majority	 of	 functions	 do	 not	 involve	 interaction,	with	 this	 being	 handled	 by	 a
relatively	small	number	of	interactive	functions	at	the	outermost	level.

10.4 Sequencing
In	Haskell,	 a	 sequence	of	IO	 actions	 can	be	 combined	 into	 a	 single	 composite
action	using	the	do	notation,	whose	typical	form	is	as	follows:
do	v1	<-	a1

v2	<-	a2

.

.

.

vn	<-	an

return	(f	v1	v2	...	vn)

Such	expressions	have	a	simple	operational	reading:	first	perform	the	action	a1
and	call	its	result	value	v1;	then	perform	the	action	a2	and	call	its	result	value	v2;
...;	then	perform	the	action	an	and	call	its	result	value	vn;	and	finally,	apply	the
function	f	to	combine	all	the	results	into	a	single	value,	which	is	then	returned	as
the	result	value	from	the	expression	as	a	whole.
There	 are	 three	 further	 points	 to	note	 about	 the	do	 notation.	First	 of	 all,	 the

layout	rule	applies,	 in	 the	sense	 that	each	action	 in	 the	sequence	must	begin	 in
precisely	 the	 same	 column,	 as	 illustrated	 above.	 Secondly,	 as	 with	 list
comprehensions,	 the	expressions	vi	<-	ai	are	called	generators,	because	 they
generate	values	for	the	variables	vi.	And	finally,	if	the	result	value	produced	by
a	generator	vi	<-	ai	is	not	required,	the	generator	can	be	abbreviated	simply	by
ai,	which	has	the	same	meaning	as	writing	_	<-	ai.
For	 example,	 an	 action	 that	 reads	 three	 characters,	 discards	 the	 second,	 and
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returns	the	first	and	third	as	a	pair	can	now	be	defined	as	follows:
act	::	IO	(Char,Char)

act	=	do	x	<-	getChar

getChar

y	<-	getChar

return	(x,y)

Note	 that	omitting	 the	use	of	return	 in	 this	example	would	give	rise	 to	a	 type
error,	because	(x,y)	is	an	expression	of	type	(Char,Char),	whereas	in	the	above
context	we	require	an	action	of	type	IO	(Char,Char).

10.5 Derived	primitives
Using	 the	 three	 basic	 actions	 together	 with	 sequencing,	 we	 can	 now	 define	 a
number	 of	 other	 useful	 action	 primitives	 that	 are	 provided	 in	 the	 standard
prelude.	First	of	all,	we	define	an	action	getLine	that	reads	a	string	of	characters
from	the	keyboard,	terminated	by	the	newline	character	’\n’:

Note	the	use	of	recursion	to	read	the	rest	of	the	string	once	the	first	character	has
been	read.	Dually,	we	define	primitives	putStr	and	putStrLn	that	write	a	string
to	the	screen,	and	in	the	latter	case	also	move	to	a	new	line:

For	example,	using	these	primitives	we	can	now	define	an	action	that	prompts
for	a	string	to	be	entered	from	the	keyboard,	and	displays	its	length:
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For	example:
>	strlen

Enter	a	string:	Haskell

The	string	has	7	characters

10.6 Hangman
In	 the	 remainder	 of	 this	 chapter	 we	 present	 three	 extended	 programming
examples,	of	increasing	complexity.	Our	first	example	illustrates	the	basics	of	IO
programming	using	a	variant	of	the	game	hangman.	At	the	start	of	the	game,	one
player	secretly	enters	a	word.	Another	player	then	tries	to	deduce	the	word	via	a
series	of	guesses.	For	 each	guess,	we	 indicate	which	 letters	 in	 the	 secret	word
occur	in	the	guess,	and	the	game	ends	when	the	guess	is	correct.
We	implement	the	hangman	game	in	a	top-down	manner,	starting	with	a	top-

level	action	that	prompts	the	first	player	to	enter	a	secret	word,	and	then	asks	the
second	player	to	try	and	guess	it:
hangman	::	IO	()

hangman	=	do	putStrLn	"Think	of	a	word:"

word	<-	sgetLine

putStrLn	"Try	to	guess	it:"

play	word

It	now	remains	to	complete	the	definitions	for	sgetLine	and	play.	First	of	all,
the	action	sgetLine	 reads	a	string	of	characters	from	the	keyboard	in	a	similar
manner	 to	 the	 basic	 action	 getLine,	 except	 that	 it	 echoes	 each	 character	 as	 a
dash	symbol	’-’	in	order	to	keep	the	string	secret:
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In	turn,	the	action	getCh	used	in	this	definition	reads	a	single	character	from	the
keyboard	without	echoing	it	to	the	screen,	and	is	defined	by	using	the	primitive
hSetEcho	from	the	library	System.IO	 to	turn	input	echoing	off	prior	to	reading
the	character,	and	back	on	again	afterwards:
getCh	::	IO	Char

getCh	=	do	hSetEcho	stdin	False

x	<-	getChar

hSetEcho	stdin	True

return	x

(The	 primitive	 hSetEcho	 can	 be	 made	 available	 by	 including	 the	 declaration
import	System.IO	at	the	start	of	a	script.)	We	now	return	to	the	function	play,
which	 implements	 the	 main	 game	 loop	 by	 repeatedly	 prompting	 the	 second
player	to	enter	a	guess	until	it	equals	the	secret	word:

In	the	case	when	the	guess	is	not	correct,	we	use	a	list	comprehension	to	indicate
which	letters	in	the	secret	word	occur	anywhere	in	the	guess:
match	::	String	->	String	->	String

match	xs	ys	=	[if	elem	x	ys	then	x	else	’-’	|	x	<-	xs]

The	game	is	now	complete,	and	can	be	tried	out.	For	example,	here	is	how	the
game	might	proceed	if	the	secret	word	was	nottingham:
>	hangman
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Think	of	a	word:

----------
Try	to	guess	it:

?	glasgow

-o----g-a-
?	utrecht

--tt---h--
?	gothenburg

nott-ngh--
?	nottingham

You	got	it!!

10.7 Nim
For	our	second	example	we	consider	a	variant	of	the	game	of	nim,	played	on	a
board	comprising	five	numbered	rows	of	stars,	initially	set	up	as	follows:

Two	players	then	take	it	in	turn	to	remove	one	or	more	stars	from	the	end	of	a
single	 row.	The	winner	 is	 the	player	who	makes	 the	board	empty,	 that	 is,	who
removes	 the	 final	 star	 or	 stars	 from	 the	 board.	 To	 contrast	with	 the	 top-down
development	of	the	hangman	game	in	the	previous	section,	we	implement	nim	in
a	bottom-up	manner,	starting	by	defining	a	series	of	utility	functions,	which	are
then	used	to	implement	the	game	itself.

Game	utilities
For	simplicity,	we	represent	the	player	number	(1	or	2)	as	an	integer,	and	use	the
following	function	to	give	the	next	player:
next	::	Int	->	Int

next	1	=	2

next	2	=	1

In	 turn,	we	 represent	 the	board	as	a	 list	 comprising	 the	number	of	 stars	 that
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remain	on	each	row,	with	the	initial	board	given	by	the	list	[5,4,3,2,1],	and	the
game	being	finished	when	all	rows	have	no	stars	left:
type	Board	=	[Int]

initial	::	Board

initial	=	[5,4,3,2,1]

finished	::	Board	->	Bool

finished	=	all	(==	0)

A	move	in	the	game	is	specified	by	a	row	number	and	the	number	of	stars	to
be	removed,	and	is	valid	if	the	row	contains	at	least	this	many	stars:
valid	::	Board	->	Int	->	Int	->	Bool

valid	board	row	num	=	board	!!	(row-1)	>=	num

(Recall	 that	 list	 indexing	starts	 from	zero,	hence	 the	use	of	subtraction	above.)
For	 example,	 valid	 initial	 1	 3	 returns	 True,	 because	 the	 first	 row	 on	 the
initial	 board	 contains	 at	 least	 three	 stars,	whereas	valid	initial	4	3	 returns
False,	because	the	fourth	row	contains	fewer	than	three	stars.	A	valid	move	can
then	be	applied	to	a	board	to	give	an	new	board	by	using	a	list	comprehension	to
update	the	number	of	stars	that	remain	in	each	row:
move	::	Board	->	Int	->	Int	->	Board

move	board	row	num	=	[update	r	n	|	(r,n)	<-	zip	[1..]	board]

where	update	r	n	=	if	r	==	row	then	n-num	else	n

For	example,	move	initial	1	3	 returns	 the	new	board	[2,4,3,2,1]	 in	which
three	stars	have	been	removed	from	the	first	row.

IO	utilities
We	begin	by	defining	a	function	that	displays	a	row	of	the	board	on	the	screen,
given	the	row	number	and	the	number	of	stars	remaining:

Recall	that	the	library	function	replicate	produces	a	list	with	a	given	number	of
identical	elements.	For	example,	we	have:
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>	putRow	1	5

1:	*	*	*	*	*

In	 turn,	 putRow	 can	 then	 be	 used	 to	 display	 the	 board.	 For	 simplicity,	 we
assume	that	the	board	always	contains	precisely	five	rows:

For	example:
>	putBoard	initial

1:	*	*	*	*	*

2:	*	*	*	*

3:	*	*	*

4:	*	*

5:	*

We	also	define	a	utility	function	getDigit	that	displays	a	prompt	and	reads	a
single	character	from	the	keyboard.	If	the	character	is	a	digit,	the	corresponding
integer	 is	 returned	as	 the	 result	value,	otherwise	an	error	message	 is	displayed
and	the	user	is	reprompted	to	enter	a	digit:

(The	function	digitToInt	::	Char	->	Int	converts	a	digit	 to	an	integer,	and
can	 be	made	 available	 by	writing	 import	 Data.Char	 at	 the	 start	 of	 a	 script.)
Finally,	we	define	an	action	that	moves	onto	a	new	line:
newline	::	IO	()

newline	=	putChar	’\n’
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Game	of	nim
Using	 the	above	utility	 functions,	we	can	now	implement	 the	main	game	loop,
which	takes	the	current	board	and	player	number	as	arguments:

That	is,	we	first	display	the	board,	and	then	check	if	the	game	is	finished.	If	so,
we	display	 the	other	player	as	 the	winner,	as	 they	were	 the	one	who	made	 the
board	empty.	Otherwise	we	prompt	the	current	player	for	the	move	they	wish	to
make.	If	 the	move	is	valid,	we	update	the	board	accordingly	and	then	continue
the	 game	 with	 the	 next	 player,	 otherwise	 we	 display	 an	 error	 message	 and
reprompt	the	current	player	to	enter	a	valid	move.
Finally,	 the	game	of	nim	itself	can	then	be	implemented	simply	by	invoking

the	game	loop	with	the	initial	board	and	player	number:
nim	::	IO	()

nim	=	play	initial	1

We	conclude	with	two	further	remarks	about	our	implementation	of	nim.	First
of	 all,	 note	 that	 because	Haskell	 is	 a	 pure	 language,	we	 needed	 to	 supply	 the
game	state,	which	in	this	case	comprises	the	current	board	and	player	number,	as
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explicit	 arguments	 to	 the	 play	 function.	 And	 secondly,	 note	 the	 separation
between	the	pure	parts	of	our	implementation,	in	the	form	of	the	utility	functions
on	players	and	boards,	from	the	impure	parts	that	involve	input/output.	It	is	good
practice	 to	 try	 and	 maintain	 this	 kind	 of	 separation	 in	 Haskell	 programs,	 to
minimise	and	localise	the	use	of	side	effects.

10.8 Life
Our	third	and	final	interactive	programming	example	concerns	the	game	of	life.
The	game	models	a	simple	evolutionary	system	based	on	cells,	and	is	played	on
a	two-dimensional	board.	Each	square	on	the	board	is	either	empty,	or	contains	a
single	living	cell,	as	illustrated	in	the	following	example:

Each	internal	square	on	the	board	has	eight	immediate	neighbours:

For	uniformity,	each	external	square	on	the	board	is	also	viewed	as	having	eight
neighbours,	 by	 assuming	 that	 the	 board	wraps	 around	 from	 top-to-bottom	 and
from	left-to-right.	That	is,	we	can	think	of	the	board	as	really	being	a	torus,	the
surface	of	a	three-dimensional	doughnut	shaped	object.
Given	an	initial	configuration	of	the	board,	the	next	generation	of	the	board	is

given	by	simultaneously	applying	the	following	rules	to	all	squares:

a	 living	cell	survives	 if	 it	has	precisely	 two	or	 three	neighbouring	squares
that	contain	living	cells,	and
an	 empty	 square	 gives	 birth	 to	 a	 living	 cell	 if	 it	 has	 precisely	 three
neighbours	that	contain	living	cells,	and	remains	empty	otherwise.
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For	example,	applying	these	rules	to	the	above	board	gives:

By	 repeating	 this	 procedure	 with	 the	 new	 board,	 an	 infinite	 sequence	 of
generations	can	be	produced.	By	careful	design	of	the	initial	configuration,	many
interesting	 patterns	 of	 behaviour	 can	 be	 observed	 in	 such	 sequences.	 For
example,	the	above	arrangement	of	cells	is	called	a	glider,	and	over	successive
generations	 will	 move	 diagonally	 down	 the	 board.	 Despite	 its	 simplicity,	 the
game	 of	 life	 is	 in	 fact	 computationally	 complete,	 in	 the	 sense	 that	 any
computational	 process	 can	 be	 simulated	 within	 it	 by	 means	 of	 a	 suitable
encoding.	In	the	remainder	of	this	section	we	show	how	the	game	of	life	can	be
implemented	in	Haskell.

Screen	utilities
We	begin	with	some	useful	output	utilities	concerning	the	screen	on	which	the
game	 will	 be	 played.	 First	 of	 all,	 we	 define	 an	 action	 that	 clears	 the	 screen,
which	can	be	achieved	by	displaying	the	appropriate	control	characters:
cls	::	IO	()

cls	=	putStr	"\ESC[2J"

By	convention,	the	position	of	each	character	on	the	screen	is	given	by	a	pair
(x,y)	 of	 positive	 integers,	with	(1,1)	 being	 the	 top-left	 corner.	We	 represent
such	coordinate	positions	using	the	following	type:
type	Pos	=	(Int,Int)

We	 can	 then	 define	 a	 function	 that	 displays	 a	 string	 at	 a	 given	 position	 by
using	control	characters	to	move	the	cursor	to	this	position:
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Game	of	life
For	simplicity,	we	assumed	that	the	board	size	for	nim	was	fixed.	For	increased
flexibility,	 we	 allow	 the	 board	 size	 for	 life	 to	 be	 modified,	 by	 means	 of	 two
integer	values	that	specify	the	size	of	the	board	in	squares:
width	::	Int

width	=	10

height	::	Int

height	=	10

We	represent	a	board	as	a	list	of	the	(x,y)	positions	at	which	there	is	a	living
cell,	using	the	same	coordinate	convention	as	the	screen:
type	Board	=	[Pos]

For	example,	the	initial	example	board	above	would	be	represented	by:
glider	::	Board

glider	=	[(4,2),(2,3),(4,3),(3,4),(4,4)]

Using	this	representation	of	the	board,	it	is	easy	to	display	the	living	cells	on
the	screen,	and	to	decide	if	a	given	position	is	alive	or	empty:
showcells	::	Board	->	IO	()

showcells	b	=	sequence_	[writeat	p	"O"	|	p	<-	b]

isAlive	::	Board	->	Pos	->	Bool

isAlive	b	p	=	elem	p	b

isEmpty	::	Board	->	Pos	->	Bool

isEmpty	b	p	=	not	(isAlive	b	p)

(The	library	function	sequence_	::	[IO	a]	->	IO	()	performs	a	list	of	actions
in	 sequence,	 discarding	 their	 result	 values	 and	 returning	 no	 result.)	 Next,	 we
define	a	function	that	returns	the	neighbours	of	a	position:
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The	auxiliary	function	wrap	takes	account	of	the	wrapping	around	at	the	edges	of
the	board,	by	subtracting	one	from	each	component	of	the	given	position,	taking
the	 remainder	 when	 divided	 by	 the	 width	 and	 height	 of	 the	 board,	 and	 then
adding	one	to	each	component	again:

Using	function	composition,	we	can	now	define	a	function	that	calculates	the
number	 of	 live	 neighbours	 for	 a	 given	 position	 by	 producing	 the	 list	 of	 its
neighbours,	retaining	those	that	are	alive,	and	counting	their	number:
liveneighbs	::	Board	->	Pos	->	Int

liveneighbs	b	=	length	.	filter	(isAlive	b)	.	neighbs

Using	 this	 function,	 it	 is	 then	 straightforward	 to	 produce	 the	 list	 of	 living
positions	in	a	board	that	have	precisely	two	or	three	living	neighbours,	and	hence
survive	to	the	next	generation	of	the	game:
survivors	::	Board	->	[Pos]

survivors	b	=	[p	|	p	<-	b,	elem	(liveneighbs	b	p)	[2,3]]

In	turn,	the	list	of	empty	positions	in	a	board	that	have	precisely	three	living
neighbours,	and	hence	give	birth	to	a	new	cell,	can	be	produced	as	follows:

However,	this	definition	considers	every	position	on	the	board.	A	more	refined
approach,	which	may	be	more	efficient	for	larger	boards,	is	to	only	consider	the
neighbours	of	 living	cells,	because	only	 such	cells	can	give	 rise	 to	new	births.
Using	this	approach,	the	function	births	can	be	rewritten	as	follows:
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The	auxiliary	function	rmdups	removes	duplicates	from	a	list,	and	is	used	above
to	ensure	that	each	potential	new	cell	is	only	considered	once:
rmdups	::	Eq	a	=>	[a]	->	[a]

rmdups	[] =	[]

rmdups	(x:xs)	=	x	:	rmdups	(filter	(/=	x)	xs)

The	next	generation	of	a	board	can	now	be	produced	simply	by	appending	the
list	of	survivors	and	the	list	of	new	births:
nextgen	::	Board	->	Board

nextgen	b	=	survivors	b	++	births	b

Finally,	we	define	a	function	life	that	implements	the	game	of	life	itself,	by
clearing	 the	screen,	showing	 the	 living	cells	 in	 the	current	board,	waiting	for	a
moment,	and	then	continuing	with	the	next	generation:
life	::	Board	->	IO	()

life	b	=	do	cls

showcells	b

wait	500000

life	(nextgen	b)

The	function	wait	is	used	to	slow	down	the	game	to	a	reasonable	speed,	and	can
be	implemented	by	performing	a	given	number	of	dummy	actions:
wait	::	Int	->	IO	()

wait	n	=	sequence_	[return	()	|	_	<-	[1..n]]

For	fun,	you	might	like	to	try	out	the	life	function	with	the	glider	example,
and	 experiment	 with	 some	 patterns	 of	 your	 own.	 Note	 also	 that	 most	 of	 the
definitions	used	 to	 implement	 the	game	of	 life	 are	pure	 functions,	with	only	 a
small	 number	 of	 top-level	 definitions	 involving	 input/output.	 Moreover,	 the
definitions	that	do	have	such	side	effects	are	clearly	distinguishable	from	those
that	do	not,	through	the	presence	of	IO	in	their	types.

10.9 Chapter	remarks
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The	use	of	the	IO	type	to	perform	other	forms	of	side	effects,	including	reading
and	 writing	 from	 files,	 is	 discussed	 in	 the	 Haskell	 Report	 [4],	 and	 a	 formal
meaning	for	this	type	is	given	in	[15].	For	specialised	applications,	a	bridge	back
from	 impure	 actions	 to	 pure	 expressions	 is	 in	 fact	 available	 via	 the	 function
unsafePerformIO	::	IO	a	->	a	in	the	library	System.IO.Unsafe.	However,	as
suggested	 by	 the	 naming,	 this	 function	 is	 unsafe	 and	 should	 not	 be	 used	 in
normal	Haskell	programs	as	it	compromises	the	purity	of	the	language.

10.10 Exercises
1. Redefine	putStr	::	String	->	IO	()	 using	a	 list	 comprehension	and

the	library	function	sequence_	::	[IO	a]	->	IO	().

2. Using	recursion,	define	a	version	of	putBoard	::	Board	->	IO	()	 that
displays	nim	boards	of	any	size,	rather	than	being	specific	to	boards	with
just	 five	 rows	of	 stars.	Hint:	 first	define	an	auxiliary	 function	 that	 takes
the	current	row	number	as	an	additional	argument.

3. In	a	similar	manner	to	the	first	exercise,	redefine	the	generalised	version
of	putBoard	using	a	list	comprehension	and	sequence_.

4. Define	an	action	adder	::	IO	()	 that	reads	a	given	number	of	integers
from	the	keyboard,	one	per	line,	and	displays	their	sum.	For	example:
>	adder

How	many	numbers?	5

1

3

5

7

9

The	total	is	25

Hint:	 start	 by	 defining	 an	 auxiliary	 function	 that	 takes	 the	 current	 total
and	 how	many	numbers	 remain	 to	 be	 read	 as	 arguments.	You	will	 also
likely	need	to	use	the	library	functions	read	and	show.

5. Redefine	adder	using	the	function	sequence	::	[IO	a]	->	IO	[a]	that
performs	a	list	of	actions	and	returns	a	list	of	the	resulting	values.

6. Using	getCh,	 define	an	action	readLine	::	IO	String	 that	behaves	 in
the	same	way	as	getLine,	except	that	it	also	permits	the	delete	key	to	be
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used	 to	 remove	characters.	Hint:	 the	delete	 character	 is	’\DEL’,	 and	 the
control	character	for	moving	the	cursor	back	one	space	is	’\b’.

Solutions	to	exercises	1–3	are	given	in	appendix	A.
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11

Unbeatable	tic-tac-toe

In	 this	 chapter	 we	 illustrate	 the	 concepts	 introduced	 so	 far	 by	 developing	 an
interactive	program	that	plays	the	game	of	tic-tac-toe.	We	start	by	implementing
a	version	that	allows	two	human	players	to	compete	against	each	other,	and	then
develop	 a	 computer	 player	 that	 uses	game	 trees	 and	 the	minimax	algorithm	 to
ensure	that	it	is	unbeatable,	that	is,	always	wins	or	draws.

11.1 Introduction
Tic-tac-toe,	 also	 known	 as	 noughts	 and	 crosses,	 is	 a	 game	 that	 is	 traditionally
played	on	a	3	×	3	grid,	which	is	initially	empty:

Two	players,	 	and	×,	then	take	it	in	turn	to	place	their	mark	in	a	blank	space
in	 the	 grid.	 The	 winner	 is	 the	 first	 player	 to	 place	 three	 of	 their	 marks	 in	 a
horizontal,	vertical,	or	diagonal	line.	For	example,	the	grid	below	has	three	×’s
in	the	bottom	row,	and	hence	×	is	the	winner:

If	the	grid	becomes	fully	occupied	without	either	player	having	won,	then	the
game	ends	in	a	draw,	as	in	the	following	example:
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By	playing	in	a	perfect	manner,	that	is,	always	making	the	best	possible	move
at	each	turn,	a	player	can	always	force	a	draw,	independent	of	whether	they	go
first	 or	 second	 in	 the	 game.	 In	 the	 remainder	 of	 this	 chapter	we	 show	how	 to
implement	a	perfect	tic-tac-toe	player	in	Haskell.

11.2 Basic	declarations
We	begin	by	 importing	 standard	 libraries	 that	 provide	 functions	on	 characters,
lists	and	input/output	actions	that	will	be	used	in	our	implementation:
import	Data.Char

import	Data.List

import	System.IO

Rather	 than	 assuming	 that	 the	 tic-tac-toe	 grid	 has	 a	 fixed	 size	 of	 3	 ×	 3,	we
allow	the	size	to	be	changed	to	any	integer	value	greater	than	zero:
size	::	Int

size	=	3

We	represent	a	grid	as	a	list	of	lists	of	player	values,	with	the	assumption	that	the
each	of	the	inner	lists,	and	the	outer	list,	all	have	length	size:
type	Grid	=	[[Player]]

In	 turn,	 a	player	value	 is	 either	O,	B	 or	X,	where	 the	extra	value	B	 represents	a
blank	space	that	has	not	yet	been	occupied:

For	example,	the	winning	grid	from	the	previous	section	can	be	represented	by
[[B,O,O],[O,X,O],[X,X,X]]	::	Grid.	The	deriving	clause	above	ensures	that
player	values	 support	 the	 standard	equality	 and	ordering	operators,	 and	can	be
displayed	on	 the	screen.	Recall	 that	 the	ordering	on	constructors	 is	determined
by	their	position	in	the	data	declaration,	hence	we	have	O	<	B	<	X,	which	will
be	important	when	we	consider	the	minimax	algorithm.
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The	next	player	to	move	is	given	simply	by	swapping	between	O	and	X,	with
the	case	for	the	blank	value	B	being	included	for	completeness	even	though	the
function	should	never	be	applied	to	this	value:
next	::	Player	->	Player

next	O	=	X

next	B	=	B

next	X	=	O

11.3 Grid	utilities
We	make	use	of	a	number	of	utilities	on	tic-tac-toe	grids.	First	of	all,	we	define
the	empty	grid	by	replicating	the	blank	player	value	to	create	an	empty	row,	and
then	replicating	this	row	to	create	an	empty	grid:
empty	::	Grid

empty	=	replicate	size	(replicate	size	B)

Conversely,	a	grid	is	full	if	all	of	its	player	values	are	non-blank:
full	::	Grid	->	Bool

full	=	all	(/=	B)	.	concat

The	idea	of	applying	concat	to	flatten	a	grid	into	a	single	list	prior	to	processing
its	player	values,	 as	 in	 the	above	definition,	will	be	used	 in	a	number	of	other
functions	 that	 we	 define.	 For	 example,	 we	 can	 decide	 whose	 turn	 it	 is	 by
comparing	the	number	of	O’s	and	X’s	in	a	flattened	grid:
turn	::	Grid	->	Player

turn	g	=	if	os	<=	xs	then	O	else	X

where

os	=	length	(filter	(==	O)	ps)

xs	=	length	(filter	(==	X)	ps)

ps	=	concat	g

Note	that	turn	empty	=	O	means	that	we	are	assuming	player	O	goes	first,	which
in	our	final	implementation	will	be	the	human	player.
We	now	turn	our	attention	to	deciding	if	the	game	has	been	won,	that	is,	if	a

player	 has	 a	 complete	 line	 in	 any	 row,	 column,	 or	 either	 diagonal	 in	 the	 grid.
Using	local	definitions	to	improve	readability,	this	idea	can	be	translated	directly
into	a	function	that	decides	if	a	player	wins	in	a	grid:
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The	 function	 transpose	 ::	 [[a]]	 ->	 [[a]]	 used	 above	 is	 provided	 in	 the
library	 Data.List,	 and	 takes	 a	 grid	 that	 is	 represented	 as	 a	 list	 of	 rows	 and
reflects	it	about	the	main	diagonal	that	runs	from	top-left	to	bottom-right,	so	that
the	columns	become	rows	and	vice-versa.	For	example:
>	transpose	[[1,2,3],[4,5,6],[7,8,9]]

[[1,4,7],[2,5,8],[3,6,9]]

In	turn,	the	function	diag	returns	the	main	diagonal	of	a	grid:
diag	::	Grid	->	[Player]

diag	g	=	[g	!!	n	!!	n	|	n	<-	[0..size-1]]

The	other	diagonal,	 from	top-right	 to	bottom-left,	can	 then	be	obtained	by	first
reversing	each	row	in	the	grid,	as	in	the	definition	of	wins	above.	Finally,	we	can
now	define	a	function	that	decides	if	either	player	has	won:
won	::	Grid	->	Bool

won	g	=	wins	O	g	||	wins	X	g

11.4 Displaying	a	grid
For	the	purposes	of	displaying	a	tic-tac-toe	grid	on	the	screen,	we	seek	to	define
a	function	with	the	following	example	behaviour:
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This	behaviour	can	readily	be	achieved	using	function	composition:
putGrid	::	Grid	->	IO	()

putGrid	=

putStrLn	.	unlines	.	concat	.	interleave	bar	.	map	showRow

where	bar	=	[replicate	((size*4)-1)	’-’]

That	is,	we	convert	each	row	to	a	list	of	strings	using	showRow,	insert	a	horizontal
bar	between	each	row	using	interleave,	flatten	the	resulting	nested	list	structure
using	concat,	join	all	the	strings	together	with	a	newline	character	at	the	each	of
each	 line	 using	 the	 library	 function	 unlines	 ::	 [String]	 ->	 String,	 and
finally,	display	the	resulting	string	on	the	screen	using	putStrLn.
In	turn,	the	function	showRow	converts	a	row	to	a	list	of	strings,	with	a	vertical

bar	of	length	three	between	each	entry	in	the	row:

The	 library	 function	foldr1	 used	 above	behaves	 in	 a	 similar	manner	 to	foldr
but	can	only	be	applied	to	non-empty	lists,	while	zipWith	behaves	in	the	same
way	as	zip	but	applies	a	given	 function	 to	each	pair	of	values	 in	 the	 resulting
list.	For	example,	showRow	[O,B,X]	returns	the	following	list:
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The	 two	 remaining	 functions	simply	convert	a	player	value	 to	a	 list	of	 strings,
and	interleave	a	value	between	each	element	in	a	list:

11.5 Making	a	move
To	 identify	where	a	player	wishes	 to	make	a	move	during	 the	game,	we	 index
each	position	in	the	grid	by	a	natural	number,	starting	from	zero	in	the	top-left
corner	and	proceeding	along	each	row	in	turn:

Attempting	to	make	a	move	at	a	particular	index	is	valid	if	the	index	is	within
the	appropriate	range,	and	the	position	is	currently	blank:
valid	::	Grid	->	Int	->	Bool

valid	g	i	=	0	<=	i	&&	i	<	size^2	&&	concat	g	!!	i	==	B

We	 now	 define	 a	 function	 that	 applies	 a	 move	 to	 a	 grid.	 In	 order	 to	 take
account	of	the	possibility	that	a	move	may	be	invalid,	we	return	a	list	of	grids	as
the	result,	with	 the	convention	 that	a	singleton	 list	denotes	success	 in	applying
the	move,	and	the	empty	list	denotes	failure:
move::	Grid	->	Int	->	Player	->	[Grid]

move	g	i	p	=

if	valid	g	i	then	[chop	size	(xs	++	[p]	++	ys)]	else	[]

where	(xs,B:ys)	=	splitAt	i	(concat	g)

That	 is,	 if	 the	move	 is	valid	we	split	 the	 list	of	player	values	 in	 the	grid	at	 the
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index	where	 the	move	 is	 being	made,	 replace	 the	 blank	 player	 value	with	 the
given	player,	and	then	reform	the	grid	once	again.	The	library	function	splitAt
breaks	 a	 list	 into	 two	 parts	 at	 a	 given	 index,	 and	 the	 auxiliary	 function	 chop
breaks	a	list	into	maximal	segments	of	a	given	length:
chop	::	Int	->	[a]	->	[[a]]

chop	n	[]	=	[]

chop	n	xs	=	take	n	xs	:	chop	n	(drop	n	xs)

11.6 Reading	a	number
To	 read	 a	 grid	 index	 from	 a	 human	 player,	 we	 define	 a	 function	 getNat	 that
displays	a	prompt	and	reads	a	natural	number	from	the	keyboard.	It	is	defined	in
a	 similar	 manner	 to	 the	 function	 getDigit	 for	 the	 nim	 game	 in	 chapter	 10,
except	that	it	reads	a	natural	number	rather	than	a	single	digit:

The	function	isDigit	::	Char	->	Bool	used	above	is	provided	in	 the	 library
Data.Char,	and	decides	if	a	character	is	a	numeric	digit.

11.7 Human	vs	human
We	now	have	the	necessary	machinery	to	implement	tic-tac-toe	for	two	human
players.	 We	 define	 an	 action	 that	 implements	 the	 game	 using	 two	 mutually
recursive	functions	that	take	the	current	grid	and	player	as	arguments:
tictactoe	::	IO	()

tictactoe	=	run	empty	O

The	first	function	simply	displays	the	grid	and	invokes	the	second:
run	::	Grid	->	Player	->	IO	()
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run	g	p	=	do	cls

goto	(1,1)

putGrid	g

run’	g	p

(The	screen	utilities	cls	and	goto	were	defined	for	 the	game	of	 life	 in	chapter
10.)	In	turn,	the	second	function	uses	a	series	of	guards	to	decide	if	the	game	is
finished,	 and	 if	 not	 prompts	 the	 player	 for	 a	move.	 If	 the	move	 is	 invalid	we
display	an	error	message	and	reprompt	the	player,	otherwise	we	invoke	the	first
function	with	the	updated	board	and	the	next	player:

The	auxiliary	function	prompt	is	defined	as	follows:
prompt	::	Player	->	String

prompt	p	=	"Player	"	++	show	p	++	",	enter	your	move:	"

You	may	like	to	try	the	game	out	with	a	friend	now!	As	with	all	the	extended
examples,	the	code	is	available	from	the	website	for	the	book.

11.8 Game	trees
We	now	show	how	to	develop	a	computer	player	for	tic-tac-toe,	based	on	the	use
of	game	trees.	The	basic	idea	is	to	build	a	tree	structure	that	captures	all	possible
ways	in	which	the	game	can	proceed	from	the	current	grid,	and	then	use	this	tree
to	decide	on	the	best	next	move	to	make.
By	way	of	example,	suppose	that	we	are	given	the	following	tic-tac-toe	grid,

and	it	is	player	O’s	turn	to	make	a	move:
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The	player	 can	place	 their	mark	 in	 any	of	 the	 three	 remaining	blank	 spaces	 at
positions	1,	2	and	8,	giving	three	possible	next	grids:

Now	it	is	X’s	turn	to	move,	and	we	repeat	the	same	process	for	each	of	these
three	grids,	stopping	when	there	is	a	winner	or	the	grid	is	full.	In	this	manner,	we
can	produce	the	following	game	tree	from	the	starting	grid:

For	this	example,	we	can	see	that	player	X	wins	if	the	game	proceeds	down	the
left	or	right	spine	of	the	tree,	and	player	O	wins	otherwise.	Hence,	the	game	tree
shows	 that	 the	best	 next	move	 for	 player	O	 is	 the	middle	of	 the	 three	possible
moves	at	the	top	of	the	tree,	as	this	guarantees	a	win	for	O,	whereas	either	of	the
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other	two	possible	next	moves	can	result	in	a	win	for	X.
A	suitable	type	for	representing	such	trees	can	be	declared	as	follows:

That	is,	a	tree	of	a	given	type	is	a	node	that	comprises	a	value	of	this	type	and	a
list	of	subtrees.	There	are	three	further	points	to	note	about	this	declaration.	First
of	all,	it	is	not	specific	to	tic-tac-toe	grids,	but	permits	any	type	of	values	to	be
stored	 in	 the	 nodes;	 this	 will	 be	 important	 when	 we	 consider	 the	 minimax
algorithm,	which	labels	each	grid	in	the	game	tree	with	additional	 information.
Secondly,	there	is	no	constructor	for	leaves,	because	a	node	with	an	empty	list	of
subtrees	 can	play	 this	 role;	 this	 avoids	having	 two	possible	 representations	 for
leaves,	which	could	complicate	the	definition	of	functions	on	trees.	And	finally,
the	deriving	clause	ensures	that	trees	can	be	displayed	on	the	screen.
Using	the	above	tree	type,	it	is	straightforward	to	define	a	function	that	builds

a	 game	 tree	 from	 a	 given	 starting	 grid	 and	 player.	We	 simply	 use	 the	 starting
grid	 as	 the	value	 for	 the	 root	node,	 and	 then	 recursively	build	 a	game	 tree	 for
each	grid	that	results	from	the	current	player	making	a	valid	move,	with	the	next
player	then	being	used	to	continue	the	process:
gametree	::	Grid	->	Player	->	Tree	Grid

gametree	g	p	=	Node	g	[gametree	g’	(next	p)	|	g’	<-	moves	g	p]

In	 turn,	 the	 function	moves	 that	 returns	 the	 list	of	valid	moves	 is	defined	by
first	checking	if	the	game	is	finished,	in	which	case	we	return	the	empty	list	of
grids,	which	serves	 to	stop	 the	recursion	 in	gametree.	Otherwise,	we	return	all
grids	that	result	from	making	a	move	in	a	blank	space:

11.9 Pruning	the	tree
As	 one	 may	 imagine,	 game	 trees	 can	 potentially	 become	 very	 large.	 For	 this
reason,	 it	 is	 sometimes	necessary	 to	prune	game	 trees	 to	 a	 particular	 depth,	 in
order	to	limit	the	amount	of	time	and	memory	that	it	takes	to	build	the	tree.	To
this	end,	we	define	a	function	that	prunes	a	tree	to	a	given	depth:
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prune	::	Int	->	Tree	a	->	Tree	a

prune	0	(Node	x	_) =	Node	x	[]

prune	n	(Node	x	ts)	=	Node	x	[prune	(n-1)	t	|	t	<-	ts]

For	example,	prune	5	(gametree	empty	O)	produces	a	game	tree	of	maximum
depth	 five	 starting	 from	 the	 empty	 grid	 with	 player	 O	 making	 the	 first	 move.
Note	 that	 under	 lazy	 evaluation,	 only	 as	 much	 of	 the	 tree	 as	 required	 by	 the
prune	function	will	actually	be	produced.	That	is,	grids	beyond	depth	five	in	this
example	will	never	be	generated	by	gametree.
We	also	define	a	constant	that	specifies	the	maximum	depth	of	the	game	tree.

On	a	modern	machine	it	is	feasible	to	generate	the	entire	tree	for	a	3	×	3	grid,	so
we	set	the	default	depth	to	the	maximum	value	required	for	grids	of	this	size.	For
larger	grids,	it	may	be	necessary	to	reduce	this	value.
depth	::	Int

depth	=	9

11.10 Minimax	algorithm
Once	we	have	produced	a	game	tree,	the	minimax	algorithm	can	then	be	used	to
determine	the	best	next	move.	The	algorithm	starts	by	labelling	every	node	in	the
tree	with	a	player	value	in	the	following	manner:

Leaves	(nodes	with	no	subtrees)	are	labelled	with	the	winning	player	at	this
point	if	there	is	one,	and	the	blank	player	otherwise;
Other	nodes	(with	subtrees)	are	labelled	with	the	minimum	or	maximum	of
the	player	labels	from	the	child	nodes	one	level	down,	depending	on	whose
turn	it	is	to	move	at	this	point:	on	player	O’s	turn	we	take	the	minimum	of
the	child	labels,	and	on	X’s	turn	we	take	the	maximum.

For	 example,	 applying	 the	 algorithm	 to	 the	 game	 tree	 from	 the	 previous
section	results	in	the	following	tree	of	player	labels:
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For	example,	the	leftmost	leaf	in	the	tree	is	labelled	X	because	player	X	has	won
at	this	point,	while	the	root	node	is	labelled	O	because	it	is	player	O’s	turn	at	this
point	and	hence	we	take	the	minimum	of	the	child	labels	X,	O	and	X,	which	under
the	ordering	O	<	B	<	X	is	given	by	the	value	O.
Using	a	series	of	guards	to	determine	the	label,	the	minimax	algorithm	can	be

translated	 directly	 into	 a	 function	 that	 labels	 a	 game	 tree,	 where	 the	 local
definition	ts’	applies	the	algorithm	recursively	to	each	subtree	of	a	node,	and	ps
selects	the	top	labels	from	the	resulting	trees:

Once	the	game	tree	has	been	labelled	in	this	manner,	the	best	next	move	under
the	minimax	algorithm	is	given	by	moving	to	any	grid	with	the	same	label	as	the
root	node.	Hence	for	our	example	tree,	the	best	move	is	given	by	the	second	of
the	three	possible	moves	from	the	initial	grid,	because	this	 leads	to	a	grid	with
the	same	 label	as	 the	root	node,	namely	player	O.	This	 is	 the	best	move	at	 this
point	because	 it	guarantees	a	win	 for	player	O,	whereas	either	of	 the	 two	other
possible	moves	could	lead	to	a	win	for	player	X.
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Putting	all	the	components	together,	we	can	now	define	a	function	that	returns
the	best	next	move	for	a	given	tic-tac-toe	grid	and	player:

That	 is,	we	 first	 build	 the	 game	 tree	 up	 to	 the	 specified	 depth,	 then	 apply	 the
minimax	algorithm	to	label	the	tree,	and	finally	select	a	grid	whose	player	label
is	 the	 same	as	 that	of	 the	 root	node.	There	 is	 always	at	 least	one	 ‘best	move’,
because	selecting	the	minimum	or	maximum	value	from	a	non-empty	(finite)	list
always	 results	 in	 a	 value	 that	 occurs	 in	 the	 list.	 If	 there	 is	more	 than	one	best
move,	the	above	definition	simply	selects	the	first	of	these.

11.11 Human	vs	computer
It	 is	 now	 straightforward	 to	modify	 our	 earlier	 tic-tac-toe	 program	 so	 that	 the
computer	 takes	 on	 the	 role	 of	 one	 of	 the	 players.	 As	 with	 the	 countdown
program	 in	 chapter	 9,	we	use	 the	GHC	compiler	 to	 increase	performance,	 and
define	the	program	using	a	top-level	action	called	main:
main	::	IO	()

main	=	do	hSetBuffering	stdout	NoBuffering

play	empty	O

The	 function	hSetBuffering	 is	provided	 in	 the	 library	System.IO,	 and	 is	used
above	 to	 turn	 output	 buffering	 off,	which	 is	 by	 default	 turned	 on	 in	GHC.	As
previously,	 the	 game	 itself	 is	 implemented	 using	 two	 mutually	 recursive
functions,	except	that	player	X	is	now	the	computer	player:
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The	operator	$!	used	in	the	definition	of	the	function	play’	forces	evaluation	of
the	best	move	for	the	computer	player	prior	to	the	function	play	being	invoked
again,	 without	 which	 there	 may	 be	 a	 delay	 between	 clearing	 the	 screen	 and
displaying	the	grid	in	play	while	the	best	move	was	then	calculated	under	lazy
evaluation.	 Controlling	 evaluation	 order	 in	 this	manner	 is	 discussed	 further	 in
chapter	15	when	we	consider	lazy	evaluation	in	more	detail.
Finally,	 if	 all	 the	 definitions	 are	 placed	 into	 a	 file	 called	tictactoe.hs,	we

can	then	compile	the	program	and	run	the	game:
$	ghc	-O2	tictactoe.hs

[1	of	1]	Compiling	Main

Linking	tictactoe	...

$	./tictactoe
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Player	O,	enter	your	move:

On	a	reasonable	modern	machine,	the	computer	should	take	around	one	second
to	make	its	first	move,	with	subsequent	moves	becoming	progressively	faster	as
the	 size	 of	 the	 game	 tree	 reduces.	 Note	 that	 because	 the	 computer	 always
chooses	 the	 first	move	 from	 the	 list	of	best	moves,	 it	may	not	always	 take	 the
quickest	route	to	a	win,	but	it	is	guaranteed	to	be	unbeatable!

11.12 Chapter	remarks
For	tic-tac-toe	grids	of	size	3	×	3,	it	is	feasible	to	generate	the	entire	game	tree.
For	 larger	grids,	 in	addition	 to	 limiting	 the	maximum	depth	of	 the	 tree,	 it	may
also	be	useful	to	reduce	the	size	of	the	tree	using	alpha-beta	pruning	[16],	which
avoids	generating	parts	of	the	game	tree	that	have	no	possibility	of	leading	to	the
best	next	move	under	the	minimax	algorithm.

11.13 Exercises
1. Using	 the	 function	gametree,	 verify	 that	 there	 are	549,946	nodes	 in	 the

complete	 game	 tree	 for	 a	 3×3	 tic-tac-toe	 game	 starting	 from	 the	 empty
grid,	and	that	the	maximum	depth	of	this	tree	is	9.

2. Our	 tic-tac-toe	 program	 always	 chooses	 the	 first	 move	 from	 the	 list	 of
best	moves.	Modify	the	final	program	to	choose	a	random	move	from	the
list	 of	best	moves,	 using	 the	 function	randomRIO	::	(Int,Int)	->	IO
Int	from	System.Random	to	generate	a	random	integer	in	the	given	range.
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3. Alternatively,	modify	the	final	program	to	choose	a	move	that	attempts	to
take	 the	 quickest	 route	 to	 a	 win,	 by	 calculating	 the	 depths	 of	 resulting
game	 trees	 and	 selecting	 a	move	 that	 results	 in	 a	 tree	with	 the	 smallest
depth.

4. Modify	the	final	program	to:

a. let	the	user	decide	if	they	wish	to	play	first	or	second;
b. allow	the	length	of	a	winning	line	to	also	be	changed;
c. generate	the	game	tree	once,	rather	than	for	each	move;
d. reduce	the	size	of	game	tree	using	alpha-beta	pruning.

Solutions	to	exercises	1	and	2	are	given	in	appendix	A.
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12

Monads	and	more

In	 this	 chapter	 we	 increase	 the	 level	 of	 generality	 that	 can	 be	 achieved	 in
Haskell,	by	considering	functions	that	are	generic	over	a	range	of	parameterised
types	 such	 as	 lists,	 trees	 and	 input/output	 actions.	 In	 particular,	 we	 introduce
functors,	 applicatives	 and	monads,	which	 variously	 capture	 generic	 notions	 of
mapping,	function	application	and	effectful	programming.

12.1 Functors
All	 three	 new	 concepts	 introduced	 in	 this	 chapter	 are	 examples	 of	 the	 idea	 of
abstracting	 out	 a	 common	 programming	 pattern	 as	 a	 definition.	We	 begin	 by
reviewing	this	idea	using	the	following	two	simple	functions:
inc	::	[Int]	->	[Int]

inc	[] =	[]

inc	(n:ns)	=	n+1	:	inc	ns

sqr	::	[Int]	->	[Int]

sqr	[] =	[]

sqr	(n:ns)	=	n^2	:	sqr	ns

Both	 functions	 are	 defined	 in	 the	 same	 manner,	 with	 the	 empty	 list	 being
mapped	to	itself,	and	a	non-empty	list	to	some	function	applied	to	the	head	of	the
list	 and	 the	 result	 of	 recursively	 processing	 the	 tail.	 The	 only	 important
difference	 is	 the	 function	 that	 is	 applied	 to	 each	 integer	 in	 the	 list:	 in	 the	 first
case	 it	 is	 the	 increment	 function	(+1),	 and	 in	 the	second	 the	squaring	 function
(^2).	Abstracting	out	this	pattern	gives	the	familiar	library	function	map,
map	::	(a	->	b)	->	[a]	->	[b]

map	f	[]	=	[]

map	f	(x:xs)	=	f	x	:	map	f	xs

using	which	our	 two	examples	can	 then	be	defined	more	compactly	by	simply
providing	the	function	to	be	applied	to	each	integer:
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inc	=	map	(+1)

sqr	=	map	(^2)

More	generally,	 the	 idea	of	mapping	a	 function	over	each	element	of	a	data
structure	isn’t	specific	to	the	type	of	lists,	but	can	be	abstracted	further	to	a	wide
range	 of	 parameterised	 types.	 The	 class	 of	 types	 that	 support	 such	 a	mapping
function	are	called	functors.	In	Haskell,	this	concept	is	captured	by	the	following
class	declaration	in	the	standard	prelude:
class	Functor	f	where

fmap	::	(a	->	b)	->	f	a	->	f	b

That	is,	for	a	parameterised	type	f	to	be	an	instance	of	the	class	Functor,	it	must
support	a	function	fmap	of	the	specified	type.	The	intuition	is	that	fmap	 takes	a
function	of	type	a	->	b	and	a	structure	of	type	f	a	whose	elements	have	type	a,
and	 applies	 the	 function	 to	 each	 such	 element	 to	 give	 a	 structure	 of	 type	f	b
whose	elements	now	have	type	b.	The	fact	that	f	must	be	a	parameterised	type,
that	is,	a	type	that	takes	another	type	as	a	parameter,	is	determined	automatically
during	type	inference	by	virtue	of	the	application	of	f	to	the	types	a	and	b	in	the
specified	type	for	fmap	in	the	class	declaration.

Examples
As	 we	 would	 expect,	 the	 type	 of	 lists	 can	 be	 made	 into	 a	 functor	 by	 simply
defining	fmap	to	be	the	function	map:
instance	Functor	[]	where

--	fmap	::	(a	->	b)	->	[a]	->	[b]

fmap	=	map

The	symbol	[]	in	this	declaration	denotes	the	list	type	without	a	type	parameter,
and	is	based	upon	the	fact	that	the	type	[a]	can	also	be	written	in	more	primitive
form	as	the	application	[]	a	of	the	list	type	[]	to	the	parameter	type	a.	Note	also
that	the	type	of	fmap	above	is	stated	in	a	comment	rather	than	explicitly,	because
Haskell	 does	 not	 permit	 such	 type	 information	 in	 instance	 declarations.
However,	 it	 is	useful	 for	guiding	 the	definition	of	fmap	 and	 for	documentation
purposes,	so	we	include	such	types	in	comments.
For	our	second	example,	recall	the	built-in	type	Maybe	a	that	represents	values

of	type	a	that	may	either	fail	or	succeed:
data	Maybe	a	=	Nothing	|	Just	a
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It	is	straightforward	to	make	the	Maybe	type	into	a	functor	by	defining	a	function
fmap	of	the	appropriate	type,	as	follows:
instance	Functor	Maybe	where

--	fmap	::	(a	->	b)	->	Maybe	a	->	Maybe	b

fmap	_	Nothing	=	Nothing

fmap	g	(Just	x)	=	Just	(g	x)

(We	 call	 the	 argument	 function	 g	 to	 avoid	 confusion	 with	 the	 use	 of	 f	 for	 a
functor	in	this	section.)	That	is,	mapping	a	function	over	a	failed	value	results	in
the	 failure	 being	 propagated,	 while	 for	 success	 we	 apply	 the	 function	 to	 the
underlying	value	and	retag	the	result.	For	example:
>	fmap	(+1)	Nothing

Nothing

>	fmap	(*2)	(Just	3)

Just	6

>	fmap	not	(Just	False)

Just	True

User-defined	types	can	also	be	made	into	functors.	For	example,	suppose	that
we	declare	a	type	of	binary	trees	that	have	data	in	their	leaves:
data	Tree	a	=	Leaf	a	|	Node	(Tree	a)	(Tree	a)

deriving	Show

The	 deriving	 clause	 ensures	 that	 trees	 can	 be	 displayed	 on	 the	 screen.	 The
parameterised	type	Tree	can	then	be	made	into	a	functor	by	defining	a	function
fmap	that	applies	a	given	function	to	each	leaf	value	in	a	tree:
instance	Functor	Tree	where

--	fmap	::	(a	->	b)	->	Tree	a	->	Tree	b

fmap	g	(Leaf	x)	=	Leaf	(g	x)

fmap	g	(Node	l	r)	=	Node	(fmap	g	l)	(fmap	g	r)

For	example:
>	fmap	length	(Leaf	"abc")

Leaf	3

>	fmap	even	(Node	(Leaf	1)	(Leaf	2))

Node	(Leaf	False)	(Leaf	True)

Many	 functors	 f	 that	 are	 used	 in	Haskell	 are	 similar	 to	 the	 three	 examples
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above,	in	the	sense	that	f	a	is	a	data	structure	that	contains	elements	of	type	a,
which	is	sometimes	called	a	container	type,	and	fmap	applies	a	given	function	to
each	such	element.	However,	not	all	instances	fit	this	pattern.	For	example,	the
IO	type	is	not	a	container	type	in	the	normal	sense	of	the	term	because	its	values
represent	input/output	actions	whose	internal	structure	we	do	not	have	access	to,
but	it	can	readily	be	made	into	a	functor:
instance	Functor	IO	where

--	fmap	::	(a	->	b)	->	IO	a	->	IO	b

fmap	g	mx	=	do	{x	<-	mx;	return	(g	x)}

In	 this	case,	fmap	applies	a	function	to	 the	result	value	of	 the	argument	action,
and	hence	provides	a	means	of	processing	such	values.	For	example:
>	fmap	show	(return	True)

"True"

We	 conclude	 by	 noting	 two	 key	 benefits	 of	 using	 functors.	 First	 of	 all,	 the
function	 fmap	 can	 be	 used	 to	 process	 the	 elements	 of	 any	 structure	 that	 is
functorial.	That	 is,	we	can	use	 the	same	name	for	functions	 that	are	essentially
the	 same,	 rather	 than	having	 to	 invent	 a	 separate	name	 for	 each	 instance.	And
secondly,	we	can	define	generic	functions	that	can	be	used	with	any	functor.	For
example,	 our	 earlier	 function	 that	 increments	 each	 integer	 in	 a	 list	 can	 be
generalised	to	any	functorial	type	by	simply	using	fmap	rather	than	map:
inc	::	Functor	f	=>	f	Int	->	f	Int

inc	=	fmap	(+1)

For	example:
>	inc	(Just	1)

Just	2

>	inc	[1,2,3,4,5]

[2,3,4,5,6]

>	inc	(Node	(Leaf	1)	(Leaf	2))

Node	(Leaf	2)	(Leaf	3)

Functor	laws
In	addition	to	providing	a	function	fmap	of	the	specified	type,	functors	are	also
required	to	satisfy	two	equational	laws:
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The	 first	 equation	 states	 that	fmap	 preserves	 the	 identity	 function,	 in	 the	 sense
that	applying	fmap	to	this	function	returns	the	same	function	as	the	result.	Note,
however,	that	the	two	occurrences	of	id	in	this	equation	have	different	types:	on
the	left-hand	side	id	has	type	a	->	a	and	hence	fmap	id	has	type	f	a	->	f	a,
which	means	that	the	id	on	the	right-hand	side	must	also	have	type	f	a	->	f	a
in	order	for	the	equation	to	be	well-typed.
In	 turn,	 the	 second	 equation	 above	 states	 that	 fmap	 also	 preserves	 function

composition,	in	the	sense	that	applying	fmap	to	the	composition	of	two	functions
gives	the	same	result	as	applying	fmap	to	the	two	functions	separately	and	then
composing.	 In	 order	 for	 the	 compositions	 to	 be	 well-typed,	 the	 component
functions	g	and	h	must	have	types	b	->	c	and	a	->	b.
In	combination	with	 the	polymorphic	 type	 for	fmap,	 the	 functor	 laws	ensure

that	 fmap	 does	 indeed	 perform	 a	 mapping	 operation.	 In	 the	 case	 of	 lists,	 for
instance,	they	ensure	that	the	structure	of	the	argument	list	is	preserved	by	fmap,
in	 the	sense	 that	elements	are	not	added,	 removed	or	 rearranged.	For	example,
suppose	 that	 we	 replaced	 the	 built-in	 list	 functor	 by	 an	 alternative	 version	 in
which	fmap	reverses	the	order	of	the	list	elements:
instance	Functor	[]	where

--	fmap	::	(a	->	b)	->	f	a	->	f	b

fmap	g	[] =	[]

fmap	g	(x:xs)	=	fmap	g	xs	++	[g	x]

(If	you	wish	 to	 try	out	 this	example	 in	GHCi,	you	must	 first	declare	your	own
list	type	and	modify	the	above	declaration	accordingly,	to	avoiding	clashing	with
the	built-in	list	functor.)	This	declaration	is	 type	correct,	but	fails	 to	satisfy	the
functor	laws,	as	shown	by	the	following	examples:
>	fmap	id	[1,2]

[2,1]

>	id	[1,2]

[1,2]

>	fmap	(not	.	even)	[1,2]

[False,True]

>	(fmap	not	.	fmap	even)	[1,2]

[True,False]
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All	 the	 functors	 that	we	 defined	 in	 the	 examples	 section	 satisfy	 the	 functor
laws.	 We	 will	 see	 how	 to	 formally	 prove	 such	 properties	 when	 we	 consider
techniques	 for	 reasoning	 about	 programs	 in	 chapter	 16.	 In	 fact,	 for	 any
parameterised	 type	 in	Haskell,	 there	 is	 at	most	one	 function	fmap	 that	 satisfies
the	 required	 laws.	That	 is,	 if	 it	 is	possible	 to	make	a	given	parameterised	 type
into	a	functor,	there	is	only	one	way	to	achieve	this.	Hence,	the	instances	that	we
defined	for	lists,	Maybe,	Tree	and	IO	were	all	uniquely	determined.

12.2 Applicatives
Functors	 abstract	 the	 idea	 of	 mapping	 a	 function	 over	 each	 element	 of	 a
structure.	Suppose	now	 that	we	wish	 to	generalise	 this	 idea	 to	 allow	 functions
with	 any	 number	 of	 arguments	 to	 be	 mapped,	 rather	 than	 being	 restricted	 to
functions	with	a	single	argument.	More	precisely,	suppose	that	we	wish	to	define
a	hierarchy	of	fmap	functions	with	the	following	types:
fmap0	::	a	->	f	a

fmap1	::	(a	->	b)	->	f	a	->	f	b

fmap2	::	(a	->	b	->	c)	->	f	a	->	f	b	->	f	c

fmap3	::	(a	->	b	->	c	->	d)	->	f	a	->	f	b	->	f	c	->	f	d

.

.

.

Note	that	fmap1	is	just	another	name	for	fmap,	and	fmap0	is	the	degenerate	case
when	the	function	being	mapped	has	no	arguments.	One	approach	would	be	to
declare	a	special	version	of	the	functor	class	for	each	case:	Functor0,	Functor1,
Functor2,	and	so	on.	Then,	for	example,	we	could	write:
>	fmap2	(+)	(Just	1)	(Just	2)

Just	3

However,	this	would	be	unsatisfactory	in	a	number	of	different	ways.	First	of	all,
we	would	have	to	manually	declare	each	version	of	the	Functor	class	even	they
all	follow	a	similar	pattern.	Secondly,	it	is	not	clear	how	many	such	classes	we
should	 declare,	 as	 there	 are	 infinitely	 many	 but	 we	 can	 only	 declare	 a	 finite
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number.	And	finally,	if	we	view	fmap	of	type	(a	->	b)	->	f	a	->	f	b	as	being
a	generalisation	of	the	built-in	function	application	operator	of	type	(a	->	b)	->
a	->	b,	we	might	expect	that	some	form	of	currying	can	be	used	to	achieve	the
desired	behaviour.	In	particular,	we	don’t	require	special	versions	of	application
for	functions	with	different	numbers	of	arguments,	instead	relying	on	currying	in
definitions	such	as	add	x	y	=	x	+	y.
In	 fact,	 using	 the	 idea	 of	 currying,	 it	 turns	 out	 that	 a	 version	 of	 fmap	 for

functions	with	any	desired	number	of	arguments	can	be	constructed	in	terms	of
two	basic	functions	with	the	following	types:
pure	::	a	->	f	a

(<*>)	::	f	(a	->	b)	->	f	a	->	f	b

That	is,	pure	converts	a	value	of	type	a	into	a	structure	of	type	f	a,	while	<*>	is
a	generalised	form	of	function	application	for	which	the	argument	function,	the
argument	 value,	 and	 the	 result	 value	 are	 all	 contained	 in	f	 structures.	As	with
normal	 function	 application,	 the	 <*>	 operator	 is	 written	 between	 its	 two
arguments	and	is	assumed	to	associate	to	the	left.	For	example,
g	<*>	x	<*>	y	<*>	z

means
((g	<*>	x)	<*>	y)	<*>	z

A	typical	use	of	pure	and	<*>	has	the	following	form:
pure	g	<*>	x1	<*>	x2	<*>	...	<*>	xn

Such	expressions	are	said	to	be	in	applicative	style,	because	of	the	similarity	to
normal	 function	 application	 notation	 g	 x1	 x2	 ...	 xn.	 In	 both	 cases,	 g	 is	 a
curried	function	that	takes	n	arguments	of	type	a1	...	an	and	produces	a	result
of	type	b.	However,	in	applicative	style,	each	argument	xi	has	type	f	ai	rather
than	just	ai,	and	the	overall	result	has	type	f	b	rather	than	b.	Using	this	idea,	we
can	now	define	the	hierarchy	of	mapping	functions:
fmap0	::	a	->	f	a

fmap0	=	pure

fmap1	::	(a	->	b)	->	f	a	->	f	b

fmap1	g	x	=	pure	g	<*>	x

fmap2	::	(a	->	b	->	c)	->	f	a	->	f	b	->	f	c
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fmap2	g	x	y	=	pure	g	<*>	x	<*>	y

fmap3	::	(a	->	b	->	c	->	d)	->	f	a	->	f	b	->	f	c	->	f	d

fmap3	g	x	y	z	=	pure	g	<*>	x	<*>	y	<*>	z

.

.

.

It	 is	 a	 useful	 exercise	 to	 check	 the	 types	 of	 these	 definitions	 for	 yourself.	 In
practice,	 however,	 there	 is	 usually	 no	 need	 to	 define	 such	 mapping	 functions
explicitly	 as	 they	 can	 be	 constructed	 as	 required,	 as	 we	 shall	 see	 in	 the	 next
section.	 The	 class	 of	 functors	 that	 support	 pure	 and	 <*>	 functions	 are	 called
applicative	 functors,	 or	 applicatives	 for	 short.	 In	 Haskell,	 this	 concept	 is
captured	by	the	following	built-in	class	declaration:
class	Functor	f	=>	Applicative	f	where

pure	::	a	->	f	a

(<*>)	::	f	(a	->	b)	->	f	a	->	f	b

Examples
Using	 the	 fact	 that	 Maybe	 is	 a	 functor	 and	 hence	 supports	 fmap,	 it	 is
straightforward	to	make	this	type	into	an	applicative	functor:
instance	Applicative	Maybe	where

--	pure	::	a	->	Maybe	a

pure	=	Just

--	(<*>)	::	Maybe	(a	->	b)	->	Maybe	a	->	Maybe	b

Nothing	<*>	_ =	Nothing

(Just	g)	<*>	mx	=	fmap	g	mx

That	is,	 the	function	pure	 transforms	a	value	into	a	successful	result,	while	the
operator	 <*>	 applies	 a	 function	 that	may	 fail	 to	 an	 argument	 that	may	 fail	 to
produce	a	result	that	may	fail.	For	example:
>	pure	(+1)	<*>	Just	1

Just	2

>	pure	(+)	<*>	Just	1	<*>	Just	2

Just	3
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>	pure	(+)	<*>	Nothing	<*>	Just	2

Nothing

In	 this	manner,	 the	 applicative	 style	 for	Maybe	 supports	 a	 form	 of	 exceptional
programming	in	which	we	can	apply	pure	functions	to	arguments	that	may	fail
without	the	need	to	manage	the	propagation	of	failure	ourselves,	as	this	is	taken
care	of	automatically	by	the	applicative	machinery.
We	 now	 turn	 our	 attention	 to	 the	 list	 type,	 for	 which	 the	 standard	 prelude

contains	the	following	instance	declaration:
instance	Applicative	[]	where

--	pure	::	a	->	[a]

pure	x	=	[x]

--	(<*>)	::	[a	->	b]	->	[a]	->	[b]

gs	<*>	xs	=	[g	x	|	g	<-	gs,	x	<-	xs]

That	 is,	pure	 transforms	 a	value	 into	 a	 singleton	 list,	while	<*>	 takes	 a	 list	 of
functions	and	a	list	of	arguments,	and	applies	each	function	to	each	argument	in
turn,	returning	all	the	results	in	a	list.	For	example:
>	pure	(+1)	<*>	[1,2,3]

[2,3,4]

>	pure	(+)	<*>	[1]	<*>	[2]

[3]

>	pure	(*)	<*>	[1,2]	<*>	[3,4]

[3,4,6,8]

How	should	we	understand	these	examples?	The	key	is	to	view	the	type	[a]	as	a
generalisation	 of	Maybe	a	 that	 permits	multiple	 results	 in	 the	 case	 of	 success.
More	 precisely,	 we	 can	 think	 of	 the	 empty	 list	 as	 representing	 failure,	 and	 a
nonempty	 list	 as	 representing	 all	 the	 possible	 ways	 in	 which	 a	 result	 may
succeed.	Hence,	in	the	last	example	above	there	are	two	possible	values	for	the
first	argument	(1	or	2),	two	possible	values	for	the	second	(3	or	4),	which	gives
four	possible	results	for	the	multiplication	(3,	4,	6	or	8).
More	 generally,	 consider	 a	 function	 that	 returns	 all	 possible	 ways	 of

multiplying	two	lists	of	integers,	defined	using	a	list	comprehension:
prods	::	[Int]	->	[Int]	->	[Int]

prods	xs	ys	=	[x*y	|	x	<-	xs,	y	<-	ys]

Using	 the	 fact	 that	 lists	 are	 applicative,	 we	 can	 now	 also	 give	 an	 applicative

190



definition,	which	avoids	having	to	name	the	intermediate	results:
prods	::	[Int]	->	[Int]	->	[Int]

prods	xs	ys	=	pure	(*)	<*>	xs	<*>	ys

In	summary,	 the	applicative	style	for	 lists	supports	a	form	of	non-deterministic
programming	 in	which	we	can	apply	pure	 functions	 to	multi-valued	arguments
without	the	need	to	manage	the	selection	of	values	or	the	propagation	of	failure,
as	this	is	taken	care	of	by	the	applicative	machinery.
The	 final	 type	 that	we	 consider	 in	 this	 section	 is	 the	IO	 type,	which	 can	 be

made	into	an	applicative	functor	using	the	following	declaration:
instance	Applicative	IO	where

--	pure	::	a	->	IO	a

pure	=	return

--	(<*>)	::	IO	(a	->	b)	->	IO	a	->	IO	b

mg	<*>	mx	=	do	{g	<-	mg;	x	<-	mx;	return	(g	x)}

In	 this	 case,	 pure	 is	 given	 by	 the	 return	 function	 for	 the	 IO	 type,	 and	 <*>
applies	an	impure	function	to	an	impure	argument	to	give	an	impure	result.	For
example,	a	function	that	reads	a	given	number	of	characters	from	the	keyboard
can	be	defined	in	applicative	style	as	follows:
getChars	::	Int	->	IO	String

getChars	0	=	return	[]

getChars	n	=	pure	(:)	<*>	getChar	<*>	getChars	(n-1)

That	 is,	 in	 the	 base	 case	we	 simply	 return	 the	 empty	 list,	 and	 in	 the	 recursive
case	we	apply	the	cons	operator	to	the	result	of	reading	the	first	character	and	the
remaining	list	of	characters.	Note	that	in	the	latter	case	there	is	no	need	to	name
the	arguments	that	are	supplied	to	the	cons	function,	which	there	would	be	if	the
function	was	defined	using	the	do	notation.
More	 generally,	 the	 applicative	 style	 for	 IO	 supports	 a	 form	 of	 interactive

programming	 in	 which	 we	 can	 apply	 pure	 functions	 to	 impure	 arguments
without	the	need	to	manage	the	sequencing	of	actions	or	the	extraction	of	result
values,	as	this	is	taken	care	of	automatically	by	the	applicative	machinery.

Effectful	programming
Our	original	motivation	for	applicatives	was	the	desire	the	generalise	the	idea	of
mapping	 to	 functions	with	multiple	arguments.	This	 is	a	valid	 interpretation	of
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the	concept	of	applicatives,	but	from	the	three	instances	we	have	seen	it	becomes
clear	that	there	is	also	another,	more	abstract	view.
The	 common	 theme	 between	 the	 instances	 is	 that	 they	 all	 concern

programming	with	effects.	 In	each	case,	 the	applicative	machinery	provides	an
operator	<*>	 that	allows	us	 to	write	programs	 in	a	 familiar	applicative	 style	 in
which	 functions	 are	 applied	 to	 arguments,	 with	 one	 key	 difference:	 the
arguments	are	no	longer	just	plain	values	but	may	also	have	effects,	such	as	the
possibility	of	failure,	having	many	ways	to	succeed,	or	performing	input/output
actions.	 In	 this	manner,	 applicative	 functors	 can	 also	 be	 viewed	 as	 abstracting
the	idea	of	applying	pure	functions	to	effectful	arguments,	with	the	precise	form
of	effects	that	are	permitted	depending	on	the	nature	of	the	underlying	functor.
In	 addition	 to	 providing	 a	 uniform	 approach	 to	 a	 form	 of	 effectful

programming,	 using	 applicatives	 also	 has	 the	 important	 benefit	 that	 we	 can
define	generic	functions	that	can	be	used	with	any	applicative	functor.	By	way	of
example,	the	standard	library	provides	the	following	function:
sequenceA	::	Applicative	f	=>	[f	a]	->	f	[a]

sequenceA	[] =	pure	[]

sequenceA	(x:xs)	=	pure	(:)	<*>	x	<*>	sequenceA	xs

This	 function	 transforms	 a	 list	 of	 applicative	 actions	 into	 a	 single	 such	 action
that	returns	a	list	of	result	values,	and	captures	a	common	pattern	of	applicative
programming.	 For	 example,	 the	 function	 getChars	 can	 now	 be	 defined	 in	 a
simpler	manner	by	replicating	the	basic	action	getChar	 the	required	number	of
times,	and	executing	the	resulting	sequence:
getChars	::	Int	->	IO	String

getChars	n	=	sequenceA	(replicate	n	getChar)

Applicative	laws
In	addition	to	providing	the	functions	pure	and	<*>,	applicative	functors	are	also
required	to	satisfy	four	equational	laws:

The	 first	 equation	 states	 that	pure	 preserves	 the	 identity	 function,	 in	 the	 sense
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that	 applying	pure	 to	 this	 function	 gives	 an	 applicative	 version	 of	 the	 identity
function.	 The	 second	 equation	 states	 that	 pure	 also	 preserves	 function
application,	 in	 the	 sense	 that	 it	 distributes	 over	 normal	 function	 application	 to
give	 applicative	 application.	 The	 third	 equation	 states	 that	 when	 an	 effectful
function	is	applied	to	a	pure	argument,	 the	order	 in	which	we	evaluate	 the	two
components	doesn’t	matter.	And	finally,	the	fourth	equation	states	that,	modulo
the	types	that	are	involved,	the	operator	<*>	is	associative.	It	is	a	useful	exercise
to	work	out	the	types	for	the	variables	in	each	of	these	laws.
The	 applicative	 laws	 together	 formalise	 our	 intuition	 regarding	 the	 function

pure	 ::	 a	 ->	 f	 a,	 namely	 that	 it	 embeds	 values	 of	 type	 a	 into	 the	 pure
fragment	of	an	effectful	world	of	type	f	a.	The	laws	also	ensure	that	every	well-
typed	expression	that	is	built	using	the	function	pure	and	the	operator	<*>	can	be
rewritten	in	applicative	style,	that	is	in	the	form:
pure	g	<*>	x1	<*>	x2	<*>	...	<*>	xn

In	 particular,	 the	 fourth	 law	 reassociates	 applications	 to	 the	 left,	 the	 third	 law
moves	occurrences	of	pure	to	the	left,	and	the	remaining	two	laws	allow	zero	or
more	consecutive	occurrences	of	pure	to	be	combined	into	one.
All	the	applicative	functors	that	we	defined	in	the	examples	section	satisfy	the

above	laws.	Moreover,	each	of	these	instances	also	satisfies	the	equation	fmap	g
x	=	pure	g	<*>	x,	which	shows	how	fmap	can	be	defined	in	terms	of	the	two
applicative	primitives.	In	fact,	this	latter	law	comes	for	free,	by	virtue	of	the	fact
that	(as	noted	at	the	end	of	section	12.1)	there	is	only	one	way	to	make	any	given
parameterised	 type	 into	 a	 functor,	 and	 hence	 any	 function	 with	 the	 same
polymorphic	type	as	fmap	must	be	equal	to	fmap.
We	 conclude	 by	 noting	 that	Haskell	 also	 provides	 an	 infix	 version	 of	fmap,

defined	by	g	<$>	x	=	fmap	g	x,	which	in	combination	with	the	above	law	for
fmap	gives	an	alternative	formulation	of	applicative	style:
g	<$>	x1	<*>	x2	<*>	...	<*>	xn

While	 this	 is	 slightly	 more	 concise,	 for	 expository	 purposes	 we	 prefer	 the
version	 in	which	pure	 is	used	explicitly,	 to	emphasise	 the	 fact	 that	 applicative
programming	is	about	applying	pure	functions	to	effectful	arguments.	However,
the	version	using	<$>	is	often	used	in	practical	applications.

12.3 Monads
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The	 final	 new	 concept	 in	 this	 chapter	 captures	 another	 pattern	 of	 effectful
programming.	By	way	of	 example,	 consider	 the	 following	 type	 of	 expressions
that	are	built	up	from	integer	values	using	a	division	operator:
data	Expr	=	Val	Int	|	Div	Expr	Expr

Such	expressions	can	be	evaluated	as	follows:
eval	::	Expr	->	Int

eval	(Val	n) =	n

eval	(Div	x	y)	=	eval	x	‘div‘	eval	y

However,	 this	 function	 does	 not	 take	 account	 of	 the	 possibility	 of	 division	 by
zero,	and	will	produce	an	error	in	this	case:
>	eval	(Div	(Val	1)	(Val	0))

***	Exception:	divide	by	zero

In	order	to	address	this,	we	can	use	the	Maybe	type	to	define	a	safe	version	of
division	that	returns	Nothing	when	the	second	argument	is	zero,
safediv	::	Int	->	Int	->	Maybe	Int

safediv	_	0	=	Nothing

safediv	n	m	=	Just	(n	‘div‘	m)

and	modify	our	evaluator	to	explicitly	handle	the	possibility	of	failure	when	the
function	is	called	recursively	on	the	two	argument	expressions:
eval	::	Expr	->	Maybe	Int

eval	(Val	n) =	Just	n

eval	(Div	x	y)	=	case	eval	x	of

Nothing	->	Nothing

Just	n	->	case	eval	y	of

Nothing	->	Nothing

Just	m ->	safediv	n	m

Now,	for	example,	we	have:
>	eval	(Div	(Val	1)	(Val	0))

Nothing

The	new	definition	for	eval	resolves	the	division	by	zero	issue,	but	is	rather
verbose.	Aiming	 to	simplify	 the	definition,	we	might	use	 the	fact	 that	Maybe	 is
applicative	and	attempt	to	redefine	eval	in	applicative	style:
eval	::	Expr	->	Maybe	Int

eval	(Val	n) =	pure	n
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eval	(Div	x	y)	=	pure	safediv	<*>	eval	x	<*>	eval	y

However,	 this	definition	is	not	 type	correct.	In	particular,	 the	function	safediv
has	type	Int	->	Int	->	Maybe	Int,	whereas	in	the	above	context	a	function	of
type	 Int	 ->	 Int	 ->	 Int	 is	 required.	 Replacing	 pure	 safediv	 by	 a	 custom-
defined	function	would	not	help	either,	because	this	function	would	need	to	have
type	 Maybe	 (Int	 ->	 Int	 ->	 Int),	 which	 does	 not	 provide	 any	 means	 to
indicate	failure	when	the	second	integer	argument	is	zero.
The	conclusion	 is	 that	 the	 function	eval	 does	not	 fit	 the	pattern	of	 effectful

programming	 that	 is	 captured	 by	 applicative	 functors.	 The	 applicative	 style
restricts	us	 to	applying	pure	functions	 to	effectful	arguments:	eval	does	not	 fit
this	 pattern	 because	 the	 function	safediv	 that	 is	 used	 to	 process	 the	 resulting
values	is	not	a	pure	function,	but	may	itself	fail.
How	then	can	we	rewrite	eval	::	Expr	->	Maybe	Int	in	a	simpler	manner?

The	 key	 is	 to	 observe	 the	 common	 pattern	 that	 occurs	 twice	 in	 its	 definition,
namely	performing	a	case	analysis	on	a	Maybe	value,	mapping	Nothing	to	itself
and	Just	x	 to	some	result	depending	on	x.	Abstracting	out	this	pattern	gives	a
new	operator	>>=	that	is	defined	as	follows:
(>>=)	::	Maybe	a	->	(a	->	Maybe	b)	->	Maybe	b

mx	>>=	f	=	case	mx	of

Nothing	->	Nothing

Just	x	->	f	x

That	is,	>>=	takes	an	argument	of	type	a	that	may	fail	and	a	function	of	type	a	->
b	 whose	 result	 may	 fail,	 and	 returns	 a	 result	 of	 type	 b	 that	 may	 fail.	 If	 the
argument	fails	we	propagate	the	failure,	otherwise	we	apply	the	function	to	the
resulting	value.	In	this	manner,	>>=	 integrates	 the	sequencing	of	values	of	 type
Maybe	with	the	processing	of	their	results.	The	>>=	operator	is	often	called	bind,
because	the	second	argument	binds	the	result	of	the	first.
Using	 the	 bind	 operator	 and	 the	 lambda	 notation,	 we	 can	 now	 redefine	 the

function	eval	in	a	more	compact	manner	as	follows:
eval	::	Expr	->	Maybe	Int

eval	(Val	n) =	Just	n

eval	(Div	x	y)	=	eval	x	>>=	\n	->

eval	y	>>=	\m	->

safediv	n	m

The	case	 for	 division	 states	 that	we	 first	 evaluate	x	 and	 call	 its	 result	 value	n,
then	evaluate	y	and	call	its	result	value	m,	and	finally	combine	the	two	results	by
applying	safediv.	This	case	can	also	be	written	on	a	 single	 line,	but	has	been
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broken	into	separate	lines	to	emphasise	its	operational	reading.
Generalising	from	the	above	example,	a	typical	expression	that	is	built	using

the	>>=	operator	has	the	following	structure:
m1	>>=	\x1	->

m2	>>=	\x2	->

.

.

.

mn	>>=	\xn	->

f	x1	x2	...	xn

That	 is,	 we	 evaluate	 each	 of	 the	 expressions	 m1	 ...	 mn	 in	 turn,	 and	 then
combine	their	result	values	x1	...	xn	by	applying	the	function	f.	The	definition
of	 the	 >>=	 operator	 ensures	 that	 such	 an	 expression	 only	 succeeds	 if	 every
component	 mi	 in	 the	 sequence	 succeeds.	Moreover,	 the	 user	 does	 not	 have	 to
worry	about	dealing	with	the	possibility	of	failure	at	any	point	in	the	sequence,
as	this	is	handled	automatically	by	the	definition	of	the	>>=	operator.
Haskell	 provides	 a	 special	 notation	 for	 expressions	 of	 the	 above	 form,

allowing	them	to	be	written	in	a	simpler	manner	as	follows:
do	x1	<-	m1

x2	<-	m2

.

.

.

xn	<-	mn

f	x1	x2	...	xn

This	 is	 the	 same	notation	 that	 is	 also	 used	 for	 interactive	 programming.	As	 in
this	setting,	each	item	in	the	sequence	must	begin	in	the	same	column,	and	xi	<-
mi	 can	 be	 abbreviated	 by	 mi	 if	 its	 result	 value	 xi	 is	 not	 required.	 Using	 this
notation,	eval	can	now	be	redefined	simply	as:
eval	::	Expr	->	Maybe	Int

eval	(Val	n)	=	Just	n

eval	(Div	x	y)	=	do	n	<-	eval	x

m	<-	eval	y

safediv	n	m

More	generally,	the	do	notation	is	not	specific	to	the	types	IO	and	Maybe,	but
can	 be	 used	 with	 any	 applicative	 type	 that	 forms	 a	 monad.	 In	 Haskell,	 the
concept	of	a	monad	is	captured	by	the	following	built-in	declaration:
class	Applicative	m	=>	Monad	m	where
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return	::	a	->	m	a

(>>=)	::	m	a	->	(a	->	m	b)	->	m	b

return	=	pure

That	is,	a	monad	is	an	applicative	type	m	that	supports	return	and	>>=	functions
of	the	specified	types.	The	default	definition	return	=	pure	means	that	return
is	 normally	 just	 another	 name	 for	 the	 applicative	 function	 pure,	 but	 can	 be
overridden	in	instances	declarations	if	desired.
The	function	return	is	included	in	the	Monad	class	for	historical	reasons,	and

to	ensure	backwards	compatibility	with	existing	code,	articles	and	textbooks	that
assume	the	class	declaration	includes	both	return	and	>>=	functions.	However,
at	 some	point	 in	 the	 future	return	may	be	 removed	 from	 the	Monad	 class	 and
become	a	library	function	instead,	with	the	following	definition:
return	::	Applicative	f	=>	a	->	f	a

return	=	pure

If	this	change	is	implemented,	it	will	no	longer	be	possible	to	define	return	 in
instance	 declarations,	 but	 most	 of	 our	 examples	 would	 be	 unaffected	 as	 we
generally	 just	 use	 the	 default	 definition	return	=	pure.	Any	 adjustments	 that
are	required	will	be	explained	on	the	book’s	website.

Examples
In	 the	 standard	 prelude,	 the	 bind	 operator	 for	 the	 Maybe	 type	 is	 defined	 using
pattern	matching	rather	than	case	analysis	for	simplicity:
instance	Monad	Maybe	where

--	(>>=)	::	Maybe	a	->	(a	->	Maybe	b)	->	Maybe	b

Nothing	>>=	_	=	Nothing

(Just	x)	>>=	f	=	f	x

It	is	because	of	this	declaration	that	the	do	notation	can	be	used	to	program	with
Maybe	values,	as	in	the	function	eval	from	the	previous	section.	In	turn,	lists	can
be	made	into	a	monadic	type	as	follows:
instance	Monad	[]	where

--	(>>=)	::	[a]	->	(a	->	[b])	->	[b]

xs	>>=	f	=	[y	|	x	<-	xs,	y	<-	f	x]

That	 is,	 xs	 >>=	 f	 applies	 the	 function	 f	 to	 each	 of	 the	 results	 in	 the	 list	 xs,
collecting	all	the	resulting	values	in	a	list.	In	this	manner,	the	bind	operator	for
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lists	 provides	 a	 means	 of	 sequencing	 expressions	 that	 may	 produce	 multiple
results.	For	example,	a	function	that	returns	all	possible	ways	of	pairing	elements
from	two	lists	can	now	be	defined	using	the	do	notation:
pairs	::	[a]	->	[b]	->	[(a,b)]

pairs	xs	ys	=	do	x	<-	xs

y	<-	ys

return	(x,y)

For	example:
>	pairs	[1,2]	[3,4]

[(1,3),(1,4),(2,3),(2,4)]

Note	that	we	could	have	written	pure	(x,y)	in	the	final	line	for	pairs	because
of	 the	 default	 definition	 return	 =	 pure,	 but	 in	 monadic	 programming	 the
convention	is	to	use	the	function	return	instead.	It	is	also	interesting	to	note	the
similarity	to	a	definition	using	the	comprehension	notation:
pairs	::	[a]	->	[b]	->	[(a,b)]

pairs	xs	ys	=	[(x,y)	|	x	<-	xs,	y	<-	ys]

However,	whereas	the	comprehension	notation	is	specific	to	the	type	of	lists,	the
do	notation	can	be	used	with	an	arbitrary	monad.
The	prelude	also	includes	an	instance	for	the	IO	type,	which	supports	the	use

of	 the	 do	 notation	 for	 interactive	 programming.	 Unlike	 the	 other	 examples
above,	 in	 this	 case	 the	 definitions	 for	 return	 and	 >>=	 are	 built-in	 to	 the
language,	rather	than	being	defined	within	Haskell	itself:
instance	Monad	IO	where

--	return	::	a	->	IO	a

return	x	=	...

--	(>>=)	::	IO	a	->	(a	->	IO	b)	->	IO	b

mx	>>=	f	=	...

The	state	monad
Now	let	us	consider	the	problem	of	writing	functions	that	manipulate	some	form
of	state	that	can	be	changed	over	time.	For	simplicity,	we	assume	that	the	state	is
just	an	integer	value,	but	this	can	be	modified	as	required:
type	State	=	Int
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The	most	basic	form	of	function	on	this	type	is	a	state	transformer,	abbreviated
by	ST,	which	takes	an	input	state	as	its	argument	and	produces	an	output	state	as
its	 result,	 in	which	 the	output	 state	 reflects	 any	updates	 that	were	made	 to	 the
state	by	the	function	during	its	execution:
type	ST	=	State	->	State

In	 general,	 however,	 we	 may	 wish	 to	 return	 a	 result	 value	 in	 addition	 to
updating	the	state.	For	example,	if	the	state	represents	a	counter,	a	function	for
incrementing	 the	 counter	 may	 also	 wish	 to	 return	 its	 current	 value.	 For	 this
reason,	we	generalise	the	type	of	state	transformers	to	also	return	a	result	value,
with	the	type	of	such	values	being	a	parameter	of	the	ST	type:
type	ST	a	=	State	->	(a,State)

Such	functions	can	be	displayed	in	pictorial	form	as	follows,	where	s	is	the	input
state,	s’	is	the	output	state,	and	v	is	the	result	value:

Conversely,	 a	 state	 transformer	 may	 also	 wish	 to	 take	 argument	 values.
However,	 there	 is	 no	need	 to	 further	generalise	 the	ST	 type	 to	 take	 account	of
this,	because	this	behaviour	can	already	be	achieved	by	exploiting	currying.	For
example,	a	state	transformer	that	takes	a	character	and	returns	an	integer	would
have	type	Char	->	ST	Int,	which	abbreviates	the	curried	function	type	Char	->
State	->	(Int,State),	as	illustrated	below:

Given	 that	ST	 is	 a	parameterised	 type,	 it	 is	natural	 to	 try	 and	make	 it	 into	 a
monad	 so	 that	 the	 do	 notation	 can	 then	 be	 used	 to	 write	 stateful	 programs.
However,	 types	 declared	 using	 the	 type	 mechanism	 cannot	 be	 made	 into
instances	of	classes.	Hence,	we	first	redefine	ST	using	the	newtype	mechanism,
which	requires	introducing	a	dummy	constructor,	which	we	call	S:
newtype	ST	a	=	S	(State	->	(a,State))
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It	 is	 also	 convenient	 to	 define	 a	 special-purpose	 application	 function	 for	 this
type,	which	simply	removes	the	dummy	constructor:
app	::	ST	a	->	State	->	(a,State)

app	(S	st)	x	=	st	x

As	a	first	step	 towards	making	 the	parameterised	 type	ST	 into	a	monad,	 it	 is
straightforward	to	make	this	type	into	a	functor:
instance	Functor	ST	where

--	fmap	::	(a	->	b)	->	ST	a	->	ST	b

fmap	g	st	=	S	(\s	->	let	(x,s’)	=	app	st	s	in	(g	x,	s’))

That	 is,	 fmap	 allows	 us	 to	 apply	 a	 function	 to	 the	 result	 value	 of	 a	 state
transformer,	as	in	the	following	picture:

The	 let	 mechanism	 of	 Haskell	 used	 in	 the	 above	 definition	 is	 similar	 to	 the
where	mechanism,	except	that	it	allows	local	definitions	to	be	made	at	the	level
of	expressions	rather	than	at	the	level	of	function	definitions.	In	turn,	the	type	ST
can	then	be	made	into	an	applicative	functor:
instance	Applicative	ST	where

--	pure	::	a	->	ST	a

pure	x	=	S	(\s	->	(x,s))

--	(<*>)	::	ST	(a	->	b)	->	ST	a	->	ST	b

stf	<*>	stx	=	S	(\s	->

let	(f,s’)	=	app	stf	s

(x,s’’)	=	app	stx	s’	in	(f	x,	s’’))

In	 this	 case,	 the	 function	pure	 transforms	 a	 value	 into	 a	 state	 transformer	 that
simply	returns	this	value	without	modifying	the	state:

In	turn,	 the	operator	<*>	applies	a	state	 transformer	that	returns	a	function	to	a
state	transformer	that	returns	an	argument	to	give	a	state	transformer	that	returns
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the	result	of	applying	the	function	to	the	argument:

The	 symbol	$	 denotes	 normal	 function	 application,	 defined	 by	f	$	x	=	f	x.
Finally,	the	monadic	instance	for	ST	is	declared	as	follows:
instance	Monad	ST	where

--	(>>=)	::	ST	a	->	(a	->	ST	b)	->	ST	b

st	>>=	f	=	S	(\s	->	let	(x,s’)	=	app	st	s	in	app	(f	x)	s’)

That	 is,	 st	 >>=	 f	 applies	 the	 state	 transformer	 st	 to	 an	 initial	 state	 s,	 then
applies	the	function	f	to	the	resulting	value	x	to	give	a	new	state	transformer	f
x,	which	is	then	applied	to	the	new	state	s’	to	give	the	final	result:

In	this	manner,	the	bind	operator	for	the	state	monad	integrates	the	sequencing	of
state	transformers	with	the	processing	of	their	result	values.	Note	that	within	the
definition	for	>>=	we	produce	a	new	state	transformer	f	x	whose	behaviour	may
depend	 on	 the	 result	 value	 of	 the	 first	 argument	 x,	 whereas	 with	 <*>	 we	 are
restricted	 to	 using	 state	 transformers	 that	 are	 explicitly	 supplied	 as	 arguments.
As	such,	using	the	>>=	operator	provides	extra	flexibility.

Relabelling	trees
As	an	example	of	 stateful	programming,	we	develop	a	 relabelling	 function	 for
trees,	for	which	purposes	we	use	the	following	type:
data	Tree	a	=	Leaf	a	|	Node	(Tree	a)	(Tree	a)

deriving	Show

For	example,	we	can	define:
tree	::	Tree	Char
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tree	=	Node	(Node	(Leaf	’a’)	(Leaf	’b’))	(Leaf	’c’)

Now	 consider	 the	 problem	 of	 defining	 a	 function	 that	 relabels	 each	 leaf	 in
such	 a	 tree	with	 a	 unique	or	 fresh	 integer.	This	 can	be	 implemented	 in	 a	 pure
language	 such	 as	 Haskell	 by	 taking	 the	 next	 fresh	 integer	 as	 an	 additional
argument,	and	returning	the	next	fresh	integer	as	an	additional	result:
rlabel	::	Tree	a	->	Int	->	(Tree	Int,	Int)

rlabel	(Leaf	_)	n	=	(Leaf	n,	n+1)

rlabel	(Node	l	r)	n	=	(Node	l’	r’,	n’’)

where

(l’,n’)	=	rlabel	l	n

(r’,n’’)	=	rlabel	r	n’

Then,	for	example,	we	have:
>	fst	(rlabel	tree	0)

Node	(Node	(Leaf	0)	(Leaf	1))	(Leaf	2)

However,	 the	 definition	 for	rlabel	 is	 complicated	 by	 the	 need	 to	 explicitly
thread	an	integer	state	through	the	computation.	To	obtain	a	simpler	definition,
we	first	note	that	the	type	Tree	a	->	Int	->	(Tree	Int,	Int)	can	be	rewritten
using	 the	 type	of	 state	 transformers	by	Tree	a	->	ST	(Tree	Int),	where	 the
state	is	the	next	fresh	integer.	The	next	such	integer	can	be	generated	by	defining
a	state	transformer	that	simply	returns	the	current	state	as	its	result,	and	the	next
integer	as	the	new	state:
fresh	::	ST	Int

fresh	=	S	(\n	->	(n,	n+1))

Using	 the	 fact	 that	 ST	 is	 an	 applicative	 functor,	 we	 can	 now	 define	 a	 new
version	of	the	relabelling	function	that	is	written	in	applicative	style:
alabel	::	Tree	a	->	ST	(Tree	Int)

alabel	(Leaf	_)	=	Leaf	<$>	fresh

alabel	(Node	l	r)	=	Node	<$>	alabel	l	<*>	alabel	r

(Recall	 that	 g	 <$>	 x	 behaves	 in	 the	 same	 way	 as	 pure	 g	 <*>	 x.)	 The	 new
version	gives	the	same	result	as	previously:
>	fst	(app	(alabel	tree)	0)

Node	(Node	(Leaf	0)	(Leaf	1))	(Leaf	2)

However,	its	definition	is	much	simpler.	In	the	base	case	we	now	simply	apply
the	Leaf	 constructor	 to	 the	 next	fresh	 integer,	while	 in	 the	 recursive	 case	we
apply	 the	 Node	 constructor	 to	 the	 result	 of	 labelling	 the	 two	 subtrees.	 In
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particular,	 the	programmer	no	 longer	has	 to	worry	about	 the	 tedious	and	error-
prone	 task	 of	 threading	 an	 integer	 state	 through	 the	 computation,	 as	 this	 is
handled	automatically	by	the	applicative	machinery.
Using	the	fact	that	ST	 is	also	a	monad,	we	can	define	an	equivalent	monadic

version	of	the	relabelling	function	using	the	do	notation:
mlabel	::	Tree	a	->	ST	(Tree	Int)

mlabel	(Leaf	_)	=	do	n	<-	fresh

return	(Leaf	n)

mlabel	(Node	l	r)	=	do	l’	<-	mlabel	l

r’	<-	mlabel	r

return	(Node	l’	r’)

This	 definition	 is	 similar	 to	 the	 applicative	 version,	 except	 that	 we	 are	 now
required	to	give	names	to	the	intermediate	results.	When	a	non-generic	function
such	as	rlabel	can	be	defined	in	both	applicative	and	monadic	style,	it	is	largely
a	matter	of	taste	which	definition	is	preferred.

Generic	functions
An	important	benefit	of	abstracting	out	 the	concept	of	monads	 is	 the	ability	 to
define	 generic	 functions	 that	 can	 be	 used	with	 any	monad.	A	 number	 of	 such
functions	 are	 provided	 in	 the	 library	 Control.Monad.	 For	 example,	 a	monadic
version	of	the	map	function	on	list	can	be	defined	as	follows:
mapM	::	Monad	m	=>	(a	->	m	b)	->	[a]	->	m	[b]

mapM	f	[]	=	return	[]

mapM	f	(x:xs)	=	do	y	<-	f	x

ys	<-	mapM	f	xs

return	(y:ys)

Note	that	mapM	has	the	same	type	as	map,	except	that	the	argument	function	and
the	function	itself	now	have	monadic	return	types.	To	illustrate	how	it	might	be
used,	 consider	 a	 function	 that	 converts	 a	 digit	 character	 to	 its	 numeric	 value,
provided	that	the	character	is	indeed	a	digit:
conv	::	Char	->	Maybe	Int

conv	c	|	isDigit	c	=	Just	(digitToInt	c)

|	otherwise	=	Nothing

(The	 functions	 isDigit	 and	 digitToInt	 are	 provided	 in	 Data.Char.)	 Then
applying	mapM	to	the	conv	function	gives	a	means	of	converting	a	string	of	digits
into	the	corresponding	list	of	numeric	values,	which	succeeds	if	every	character

203



in	the	string	is	a	digit,	and	fails	otherwise:
>	mapM	conv	"1234"

Just	[1,2,3,4]

>	mapM	conv	"123a"

Nothing

In	 turn,	 a	 monadic	 version	 of	 the	 filter	 function	 on	 lists	 is	 defined	 by
generalising	its	type	and	definition	in	a	similar	manner	to	mapM:
filterM	::	Monad	m	=>	(a	->	m	Bool)	->	[a]	->	m	[a]

filterM	p	[]	=	return	[]

filterM	p	(x:xs)	=	do	b	<-	p	x

ys	<-	filterM	p	xs

return	(if	b	then	x:ys	else	ys)

For	example,	in	the	case	of	the	list	monad,	using	filterM	provides	a	particularly
concise	means	of	computing	the	powerset	of	a	list,	which	is	given	by	all	possible
ways	of	including	or	excluding	each	element	of	the	list:
>	filterM	(\x	->	[True,False])	[1,2,3]

[[1,2,3],[1,2],[1,3],[1],[2,3],[2],[3],[]]

As	a	final	example,	the	prelude	function	concat	::	[[a]]	->	[a]	on	lists	is
generalised	to	an	arbitrary	monad	as	follows:
join	::	Monad	m	=>	m	(m	a)	->	m	a

join	mmx	=	do	mx	<-	mmx

x	<-	mx

return	x

This	function	flattens	a	nested	monadic	value	to	a	normal	monadic	value.	For	the
list	monad	it	behaves	in	the	same	way	as	concat,	while	for	the	Maybe	monad	it
only	succeeds	if	both	the	outer	and	inner	values	succeed:
>	join	[[1,2],[3,4],[5,6]]

[1,2,3,4,5,6]

>	join	(Just	(Just	1))

Just	1

>	join	(Just	Nothing)

Nothing

>	join	Nothing

Nothing
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Monad	laws
In	a	similar	manner	to	functors	and	applicatives,	the	two	monadic	primitives	are
required	to	satisfy	some	equational	laws:

The	 first	 two	 equations	 concern	 the	 link	 between	 return	 and	 >>=.	 The	 first
equation	 states	 that	 if	 we	 return	 a	 value	 and	 then	 feed	 this	 into	 a	 monadic
function,	this	should	give	the	same	result	as	simply	applying	the	function	to	the
value.	Dually,	the	second	equation	states	that	if	we	feed	the	result	of	a	monadic
computation	into	the	function	return,	this	should	give	the	same	result	as	simply
performing	 the	 computation.	 Together,	 these	 two	 equations	 state,	 modulo	 the
fact	that	the	second	argument	to	>>=	involves	a	binding	operation,	that	return	is
the	identity	for	the	>>=	operator.
The	 third	 equation	 concerns	 the	 link	 between	 >>=	 and	 itself,	 and	 expresses

(again	modulo	binding)	that	>>=	is	associative.	Note	that	we	cannot	simply	write
mx	>>=	(f	>>=	g)	on	the	right-hand	side	of	this	equation,	as	this	would	not	be
type	correct.	All	the	monads	we	have	seen	satisfy	the	above	laws.

12.4 Chapter	remarks
Functors	and	monads	come	from	category	theory	[17],	a	mathematical	approach
to	 the	 study	 of	 algebraic	 structure.	 Having	 at	 most	 one	 way	 to	 make	 a
parameterised	 type	 into	a	 functor	 in	Haskell	assumes	 that	we	don’t	use	special
language	features	that	force	evaluation,	such	as	seq	and	$!.	The	use	of	monads
in	functional	programming	was	developed	by	Wadler	[18],	and	applicatives	were
introduced	 in	 [19].	An	more	 in-depth	 exploration	 of	 the	IO	monad	 is	 given	 in
[15],	and	the	tree	relabelling	example	comes	from	[20].

12.5 Exercises
1. Define	an	instance	of	 the	Functor	class	for	 the	following	type	of	binary

trees	that	have	data	in	their	nodes:
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data	Tree	a	=	Leaf	|	Node	(Tree	a)	a	(Tree	a)

deriving	Show

2. Complete	the	following	instance	declaration	to	make	the	partially-applied
function	type	(a	->)	into	a	functor:

instance	Functor	((->)	a)	where

...

Hint:	 first	 write	 down	 the	 type	 of	 fmap,	 and	 then	 think	 if	 you	 already
know	a	library	function	that	has	this	type.

3. Define	an	instance	of	the	Applicative	class	for	the	type	(a	->).	 If	you
are	 familiar	with	 combinatory	 logic,	 you	might	 recognise	pure	 and	<*>
for	this	type	as	being	the	well-known	K	and	S	combinators.

4. There	may	be	more	 than	one	way	 to	make	a	parameterised	 type	 into	an
applicative	 functor.	 For	 example,	 the	 library	 Control.Applicative
provides	 an	 alternative	 ‘zippy’	 instance	 for	 lists,	 in	 which	 the	 function
pure	makes	an	infinite	list	of	copies	of	its	argument,	and	the	operator	<*>
applies	 each	 argument	 function	 to	 the	 corresponding	 argument	 value	 at
the	 same	 position.	 Complete	 the	 following	 declarations	 that	 implement
this	idea:

newtype	ZipList	a	=	Z	[a]	deriving	Show

instance	Functor	ZipList	where

--	fmap	::	(a	->	b)	->	ZipList	a	->	ZipList	b

fmap	g	(Z	xs)	=	...

instance	Applicative	ZipList	where

--	pure	::	a	->	ZipList	a

pure	x	=	...

--	<*>	::	ZipList	(a	->	b)	->	ZipList	a	->	ZipList	b

(Z	gs)	<$>	(Z	xs)	=	...

The	ZipList	wrapper	around	 the	 list	 type	 is	 required	because	each	 type
can	only	have	at	most	one	instance	declaration	for	a	given	class.

5. Work	out	the	types	for	the	variables	in	the	four	applicative	laws.

6. Define	an	instance	of	the	Monad	class	for	the	type	(a	->).

7. Given	the	following	type	of	expressions
data	Expr	a	=	Var	a	|	Val	Int	|	Add	(Expr	a)	(Expr
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a)

deriving	Show

that	 contain	variables	of	 some	 type	a,	 show	how	 to	make	 this	 type	 into
instances	of	the	Functor,	Applicative	and	Monad	classes.	With	the	aid	of
an	example,	explain	what	the	>>=	operator	for	this	type	does.

8. Rather	 than	making	 a	parameterised	 type	 into	 instances	of	 the	Functor,
Applicative	and	Monad	classes	 in	 this	order,	 in	practice	 it	 is	sometimes
simpler	 to	 define	 the	 functor	 and	 applicative	 instances	 in	 terms	 of	 the
monad	 instance,	 relying	on	 the	 fact	 that	 the	order	 in	which	declarations
are	made	 is	not	 important	 in	Haskell.	Complete	 the	missing	parts	 in	 the
following	declarations	for	the	ST	type	using	the	do	notation.

instance	Functor	ST	where

--	fmap	::	(a	->	b)	->	ST	a	->	ST	b

fmap	g	st	=	do	...

instance	Applicative	ST	where

--	pure	::	a	->	ST	a

pure	x	=	S	(\s	->	(x,s))

--	(<*>)	::	ST	(a	->	b)	->	ST	a	->	ST	b

stf	<*>	stx	=	do	...

instance	Monad	ST	where

--	(>>=)	::	ST	a	->	(a	->	ST	b)	->	ST	b

st	>>=	f	=	S	(\s	->

let	(x,s’)	=	app	st	s	in	app	(f	x)	s’)

Solutions	to	exercises	1–4	are	given	in	appendix	A.
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13

Monadic	parsing

In	this	chapter	we	illustrate	how	monads	can	be	used	to	implement	parsers.	We
start	by	explaining	what	parsers	are	and	why	they	are	useful,	show	how	parsers
can	naturally	be	viewed	as	functions,	introduce	a	range	of	primitives	and	derived
functions	 for	 writing	 parsers,	 and	 conclude	 by	 developing	 an	 arithmetic
expression	parser	and	an	interactive	calculator.

13.1 What	is	a	parser?
A	parser	 is	 a	 program	 that	 takes	 a	 string	 of	 characters	 as	 input,	 and	 produces
some	 form	of	 tree	 that	makes	 the	 syntactic	 structure	of	 the	 string	 explicit.	For
example,	 given	 the	 string	 2*3+4,	 a	 parser	 for	 arithmetic	 expressions	 might
produce	a	tree	of	the	following	form,	in	which	the	numbers	appear	at	the	leaves
of	the	tree,	and	the	operators	appear	at	the	nodes:

The	 structure	 of	 this	 tree	 makes	 explicit	 that	 +	 and	 *	 are	 operators	 with	 two
arguments,	and	that	*	has	higher	priority	than	+.
Parsers	are	an	important	topic	in	computing,	because	most	real-life	programs

use	a	parser	to	preprocess	their	input.	For	example,	a	calculator	program	parses
numeric	 expressions	 prior	 to	 evaluating	 them,	 while	 the	 GHC	 system	 parses
Haskell	programs	prior	to	executing	them.	In	each	case,	making	the	structure	of
the	 input	 explicit	 considerably	 simplifies	 its	 further	 processing.	 For	 example,
once	a	numeric	expression	has	been	parsed	into	a	tree	structure	as	in	the	example
above,	evaluating	the	expression	is	then	straightforward.
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13.2 Parsers	as	functions
In	Haskell,	 a	parser	can	naturally	be	viewed	directly	as	a	 function	 that	 takes	a
string	and	produces	a	tree.	Hence,	given	a	suitable	type	Tree	of	trees,	the	notion
of	a	parser	can	be	represented	as	a	function	of	type	String	->	Tree,	which	we
abbreviate	as	Parser	using	the	following	declaration:
type	Parser	=	String	->	Tree

In	general,	however,	 a	parser	might	not	always	consume	 its	entire	argument
string.	 For	 example,	 a	 parser	 for	 numbers	 might	 be	 applied	 to	 a	 string
comprising	 a	 number	 followed	 by	 a	 word.	 For	 this	 reason,	 we	 generalise	 our
type	for	parsers	to	also	return	any	unconsumed	part	of	the	argument	string:
type	Parser	=	String	->	(Tree,String)

Similarly,	 a	 parser	 might	 not	 always	 succeed.	 For	 example,	 a	 parser	 for
numbers	 might	 be	 applied	 to	 a	 string	 comprising	 a	 word.	 To	 handle	 this,	 we
further	 generalise	 our	 type	 for	 parsers	 to	 return	 a	 list	 of	 results,	 with	 the
convention	 that	 the	 empty	 list	 denotes	 failure,	 and	 a	 singleton	 list	 denotes
success:
type	Parser	=	String	->	[(Tree,String)]

Returning	a	list	also	opens	up	the	possibility	of	returning	more	than	one	result	if
the	 argument	 string	 can	 be	 parsed	 in	 more	 than	 one	 way.	 For	 simplicity,
however,	we	only	consider	parsers	that	return	at	most	one	result.
Finally,	 different	 parsers	 will	 likely	 return	 different	 kinds	 of	 trees,	 or	more

generally,	any	kind	of	value.	For	example,	a	parser	for	numbers	might	return	an
integer	value.	Hence,	it	is	useful	to	abstract	from	the	specific	type	Tree	of	result
values,	and	make	this	into	a	parameter	of	the	Parser	type:
type	Parser	a	=	String	->	[(a,String)]

In	summary,	this	declaration	states	that	a	parser	of	type	a	is	a	function	that	takes
an	input	string	and	produces	a	list	of	results,	each	of	which	is	a	pair	comprising	a
result	value	of	type	a	and	an	output	string.	Alternatively,	the	parser	type	can	also
be	read	as	a	rhyme	in	the	style	of	Dr	Seuss!

A	parser	for	things
Is	a	function	from	strings

To	lists	of	pairs
Of	things	and	strings
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We	conclude	by	noting	that	the	type	String	->	[(a,String)]	for	parsers	is
similar	to	the	type	State	->	(a,State)	for	state	transformers	from	the	previous
chapter,	where	the	state	being	manipulated	is	a	string.	The	key	difference	is	that
a	parser	also	has	 the	possibility	 to	 fail	by	 returning	a	 list	of	 results,	whereas	a
state	transformer	always	returns	a	single	result.	In	this	manner,	a	parser	can	be
viewed	as	a	generalised	form	of	state	transformer.

13.3 Basic	definitions
We	 begin	 by	 importing	 two	 standard	 libraries	 for	 applicative	 functors	 and
characters	that	will	be	used	in	our	implementation:
import	Control.Applicative

import	Data.Char

To	 allow	 the	 Parser	 type	 to	 be	 made	 into	 instances	 of	 classes,	 it	 is	 first
redefined	using	newtype,	with	a	dummy	constructor	called	P:
newtype	Parser	a	=	P	(String	->	[(a,String)])

Parser	of	 this	 type	can	 then	be	applied	 to	 an	 input	 string	using	a	 function	 that
simply	removes	the	dummy	constructor:
parse	::	Parser	a	->	String	->	[(a,String)]

parse	(P	p)	inp	=	p	inp

Our	 first	 parsing	 primitive	 is	 called	 item,	 which	 fails	 if	 the	 input	 string	 is
empty,	and	succeeds	with	the	first	character	as	the	result	value	otherwise:
item	::	Parser	Char

item	=	P	(\inp	->	case	inp	of

[]	->	[]

(x:xs)	->	[(x,xs)])

The	 item	 parser	 is	 the	 basic	 building	 block	 from	which	 all	 other	 parsers	 that
consume	characters	from	the	input	will	ultimately	be	constructed.	Its	behaviour
is	illustrated	by	the	following	two	examples:
>	parse	item	""

[]

>	parse	item	"abc"

[(’a’,"bc")]
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13.4 Sequencing	parsers
We	now	make	 the	 parser	 type	 into	 an	 instance	 of	 the	 functor,	 applicative	 and
monad	classes,	in	order	that	the	do	notation	can	then	be	used	to	combine	parsers
in	sequence.	The	declarations	are	similar	to	those	for	state	transformers,	except
that	we	also	need	 to	 take	account	of	 the	possibility	 that	a	parser	may	fail.	The
first	step	is	to	make	the	Parser	type	into	a	functor:
instance	Functor	Parser	where

--	fmap	::	(a	->	b)	->	Parser	a	->	Parser	b

fmap	g	p	=	P	(\inp	->	case	parse	p	inp	of

[]	->	[]

[(v,out)]	->	[(g	v,	out)])

That	 is,	 fmap	 applies	 a	 function	 to	 the	 result	 value	 of	 a	 parser	 if	 the	 parser
succeeds,	and	propagates	the	failure	otherwise.	For	example:
>	parse	(fmap	toUpper	item)	"abc"

[(’A’,"bc")]

>	parse	(fmap	toUpper	item)	""

[]

(The	 function	toUpper	 is	provided	 in	 the	 library	Data.Char.)	The	Parser	 type
can	then	be	made	into	an	applicative	functor	as	follows:
instance	Applicative	Parser	where

--	pure	::	a	->	Parser	a

pure	v	=	P	(\inp	->	[(v,inp)])

--	<*>	::	Parser	(a	->	b)	->	Parser	a	->	Parser	b

pg	<*>	px	=	P	(\inp	->	case	parse	pg	inp	of

[]	->	[]

[(g,out)]	->	parse	(fmap	g	px)	out)

In	this	case,	pure	transforms	a	value	into	a	parser	that	always	succeeds	with	this
value	as	its	result,	without	consuming	any	of	the	input	string:
>	parse	(pure	1)	"abc"

[(1,"abc")]

In	 turn,	<*>	 applies	 a	 parser	 that	 returns	 a	 function	 to	 a	 parser	 that	 returns	 an
argument	to	give	a	parser	 that	returns	the	result	of	applying	the	function	to	the
argument,	 and	 only	 succeeds	 if	 all	 the	 components	 succeed.	 For	 example,	 a
parser	 that	consumes	three	characters,	discards	the	second,	and	returns	the	first
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and	third	as	a	pair	can	now	be	defined	in	applicative	style	:
three	::	Parser	(Char,Char)

three	=	pure	g	<*>	item	<*>	item	<*>	item

where	g	x	y	z	=	(x,z)

Then,	for	example,	we	have:
>	parse	three	"abcdef"

[((’a’,’c’),"def")]

>	parse	three	"ab"

[]

Note	that	the	applicative	machinery	automatically	ensures	that	the	above	parser
fails	 if	 the	 input	 string	 is	 too	 short,	without	 the	 need	 to	 detect	 or	manage	 this
ourselves.	Finally,	we	make	the	Parser	type	into	a	monad:
instance	Monad	Parser	where

--	(>>=)	::	Parser	a	->	(a	->	Parser	b)	->	Parser	b

p	>>=	f	=	P	(\inp	->	case	parse	p	inp	of

[]	->	[]

[(v,out)]	->	parse	(f	v)	out)

That	 is,	 the	parser	p	>>=	f	 fails	 if	 the	application	of	 the	parser	p	 to	 the	 input
string	inp	fails,	and	otherwise	applies	the	function	f	to	the	result	value	v	to	give
another	 parser	 f	 v,	 which	 is	 then	 applied	 to	 the	 output	 string	 out	 that	 was
produced	by	the	first	parser	to	give	the	final	result.
Because	 Parser	 is	 a	 monadic	 type,	 the	 do	 notation	 can	 now	 be	 used	 to

sequence	parsers	and	process	their	result	values.	For	example,	the	parser	three
can	be	defined	in	an	alternative	manner	as	follows:
three	::	Parser	(Char,Char)

three	=	do	x	<-	item

item

z	<-	item

return	(x,z)

Recall	that	the	monadic	function	return	is	just	another	name	for	the	applicative
function	pure,	which	in	this	case	builds	parsers	that	always	succeed.
For	 the	 remainder	 of	 this	 chapter	 we	 adopt	 a	 monadic	 approach	 to	 writing

parsers	using	the	do	notation,	and	generally	avoid	using	the	the	functorial	fmap
and	 applicative	<*>	 primitives	on	parsers.	However,	 some	users	 prefer	writing
parsers	in	applicative	style,	and	using	an	applicative	approach	can	sometimes	be
beneficial	for	optimising	the	performance	of	parsers.

212



13.5 Making	choices
The	do	notation	combines	parsers	in	sequence,	with	the	output	string	from	each
parser	 in	 the	 sequence	becoming	 the	 input	 string	 for	 the	next.	Another	 natural
way	of	combining	parsers	 is	 to	apply	one	parser	 to	 the	 input	string,	and	 if	 this
fails	to	then	apply	another	to	the	same	input	instead.	We	now	consider	how	such
a	choice	operator	can	be	defined	for	parsers.
Making	a	choice	between	two	alternatives	isn’t	specific	to	parsers,	but	can	be

generalised	 to	 a	 range	 of	 applicative	 types.	 This	 concept	 is	 captured	 by	 the
following	class	declaration	in	the	library	Control.Applicative:
class	Applicative	f	=>	Alternative	f	where

empty	::	f	a

(<|>)	::	f	a	->	f	a	->	f	a

That	is,	for	an	applicative	functor	to	be	an	instance	of	the	Alternative	class,	it
must	 support	 empty	 and	 <|>	 primitives	 of	 the	 specified	 types.	 (The	 class	 also
provides	two	further	primitives,	which	will	be	discussed	in	the	next	section.)	The
intuition	 is	 that	 empty	 represents	 an	 alternative	 that	 has	 failed,	 and	 <|>	 is	 an
appropriate	choice	operator	for	the	type.	The	two	primitives	are	also	required	to
satisfy	the	following	identity	and	associativity	laws:

The	motivating	example	of	an	Alternative	type	is	the	Maybe	type,	for	which
empty	is	given	by	the	failure	value	Nothing,	and	<|>	returns	its	first	argument	if
this	succeeds,	and	its	second	argument	otherwise:
instance	Alternative	Maybe	where

--	empty	::	Maybe	a

empty	=	Nothing

--	(<|>)	::	Maybe	a	->	Maybe	a	->	Maybe	a

Nothing	<|>	my	=	my

(Just	x)	<|>	_	=	Just	x

The	 instance	 for	 the	 Parser	 type	 is	 a	 natural	 extension	 of	 this	 idea,	 where
empty	 is	 the	parser	 that	always	fails	regardless	of	 the	input	string,	and	<|>	 is	a
choice	 operator	 that	 returns	 the	 result	 of	 the	 first	 parser	 if	 it	 succeeds	 on	 the
input,	and	applies	the	second	parser	to	the	same	input	otherwise:
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instance	Alternative	Parser	where

--	empty	::	Parser	a

empty	=	P	(\inp	->	[])

--	(<|>)	::	Parser	a	->	Parser	a	->	Parser	a

p	<|>	q	=	P	(\inp	->	case	parse	p	inp	of

[]	->	parse	q	inp

[(v,out)]	->	[(v,out)])

For	example:
>	parse	empty	"abc"

[]

>	parse	(item	<|>	return	’d’)	"abc"

[(’a’,"bc")]

>	parse	(empty	<|>	return	’d’)	"abc"

[(’d’,"abc")]

We	conclude	 by	 noting	 that	 the	 library	 file	Control.Monad	 provides	 a	 class
MonadPlus	that	plays	the	same	role	as	Alternative	but	for	monadic	types,	with
primitives	 called	 mzero	 and	 mplus.	 However,	we	 prefer	 to	 use	 the	 applicative
choice	 primitives	 empty	 and	 <|>	 for	 parsers	 because	 of	 their	 similarity	 to	 the
corresponding	symbols	for	grammars,	which	we	discuss	later	on.

13.6 Derived	primitives
We	now	have	three	basic	parsers:	item	consumes	a	single	character	if	the	input
string	 is	 non-empty,	 return	 v	 always	 succeeds	 with	 the	 result	 value	 v,	 and
empty	always	fails.	In	combination	with	sequencing	and	choice,	these	primitives
can	be	used	to	define	a	number	of	other	useful	parsers.	First	of	all,	we	define	a
parser	sat	p	for	single	characters	that	satisfy	the	predicate	p:
sat	::	(Char	->	Bool)	->	Parser	Char

sat	p	=	do	x	<-	item

if	p	x	then	return	x	else	empty

Using	sat	and	appropriate	predicates	from	the	library	Data.Char,	we	can	now
define	 parsers	 for	 single	 digits,	 lower-case	 letters,	 upper-case	 letters,	 arbitrary
letters,	alphanumeric	characters,	and	specific	characters:
digit	::	Parser	Char
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digit	=	sat	isDigit

lower	::	Parser	Char

lower	=	sat	isLower

upper	::	Parser	Char

upper	=	sat	isUpper

letter	::	Parser	Char

letter	=	sat	isAlpha

alphanum	::	Parser	Char

alphanum	=	sat	isAlphaNum

char	::	Char	->	Parser	Char

char	x	=	sat	(==	x)

For	example:
>	parse	(char	’a’)	"abc"

[(’a’,"bc")]

In	 turn,	 using	 char	 we	 can	 define	 a	 parser	 string	 xs	 for	 the	 string	 of
characters	xs,	with	the	string	itself	returned	as	the	result	value:
string	::	String	->	Parser	String

string	[]	=	return	[]

string	(x:xs)	=	do	char	x

string	xs

return	(x:xs)

That	is,	the	empty	string	can	always	be	parsed,	while	for	a	non-empty	string	we
parse	 the	 first	 character,	 recursively	parse	 the	 remaining	characters,	 and	 return
the	string	as	the	result	value.	Note	that	string	only	succeeds	if	the	entire	target
string	is	consumed	from	the	input.	For	example:
>	parse	(string	"abc")	"abcdef"

[("abc","def")]

>	parse	(string	"abc")	"ab1234"

[]

Our	next	two	parsers,	many	p	and	some	p,	apply	a	parser	p	as	many	times	as
possible	until	it	fails,	with	the	result	values	from	each	successful	application	of	p
being	returned	in	a	list.	The	difference	between	these	two	repetition	primitives	is
that	many	permits	zero	or	more	applications	of	p,	whereas	some	requires	at	least
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one	successful	application.	For	example:
>	parse	(many	digit)	"123abc"

[("123","abc")]

>	parse	(many	digit)	"abc"

[("","abc")]

>	parse	(some	digit)	"abc"

[]

In	fact,	there	is	no	need	to	define	many	and	some	ourselves,	as	suitable	default
definitions	are	already	provided	in	the	Alternative	class:
class	Applicative	f	=>	Alternative	f	where

empty	::	f	a

(<|>)	::	f	a	->	f	a	->	f	a

many	::	f	a	->	f	[a]

some	::	f	a	->	f	[a]

many	x	=	some	x	<|>	pure	[]

some	x	=	pure	(:)	<*>	x	<*>	many	x

Note	 that	 the	 two	 new	 functions	 are	 defined	 using	 mutual	 recursion.	 In
particular,	the	above	definition	for	many	x	states	that	x	can	either	be	applied	at
least	 once	 or	 not	 at	 all,	 while	 the	 definition	 for	 some	 x	 states	 that	 x	 can	 be
applied	once	and	 then	zero	or	more	 times,	with	 the	 results	being	 returned	 in	a
list.	These	functions	are	provided	for	any	applicative	type	that	is	an	instance	of
the	class,	but	are	primarily	intended	for	use	with	parsers.
Using	 many	 and	 some,	 we	 can	 now	 define	 parsers	 for	 identifiers	 (variable

names)	 comprising	a	 lower-case	 letter	 followed	by	zero	or	more	 alphanumeric
characters,	 natural	 numbers	 comprising	 one	 or	 more	 digits,	 and	 spacing
comprising	zero	or	more	space,	tab,	and	newline	characters:
ident	::	Parser	String

ident	=	do	x	<-	lower

xs	<-	many	alphanum

return	(x:xs)

nat	::	Parser	Int

nat	=	do	xs	<-	some	digit

return	(read	xs)

space	::	Parser	()

space	=	do	many	(sat	isSpace)
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return	()

For	example:
>	parse	ident	"abc	def"

[("abc","	def")]

>	parse	nat	"123	abc"

[(123,"	abc")]

>	parse	space	"	abc"

[((),"abc")]

Note	 that	 nat	 converts	 the	 number	 that	 was	 read	 into	 an	 integer,	 and	 space
returns	 the	empty	tuple	()	as	a	dummy	result	value,	reflecting	the	fact	 that	 the
details	 of	 spacing	 are	 not	 usually	 important.	 Finally,	 using	 nat	 it	 is	 now
straightforward	to	define	a	parser	for	integer	values:
int	::	Parser	Int

int	=	do	char	’-’

n	<-	nat

return	(-n)

<|>	nat

For	example:
>	parse	int	"-123	abc"

[(-123,"	abc")]

13.7 Handling	spacing
Most	real-life	parsers	allow	spacing	to	be	freely	used	around	the	basic	tokens	in
their	input	string.	For	example,	the	strings	1+2	and	1	+	2	are	both	parsed	in	the
same	 way	 by	 GHC.	 To	 handle	 such	 spacing,	 we	 define	 a	 new	 primitive	 that
ignores	any	space	before	and	after	applying	a	parser	for	a	token:
token	::	Parser	a	->	Parser	a

token	p	=	do	space

v	<-	p

space

return	v

Using	 token,	 we	 can	 now	 define	 parsers	 that	 ignore	 spacing	 around
identifiers,	natural	numbers,	integers	and	special	symbols:
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identifier	::	Parser	String

identifier	=	token	ident

natural	::	Parser	Int

natural	=	token	nat

integer	::	Parser	Int

integer	=	token	int

symbol	::	String	->	Parser	String

symbol	xs	=	token	(string	xs)

For	 example,	 using	 these	 primitives	 a	 parser	 for	 a	 non-empty	 list	 of	 natural
numbers	that	ignores	spacing	around	tokens	can	be	defined	as	follows:
nats	::	Parser	[Int]

nats	=	do	symbol	"["

n	<-	natural

ns	<-	many	(do	symbol	","	natural)

symbol	"]"

return	(n:ns)

This	definition	states	that	such	a	list	begins	with	an	opening	square	bracket	and	a
natural	 number,	 followed	 by	 zero	 or	 more	 commas	 and	 natural	 numbers,	 and
concludes	 with	 a	 closing	 square	 bracket.	 Note	 that	 nats	 only	 succeeds	 if	 a
complete	list	in	precisely	this	format	is	consumed:
>	parse	nats	"	[1,	2,	3]	"

[([1,2,3],"")]

>	parse	nats	"[1,2,]"

[]

13.8 Arithmetic	expressions
We	conclude	this	chapter	with	two	extended	programming	examples	concerning
arithmetic	 expressions.	 For	 our	 first	 example,	 consider	 a	 simple	 form	 of
expressions	that	are	built	up	from	natural	numbers	using	addition,	multiplication
and	 parentheses.	 We	 assume	 that	 addition	 and	 multiplication	 associate	 to	 the
right,	 and	 that	 multiplication	 has	 higher	 priority	 than	 addition.	 For	 example,
2+3+4	means	2+(3+4),	while	2*3+4	means	(2*3)+4.
The	 syntactic	 structure	 of	 a	 language	 can	 be	 formalised	 using	 the
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mathematical	 notion	 of	 a	grammar,	which	 is	 a	 set	 of	 rules	 that	 describes	 how
strings	 of	 the	 language	 can	 be	 constructed.	 For	 example,	 a	 grammar	 for	 our
language	of	arithmetic	expressions	can	be	defined	by	the	following	two	rules:

The	first	rule	states	that	an	expression	is	either	the	addition	or	multiplication	of
two	 expressions,	 a	 parenthesised	 expression,	 or	 a	 natural	 number.	 In	 turn,	 the
second	rule	states	that	a	natural	number	is	either	zero,	one,	two,	etc.
For	 example,	 using	 the	 above	 grammar	 the	 construction	 of	 the	 expression

2*3+4	can	be	represented	by	the	following	parse	tree,	in	which	the	tokens	in	the
expression	appear	at	 the	 leaves,	and	 the	grammatical	 rules	applied	 to	construct
the	expression	give	rise	to	the	branching	structure:

The	structure	of	this	tree	makes	explicit	that	2*3+4	can	be	constructed	from	the
addition	of	two	expressions,	 the	first	given	by	the	multiplication	of	two	further
expressions	 which	 are	 in	 turn	 given	 by	 the	 numbers	 two	 and	 three,	 and	 the
second	 expression	 given	 by	 the	 number	 four.	 However,	 the	 grammar	 also
permits	 another	possible	parse	 tree	 for	 this	 example,	which	 corresponds	 to	 the
erroneous	interpretation	of	the	expression	as	2*(3+4):
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The	problem	is	that	our	grammar	for	expressions	does	not	take	account	of	the
fact	 that	 multiplication	 has	 higher	 priority	 than	 addition.	 However,	 this	 can
easily	be	addressed	by	modifying	the	grammar	to	have	a	separate	rule	for	each
level	of	priority,	with	addition	at	the	lowest	level	of	priority,	multiplication	at	the
middle	level,	and	parentheses	and	numbers	at	the	highest	level:

Using	 this	 new	 grammar,	 2*3+4	 indeed	 has	 a	 single	 parse	 tree,	 which
corresponds	to	the	correct	interpretation	of	the	expression	as	(2*3)+4:

We	have	now	dealt	with	 the	 issue	of	priority,	but	our	grammar	does	not	yet
take	 account	 of	 the	 fact	 that	 addition	 and	multiplication	 associate	 to	 the	 right.
For	 example,	 the	 expression	 2+3+4	 currently	 has	 two	 possible	 parse	 trees,
corresponding	to	(2+3)+4	and	2+(3+4).	However,	this	can	easily	be	rectified	by
modifying	the	rules	for	addition	and	multiplication	to	be	recursive	in	their	right
argument	only,	rather	than	in	both	arguments:

Using	these	new	rules,	2+3+4	now	has	a	single	parse	tree,	which	corresponds
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to	the	correct	interpretation	of	the	expression	as	2+(3+4):

In	 fact,	 our	 grammar	 for	 expressions	 is	 now	 unambiguous,	 in	 the	 sense	 that
every	well-formed	expression	has	precisely	one	parse	tree.
Our	 final	modification	 to	 the	grammar	 is	 a	 simplification.	Consider	 the	 rule

expr	::=	term	+	expr	|	term,	which	states	that	an	expression	is	either	the	addition
of	a	term	and	an	expression,	or	is	a	term.	In	other	words,	an	expression	always
begins	with	a	term,	which	can	then	be	followed	by	the	addition	of	an	expression
or	by	nothing.	Hence,	the	rule	for	expressions	can	be	simplified	to	expr	::=	term
(+	expr	|	ϵ),	in	which	the	symbol	ϵ	denotes	the	empty	string.	Simplifying	the	rule
for	terms	in	a	similar	manner	gives	our	final	grammar:

It	 is	 now	 straightforward	 to	 translate	 this	 grammar	directly	 into	 a	parser	 for
expressions,	by	simply	rewriting	the	rules	using	the	parsing	primitives	we	have
introduced.	Sequencing	in	the	grammar	is	translated	into	the	do	notation,	choice	|
is	translated	into	the	<|>	operator,	the	empty	string	ϵ	becomes	the	empty	parser,
special	 symbols	 such	 as	 +	 and	 *	 are	 handled	 using	 the	 symbol	 function,	 and
natural	numbers	are	parsed	using	the	natural	primitive:
expr	::	Parser	Int
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expr	=	do	t	<-	term

do	symbol	"+"

e	<-	expr

return	(t	+	e)

<|>	return	t

term	::	Parser	Int

term	=	do	f	<-	factor

do	symbol	"*"

t	<-	term

return	(f	*	t)

<|>	return	f

factor	::	Parser	Int

factor	=	do	symbol	"("

e	<-	expr

symbol	")"

return	e

<|>	natural

Note	that	each	of	the	above	parsers	returns	the	integer	value	of	the	expression
that	was	 parsed,	 rather	 than	 some	 form	of	 expression	 tree.	Combining	 parsing
and	 evaluation	 in	 this	 manner	 is	 easy	 to	 achieve	 using	 our	 approach.	 For
example,	expr	 first	parses	a	 term	with	 integer	value	t,	 then	parses	an	addition
symbol	followed	by	an	expression	with	value	e	and	returns	the	value	t	+	e,	or
else	parses	nothing	further	and	simply	returns	the	value	t.
Finally,	 using	 expr	 we	 define	 a	 function	 that	 returns	 the	 integer	 value	 that

results	 from	 parsing	 and	 evaluating	 an	 expression.	 To	 handle	 the	 cases	 of
unconsumed	and	invalid	input,	we	use	the	library	function	error	::	String	->
a	that	displays	an	error	message	and	then	terminates	the	program:

For	example:
>	eval	"2*3+4"

10

>	eval	"2*(3+4)"

14
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>	eval	"2*3^4"

***	Exception:	Unused	input	^4

>	eval	"one	plus	two"

***	Exception:	Invalid	input

13.9 Calculator
In	 the	 previous	 section	we	 developed	 a	 parser	 for	 arithmetic	 expressions.	We
now	extend	this	example	to	a	simple	calculator	program,	which	allows	the	user
to	enter	expressions	interactively	using	the	keyboard,	and	displays	 the	value	of
such	expressions	on	the	screen.	Our	calculator	will	handle	expressions	built	up
from	 integer	 values	 using	 addition,	 subtraction,	 multiplication,	 division	 and
parentheses.	A	suitable	parser	expr	::	Parser	Int	for	such	expressions	can	be
obtained	by	solving	one	of	the	exercises	for	this	chapter.
We	 begin	 by	 considering	 the	 user	 interface	 of	 the	 calculator,	 for	 which

purpose	 we	 use	 the	 input/output	 utilities	 cls,	 writeat,	 goto	 and	 getCh	 from
chapter	10.	First	of	all,	we	define	the	calculator	box	as	a	list	of	strings:

The	first	four	buttons	on	the	calculator,	q,	c,	d,	and	=,	allow	the	user	to	quit,	clear
the	display,	delete	a	character,	and	evaluate	an	expression,	while	the	remaining
sixteen	buttons	allow	the	user	to	enter	expressions.
We	also	define	the	buttons	on	the	calculator	as	a	list	of	characters,	comprising

both	 the	 twenty	 standard	buttons	 that	 appear	on	 the	box	 itself,	 together	with	 a
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number	 of	 extra	 characters	 that	will	 be	 allowed	 for	 flexibility,	 namely	Q,	C,	D,
space,	escape,	backspace,	delete	and	newline:
buttons	::	String

buttons	=	standard	++	extra

where

standard	=	"qcd=123+456-789*0()/"

extra	=	"QCD	\ESC\BS\DEL\n"

Using	a	list	comprehension	together	with	the	library	function	that	performs	a
list	of	input/output	actions	in	sequence,	we	can	define	an	action	that	displays	the
calculator	box	in	the	top-left	corner	of	the	screen:
showbox	::	IO	()

showbox	=	sequence_	[writeat	(1,y)	b	|	(y,b)	<-	zip	[1..]	box]

The	last	part	of	the	user	interface	is	to	define	a	function	that	shows	a	string	in
the	display	of	 the	calculator,	by	first	clearing	the	display	and	then	showing	the
last	thirteen	characters	of	the	string:
display	xs	=	do	writeat	(3,2)	(replicate	13	’	’)

writeat	(3,2)	(reverse	(take	13	(reverse	xs)))

In	 this	 manner,	 if	 the	 user	 deletes	 characters	 from	 the	 string	 they	 will
automatically	 be	 removed	 from	 the	 display,	 and	 if	 the	 user	 types	 more	 than
thirteen	characters	the	display	will	appear	to	scroll	to	the	left.
The	calculator	itself	is	controlled	by	a	function	calc	that	displays	the	current

string,	and	 then	reads	a	character	 from	the	keyboard	without	echoing	 it.	 If	 this
character	 is	 a	 valid	button,	 then	 it	 is	 processed,	 otherwise	we	 sound	 a	beep	 to
indicate	an	error	and	continue	with	the	same	string:
calc	::	String	->	IO	()

calc	xs	=	do	display	xs

c	<-	getCh

if	elem	c	buttons	then

process	c	xs

else

do	beep

calc	xs

The	action	beep	::	IO	()	used	above	is	defined	by	beep	=	putStr	"\BEL".	In
turn,	 the	 function	 process	 takes	 a	 valid	 character	 and	 the	 current	 string,	 and
performs	the	appropriate	action	depending	upon	the	character:
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We	now	consider	each	of	the	five	possible	actions:

Quitting	moves	the	cursor	below	the	calculator	box	and	terminates:
quit	::	IO	()

quit	=	goto	(1,14)

Deleting	 a	 character	 has	 no	 effect	 if	 the	 current	 string	 is	 empty,	 and
otherwise	removes	the	last	character	from	this	string:

delete	::	String	->	IO	()

delete	[]	=	calc	[]

delete	xs	=	calc	(init	xs)

Evaluation	displays	 the	result	of	parsing	and	evaluating	 the	current	string,
sounding	a	beep	if	this	process	is	unsuccessful:

Clearing	the	display	resets	the	current	string	to	empty:
clear	::	IO	()

clear	=	calc	[]

Any	other	character	is	appended	to	the	end	of	the	current	string:
press	::	Char	->	String	->	IO	()

press	c	xs	=	calc	(xs	++	[c])

Finally,	we	define	a	top-level	function	that	runs	the	calculator,	by	clearing	the
screen,	displaying	the	box,	and	starting	with	an	empty	display:
run	::	IO	()

run	=	do	cls

showbox

clear

13.10 Chapter	remarks
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A	 library	 file	 comprising	 the	 parsing	 primitives	 from	 this	 chapter	 is	 available
online	 from	 the	book’s	website.	Further	details	about	 the	monadic	approach	 to
parsing	 can	 be	 found	 in	 [21,	 22],	 upon	 which	 this	 chapter	 is	 based.	 A	 more
detailed	 introduction	 to	 grammars	 is	 given	 in	 [23],	 and	 more	 sophisticated
approaches	to	building	parsers	in	Haskell	are	provided	in	[24,	25].	The	reading
of	the	parser	type	as	a	rhyme	is	due	to	Fritz	Ruehr.

13.11 Exercises
1. Define	a	parser	comment	::	Parser	()	 for	ordinary	Haskell	comments

that	begin	with	 the	symbol	--	and	extend	 to	 the	end	of	 the	current	 line,
which	is	represented	by	the	control	character	’\n’.

2. Using	 our	 second	 grammar	 for	 arithmetic	 expressions,	 draw	 the	 two
possible	parse	trees	for	the	expression	2+3+4.

3. Using	our	third	grammar	for	arithmetic	expressions,	draw	the	parse	trees
for	the	expressions	2+3,	2*3*4	and	(2+3)+4.

4. Explain	 why	 the	 final	 simplification	 of	 the	 grammar	 for	 arithmetic
expressions	has	a	dramatic	effect	on	the	efficiency	of	the	resulting	parser.
Hint:	 begin	 by	 considering	 how	 an	 expression	 comprising	 a	 single
number	would	be	parsed	if	this	simplification	step	had	not	been	made.

5. Define	 a	 suitable	 type	 Expr	 for	 arithmetic	 expressions	 and	 modify	 the
parser	for	expressions	to	have	type	expr	::	Parser	Expr.

6. Extend	 the	 parser	 expr	 ::	 Parser	 Int	 to	 support	 subtraction	 and
division,	 and	 to	 use	 integer	 values	 rather	 than	 natural	 numbers,	 based
upon	the	following	revisions	to	the	grammar:

7. Further	 extend	 the	 grammar	 and	 parser	 for	 arithmetic	 expressions	 to
support	exponentiation	^,	which	 is	assumed	to	associate	 to	 the	right	and
have	 higher	 priority	 than	multiplication	 and	 division,	 but	 lower	 priority
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than	parentheses	and	numbers.	For	example,	2^3*4	means	(2^3)*4.	Hint:
the	new	level	of	priority	requires	a	new	rule	in	the	grammar.

8. Consider	 expressions	 built	 up	 from	natural	 numbers	 using	 a	 subtraction
operator	that	is	assumed	to	associate	to	the	left.

a. Translate	this	description	directly	into	a	grammar.
b. Implement	this	grammar	as	a	parser	expr	::	Parser	Int.
c. What	is	the	problem	with	this	parser?
d. Show	 how	 it	 can	 be	 fixed.	Hint:	 rewrite	 the	 parser	 using	 the	 repetition

primitive	many	and	the	library	function	foldl.

9. Modify	the	calculator	program	to	indicate	the	approximate	position	of	an
error	 rather	 than	 just	 sounding	 a	 beep,	 by	 using	 the	 fact	 that	 the	 parser
returns	the	unconsumed	part	of	the	input	string.

Solutions	to	exercises	1–4	are	given	in	appendix	A.
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14

Foldables	and	friends

In	this	chapter	we	introduce	three	common	patterns	for	processing	the	values	in
a	 data	 structure.	We	 start	with	monoids,	which	 capture	 the	 idea	 of	 combining
values	using	 an	 associative	operator,	 then	 consider	 foldables,	which	generalise
the	concept	of	folding	from	lists	to	a	range	of	parameterised	types,	and	conclude
with	traversables,	which	further	generalise	the	notion	of	mapping.

14.1 Monoids
In	 mathematics,	 a	monoid	 is	 a	 set	 together	 with	 an	 associative	 operator	 that
combines	 two	 elements	 from	 the	 set,	 and	 an	 identity	 element	 for	 the	 operator.
For	 example,	 the	 set	 of	 integers	 forms	 a	 monoid	 with	 the	 operator	 given	 by
addition	and	the	 identity	element	by	the	value	zero.	In	Haskell,	 the	notion	of	a
monoid	is	captured	by	the	following	built-in	class	declaration:
class	Monoid	a	where

mempty	::	a

mappend	::	a	->	a	->	a

mconcat	::	[a]	->	a

mconcat	=	foldr	mappend	mempty

That	is,	for	a	type	a	to	be	an	instance	of	the	class	Monoid,	it	must	support	a	value
mempty	 and	a	 function	mappend	 of	 the	 specified	 types,	which	 respectively	play
the	role	of	the	identity	element	and	the	operator	for	the	monoid.	In	practice,	the
function	mappend	 is	often	written	as	an	 infix	operator	by	enclosing	 its	name	in
single	back	quotes,	as	in	x	‘mappend‘	y.
As	 well	 as	 the	 two	 primitives,	 the	 above	 class	 also	 provides	 a	 function

mconcat	that	combines	a	list	of	values	within	a	monoid,	with	a	default	definition
that	replaces	each	cons	in	the	list	by	mappend	and	the	empty	list	by	mempty.	For
example,	applying	mconcat	to	a	list	of	the	form	[x,y,z]	gives:
x	‘mappend‘	(y	‘mappend‘	(z	‘mappend‘	mempty))
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As	 in	 mathematics,	 the	 two	 primitives	 in	 the	 Monoid	 class	 are	 required	 to
satisfy	the	following	identity	and	associativity	laws:

For	example,	using	these	laws	the	result	of	mconcat	[x,y,z]	can	be	written	in	a
simpler	manner	as	follows,	without	the	need	for	parentheses	or	mempty,	because
the	monoid	laws	ensure	that	these	do	not	affect	the	result:
x	‘mappend‘	y	‘mappend‘	z

At	some	point	in	the	future	the	Monoid	class	in	Haskell	may	be	divided	up	into
two	 separate	 classes,	 one	 that	 provides	 an	 associative	 operator,	 and	 one	 that
provides	an	identity	element.	If	this	change	is	implemented,	any	adjustments	that
are	required	will	be	explained	on	the	book’s	website.

Examples
A	 number	 of	 standard	monoids	 are	 provided	 in	 the	 library	 Data.Monoid.	 The
simplest	 example	 is	 the	 list	 monoid,	 for	 which	 mempty	 and	 mappend	 are
respectively	given	by	the	empty	list	and	the	append	operator	for	lists:
instance	Monoid	[a]	where

--	mempty	::	[a]

mempty	=	[]

--	mappend	::	[a]	->	[a]	->	[a]

mappend	=	(++)

The	method	 names	 mempty	 and	 mappend	 are	 inspired	 by	 this	 instance,	 but	 the
choice	of	names	is	unfortunate	as	in	general	the	monoid	primitives	do	not	need
to	 correspond	 to	 an	 empty	 value	 or	 provide	 a	means	 of	 appending	 values.	All
that	is	required	is	two	primitives	that	satisfy	the	monoid	laws.
For	our	second	example,	 the	 type	Maybe	a	can	also	be	made	 into	a	monoid,

provided	that	the	parameter	type	a	is	a	monoid:
instance	Monoid	a	=>	Monoid	(Maybe	a)	where

--	mempty	::	Maybe	a

mempty	=	Nothing
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--	mappend	::	Maybe	a	->	Maybe	a	->	Maybe	a

Nothing	‘mappend‘	my	=	my

mx	‘mappend‘	Nothing	=	mx

Just	x	‘mappend‘	Just	y	=	Just	(x	‘mappend‘	y)

That	is,	mempty	 is	given	by	the	failure	value	Nothing,	while	mappend	combines
the	results	of	two	arguments	that	may	fail.	In	the	latter	case,	if	either	argument
fails	the	other	argument	is	returned,	and	if	both	arguments	succeed	the	two	result
values	are	combined	using	mappend	for	the	parameter	type	a.
A	particular	type	may	give	rise	to	a	monoid	in	a	number	of	different	ways.	For

example,	we	have	already	seen	that	the	integers	form	a	monoid	under	addition,
so	we	could	declare	the	following	simple	instance:
instance	Monoid	Int	where

--	mempty	::	Int

mempty	=	0

--	mappend	::	Int	->	Int	->	Int

mappend	=	(+)

The	integers	also	form	a	monoid	under	multiplication,	with	the	identity	element
given	by	the	value	one,	so	we	could	also	declare:
instance	Monoid	Int	where

--	mempty	::	Int

mempty	=	1

--	mappend	::	Int	->	Int	->	Int

mappend	=	(*)

However,	multiple	instance	declarations	of	the	same	type	for	the	same	class	are
not	 permitted	 in	 Haskell,	 so	 attempting	 to	 declare	 two	 separate	 instances	 for
Monoid	Int	 in	 this	manner	will	 result	 in	an	error.	The	solution	 is	 to	 introduce
special-purpose	wrapper	types	for	each	of	the	two	instances.
In	the	case	of	addition,	the	monoid	library	declares	a	new	type	Sum	a	with	a

dummy	 constructor	 also	 called	 Sum	 that	 takes	 a	 single	 argument	 of	 type	 a,
together	with	a	function	that	removes	the	constructor:
newtype	Sum	a	=	Sum	a

deriving	(Eq,	Ord,	Show,	Read)

getSum	::	Sum	a	->	a

getSum	(Sum	x)	=	x

The	 deriving	 clause	 above	 ensures	 that	 values	 of	 type	 Sum	 a	 support	 the
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standard	 equality	 and	 ordering	 operators,	 and	 can	 be	 converted	 to	 and	 from
strings.	Now	for	any	parameter	type	a	 that	is	a	numeric	(such	as	Int),	 the	type
Sum	 a	 can	 be	made	 into	 a	monoid	 by	 taking	 mempty	 as	 the	 value	 Sum	 0,	 and
mappend	as	the	addition	operator	for	values	of	type	Sum	a:
instance	Num	a	=>	Monoid	(Sum	a)	where

--	mempty	::	Sum	a

mempty	=	Sum	0

--	mappend	::	Sum	a	->	Sum	a	->	Sum	a

Sum	x	‘mappend‘	Sum	y	=	Sum	(x+y)

For	example,	using	this	instance	we	have:
>	mconcat	[Sum	2,	Sum	3,	Sum	4]

Sum	9

(If	you	wish	to	try	out	such	examples	in	GHCi,	you	must	first	load	the	monoid
library	 by	 entering	 import	 Data.Monoid.)	 In	 particular,	 applying	 Sum	 to	 each
number	in	the	list	ensures	that	mconcat	uses	the	monoid	for	summation.	We	will
see	in	the	next	section	how	the	use	of	such	wrappers	can	be	simplified.
In	turn,	in	the	case	of	multiplication	of	numbers,	the	monoid	library	declares	a

new	type	Product	a	using	the	same	approach	as	for	addition:
newtype	Product	a	=	Product	a

deriving	(Eq,	Ord,	Show,	Read)

getProduct	::	Product	a	->	a

getProduct	(Product	x)	=	x

The	 type	Product	a	can	 then	be	made	 into	an	 instance	of	 the	Monoid	class	by
defining	the	two	primitives	in	the	appropriate	way	for	multiplication:
instance	Num	a	=>	Monoid	(Product	a)	where

--	mempty	::	Product	a

mempty	=	Product	1

--	mappend	::	Product	a	->	Product	a	->	Product	a

Product	x	‘mappend‘	Product	y	=	Product	(x*y)

For	example:
>	mconcat	[Product	2,	Product	3,	Product	4]

Product	24

In	 a	 similar	manner,	 the	 type	 of	 logical	 values	 forms	 a	monoid	 under	 both
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logical	 conjunction	 and	 disjunction,	 for	 which	 purpose	 the	 monoid	 library
provides	 wrapper	 types	 for	 Bool	 called	 All	 and	 Any	 (see	 appendix	 B	 for	 the
details.)	For	example,	the	function	mconcat	for	All	decides	if	all	logical	values
in	a	list	are	True,	while	for	Any	decides	if	any	such	value	is	True:
>	mconcat	[All	True,	All	True,	All	True]

All	True

>	mconcat	[Any	False,	Any	False,	Any	False]

Any	False

We	 conclude	 this	 section	 by	 noting	 that	 the	 library	 also	 provides	 an	 infix
version	of	mappend,	defined	by	x	<>	y	=	x	‘mappend‘	y,	which	allows	monoid
expressions	 to	be	written	more	concisely,	as	 in	x	<>	y	<>	z.	This	operator	 is
often	 used	 in	 practical	 applications,	 however	 for	 expository	 purposes	 in	 this
chapter	we	prefer	to	use	the	mappend	primitive	directly.

14.2 Foldables
One	 of	 the	 primary	 applications	 of	 monoids	 in	 Haskell	 is	 to	 combine	 all	 the
values	in	a	data	structure	to	give	a	single	value.	For	example,	in	the	case	of	lists
we	could	define	a	function	fold	that	implements	this	idea	as	follows:
fold	::	Monoid	a	=>	[a]	->	a

fold	[]	=	mempty

fold	(x:xs)	=	x	‘mappend‘	fold	xs

That	is,	applying	fold	to	an	empty	list	gives	the	identity	element	mempty	of	the
monoid,	 while	 for	 a	 non-empty	 list	 we	 use	 the	 monoid	 operator	 mappend	 to
combine	the	head	of	the	list	with	the	result	of	recursively	processing	the	tail.	For
example,	applying	fold	to	a	list	of	the	form	[x,y,z]	gives:
x	‘mappend‘	(y	‘mappend‘	(z	‘mappend‘	mempty))

In	 other	 words,	 fold	 provides	 a	 simple	 means	 of	 ‘folding	 up’	 a	 list	 using	 a
monoid,	hence	 the	choice	of	name	 for	 the	 function.	Note	 that	fold	 behaves	 in
the	 same	way	 as	mconcat	 from	 the	Monoid	 class,	 but	 is	 defined	 using	 explicit
recursion	 rather	 than	 using	 foldr.	 In	 a	 similar	 manner,	 we	 can	 also	 define	 a
version	of	fold	for	the	type	of	binary	trees	that	have	data	in	their	leaves:
data	Tree	a	=	Leaf	a	|	Node	(Tree	a)	(Tree	a)

deriving	Show
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fold	::	Monoid	a	=>	Tree	a	->	a

fold	(Leaf	x)	=	x

fold	(Node	l	r)	=	fold	l	‘mappend‘	fold	r

That	is,	for	a	leaf	we	simply	return	the	value	that	it	contains,	while	for	a	node	we
recursively	 fold	 the	 two	 subtrees	 and	 combine	 the	 resulting	 values	 using
mappend.	For	this	example	there	is	no	need	to	use	the	identity	element	mempty	in
the	definition,	because	trees	of	this	type	are	always	non-empty.
More	 generally,	 the	 idea	 of	 folding	 up	 the	 values	 in	 data	 structure	 using	 a

monoid	isn’t	specific	to	types	such	as	lists	and	binary	trees,	but	can	be	abstracted
to	 a	 range	 of	 parameterised	 types.	 In	Haskell,	 this	 concept	 is	 captured	 by	 the
following	class	declaration	in	the	library	Data.Foldable:
class	Foldable	t	where

fold	::	Monoid	a	=>	t	a	->	a

foldMap	::	Monoid	b	=>	(a	->	b)	->	t	a	->	b

foldr	::	(a	->	b	->	b)	->	b	->	t	a	->	b

foldl	::	(a	->	b	->	a)	->	a	->	t	b	->	a

That	is,	for	a	parameterised	type	to	be	an	instance	of	the	class	Foldable,	it	must
support	 a	 range	 of	 fold	 functions	 of	 the	 specified	 types.	 As	 in	 the	 above
declaration,	by	convention	foldable	types	are	usually	denoted	by	t.
Intuitively,	the	generalised	version	of	fold	in	the	Foldable	class	takes	a	data

structure	of	 type	t	a	whose	elements	have	 type	a,	 and	combines	 the	elements
using	the	monoid	primitives	for	this	type	to	give	a	single	value	of	type	a.	In	turn,
foldMap	generalises	fold	by	taking	a	function	of	 type	a	->	b	as	an	additional
argument,	which	 is	applied	 to	each	element	 in	 the	structure	prior	 to	combining
the	resulting	values	using	the	monoid	primitives	for	the	type	b.
The	 final	 two	 functions	 in	 the	 class	 declaration	 above,	 foldr	 and	 foldl,

generalise	the	higher-order	functions	for	lists	that	we	introduced	in	chapter	7	to
other	data	structures.	Note	that	for	these	latter	two	functions	there	is	no	need	to
have	 an	 underlying	monoid,	 because	 a	 starting	 value	 and	 function	 to	 combine
two	values	are	explicitly	supplied	as	arguments.
The	full	version	of	the	Foldable	class	also	includes	a	number	of	other	useful

functions,	 together	 with	 a	 number	 of	 default	 definitions,	 but	 we	 begin	 by
considering	the	cut-down	version	presented	above.

Examples
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As	 we	 would	 expect,	 the	 type	 of	 lists	 can	 be	 made	 into	 a	 foldable	 type	 by
defining	the	folding	primitives	in	the	appropriate	manner:
instance	Foldable	[]	where

--	fold	::	Monoid	a	=>	[a]	->	a

fold	[]	=	mempty

fold	(x:xs)	=	x	‘mappend‘	fold	xs

--	foldMap	::	Monoid	b	=>	(a	->	b)	->	[a]	->	b

foldMap	_	[]	=	mempty

foldMap	f	(x:xs)	=	f	x	‘mappend‘	foldMap	f	xs

--	foldr	::	(a	->	b	->	b)	->	b	->	[a]	->	b

foldr	_	v	[]	=	v

foldr	f	v	(x:xs)	=	f	x	(foldr	f	v	xs)

--	foldl	::	(a	->	b	->	a)	->	a	->	[b]	->	a

foldl	_	v	[]	=	v

foldl	f	v	(x:xs)	=	foldl	f	(f	v	x)	xs

For	example,	using	the	numeric	monoids	from	the	previous	section,	foldMap
can	now	be	used	to	calculate	the	sum	and	product	of	a	list	of	numbers:
>	getSum	(foldMap	Sum	[1..10])

55

>	getProduct	(foldMap	Product	[1..10])

3628800

(If	 trying	 such	 examples,	 make	 sure	 to	 import	 Data.Monoid	 and
Data.Foldable.)	An	instance	for	binary	trees	can	be	defined	in	a	similar	manner,
except	 that	we	 need	 to	 take	 care	 to	 ensure	 that	foldr	 and	foldl	 combine	 the
values	in	the	tree	in	right-to-left	and	left-to-right	order,	respectively:
instance	Foldable	Tree	where

--	fold	::	Monoid	a	=>	Tree	a	->	a

fold	(Leaf	x)	=	x

fold	(Node	l	r)	=	fold	l	‘mappend‘	fold	r

--	foldMap	::	Monoid	b	=>	(a	->	b)	->	Tree	a	->	b

foldMap	f	(Leaf	x)	=	f	x

foldMap	f	(Node	l	r)	=	foldMap	f	l	‘mappend‘	foldMap	f	r

--	foldr	::	(a	->	b	->	b)	->	b	->	Tree	a	->	b

foldr	f	v	(Leaf	x)	=	f	x	v

foldr	f	v	(Node	l	r)	=	foldr	f	(foldr	f	v	r)	l
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--	foldl	::	(a	->	b	->	a)	->	a	->	Tree	b	->	a

foldl	f	v	(Leaf	x)	=	f	v	x

foldl	f	v	(Node	l	r)	=	foldl	f	(foldl	f	v	l)	r

For	example,	consider	the	following	tree	of	integers:
tree	::	Tree	Int

tree	=	Node	(Node	(Leaf	1)	(Leaf	2))	(Leaf	3)

Then	evaluating	foldr	(+)	0	tree	gives	the	result	1+(2+(3+0)),	in	which	the
additions	 are	 performed	 from	 right-to-left,	 whereas	 foldl	 (+)	 0	 tree	 gives
((0+1)+2)+3,	 in	which	they	are	performed	from	left-to-right.	Of	course,	in	this
case	the	result	is	the	same,	because	addition	is	associative.	However,	as	we	will
see	in	chapter	15,	using	foldl	may	be	more	efficient.

Other	primitives	and	defaults
In	addition	to	the	four	basic	folding	primitives,	the	Foldable	class	also	includes
a	 range	 of	 other	 useful	 functions	 for	 combining	 the	 values	 in	 a	 data	 structure.
The	first	group	generalise	familiar	functions	on	lists:

For	example,	null	decides	if	a	structure	is	empty	(has	no	elements),	and	length
counts	the	number	of	elements	of	type	a	in	a	structure	of	type	t	a.	Hence,	these
functions	can	be	applied	to	both	lists	and	trees:
>	null	[]

True

>	null	(Leaf	1)

False

>	length	[1..10]

10

235



>	length	(Node	(Leaf	’a’)	(Leaf	’b’))

2

In	turn,	the	class	also	includes	versions	of	foldr	and	foldl	for	structures	that
contain	at	least	one	element,	and	hence	do	not	require	a	starting	value:
foldr1	::	(a	->	a	->	a)	->	t	a	->	a

foldl1	::	(a	->	a	->	a)	->	t	a	->	a

For	example:
>	foldr1	(+)	[1..10]

55

>	foldl1	(+)	(Node	(Leaf	1)	(Leaf	2))

3

The	 final	 primitive	 in	 the	 class	 flattens	 a	 data	 structure	 to	 a	 list,	 such	 as
transforming	the	tree	Node	(Leaf	1)	(Leaf	2)	into	the	list	[1,2]:
toList	::	t	a	->	[a]

In	 fact,	 the	 function	 toList	 plays	 a	 special	 role	 in	 the	 declaration	 of	 the
Foldable	class,	as	 it	can	be	used	 to	provide	default	definitions	for	most	of	 the
other	primitives	in	the	class	in	terms	of	the	corresponding	primitives	for	lists.	In
particular,	we	have	the	following	collection	of	default	definitions:
foldr	f	v	=	foldr	f	v	.	toList

foldl	f	v	=	foldl	f	v	.	toList

foldr1	f	=	foldr1	f	.	toList

foldl1	f	=	foldl1	f	.	toList

For	example,	the	definition	null	=	null	.	toList	states	that	we	can	decide	if	a
data	structure	is	empty	by	first	flattening	the	structure	to	a	list,	and	then	checking
if	this	list	is	empty	using	the	instance	of	null	for	lists.	The	other	definitions	have
a	similarly	straightforward	interpretation.
The	 final	 three	 default	 definitions	 in	 the	 foldable	 class	 establish	 important

relationships	between	the	primitives	fold,	foldMap	and	toList:
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That	 is,	 fold	 can	 be	 viewed	 as	 a	 special	 case	 of	 foldMap	 where	 the	 identity
function	 is	 applied	 to	 each	 element	 prior	 to	 combining	 them.	 In	 turn,	foldMap
can	 be	 defined	 in	 terms	 of	 foldr	 by	 applying	 the	 function	 f	 to	 each	 element
before	they	are	combined	using	the	monoid	primitives.	And	finally,	toList	can
be	 defined	 in	 terms	 of	 foldMap	 by	 first	 transforming	 each	 element	 into	 a
singleton	list,	and	then	concatenating	the	resulting	lists	using	the	list	monoid.
In	 summary,	 the	 Foldable	 class	 provides	 a	 range	 of	 useful	 functions	 for

processing	the	values	in	a	data	structure,	most	of	which	have	default	definitions
in	terms	of	the	specific	instance	for	lists,	or	other	generic	functions	in	the	class.
There	are	three	natural	questions	to	ask	at	this	point.

1.	Why	are	there	so	many	functions	in	the	class?	In	particular,	one	might	ask
why	 additional	 primitives	 such	 as	 null,	 length,	 and	 so	 on	 are	 provided	 as
methods	in	the	Foldable	class,	rather	than	as	definitions	in	the	foldable	library.
The	reason	is	to	allow	the	default	definitions	to	be	overridden	if	required,	which
would	not	be	possible	if	they	were	defined	as	top-level	functions.

2.	What	do	we	need	to	define	manually?	The	minimal	complete	definition	for
an	 instance	 of	 the	 Foldable	 class	 is	 to	 define	 either	 foldMap	 or	 foldr,	 as	 all
other	 functions	 in	 the	 class	 can	 be	 derived	 from	 either	 of	 these	 two	 using	 the
default	definitions	and	the	instance	for	lists.	As	we	have	already	seen	with	lists
and	trees,	it	is	often	simplest	to	define	the	function	foldMap.

3.	What	about	efficiency?	For	many	applications	using	the	default	definitions
that	 are	 provided	 in	 the	 class	will	 suffice,	 but	 if	 greater	 efficiency	 is	 required
these	can	be	overridden,	as	noted	above.	In	practice,	the	GHC	system	uses	more
efficient	 default	 definitions	 than	 the	 simple	 versions	 we	 have	 presented,	 but
these	are	functionally	equivalent	to	our	simpler	versions.

We	 conclude	 this	 section	 by	 noting	 that	 GHC	 automatically	 imports	 the
library	Data.Foldable,	but	currently	hides	the	fold	and	toList	methods	of	the
class.	 For	 this	 reason,	we	 generally	 prefer	 to	 explicitly	 import	Data.Foldable
when	 programming	 with	 foldable	 types,	 rather	 than	 relying	 on	 the	 cut-down
version	that	is	automatically	provided.	For	reference,	the	complete	definition	for
the	Foldable	class	can	be	found	in	appendix	B.
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Generic	functions
An	 important	 benefit	 of	 abstracting	 out	 the	 concept	 of	 foldable	 types	 is	 the
ability	to	use	the	primitives	in	the	Foldable	class	to	define	generic	functions	that
can	be	used	with	any	such	type.	For	example,	recall	that	in	chapter	2	we	defined
a	function	that	calculates	the	average	of	a	list	of	integers:
average	::	[Int]	->	Int

average	ns	=	sum	ns	‘div‘	length	ns

As	we	have	now	seen,	the	functions	sum	and	length	are	not	specific	to	lists,	but
can	be	used	with	any	foldable	type,	so	the	type	of	average	can	be	generalised,
without	any	change	being	required	to	the	definition	itself:
average	::	Foldable	t	=>	t	Int	->	Int

average	ns	=	sum	ns	‘div‘	length	ns

As	such,	it	can	now	be	applied	to	both	lists	and	trees:
>	average	[1..10]

5

>	average	(Node	(Leaf	1)	(Leaf	3))

2

In	a	similar	manner,	the	library	Data.Foldable	provides	generic	versions	of	a
number	of	familiar	functions	that	operate	on	lists	of	logical	values:
and	::	Foldable	t	=>	t	Bool	->	Bool

and	=	getAll	.	foldMap	All

or	::	Foldable	t	=>	t	Bool	->	Bool

or	=	getAny	.	foldMap	Any

all	::	Foldable	t	=>	(a	->	Bool)	->	t	a	->	Bool

all	p	=	getAll	.	foldMap	(All	.	p)

any	::	Foldable	t	=>	(a	->	Bool)	->	t	a	->	Bool

any	p	=	getAny	.	foldMap	(Any	.	p)

In	 each	 case,	 using	 foldMap	 together	 with	 the	 appropriate	 monoid	 primitives
allows	us	to	obtain	the	desired	behaviour	in	a	generic	manner:
>	and	[True,False,True]

False
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>	or	(Node	(Leaf	True)	(Leaf	False))

True

>	all	even	[1,2,3]

False

>	any	even	(Node	(Leaf	1)	(Leaf	2))

True

As	a	final	example,	the	function	concat	::	[[a]]	->	[a]	that	concatenates	a
list	of	lists	can	now	be	generalised	to	any	foldable	type	whose	elements	are	lists
by	simply	folding	the	elements	using	the	list	monoid:
concat	::	Foldable	t	=>	t	[a]	->	[a]

concat	=	fold

For	example:
>	concat	["ab","cd","ef"]

"abcdef"

>	concat	(Node	(Leaf	[1,2])	(Leaf	[3]))

[1,2,3]

In	conclusion,	when	declaring	a	new	 type	 in	Haskell	 it	 is	useful	 to	consider
whether	it	can	be	made	into	a	foldable	type,	for	which	it	suffices	to	define	either
of	 the	 primitives	foldMap	 or	foldr.	 The	 advantage	 of	 doing	 so	 is	 that	we	 are
then	provided	with	a	range	of	useful	functions	for	the	type	essentially	‘for	free’,
by	means	of	 the	default	 definitions	 that	 are	 included	 in	 the	Foldable	 class,	 as
well	as	any	other	generic	functions	defined	in	terms	of	these	primitives.

14.3 Traversables
As	we	saw	in	chapter	12,	the	idea	of	mapping	a	function	over	each	element	of	a
data	structure	is	captured	by	the	notion	of	a	functor:
class	Functor	f	where

fmap	::	(a	->	b)	->	f	a	->	f	b

For	 example,	 in	 the	 case	 of	 lists	 the	 primitive	 fmap	 is	 given	 by	 the	 familiar
library	function	map,	which	can	be	defined	recursively	as	follows:
map	::	(a	->	b)	->	[a]	->	[b]
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map	g	[]	=	[]

map	g	(x:xs)	=	g	x	:	map	g	xs

However,	the	idea	of	mapping	a	function	over	a	list	can	be	generalised	further.
For	example,	suppose	that	the	function	g	that	is	applied	to	each	element	may	fail,
in	the	sense	that	it	has	type	a	->	Maybe	b	rather	than	simply	a	->	b,	and	that
the	mapping	as	a	whole	only	succeeds	if	every	such	application	succeeds.	Using
the	fact	that	Maybe	is	applicative,	as	we	also	saw	in	chapter	12,	it	easy	to	define	a
function	that	implements	this	behaviour:
traverse	::	(a	->	Maybe	b)	->	[a]	->	Maybe	[b]

traverse	g	[]	=	pure	[]

traverse	g	(x:xs)	=	pure	(:)	<*>	g	x	<*>	traverse	g	xs

The	recursive	structure	of	this	definition	is	essentially	the	same	as	that	for	map,
except	that	the	applicative	machinery	is	used	to	manage	the	possibility	of	failure.
In	this	manner,	traverse	provides	a	simple	means	of	traversing	the	elements	of
a	list	using	a	function	that	may	fail,	hence	the	choice	of	name	for	the	function.
By	way	of	example,	suppose	that	we	use	the	Maybe	type	to	define	a	function	that
decrements	an	integer,	provided	it	is	strictly	positive:
dec	::	Int	->	Maybe	Int

dec	n	=	if	n	>	0	then	Just	(n-1)	else	Nothing

Then	we	have:
>	traverse	dec	[1,2,3]

Just	[0,1,2]

>	traverse	dec	[2,1,0]

Nothing

(If	you	wish	 to	 try	out	 these	examples	 in	GHCi,	note	 that	traverse	 is	 already
defined	in	the	standard	library,	as	shown	in	the	next	section.)
Not	surprisingly,	 the	 idea	of	 traversing	a	data	structure	 in	 the	above	manner

isn’t	 specific	 to	 the	 type	 of	 lists,	 and	 isn’t	 specific	 to	 argument	 functions	 that
may	fail.	The	class	of	types	that	support	such	a	generalised	mapping	function	are
called	 traversable	 types,	 or	 traversables	 for	 short.	 In	 Haskell,	 this	 concept	 is
captured	by	the	following	built-in	class	declaration:
class	(Functor	t,	Foldable	t)	=>	Traversable	t	where

traverse	::	Applicative	f	=>	(a	->	f	b)	->	t	a	->	f	(t	b)

That	 is,	 for	a	parameterised	type	t	 that	 is	both	functorial	and	foldable	 to	be	an
instance	 of	 the	 class	Traversable,	 it	must	 support	 a	traverse	 function	 of	 the
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specified	 type.	 The	 requirement	 that	 t	 is	 a	 functor	 reflects	 the	 fact	 that
traversables	generalise	 the	 idea	of	mapping,	and	are	hence	expected	 to	support
the	fmap	 primitive.	The	 requirement	 that	t	 is	 foldable	 ensures	 that	 values	 in	 a
traversable	type	can	also	be	folded	up	if	desired.

Examples
Because	lists	are	functorial	and	foldable,	the	list	type	can	be	made	traversable	by
simply	generalising	traverse	for	the	Maybe	type	to	an	arbitrary	applicative.	That
is,	the	definition	remains	the	same,	but	the	type	is	generalised:
instance	Traversable	[]	where

--	traverse	::	Applicative	f	=>	(a	->	f	b)	->	[a]	->	f	[b]

traverse	g	[]	=	pure	[]

traverse	g	(x:xs)	=	pure	(:)	<*>	g	x	<*>	traverse	g	xs

An	 instance	 for	 trees	 can	 be	 defined	 in	 a	 similar	 manner,	 except	 that	 the
application	of	the	argument	function	then	takes	place	in	the	base	case:
instance	Traversable	Tree	where

--	traverse	::	Applicative	f	=>

--	(a	->	f	b)	->	Tree	a	->	f	(Tree	b)

traverse	g	(Leaf	x)	=	pure	Leaf	<*>	g	x

traverse	g	(Node	l	r)	=

pure	Node	<*>	traverse	g	l	<*>	traverse	g	r

For	example,	traverse	can	now	be	used	to	map	a	function	that	may	fail,	such
as	dec	from	the	previous	section,	over	both	lists	and	trees:
>	traverse	dec	[1,2,3]

Just	[0,1,2]

>	traverse	dec	[2,1,0]

Nothing

>	traverse	dec	(Node	(Leaf	1)	(Leaf	2))

Just	(Node	(Leaf	0)	(Leaf	1))

>	traverse	dec	(Node	(Leaf	0)	(Leaf	1))

Nothing

Other	primitives	and	defaults
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In	 addition	 to	 the	traverse	 primitive,	 the	Traversable	 class	 also	 includes	 the
following	extra	function	and	default	definition:
sequenceA	::	Applicative	f	=>	t	(f	a)	->	f	(t	a)

sequenceA	=	traverse	id

The	 type	expresses	 that	sequenceA	 transforms	a	data	 structure	whose	elements
are	 applicative	 actions	 into	 a	 single	 such	 action	 that	 returns	 a	 data	 structure,
while	the	definition	states	that	this	can	be	achieved	by	traversing	the	elements	of
the	structure	using	the	identity	function,	which	in	this	case	has	type	f	a	->	f	a.
For	 example,	 sequenceA	 can	 be	 used	 to	 transform	 a	 data	 structure	 whose
elements	may	fail	into	a	data	structure	that	may	fail:
>	sequenceA	[Just	1,	Just	2,	Just	3]

Just	[1,2,3]

>	sequenceA	[Just	1,	Nothing,	Just	3]

Nothing

>	sequenceA	(Node	(Leaf	(Just	1))	(Leaf	(Just	2)))

Just	(Node	(Leaf	1)	(Leaf	2))

>	sequenceA	(Node	(Leaf	(Just	1))	(Leaf	Nothing))

Nothing

Conversely,	 the	 class	 declaration	 also	 includes	 a	 default	 definition	 for
traverse	 in	 terms	 of	 sequenceA,	 which	 expresses	 that	 to	 traverse	 a	 data
structure	 using	 an	 effectful	 function	 we	 can	 first	 apply	 the	 function	 to	 each
element	using	fmap,	and	then	combine	all	the	effects	using	sequenceA:
--	traverse	::	Applicative	f	=>	(a	->	f	b)	->	t	a	->	f	(t	b)

traverse	g	=	sequenceA	.	fmap	g

In	this	manner,	 to	declare	an	instance	of	the	Traversable	class	it	suffices	to
define	 either	 traverse	 or	 sequenceA,	 as	 each	 can	 be	 derived	 from	 the	 other
using	the	above	defaults.	However,	as	the	default	for	traverse	notionally	makes
two	passes	over	the	data	structure,	one	using	fmap	and	one	using	sequenceA,	it	is
generally	preferable	to	define	traverse	rather	than	sequenceA.
Finally,	 the	 class	 also	 provides	 special	 names	 for	 the	 two	 traversable

primitives	 for	 the	 special	 case	when	 the	 effects	 that	 are	 involved	 are	monadic
rather	 than	applicative,	as	shown	below.	For	 reference,	 the	complete	definition
for	the	Traversable	class	can	be	found	in	appendix	B.
mapM	::	Monad	m	=>	(a	->	m	b)	->	t	a	->	m	(t	b)
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sequence	::	Monad	m	=>	t	(m	a)	->	m	(t	a)

mapM	=	traverse

sequence	=	sequenceA

In	conclusion,	when	declaring	a	new	type	it	is	also	useful	to	consider	whether
it	 can	 be	 made	 into	 a	 traversable	 type,	 by	 defining	 either	 of	 the	 primitives
traverse	or	sequenceA.	The	advantage	of	doing	so	is	that	we	are	then	provided
with	a	number	of	useful	 functions	 for	effectful	programming	with	 the	 type,	by
means	of	the	default	definitions	in	the	Traversable	class.

14.4 Chapter	remarks
Further	 information	 on	 the	 use	 of	 monoids	 in	 Haskell	 can	 be	 found	 in	 [26].
There	 are	 two	 standard	 ways	 to	 generalise	 foldr	 from	 lists	 to	 other	 data
structures,	 known	 in	 the	 literature	 as	 catamorphisms	 [27]	 and	 crush	 operators
[28].	 The	 generalised	 form	 of	 folding	 that	 is	 captured	 by	 the	 Foldable	 class
corresponds	 to	 a	 crush,	 hence	 it	 can	 be	 argued	 that	 the	Foldable	 class	 should
really	 be	 called	 Crushable,	 and	 the	 fold	 primitive	 should	 be	 called	 crush.
Traversables	were	introduced	in	[19],	which	also	discusses	the	issue	of	laws.

14.5 Exercises
1. Complete	the	following	instance	declaration	from	Data.Monoid	to	make	a

pair	type	into	a	monoid	provided	the	two	component	types	are	monoids:
instance	(Monoid	a,	Monoid	b)	=>	Monoid	(a,b)	where

--	mempty	::	(a,b)

mempty	=	...

--	mappend	::	(a,b)	->	(a,b)	->	(a,b)

(x1,y1)	‘mappend‘	(x2,y2)	=	...

2. In	a	similar	manner,	show	how	a	function	type	a	->	b	can	be	made	into	a
monoid	provided	that	the	result	type	b	is	a	monoid.

3. Show	how	the	Maybe	type	can	be	made	foldable	and	traversable,	by	giving
explicit	definitions	for	fold,	foldMap,	foldr,	foldl	and	traverse.

4. In	 a	 similar	manner,	 show	 how	 the	 following	 type	 of	 binary	 trees	with
data	in	their	nodes	can	be	made	into	a	foldable	and	traversable	type:
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data	Tree	a	=	Leaf	|	Node	(Tree	a)	a	(Tree	a)

deriving	Show

5. Using	 foldMap,	 define	 a	 generic	 version	 of	 the	 higher-order	 function
filter	on	lists	that	can	be	used	with	any	foldable	type:

filterF	::	Foldable	t	=>	(a	->	Bool)	->	t	a	->	[a]

Solutions	to	exercises	1	and	2	are	given	in	appendix	A.
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15

Lazy	evaluation

In	 this	 chapter	 we	 introduce	 lazy	 evaluation,	 the	mechanism	 used	 to	 evaluate
expressions	 in	 Haskell.	 We	 start	 by	 reviewing	 the	 notion	 of	 evaluation,	 then
consider	evaluation	strategies	and	their	properties,	discuss	infinite	structures	and
modular	programming,	and	conclude	with	a	special	form	of	function	application
that	can	improve	the	space	performance	of	programs.

15.1 Introduction
As	 we	 have	 seen	 throughout	 this	 book,	 the	 basic	 method	 of	 computation	 in
Haskell	is	the	application	of	functions	to	arguments.	For	example,	suppose	that
we	define	a	function	that	increments	an	integer:
inc	::	Int	->	Int

inc	n	=	n	+	1

Then	the	expression	inc	(2*3)	can	be	evaluated	as	follows:
inc	(2*3)

= {	applying	*	}
inc	6

= {	applying	inc	}
6	+	1

= {	applying	+	}
7

Alternatively,	the	same	final	result	can	also	be	obtained	by	performing	the	first
two	function	applications	in	the	opposite	order:

inc	(2*3)

= {	applying	inc	}
(2*3)	+	1

= {	applying	*	}
6	+	1

= {	applying	+	}
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7

The	fact	that	changing	the	order	in	which	functions	are	applied	does	not	affect
the	 final	 result	 is	 not	 specific	 to	 simple	 examples	 such	as	 the	 above,	but	 is	 an
important	general	property	of	function	application	in	Haskell.	More	formally,	in
Haskell	 any	 two	different	ways	of	 evaluating	 the	 same	 expression	will	 always
produce	the	same	final	value,	provided	that	they	both	terminate.	We	will	return
to	the	issue	of	termination	later	on	in	this	chapter.
We	 also	 note	 that	 the	 above	 property	 does	 not	 hold	 for	 most	 imperative

programming	languages,	in	which	the	basic	method	of	computation	is	changing
stored	values.	For	example,	consider	the	imperative	expression	n	+	(n	=	1)	that
adds	the	current	value	of	the	variable	n	to	the	result	of	changing	its	value	to	one.
Assuming	that	n	initially	has	the	value	zero,	this	expression	can	be	evaluated	by
first	performing	the	left-hand	side	of	the	addition

n	+	(n	=	1)

= {	applying	n	}
0	+	(n	=	1)

= {	applying	=	}
0	+	1

= {	applying	+	}
1

or	alternatively,	by	first	performing	the	right-hand	side:
n	+	(n	=	1)

= {	applying	=	}
n	+	1

= {	applying	n	}
1	+	1

= {	applying	+	}
2

The	final	value	is	different	in	each	case.	The	general	problem	illustrated	by	this
example	 is	 that	 the	 precise	 time	 at	 which	 an	 assignment	 is	 performed	 in	 an
imperative	 language	 may	 affect	 the	 value	 that	 results	 from	 a	 computation.	 In
contrast,	the	time	at	which	a	function	is	applied	to	an	argument	in	Haskell	never
affects	the	value	that	results	from	a	computation.	Nonetheless,	as	we	shall	see	in
the	remainder	of	this	chapter,	there	are	important	practical	issues	concerning	the
order	and	nature	of	the	evaluation	process.
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15.2 Evaluation	strategies
An	expression	that	has	the	form	of	a	function	applied	to	one	or	more	arguments
that	 can	 be	 ‘reduced’	 by	 performing	 the	 application	 is	 called	 a	 reducible
expression,	or	redex	for	short.	As	indicated	by	the	use	of	quotations	marks	in	the
preceding	 sentence,	 such	 reductions	 do	not	 necessarily	 decrease	 the	 size	 of	 an
expression,	although	in	practice	this	is	often	the	case.
By	way	of	example,	suppose	that	we	define	a	function	mult	that	takes	a	pair

of	integers	and	returns	their	product:
mult	::	(Int,Int)	->	Int

mult	(x,y)	=	x	*	y

Now	 consider	 the	 expression	 mult	 (1+2,2+3).	 This	 expression	 contains	 three
redexes,	 namely	 the	 sub-expressions	1+2	 and	2+3,	which	have	 the	 form	of	 the
addition	 operator	 +	 applied	 to	 two	 arguments,	 and	 the	 entire	 expression	 itself
mult	(1+2,2+3),	which	has	 the	 form	of	 the	 function	mult	 applied	 to	a	pair	of
arguments.	Performing	the	corresponding	reductions	gives	the	expressions	mult
(3,2+3),	mult	(1+2,5),	and	(1+2)	*	(2+3).
When	 evaluating	 an	 expression,	 in	 what	 order	 should	 the	 reductions	 be

performed?	One	common	strategy,	known	as	innermost	evaluation,	is	to	always
choose	a	redex	that	is	innermost,	in	the	sense	that	it	contains	no	other	redex.	If
there	 is	more	 than	one	 innermost	 redex,	by	convention	we	choose	 the	one	 that
begins	at	the	leftmost	position	in	the	expression.
For	 example,	 both	 of	 the	 sub-expressions	 1+2	 and	 2+3	 contain	 no	 other

redexes	 and	 are	 hence	 innermost	within	 the	 expression	mult	(1+2,2+3),	with
the	 redex	1+2	 beginning	at	 the	 leftmost	position.	More	generally,	 our	 example
expression	is	evaluated	using	innermost	evaluation	as	follows:

mult	(1+2,	2+3)

= {	applying	the	first	+	}
mult	(3,	2+3)

= {	applying	+	}
mult	(3,	5)

= {	applying	mult	}
3	*	5

= {	applying	*	}
15

Innermost	evaluation	can	also	be	characterised	in	terms	of	how	arguments	are
passed	to	functions.	In	particular,	using	this	strategy	ensures	that	arguments	are
always	 fully	 evaluated	 before	 functions	 are	 applied.	 That	 is,	 arguments	 are
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passed	 by	 value.	 For	 example,	 as	 shown	 above,	 evaluating	 mult	 (1+2,2+3)
using	 innermost	evaluation	proceeds	by	 first	evaluating	 the	arguments	1+2	 and
2+3,	 and	 then	 applying	 mult.	 The	 fact	 that	 we	 always	 choose	 the	 leftmost
innermost	redex	ensures	that	the	first	argument	is	evaluated	before	the	second.
Another	 common	 strategy	 for	 evaluating	 an	 expression,	 dual	 to	 innermost

evaluation,	 is	 to	always	choose	a	redex	that	 is	outermost,	 in	 the	sense	that	 it	 is
contained	 in	 no	 other	 redex.	 If	 there	 is	 more	 than	 one	 such	 redex	 then	 as
previously	 we	 choose	 that	 which	 begins	 at	 the	 leftmost	 position.	 Not
surprisingly,	this	evaluation	strategy	is	known	as	outermost	evaluation.
For	example,	 the	expression	mult	(1+2,2+3)	 is	contained	 in	no	other	 redex

and	is	hence	outermost	within	itself.	More	generally,	evaluating	this	expression
using	outermost	evaluation	proceeds	as	follows:

mult	(1+2,	2+3)

= {	applying	mult	}
(1+2)	*	(2+3)

= {	applying	the	first	+	}
3	*	(2+3)

= {	applying	+	}
3	*	5

= {	applying	*	}
15

In	terms	of	how	arguments	are	passed	to	functions,	using	outermost	evaluation
allows	 functions	 to	 be	 applied	 before	 their	 arguments	 are	 evaluated.	 For	 this
reason,	 we	 say	 that	 arguments	 are	 passed	 by	 name.	 For	 example,	 as	 shown
above,	evaluating	mult	(1+2,2+3)	using	outermost	evaluation	proceeds	by	first
applying	the	function	mult	 to	the	two	unevaluated	arguments	1+2	and	2+3,	and
then	evaluating	these	two	expressions	in	turn.
We	conclude	this	section	by	noting	that	many	built-in	functions	require	their

arguments	 to	 be	 evaluated	 before	 being	 applied,	 even	 when	 using	 outermost
evaluation.	 For	 example,	 as	 illustrated	 in	 the	 calculation	 above,	 built-in
arithmetic	operators	such	as	*	and	+	cannot	be	applied	until	their	two	arguments
have	been	evaluated	 to	numbers.	Functions	with	 this	property	are	called	strict,
and	will	be	discussed	in	further	detail	at	the	end	of	this	chapter.

Lambda	expressions
Let	 us	 now	 define	 a	 curried	 version	 of	mult	 that	 takes	 its	 arguments	 one	 at	 a
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time,	using	a	lambda	expression	to	make	the	use	of	currying	explicit:
mult	::	Int	->	Int	->	Int

mult	x	=	\y	->	x	*	y

Then	using	innermost	evaluation,	for	example,	we	have:
mult	(1+2)	(2+3)

= {	applying	the	first	+	}
mult	3	(2+3)

= {	applying	mult	}
(\y	->	3	*	y)	(2+3)

= {	applying	+	}
(\y	->	3	*	y)	5

= {	applying	the	lambda	}
3	*	5

= {	applying	*	}
15

That	is,	the	two	arguments	are	now	substituted	into	the	body	of	the	function	mult
one	at	a	time,	as	we	would	expect	using	currying,	rather	than	at	the	same	time	as
in	 the	 previous	 section.	 This	 behaviour	 arises	 because	 mult	 3	 is	 the	 leftmost
innermost	 redex	 in	 the	 expression	 mult	 3	 (2+3),	 as	 opposed	 to	 2+3	 in	 the
expression	mult	(3,2+3).	Performing	a	reduction	on	mult	3	in	the	second	step
of	the	calculation	above	gives	the	lambda	expression	\y	->	3	*	y,	which	awaits
the	result	of	evaluating	the	second	argument.
Note	 that	 in	 Haskell,	 the	 selection	 of	 redexes	 within	 the	 bodies	 lambda

expressions	is	prohibited.	The	rationale	for	not	‘reducing	under	lambdas’	is	that
functions	 are	 viewed	 as	 black	 boxes	 that	we	 are	 not	 permitted	 to	 look	 inside.
More	formally,	the	only	operation	that	can	be	performed	on	a	function	is	that	of
applying	it	 to	an	argument.	As	such,	reduction	within	the	body	of	a	function	is
only	permitted	once	the	function	has	been	applied.
For	 example,	 the	 function	 \x	 ->	 1	 +	 2	 is	 deemed	 to	 already	 be	 fully

evaluated,	even	though	its	body	contains	the	redex	1	+	2,	but	once	this	function
has	been	applied	to	an	argument,	evaluation	of	this	redex	can	then	proceed:

(\x	->	1	+	2)	0

= {	applying	the	lambda	}
1	+	2

= {	applying	+	}
3

Using	innermost	and	outermost	evaluation,	but	not	within	lambda	expressions,
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is	 normally	 referred	 to	 as	 call-by-value	 and	 call-by-name	 evaluation,
respectively.	 In	 the	 next	 two	 sections	 we	 explore	 how	 these	 two	 evaluation
strategies	 compare	 in	 terms	 of	 two	 important	 properties,	 namely	 their
termination	behaviour	and	the	number	of	reduction	steps	that	they	require.

15.3 Termination
Consider	the	following	recursive	definition:
inf	::	Int

inf	=	1	+	inf

That	 is,	 the	 integer	 inf	 (abbreviating	 infinity)	 is	 defined	 as	 the	 successor	 of
itself.	Evaluating	inf	produces	a	larger	and	larger	expression,	regardless	of	the
evaluation	strategy,	and	hence	does	not	terminate:

inf

= {	applying	inf	}
1	+	inf

= {	applying	inf	}
1	+	(1	+	inf)

= {	applying	inf	}
1	+	(1	+	(1	+	inf))

= {	applying	inf	}
.

Now	consider	the	expression	fst	(0,inf)	that	contains	the	value	inf,	where
fst	 is	the	library	function	that	selects	the	first	component	of	a	pair,	defined	by
fst	(x,y)	=	x.	Using	call-by-value	 evaluation	with	 this	 expression	 results	 in
non-termination	in	a	similar	manner	to	inf	itself:

fst	(0,	inf)

= {	applying	inf	}
fst	(0,	1	+	inf)

= {	applying	inf	}
fst	(0,	1	+	(1	+	inf))

= {	applying	inf	}
fst	(0,	1	+	(1	+	(1	+	inf)))

= {	applying	inf	}
⋮
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In	contrast,	using	call-by-name	evaluation	results	 in	 termination	with	 the	result
zero	 in	 just	one	step,	by	 immediately	applying	 the	definition	of	fst	 and	hence
avoiding	the	evaluation	of	the	non-terminating	expression	inf:

fst	(0,	inf)

= {	applying	fst	}
0

This	simple	example	shows	that	call-by-name	evaluation	may	produce	a	result
when	 call-by-value	 evaluation	 fails	 to	 terminate.	More	 generally,	we	 have	 the
following	 important	 property:	 if	 there	 exists	 any	 evaluation	 sequence	 that
terminates	 for	 a	 given	 expression,	 then	 call-by-name	 evaluation	 will	 also
terminate	for	this	expression,	and	produce	the	same	final	result.
In	 summary,	 call-by-name	 evaluation	 is	 preferable	 to	 call-by-value	 for	 the

purpose	of	ensuring	that	evaluation	terminates	as	often	as	possible.

15.4 Number	of	reductions
Now	consider	the	following	definition:
square	::	Int	->	Int

square	n	=	n	*	n

For	example,	using	call-by-value	evaluation,	we	have:
square	(1+2)

= {	applying	+	}
square	3

= {	applying	square	}
3	*	3

= {	applying	*	}
9

In	 contrast,	 using	 call-by-name	evaluation	 requires	one	 extra	 reduction	 step,
due	to	the	fact	that	the	argument	expression	1+2	is	duplicated	when	the	function
square	is	applied,	and	hence	must	be	evaluated	twice:

square	(1+2)

= {	applying	square	}
(1+2)	*	(1+2)

= {	applying	the	first	+	}
3	*	(1+2)
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= {	applying	+	}
3	*	3

= {	applying	*	}
9

This	example	shows	that	call-by-name	evaluation	may	require	more	reduction
steps	than	call-by-value	evaluation,	in	particular	when	an	argument	is	used	more
than	 once	 in	 the	 body	 of	 a	 function.	 More	 generally,	 we	 have	 the	 following
property:	arguments	are	evaluated	precisely	once	using	call-by-value	evaluation,
but	may	be	evaluated	many	times	using	call-by-name.
Fortunately,	 the	 above	 efficiency	 problem	with	 call-by-name	 evaluation	 can

easily	 be	 solved,	 by	 using	 pointers	 to	 indicate	 sharing	 of	 expressions	 during
evaluation.	That	is,	rather	than	physically	copying	an	argument	if	it	is	used	many
times	in	the	body	of	a	function,	we	simply	keep	one	copy	of	the	argument	and
make	many	pointers	to	it.	In	this	manner,	any	reductions	that	are	performed	on
the	 argument	 are	 automatically	 shared	 between	 each	 of	 the	 pointers	 to	 that
argument.	For	example,	using	this	strategy	we	have:

=	{	applying	*	}
9

That	 is,	when	applying	 the	definition	square	n	=	n	*	n	 in	 the	 first	 step,	we
keep	a	single	copy	of	the	argument	expression	1+2,	and	make	two	pointers	to	it.
In	 this	 manner,	 when	 the	 expression	 1+2	 is	 reduced	 in	 the	 second	 step,	 both
pointers	in	the	expression	share	the	result.
The	use	of	call-by-name	evaluation	 in	conjunction	with	sharing	 is	known	as

lazy	evaluation.	This	is	the	evaluation	strategy	that	is	used	in	Haskell,	as	a	result
of	which	Haskell	is	known	as	a	lazy	programming	language.	Being	based	upon
call-by-name	 evaluation,	 lazy	 evaluation	 has	 the	 property	 that	 it	 ensures	 that
evaluation	terminates	as	often	as	possible.	Moreover,	using	sharing	ensures	that
lazy	evaluation	never	requires	more	steps	than	call-by-value	evaluation.	The	use
of	the	term	‘lazy’	will	be	explained	in	the	next	section.
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15.5 Infinite	structures
An	additional	property	of	call-by-name	evaluation,	and	hence	lazy	evaluation,	is
that	 it	 allows	 what	 at	 first	 may	 seem	 impossible:	 programming	 with	 infinite
structures.	We	 have	 already	 seen	 a	 simple	 example	 of	 this	 idea	 earlier	 in	 this
chapter,	in	the	form	of	the	evaluation	of	fst	(0,inf)	avoiding	the	production	of
the	infinite	structure	1	+	(1	+	(1	+	...))	defined	by	inf.
More	interesting	forms	of	behaviour	occur	when	we	consider	infinite	lists.	For

example,	consider	the	following	recursive	definition:
ones	::	[Int]

ones	=	1	:	ones

That	is,	the	list	ones	is	defined	as	a	single	one	followed	by	itself.	As	with	inf,
evaluating	ones	does	not	terminate,	regardless	of	the	strategy	used:

ones

= {	applying	ones	}
1	:	ones

= {	applying	ones	}
1	:	(1	:	ones)

= {	applying	ones	}
1	:	(1	:	(1	:	ones))

= {	applying	ones	}
..

In	 practice,	 evaluating	 ones	 using	 GHCi	 will	 produce	 a	 never-ending	 list	 of
ones,	until	the	user	eventually	decides	to	terminate	this	process:
>	ones

[1,1,1,1,1,1,1,1,1,1,1,...

Now	consider	 the	 expression	head	ones,	where	head	 is	 the	 library	 function
that	selects	the	first	element	of	a	list,	defined	by	head	(x:_)	=	x.	Using	call-by-
value	evaluation	in	this	case	also	results	in	non-termination:

head	ones

= {	applying	ones	}
head	(1	:	ones)

= {	applying	ones	}
head	(1	:	(1	:	ones))

= {	applying	ones	}
head	(1	:	(1	:	(1	:	ones)))

= {	applying	ones	}
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.

In	contrast,	using	lazy	evaluation	(or	call-by-name	evaluation,	as	sharing	is	not
required	in	this	example)	results	in	termination	in	two	steps:

head	ones

= {	applying	ones	}
head	(1	:	ones)

= {	applying	head	}
1

This	behaviour	arises	because	lazy	evaluation	proceeds	in	a	lazy	manner	as	its
name	suggests,	only	evaluating	arguments	as	and	when	this	is	strictly	necessary
in	order	 to	produce	 results.	For	example,	when	 selecting	 the	 first	 element	of	 a
list,	the	remainder	of	the	list	is	not	required,	and	hence	in	head	(1	:	ones)	the
further	evaluation	of	 the	 infinite	 list	ones	 is	avoided.	More	generally,	we	have
the	following	property:	using	lazy	evaluation,	expressions	are	only	evaluated	as
much	as	required	by	the	context	in	which	they	are	used.
Using	this	idea,	we	now	see	that	under	lazy	evaluation	ones	is	not	an	infinite

list	as	such,	but	rather	a	potentially	infinite	list,	which	is	only	evaluated	as	much
as	required	by	the	context.	This	idea	is	not	restricted	to	lists,	but	applies	equally
to	 any	 form	 of	 data	 structure	 in	 Haskell.	 For	 example,	 infinite	 trees	 are
considered	in	the	exercises	for	this	chapter.

15.6 Modular	programming
Lazy	 evaluation	 also	 allows	 us	 to	 separate	 control	 from	 data	 in	 our
computations.	For	example,	a	list	of	three	ones	can	be	produced	by	selecting	the
first	three	elements	(control)	of	the	infinite	list	of	ones	(data):
>	take	3	ones

[1,1,1]

Using	the	definition	of	take	from	the	standard	prelude

this	behaviour	arises	using	lazy	evaluation	as	follows:
take	3	ones
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= {	applying	ones	}
take	3	(1	:	ones)

= {	applying	take	}
1	:	take	2	ones

= {	applying	ones	}
1	:	take	2	(1	:	ones)

= {	applying	take	}
1	:	1	:	take	1	ones

= {	applying	ones	}
1	:	1	:	take	1	(1	:	ones)

= {	applying	take	}
1	:	1	:	1	:	take	0	ones

= {	applying	take	}
1	:	1	:	1	:	[]

= {	list	notation	}
[1,1,1]

That	is,	the	data	is	only	evaluated	as	much	as	required	by	the	control,	and	these
two	 parts	 take	 it	 in	 turn	 to	 perform	 reductions.	 Without	 lazy	 evaluation,	 the
control	 and	 data	 parts	 would	 need	 to	 be	 combined	 in	 the	 form	 of	 a	 single
function	that	produces	a	list	of	n	identical	elements,	such	as:
replicate	::	Int	->	a	->	[a]

replicate	0	_	=	[]

replicate	n	x	=	x	:	replicate	(n-1)	x

Being	 able	 to	 modularise	 programs	 by	 separating	 them	 into	 logically	 distinct
parts	 is	 an	 important	 goal	 in	 programming,	 and	 being	 able	 to	 separate	 control
from	data	is	one	of	the	most	important	benefits	of	lazy	evaluation.
Note	that	care	is	still	required	when	programming	with	infinite	lists,	to	avoid

non-termination.	For	example,	the	expression
filter	(<=	5)	[1..]

(where	[n..]	produces	the	infinite	list	of	integers	beginning	with	n)	will	produce
the	integers	1,	2,	3,	4,	5	and	then	loop	forever,	because	the	function	filter	(<=
5)	keeps	testing	elements	of	the	infinite	list	in	a	vain	attempt	to	find	another	that
is	less	than	or	equal	to	five.	In	contrast,	the	expression
takeWhile	(<=	5)	[1..]

will	produce	the	same	integers	and	then	terminate,	because	takeWhile	(<=	5)
stops	as	soon	as	it	finds	an	element	that	is	greater	than	five.
We	conclude	this	section	with	an	example	concerning	prime	numbers.	Recall
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that	in	chapter	5,	we	wrote	a	function	to	generate	prime	numbers	up	to	a	given
limit.	In	contrast,	here	is	a	simple	procedure	for	generating	the	infinite	sequence
of	all	prime	numbers,	as	opposed	to	a	finite	prefix	of	this	sequence:

write	down	the	infinite	sequence	2,	3,	4,	5,	6,	...;
mark	the	first	number,	p,	in	the	sequence	as	prime;
delete	all	multiples	of	p	from	the	sequence;
return	to	the	second	step.

Note	that	the	first	and	third	steps	each	require	an	infinite	amount	of	work,	and
hence	 in	practice	 the	 steps	must	be	 interleaved.	The	 first	 few	 iterations	of	 this
procedure	can	be	illustrated	as	follows:

Each	row	corresponds	to	one	iteration	of	the	procedure,	with	the	first	row	being
the	 initial	 sequence	 (step	 one),	 the	 first	 number	 in	 each	 row	 being	 circled	 to
indicate	 its	 primality	 (step	 two),	 and	 all	 multiples	 of	 this	 number	 being
underlined	to	indicate	their	deletion	(step	three)	prior	to	the	next	iteration.	In	this
manner,	 we	 can	 imagine	 the	 initial	 sequence	 of	 numbers	 falling	 downwards,
with	certain	numbers	being	sieved	out	at	each	stage	by	the	underlining,	and	the
circled	numbers	forming	the	infinite	sequence	of	primes:

2,	3,	5,	7,	11,	13,	...

The	above	procedure	for	generating	prime	numbers	 is	known	as	 the	sieve	of
Eratosthenes,	 after	 the	 Greek	 mathematician	 who	 first	 described	 it.	 This
procedure	can	be	translated	directly	into	Haskell:
primes	::	[Int]

primes	=	sieve	[2..]

sieve	::	[Int]	->	[Int]

sieve	(p:xs)	=	p	:	sieve	[x	|	x	<-	xs,	x	‘mod‘	p	/=	0]

That	 is,	 starting	 with	 the	 infinite	 list	 [2..]	 (step	 one),	 we	 apply	 the	 function
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sieve	 that	 retains	 the	 first	 number	p	 as	being	prime	 (step	 two),	 and	 then	calls
itself	recursively	with	a	new	list	obtained	by	filtering	all	multiples	of	p	from	this
list	(steps	three	and	four).	Lazy	evaluation	ensures	that	this	program	does	indeed
produce	the	infinite	list	of	all	prime	numbers:
>	primes

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,...

By	freeing	the	generation	of	prime	numbers	from	the	constraint	of	finiteness,
we	 have	 obtained	 a	modular	 program	 on	which	 different	 control	 parts	 can	 be
used	 in	 different	 situations.	 For	 example,	 the	 first	 ten	 prime	 numbers,	 and	 the
prime	numbers	less	than	ten,	can	be	produced	as	follows:
>	take	10	primes

[2,3,5,7,11,13,17,19,23,29]

>	takeWhile	(<	10)	primes

[2,3,5,7]

15.7 Strict	application
Haskell	uses	lazy	evaluation	by	default,	but	also	provides	a	special	strict	version
of	 function	 application,	 written	 as	 $!,	 which	 can	 sometimes	 be	 useful.
Informally,	an	expression	of	 the	 form	f	$!	x	behaves	 in	 the	 same	way	as	 the
normal	functional	application	f	x,	except	that	the	top-level	of	evaluation	of	the
argument	expression	x	is	forced	before	the	function	f	is	applied.
For	example,	if	the	argument	has	a	basic	type,	such	as	Int	or	Bool,	then	top-

level	evaluation	is	simply	complete	evaluation.	On	the	other	hand,	for	a	pair	type
such	 as	 (Int,Bool),	 evaluation	 is	 performed	 until	 a	 pair	 of	 expressions	 is
obtained,	but	no	further.	Similarly,	for	a	list	type,	evaluation	is	performed	until
the	empty	list	or	the	cons	of	two	expressions	is	obtained.
More	 formally,	 an	 expression	 of	 the	 form	 f	 $!	 x	 is	 only	 a	 redex	 once

evaluation	of	 the	argument	x,	using	 lazy	evaluation	as	normal,	has	 reached	 the
point	where	it	is	known	that	the	result	is	not	an	undefined	value,	at	which	point
the	expression	can	be	reduced	to	the	normal	application	f	x.	For	example,	using
the	 definition	 square	 n	 =	 n	 *	 n,	 evaluation	 of	 the	 application	 square	 $!
(1+2)	 proceeds	 in	 a	 call-by-value	 manner,	 by	 first	 evaluating	 the	 argument
expression	1+2	to	give	the	value	3,	and	then	applying	the	function	square:

square	$!	(1+2)
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=	{	applying	+	}
square	$!	3

= {	applying	$!	}
square	3

= {	applying	square	}
3	*	3

= {	applying	*	}
9

When	used	with	a	curried	function	with	multiple	arguments,	strict	application
can	be	used	to	force	top-level	evaluation	of	any	combination	of	arguments.	For
example,	 if	 f	 is	 a	 curried	 function	 with	 two	 arguments,	 an	 application	 of	 the
form	f	x	y	can	be	modified	to	have	three	different	behaviours:

(f	$!	x)	y	forces	top-level	evaluation	of	x
(f	x)	$!	y	forces	top-level	evaluation	of	y
(f	$!	x)	$!	y	forces	top-level	evaluation	of	x	and	y

In	Haskell,	strict	application	is	mainly	used	to	improve	the	space	performance
of	programs.	For	example,	consider	a	function	sumwith	 that	calculates	 the	sum
of	a	list	of	integers	using	an	accumulator	value:
sumwith	::	Int	->	[Int]	->	Int

sumwith	v	[]	=	v

sumwith	v	(x:xs)	=	sumwith	(v+x)	xs

Then,	using	lazy	evaluation,	we	have:
sumwith	0	[1,2,3]

= {	applying	sumwith	}
sumwith	(0+1)	[2,3]

= {	applying	sumwith	}
sumwith	((0+1)+2)	[3]

= {	applying	sumwith	}
sumwith	(((0+1)+2)+3)	[]	=	{	applying	sumwith	}
((0+1)+2)+3

= {	applying	the	first	+	}
(1+2)+3

= {	applying	the	first	+	}
3+3

= {	applying	+	}
6

Note	 that	 the	 entire	 summation	 ((0+1)+2)+3	 is	 constructed	 before	 any	 of	 the
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component	 additions	 are	 actually	 performed.	 More	 generally,	 sumwith	 will
construct	 a	 summation	whose	 size	 is	proportional	 to	 the	number	of	 integers	 in
the	original	list,	which	for	a	long	list	may	require	a	significant	amount	of	space.
In	 practice,	 it	 would	 be	 preferable	 to	 perform	 each	 addition	 as	 soon	 as	 it	 is
introduced,	to	improve	the	space	performance	of	the	function.
This	behaviour	can	be	achieved	by	redefining	sumwith	using	strict	application,

to	force	evaluation	of	its	accumulator	value:
sumwith	v	[]	=	v

sumwith	v	(x:xs)	=	(sumwith	$!	(v+x))	xs

For	example,	we	now	have:
sumwith	0	[1,2,3]

= {	applying	sumwith	}
(sumwith	$!	(0+1))	[2,3]

= {	applying	+	}
(sumwith	$!	1)	[2,3]

= {	applying	$!	}
sumwith	1	[2,3]

= {	applying	sumwith	}
(sumwith	$!	(1+2))	[3]

= {	applying	+	}
(sumwith	$!	3)	[3]

= {	applying	$!	}
sumwith	3	[3]

= {	applying	sumwith	}
(sumwith	$!	(3+3))	[]

= {	applying	+	}
(sumwith	$!	6)	[]

= {	applying	$!	}
sumwith	6	[]

= {	applying	sumwith	}
6

This	 evaluation	 requires	 more	 steps	 than	 previously,	 due	 to	 the	 additional
overhead	of	using	strict	application,	but	now	performs	each	addition	as	soon	as	it
is	introduced,	rather	than	constructing	a	large	summation.
Generalising	 from	 the	above	example,	 the	 library	Data.Foldable	provides	a

strict	version	of	the	higher-order	library	function	foldl	that	forces	evaluation	of
its	accumulator	prior	to	processing	the	tail	of	the	list:
foldl’	::	(a	->	b	->	a)	->	a	->	[b]	->	a
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foldl’	f	v	[]	=	v

foldl’	f	v	(x:xs)	=	((foldl’	f)	$!	(f	v	x))	xs

For	 example,	 using	 this	 function	we	 can	 define	sumwith	=	foldl’	(+).	 It	 is
important	 to	 note,	 however,	 that	 strict	 application	 is	 not	 a	 silver	 bullet	 that
automatically	 improves	 the	 space	 behaviour	 of	 Haskell	 programs.	 Even	 for
relatively	simple	examples,	the	use	of	strict	application	is	a	specialist	topic	that
requires	careful	consideration	of	the	behaviour	of	lazy	evaluation.

15.8 Chapter	remarks
Further	details	about	evaluation	orders	and	their	properties	can	be	found	in	[29],
and	further	examples	of	the	use	of	lazy	evaluation	for	modular	programming	in
the	 classic	 article	 Why	 Functional	 Programming	 Matters	 [30].	 A	 formal
meaning	for	lazy	evaluation	is	given	in	[31],	and	a	comprehensive	tutorial	on	the
efficient	implementation	of	lazy	evaluation	in	[32].

15.9 Exercises
1. Identify	the	redexes	in	the	following	expressions,	and	determine	whether

each	redex	is	innermost,	outermost,	neither,	or	both:
1	+	(2*3)

(1+2)	*	(2+3)

fst	(1+2,	2+3)

(\x	->	1	+	x)	(2*3)

2. Show	 why	 outermost	 evaluation	 is	 preferable	 to	 innermost	 for	 the
purposes	of	evaluating	the	expression	fst	(1+2,2+3).

3. Given	 the	 definition	 mult	 =	 \x	 ->	 (\y	 ->	 x	 *	 y),	 show	 how	 the
evaluation	of	mult	3	4	can	be	broken	down	into	four	separate	steps.

4. Using	 a	 list	 comprehension,	 define	 an	 expression	 fibs	 ::	 [Integer]
that	generates	the	infinite	sequence	of	Fibonacci	numbers

0,	1,	1,	2,	3,	5,	8,	13,	21,	34,	...
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using	the	following	simple	procedure:

the	first	two	numbers	are	0	and	1;
the	next	is	the	sum	of	the	previous	two;
return	to	the	second	step.

Hint:	make	use	of	the	library	functions	zip	and	tail.	Note	that	numbers
in	the	Fibonacci	sequence	quickly	become	large,	hence	the	use	of	the	type
Integer	of	arbitrary-precision	integers	above.

5. Define	appropriate	versions	of	the	library	functions
repeat	::	a	->	[a]

repeat	x	=	xs	where	xs	=	x:xs

take	::	Int	->	[a]	->	[a]

take	0	_	=	[]

take	_	[]	=	[]

take	n	(x:xs)	=	x	:	take	(n-1)	xs

replicate	::	Int	->	a	->	[a]

replicate	n	=	take	n	.	repeat

for	the	following	type	of	binary	trees:
data	Tree	a	=	Leaf	|	Node	(Tree	a)	a	(Tree	a)

deriving	Show

6. Newton’s	 method	 for	 computing	 the	 square	 root	 of	 a	 (non-negative)
floating-point	number	n	can	be	expressed	as	follows:

start	with	an	initial	approximation	to	the	result;
given	the	current	approximation	a,	the	next	approximation	is	defined	by
the	function	next	a	=	(a	+	n/a)	/	2;
repeat	 the	 second	 step	 until	 the	 two	 most	 recent	 approximations	 are
within	 some	 desired	 distance	 of	 one	 another,	 at	 which	 point	 the	 most
recent	value	is	returned	as	the	result.

Define	 a	 function	 sqroot	 ::	 Double	 ->	 Double	 that	 implements	 this
procedure.	Hint:	first	produce	an	infinite	list	of	approximations	using	the
library	 function	 iterate.	 For	 simplicity,	 take	 the	 number	 1.0	 as	 the
initial	approximation,	and	0.00001	as	the	distance	value.

Solutions	to	exercises	1–3	are	given	in	appendix	A.
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16

Reasoning	about	programs

In	this	chapter	we	introduce	the	idea	of	reasoning	about	Haskell	programs.	We
start	by	reviewing	the	notion	of	equational	reasoning,	 then	consider	how	it	can
be	applied	in	Haskell,	introduce	the	important	technique	of	induction,	show	how
induction	can	be	used	to	eliminate	uses	of	the	append	operator,	and	conclude	by
proving	the	correctness	of	a	simple	compiler.

16.1 Equational	reasoning
At	school	we	 learn	basic	algebraic	properties	of	numbers,	 such	as	 the	 fact	 that
multiplication	 is	 commutative,	 addition	 is	 associative,	 and	 multiplication
distributes	over	addition	on	both	the	left-	and	right-hand	sides:

For	example,	using	these	properties	we	can	show	that	a	product	of	the	form	(x	+
a)	(x	+	b)	can	be	expanded	to	a	summation	x2	+(a	+	b)	x	+	ab:

(x	+	a)	(x	+	b)
= {	left	distributivity	}
(x	+	a)	x	+(x	+	a)	b

= {	right	distributivity	}
xx	+	ax	+	xb	+	ab

= {	squaring	}
x2	+	ax	+	xb	+	ab

= {	commutativity	}
x2	+	ax	+	b	x	+	ab

= {	right	distributivity	}
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x2	+(a	+	b)	x	+	ab

Note	 that	 in	 this	 calculation	 we	 follow	 the	 common	 practice	 of	 implicitly
exploiting	 associativity	 properties,	 in	 this	 case	 the	 associativity	 of	 addition	 by
omitting	parentheses	when	more	than	one	addition	is	used	in	sequence.
As	well	as	being	 interesting	 in	 their	own	right,	algebraic	properties	can	also

have	a	computational	significance.	For	example,	the	expression	x	(y	+	z)	requires
two	 operations	 (one	 multiplication	 and	 one	 addition),	 whereas	 the	 equivalent
expression	 xy	 +	 xz	 requires	 three	 operations	 (two	 multiplications	 and	 one
addition).	Hence	even	 though	 these	 two	expressions	are	algebraically	equal,	 in
terms	of	efficiency	the	former	is	preferable	to	the	latter.

16.2 Reasoning	about	Haskell
The	 same	 style	 of	 equational	 reasoning	 can	 also	 be	 used	 in	 Haskell.	 For
example,	 in	 this	 context	 the	 equation	 x	 *	 y	 =	 y	 *	 x	 means	 that	 for	 any
expressions	x	and	y	of	the	same	numeric	types,	evaluation	of	x	*	y	and	y	*	x
will	always	produce	the	same	numeric	value.	Note	that	we	use	the	mathematical
equality	 operator	 =	 when	 stating	 such	 properties,	 rather	 than	 the	 equality
operator	 ==	 provided	 within	 Haskell	 itself,	 because	 we	 are	 aiming	 to	 use
mathematics	as	a	language	to	reason	about	Haskell,	rather	than	using	Haskell	as
a	language	to	reason	about	itself,	which	would	be	somewhat	circular.
When	 reasoning	 about	 Haskell,	 we	 do	 not	 just	 use	 properties	 of	 built-in

operations	of	the	language	such	as	addition	and	multiplication,	but	also	use	the
equations	 from	 which	 user-defined	 functions	 are	 constructed.	 For	 example,
consider	the	following	function	that	doubles	an	integer:
double	::	Int	->	Int

double	x	=	x	+	x

As	well	as	being	viewed	as	the	definition	of	a	function,	this	equation	can	also	be
viewed	 as	 a	property	 that	 can	 be	 used	when	 reasoning	 about	 this	 function.	 In
particular,	 as	 a	 logical	 property	 the	 above	 equation	 states	 that	 for	 any	 integer
expression	x,	 the	 expression	 double	x	 can	 freely	 be	 replaced	 by	 x	 +	 x,	 and,
conversely,	that	the	expression	x	+	x	can	freely	be	replaced	by	double	x.	In	this
manner,	 when	 reasoning	 about	 programs,	 function	 definitions	 can	 be	 both
applied	from	left-to-right	and	unapplied	from	right-to-left.
However,	 some	 care	 is	 required	 when	 reasoning	 about	 functions	 that	 are

defined	using	multiple	equations.	For	example,	consider	a	function	that	decides
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if	an	integer	is	zero,	defined	using	two	equations:
isZero	::	Int	->	Bool

isZero	0	=	True

isZero	n	=	False

The	first	equation,	isZero	0	=	True,	can	freely	be	viewed	as	a	logical	property
that	 can	 be	 applied	 in	 both	 directions.	 However,	 this	 is	 not	 the	 case	 for	 the
second	equation,	isZero	n	=	False.	 In	particular,	because	 the	order	 in	which
the	 equations	 are	 written	 is	 significant	 in	 Haskell,	 an	 expression	 of	 the	 form
isZero	n	can	only	be	replaced	by	False	provided	that	n	≠	0,	as	in	the	case	when
n	=	0	 the	first	equation	applies.	Dually,	it	 is	only	valid	to	unapply	the	equation
isZero	n	=	False	and	replace	False	by	an	expression	of	the	form	isZero	n	in
the	case	when	n	≠	0,	for	the	same	reason.
More	 generally,	 when	 a	 function	 is	 defined	 using	 multiple	 equations,	 the

equations	cannot	be	viewed	as	 logical	properties	 in	 isolation	from	one	another,
but	 need	 to	 be	 interpreted	 in	 light	 of	 the	 order	 in	which	 patterns	 are	matched
within	 the	 equations.	 For	 this	 reason,	 it	 is	 preferable	 to	 define	 functions	 in	 a
manner	that	does	not	rely	on	the	order	in	which	their	equations	are	written.	For
example,	if	we	rewrite	the	above	definition	using	a	guard

isZero	0 =	True

isZero	n	|	n	/=	0	=	False

then	it	 is	now	made	explicit	 that	isZero	n	can	only	be	replaced	by	False,	and
conversely	that	False	can	only	be	replaced	by	isZero	n,	when	the	guard	n	/=	0
is	satisfied.	Patterns	that	do	not	rely	on	the	order	in	which	they	are	matched	are
called	 non-overlapping.	 In	 order	 to	 simplify	 the	 process	 of	 reasoning	 about
programs,	it	is	good	practice	to	use	non-overlapping	patterns	whenever	possible
when	 defining	 functions.	 For	 example,	 most	 of	 the	 functions	 in	 the	 standard
prelude	given	in	appendix	B	are	defined	in	this	manner.

16.3 Simple	examples
As	 a	 simple	 first	 example	 of	 equational	 reasoning	 in	 Haskell,	 recall	 the
following	definition	of	the	library	function	that	reverses	a	list:
reverse	::	[a]	->	[a]

reverse	[] =	[]

reverse	(x:xs)	=	reverse	xs	++	[x]
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Using	 this	 definition,	we	 can	 show	 that	 reverse	 has	 no	 effect	 on	 singleton
lists,	in	the	sense	that	reverse	[x]	=	[x]	for	any	value	x:

reverse	[x]

= {	list	notation	}
reverse	(x	:	[])

= {	applying	reverse	}
reverse	[]	++	[x]

= {	applying	reverse	}
[]	++	[x]

= {	applying	++	}
[x]

Hence	 any	 expression	 of	 the	 form	 reverse	 [x]	 in	 a	 program	 can	 freely	 be
replaced	by	[x]	without	change	in	meaning,	but	with	a	change	in	efficiency	by
avoiding	the	need	to	apply	the	reverse	function.
Equational	reasoning	is	often	combined	with	some	form	of	case	analysis.	For

example,	consider	the	logical	negation	function:
not	::	Bool	->	Bool

not	False	=	True

not	True =	False

Because	 this	 function	 is	 defined	 by	 pattern	 matching,	 properties	 of	 not	 are
normally	proved	by	case	analysis	on	its	argument.	For	example,	the	fact	that	not
is	 its	own	 inverse,	not	(not	b)	=	b	 for	all	 logical	values	b,	 can	be	shown	by
case	analysis	on	the	two	possible	values	for	b.	For	example,	the	case	when	b	=
False	is	verified	below,	and	b	=	True	follows	similarly:

not	(not	False)

= {	applying	the	inner	not	}
not	True

= {	applying	not	}
False

16.4 Induction	on	numbers
Most	 interesting	Haskell	 programs	 involve	 some	 form	of	 recursion.	Reasoning
about	such	programs	normally	proceeds	using	the	simple	but	powerful	technique
of	induction.	Let	us	begin	by	recalling	the	simplest	example	of	a	recursive	type,
namely	the	type	of	natural	numbers:
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data	Nat	=	Zero	|	Succ	Nat

This	declaration	states	that	Zero	is	a	value	of	type	Nat	(the	base	case),	and	that	if
n	 is	a	value	of	 type	Nat,	 then	so	 is	Succ	n	 (the	recursive	case).	 Implicit	 in	 the
declaration	is	the	fact	that	Zero	and	Succ	are	the	only	constructors	for	the	type
Nat.	Hence,	the	values	of	Nat	can	be	enumerated	as	follows:
Zero

Succ	Zero

Succ	(Succ	Zero)

Succ	(Succ	(Succ	Zero))

.

.

.

For	 simplicity,	 we	 only	 consider	 the	 finite	 natural	 numbers,	 obtained	 by
starting	with	Zero	and	applying	Succ	a	finite	number	of	times.	In	particular,	we
do	 not	 consider	 the	 infinite	 value	 Succ	 (Succ	 (Succ	 ...)),	 which	 can	 be
defined	 recursively	by	inf	=	Succ	inf.	A	 similar	 comment	 applies	 to	 all	 the
other	recursive	types	that	we	consider	in	this	chapter.
Now	suppose	we	want	to	prove	that	some	property,	p	say,	holds	for	all	(finite)

natural	 numbers.	 Then	 the	 principle	 of	 induction	 states	 that	 it	 is	 sufficient	 to
show	that	p	holds	for	Zero,	called	the	base	case,	and	that	p	is	preserved	by	Succ,
called	the	inductive	case.	More	precisely,	in	the	inductive	case	one	is	required	to
show	that	if	the	property	p	holds	for	any	natural	number	n,	called	the	induction
hypothesis,	then	it	also	holds	for	Succ	n.
Why	is	induction	sufficient	to	show	that	p	holds	for	all	natural	numbers?	For

example,	how	does	 it	 then	follow	that	p	holds	for	Succ	(Succ	Zero).	Starting
from	the	base	case	that	p	holds	for	Zero,	we	can	apply	the	inductive	case	once	to
conclude	 that	 p	 holds	 for	 Succ	 Zero,	 by	 taking	 n	 =	 Zero,	 and	 then	 apply	 the
inductive	case	a	second	time	to	conclude	that	p	holds	for	Succ	(Succ	Zero),	by
taking	n	=	Succ	Zero.	In	a	similar	manner,	it	can	be	established	that	the	property
p	holds	for	any	natural	number.
It	is	useful	to	draw	an	analogy	with	the	domino	effect.	Suppose	there	is	a	line

of	dominoes	standing	on	end	and	you	know	that	 the	first	domino	will	 fall,	and
that	whenever	 a	 domino	 falls	 then	 its	 next	 neighbour	will	 also	 fall.	 Then	 it	 is
clear	that	all	the	dominoes	will	fall,	by	applying	the	first	fact	to	get	the	process
started,	and	repeatedly	applying	the	second	to	keep	it	going.	The	same	pattern	of
reasoning	occurs	with	 induction:	we	 first	verify	 the	 required	property	 for	Zero
(the	 first	 domino	 falls),	 then	 that	 the	 property	 is	 preserved	 by	 Succ	 (if	 any
domino	 falls,	 then	 so	will	 its	neighbour),	 and	conclude	 that	 the	property	holds
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for	all	natural	numbers	(all	dominoes	fall).
As	 a	 concrete	 example,	 consider	 the	 definition	 of	 a	 recursive	 function	 that

takes	two	natural	numbers	and	adds	them	together:
add	::	Nat	->	Nat	->	Nat

add	Zero	m =	m

add	(Succ	n)	m	=	Succ	(add	n	m)

From	 the	 first	 equation,	 it	 is	 immediate	 that	 add	 Zero	 m	 =	 m	 holds	 for	 any
natural	 number	 m.	 Now	 let	 us	 show	 that	 the	 dual	 property,	 add	 n	 Zero	 =	 n,
which	we	abbreviate	by	p,	also	holds	for	all	natural	numbers	n.	We	proceed	by
induction	on	n.	The	base	case,	showing	that	p	Zero	holds,	amounts	to	showing
that	add	Zero	Zero	=	Zero,	which	is	immediate:

add	Zero	Zero

= {	applying	add	}
Zero

For	the	inductive	case,	we	must	show	that	if	p	holds	for	any	natural	number	n,
then	p	(Succ	n)	also	holds.	That	is,	using	the	induction	hypothesis	add	n	Zero
=	n	 as	 an	 assumption,	we	must	 show	 that	 the	 equation	add	(Succ	n)	Zero	=
Succ	n	holds,	which	can	be	verified	as	follows:

add	(Succ	n)	Zero

= {	applying	add	}
Succ	(add	n	Zero)

= {	induction	hypothesis	}
Succ	n

□

Because	 proofs	 by	 induction	 normally	 involve	more	 than	one	 calculation,	 it	 is
useful	 to	 explicitly	 indicate	 the	 end	 of	 the	 proof.	 For	 this	 purpose,	 we	 use	 a
square	box	□	in	the	right-hand	margin,	as	illustrated	above.
As	 another	 example,	 let	 us	 show	 that	 addition	 of	 natural	 numbers	 is

associative.	That	 is,	add	x	(add	y	z)	=	add	(add	x	y)	z	 for	all	x,	y	and	z.
There	 are	 three	variables,	 so	which	 should	 induction	be	performed	over?	Note
that	the	add	function	is	defined	by	pattern	matching	on	its	first	argument,	so	it	is
natural	to	try	induction	on	x,	which	appears	twice	as	the	first	argument	to	add	in
the	 associativity	 equation,	 whereas	 y	 only	 appears	 once	 as	 such	 and	 z	 never.
Using	induction	on	x,	the	proof	of	the	associativity	of	add	proceeds	as	follows.

Base	case:
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add	Zero	(add	y	z)

= {	applying	the	outer	add	}
add	y	z

= {	unapplying	add	}
add	(add	Zero	y)	z

Inductive	case:
add	(Succ	x)	(add	y	z)

= {	applying	the	outer	add	}
Succ	(add	x	(add	y	z))

= {	induction	hypothesis	}
Succ	(add	(add	x	y)	z)

= {	unapplying	the	outer	add	}
add	(Succ	(add	x	y)	z)

= {	unapplying	the	inner	add	}
add	(add	(Succ	x)	y)	z)

□

Note	that	both	cases	in	the	proof	start	by	applying	definitions,	and	conclude	by
unapplying	 definitions.	 This	 pattern	 is	 typical	 in	 proofs	 by	 induction,	 but	 the
latter	part	may	seem	somewhat	mysterious	at	first	sight.	In	particular,	knowing
which	definitions	to	unapply	seems	to	require	a	degree	of	foresight.	In	practice,
however,	 if	 one	 becomes	 stuck	 at	 a	 certain	 point	 during	 such	 a	 calculation,
progress	can	often	be	made	by	focusing	on	the	desired	end	result	and	trying	to
work	backwards	to	the	point	where	one	became	stuck.
For	 example,	 after	 applying	 the	 induction	 hypothesis	 in	 the	 inductive	 case

above	to	obtain	Succ	(add	(add	x	y)	z),	it	may	not	be	clear	how	to	proceed,
as	there	are	no	more	definitions	that	can	be	applied.	However,	if	we	then	focus
on	the	expression	that	we	are	aiming	towards,	add	(add	(Succ	x)	y)	z,	we	can
simply	apply	the	inner	add	and	then	the	outer	add	 to	produce	the	expression	at
which	we	became	stuck,	which	process	can	 then	be	 reversed	 (turning	applying
into	unapplying)	to	complete	the	calculation.
Although	we	have	introduced	induction	using	the	recursive	type	Nat,	the	same

principle	can	also	be	used	with	the	type	of	integers	that	is	built-in	to	Haskell.	In
particular,	 to	 prove	 that	 some	 property	 p	 holds	 for	 all	 integers	 	 it	 is
sufficient	 to	show	that	p	holds	for	0,	 the	base	case,	and	that	 if	p	holds	for	any	

	then	it	also	holds	for	n+1,	the	inductive	case.
For	 example,	 consider	 the	 following	 recursive	 definition	 for	 the	 library

function	replicate	that	produces	a	list	with	n	identical	elements:
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replicate	::	Int	->	a	->	[a]

replicate	0	_	=	[]

replicate	n	x	=	x	:	replicate	(n-1)	x

It	is	easy	to	show	that	this	function	does	indeed	produce	a	list	with	n	elements,
that	is	length	(replicate	n	x)	=	n,	by	induction	on	

Base	case:
length	(replicate	0	x)

= {	applying	replicate	}
length	[]

= {	applying	length	}
0

Inductive	case:
length	(replicate	(n+1)	x)

= {	applying	replicate	}
length	(x	:	replicate	n	x)

= {	applying	length	}
1	+	length	(replicate	n	x)

= {	induction	hypothesis	}
1	+	n

= {	commutativity	of	+	}
n	+	1

□

16.5 Induction	on	lists
Induction	 is	 not	 restricted	 to	 natural	 numbers,	 but	 can	 also	 be	 used	 to	 reason
about	other	recursive	types,	such	as	the	type	of	lists.	Just	as	natural	numbers	are
built	 up	 recursively	 from	 zero	 by	 applying	 the	 successor	 function,	 so	 lists	 are
built	up	from	the	empty	list	by	applying	the	cons	operator.
Suppose	we	want	 to	prove	 that	 some	property	p	holds	 for	all	 lists.	Then	 the

induction	principle	for	lists	states	that	it	is	sufficient	to	show	that	p	holds	for	the
empty	list	[],	the	base	case,	and	that	if	p	holds	for	any	list	xs,	then	it	also	holds
for	x:xs	for	any	element	x,	the	inductive	case.	Of	course,	both	the	element	x	and
the	list	xs	must	be	of	the	appropriate	types.
As	a	first	example,	let	us	show	that	the	function	reverse	defined	earlier	in	this
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chapter	is	its	own	inverse,	reverse	(reverse	xs)	=	xs,	by	induction	on	xs.	The
base	case	is	verified	simply	by	applying	the	definition:

reverse	(reverse	[])

= {	applying	the	inner	reverse	}
reverse	[]

= {	applying	reverse	}
[]

For	 the	 inductive	case,	using	 the	assumption	reverse	(reverse	xs)	=	xs,	we
show	that	reverse	(reverse	(x:xs))	=	x:xs,	as	follows:

reverse	(reverse	(x:xs))

= {	applying	the	inner	reverse	}
reverse	(reverse	xs	++	[x])

= {	distributivity	–	see	below	}
reverse	[x]	++	reverse	(reverse	xs)

= {	singleton	lists	–	see	below	}
[x]	++	reverse	(reverse	xs)

= {	induction	hypothesis	}
[x]	++	xs

= {	applying	++	}
x	:	xs

□

The	above	calculation	uses	 two	auxiliary	properties	of	 the	function	reverse,
namely	our	earlier	result	 that	reverse	preserves	singleton	lists,	reverse	[x]	=
[x],	together	with	a	new	result	that	reverse	distributes	over	append,	except	that
the	order	of	the	two	argument	lists	is	then	swapped:

reverse	(xs	++	ys)	=	reverse	ys	++	reverse	xs

Technically,	we	say	 that	 the	distribution	 is	contravariant	 .	Because	 the	append
operator	++	 is	defined	by	pattern	matching	on	its	first	argument,	 it	 is	natural	to
attempt	to	verify	this	property	by	induction	on	xs.

Base	case:
reverse	([]	++	ys)

= {	applying	++	}
reverse	ys

= {	identity	for	++	}
reverse	ys	++	[]
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= {	unapplying	reverse	}
reverse	ys	++	reverse	[]

Inductive	case:
reverse	((x:xs)	++	ys)

= {	applying	++	}
reverse	(x	:	(xs	++	ys))

= {	applying	reverse	}
reverse	(xs	++	ys)	++	[x]

= {	induction	hypothesis	}
(reverse	ys	++	reverse	xs)	++	[x]

= {	associativity	of	++	}
reverse	ys	++	(reverse	xs	++	[x])

= {	unapplying	the	second	reverse	}
reverse	ys	++	reverse	(x:xs)

□

The	above	calculations	 in	 turn	use	 the	 fact	 that	++	 is	associative	with	[]	 as	 its
identity,	which	 can	be	verified	by	 induction	 in	 a	 similar	manner	 to	 our	 earlier
results	concerning	add	and	Zero	(see	the	exercises	section.)
When	we	introduced	the	concept	of	a	functor	in	chapter	12,	we	noted	that	the

function	fmap	is	required	to	satisfy	two	equational	laws:

As	 another	 example	 of	 the	 use	 of	 induction	 on	 lists,	we	 now	 show	how	 these
laws	can	be	verified	for	the	list	functor,	for	which	purpose	we	use	the	following
recursive	definition	for	the	function	fmap	on	lists:
fmap	::	(a	->	b)	->	[a]	->	[b]

fmap	g	[] =	[]

fmap	g	(x:xs)	=	g	x	:	fmap	g	xs

By	definition,	two	functions	of	the	same	type	are	equal	if	they	always	return
the	same	results	 for	 the	same	arguments.	Hence,	 to	verify	 the	 first	 functor	 law
fmap	id	=	id	 for	 the	case	of	 lists,	which	has	 the	 form	of	an	equality	between
functions,	we	must	 show	 that	fmap	id	xs	 =	id	xs	 for	 any	 list	xs.	Using	 the
definition	for	the	identity	function,	id	x	=	x,	this	equation	simplifies	to	fmap	id
xs	=	xs,	which	can	then	be	verified	by	induction	on	xs.

Base	case:
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fmap	id	[]

= {	applying	fmap	}
[]

Inductive	case:
fmap	id	(x	:	xs)

= {	applying	fmap	}
id	x	:	fmap	id	xs

= {	applying	id	}
x	:	fmap	id	xs

= {	induction	hypothesis	}
x	:	xs

□

In	 turn,	 for	 the	 second	 functor	 law	we	must	 show	 that	fmap	(g	.	h)	xs	=
(fmap	 g	 .	 fmap	 h)	 xs	 for	 any	 xs.	 Using	 the	 definition	 for	 function
composition,	(f	.	g)	x	=	f	(g	x),	this	equation	simplifies	to	fmap	(g	.	h)
xs	=	fmap	g	(fmap	h	xs),	which	can	then	be	verified	by	induction.

Base	case:
fmap	(g	.	h)	[]

= {	applying	fmap	}
[]

= {	unapplying	fmap	}
fmap	g	[]

= {	unapplying	fmap	}
fmap	g	(fmap	h	[])

Inductive	case:
fmap	(g	.	h)	(x	:	xs)

= {	applying	fmap	}
(g	.	h)	x	:	fmap	(g	.	h)	xs

= {	applying	.	}
g	(h	x)	:	fmap	(g	.	h)	xs

= {	induction	hypothesis	}
g	(h	x)	:	fmap	g	(fmap	h	xs)

= {	unapplying	fmap	}
fmap	g	(h	x	:	fmap	h	xs)

= {	unapplying	fmap	}
fmap	g	(fmap	h	(x	:	xs))
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□

The	exercises	for	this	chapter	include	a	number	of	other	examples	of	verifying
the	functor	laws,	together	with	the	applicative	and	monad	laws.

16.6 Making	append	vanish
Many	recursive	functions	are	naturally	defined	using	the	append	operator	++	on
lists,	 but	 this	 operator	 carries	 a	 considerable	 efficiency	 cost	 when	 used
recursively.	 In	 this	 section,	 we	 show	 how	 induction	 can	 be	 used	 to	 eliminate
such	 uses	 of	 append,	 and	 hence	 make	 functions	 more	 efficient.	 As	 a	 first
example,	consider	again	the	following	simple	recursive	definition:
reverse	::	[a]	->	[a]

reverse	[] =	[]

reverse	(x:xs)	=	reverse	xs	++	[x]

How	efficient	is	this	version	of	reverse?	First	of	all,	it	is	easy	to	show	that	the
number	of	reduction	steps	required	to	evaluate	xs	++	ys	is	one	greater	than	the
length	 of	 xs,	 assuming	 for	 simplicity	 that	 both	 xs	 and	 ys	 are	 already	 fully
evaluated.	As	a	result,	we	say	that	++	 takes	linear	 time	in	the	length	of	 its	first
argument.	 In	 turn,	 the	 number	 of	 steps	 required	 by	 reverse	 xs	 for	 a	 list	 of
length	n	can	be	shown	to	be	the	sum	of	the	integers	from	1	to	n	+	1,	which	is	(n
+	1)(n	+	2)/2.	Multiplying	out	the	brackets	using	the	equation	verified	at	the	start
of	 this	chapter	gives	(n2	+	3n	+	2)/2,	as	a	result	of	which	we	say	that	reverse
takes	quadratic	time	in	the	length	of	its	argument.
Quadratic	 time	 is	 bad.	 For	 example,	 reversing	 a	 list	 with	 ten	 thousand

elements	 will	 take	 approximately	 fifty	 million	 reduction	 steps.	 Fortunately,
however,	through	the	use	of	induction	it	is	easy	to	eliminate	the	use	of	append	in
the	definition	of	reverse,	and	hence	improve	its	efficiency.
The	trick	is	to	attempt	to	define	a	more	general	function,	which	combines	the

behaviours	 of	 reverse	 and	 ++.	 In	 particular,	 we	 seek	 to	 define	 a	 recursive
function	reverse’	that	satisfies	the	following	equation:

reverse’	xs	ys	=	reverse	xs	++	ys

That	 is,	 applying	reverse’	 to	 two	 lists	 should	 give	 the	 result	 of	 reversing	 the
first	 list,	 appended	 together	 with	 the	 second	 list.	 If	 we	 can	 define	 such	 a
function,	 then	reverse	 itself	can	be	 redefined	by	reverse	xs	=	reverse’	xs
[],	using	the	fact	that	the	empty	list	is	the	identity	for	append.
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Rather	 than	 giving	 the	 definition	 for	 reverse’,	 and	 then	 showing	 that	 it
satisfies	the	above	equation,	we	can	in	fact	use	this	equation	as	the	driving	force
for	 constructing	 the	 definition	 itself.	 In	 particular,	 we	 attempt	 to	 verify	 this
equation	by	induction	on	xs.	The	base	case	results	in	an	equation	that	gives	the
definition	 for	reverse’	[]	ys,	while	 the	 inductive	case	 results	 in	an	equation
that	gives	the	definition	for	reverse’	(x:xs)	ys.

Base	case:
reverse’	[]	ys

= {	specification	of	reverse’	}
reverse	[]	++	ys

= {	applying	reverse	}
[]	++	ys

= {	applying	++	}
ys

Inductive	case:
reverse’	(x:xs)	ys

= {	specification	of	reverse’	}
reverse	(x:xs)	++	ys

= {	applying	reverse	}
(reverse	xs	++	[x])	++	ys

= {	associativity	of	++	}
reverse	xs	++	([x]	++	ys)

= {	induction	hypothesis	}
reverse’	xs	([x]	++	ys)

= {	applying	++	}
reverse’	xs	(x	:	ys)

□

We	conclude	from	this	proof	that	the	definition
reverse’	::	[a]	->	[a]	->	[a]

reverse’	[]	ys =	ys

reverse’	(x:xs)	ys	=	reverse’	xs	(x	:	ys)

suffices	to	show	that	reverse’	xs	ys	=	reverse	xs	++	ys	by	induction.	Note
that	the	definition	for	reverse’	does	not	refer	to	the	original	reverse	function,
or	append.	Hence,	reverse	itself	can	now	be	redefined	as	follows:
reverse	::	[a]	->	[a]

reverse	xs	=	reverse’	xs	[]
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For	example,	we	have:
reverse	[1,2,3]

= {	applying	reverse	}
reverse’	[1,2,3]	[]

= {	applying	reverse’	}
reverse’	[2,3]	(1:[])

= {	applying	reverse’	}
reverse’	[3]	(2:(1:[]))

= {	applying	reverse’	}
reverse’	[]	(3:(2:(1:[])))

= {	applying	reverse’	}
3:(2:(1:[]))

That	 is,	 the	 list	 is	 reversed	by	using	an	extra	argument	 to	accumulate	 the	 final
result.	 The	 new	 definition	 for	 reverse	 is	 perhaps	 less	 clear	 than	 the	 original
version,	 but	 it	 is	 much	 more	 efficient.	 In	 particular,	 the	 number	 of	 reduction
steps	 required	 to	 evaluate	 reverse	 xs	 for	 a	 list	 of	 length	 n	 using	 the	 new
definition	is	simply	n	+	2,	and	hence	reverse	now	takes	linear	time	in	the	length
of	 its	 argument.	 For	 example,	 reversing	 a	 list	with	 ten	 thousand	 elements	will
now	take	approximately	ten	thousand	steps,	in	contrast	to	some	fifty	million	with
the	original	definition	–	quite	an	improvement!
Note	 that	 we	 have	 already	 seen	 the	 use	 of	 accumulation	 to	 improve	 the

efficiency	of	functions,	by	means	of	the	function	foldl	in	chapters	7	and	15.	For
example,	 the	accumulator	version	of	reverse	can	also	be	obtained	by	defining
reverse	=	foldl	(\xs	x	->	x:xs)	[].	However,	it	is	instructive	to	see	how
the	same	kind	of	behaviour	can	be	obtained	using	induction.
As	 another	 example	 of	 the	 elimination	 of	 append,	which	 also	 illustrates	 the

use	of	 induction	on	tree-like	 types,	consider	 the	following	type	of	binary	 trees,
together	with	a	function	that	flattens	such	trees	to	a	list:
data	Tree	=	Leaf	Int	|	Node	Tree	Tree

flatten	::	Tree	->	[Int]

flatten	(Leaf	n) =	[n]

flatten	(Node	l	r)	=	flatten	l	++	flatten	r

Because	 of	 the	 use	 of	 append,	 the	 function	flatten	 is	 inefficient.	Let	 us	 now
construct	a	more	efficient	version,	by	using	the	same	trick	as	for	reverse.	That
is,	 we	 seek	 to	 define	 a	 more	 general	 function,	 flatten’,	 that	 combines	 the
behaviours	of	the	functions	flatten	and	++:
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flatten’	t	ns	=	flatten	t	++	ns

In	order	to	prove	that	some	property	holds	for	all	trees,	the	induction	principle
for	the	type	Tree	states	that	it	is	sufficient	to	show	that	it	holds	for	all	trees	of	the
form	Leaf	n,	 and	 that	 if	 the	property	holds	 for	 any	 trees	l	 and	r,	 then	 it	 also
holds	for	Node	l	r.	Using	this	principle,	we	construct	a	definition	for	flatten’
that	satisfies	the	above	equation	as	follows.

Base	case:
flatten’	(Leaf	n)	ns

= {	specification	of	flatten’	}
flatten	(Leaf	n)	++	ns

= {	applying	flatten	}
[n]	++	ns

= {	applying	++	}
n	:	ns

Inductive	case:
flatten’	(Node	l	r)	ns

= {	specification	of	flatten’	}
(flatten	l	++	flatten	r)	++	ns

= {	associativity	of	++	}
flatten	l	++	(flatten	r	++	ns)

= {	induction	hypothesis	for	l	}
flatten’	l	(flatten	r	++	ns)

= {	induction	hypothesis	for	r	}
flatten’	l	(flatten’	r	ns)

□

We	conclude	that	the	definition
flatten’	::	Tree	->	[Int]	->	[Int]

flatten’	(Leaf	n)	ns =	n	:	ns

flatten’	(Node	l	r)	ns	=	flatten’	l	(flatten’	r	ns)

satisfies	 the	 specification	 for	 flatten’,	 and	 hence	 that	 the	 original	 function
flatten	can	now	be	redefined	as	follows:
flatten	::	Tree	->	[Int]

flatten	t	=	flatten’	t	[]

Once	 again,	 the	 new	 definition	 for	 flatten	 is	 perhaps	 less	 clear	 than	 the
original	 version,	 but	 is	 much	 more	 efficient,	 by	 using	 an	 extra	 argument	 to
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accumulate	the	final	result,	rather	than	using	append.

16.7 Compiler	correctness
We	conclude	this	chapter	with	an	extended	example.	Recall	that	in	chapter	8	we
defined	a	type	of	simple	arithmetic	expressions	built	up	from	integers	using	an
addition	operator,	 together	with	a	 function	 (here	called	eval)	 that	evaluates	an
expression	directly	to	an	integer	value:
data	Expr	=	Val	Int	|	Add	Expr	Expr

eval	::	Expr	->	Int

eval	(Val	n) =	n

eval	(Add	x	y)	=	eval	x	+	eval	y

Such	 expressions	 can	 also	 be	 evaluated	 indirectly,	 by	 means	 of	 code	 that
executes	using	a	 stack.	 In	 this	context,	 a	 stack	 is	 simply	a	 list	of	 integers,	 and
code	comprises	a	list	of	push	and	add	operations	on	the	stack:
type	Stack	=	[Int]

type	Code	=	[Op]

data	Op	=	PUSH	Int	|	ADD

deriving	Show

The	 meaning	 of	 such	 code	 is	 given	 by	 defining	 a	 function	 that	 executes	 a
piece	of	code	using	an	initial	stack	to	give	a	final	stack:

That	 is,	 the	push	operation	places	a	new	 integer	on	 the	 top	of	 the	 stack,	while
add	replaces	the	top	two	integers	by	their	sum.	Using	these	operations,	it	is	now
straightforward	 to	define	 a	 function	 that	 compiles	 an	expression	 into	 code.	An
integer	 value	 is	 compiled	 by	 simply	 pushing	 that	 value,	 while	 an	 addition	 is
compiled	 by	 first	 compiling	 the	 two	 argument	 expressions	 x	 and	 y,	 and	 then
adding	the	resulting	two	integers	on	the	stack:
comp	::	Expr	->	Code
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comp	(Val	n) =	[PUSH	n]

comp	(Add	x	y)	=	comp	x	++	comp	y	++	[ADD]

Note	that	when	an	add	operation	is	performed,	the	value	of	expression	y	will	be
the	 top	 of	 the	 stack,	 and	 the	 value	 of	 x	 will	 be	 the	 second	 top,	 hence	 the
swapping	of	these	two	values	in	the	definition	of	exec.
To	illustrate	the	behaviour	of	the	three	functions	defined	above,	if	we	consider

an	expression	that	represents	(2	+	3)	+4,	then	we	have:
>	let	e	=	Add	(Add	(Val	2)	(Val	3))	(Val	4)

>	eval	e

9

>	comp	e

[PUSH	2,	PUSH	3,	ADD,	PUSH	4,	ADD]

>	exec	(comp	e)	[]

[9]

Generalising	 from	 this	 example,	 the	 correctness	 of	 our	 compiler	 for
expressions	can	be	expressed	by	the	following	equation:

exec	(comp	e)	[]	=	[eval	e]

That	is,	compiling	an	expression	and	then	executing	the	resulting	code	using	an
empty	 initial	 stack	gives	 the	 same	 final	 stack	as	 evaluating	 the	expression	and
then	converting	the	resulting	integer	into	a	singleton	stack.	For	the	purposes	of
proving	this	result,	however,	we	will	see	that	 it	 is	necessary	to	generalise	from
the	empty	initial	stack	to	an	arbitrary	initial	stack:

exec	(comp	e)	s	=	eval	e	:	s

Using	induction	for	the	type	Expr,	which	is	the	same	as	induction	for	the	type
Tree	 in	 the	 previous	 section	 except	 that	 the	 names	 of	 the	 constructors	 are
different,	the	compiler	correctness	equation	can	be	verified	as	follows.

Base	case:
exec	(comp	(Val	n))	s

= {	applying	comp	}
exec	[PUSH	n]	s

= {	applying	exec	}
n	:	s
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= {	unapplying	eval	}
eval	(Val	n)	:	s

Inductive	case:
exec	(comp	(Add	x	y))	s

= {	applying	comp	}
exec	(comp	x	++	comp	y	++	[ADD])	s

= {	associativity	of	++	}
exec	(comp	x	++	(comp	y	++	[ADD]))	s

= {	distributivity	–	see	below	}
exec	(comp	y	++	[ADD])	(exec	(comp	x)	s)

= {	induction	hypothesis	for	x	}
exec	(comp	y	++	[ADD])	(eval	x	:	s)

= {	distributivity	again	}
exec	[ADD]	(exec	(comp	y)	(eval	x	:	s))

= {	induction	hypothesis	for	y	}
exec	[ADD]	(eval	y	:	eval	x	:	s)

= {	applying	exec	}
(eval	x	+	eval	y)	:	s

= {	unapplying	eval	}
eval	(Add	x	y)	:	s

□

Note	that	without	having	generalised	the	result	to	an	arbitrary	stack,	the	second
induction	 hypothesis	 step	would	 not	 be	 applicable,	 because	 the	 stack	 becomes
non-empty	 at	 this	 point.	 The	 distributivity	 property	 used	 in	 the	 inductive	 case
states	that	executing	two	pieces	of	code	appended	together	gives	the	same	result
as	executing	the	two	pieces	of	code	in	sequence:

exec	(c	++	d)	s	=	exec	d	(exec	c	s)

The	 proof	 of	 this	 property	 proceeds	 by	 induction	 on	 the	 code	 c,	 with	 the
inductive	case	being	split	 into	 two	separate	cases,	depending	upon	whether	 the
first	operation	in	the	code	is	a	push	or	an	add.

Base	case:
exec	([]	++	d)	s

= {	applying	++	}
exec	d	s

= {	unapplying	exec	}
exec	d	(exec	[]	s)
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Inductive	case:
exec	((PUSH	n	:	c)	++	d)	s

= {	applying	++	}
exec	(PUSH	n	:	(c	++	d))	s

= {	applying	exec	}
exec	(c	++	d)	(n	:	s)

= {	induction	hypothesis	}
exec	d	(exec	c	(n	:	s))

= {	unapplying	exec	}
exec	d	(exec	(PUSH	n	:	c)	s)

Inductive	case:
exec	((ADD	:	c)	++	d)	s

= {	applying	++	}
exec	(ADD	:	(c	++	d))	s

= {	assume	s	of	the	form	m	:	n	:	s’	}
exec	(ADD	:	(c	++	d))	(m	:	n	:	s’)

= {	applying	exec	}
exec	(c	++	d)	(n+m	:	s’)

= {	induction	hypothesis	}
exec	d	(exec	c	(n+m	:	s’))

= {	unapplying	exec	}
exec	d	(exec	(ADD	:	c)	(m	:	n	:	s’))

□

The	stack	not	having	the	assumed	form	in	the	second	inductive	case	corresponds
to	a	stack	underflow	error.	In	practice,	this	will	never	arise,	because	the	structure
of	the	compiler	ensures	that	the	stack	will	always	contain	at	least	two	integers	at
the	point	when	an	add	operation	is	performed.
In	fact,	however,	both	the	distributivity	property	and	its	consequent	underflow

issue	can	be	avoided	altogether	by	applying	the	technique	of	the	previous	section
to	 eliminate	 the	 use	 of	 append.	 In	 particular,	 we	 seek	 to	 define	 a	 generalised
function	comp’	with	the	following	property:

comp’	e	c	=	comp	e	++	c

By	induction	on	e,	we	can	construct	the	definition
comp’	::	Expr	->	Code	->	Code

comp’	(Val	n)	c =	PUSH	n	:	c

comp’	(Add	x	y)	c	=	comp’	x	(comp’	y	(ADD	:	c))
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from	which	it	follows	that	we	can	redefine	comp	e	=	comp’	e	[].	In	turn,	the
correctness	of	the	new	version	of	the	compiler	with	respect	to	our	semantics	for
expressions	can	now	be	stated	as	follows:

exec	(comp’	e	c)	s	=	exec	c	(eval	e	:	s)

That	is,	compiling	an	expression	and	then	executing	the	resulting	code	together
with	arbitrary	additional	code	gives	 the	same	result	as	executing	 the	additional
code	with	the	value	of	the	expression	on	top	of	the	original	stack.	The	proof	of
this	result	is	by	induction	on	the	expression	e.

Base	case:
exec	(comp’	(Val	n)	c)	s

= {	applying	comp’	}
exec	(PUSH	n	:	c)	s

= {	applying	exec	}
exec	c	(n:s)

= {	unapplying	eval	}
exec	c	(eval	(Val	n)	:	s)

Inductive	case:
exec	(comp’	(Add	x	y)	c)	s

= {	applying	comp’	}
exec	(comp’	x	(comp’	y	(ADD	:	c)))	s

= {	induction	hypothesis	for	x	}
exec	(comp’	y	(ADD	:	c))	(eval	x	:	s)

= {	induction	hypothesis	for	y	}
exec	(ADD	:	c)	(eval	y	:	eval	x	:	s)

= {	applying	exec	}
exec	c	((eval	x	+	eval	y)	:	s)

= {	unapplying	eval	}
exec	c	(eval	(Add	x	y)	:	s)

□

Note	 that	with	s	=	c	=	[],	 this	new	compiler	correctness	 result	simplifies	 to
exec	 (comp	 e)	 []	 =	 [eval	 e],	 our	 original	 statement	 of	 correctness.	 In
addition	to	avoiding	the	problem	of	stack	underflow	in	the	correctness	proof,	the
accumulator	 version	 of	 the	 compiler	 has	 two	 further	 benefits.	 First	 of	 all,	 it
avoids	the	use	of	++,	and	is	hence	more	efficient.	And,	secondly,	the	new	proof
is	less	than	half	the	combined	length	of	our	previous	two	proofs.	As	is	often	the
case	 in	 formal	 reasoning,	 generalising	 a	 result	 in	 the	 appropriate	 manner	 can
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considerably	simplify	its	proof.	Mathematics	is	an	excellent	tool	for	guiding	the
development	of	efficient	programs	with	simple	proofs!

16.8 Chapter	remarks
Reasoning	about	functional	programs	is	a	subject	for	a	book	in	its	own	right,	and
we	 have	 only	 touched	 the	 surface	 here.	 Topics	 for	 further	 reading	 include
reasoning	 about	 partial	 and	 infinite	 structures	 [33,	 34],	 automated	 testing	 of
program	 properties	 [35],	 reasoning	 about	 computational	 effects	 [36],	 and
techniques	 that	 avoid	 induction	 [10].	 The	 compiler	 example	 is	 adapted	 from
[37],	and	the	phrase	making	append	vanish	is	inspired	by	[38].

16.9 Exercises
1. Show	that	add	n	(Succ	m)	=	Succ	(add	n	m),	by	induction	on	n.

2. Using	this	property,	together	with	add	n	Zero	=	n,	show	that	addition	is
commutative,	add	n	m	=	add	m	n,	by	induction	on	n.

3. Using	the	following	definition	for	the	library	function	that	decides	if	all
elements	of	a	list	satisfy	a	predicate

all	p	[] =	True

all	p	(x:xs)	=	p	x	&&	all	p	xs

complete	 the	 proof	 of	 the	 correctness	 of	 replicate	 by	 showing	 that	 it
produces	a	 list	with	 identical	 elements,	all	(==	x)	(replicate	n	x),
by	induction	on	 	Hint:	show	that	the	property	is	always	True.

4. Using	the	definition

[]	++	ys =	ys

(x:xs)	++	ys	=	x	:	(xs	++	ys)

verify	the	following	two	properties,	by	induction	on	xs:

xs	++	[]	=	xs
xs	++	(ys	++	zs)	=	(xs	++	ys)	++	zs

Hint:	the	proofs	are	similar	to	those	for	the	add	function.

5. Using	the	above	definition	for	++,	together	with
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show	that	take	n	xs	++	drop	n	xs	=	xs,	by	simultaneous	induction	on
the	integer	n	--img--	0	and	the	list	xs.	Hint:	there	are	three	cases,	one	for
each	pattern	of	arguments	in	the	definitions	of	take	and	drop.

6. Given	the	type	declaration
data	Tree	=	Leaf	Int	|	Node	Tree	Tree

show	that	the	number	of	leaves	in	such	a	tree	is	always	one	greater	than
the	 number	 of	 nodes,	 by	 induction	 on	 trees.	 Hint:	 start	 by	 defining
functions	that	count	the	number	of	leaves	and	nodes	in	a	tree.

7. Verify	 the	 functor	 laws	 for	 the	Maybe	 type.	Hint:	 the	proofs	proceed	by
case	analysis,	and	do	not	require	the	use	of	induction.

8. Given	 the	 type	 and	 instance	 declarations	 below,	 verify	 the	 functor	 laws
for	the	Tree	type,	by	induction	on	trees.

data	Tree	a	=	Leaf	a	|	Node	(Tree	a)	(Tree	a)

instance	Functor	Tree	where

--	fmap	::	(a	->	b)	->	Tree	a	->	Tree	b

fmap	g	(Leaf	x) =	Leaf	(g	x)

fmap	g	(Node	l	r)	=	Node	(fmap	g	l)	(fmap	g	r)

9. Verify	the	applicative	laws	for	the	Maybe	type.
10. Verify	the	monad	laws	for	the	list	type.	Hint:	the	proofs	can	be	completed

using	simple	properties	of	list	comprehensions.
11. Given	the	equation	comp’	e	c	=	comp	e	++	c,	show	how	to	construct	the

recursive	definition	for	comp’,	by	induction	on	e.

Solutions	to	exercises	1–5	are	given	in	appendix	A.
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17

Calculating	compilers

In	 this	 final	 chapter	we	 show	 how	 the	 reasoning	 techniques	 introduced	 in	 the
previous	chapter	can	be	used	to	calculate	compilers.	We	start	by	showing	how	a
semantics	for	a	language	can	be	transformed	into	a	compiler	in	a	series	of	steps,
and	 then	 show	 how	 the	 steps	 can	 be	 combined	 to	 allow	 a	 compiler	 to	 be
calculated	directly	from	a	statement	of	its	correctness.

17.1 Introduction
The	 ability	 to	 calculate	 compilers	 has	 been	 a	 key	 objective	 in	 the	 field	 of
program	 transformation	 since	 its	 earliest	 days.	 Starting	 from	 a	 high-level
semantics	 for	 a	 source	 language,	 the	 aim	 is	 to	 transform	 the	 semantics	 into	 a
compiler	 that	 translates	 source	 programs	 into	 a	 lower-level	 target	 language,
together	with	a	virtual	machine	that	executes	the	resulting	target	programs.
There	 are	 two	main	 advantages	 of	 such	 an	 approach.	 Firstly,	 the	 compiler,

target	 language	 and	 virtual	 machine	 are	 systematically	 derived	 during	 the
transformation	process,	 rather	 than	having	 to	be	manually	defined	by	 the	user.
And	secondly,	the	resulting	compiler	and	virtual	machine	do	not	usually	require
subsequent	proofs	of	correctness,	as	they	are	correct	by	construction.
In	chapter	16	we	presented	a	compiler	for	arithmetic	expressions,	and	proved

its	 correctness.	 In	 this	 chapter	 we	 show	 how	 the	 compiler	 can	 be	 calculated
directly	 from	 a	 statement	 of	 its	 correctness.	We	 develop	 our	 approach	 in	 two
stages,	 first	 introducing	 the	 basic	 ideas	 using	 a	 series	 of	 transformation	 steps,
and	then	showing	how	the	separate	steps	can	be	combined	into	a	single	step.	For
simplicity,	 we	 restrict	 our	 attention	 to	 arithmetic	 expressions,	 but	 the	 same
techniques	 can	 also	 be	 used	 to	 calculate	 compilers	 for	 more	 sophisticated
languages.

17.2 Syntax	and	semantics
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We	 start	 in	 the	 same	 manner	 as	 the	 compiler	 correctness	 example	 from	 the
previous	chapter,	with	two	definitions	that	respectively	capture	the	syntax	(form)
and	semantics	(meaning)	of	a	simple	language	of	arithmetic	expressions	built	up
from	integer	values	using	an	addition	operator:
data	Expr	=	Val	Int	|	Add	Expr	Expr

eval	::	Expr	->	Int

eval	(Val	n)	=	n

eval	(Add	x	y)	=	eval	x	+	eval	y

For	example,	the	expression	1	+	2	can	be	evaluated	as	follows:
eval	(Add	(Val	1)	(Val	2))

= {	applying	eval	}
eval	(Val	1)	+	eval	(Val	2)

= {	applying	the	first	eval	}
1	+	eval	(Val	2)

= {	applying	eval	}
1	+	2

= {	applying	+	}
3

We	now	 show	how	 to	 calculate	 a	 compiler	 based	 on	 this	 semantics	 using	 a
series	of	three	transformation	steps.	The	first	two	steps	generalise	the	evaluation
function,	and	the	final	step	simplifies	the	resulting	definitions.

17.3 Adding	a	stack
The	 first	 step	 is	 to	 transform	 the	 evaluation	 function	 eval	 into	 a	 version	 that
utilises	a	stack,	in	order	to	make	the	manipulation	of	argument	values	explicit.	In
particular,	 rather	 than	returning	a	single	value	of	 type	Int,	we	seek	to	define	a
more	 general	 evaluation	 function,	 eval’,	 that	 takes	 a	 stack	 of	 integers	 as	 an
additional	argument,	and	returns	a	modified	stack	given	by	pushing	the	value	of
the	expression	onto	the	top	of	the	stack.	More	precisely,	if	we	represent	a	stack
as	a	list	of	integers	(where	the	head	is	the	top	element)
type	Stack	=	[Int]

then	we	seek	to	define	a	function
eval’	::	Expr	->	Stack	->	Stack
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with	the	following	property:

eval’	e	s	=	eval	e	:	s

Rather	 than	 first	 defining	 eval’	 and	 then	 proving	 by	 induction	 on	 the
expression	e	that	it	satisfies	the	above	equation,	we	use	the	technique	introduced
in	 the	 previous	 chapter	 and	 calculate	 a	 definition	 for	 eval’	 that	 satisfies	 this
equation,	using	the	desire	to	apply	the	induction	hypotheses	as	the	driving	force
for	the	calculation	process.	In	the	base	case,	Val	n,	the	calculation	is	easy:

eval’	(Val	n)	s

= {	specification	of	eval’	}
eval	(Val	n)	:	s

= {	applying	eval	}
n	:	s

= {	define:	push	n	s	=	n	:	s	}
push	n	s

Note	that	in	the	final	step	we	defined	an	auxiliary	function,	push,	 that	captures
the	idea	of	pushing	a	number	onto	the	stack.	With	the	above	calculation,	we	have
discovered	the	definition	of	eval’	for	expressions	of	the	form	Val	n:
eval’	(Val	n)	s	=	push	n	s

In	the	inductive	case,	Add	x	y,	we	proceed	as	follows:
eval’	(Add	x	y)	s

= {	specification	of	eval’	}
eval	(Add	x	y)	:	s

= {	applying	eval	}
(eval	x	+	eval	y)	:	s

Now	we	appear	to	be	stuck,	as	no	further	definitions	can	be	applied.	However,	as
we	are	performing	an	 inductive	 calculation,	we	can	make	use	of	 the	 induction
hypotheses	for	the	two	argument	expressions	x	and	y,	namely:

eval’	x	s’	=	eval	x	:	s’

eval’	y	s’	=	eval	y	:	s’

In	order	to	use	these	hypotheses,	it	is	clear	that	we	must	push	the	values	eval
x	 and	 eval	 y	 onto	 the	 stack,	 which	 can	 readily	 be	 achieved	 by	 introducing
another	 auxiliary	 function,	 add,	 that	 captures	 the	 idea	 of	 adding	 the	 top	 two
numbers	on	the	stack.	The	remainder	of	the	calculation	is	then	straightforward:
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(eval	x	+	eval	y)	:	s

= {	define:	add	(m	:	n	:	s)	=	n+m	:	s	}
add	(eval	y	:	eval	x	:	s)

= {	induction	hypothesis	for	x	}
add	(eval	y	:	eval’	x	s)

= {	induction	hypothesis	for	y	}
add	(eval’	y	(eval’	x	s))

□

Note	 that	 pushing	eval	x	 onto	 the	 stack	 before	eval	y	 above	 corresponds	 to
addition	evaluating	 its	arguments	 from	left-to-right.	 It	would	be	perfectly	valid
to	push	the	values	in	the	opposite	order,	which	would	correspond	to	right-to-left
evaluation.	In	conclusion,	we	have	calculated	the	following	definition
eval’	::	Expr	->	Stack	->	Stack

eval’	(Val	n)	s	=	push	n	s

eval’	(Add	x	y)	s	=	add	(eval’	y	(eval’	x	s))

where:
push	::	Int	->	Stack	->	Stack

push	n	s	=	n	:	s

add	::	Stack	->	Stack

add	(m	:	n	:	s)	=	n+m	:	s

Finally,	our	original	evaluation	function	eval	can	now	be	recovered	from	our
new	function	by	substituting	the	empty	stack	s	=	[]	into	the	equation	eval’	e	s
=	eval	e	:	s	from	which	eval’	was	constructed,	and	selecting	the	unique	value
in	the	resulting	singleton	stack	using	the	function	head:
eval	::	Expr	->	Int

eval	e	=	head	(eval’	e	[])

For	 example,	 using	 this	 new	 definition	 evaluation	 of	 1+2	 now	 proceeds	 by
pushing	the	two	values	onto	the	stack	prior	adding	them	together:

eval	(Add	(Val	1)	(Val	2))

= {	applying	eval	}
head	(eval’	(Add	(Val	1)	(Val	2))	[])

= {	applying	eval’	}
head	(add	(eval’	(Val	2)	(eval’	(Val	1)	[])))

= {	applying	the	inner	eval’	}
head	(add	(eval’	(Val	2)	(push	1	[])))
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= {	applying	eval’	}
head	(add	(push	2	(push	1	[])))

= {	applying	push	}
head	(add	(2	:	1	:	[]))

= {	applying	add	}
head	(3	:	[])

= {	applying	head	}
3

17.4 Adding	a	continuation
The	 next	 step	 is	 to	 transform	 the	 stack-based	 evaluation	 function	 eval’	 into
continuation-passing	 style,	 in	 order	 to	 make	 the	 flow	 of	 control	 explicit.	 In
particular,	we	 seek	 to	 define	 a	more	 general	 evaluation	 function,	 eval’’,	 that
takes	 a	 function	 from	 stacks	 to	 stacks	 (the	 continuation)	 as	 an	 additional
argument,	 which	 is	 used	 to	 process	 the	 stack	 that	 results	 from	 evaluating	 the
expression.	More	precisely,	if	we	define	a	type	for	continuations
type	Cont	=	Stack	->	Stack

then	we	seek	to	define	a	function
eval’’	::	Expr	->	Cont	->	Cont

such	that:

eval’’	e	c	s	=	c	(eval’	e	s)

We	calculate	the	definition	for	eval’’	directly	from	this	equation	by	induction
on	the	expression	e.	The	base	case	is	once	again	easy,

eval’’	(Val	n)	c	s

= {	specification	of	eval’’	}
c	(eval’	(Val	n)	s)

= {	applying	eval’	}
c	(push	n	s)

while	for	the	inductive	case	we	calculate	as	follows:
eval’’	(Add	x	y)	c	s

= {	specification	of	eval’’	}
c	(eval’	(Add	x	y)	s)

= {	applying	eval’	}
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c	(add	(eval’	y	(eval’	x	s)))

= {	unapplying	.	}
(c	.	add)	(eval’	y	(eval’	x	s))

= {	induction	hypothesis	for	y	}
eval’’	y	(c	.	add)	(eval’	x	s)

= {	induction	hypothesis	for	x	}
eval’’	x	(eval’’	y	(c	.	add))	s

□

In	conclusion,	we	have	calculated	the	following	definition:
eval’’	::	Expr	->	Cont	->	Cont

eval’’	(Val	n)	c	s	=	c	(push	n	s)

eval’’	(Add	x	y)	c	s	=	eval’’	x	(eval’’	y	(c	.	add))	s

Our	previous	evaluation	function	eval’	can	now	be	recovered	by	substituting
the	identity	continuation	c	=	id	into	the	equation	eval’’	e	c	s	=	c	(eval’	e
s)	from	which	the	function	eval’’	was	constructed:
eval’	::	Expr	->	Cont

eval’	e	s	=	eval’’	e	id	s

For	 example,	 evaluation	 of	 1	 +	 2	 now	 proceeds	 by	 transferring	 control	 to
evaluation	of	the	second	argument	once	evaluation	of	the	first	has	completed:

eval’	(Add	(Val	1)	(Val	2))	[]

= {	applying	eval’	}
eval’’	(Add	(Val	1)	(Val	2))	id	[]

= {	applying	eval’’	}
eval’’	(Val	1)	(eval’’	(Val	2)	(id	.	add))	[]

= {	applying	the	outer	eval’’	}
eval’’	(Val	2)	(id	.	add)	(push	1	[])

= {	applying	eval’’	}
(id	.	add)	(push	2	(push	1	[]))

= {	applying	.	}
id	(add	(push	2	(push	1	[])))

= {	applying	push	}
id	(add	(2	:	1	:	[]))

= {	applying	add	}
id	[3]

= {	applying	id	}
[3]
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17.5 Defunctionalising
The	 third	and	 final	 step	 is	 to	 transform	 the	evaluation	 function	back	 into	 first-
order	 style,	using	defunctionalisation.	 In	particular,	 rather	 than	using	 functions
of	 type	 Cont	 =	 Stack	 ->	 Stack	 for	 continuations	 passed	 as	 arguments	 and
returned	 as	 results,	we	 define	 a	 new	 type	 that	 represents	 the	 specific	 forms	 of
continuations	that	we	actually	need	for	our	evaluation	function.
Within	 the	 definitions	 for	 eval’	 and	 eval’’,	 there	 are	 only	 three	 forms	 of

continuations	 that	 are	 used,	 namely	 one	 to	 halt	 the	 evaluation	 process,	 one	 to
push	a	number	onto	the	top	of	the	stack,	and	one	to	add	the	top	two	numbers	on
the	stack.	We	begin	by	separating	out	these	three	forms,	by	giving	them	names
and	passing	their	variables	as	parameters.	That	 is,	we	define	three	combinators
for	constructing	the	required	forms	of	continuations:
haltC	::	Cont

haltC	=	id

pushC	::	Int	->	Cont	->	Cont

pushC	n	c	=	c	.	push	n

addC	::	Cont	->	Cont

addC	c	=	c	.	add

Using	these	combinators,	our	evaluators	can	now	be	rewritten	as	follows:
eval’	::	Expr	->	Cont

eval’	e	=	eval’’	e	haltC

eval’’	::	Expr	->	Cont	->	Cont

eval’’	(Val	n)	c	=	pushC	n	c

eval’’	(Add	x	y)	c	=	eval’’	x	(eval’’	y	(addC	c))

It	 is	 easy	 to	 check	 by	 expanding	 definitions	 that	 these	 are	 equivalent	 to	 the
previous	versions.	The	next	stage	 in	applying	defunctionalisation	 is	 to	define	a
new	type,	Code,	whose	constructors	represent	the	three	combinators:
data	Code	=	HALT	|	PUSH	Int	Code	|	ADD	Code

deriving	Show

The	 constructors	 of	 this	 type	 have	 the	 same	 types	 as	 the	 corresponding
combinators,	except	that	the	new	type	Code	now	plays	the	role	of	Cont:
HALT	::	Code

PUSH	::	Int	->	Code	->	Code
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ADD	::	Code	->	Code

The	name	Code	for	the	type	reflects	the	fact	that	its	values	represent	code	for	a
virtual	machine	that	evaluates	expressions	using	a	stack.	For	example,	the	code
PUSH	1	(PUSH	2	(ADD	HALT))	corresponds	to	the	expression	1	+	2.	The	fact	that
values	 of	 type	 Code	 represent	 continuations	 of	 type	 Cont	 is	 formalised	 by
defining	a	function	that	maps	from	one	to	the	other:
exec	::	Code	->	Cont

exec	HALT	=	haltC

exec	(PUSH	n	c)	=	pushC	n	(exec	c)

exec	(ADD	c)	=	addC	(exec	c)

In	turn,	we	then	simplify	the	definition	for	exec	by	expanding	out	the	definitions
for	the	type	Cont	and	its	three	combinators.

HALT	case:
exec	HALT	s

= {	applying	exec	}
haltC	s

= {	applying	haltC	}
id	s

= {	applying	id	}
s

PUSH	case:
exec	(PUSH	n	c)	s

= {	applying	exec	}
pushC	n	(exec	c)	s

= {	applying	pushC	}
(exec	c	.	push	n)	s

= {	applying	.	}
exec	c	(push	n	s)

= {	applying	push	}
exec	c	(n	:	s)

ADD	case:
exec	(ADD	c)	s

= {	applying	exec	}
addC	(exec	c)	s

= {	applying	addC	}
(exec	c	.	add)	s
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= {	applying	.	}
exec	c	(add	s)

= {	assume	s	of	the	form	m	:	n	:	s’	}
exec	c	(add	(m	:	n	:	s’))

= {	applying	add	}
exec	c	(n+m	:	s’)

□

In	conclusion,	we	have	calculated	the	following	definition:

That	is,	exec	is	a	function	that	executes	code	using	an	initial	stack	to	give	a	final
stack.	In	other	words,	exec	is	a	virtual	machine	for	executing	code.
Finally,	 defunctionalisation	 itself	 now	 proceeds	 by	 simply	 replacing

occurrences	 of	 the	 combinations	 haltC,	 pushC	 and	 addC	 in	 the	 evaluation
functions	eval’	and	eval’’	by	their	respective	counterparts	HALT,	PUSH	and	ADD
from	the	type	Code,	which	results	in	the	following	two	new	definitions:
comp	::	Expr	->	Code

comp	e	=	comp’	e	HALT

comp’	::	Expr	->	Code	->	Code

comp’	(Val	n)	c	=	PUSH	n	c

comp’	(Add	x	y)	c	=	comp’	x	(comp’	y	(ADD	c))

That	 is,	we	 have	 now	 derived	 a	 function	 comp	 that	 compiles	 an	 expression	 to
code,	which	 is	 itself	defined	 in	 terms	of	an	auxiliary	 function	comp’	 that	 takes
additional	code	as	an	extra	argument.	This	is	essentially	the	same	compiler	that
we	developed	 in	 the	 previous	 chapter,	 except	 that	 all	 the	 required	 compilation
machinery	—	compiler,	 target	 language	 and	 virtual	machine	—	has	 now	been
systematically	derived	from	a	semantics	for	the	source	language	using	equational
reasoning.	The	only	difference	is	that	rather	than	representing	code	as	a	list,	we
now	have	a	dedicated	recursive	type	for	code.	For	example,	[PUSH	1,	PUSH	2,
ADD]	is	now	written	as	PUSH	1	(PUSH	2	(ADD	HALT)).
The	correctness	of	 the	 compilation	 functions	comp	 and	comp’	 is	 captured	by

the	following	two	equations,	which	are	consequences	of	defunctionalisation,	or
can	be	verified	by	simple	inductive	proofs	on	the	expression	argument:
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exec	(comp	e)	s	=	eval’	e	s

exec	(comp’	e	c)	s	=	eval’’	e	(exec	c)	s

Expanding	 the	 right-hand	 sides	 of	 these	 equations	 using	 the	 original
specifications	for	the	functions	eval’	and	eval’’,	we	obtain	the	same	compiler
correctness	equations	that	were	used	in	the	previous	chapter:

exec	(comp	e)	s	=	eval	e	:	s

exec	(comp’	e	c)	s	=	exec	c	(eval	e	:	s)

17.6 Combining	the	steps
We	have	now	shown	how	an	evaluation	function	for	arithmetic	expressions	can
be	transformed	into	a	compiler	using	a	systematic	three-step	process:

1. calculate	a	generalised	evaluation	function	that	uses	a	stack;

2. calculate	a	further	generalised	version	that	uses	a	continuation;

3. defunctionalise	to	produce	a	compiler	and	a	virtual	machine.

However,	there	appear	to	be	some	opportunities	for	simplifying	this	process.	In
particular,	 steps	 1	 and	 2	 both	 calculate	 generalised	 versions	 of	 the	 original
evaluation	 function.	 Could	 these	 steps	 be	 combined	 to	 avoid	 the	 need	 for
separate	generalisation	steps?	In	turn,	step	2	introduces	the	use	of	continuations,
which	are	 then	immediately	removed	in	step	3.	Could	these	steps	be	combined
the	 avoid	 the	 need	 for	 continuations?	 In	 fact,	 it	 turns	 out	 that	 all	 the
transformation	steps	can	be	combined	together.	This	section	shows	how	this	can
be	achieved,	and	explains	the	benefits	that	result	from	doing	so.
In	order	to	simplify	the	above	stepwise	process,	let	us	first	consider	the	types

and	functions	that	are	involved	in	the	process	in	more	detail.	We	started	off	by
defining	a	type	Expr	that	represents	the	syntax	of	the	source	language,	together
with	an	evaluation	function	eval	::	Expr	->	Int	that	provides	a	semantics	for
the	language,	and	a	type	Stack	that	represents	a	stack	of	integer	values.	Then	we
derived	four	additional	components:

a	type	Code	that	represents	code	for	the	virtual	machine;
a	function	comp	::	Expr	->	Code	that	compiles	expressions	to	code;
a	function	comp’	::	Expr	->	Code	->	Code	with	a	code	argument;
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a	function	exec	::	Code	->	Stack	->	Stack	that	executes	code.

Moreover,	 the	 relationships	 between	 the	 semantics,	 compilers	 and	 virtual
machine	were	captured	by	the	following	two	correctness	equations:

exec	(comp	e)	s	=	eval	e	:	s

exec	(comp’	e	c)	s	=	exec	c	(eval	e	:	s)

The	key	 to	combining	 the	 transformation	steps	 is	 to	use	 these	 two	equations
directly	 as	 a	 specification	 for	 the	 four	 additional	 components,	 from	which	we
then	 aim	 to	 calculate	 definitions	 that	 satisfy	 the	 specification.	 Given	 that	 the
equations	 involve	 three	 known	 definitions	 (Expr,	 eval	 and	 Stack)	 and	 four
unknown	 definitions	 (Code,	 comp,	 comp’	 and	 exec),	 this	 may	 seem	 like	 an
impossible	 task.	However,	with	 the	 benefit	 of	 the	 experience	 gained	 from	 our
earlier	calculations	in	the	previous	sections,	it	turns	out	to	be	straightforward.
We	begin	with	the	correctness	equation	for	comp’,	and	proceed	by	induction

on	 the	 expression	 e.	 In	 each	 case,	 we	 aim	 to	 rewrite	 the	 left-hand	 side	 exec
(comp’	e	c)	s	of	the	equation	into	the	form	exec	c’	s	for	some	code	c’,	from
which	we	 can	 then	 conclude	 that	 the	 definition	comp’	e	c	=	c’	 satisfies	 the
specification	 in	 this	 case.	 In	 order	 to	 do	 this	 we	 will	 find	 that	 we	 need	 to
introduce	new	constructors	into	the	Code	type,	along	with	their	interpretation	by
the	function	exec.	In	the	base	case,	Val	n,	we	proceed	as	follows:

exec	(comp’	(Val	n)	c)	s

= {	specification	of	comp’	}
exec	c	(eval	(Val	n)	:	s)

= {	applying	eval	}
exec	c	(n	:	s)

Now	we	appear	to	be	stuck,	as	no	further	definitions	can	be	applied.	However,
recall	that	we	are	aiming	to	end	up	with	a	term	of	the	form	exec	c’	s	for	some
code	c’.	Hence,	to	complete	the	calculation	we	need	to	solve	the	equation:

exec	c’	s	=	exec	c	(n	:	s)

Note	that	we	can’t	simply	use	this	equation	as	a	definition	for	exec,	because	the
variables	n	and	c	would	be	unbound	in	the	body	of	the	definition.	The	solution	is
to	package	these	 two	variables	up	in	 the	code	argument	c’	by	means	of	a	new
constructor	in	the	Code	type	that	takes	these	variables	as	arguments,
PUSH	::	Int	->	Code	->	Code
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and	define	a	new	equation	for	exec	as	follows:
exec	(PUSH	n	c)	s	=	exec	c	(n	:	s)

That	is,	executing	the	code	PUSH	n	c	proceeds	by	pushing	the	value	n	onto	the
stack	and	then	executing	the	code	c,	hence	the	choice	of	 the	name	for	 the	new
constructor.	Using	these	ideas,	it	is	now	easy	to	complete	the	calculation:

exec	c	(n	:	s)

= {	unapplying	exec	}
exec	(PUSH	n	c)	s

The	final	term	now	has	the	form	exec	c’	s,	where	c’	=	PUSH	n	c,	from	which
we	conclude	that	the	specification	is	satisfied	in	the	base	case	by	defining:
comp’	(Val	n)	c	=	PUSH	n	c

For	the	inductive	case,	Add	x	y,	we	begin	in	the	same	way	as	above	by	first
applying	the	specification	and	the	definition	of	the	evaluation	function:

exec	(comp’	(Add	x	y)	c)	s

= {	specification	of	comp’	}
exec	c	(eval	(Add	x	y)	:	s)

= {	applying	eval	}
exec	c	(eval	x	+	eval	y	:	s)

Once	 again	 we	 appear	 to	 be	 stuck,	 as	 no	 further	 definitions	 can	 be	 applied.
However,	as	we	are	performing	an	inductive	calculation,	we	can	make	use	of	the
induction	hypotheses	for	the	two	argument	expressions	x	and	y,	namely

exec	(comp’	x	c’)	s’	=	exec	c’	(eval	x	:	s’)

exec	(comp’	y	c’)	s’	=	exec	c’	(eval	y	:	s’)

In	order	to	use	these	hypotheses,	it	is	clear	that	we	must	push	the	values	eval	x
and	eval	y	 onto	 the	 stack,	by	 transforming	 the	 term	 that	we	are	manipulating
into	the	form	exec	c’	(eval	y	:	eval	x	:	s)	for	some	code	c’.	That	is,	we
need	to	solve	the	following	equation:

exec	c’	(eval	y	:	eval	x	:	s)	=	exec	c	(eval	x	+	eval	y	:	s)

First	of	all,	we	generalise	from	specific	values	eval	x	and	eval	y	to	give:

exec	c’	(m	:	n	:	s)	=	exec	c	(n+m	:	s)

Once	 again,	 however,	we	 can’t	 use	 this	 equation	 as	 a	 definition	 for	exec,	 this

295



time	because	the	variable	c	is	unbound.	The	solution	is	to	package	this	variable
up	in	the	code	argument	c’	by	means	of	a	new	constructor	in	the	Code	type
ADD	::	Code	->	Code

and	define	a	new	equation	for	exec	as	follows:
exec	(ADD	c)	(m	:	n	:	s)	=	exec	c	(n+m	:	s)

That	is,	executing	the	code	ADD	c	proceeds	by	adding	the	top	two	values	on	the
stack	and	then	executing	the	code	c,	hence	the	choice	of	 the	name	for	 the	new
constructor.	Using	these	ideas,	it	is	now	easy	to	complete	the	calculation:

exec	c	(eval	x	+	eval	y	:	s)

= {	unapplying	exec	}
exec	(ADD	c)	(eval	y	:	eval	x	:	s)

= {	induction	hypothesis	for	y	}
exec	(comp’	y	(ADD	c))	(eval	x	:	s)

= {	induction	hypothesis	for	x	}
exec	(comp’	x	(comp’	y	(ADD	c)))	s

The	final	 term	now	has	the	form	exec	c’	s,	 from	which	we	conclude	that	 the
specification	is	satisfied	in	the	inductive	case	by	defining:
comp’	(Add	x	y)	c	=	comp’	x	(comp’	y	(ADD	c))

□

Note	that	as	in	our	earlier	calculation	of	the	stack-based	evaluator,	we	chose	to
transform	the	stack	into	the	form	eval	y	:	eval	x	:	s.	We	could	equally	well
have	 chosen	 the	 opposite	 order,	 eval	 x	 :	 eval	 y	 :	 s,	 which	 would	 have
resulted	 in	 right-to-left	 evaluation	 for	 Add.	 We	 have	 this	 freedom	 in	 the
calculation	because	the	semantics	defined	by	eval	does	not	specify	an	evaluation
order.
Finally,	 we	 complete	 the	 development	 of	 our	 compiler	 by	 considering	 the

function	comp	::	Expr	->	Code	specified	by	the	equation	exec	(comp	e)	s	=
eval	e	:	s.	In	a	similar	manner	to	above,	we	aim	to	rewrite	the	left-hand	side
exec	(comp	e)	s	of	the	equation	into	the	form	exec	c	s	for	some	code	c,	from
which	 we	 can	 then	 conclude	 that	 the	 definition	 comp	 e	 =	 c	 satisfies	 the
specification.	In	this	case	there	is	no	need	to	use	induction	as	simple	calculation
suffices,	during	which	we	introduce	a	new	constructor	HALT	::	Code	in	order	to
transform	the	term	being	manipulated	into	the	required	form:

exec	(comp	e)	s
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= {	specification	of	comp	}
eval	e	:	s

= {	define:	exec	HALT	s	=	s	}
exec	HALT	(eval	e	:	s)

= {	specification	of	comp’	}
exec	(comp’	e	HALT)	s

□

In	conclusion,	we	have	calculated	the	following	definitions:
data	Code	=	HALT	|	PUSH	Int	Code	|	ADD	Code

comp	::	Expr	->	Code

comp	e	=	comp’	e	HALT

comp’	::	Expr	->	Code	->	Code

comp’	(Val	n)	c	=	PUSH	n	c

comp’	(Add	x	y)	c	=	comp’	x	(comp’	y	(ADD	c))

exec	::	Code	->	Stack	->	Stack

exec	HALT	s	=	s

exec	(PUSH	n	c)	s	=	exec	c	(n	:	s)

exec	(ADD	c)	(m	:	n	:	s)	=	exec	c	(n+m	:	s)

These	are	precisely	the	same	definitions	as	we	produced	in	the	previous	section,
except	 that	 they	 have	 now	 been	 calculated	 directly	 from	 a	 specification	 of
compiler	 correctness,	 rather	 than	 indirectly	 by	 means	 of	 a	 series	 of	 separate
transformation	steps.	Moreover,	 the	combined	approach	also	has	 the	advantage
that	it	only	uses	simple	equational	reasoning	techniques.	In	particular,	the	use	of
continuations	and	defunctionalisation	is	no	longer	required!

17.7 Chapter	remarks
Further	details	about	calculating	compilers	can	be	found	in	[39],	upon	which	this
chapter	 is	 based.	 This	 article	 shows	 how	 the	 same	 approach	 can	 be	 used	 to
calculate	compilers	for	a	wide	range	of	programming	language	features	and	their
combination,	 including	 arithmetic	 expressions,	 exceptions,	 state	 and	 various
forms	 of	 lambda	 calculi.	 A	 similar	 approach	 can	 also	 be	 used	 to	 calculate
abstract	machines	[40],	such	as	the	example	from	chapter	8.
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17.8 Exercises
1. Suppose	 that	 we	 extend	 the	 language	 of	 arithmetic	 expressions	 with

simple	primitives	for	throwing	and	catching	an	exception,	as	follows:
data	Expr	=	Val	Int

|	Add	Expr	Expr

|	Throw

|	Catch	Expr	Expr

Informally,	Catch	x	h	behaves	as	the	expression	x	unless	evaluation	of	x
throws	 an	 exception,	 in	 which	 case	 the	 catch	 behaves	 as	 the	 handler
expression	h.	An	exception	is	thrown	if	evaluation	of	Throw	is	attempted.
To	define	a	semantics	for	this	extended	language,	we	first	recall	the	Maybe
type:

data	Maybe	a	=	Nothing	|	Just	a

That	is,	a	value	of	type	Maybe	a	is	either	Nothing,	which	we	view	here	as
an	exceptional	value,	or	has	the	form	Just	x,	which	we	view	as	a	normal
value.	 Using	 this	 type,	 our	 original	 evaluation	 function	 for	 expressions
can	be	rewritten	to	take	account	of	exceptions	as	follows:

Using	the	approach	described	in	this	chapter,	calculate	a	compiler	for	this
language.	Hint:	this	is	a	challenging	exercise!

A	solution	to	exercise	1	is	given	in	appendix	A.
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Appendix	A

Selected	solutions

In	 this	 appendix	 we	 present	 model	 solutions	 to	 selected	 exercises	 for	 each
chapter.	 If	solutions	are	being	tested	out	using	GHCi,	note	 that	some	functions
may	 need	 to	 be	 renamed	 to	 avoid	 clashing	 with	 built-in	 functions	 from	 the
standard	prelude.	For	example,	product	could	be	renamed	to	myproduct.

A.1 Introduction

Exercise	1
double	(double	2)

= {	applying	the	inner	double	}
double	(2	+	2)

= {	applying	double	}
(2	+	2)	+	(2	+	2)

= {	applying	the	first	+	}
4	+	(2	+	2)

= {	applying	the	second	+	}
4	+	4

= {	applying	+	}
8

or
double	(double	2)

= {	applying	the	outer	double	}
(double	2)	+	(double	2)

= {	applying	the	second	double	}
(double	2)	+	(2	+	2)

= {	applying	the	second	+	}
(double	2)	+	4

= {	applying	double	}
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(2	+	2)	+	4

= {	applying	the	first	+	}
4	+	4

= {	applying	+	}
8

There	are	a	number	of	other	possible	answers.

Exercise	2
sum	[x]

= {	applying	sum	}
x	+	sum	[]

= {	applying	sum	}
x	+	0

= {	applying	+	}
x

Exercise	3
product	[]	=	1

product	(n:ns)	=	n	*	product	ns

For	example:
product	[2,3,4]

= {	applying	product	}
2	*	(product	[3,4])

= {	applying	product	}
2	*	(3	*	product	[4])

= {	applying	product	}
2	*	(3	*	(4	*	product	[]))

= {	applying	product	}
2	*	(3	*	(4	*	1))

= {	applying	*	}
24

A.2 First	steps
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Exercise	2
(2^3)*4

(2*3)+(4*5)

2+(3*(4^5))

Exercise	3
n	=	a	‘div‘	length	xs

where

a	=	10

xs	=	[1,2,3,4,5]

Exercise	4
last	xs	=	head	(reverse	xs)

or
last	xs	=	xs	!!	(length	xs	-	1)

A.3 Types	and	classes

Exercise	1
[’a’,’b’,’c’]	::	[Char]

(’a’,’b’,’c’)	::	(Char,Char,Char)

[(False,’O’),(True,’1’)]	::	[(Bool,Char)]

([False,True],[’0’,’1’])	::	([Bool],[Char])

[tail,	init,	reverse]	::	[[a]	->	[a]]
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Exercise	2
bools	=	[False,True]

nums	=	[[1,2],[3,4],[5,6]]

add	x	y	z	=	x+y+z

copy	x	=	(x,x)

apply	f	x	=	f	x

There	are	a	number	of	other	possible	answers	for	bools,	nums	and	add.

A.4 Defining	functions

Exercise	1
halve	xs	=	(take	n	xs,	drop	n	xs)

where	n	=	length	xs	‘div‘	2

or
halve	xs	=	splitAt	(length	xs	‘div‘	2)	xs

Exercise	2
third	xs	=	head	(tail	(tail	xs))

third	xs	=	xs	!!	2

third	(_:_:x:_)	=	x

Exercise	3
safetail	xs	=	if	null	xs	then	[]	else	tail	xs
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safetail	[]	=	[]

safetail	(_:xs)	=	xs

Exercise	4
False	||	False	=	False

False	||	True	=	True

True	||	False	=	True

True	||	True	=	True

False	||	False	=	False

_	||	_	=	True

False	||	b	=	b

True	||	_	=	True

A.5 List	comprehensions

Exercise	1
sum	[x^2	|	x	<-	[1..100]]

Exercise	2
grid	m	n	=	[(x,y)	|	x	<-	[0..m],	y	<-	[0..n]]

Exercise	3
square	n	=	[(x,y)	|	(x,y)	<-	grid	n	n,	x	/=	y]
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Exercise	4
replicate	n	x	=	[x	|	_	<-	[1..n]]

Exercise	5

A.6 Recursive	functions

Exercise	1
The	function	does	not	 terminate,	because	each	application	of	fac	decreases	the
argument	by	one,	and	hence	the	base	case	is	never	reached.
fac	0	=	1

fac	n	|	n	>	0	=	n	*	fac	(n-1)

Exercise	2
sumdown	0	=	0

sumdown	n	=	n	+	sumdown	(n-1)

Exercise	3
(^)	::	Int	->	Int	->	Int

m	^	0	=	1

m	^	n	=	m	*	(m	^	(n-1))

For	example:
2	^	3

= {	applying	^	}
2	*	(2	^	2)
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= {	applying	^	}
2	*	(2	*	(2	^	1))

= {	applying	^	}
2	*	(2	*	(2	*	(2	^	0)))

= {	applying	^	}
2	*	(2	*	(2	*	1))

= {	applying	*	}
8

Exercise	4

A.7 Higher-order	functions

Exercise	1
map	f	(filter	p	xs)

Exercise	2
all	p	=	and	.	map	p

any	p	=	or	.	map	p

Exercise	3
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map	f	=	foldr	(\x	xs	->	f	x	:	xs)	[]

filter	p	=	foldr	(\x	xs	->	if	p	x	then	x:xs	else	xs)	[]

Exercise	4
dec2int	=	foldl	(\x	y	->	10*x	+	y)	0

Exercise	5
curry	::	((a,b)	->	c)	->	(a	->	b	->	c)

curry	f	=	\x	y	->	f	(x,y)

uncurry	::	(a	->	b	->	c)	->	((a,b)	->	c)

uncurry	f	=	\(x,y)	->	f	x	y

A.8 Declaring	types	and	classes

Exercise	1
mult	m	Zero	=	Zero

mult	m	(Succ	n)	=	add	m	(mult	m	n)

Exercise	2

This	version	is	more	efficient	because	it	only	requires	one	comparison	between	x
and	y	for	each	node,	whereas	the	previous	version	may	require	two.

Exercise	3
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leaves	(Leaf	_)	=	1

leaves	(Node	l	r)	=	leaves	l	+	leaves	r

Exercise	4

A.9 The	countdown	problem

Exercise	1
choices	xs	=	[zs	|	ys	<-	subs	xs,	zs	<-	perms	ys]

Exercise	2

Exercise	3
It	 would	 lead	 to	 non-termination,	 because	 recursive	 calls	 to	 exprs	 would	 no
longer	be	guaranteed	to	reduce	the	length	of	the	list.

307



A.10 Interactive	programming

Exercise	1
putStr	xs	=	sequence_	[putChar	x	|	x	<-	xs]

Exercise	2

Exercise	3
putBoard	b	=	sequence_	[putRow	r	n	|	(r,n)	<-	zip	[1..]	b]

A.11 Unbeatable	tic-tac-toe

Exercise	1
Using	the	definitions
nodes	::	Tree	a	->	Int

nodes	(Node	_	ts)	=	1	+	sum	(map	nodes	ts)

mydepth	::	Tree	a	->	Int

mydepth	(Node	_	[])	=	0

mydepth	(Node	_	ts)	=	1	+	maximum	(map	mydepth	ts)

we	have:
>	let	tree	=	gametree	empty	O

>	nodes	tree
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549946

>	mydepth	tree

9

Exercise	2
import	System.Random	hiding	(next)

Note	that	the	function	next	from	the	imported	library	is	hidden	to	avoid	clashing
with	our	next	function	on	player	values.

A.12 Monads	and	more

Exercise	1
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instance	Functor	Tree	where

--	fmap	::	(a	->	b)	->	Tree	a	->	Tree	b

fmap	g	Leaf	=	Leaf

fmap	g	(Node	l	x	r)	=	Node	(fmap	g	l)	(g	x)	(fmap	g	r)

Exercise	2
instance	Functor	((->)	a)	where

--	fmap	::	(b	->	c)	->	(a	->	b)	->	(a	->	c)

fmap	=	(.)

Exercise	3
instance	Applicative	((->)	a)	where

--	pure	::	b	->	(a	->	b)

pure	=	const

--	(<*>)	::	(a	->	b	->	c)	->	(a	->	b)	->	(a	->	c)

g	<*>	h	=	\x	->	g	x	(h	x)

Exercise	4
instance	Functor	ZipList	where

--	fmap	::	(a	->	b)	->	ZipList	a	->	ZipList	b

fmap	g	(Z	xs)	=	Z	(fmap	g	xs)

instance	Applicative	ZipList	where

--	pure	::	a	->	ZipList	a

pure	x	=	Z	(repeat	x)

--	<*>	::	ZipList	(a	->	b)	->	ZipList	a	->	ZipList	b

(Z	gs)	<*>	(Z	xs)	=	Z	[g	x	|	(g,x)	<-	zip	gs	xs]

A.13 Monadic	parsing

Exercise	1
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Exercise	2

Exercise	3
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Exercise	4
Without	 left-factorising,	 the	 resulting	 parser	 would	 backtrack	 excessively	 and
take	 exponential	 time	 in	 the	 size	 of	 the	 expression.	 For	 example,	 a	 number
would	be	parsed	four	times	before	being	recognised	as	an	expression.

A.14 Foldables	and	friends

Exercise	1
instance	(Monoid	a,	Monoid	b)	=>	Monoid	(a,b)	where

--	mempty	::	(a,b)

mempty	=	(mempty,	mempty)

--	mappend	::	(a,b)	->	(a,b)	->	(a,b)

(x1,y1)	‘mappend‘	(x2,y2)	=

(x1	‘mappend‘	x2,	y1	‘mappend‘	y2)
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Exercise	2
instance	Monoid	b	=>	Monoid	(a	->	b)	where

--	mempty	::	a	->	b

mempty	=	\_	->	mempty

--	mappend	::	(a	->	b)	->	(a	->	b)	->	(a	->	b)

f	‘mappend‘	g	=	\x	->	f	x	‘mappend‘	g	x

A.15 Lazy	evaluation

Exercise	1
The	only	redex	in	1+(2*3)	is	2*3,	which	is	both	innermost	and	outermost.

The	redexes	in	(1+2)*(2+3)	are	1+2	and	2+3,	with	the	first	being	innermost.

The	redexes	in	fst	(1+2,2+3)	are	1+2,	2+3	and	fst	(1+2,2+3),	with	the	first	of
these	being	innermost	and	the	last	being	outermost.

The	redexes	in	(\x	->	1	+	x)	(2*3)	are	2*3	and	(\x	->	1	+	x)	(2*3),	with
the	first	being	innermost	and	the	second	being	outermost.

Exercise	2
Outermost:

fst	(1+2,	2+3)

= {	applying	fst	}
1+2

= {	applying	+	}
3

Innermost:
fst	(1+2,	2+3)

= {	applying	the	first	+	}
fst	(3,	2+3)

= {	applying	+	}
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fst	(3,	5)

= {	applying	fst	}
3

Outermost	 evaluation	 is	 preferable	 because	 it	 avoids	 evaluation	 of	 the	 second
argument,	and	hence	takes	one	fewer	reduction	steps.

Exercise	3
mult	3	4

= {	applying	mult	}
(\x	->	(\y	->	x	*	y))	3	4

= {	applying	the	outer	lambda	}
(\y	->	3	*	y)	4

= {	applying	the	lambda	}
3	*	4

= {	applying	*	}
12

A.16 Reasoning	about	programs

Exercise	1
Base	case:

add	Zero	(Succ	m)

= {	applying	add	}
Succ	m

= {	unapplying	add	}
Succ	(add	Zero	m)

Inductive	case:
add	(Succ	n)	(Succ	m)

= {	applying	add	}
Succ	(add	n	(Succ	m))

= {	induction	hypothesis	}
Succ	(Succ	(add	n	m))

= {	unapplying	add	}
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Succ	(add	(Succ	n)	m)

Exercise	2
Base	case:

add	Zero	m

= {	applying	add	}
m

= {	property	of	add	}
add	m	Zero

Inductive	case:
add	(Succ	n)	m

= {	applying	add	}
Succ	(add	n	m)

= {	induction	hypothesis	}
Succ	(add	m	n)

= {	property	of	add	}
add	m	(Succ	n)

Exercise	3
Base	case:

all	(==	x)	(replicate	0	x)

= {	applying	replicate	}
all	(==	x)	[]

= {	applying	all	}
True

Inductive	case:
all	(==	x)	(replicate	(n+1)	x)

= {	applying	replicate	}
all	(==	x)	(x	:	replicate	n	x)

= {	applying	all	}
x	==	x	&&	all	(==	x)	(replicate	n	x)

= {	applying	==	}
True	&&	all	(==	x)	(replicate	n	x)

= {	applying	&&	}
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all	(==	x)	(replicate	n	x)

= {	induction	hypothesis	}
True

Exercise	4
Base	case:

[]	++	[]

= {	applying	++	}
[]

Inductive	case:
(x	:	xs)	++	[]

= {	applying	++	}
x	:	(xs	++	[])

= {	induction	hypothesis	}
x	:	xs

Base	case:
[]	++	(ys	++	zs)

= {	applying	++	}
ys	++	zs

= {	unapplying	++	}
([]	++	ys)	++	zs

Inductive	case:
(x	:	xs)	++	(ys	++	zs)

= {	applying	++	}
x	:	(xs	++	(ys	++	zs))

= {	induction	hypothesis	}
x	:	((xs	++	ys)	++	zs)

= {	unapplying	++	}
(x	:	(xs	++	ys))	++	zs

= {	unapplying	++	}
((x	:	xs)	++	ys)	++	zs

Exercise	5
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Base	case:
take	0	xs	++	drop	0	xs

= {	applying	take,	drop	}
[]	++	xs

= {	applying	++	}
xs

Base	case:
take	(n+1)	[]	++	drop	(n+1)	[]

= {	applying	take,	drop	}
[]	++	[]

= {	applying	++	}
[]

Inductive	case:
take	(n+1)	(x:xs)	++	drop	(n+1)	(x:xs)

= {	applying	take,	drop	}
(x	:	take	n	xs)	++	(drop	n	xs)

= {	applying	++	}
x	:	(take	n	xs	++	drop	n	xs)

= {	induction	hypothesis	}
x	:	xs

A.17 Calculating	compilers

Exercise	1
A	solution	is	given	in	[39],	on	which	this	chapter	is	based.
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Appendix	B

Standard	prelude

In	this	appendix	we	present	some	of	the	most	commonly	used	definitions	from
the	 Haskell	 standard	 prelude.	 For	 expository	 purposes,	 a	 number	 of	 the
definitions	 are	 presented	 in	 simplified	 form.	The	 full	 version	 of	 the	 prelude	 is
available	from	the	Haskell	home	page,	http://www.haskell.org.

B.1 Basic	classes
Equality	types:
class	Eq	a	where

(==),	(/=)	::	a	->	a	->	Bool

x	/=	y	=	not	(x	==	y)

Ordered	types:

Showable	types:
class	Show	a	where

show	::	a	->	String

Readable	types:
class	Read	a	where

read	::	String	->	a
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Numeric	types:
class	Num	a	where

(+),	(-),	(*)	::	a	->	a	->	a

negate,	abs,	signum	::	a	->	a

Integral	types:
class	Num	a	=>	Integral	a	where

div,	mod	::	a	->	a	->	a

Fractional	types:
class	Num	a	=>	Fractional	a	where

(/)	::	a	->	a	->	a

recip	::	a	->	a

recip	n	=	1/n

B.2 Booleans
Type	declaration:
data	Bool	=	False	|	True

deriving	(Eq,	Ord,	Show,	Read)

Logical	conjunction:
(&&)	::	Bool	->	Bool	->	Bool

False	&&	_	=	False

True	&&	b	=	b

Logical	disjunction:
(||)	::	Bool	->	Bool	->	Bool

False	||	b	=	b

True	||	_	=	True

Logical	negation:
not	::	Bool	->	Bool

not	False	=	True

not	True	=	False

Guard	that	always	succeeds:
otherwise	::	Bool
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otherwise	=	True

B.3 Characters
Type	declaration:
data	Char	=	...

deriving	(Eq,	Ord,	Show,	Read)

The	 definitions	 below	 are	 provided	 in	 the	 library	 Data.Char,	 which	 can	 be
loaded	by	entering	the	following	in	GHCi	or	at	the	start	of	a	script:
import	Data.Char

Decide	if	a	character	is	a	lower-case	letter:
isLower	::	Char	->	Bool

isLower	c	=	c	>=	’a’	&&	c	<=	’z’

Decide	if	a	character	is	an	upper-case	letter:
isUpper	::	Char	->	Bool

isUpper	c	=	c	>=	’A’	&&	c	<=	’Z’

Decide	if	a	character	is	alphabetic:
isAlpha	::	Char	->	Bool

isAlpha	c	=	isLower	c	||	isUpper	c

Decide	if	a	character	is	a	digit:
isDigit	::	Char	->	Bool

isDigit	c	=	c	>=	’0’	&&	c	<=	’9’

Decide	if	a	character	is	alpha-numeric:
isAlphaNum	::	Char	->	Bool

isAlphaNum	c	=	isAlpha	c	||	isDigit	c

Decide	if	a	character	is	spacing:
isSpace	::	Char	->	Bool

isSpace	c	=	elem	c	"	\t\n"

Convert	a	character	to	a	Unicode	number:
ord	::	Char	->	Int

ord	c	=	...
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Convert	a	Unicode	number	to	a	character:
chr	::	Int	->	Char

chr	n	=	...

Convert	a	digit	to	an	integer:
digitToInt	::	Char	->	Int

digitToInt	c	|	isDigit	c	=	ord	c	-	ord	’0’

Convert	an	integer	to	a	digit:
intToDigit	::	Int	->	Char

intToDigit	n	|	n	>=	0	&&	n	<=	9	=	chr	(ord	’0’	+	n)

Convert	a	letter	to	lower-case:
toLower	::	Char	->	Char

toLower	c	|	isUpper	c	=	chr	(ord	c	-	ord	’A’	+	ord	’a’)

|	otherwise	=	c

Convert	a	letter	to	upper-case:
toUpper	::	Char	->	Char

toUpper	c	|	isLower	c	=	chr	(ord	c	-	ord	’a’	+	ord	’A’)

|	otherwise	=	c

B.4 Strings
Type	declaration:
type	String	=	[Char]

B.5 Numbers
Type	declarations:
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Decide	if	an	integer	is	even:
even	::	Integral	a	=>	a	->	Bool

even	n	=	n	‘mod‘	2	==	0

Decide	if	an	integer	is	odd:
odd	::	Integral	a	=>	a	->	Bool

odd	=	not	.	even

Exponentiation:
(^)	::	(Num	a,	Integral	b)	=>	a	->	b	->	a

_	^	0	=	1

x	^	n	=	x	*	(x	^	(n-1))

B.6 Tuples
Type	declarations:

Select	the	first	component	of	a	pair:
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fst	::	(a,b)	->	a

fst	(x,_)	=	x

Select	the	second	component	of	a	pair:
snd	::	(a,b)	->	b

snd	(_,y)	=	y

Convert	a	function	on	pairs	to	a	curried	function:
curry	::	((a,b)	->	c)	->	(a	->	b	->	c)

curry	f	=	\x	y	->	f	(x,y)

Convert	a	curried	function	to	a	function	on	pairs:
uncurry	::	(a	->	b	->	c)	->	((a,b)	->	c)

uncurry	f	=	\(x,y)	->	f	x	y

B.7 Maybe
Type	declaration:
data	Maybe	a	=	Nothing	|	Just	a

deriving	(Eq,	Ord,	Show,	Read)

B.8 Lists
Type	declaration:
data	[a]	=	[]	|	a:[a]

deriving	(Eq,	Ord,	Show,	Read)

Select	the	first	element	of	a	non-empty	list:
head	::	[a]	->	a

head	(x:_)	=	x

Select	the	last	element	of	a	non-empty	list:
last	::	[a]	->	a

last	[x]	=	x

last	(_:xs)	=	last	xs

Select	the	nth	element	of	a	non-empty	list:
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(!!)	::	[a]	->	Int	->	a

(x:_)	!!	0	=	x

(_:xs)	!!	n	=	xs	!!	(n-1)

Select	the	first	n	elements	of	a	list:
take	::	Int	->	[a]	->	[a]

take	0	_	=	[]

take	_	[]	=	[]

take	n	(x:xs)	=	x	:	take	(n-1)	xs

Select	all	elements	of	a	list	that	satisfy	a	predicate:
filter	::	(a	->	Bool)	->	[a]	->	[a]

filter	p	xs	=	[x	|	x	<-	xs,	p	x]

Select	elements	of	a	list	while	they	satisfy	a	predicate:

Remove	the	first	element	from	a	non-empty	list:
tail	::	[a]	->	[a]

tail	(_:xs)	=	xs

Remove	the	last	element	from	a	non-empty	list:
init	::	[a]	->	[a]

init	[_]	=	[]

init	(x:xs)	=	x	:	init	xs

Remove	the	first	n	elements	from	a	list:
drop	::	Int	->	[a]	->	[a]

drop	0	xs	=	xs

drop	_	[]	=	[]

drop	n	(_:xs)	=	drop	(n-1)	xs

Remove	elements	from	a	list	while	they	satisfy	a	predicate:

Split	a	list	at	the	nth	element:
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splitAt	::	Int	->	[a]	->	([a],[a])

splitAt	n	xs	=	(take	n	xs,	drop	n	xs)

Produce	an	infinite	list	of	identical	elements:
repeat	::	a	->	[a]

repeat	x	=	xs	where	xs	=	x:xs

Produce	a	list	with	n	identical	elements:
replicate	::	Int	->	a	->	[a]

replicate	n	=	take	n	.	repeat

Produce	an	infinite	list	by	iterating	a	function	over	a	value:
iterate	::	(a	->	a)	->	a	->	[a]

iterate	f	x	=	x	:	iterate	f	(f	x)

Produce	a	list	of	pairs	from	a	pair	of	lists:

Append	two	lists:

Reverse	a	list:
reverse	::	[a]	->	[a]

reverse	=	foldl	(\xs	x	->	x:xs)	[]

Apply	a	function	to	all	elements	of	a	list:
map	::	(a	->	b)	->	[a]	->	[b]

map	f	xs	=	[f	x	|	x	<-	xs]

B.9 Functions
Type	declaration:
data	a	->	b	=	...
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Identity	function:
id	::	a	->	a

id	=	\x	->	x

Function	composition:
(.)	::	(b	->	c)	->	(a	->	b)	->	(a	->	c)

f	.	g	=	\x	->	f	(g	x)

Constant	functions:
const	::	a	->	(b	->	a)

const	x	=	\_	->	x

Strict	application:
($!)	::	(a	->	b)	->	a	->	b

f	$!	x	=	...

Flip	the	arguments	of	a	curried	function:
flip	::	(a	->	b	->	c)	->	(b	->	a	->	c)

flip	f	=	\y	x	->	f	x	y

B.10 Input/output
Type	declaration:
data	IO	a	=	...

Read	a	character	from	the	keyboard:
getChar	::	IO	Char

getChar	=	...

Read	a	string	from	the	keyboard:
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Read	a	value	from	the	keyboard:
readLn	::	Read	a	=>	IO	a

readLn	=	do	xs	<-	getLine

return	(read	xs)

Write	a	character	to	the	screen:
putChar	::	Char	->	IO	()

putChar	c	=	...

Write	a	string	to	the	screen:

Write	a	string	to	the	screen	and	move	to	a	new	line:

Write	a	value	to	the	screen:
print	::	Show	a	=>	a	->	IO	()

print	=	putStrLn	.	show

Display	an	error	message	and	terminate	the	program:
error	::	String	->	a

error	xs	=	...

B.11 Functors
Class	declaration:
class	Functor	f	where

fmap	::	(a	->	b)	->	f	a	->	f	b

Maybe	functor:
instance	Functor	Maybe	where

--	fmap	::	(a	->	b)	->	Maybe	a	->	Maybe	b

fmap	_	Nothing	=	Nothing
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fmap	g	(Just	x)	=	Just	(g	x)

List	functor:
instance	Functor	[]	where

--	fmap	::	(a	->	b)	->	[a]	->	[b]

fmap	=	map

IO	functor:
instance	Functor	IO	where

--	fmap	::	(a	->	b)	->	IO	a	->	IO	b

fmap	g	mx	=	do	{x	<-	mx;	return	(g	x)}

Infix	version	of	fmap:
(<$>)	::	Functor	f	=>	(a	->	b)	->	f	a	->	f	b

g	<$>	x	=	fmap	g	x

B.12 Applicatives
Class	declaration:
class	Functor	f	=>	Applicative	f	where

pure	::	a	->	f	a

(<*>)	::	f	(a	->	b)	->	f	a	->	f	b

Maybe	applicative:
instance	Applicative	Maybe	where

--	pure	::	a	->	Maybe	a

pure	=	Just

--	(<*>)	::	Maybe	(a	->	b)	->	Maybe	a	->	Maybe	b

Nothing	<*>	_	=	Nothing

(Just	g)	<*>	mx	=	fmap	g	mx

List	applicative:
instance	Applicative	[]	where

--	pure	::	a	->	[a]

pure	x	=	[x]

--	(<*>)	::	[a	->	b]	->	[a]	->	[b]

gs	<*>	xs	=	[g	x	|	g	<-	gs,	x	<-	xs]
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IO	applicative:
instance	Applicative	IO	where

--	pure	::	a	->	IO	a

pure	=	return

--	(<*>)	::	IO	(a	->	b)	->	IO	a	->	IO	b

mg	<*>	mx	=	do	{g	<-	mg;	x	<-	mx;	return	(g	x)}

B.13 Monads
Class	declaration:
class	Applicative	m	=>	Monad	m	where

return	::	a	->	m	a

(>>=)	::	m	a	->	(a	->	m	b)	->	m	b

return	=	pure

Maybe	monad:
instance	Monad	Maybe	where

--	(>>=)	::	Maybe	a	->	(a	->	Maybe	b)	->	Maybe	b

Nothing	>>=	_	=	Nothing

(Just	x)	>>=	f	=	f	x

List	monad:
instance	Monad	[]	where

--	(>>=)	::	[a]	->	(a	->	[b])	->	[b]

xs	>>=	f	=	[y	|	x	<-	xs,	y	<-	f	x]

IO	monad:
instance	Monad	IO	where

--	return	::	a	->	IO	a

return	x	=	...

--	(>>=)	::	IO	a	->	(a	->	IO	b)	->	IO	b

mx	>>=	f	=	...

B.14 Alternatives
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The	declarations	below	are	provided	in	the	library	Control.Applicative,	which
can	be	loaded	by	entering	the	following	in	GHCi	or	at	the	start	of	a	script:
import	Control.Applicative

Class	declaration:
class	Applicative	f	=>	Alternative	f	where

empty	::	f	a

(<|>)	::	f	a	->	f	a	->	f	a

many	::	f	a	->	f	[a]

some	::	f	a	->	f	[a]

many	x	=	some	x	<|>	pure	[]

some	x	=	pure	(:)	<*>	x	<*>	many	x

Maybe	alternative:
instance	Alternative	Maybe	where

--	empty	::	Maybe	a

empty	=	Nothing

--	(<|>)	::	Maybe	a	->	Maybe	a	->	Maybe	a

Nothing	<|>	my	=	my

(Just	x)	<|>	_	=	Just	x

List	alternative:
instance	Alternative	[]	where

--	empty	::	[a]

empty	=	[]

--	(<|>)	::	[a]	->	[a]	->	[a]

(<|>)	=	(++)

B.15 MonadPlus
The	declarations	below	are	provided	in	the	library	Control.Monad,	which	can	be
loaded	by	entering	the	following	in	GHCi	or	at	the	start	of	a	script:
import	Control.Monad

Class	declaration:
class	(Alternative	m,	Monad	m)	=>	MonadPlus	m	where
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mzero	::	m	a

mplus	::	m	a	->	m	a	->	m	a

mzero	=	empty

mplus	=	(<|>)

Maybe	monadplus:
instance	MonadPlus	Maybe

List	monadplus:
instance	MonadPlus	[]

B.16 Monoids
Class	declaration:
class	Monoid	a	where

mempty	::	a

mappend	::	a	->	a	->	a

mconcat	::	[a]	->	a

mconcat	=	foldr	mappend	mempty

The	 declarations	 below	 are	 provided	 in	 a	 library	 Data.Monoid,	 which	 can	 be
loaded	by	entering	the	following	in	GHCi	or	at	the	start	of	a	script:
import	Data.Monoid

Maybe	monoid:

List	monoid:
instance	Monoid	[a]	where

--	mempty	::	[a]

331



mempty	=	[]

--	mappend	::	[a]	->	[a]	->	[a]

mappend	=	(++)

Numeric	monoid	for	addition:
newtype	Sum	a	=	Sum	a

deriving	(Eq,	Ord,	Show,	Read)

getSum	::	Sum	a	->	a

getSum	(Sum	x)	=	x

instance	Num	a	=>	Monoid	(Sum	a)	where

--	mempty	::	Sum	a

mempty	=	Sum	0

--	mappend	::	Sum	a	->	Sum	a	->	Sum	a

Sum	x	‘mappend‘	Sum	y	=	Sum	(x+y)

Numeric	monoid	for	multiplication:
newtype	Product	a	=	Product	a

deriving	(Eq,	Ord,	Show,	Read)

getProduct	::	Product	a	->	a

getProduct	(Product	x)	=	x

instance	Num	a	=>	Monoid	(Product	a)	where

--	mempty	::	Product	a

mempty	=	Product	1

--	mappend	::	Product	a	->	Product	a	->	Product	a

Product	x	‘mappend‘	Product	y	=	Product	(x*y)

Boolean	monoid	for	conjunction:
newtype	All	=	All	Bool

deriving	(Eq,	Ord,	Show,	Read)

getAll	::	All	->	Bool

getAll	(All	b)	=	b

instance	Monoid	All	where

--	mempty	::	All

mempty	=	All	True
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--	mappend	::	All	->	All	->	All

All	b	‘mappend‘	All	c	=	All	(b	&&	c)

Boolean	monoid	for	disjunction:
newtype	Any	=	Any	Bool

deriving	(Eq,	Ord,	Show,	Read)

getAny	::	Any	->	Bool

getAny	(Any	b)	=	b

instance	Monoid	Any	where

--	mempty	::	Any

mempty	=	Any	False

--	mappend	::	Any	->	Any	->	Any

Any	b	‘mappend‘	Any	c	=	Any	(b	||	c)

Infix	version	of	mappend:
(<>)	::	Monoid	a	=>	a	->	a	->	a

x	<>	y	=	x	‘mappend‘	y

B.17 Foldables
The	declarations	below	are	provided	in	the	library	Data.Foldable,	which	can	be
loaded	by	entering	the	following	in	GHCi	or	at	the	start	of	a	script:
import	Data.Foldable

Class	declaration:
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Default	definitions:

The	minimal	complete	definition	for	an	instance	is	to	define	foldMap	or	foldr,
as	all	other	functions	in	the	class	can	be	derived	from	either	of	these	two	using
the	above	default	definitions	and	the	following	instance	for	lists.
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List	foldable:
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Decide	if	all	logical	values	in	a	structure	are	True:
and	::	Foldable	t	=>	t	Bool	->	Bool

and	=	getAll	.	foldMap	All

Decide	if	any	logical	value	in	a	structure	is	True:
or	::	Foldable	t	=>	t	Bool	->	Bool

or	=	getAny	.	foldMap	Any

Decide	if	all	elements	in	a	structure	satisfy	a	predicate:
all	::	Foldable	t	=>	(a	->	Bool)	->	t	a	->	Bool

all	p	=	getAll	.	foldMap	(All	.	p)

Decide	if	any	element	in	a	structure	satisfies	a	predicate:
any	::	Foldable	t	=>	(a	->	Bool)	->	t	a	->	Bool

any	p	=	getAny	.	foldMap	(Any	.	p)

Concatenate	a	structure	whose	elements	are	lists:
concat	::	Foldable	t	=>	t	[a]	->	[a]
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concat	=	fold

B.18 Traversables
Class	declaration:

Default	definitions:

The	 minimal	 complete	 definition	 for	 an	 instance	 of	 the	 class	 is	 to	 define
traverse	or	sequenceA,	as	all	other	functions	in	 the	class	can	be	derived	from
either	of	these	two	using	the	above	default	definitions.

Maybe	traversable:

List	traversable:
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crush	operators,	210
curry,	284

data,	93
Data.Char,	132,	140,	179,	282
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Fibonacci	sequence,	64,	226
game	of	life,	133
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foldMap,	200,	294
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for	multiplication,	60,	67,	118

if,	23,	39
import,	52
indentation,	6,	see	layout	rule
induction,	8,	231
hypothesis,	232
on	expressions,	243,	250
on	lists,	235
on	numbers,	232,	234
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isUpper,	183,	282
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join,	173

keywords,	6,	19

lambda	calculus,	8,	45
layout	rule,	19,	126,	166
tabs,	20

length,	16,	48,	61,	78,	80,	202,	294
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Lisp,	8
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propositions,	101
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Maybe,	167,	290
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laws,	174
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laws,	196
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naming	requirements,	18,	92,	93
negate,	34,	280
negation,	see	not,	negate
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null,	70,	202,	294
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or,	77,	80,	205,	296
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otherwise,	39,	281
overloading,	30
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tuple,	41
wildcard,	see	_
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print,	116,	288
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Product,	199,	293
product,	16,	61,	66,	77,	80,	202,	294
programming
batch,	123
functional,	4
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pure,	159,	289
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putStr,	127,	288
putStrLn,	127,	288

Read,	33,	280
read,	33,	280
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recip,	35,	38,	281
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reduction,	213
under	lambdas,	216
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repeat,	84,	286
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scripts,	17
sections,	44,	77
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sequence,	209,	297
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sharing,	218
Show,	32,	112,	280
show,	32,	280
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sign,	see	signum
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some,	184,	291
sorting
insertion	sort,	63
merge	sort,	72
quicksort,	10,	65

spacing,	186
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control,	107
underflow,	244

standard	prelude,	15,	280
state	of	the	world,	124
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String,	24,	283
strings,	see	String,	283
subtraction,	see	-
successor,	44,	96,	216
Sum,	198,	292
sum,	9,	16,	77,	79,	80,	202,	294
System.IO,	128,	140
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tabs,	20
tail,	15,	42,	285
take,	16,	221,	285
takeWhile,	76,	285
termination,	4,	8,	216,	219
tokens,	186
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toUpper,	283
transpose,	141
Traversable,	207,	297
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Maybe,	210,	297
Tree,	208,	210
list,	208,	297

traverse,	207,	297
True,	22,	24
truth	tables,	102
tuples,	26,	284
arity,	26,	41
components,	26,	41
empty,	see	()
pairs,	26,	47,	50,	284
triples,	26,	284

type
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declarations,	92,	93,	95
errors,	23
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parameters,	92,	95
safety,	23,	96
variables,	29
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types,	6,	10,	22
applicative,	see	Applicative
basic,	23
container,	155
equality,	see	Eq
foldable,	see	Foldable
fractional,	see	Fractional
function,	27
functorial,	see	Functor
integral,	see	Integral
list,	25,	97,	285
maybe,	see	Maybe
monadic,	see	Monad
monoid,	see	Monoid
numeric,	see	Num
ordered,	see	Ord
overloaded,	30
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polymorphic,	29
readable,	see	Read
recursive,	96
showable,	see	Show
traversable,	see	Traversable
tree,	97,	147,	227,	240
tuple,	26

uncurry,	284
unfold,	90
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unsafePerformIO,	137

where,	19

zip,	50,	63,	286
ZipList,	175
zipper,	108
zipWith,	143
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