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PREFACE 

This book is an introductory text in modal logic, the logic of necessity 
and possibility. I t  is intended for readers with the equivalent of a first 
course in formal logic, and it is designed to be used as a basic text in 
courses at the advanced undergraduate or beginning graduate level. The 
material in the book can easily be covered in a full-year course; with 
selectivity most of the material can be covered in a single term. 

There are three parts to the book. Part I consists of two chapters, 
meant to introduce the reader to the subject of modal logic and to furnish 
a sufficient background for the parts that follow. Chapter 1 is a relatively 
informal examination of S5, one of the best-known systems of modal 
logic. Chapter 2 - ' Logical preliminaries' - contains almost everything 
needed for an understanding of the rest of the book. Some readers may 
prefer to go quickly through this chapter and then reread as necessary 
sections required in the context of succeeding chapters. 

Part 11 comprises four chapters on standard models and normal 
systems of modal logic. The models, sometimes called ' Kripke models ', 
are explained in chapter 3. In chapter 4 normal systems are presented 
from an axiomatic standpoint. Chapter 5 contains theorems on complete- 
ness and decidability, which bring together the model-theoretic and 
deductive-theoretic treatments of the preceding chapters. As an illustra- 
tion of normal systems chapter 6 offers a discussion of deontic logic, the 
logic of obligation. 

Part I11 is patterned like its predecessor, but here the topics are 
minimal models and classical modal logics. Thus chapter 7 is about the 
models (also known as 'neighborhood' or ' Scott-Montague' models), 
chapter 8 is an axiomatic account of the logics, and chapter 9 deals with 
completeness and decidability. Chapter 10 presents conditionality and 
(again) obligation by way of example. 

An important feature of the book is the exercises that follow the 
sections of the chapters. These have been constructed both to con- 
solidate understanding of the preceding material and to anticipate sub- 
sequent developments. They are an integral part of the text, and I have 
high hopes that the reader will attempt them as they appear. 



xii Preface 

I have appended to the text a short bibliography citing most of the 
works I found useful in writing this book. Many of these books and 
articles will take the reader farther afield to topics and results not 
treated here, and several contain good bibliographies. 

I have a number of debts to record. First among these is to Lee Bowie, 
who several years ago suggested that we author a textbook in modal 
logic - I to write the chapters on propositional modal logic, he to write 
on quantification, identity, naming, and description. When it later 
became apparent that the material on propositional modal logic was 
bulky enough to warrant separate publication, Bowie graciously en- 
couraged me to proceed alone. 

In this connection I also want to express my gratitude to Richard 
Jeffrey and David Lewis, for their advice and support, and for recom- 
mending my project to Cambridge University Press and its distinguished 
editor Jeremy Mynott. 

My debts to several of the works cited in the bibliography will 
perhaps be obvious to those already acquainted with the subject of modal 
logic. In particular I should mention Lemmon and Scott's Introduction 
to modal logic and Segerberg's Essay in classical modal logic. 

The  contents of chapters 6 and 10 are largely adapted from my papers 
6 Imperatives ', ' Conditional obligation ', and ' Basic conditional logic ', 
cited in the bibliography. I wish to thank Krister Segerberg, editor of 
Theoria, Soren Stenlund, editor of Logical theory and semantic analysis, 
Richmond Thomason, editor of the Journal of philosophical logic, and 
the D. Reidel Publishing Company for permission to use this material. 

Steven Kuhn and Audrey McKinney read much of my manuscript at 
different stages of its development, and I am grateful to them for criticism 
and advice. 

Krister Segerberg has been a mainstay of counsel and encouragement 
for many years. I have learned a great deal about modal logic from 
Segerberg, and I have benefited enormously from conversations with him 
in the course of writing this book. 

Among many others who have contributed in various ways to this 
book I would like to thank Roy Benton, Paul Golden, Deborah Mayo, 
and Robert Pelcovits. 

Finally, I owe an enduring debt to Dana Scott, who introduced me 
to modal logic, who taught me how to think about it, and whose conception 
of the subject fundamentally influenced my own. 

Woodland Valley, New York 
July 1978 
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I N T R O D U C T I O N  

In this chapter we introduce the subject of modal logic by surveying 
some of the main features of the system of modal logic known as S5. 
This system is but one of many we shall study. Because it is one of the 
simplest, we choose it to begin with. 

The system S5 is determined semantically by an account of necessity 
and possibility that dates to the philosopher Leibniz: a proposition is 
necessary if it holds at all possible worlds, possible if it holds at some. The 
idea is that different things may be true at different possible worlds, but 
whatever holds true at every possible world is necessary, while that 
which holds at at least one possible world is possible. 

In section 1.1 we develop this semantic idea by means of a definition 
of truth at a possible world in a model for a language of necessity and 
possibility. This leads to a definition of validity, and we set out some valid 
sentences and principles governing validity, as well as some examples 
of invalidity. 

The totality of valid sentences forms the modal logic S5. In  terms 
of the principles set out in section 1.1 it is possible to deduce all the 
valid sentences. Some evidence of this appears in section 1.2, where 
we take the principles in section 1.1 as axioms and rules of inference, 
formulate S5 as a deductive system, and derive a number of further 
principles. 

Sections 1.1 and 1.2 exemplify in miniature our approach to the 
study of modal logic throughout this book: first, semantically in terms 
of the notion of truth; second, syntactically by means of deductive 
systems. 

The exposition in this chapter is quite casual, and intentionally so. 
The purpose, in part, is to acquaint the reader with many of the notions 
and notations used in the rest of the book; but formality is deferred to 
subsequent chapters. This leads to occasional wordiness, but not, it is 
hoped, to loss of intelligibility. 



4 Introduction 

We study modal logic in the context of a language of necessity and 
possibility. The sentences of the language are of the following forms. 

Po, PI, P2, 

T, I, TA, A A B ,  AvB,  A+B, A++B, CIA, OA 
Sentences of the form Pn (for n = 0,1,2, . . .) are atomic. T is a constant 
for truth; I is a constant for falsity. 1, A, V, +, and ++ are signs of 
negation, conjunction, disjunction, conditionality, and biconditionality, 
respectively. is the necessity sign; 0 is the possibility sign. 

A more detailed account of the syntax of this language appears in 
section 2.1, but it is not essential for an understanding of the rest of this 
chapter. 

1.1. Truth and possible worlds 
According to the leibnizian idea, necessity is what is true at every possible 
world and possibility is what is true at some. Linguistically: a sentence 
of the form U A  - necessarily A - is true if and only if A itself is true at 
every possible world; and a sentence of the form O A  -possibly A - is 
true just in case A is true at some possible world. 

The picture is of a collection of possible worlds - including our own, 
the real world - at which sentences of the language are variously true 
and false. Our purpose is to model this, and we do so by means of an 
infinite sequence of sets of possible worlds, 

The intuition behind this modeling is that, for each natural number n, 
the set P, collects just those possible worlds at which the corresponding 
atomic sentence Pn is true. I n  other words, the sequence Po, PI, P,, . . . 
interprets the atomic sentences by stipulating at which possible worlds 
they are true (and, by omission, at which they are false): Pn is true at a 
possible world a if and only if a is in the set P,. 

More precisely, a model is a pair 

in which W is a set of possible worlds and P abbreviates an infinite 
sequence Po, PI, P,, . . . of subsets of W. Note that W may contain possible 
worlds not in any of the sets P,; indeed, any or all of these sets may be 
empty. Also, we do not require that the actual world appear in every 
model. 
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In terms of a possible world in a model we state the truth conditions 
for sentences according to their forms. Where A is a sentence and a is a 
possible world in a model A = ( W, P), we use the symbolism 

kfA 

as short for 

A is true at a in 4. 

The truth conditions are stated thus: 

(1) k$pn i f f a~Pn ,  for n = 0, 1,2, .... 
(2) F ~ T *  

(3) Not Cf 1. 

(4) Cf7A iff not I=$ A. 
(5) Cf A A B iff both !=$A and Cf B. 

(6) kfA v B iff either !=$A or B, or both. 

(7) \$A+- B iff if CfA then Cf B. 
(8) CfA-B iff CfAifand onlyif CfB. 

(9) If' UA iff for every in A, Cf A. 

(10) Cf OA iff for some p i n  A, Cf A. 

Some discussion of this definition may be helpful. 
Clause (1 )  reflects our remarks about the sets Po, PI, P,, . . . in a model : 

an atomic sentence Pn is true at a possible world a just in case a is a 
member of the set P,. According to clause (2), the truth constant T is 
always true at a. By (3), the falsity constant I is always false at a. Clause 
(4) states that a negation 1 A  is true at a if and only if its negate A is 
false at a. The content of (5) is that a conjunction An B is true at a 
just in case both its conjuncts, A and B, are. According to (6), a dis- 
junction A V  B is true at a just when at least one of its disjuncts, A and 
B, is. Our intention in clause (7) is that a conditional A+B is to be 
understood as true at a just so long as it fails to be the case that its ante- 
cedent, A, is true at a while its consequent, B, is false. And, similarly, in 
(8) we intend that a biconditional A- B be accounted true at a just in 
case its members, A and B, are either both true at a or both false. Clause 
(9) formulates the leibnizian interpretation of necessity: a necessitation 
nA is true at a if and only if its necessitate, A, is true at every possible 
world P in the model. Finally, according to (lo), OA is true at a just 
in case there is at least one possible world ,8 in the model at which A 
is true. 
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A sentence true at every possible world in every model is said to be 
valid. We use the symbol k again - this time without subscripts or 
superscripts - and write 

to mean that the sentence A is valid. More formally, then, the definition 
of validity may be expressed: 

C A iff for every model X and every possible world a in d, 
kf A. 

In  asking after the logic of necessity and possibility we seek to know 
which sentences are valid - true, no matter how interpreted, at every 
possible world - and which are not, For example, as we shall see, every 
sentence of the form mA+ A is valid, whereas not every sentence of the 
form A+ mA is. I n  what follows we first set out some valid sentences 
and principles governing validity, enough to form an axiomatic basis for 
the derivation of all valid sentences. Then we mention some prominent 
cases of invalidity. 

Let us begin our survey of validity with the principle just mentioned: 

According to T, whatever is necessary is so : if necessarily A, then A. To  
see that this schema - i.e, every sentence of this form - is valid, it is 
sufficient to prove that where a is any possible world in any model A, 
kf OA-+A. And for this it will be enough to show that if t=f nA then 
bf'A (compare clause (7) in the definition of truth). So suppose that 
I=$ DA. By clause (9) of the truth definition, this means that kf A for 
every possible world P in A. I n  particular, then, this holds for a, i.e. 
k;;1Y A. 

Next let us consider the schema 

The import of 5 is that what is possible is necessarily possible: ifpossibly 
A, then necessardypossibly A. T o  see that 5 is valid, suppose that kt;K OA, 
for possible world a in model X. By clause (10) of the definition of truth 
this means that A has a possible world B such that k f  A. It follows from 
this (again by (10)) that no matter what possible world in the model we 
choose, 0 A holds - i.e. Cf 0 A for every possible world /? in A. But by 
clause (9) this means that I= fa OA, which is what we wished to show. 

The schemas T and 5 are rather special in that they do not hold in 
every system of modal logic we shall study. The next two principles are 
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more widely accepted however; it is not until chapter 7 that they are 
called into question. 

The first of these expresses a principle of distributivity of necessity 
with respect to the conditional : 

This means that if a conditional and its antecedent are both necessary, 
then so is the consequent. For the validity of K, suppose that cc is a 
possible world in a model A such that both Cf n(A+ B) and k$ OA. 
Then for every possible world ,8 in d,  both Cf A+ B and Cf A, from 
which it follows that for every possible world ,8 in A, C$ B. Thus, 
kf OB. 

The second principle corresponds to a rule of inference in the next 
section (RN, the rule of necessitation). I t  states that the necessitation 
of a valid sentence is itself always valid. In symbols: 

If t= A, then I= OA. 

For suppose that C A, i.e. that Cf A for every possible world or in every 
model A. Then for every possible world a in every model A, Cf OA, 
which is to say that I= CIA. 

The last specifically modal validity we wish to mention holds in every 
modal logic we shall discuss in this book. 

This schema embodies the idea that what is possible is just what is 
not-necessarily-not. Its validity means that possibility is always expres- 
sible in terms of necessity and negation, and so is theoretically super- 
fluous. In this sense 0 is deJinabZe in terms of and 1. DfO is valid 
because to say that for some possible world P in a model A, CfA, is 
just to say that it is not the case that for every possible world ,8 in 
it is not the case that Cf A. Reference to clauses (4), (9), and (10) of the 
truth definition reveals that the former expression means that kf OA, 
while the latter expression means that 1 A .  Hence the bicon- 
ditional 0 A o 1 1 A holds at every possible world in every model. 

Let us turn now to the relationship between our modal logic and 
ordinary propositional, or truth-functional, logic. The relationship is 
simple: the modal logic includes the propositional. In part, this means 
that every propositionally valid sentence is modally valid, i.e. : 

If A is a tautology, then I= A. 
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The explanation of this is as follows (there is a more careful account 
in chapter 2). By a tautology we mean a sentence true in every valuation 
of its propositionally atomic constituents. A sentence is propositionally 
atomic if it is either atomic in the ordinary sense (Pn)  or modal (UA or 
QA). A valuation is an assignment of truth values (truth and falsity) to 
the propositionally atomic sentences. The truth conditions in a valuation 
of the rest of the sentences in the language - those of the forms T, I, 
l A ,  etc. - are determined just as they are by a possible world in a 
model. Thus T is true in every valuation, I is false in every valuation, 
1 A  is true in a valuation if and only if A is false, and so on; compare 
clauses (2)-(8) in the definition of truth above. 

In  short, a valuation analyzes sentences semantically from the point 
of view of their truth-functional structure, counting as atomic the modal 
structure of sentences of the forms UA and QA, as well as those of the 
form Pn. A sentence is a tautology, thus, if it comes out true no matter 
how truth values are assigned to its propositional atoms. For example, 
any sentence of the form @A+ OA is a tautology, since U A  is pro- 
positionally atomic and such a conditional is true in a valuation whether 
OA is assigned truth or falsity. 

Now observe that in any model A each possible world a is a valuation 
in the sense just explained, since a assigns truth or falsity to each sentence 
of the form Pn, UA, and OA, i.e. to each propositionally atomic sentence. 
The world a assigns truth to a propositionally atomic sentence A when 
kf A, and falsity otherwise. 

T o  prove, finally, that every tautology is valid, assume that A is a 
tautology - that A is true in every valuation. Then A is true at every 
possible world in every model, i.e. khMA for every possible world a in 
every model A. This means that k A, i.e. that A is valid. 

T o  say that all tautologies are valid does not exhaust what is meant 
by saying that modal logic includes propositional logic. It means more- 
over that validity is preserved by propositionally correct patterns of 
inference. For example, the inference from A + B  and A to B is pro- 
positionally correct; whenever both A+ B and A are true in a valuation, 
so is B. Corresponding to this we have the principle that whenever a 
conditional and its antecedent are both valid, so is the consequent: 

If k A + B  and k A, then k B. 

This emerges as the rule of inference modus ponens, MP, in the next 
section. T o  prove the principle, suppose that both C A+ B and C A. This 
means that for every possible world a in every model A, kf  A+ B, and 
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that for every possible world a in every model A, kf A. It follows at 
once that for every possible world a in every model AT, kf B, i.e. that k B. 

In terms of this principle and the fact that every tautology is valid we 
can prove that validity is preserved by propositionally correct patterns of 
inference generally. For suppose that it is propositionally correct to infer 
a sentence A from sentences A,, ..., A,, i.e. that A is true in every 
valuation in which all of A,, . . ., A, are. Then the sentence 

A 1 3 (  ... (A,--+A) ...) 

is a tautology. Thus this sentence is valid. Hence if each of A,, . . ., A, 
is valid, then by applying the modus ponens principle n times we arrive 
at  the result that A is valid. 

For example, it is propositionally correct to infer A+ C from A+ B 
and B + C (we leave it for the reader to check that A+ C is true in any 
valuation that verifies both A -+ B and B + C). So the sentence 
(A -+ B) + ((B -+ C) + (A + C)) is a tautology. Hence if I= A -+ B, then by 
the principle of modus ponens, t= (B + C) -+ (A -+ C). And so k A+ C, if 
also k B-t C. 

This ends our short survey of valid sentences and principles governing 
validity. Let us turn now to some examples of invalidity. 

T o  begin, the schema A+ U A  - the converse of T - is not valid. T o  
see this, let a and p be distinct possible worlds, let W = {a, P), and let 
P, = {a) for every natural number n (i.e. n = 0,1,2, . . .). Then A = ( W, P )  
is a model in which CbU Po (since Po contains a) and not kf Po (since 
there is a world in A, viz. P, not in Po). Thus, not t=f Po+ UPo, 
which proves that the schema A+ O A  is not valid. We say in this case 
that A is a countermodel to A+ CIA. 

Notice that if A+ OA were valid it would mean that whatever is the 
case is so necessarily. Indeed, if this schema were valid, then given the 
validity of T, the biconditional A- CIA would be valid, so that truth 
and necessity would be the same. The reader should contrast the in- 
validity of A + OA with the correctness of the principle of necessitation, 
that if A is valid so is OA. This will help in understanding the difference 
between theorems and rules of inference in the next section. 

Another example of invalidity is the schema n ( A  v 13) + (OA v OB). 
The model 4 = (W, P) in which W = {a, PI, Po = {a), and P, = (8) for 
n > 0 is a countermodel to this schema. For k f  Po and kf PI, which 
means that t=f Po v P, and kf Po v PI. So, k f  O(Po v P,), since the dis- 
junction Po v 8, is true at every possible world in A. On the other hand, 
not k ; P  P, and also not t=$ Po. So neither kf Po nor Cf P,, and 
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hence not I=$ Po v PI. Therefore, not k$u(Po v PI) -+(O Po v PI), 
i.e. is a countermodel to the schema, 

An even simpler way to see the invalidity of the schema ~ ( A v  B)+ 
(OA v OB) is to consider the instance m(Po v 1 Po) -+ (0 Po v Po). 
The disjunction Po v 1 Po is a tautology, so it is valid - and hence so is 
its necessitation, rZ](P0v lP,,). Thus it is sufficient to show that the 
disjunction U P o  v 01 Po is not valid. The model described above in 
connection with A+ U A  does the job, as the reader may verify. 

We have just shown that the necessity sign does not distribute into a 
disjunction; the validity of K, above, means that 0 does distribute into 
a conditional. As a final example of invalidity, we describe a counter- 
model to 0 (A+ B) -+ (OA+ () B), thus showing that the possibility 
sign does not distribute into a conditional. The model is AY = (W, P), 
where W = {a, ,8), Po = {a}, and P, = @ (the empty set) for n > 0. We 
leave it for the reader to check that ()(Po+ PI) and Cf 0 Po, but not 
kf ()PI. This being so, it follows that not kf O(P,-+ P,)+(OP,+ 

0 PI). 
This concludes our semantical exposition of the modal logic 235. 

EXERCISES 

1.1, Prove that the following schemas are valid. 

1.2. Prove that the following schemas are valid. 

1.3. Prove that the schema OA - 1 0 1 A is valid. 
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1.4. Prove each of the following. 

(a) If I= (AA B)+ C, then C (OAA nB)+ [7C. 

(b)  If k A+ B, then f= OA + OB. 
(c)  If I= A- B, then C OA++ UB. 
(d )  Iff= A+B, then f= OA+ OB. 
(e )  IfC A-B, thenk OA- OB. 

1.5. Prove that for any n 2 0, if C (A,A ... AA,)+A, then C (OA,A ... A 

uA,)+ OA. (When n = 0 this just means if k A then k UA.) 

1.6. Referring to the model A defined in connection with showing the 
invalidity of 0 (A + B) -+ ( 0 A + 0 B) (see the penultimate paragraph of 
section 1. I), verify that Cf O(P,+ PI) and Cf 0 Po, but not C$O PI. 

1.7. Prove that the following schemas are invalid (i.e. that each has an 
invalid instance). 

(a)  OA-tA 
(4 0 A - t  CIA 
(4 U O A + A  
(4 (OAA OB)+ O(AA B) 
( e )  (CIA+ LIB)+ U(A-2 B) 

1.8. For each of the following, decide whether or not it is valid, and 
prove it. 

(a)  UUA+OA 
(4 C70A+OA 
(4 O(AA B)+(OAh OB) 
( d )  0 0 A + 0 0 A  
(e )  O O A + O U A  

(f) (7 OAA O W 3 0  (1AA B) 
(g) O A + O O A  
(4 CIA+ OOA 
(9 ( O A v  CIB)+ U(A v B) 

( j )  01 

1.9. Suppose that in every model there is just one possible world and 
prove that under this assumption the schema A+ OA is valid. 
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1.10. Consider a structure A = (W, R, P) in which Wand P are as they 
are in a model, and R is an equivalence relation on W. That is, W is a set 
of possible worlds, P is an infinite sequence Po, PI, P,, . . . of subsets of W, 
and R is a binary relation on W that is reflexive (for every a in A ,  aRa) 
and euclidean (for every a, /3, and y in A, if aRB and aRy, then PRY). 
Structures of this sort are models for S5, where the truth conditions for 
non-modal sentences are given as usual (i.e. (1)-(8) in the fourth para- 
graph of section 1.1) and those for sentences of the forms OA and OA 
are given by : 

(9') I=$ n A  iff for every P in A such that aRP, Cf A. 

(10') kf OA iff for some /3 in A such that aRP, Cf A. 

Intuitively, R is a relation that relates a world to those that are possible 
with respect to it; aRP  means that the world ,8 is possible with respect 
to the world a. Thus according to (9') U A  is true at a just in case A is 
true at all worlds possible with respect to a ;  and according to (10') OA 
is true at a just in case A is true at some world possible with respect to a. 
Obviously, these models represent a generalization of the analysis of 
necessity and possibility in section 1.1 : it is no longer assumed that every 
world is possible with respect to every other world. 

As before, validity means truth at every possible world in every model. 
Show that these models are adequate for an analysis of the system S.5 

by proving that the schemas T, 5 ,  K, and DfO are all valid, that any 
tautoIogy is valid, that OA is valid if A is, and that if A+ B and A are 
valid so is B. 
Hint: The validity of T depends upon the reflexivity of R, and the 

validity of 5 depends on the euclideanness of R. Nothing special is 
needed for the others. 

1.1 1. (This exercise presupposes an acquaintance with elementary 
quantificational logic.) The reader may have noticed an analogy between 
the signs of necessity and possibility, and 0,  on the one hand, and 
the universal and existential quantifiers, V and 3, on the other. UA is 
true at a possible world just in case A holds at every world; OA is true 
at a world if and only if A holds at some world. 

Let us specify a language of elementary quantificational logic by 
stipulating that its formulas are of the following forms : 

( a )  T, I, TA, A A B ,  A v B ,  A+B,  

A-B, VaA, 3aA, 
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where Pn is one of denumerably many one-place predicates and a is a 
variable, so that PJa) is an atomic formula. 

We define the mapping 7, from the language of modal logic to the 
quantificational language, as follows. 

( l ) ~ ( ~ )  = ( a ) ,  for n = 0,1,2 ,.... 
(2) T(T) = T. 

(3) ~ ( 1 )  = 1. 

(4) ?(-I A) = lT(A). 

(5) 7(A A B) = T(A) A ?(El). 

(6) 7(A v B) = T(A) v r(B). 

(7) T(A -+ B) = T(A) + r(B). 

(8) T(A t, B) = r(A) - r(B). 

(9) r (nA)  = va~(A). 

(10) T(OA) = 3a~(A). 

Thus r associates with each sentence A in the modal language a unique 
formula 7(A) in the quantificational language by replacing each atomic 
sentence Pn by Pn(a) and putting Va: and 3a respectively for occurrences 
of and 0. For example, let us calculate the results of applying T to 
nPo+Poandto OPo--+nOPo. 

r(Opo+ Po) = ~ ( ~ P o ) + ~ ( P o )  
= Var(P0) + r(PO) 

= Va Po(a) -+ Po(&) 

I t  should be apparent that T is in effect a specification of the truth 
conditions of modal sentences at a possible world a in a model, The  
transformation shows that UPo-+ Po holds at a just in case VaP0(a)+ 
Po(a) is true, and that 0 Po+ 0 Po holds at a just in case 3aP,(a)+ 
Va3aPo(a) is true. Generally, we can see that a modal sentence A is valid 
just when T(A) is; i.e. 

k A iff T(A) is a valid formula of elementary auantificational 
logic. 
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For example, the instances of T and 5 above are valid, and so are their 
transformations. So T provides a way of investigating questions of 
validity in the modal language. 

(a)  Apply T to K, Df 0, and selected tautologies, to see that their 
transformations are valid quantificational formulas. 

(b)  Show that if 7(A) is a valid formula of elementary quantifi- 
cational logic so is 7(nA), and that if r(A+ B) and r(A) are 
quantificationally valid so is r(B). 

( c )  Use 7 on the schemas in exercises 1.1-1.3, 1.7, and 1.8. 
( d )  Show that the principles in exercises 1.4 and 1.5 hold with 

respect to quantificational validity and transformations of the 
schemas. 

( e )  Explain how models X = (W, P) for the modal language 
serve equally well for the quantificational language. 

1.2. The system S5 

In this section we examine necessity and possibility in S5 from an 
axiomatic point of view. We begin with an axiomatization based on the 
principles in the preceding section. That is, we adopt as axioms, or basic 
theorems, all sentences of the following forms. 

T. DA+A 
5. O A + O O A  

K. El(A+B)+(UA+ LIB) 
DfO. O A - - I O T A  

PL. A, where A is a tautology 

And we assume the following rules of inference. 

A 
RN. - 

CIA 

MP. 
A+B, A 

B 

By a theorem, generally, we mean any sentence that can be proved on the 
basis of the axioms and rules of inference. (Axioms are automatically 
theorems.) Where A is a sentence, we also write 

to mean that A is a theorem. 
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Note that a rule of inference is properly understood as meaning that its 
conclusion is a theorem if each of its hypotheses is. For example, the rule 
RN means that I- nA whenever I- A. 

Before moving to proofs of genuinely modal theorems and further 
rules of inference, let us see again that S5, now formulated as a deductive 
system, includes propositional logic. Here this means that we can derive 
within the system the rule of inference 

RPL. An 
A (n 2 01, 

where the inference from A,, ..., A, to A is pro- 
positionally correct. 

The proof that the rule RPL holds is like that for the analogous result 
in section 1.1. We show that if the inference from A,, ..., A, to A is 
propositionally correct and each of A,, ..., A, is a theorem, then A is a 
theorem, too. The  supposition that the inference is propositionally 
correct means that A is true in every valuation in which each of A,, . . ., An 
is, which in turn means that the sentence 

is a tautology (PI,), which means that it is a theorem. If each of A,, . . ., A, 
is a theorem, then by n applications of the rule MP, so is A. 

We may illustrate RPL, as in section 1.1, with the rule of inference 
sometimes called hypothetical syllogism: 

Because A + C  is true in every valuation in which both A + B  and 
B + C are, the sentence (A -+ B) + ((B -+ C) +- (A+ C)) is a tautology and 
hence a theorem. Thus if both 1 A -+ B and I- B + C, successive applica- 
tions of MP yield first that t- (B + C) + (A+ C) and then that t- A+ C. So 
this rule is covered by RPL. 

The rule MP is obviously also a special case of RPL, but it should be 
noted that RPL covers the axioms PL as well. For when n = 0, RPL is 
the rule 

where the inference to A is propositionally correct. 

And this simply means that A is a theorem whenever A is true in every 
valuation, i.e. whenever A is a tautology. Thus it is a matter of indifference 
whether we adopt PL and MP, on the one hand, or simply RPL, on the 
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other, in our axiomatization of S5. We choose PL and MP here because 
this is closer to the traditional approach; in the rest of the book we use 
RPL. 

In  any case, we shall hereinafter freely make use of tautologies and 
propositionally correct patterns of inference in deducing theorems and 
deriving rules of inference. Wherever we do, we signal this by PL (for 
' propositional logic '). 

Turning now to specifically modaI principles, let us begin by proving 
that the schema 

TO.  A + O A  

- whatever is so is possibly so - is a theorem of S5. First we note that as 
a special case of the axiom T we have that k 1 A  -+ 1A. By PL, it 
follows from this that I-A+ 1 n 1 A .  In view of the axiom DfO, i.e, 
that I- OA- 7 0-1 A, we may infer by PL that FA-+ OA. 

We can put this discursive proof that T O  is a theorem more neatly as 
an annotated sequence of theorems : 

The annotations are meant to indicate the reasoning involved as the 
proof proceeds. Thus line I is justified as an instance of T ,  line 2 comes 
from line 1 by PL (i.e. RPL), Iine 3 is a statement of DfO, and line 4 is 
inferred from lines 2 and 3 by PL (again, RPL). This way of setting out 
proofs is perspicuous and often useful, especially where the discursive 
mode is lengthy or tortuous. (But notice that line 2 might have been 
omitted, since line 4 follows from lines 1 and 3 by PL. We prefer the 
longer proof here for the sake of perspicuity.) 

Next let us show that whatever is necessary is possible, i.e. that the 
schema 

D. OA-+OA 

is a theorem of 5'5. The proof is simple: Since both C]A+A and 
A+ OA are theorems, by PL (in fact, hypothetical syllogism) so is 
OA+ OA. 

Likewise, using T 0, we may show that the schema 
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- whatever is so is necessarily possibly so - is a theorem of S5. 

Before going on to prove more theorems of S5, it will be convenient 
to derive two further rules of inference. 

RM. 
A+B 

nA+ OB 

RE. 
A-B 

O A - O B  

The rule RM may be understood as asserting that a proposition is 
necessary if it is implied by a necessary proposition. T o  show that S5 
has this rule we argue that its conclusion is a theorem if its hy~othcsis is, 
as follows. 

1. A+B hypothesis 

Given RM, it is easy to derive the rule RE (which says in effect that 
equivalent propositions are equally necessary). We leave the derivation 
as an exercise for the reader. 

Now let us prove that S5 has the theorem 

i.e. that necessity is definable in terms of possibility and negation. Our 
proof uses just PI,, RE, and the definability of possibility in terms of 
necessity and negation, Df 0. 

(Notice that line 2 might have been omitted, since line 5 follows from 
lines 1 and 4 by PL.) 
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Dual to the theorem B, S5 has the theorem 

which means that whatever is possibly necessary is simply so. By way of 
proof, note first that in virtue of B, k l A +  O l A ,  and so by PL, 
I- -117 0 TA + A. Thus it is sufficient to show that t- 0 DA - -I 0 1A. 
Our proof of this demonstrates the usefulness of being able to call upon 
Df and RE, as well as Df 0 : 

Here again our proof is spelled out in more detail than is necessary; 
line 6 follows by PL from lines 3 and 5. 

By a similar argument we can also show that S5 contains the following 
dual of the axiom 5. 

For as a special case of 5, k O 1 A - t  D O l A ,  and hence k ~ [ 3 0 1 A - +  
-1 0 JA, by PL. Then 5 follows by PL, using D f a  and the theorem 
on line 6 above. The import of 5 0  is, of course, that a proposition is 
necessary if it is at least possibly necessary. 

We come now to the schema 

According to 4, whatever is necessary is necessarily necessary. We may 
prove that 4 is a theorem of S5 as follows. 

Corresponding to the theorem 4 is the dual schema 
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according to which whatever is possibiy possible is possible simply. T o  
show that 4 0  is a theorem of S5 we would argue that because of 4 and 
PL, 1 1  / l n l A + ~ U l A ,  and then prove that 1 0 O A t ,  i n n - ~ A .  
For 4 0  follows from these by PL. We leave the actual proof, however, 
as an exercise for the reader. 

The system S5 has the following noteworthy rule of inference. 

RK. 
( A l ~  ... AA,)+A 

(n 2 0) 
( ~ A , A  ... A nA,)+ O A  

RK expresses a general rule of modal consequence: a proposition is 
necessary if it is a consequence of a collection of propositions each of 
which is necessary. The  condition that n 2 0 is intentional, for we make 
the convention that in the absence of antecedents - when n = 0 - the 
conditionals are identified with their consequents, A and UA. Thus 
when n = 0 we have the rule RN as a special case of RK. Moreover, 
when n = 1 the rule RK becomes RM. 

A proper proof that S5 has the rule RK proceeds by induction on the 
number n of conjuncts in the antecedents. The basis of the induction, 
where n = 0, is trivial, since in this case RK is RN, a basic rule in the 
axiomatization of S5. For the inductive part of the proof we suppose - as 
an inductive hypothesis - that the rule holds for any number of conjuncts 
in the antecedents up to (but not including) some number n > 0, and 
show from this that it holds when the number of conjuncts is exactly n. 
The argument for this is as follows. Suppose that 

( A l ~  ... AA,)+A 

is a theorem. By PL this is equivalent to 

By the inductive hypothesis the rule RK applies to this theorem, since 
the number of conjuncts in the antecedent is less than n. Thus we have 
the theorem 

Now from this and the axiom K, in the form 

O(An+A)+(UA,+ ON, 
we infer by PL the theorem 

(UA, A . . A CIA,-1) -t (CIAn+ CIA), 

which is equivalent by PL to 



20 Introduction 

This completes the inductive part of the proof. I t  follows now that the 
rule RK holds for any number n 2 0 of conjuncts in the antecedents, 
since it holds for n = 0 and also for any rz > 0 whenever it holds up to n. 

Notice that only PL, RN, and K are used in the derivation of the rule 
RK. Moreover, using only PL and RK we can prove RN (trivially) and 
K (by RK on the tautology ((A+ B) A A)+ B we get the theorem 
( n ( A +  B) A nA)+ UB, which is equivalent to K by PL). The moral of 
this is that we could equally well have chosen RK instead of RN and K 
in our axiomatization of S5. 

Another special case of RK, when n = 2, is the rule of inference 

RR. 
(AA B)+C 

(CIA/\ OB)+ OC' 

which expresses a limited principle of consequence (a proposition is 
necessary if it follows from a pair of propositions each of which is 
necessary). A direct proof of RR - using PL, RM, and K - can also be 
had, and it may illuminate the inductive part of the proof above for RK; 
we leave it as an exercise. 

Three further theorems are worth mention. 

Proofs of N, M, and C - using RN, RM, and RR, respectively - are not 
hard to find, so we leave them as exercises. 

It is clear from our results in section 1.1 that every theorem is valid : 
all the axioms, T, 5, K, Df 0 ,  and PL, are valid, and the rules of inference 
RN and M P  preserve validity. In  short, the axiomatization is sound. I t  is 
moreover complete: every valid sentence is a theorem. This may not be 
so obvious, however, and it is not until chapter 5 that we are in a position 
to prove it. 

We thus have two ways of characterizing the modal logic S5 - one 
semantic, the other deductive. I t  bears emphasis, moreover, that the set 
of principles T, 5, K, DfO,  PL, RN, and MP is not the only selection 
that provides an axiomatization - a deductive characterization - of S5. 
We have seen already, for example, that the rule RPL would do just as 
well as MP plus PL, and that RK could take the place of RN plus K. 
Such alterations result in equivalent, alternative axiomatizations of S5 - 
equivalent since the axioms and rules of inference of each are derivable 
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from the others, so that any sentence provable in one axiomatization 
is provable in the others. 

Let us conclude this section with yet another axiomatization of S5, one 
of the best known. I t  is formulated on the basis of propositional logic by 
means of the rule RN together with the schemas T, B, 4, K, and Df 0 
as axioms. In other words, this axiomatization differs from the one with 
which we began only by having B and 4 as axioms in place of 5. For the 
sake of exposition we dub the set of theorems axiomatized in this way S5'. 

Clearly, every theorem of S5' is also a theorem of S5, since every axiom 
and rule of S5' can be (and has been) proved in S5. Showing the reverse, 
that S5' includes S5, boils down to proving that the schema 5 is a theorem 
of S5'- i.e. that 5 can be derived on the basis of T, B, 4, K, Df 0, PL, 
RN, and MP. T o  this end, observe that S5' has the rule RPL (because of 
PL and MP), that S5' has the rule RM (because of RPL, RN, and K), 
and that S5' has the theorem 4 0 (exercise). So we may argue as follows. 

I .  0 OA+ OA 4 0  
2 . 0 0 0 A - + n O A  1,RM 
3 . O A + ( 7 O O A  B 
4 . O A +  U O A  2, 3, PL 

According to the last line the schema 5 is indeed a theorem of S5'. 
Therefore, the two axiomatizations are equivalent. 

EXERCISES 

Except where otherwise noted use any theorem or rule of inference 
established in section 1.2, and any theorems and rules established in 
previous exercises. 

1.12. Derive the rule of inference RE in S5. 

1.13. Derive the following rules of inference in S5. 
A+B A-B 

(a) .OA+ OB ( b )  OA- OB 
1.14. Derive the rule of inference RR in S5 using only PL, RM, and K. 

1.15, Prove that N, M, and C are theorems of S5. 
1.16. Prove that the following schemas are theorems of S5. 
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1.17. Prove that the following schemas are theorems of S5. 

(a)  ( O A v  17B)+O(Av B) 
(4 B ) + ( O A A  OBI 
(c) U(Av B)-,(OAv UB) 

(4 ( O A A  OBI+ O(AA B) 
1.18. Derive the following rules of inference in S5. 

1.19. Prove that the sentence 0 T is a theorem of S5. 

1.20. Prove that the schema 4 0  is a theorem of S5. 

1.21. Prove that the following schemas are theorems of S5. 

(a) OAt+OOA 
( 4  OA- 0 O A  

(c) O A - U O A  

( d )  CIA- O O A  
1.22. Prove that the schema 0 OA -+ OA is a theorem of S5. 
1.23. Derive the following rules of inference in S5. 

1.24. Prove that the schema 4 0 is a theorem of S5' (see the last paragraph 
of section 1.2). 

1.25. Prove that S5 is equivalently axiomatized if in the original axio- 
matization the axiom 5 is deleted in favor of the schema A+ OA. 

1.26. Prove that 5'5 is equivalently axiomatized if in the original axio- 
matization the axiom K is replaced by the schemas N, M, and C, and the 
rule of inference RN is replaced by RE. 

1.27. We say that a system of modal logic is consistent when it does not 
contain I as a theorem. It is clear that the system S5 is consistent: the 
axiomatization is sound - i.e. every theorem is valid - and I is not valid. 
Below we argue the consistency of S5 in another way. 

Let the mapping s on the set of sentences be defined by the following 
clauses. 

(1) ( P )  = , for n = 0,1, 2, . . . . 
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Thus e is an 'erasure' transformation. It erases all occurrences of the 
modal operators and 0 in a sentence A, but leaves A otherwise intact. 

Now let us see that s transforms axioms of S5 into tautologies, and 
rules of inference of S5 into rules of propositional logic. Clearly the 
erasure of a tautology (PL) is always a tautology. Moreover: 

The schemas on the right-hand side of these identities are all tautologies; 
so the erasure of any non-propositional axiom is a tautology. Finally, 
under erasure the rules of inference RN and MP become 

and €(A)+&(B), Eo 
The first of these is merely a rule of repetition, and the second is just 
MP again. 

It follows that under the mapping s every theorem of S5 is transformed 
into a tautology. Therefore, since €(I) - i.e. I - is not a tautology, I is 
not a theorem of S5. So we have proved the consistency of S5 once again. 

(a) Apply e to T, 5, K, Df 0,  and selected instances of PL to see 
that their erasures are tautologies. 

(b)  Show that if €(A) is a tautology so is e(mA), and that if 
e(A+ B) and €(A) are tautologies so is s(B). 

( c )  Use e on the schemas in exercises 1.15-1.17, 1.19-1.22, and 
1.25. 
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( d )  Show that the rules of inference in exercises 1.12-1.14, 1.18, 
and 1.23 hold under erasure. 

(e) Consider the system that results when the schema A+ O A  is 
added as an axiom to S5. This system is not sound, since 
A -+ n A  is not valid (see section 1. I), but it is consistent. Use 
the erasure transformation to prove this. 

(f) Prove the consistency of the system that results when the 
schema VA-+ 0 UA is added as an axiom to S5. (Is this 
system sound?) 

(g) Referring to exercise 1.11, observe that the transformation T 

can be employed like e to prove the consistency of S5, since 
I is not quantificationally valid. How do the schemas A -+ OA 
and l-J OA+ 0 UA fare under T ?  

1.28. Sometimes there is confusion about the meaning of rules of 
inference. For example, because of RN it might be thought that 
A+ H A  is a theorem. Similarly the rules RM and RE might mistakenly 
be regarded as evidence for the theoremhood of the schemas 

(A+B)-+(OA+ OB) and (A-B)-+(OA++ OB). 

Dispel this illusion by showing that neither schema is valid. 

1.29. Show that A+ O A  is a theorem of the system that results when the 
schema (A+ B)-+ ( n A +  OB) is added as an axiom to S5. Is this true 
if (A* B) -+ (OA ++ OB) is added to S5? What about the consistency of 
these systems? 

1.30. Prove that A +  n A  is a theorem of the system that results when the 
schema ()A+ 0 UA is added as an axiom to 85 .  
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This chapter is an introduction to most of the concepts we shall use in 
studying modal logic. 

In  section 2.1 we set out most of the syntactic concepts. Section 2.2 
introduces semantic concepts: the general idea of a model, truth con- 
ditions for non-modal sentences, and definitions of truth in a model and 
validity in a class of models. Filtrations of models are described in section 
2.3. In  section 2.4 the idea of a system of modal logic is explained, along 
with such relevant notions as theoremhood, deducibility, and con- 
sistency. Axiomatizability is discussed in section 2.5. Maximal sets of 
sentences and Lindenbaum's lemma occupy section 2.6. I n  section 2.7 
we define determination and explain our approach, using canonical 
models, to proofs of determination. Finally in section 2.8 we outline our 
method of proving the decidability of systems of modal logic. 

As the need arises the reader may wish to return to various sections of 
this chapter, for important definitions and theorems. 

2.1. Syntax 

This section is devoted to a recital of the basic syntactic concepts for the 
language of modal logic, many of which the reader has likely gleaned from 
chapter 1. The ideas are very simple. The  few formal definitions we offer 
may be helpful, but they are not essential; we state them mainly for the 
sake of completeness and future reference. 

Sentences. The language is founded on a denumerable set of atomic 
sentences : 

Po, PI, p 2 ,  

These are the simplest sentences. 
The non-atomic molecular sentences are formed by means of nine 

syntactic operations, or operators: 

T, 1, - 7 9  A, v, +, -9 El, 0 
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As we said in chapter 1, T and 1 are zero-place operators, or constants; 
1, 0, and 0 are one-place operators ; and A, V ,  -+, and - are two-place 
operators. 

The  set of sentences may be defined formally as follows. 

(1) Pn is a sentence, for n = 0, 1,2,  ... . 
(2) T is a sentence. 

(3) 1 is a sentence. 

(4) TA is a sentence iff A is a sentence. 

(5) A A B is a sentence iff A and B are sentences. 

(6) A v B is a sentence iff A and B are sentences. 

(7) A+ B is a sentence iff A and B are sentences. 

(8) A H B is a sentence iff A and B are sentences. 

(9) mA is a sentence iff A is a sentence. 

(10) QA is a sentence iff A is a sentence. 

We use A, B, C, . . ., sometimes with superscripts or subscripts, for 
sentences. And we use I?, A, E, . . . , with occasional appurtenances, for sets 
of sentences. When a set of sentences A includes a set of sentences 
I' - i.e, when r G A - we often say that A is an extension of I?. 

The sentence T is called the verum or truth constant, and I is called the 
falsum or the falsity constant. -114 is the negation of A, the operand A 
being the negate. A A B is the conjunction of A and B, the operands A and 
B being respectively the left and right conjuncts. A V  B is the disjunction 
of A and B, where A and B are the left and right disjuncts. The  sentence 
A+B is the conditional of A and B; A is the antecedent and B is the 
consequent. A H B  is the biconditional of A and B, of which A and B are 
the Zeft and right members. T h e  sentence U A  is the necessitation of A, the 
operand A being the necessitate. There seems to be no standard ter- 
minology for a sentence of the form OA: let us call it thepossibilitation of 
A, and call A the possibilitate. I n  O A  and 0 A, A is also called the matrix, 
and and 0 are called prejixes. 

(These identifications of the operators as representing truth, falsity, 
negation, and so on, reflect the intended semantic analysis of the language. 
Properly speaking such characterizations are out of place in an account 
of the syntax of the language. Nevertheless, they do serve to reveal that 
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the language has a surfeit of operators. For example, the meanings of all 
the operators can be given in terms of J.., +, and n. So we might have 
adopted just these operators as primitive and defined the rest. Our 
practice in this book is otherwise, however.) 

The atomic sentences are all distinct. And of course it is intended that 
sentences of different forms really be distinct - so that, for example, no 
conditional is a necessitation. This is guaranteed by the assumption that 
the ranges of the syntactic operations are disjoint from one another and 
also from the set of atomic sentences. The  unique readability of the 
sentences - the lack of ambiguity in their structures - is secured by the 
assumption that the operations are all one-to-one (so that, for example, 
two conditionals are identical if and only if their antecedents are and 
their consequents are). 

I t  is important to remark that the set of sentences is enumerably 
infinite (denumerable). This means that the sentences of the language 
can be enumerated, 

A1, A3, "', 
completely in an infinite list. This can be done in many ways; for our 
purposes it matters not how it can be done, but only that it can be done. 

Conventions. There are some important conventions we observe 
throughout the book. One is that expressions of the forms 

A l ~  ... A A ~  
and A,v ... vAn 

represent arbitrary but unspecified conjunction and disjunction of the 
sentences A,, . . ., A,. The point here is that A and v obey the logical (but 
not the syntactic) laws of associativity, so that it does not matter how 
such conjunctions or disjunctions are formed. 

Another convention concerns sentences of the form 

(A,A .., AA%)+A. 

When n = 0, so that there are no conjuncts in the antecedent, we stipulate 
that the conditional is identical with its consequent, i.e. that (A, A . . . 
A An)+A is just A when n = 0. Similarly, when n = 0 in a sentence of 
the form 

A+(A,v ... v A,) 
we shall say that the conditional is identical with the negation of its 
antecedent ; i.e. A -+ (A, v . . . v A,) is 1 A  when n = 0. These conventions 
facilitate the expression of several principles. 
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Subsentences. A subsentence of a sentence A is any sentence that is a 
part of A, including A itself. This rather obvious idea is captured in the 
following recursive definition of the set Sn(A) of subsentences of A. 

(1) Sn(Pn) = {Pn}, for n = 0,1,2, ... . 
(2) S ~ ( T )  = {T}. 

(3) Sn(1) = (I). 
(4) Sn(7A) = { l A )  u Sn(A). 

(5) Sn(A A B) = {A A B} u Sn(A) u Sn(B). 

(6) Sn(A v B) = {A v BJ u Sn(A) u Sn(B). 

(7) Sn(A-+ B) = {A+ B} u Sn(A) u Sn(B). 

(8) Sn(A - B) = {A - B] u Sn(A) u Sn(B). 

(9) Sn(OA) = {OA} u Sn(A). 

(10) Sn(OA) = {OA} u Sn(A). 

Thus, for example, the set of subsentences of the sentence a ( P o +  
1 O(P, A 7 Po)) - i.e. Sn(O(Po+ 1 O(P1 A 1 Po))) - is 

as the reader should verify using the definition. 
Another way of looking at the structure of a sentence is by way of a 

' construction tree', as in figure 2.1 for the sentence n(Po-+ 1 0 
(PI A 7 P,)). The subsentences of the sentence appear at the nodes of 
the tree, and the branches indicate the order of application of the syntactic 
operations. Notice that a construction tree not onIy shows the sub- 
sentences of a sentence but also indicates their occurrences (for example, 
Po has two occurrences in O(Po -2 -I 0 (P, A 1 Po)) and so appears at 
two nodes on the construction tree). 

We say that a set of sentences is closed under subsentences just in case it 
contains every subsentence of every sentence it contains. Thus the set 
of subsentences of a sentence is closed under subsentences; but so also 
is the set {Po, I Po, 11 Po, . . .), which shows that a set of sentences 
closed under subsentences need not be the set of subsentences of any 
single sentence. 
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Modalities. Here it is easiest to think of the operators as symbols. By 
a modality we mean any finite sequence, possibly empty, of the operators 
.,a, and 0 ;  for example 0, 1 1 , 0 0 , 0 0 0 , 0 1 0 ,  and 001. 
The empty, or null, modality is signified by ; thus A is the same as A. 

A modality is classified as aflrmative just in case 7 occurs in it an 
even number of times (including zero); it is classified as negative other- 
wise, i.e. just in case it contains an odd number of occurrences of 1. 
The first four modalities mentioned above are affirmative, and the last 
two are negative. 

The dual of a modality q5 is the modality #* that results from inter- 
changing n and 0 throughout #. So, for example, the duals of the 
modalities above are: 0, -11, 0 0 ,  000, 010, and 001. 
Notice that the affirmative or negative quality of a modality is preserved 
by duality, and that the dual of the dual of q5 is just q5 (i.e. #++ = 4). 

We write 

to indicate that the sentence A is subject to n iterations of the modality 
4. Here n can be any number, 0, 1,2, . . . . #O A is just A, and #l A is #A. 

Figure 2.1. Construction tree for D(P, -+ 70 (PI A 1Po)). 
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Thus our usage slightly extends the idea of iteration, but it helps to 
simplify the statement of many generalities. Formally, the idea may be 
defined as follows. 

DEFINITION 2.3 
(1) $bOA = A. 

(2) $%A = $gW1A, for n > 0. 

Finally, we say that a set of sentences is modally closed just in case 
$A is in the set whenever A is, for every modality $b. By the modal 
closure of a set of sentences we mean the result of adding to the set every 
modalization q5A of any sentence A in the set. 

Replacement. Given sentences A, B, and B', we often wish to consider 
a sentence that results from the replacement of fixed occurrences of B 
in A by B'. As a matter of convenience we designate such a replacement 
by A[B/Bf]. For example, let A be the sentence O(Po-+ 1 O(P1 A 7 PO)), 
let B be Po, and let B' be the sentence P,v 0-1 P,. Then A[B/Bf] is any 
one of the following: 

Cl(P,+ 7 O(P1 A 1 Po)) 

O((P2 v 07  PI)+ 1 O(P1 A -I Po)) 

O(PO+l O ( h A  1(P,v D lP l ) ) )  

O ( ( ~ 2 v  07P1)+1 O ( ~ A  1(Pzv OlP1))) 

The point is that in any given context A[B/B'] is just one of these 
sentences: replacement is occurrence specific. Each of the four sentences 
can be obtained by making the replacement of Po by P,v 01 P1 at 
the appropriate place (node) in the construction tree for O(Po-+ 1 
O(P1A 1 Po)) (figure 2.1). Note that in the first result no occurrences of 
Po are replaced. 

Duality. If the language did not have -+ and tt we could define the 
dual of a sentence A - written A* - simply as the result of replacing each 
atomic sentence in A by its negation and interchanging all occurrences 
of T and I, A and V, and and 0 throughout. Because of the presence 
of -+ and ++, however, a more complicated definition is called for. 

DEFINITION 2.4 

(1) P,* =7Pn,  forn = 0,1,2 ,.... 
(2) T* = 1. 
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(3) l* = T. 

(4) ( l A ) *  = l(A*). 

(5) (A A B)* = A* v B*. 

(6) (A v B)" = A" A B". 

(7) (A+ B)* = i (A*)  A B*. 

(8) (AwB)* = A*++1(BF). 

(9) (CIA)" = O(A*). 
(10) (OA)" = O(A*). 

According to clause (4) of this definition we may write l A *  in- 
differently for .(A*) or ( lA)* .  We do so frequently. Some examples of 

( ~ ( A v  B))* = O(A*A B*). 

(O(A+ B)+(OA+ LIB))* = 

-@(iAQr\  B*)A lO(A*)r \  O(B*). 

Note that ($A)** = #*(A*), for any modality q5 and sentence A. 

Schemas. By a schema we mean a set of sentences, usually of a particular 
form. For example, when we refer to the schema 

5. OA-+CJVA 

we mean the set of sentences of this form - a conditional with a pos- 
sibilitation as antecedent and the necessitation of the possibilitation as 
consequent. An instance of a schema is thus a member of the set of 
sentences that constitutes the schema. 

It  is natural to think of schemas as linguistic items of a special kind, 
akin to but more abstract than the sentences that are their instances. 
Though we often speak this way, we do so mainly as a matter of con- 
venience. 

Occasionally we speak of the dual of a schema. This usage is easier to 
illustrate than to explain. So, for example, we regard the schemas in the 
following pairs as dual to each other. 

T. n A + A  TO. A+ OA 
5. OA+UQA 5 0 .  O O A + C ~ A  
M. ~ ( A A  B)+(OAA UB) M U .  ( O A v  OB)+ ~ ( A v  B) 
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Decidability. Finally, we need to say something about decidability, at 
least as it applies to sets of sentences. 

A set of sentences r is decidable just in case there is a decision procedure 
- an effective finitary method - for determining of any sentence in the 
language whether or not it is in I?. For example, the set of sentences 
containing the negation sign is decidable, since there is a routine way of 
discovering whether or not a sentence has 7 in its construction. 

A related but weaker notion is that of effective enumerability. We say 
that a set of sentences I' is eflectively enumerabb just when there is an 
effective method for telling of any sentence in I? that it is in I'. When a 
set has this property we also say that there is a positive test for member- 
ship in it. (Similarly, a negative test for r is a positive test for its com- 
plement - r, the set of sentences not in I?.) 

Clearly, I' is decidable if and only if both it and its complement are 
effectively enumerable. For if I-' has a positive test there is an effective 
way of enumerating its members: 

and if I' has a negative test there is an effective way of enumerating the 
members of its complement : 

So to produce a decision procedure for I? it is enough to combine the 
tests, for example by defining the effective enumeration 

A,,&, A,, A,, A,, A,, 
Then to discover whether or not a sentence A is in it is sufficient to 
check A against this series. Sooner or later (i.e, some finite distance into 
the series) A must appear, either as A, or as A,, for some n. 

EXERCISES 

2.1. The  schema 1 A  - (A -z I) is a tautology and is always valid in this 
book. Hence negation might as well have been introduced definitionally 
in terms of the falsum and the conditional, by the stipulation that 
1 A  = A+ 1. Similarly the verum could have been defined in terms of 
the falsum and negation (T - 1 I is a tautology), which means that T is 
also definable in terms of I and -3. Formulate tautological biconditionals 
for the operators A, V, and t., to show that they might have been 
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defined in terms of 1 and -2. (Refer to section 1.1 for the meanings.) 
Since the schema Df 0, OA- 1 m-1 A, is always valid in this book we 
see that all the operators are definable in terms of L, +, and 13. 
2.2. Explain informally why the set of sentences is enumerable. 

2.3. Describe construction trees for the following sentences. 

(4 OT 
(b) (OPov OQ,)+O(Pov Pl) 

(4 Po-, 0 Po 
(4 O P o h  PI)+(OPOh OP,) 

( 4  V ~ P O + ~ O  

(f) U(P0v P,)+(OPov O b )  
(9) 0 0 ~ 0 + 0 ~ 0  
(h)  0 ( ~ 0 - , Q , ) - ( C 1 ~ 0 + 0 ~ 1 )  

(i) O O ~ , + O ~ O  
(i) O T - ( O P ~ - , V P ~ )  

2.4. Describe the sets of subsentences of the sentences in the preceding 
exercise. 

2.5. Classify the following modalities as affirmative or negative, and then 
describe their duals. 

(a) no0 
(b) n i o i o  
( c )  11010 
(4 00101 
(e )  0 ~ 0 ~ 0 0 ~ ~ 0 0 0 0 ~ 0 0 t 7  

2.6. Prove that for every n > 0, #n = (The proof is by induction 
on n.) 

2.7. Using results from chapter 1 argue that in S5 every modality is 
equivalent to one of the following six. 

', U , O , ~ , ~ U , ~ O  
That is, show that where # is any modality one of the following schemas 
is a theorem of S5. 

A-$A nA+++A OA-$A 

lA*$A l n A - $ A  l Q A - # A  
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Then argue that there are no further reductions of modalities in S5, i.e. 
that the list of six modalities is minimal for this system. 

2.8. Describe the various results of replacing 0 Po by Po in the 
following sentence. 

(OPOA o p l ) + ( o ( P o ~  ~ I ) v  0 ( 0 P o ~  PI)vO(POA O W )  

2.9. Describe the duals of the following sentences. 

2.10. Describe the duals of the following schemas. 

2.2. Models, truth, and validity 

In chapter 1 a model is a structure ( W, P) in which W is a set of possible 
worlds and P is an assignment of truth values to atomic sentences at 
possible worlds. The truth values of non-atomic sentences at possible 
worlds are determined by this structure, from which a definition of 
validity - as truth at all worlds in all models - emerges. In chapters 
3 and 7 we successively generalize this notion of model to provide 
semantic analyses of ever more general systems of modal logic. Although 
it is impossible to say once for all what a model is, it will help to avoid 
repetition and redundancy later on if we state here some of the common 
features of the kinds of model introduced in chapters 3 and 7. 

The set W of possible worlds and the assignment P of truth values are 
elements of the models in both chapter 3 and chapter 7. So we may 
describe a model in these senses as a structure 

A = (W, ..., P),  
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where : 
(i) Wisaset ;  

(ii) P is a function on the set (0, 1,2, . . .} of natural numbers such 
that for each such number n, P, is a subset of W (i.e. P: 
{O, 1,2, ...I+ qw)); 

and the ellipsis indicates the possibility of additional elements. (In (ii) 
we abandon talk of P as an abbreviation of an infinite sequence of subsets 
of W, in favor of describing it as a mapping from natural numbers to sets 
of possible worlds.) 

A model is said to be finite if its set of worlds has only finitely many 
elements; otherwise the model is inJinite. Finite models are important in 
connection with questions of decidability for modal logics. 

Our description of a model is of sufficient detail to permit a statement 
of the truth conditions, at a possible world, of non-modal sentences, and 
to permit definitions of various degrees of validity. 

Again we write C$A to mean that A is true at the possible world a in 
the model A. For non-modal sentences - those not of the forms T]A 
and OA - this notion is defined as follows. 

DEFINITION 2.5. Let a be a worId in a model A = (W, ..., P) .  

(1) C $ P n i f f a ~ P , , f o r ~  = 0,1,2 ,.... 
(2) k f ~ .  

(3) Not I. 

(4) C$lA iff not C$ A. 

(5) C ~ A A B  iff both CfA and CfB. 

(6) kfAv B iff either CfA or Cf B, or both. 

(7) CfA+B iff if CfA then Cf B. 

(8) Cf A-B iff t f A  if and only if Cf B. 

Statements of the truth conditions of sentences of the forms UA and 
OA - as in section 1.1 - appear in chapter 3, in connection with standard 
models, and again in chapter 7, in connection with minimal models. 

Definition 2.5 may be regarded as an account of the lowest degree of 
validity - truth at a possible world in a model. In chapter 1 we dis- 
tinguished only one other degree of validity, the highest - truth at all 
worlds in all models. This was appropriate, since we were interested 
there only in an introductory exposition of one of the simplest systems 
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of modal logic, S5. Because we seek both more subtlety and more 
generality in the chapters that follow, we need to define some intermediate 
degrees of validity, of which the sort in chapter 1 is but a limiting case. 

Let us say that a sentence is true in a model just in case it is true at 
every world in the model. This is a level of truth, or validity, a degree 
above that of definition 2.5. Next, let us say that a sentence is valid in a 
class of models if and only if it is true in every model in the class, i.e. 
true at every world in every model in the class. Thus a sentence valid in 
the class of all models is valid simpliciter, as in chapter 1. 

We write kAA to mean that A is true in the model 4, and k,A to 
mean that A is valid in the class C of models.We record these definitions 
formally. 

DEFINITION 2.6, kAA iff for every world a in A, Cf A. 

DEFINITION 2.7. k c  A iff for every model d in C, kf A. 

When CAA we also say that A is a model of (or for) A ;  and that A is a 
model of (for) a set of sentences I' when A is a model of every sentence 
in I'. 

Falsity always means non-truth, so that to say A is false at a in 4 
just means that not t=$ A, and to say A is false in 4 means that A is false 
at some world in A. When A is false in A we also say that 4 is a counter- 
model to (or for) A. Similarly, & is a countermodel to (or for) a set of 
sentences J? just in case some sentence in I? is false at some world in A. 

Let us say that a sentence A &-implies a sentence B if and only if B 
is true at every world in A at which A is, and that A and B are A- 
equivalent just when they are true (and hence false) at exactly the same 
worlds in A. Evidently, A and B are &-equivalent just in case A 
A-implies B and B &-implies A. By saying that a set of sentences I' 
is logically jn i te  relative to the model AY we mean that every sentence in 
I' is A-equivalent to one or another of a finite number of sentences in I?. 

Two further concepts are important. We say that two possible worlds 
agree on a sentence when they both verify or both falsify it, and that two 
models agree on a sentence when they are both models or both counter- 
models for it. Two models are said to be pointwise equivalent if and only 
if their world sets can be put in one-to-one correspondence in such a 
way that corresponding worlds agree on all sentences. Two models are 
(simply) equivalent just in case they agree on all sentences, It follows that 
pointwise equivalent models are always equivalent, though not vice versa. 
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The notion of model under discussion here is of course too insub- 
stantial to produce any results about modal logic proper. But an important 
result about propositional logic does emerge from the account so far given, 
to wit, that this logic is a part of every modal logic we shall study. By 
this we mean, here, that whenever a sentence A is a tautological con- 
sequence of sentences A,, . . . , A,, then A is valid in any class of models in 
which all of A,, . . . , A, are. We state this formally. 

THEOREM 2.8. Let A be a tautological consequence of A,, . . . , A, (n 2 0). 
Then if C is any class of models such that k c  A,, . . ., k c  A,, 
then k c  A. 

Proof. We prove the theorem by showing first that where C is any 
class of models : 

(1) If A is a tautology, then kc A. 

(2) If kcA+13 and kcA, then kcB. 

The reasoning for (1) and (2) repeats that for the corresponding results 
in section 1.1. Nevertheless, we go through it again here in detail. 

For (1). Recall that a propositionally atomic sentence is one of the 
form P,, OA, or OA; that a valuation is an assignment of truth values 
(truth, falsity) to each of the propositionally atomic sentences; that 
sentences of other kinds are assigned truth values in the usual way 
(compare definition 2.5); and that a tautology is a sentence true in every 
valuation. In any model A each possible world a determines a valuation 
V,, in the sense that for each propositionally atomic sentence A, 

%(A) = truth iff k$A. 

Clearly, this definition yields the result that for any sentence A, 

A is true in V ,  iff kf A, 

(Clearly. But the proof is given as an exercise.) 
Now to see that every tautology is valid in any class C of models. 

Suppose that A is a tautology, so that it is true in every valuation. Then 
for every world a in any model in C, A is true in the corresponding 
valuation V,. From this it follows by the result above that for every world 
a in any model A in C, kf A, which means that kc  A. 

For (2). Let C be a class of models, and suppose that both k c  A+ B 
and k c  A. Then for every world a in every model A in C, both k$ A -t B 
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and Cf A. From this it follows that for every world a in every model 4 
in C, C$ B, which means that kc  B. 

Now we can prove the theorem. Suppose A is a tautological con- 
sequence of A,, . .., A, (n > 0). Then 

is a tautology, and hence by (1) is valid. If we suppose further that each 
of A,, . . ., A, is valid in a class C of models, then by reference to (2) - n 
times - we find that A is also valid in C. (Again, compare section 1.1.) 
This concludes the proof. 

In  practical terms, theorem 2.8 means that all propositionally correct 
modes of inference will be available when it comes to theorem proving 
later on; more precisely, that the rule of inference RPL introduced in 
chapter 1 is always correct. 

We close this section with the idea of truth sets. The truth set, IIAll", 
of the sentence A in the model 4 is the set of worlds in A at which A 
is true. Formally: 

DEFINITION 2.9. llAllJY = {a in A: C$ A). 

The following theorem reveals the structures of truth sets of the several 
sorts of sentences. 

T H E O R E M  2.10. Let A = (W, ..., P) be a model. Then: 

(1) IIPnIIA=P,,forn =0, 1,2  ,.... 
(2) I l ~ l l ~  = W. 

(3) l l ~ l l A  = 

(4) II 1AlI " = W -  II All "a 

(5) IIAA BII" = IIAII" ~11B11"~ 

(6) IIAv BII" = II All" u IIBII". 

(7) IIA+BII" = ( W -  II All") u IIBII "a 

(8) ll A* Bli" = (( W -  I I  All") U IIBII') 
n((W- IIBll "1 u IIAII")* 

The proof of this theorem, using definitions 2.5 and 2.9, is easy and 
is left as an exercise. 

In  a way, IIAlld can be regarded as the proposition expressed by the 
sentence A in the model A. See exercise 2.22. 
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2.11. Using definitions 2.6 and 2.7 prove that 

k c  A iff I=f A for every world a in every model X in C. 

2.12. Prove : 

(a) A and B are A-equivalent iff A &-implies B and B 
A-implies A. 

(b) A A-implies B iff kAA+ B. 

(c) A and B are A-equivalent iff k" Act B. 

2.13. Prove that a finite set of sentences is logically finite with respect to 
any model. 

2.14. Prove that the set {Po 1 Po, 1 Po, . . . is logically finite (with 
respect to any model). 

2.15. Prove that two models are equivalent if they are pointwise equi- 
valent. 

2.16, Prove theorem 2.10. 

2.17. Prove : 

(a) llAllJY E IIBIIA iff kAA+B. 

(b) llAl1" = IIBll" iff CXAttB. 

2.18. Prove: 

(a) A X-implies B iff IIAll" E 11 B11'. 
(b) A and B are A-equivalent iff 1IAll" = 11 Bil". 

2.19. In the proof of theorem 2.8 we say that the definition of the valuation 
yields the result that for any sentence A, 

A is true in iff !=$A. 

The proof of this is by induction on the complexity of A. That is, we 
show that it holds if A is propositionally atomic, that it holds if A is T 
or I, and that it holds when A is a conjunction, disjunction, conditional, 
or biconditional given that it holds for all sentences of less complexity 
than A. We give the proof for the cases in which A is (a)  propositionally 
atomic, (b) a negation, 1 B, and (c) a conditional, B + C. 

For (a). If A is propositionally atomic, then by the definition of truth 
in a valuation we have that A is true in if and only if V,(A) = truth. But 
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by definition, V,(A) = truth if and only if I=f A. So the result follows: A 
is true in if and only if k;;K A. 

For the inductive cases (b)  and (c) we make the hypothesis that the 
result holds for all sentences shorter than A. 

For (b).  1 B  is true in if and only if B is not true in V ,  (by the 
definition of truth in a valuation) if and only if not tf B (by the inductive 
hypothesis) if and only if kf 1 B (definition 2.5 (4)). So the result obtains 
when A is a negation. 

For (c) : 

B + C is true in V ,  iff if B is true in then C is true in 
- definition of truth in a valuation; 

iff if I=$ B then tf C 
- inductive hypothesis; 

iff k$B+C 
- definition 2.5 (7). 

So the result holds when A is a conditional. 

The remaining cases are left for the reader. (Note that the inductive 
hypothesis does not apply to the cases in which A is T or I.) 

2.20. Let us consider the models A = ( W, R, P) of exercise 1.10 and 
the associated truth conditions (9') and (10') for modal sentences. If we 
drop the assumption that the relation R is reflexive in such models, then 
the schema T is no longer valid. Similarly, if we drop the assumption 
that R is euclidean, then the schema 5 is not valid. For example, consider 
the model A = (W, R, P) in which W = {a, 8) (where a # P), R = {{a, 

p), (p, B,)}, and P, = (p} for every natural number n. In this model the 
relation R is euclidean, but not reflexive (it lacks the pair {a, a)). Clearly, 
I=f Po, and since is the only world to which a is related by R, OPo. 
But not kf Po. So the instance n P o +  Po of T fails at a in IK - i.e. not 
tf UPo+ Po-which means that the schema T is not valid in the class 
of models of this sort in which the relation R is not reflexive. 

Describe a model of this sort in which R is reflexive but not euclidean, 
such that an instance of the schema 5 is false at some possible world. 

2.21. Consider models like those of the preceding exercise and exercise 
1.10 except that no assumption whatever is made about the structure 
of the binary relation R. Show that instances of the following schemas 
can be falsified at possible worlds in such models. 
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Prove that K, Df 0,  and all tautologies are valid in any class of such 
models, and that validity in a class of such models is preserved by RN 
and MP. 

2.22. If we think of the proposition expressed by a sentence as something 
that has within it the information about how the sentence comes true or 
false in various possible situations, then it is natural to regard a truth set 
IIAII-X as the proposition expressed by the sentence A in the model 4. 
For such sets behave just like propositions in that for any possible world 
a in IIAII"V determines whether A is true or false at a (according as a 
is or is not a member of 1 AllX). 

Notice that on this construal the truth set ~ J T I ~ '  is a (perhaps the) 
necessary proposition in a model A (since it determines T as true 
everywhere in d ) ,  and the truth conditions in chapter 1 of a necessitation 
can be stated : 

If OA iff 1 1  T I ( &  = 1 1  AllJ/ 

- or, what comes to the same thing: 

Cf UA iff 11 T 11" G 1IAIl". 

In this latter formulation we have that UA is true at  a! just in case the 
proposition expressed by A in d is implied by the necessary proposition 
in A. (It is appropriate to regard inclusion between truth sets as im- 
plication between propositions, since IIAlld 5 11 B1lA if and only if 
k M  A -+ B ; see exercise 2.17.) 

Using the truth sets 11 ~11-X and IIAIIX, give a succinct formulation of 
the truth conditions of OA at the world cc in 4. 

2.3. Filtrations 

Let 1' be a set of sentences closed under subsentences. For any model 
A = { W, . . . , P) we define the equivalence relation = on the worlds in 
A by the stipulation that, for cc and ,8 in A, 

a = ,8 iff for every A E F, C$ A if and only if Cf A. 

That is to say, worlds in d are equivalent under just in case they 
agree on every sentence in I', The relation = is indeed an equivalence, 
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and so it divides the set of worlds in A? into mutually exclusive, non- 
empty equivalence classes [a] for each a in A; i.e. for each a in A we 

Let us also define = -equivalence classes of sets of worlds in A, by saying 

[XI = ([a] : a E X), 

whenever X is a set of worlds in &; i.e. [XI is the set of equivalence 
classes of worlds in X. 

Notice that the definitions of -, [a], and [XI depend essentially on 
I?, so that we should properly write = ,, [a],, and [XI,. But we do: not, 
since the omission is almost always harmless. 

I n  terms of these constructions we can say in part what a filtration is. 
T o  wit, a jiltration of the model A = (W, . . ., P) through I' is a model 
A* = (W*, ..., P*) in which: 

(i) W* = [W]. 
(ii) Pt = [P,], for each n such that Pn E I?. 

In  other words, each world in A* is an equivalence class of worlds in 
(and each such class is a world in A*) ,  and for each such world [a] and 
each atomic sentence P, in I?, 

[a] E P," iff a E P,. 

We also call A* a I'-Jiltration of A. A model is a Jiltration, simply, if 
and only if it is a filtration through some set of sentences (dosed under 
subsentences). 

The  important thing about a filtration &* of A through I? is that a 
world a in A and its equivalence class [a] in A* agree on every sentence 
in I7 ; i.e. for every a in A and every A in I?, 

Cf A iff kg' A. 

Equivalently: [/1AI/dj = IIAll"', for every A in I?. This fundamental 
filtration theorem is proved in chapter 3 for standard models, and again 
in chapter 7 for minimal models. (Indeed, it can be proved already for 
the cases in which A is non-modal. See exercise 2.27.) 

It follows that a model and a r-filtration A* of it are always 
equivalent modulo I?, which is to say that for every A in I?, 

CAA iff I=&* A. 

For the theorem implies that, where A is a sentence in I? 

kf' A, for every a in A, iff, for every a in A?, c$' A. 
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The left side of this means that bAA (definition 2.6), and the right side 
means that for every [a] in A*, CK A, and hence that C"' A. 

And, quite generally, it follows from this that a sentence in I? is valid 
in a class of models just in case it is valid in the class of I?-filtrations of 
those modeIs. That is, for every A in I?, 

where C is any class of models and r(C) is the class of r-filtrations of 
them. The argument here is left as an exercise. 

We explain in section 2.8 how filtrations are used to demonstrate the 
decidability of modal logics. In  this connection it is important to observe 
that filtration through a finite set of sentences always yields a finite model. 
For if n is the number of sentences in F, then a filtration through I? is a 
model having at most 2n worlds (equivalence classes of worlds in the 
original model), that being the maximum number of ways that worlds 
can agree on sentences in I?. And 2" is finite if n is. I n  particular, if I? is 
the set of subsentences of a sentence A, then r is finite and closed under 
subsentences, and every I'-filtration is a finite model. 

More generally, if I' is logically finite relative to a model A, then every 
I?-filtration of A is finite. For where n is the smallest number of finitely 
many sentences in I? to which all others in r are A-equivalent, 2n is 
finite and is the maximum number of ways that worlds in A can agree 
on the sentences in I?. 

EXERCISES 

Let F be a set of sentences closed under subsentences, and let A* = 

(W*, . . ., P*) be a I?-filtration of a model A = (W, . . ., P). 
2.23. Prove that r is an equivalence relation, i.e. that for every a, B, 
and y in A: 

(a) a = a ;  

(b)  i f a =  p a n d a =  y, t h e n B =  y. 

2.24. Prove that for every world a and P and every set X of worlds in A: 

(a) /? E [a] iff a = p. 
(b)  If a EX, then [a] E [XI. 

Give an example to show that ( b )  does not generally hold in reverse. 
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2.25. Let Pn be an atomic sentence in r. Prove that for every a and P 
in A?: 

(a )  If a = p, then [a] E PE iff [PI E Pz. 

(b)  [olJ E PE iff a EP,. 

2.26, Prove the equivalence of (a )  and (b).  

( a )  For every A in I' and every a in A, I=$ A if and only if 
cg* A. 

(b)  For every A in I', [lIAlld] = lIAlld*. 

2.27. We can prove (a )  (equivalently, (b))  in the preceding exercise for 
non-modal sentences A in I?. The proof is inductive with respect to the 
complexity of A in I?. We give it for the cases in which A in I? is (a )  
atomic, Pn, (b)  a negation, l B ,  and ( c )  a conditional, B +C. The 
remaining cases are left for the reader. 

For (a)  : 
kf P, iff a EP, 

- definition 2.5 (1); 

iff [a] E PE 
- since P, E r; 

iff Cg* Pn 
- definition 2.5 (I). 

So the result holds when A in I? is atomic. 
For the inductive cases we assume as an inductive hypothesis that the 

result holds for all sentences in I? of less complexity than A ; in particular, 
then, we assume that the result holds for every subsentence of A. 

For (b)  : 
k f 1 B  iff not kfB 

- definition 2.5 (4) ; 

iff not C$* B 
- inductive hypothesis ; 

iff k g * ~ B  
- definition 2.5 (4). 

So the result holds when A in I' is a negation. 
For ( c )  : 

k$B+C iff if J=fB then kfC 
- definition 2.5 (7) ; 
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iff if bib*;' B then k g *  C 
- inductive hypothesis ; 

iff I=$$* B -+ C 
- definition 2.5 (7). 

So the result holds when A in I? is a conditional. 

2.28. Argue in detail that the result in the preceding exercise implies that 
for every A in I?, 

(a) kA A iff k M *  A. 

Then show that this in turn implies that for every A in I', 

where r(C) is the class of I?-filtrations of models in C. 

2.29. Let I? be the set of subsentences of the sentence 1 Po+ PI, and 
suppose that W = {a, 8, y), Po = {a, y}, P, = {B), and P, = {a} for n > 1. 
Describe W*, Pf, and PF. How many worlds are there in A*? 

2.30. Suppose I' is the set {Po, l P 0 ,  l l P , ,  ...), which is logically 
finite relative to 4 (exercise 2.14) and closed under subsentences. What 
is the maximum number of possible worlds in &*? 

2.31. Notice that the idea of a l7-filtration does not depend upon r being 
closed under subsentences. But give a simple example of the failure of 
the filtration theorem in exercise 2.27 with respect to a filtration through 
a set of sentences not closed under subsentences, 

In general, when speaking of a I?-filtration we presuppose that I? is 
closed under subsentences. 

2.4. Systems of modal logic 
We encountered a number of rules of infevence in connection with 85 ,  
the system of modal logic presented in chapter 1. For example, modus 
ponens : 

MP, 
A-+B,A 

B 

In general, a rule of inference has the form 
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where n > 0. The sentences A,, . . ., A, are the hypotheses of the rule ; A 
is the conclusion. A set of sentences is said to be closed under - or, some- 
times, simply to have - a rule of inference just in case the set contains 
the conclusion of the rule whenever it contains the hypotheses (or just 
contains the conclusion if, when n = 0, there are no hypotheses). Thus 
a set of sentences I' is closed under the rule MP if and only if whenever 
A+ B and A are in r, so is B. 

We define systems of modal logic in terms of closure under the rule 
of inference 

RPL. A19 ...,An 
A (n 2 O ) ,  

where A is a tautological consequence of A,, . . . , An. 

DEFINITION 2.11. A set of sentences is a system of modal logic iff it is 
closed under RPL. 

Thus a system of modal logic is any set of sentences closed with respect 
to all propositionally correct modes of inference. We shall reserve C as 
a variable for sets of sentences that are systems of modal logic, and for 
brevity and variety we shall often call them systems or modal logics, or 
even, simply, logics. Examples of systems abound already : S5 ; the sets 
of sentences true at a world in a model, true in a model, valid in a class of 
models (theorem 2.8); the set of sentences itself (it is the largest system). 

The theorems of a system are just the sentences in it. We usually write 
I-, A to mean that A is a theorem of X : 

DEFINITION 2.12. kzA iff A EX. 

Because systems are simply sets of sentences, relative strength is 
measured in terms of inclusion: a system is at least as strong as a system 
Z - is a Z-system -just in case it contains every theorem of 2. (So Z is 
always itself a C-system.) 

We make official our usage in chapter I and denote the set of tautologies 
by PL. 

THEOREM 2.13 

(1) PL is a system of modal logic. 

(2) Every system of modal logic is a PI;-system. 

( 3 )  PL is the smallest system of modal logic. 



2.4. Systems of modal logic 47 

Proof. For (I), suppose that A is a tautological consequence of tauto- 
logies A,, ..., A,. Then A, too, is a tautology. Thus PL is closed under 
RPL, and hence is a system of modal logic. For (Z), note that when 
n = 0 the rule RPL means that A is a tautology. So any system of modal 
Iogic must contain every tautology, i.e. PL G Z, for every system 2. So 
every system of modal Iogic is a PL-system. (3) follows from (1) and (2). 

I t  does very little violence to the conception of what constitutes a 
system of modal logic to count P L  as one, and it simplifies matters 
enormously to do so. 

In  terms of theoremhood we characterize notions of deducibility and 
consistency. A sentence A is deducible from a set of sentences I' in a 
system C - written I' I-= A - if and only if X contains a theorem of the 

where the conjuncts Ai (i = 1, . . ., n) of the antecedent are sentences in I?. 
A set of sentences I? is consistent in C - written Con, I? -just in case the 
sentence I is not C-deducible from I?. Thus I? is inconsistent in C - 
Con, I? -just when I? I-, I. We record these definitions formally. 

 DEFINITION^.^^. r t c A  iff thereare A,, ..., A , E ~  (n >, 0) 
such that tz(A, A ... A An)+A. 

DEFINITION 2.15. Conc I? iff not I?k, I. 

Theoremhood, deducibility, and consistency, so defined, have all the 
expected properties, many of which are enumerated in the following 
theorem. 

(1) t-, A zy 0 t-, A. 

(2) k, A i f  for every I', r I - ,  A. 

(3) If F I- ,, A, then I? t-, A. 

(4) I j A  E r, then I? I - ,  A. 

(5) If I? I-, B and (B} I-, A, then I? t, A. 

(6) If rI-,A and I? G A, then At-,A. 

(7) I? I-, A zg there is a finite subset A of r such that A I - ,  A. 
(8) I?t,A+B Z#FU {A} t,B. 

(9) Con, I' i' there is an A such that not PI-, A. 
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(10) Con, I? iJS there is no A such that both I? t-, A and I' I-, 1 A .  

(1 1) If Con, r, then ConpL I?. 

(12) If Con, J? and A c I?, then Con, A. 

( 1  3) Con, I' 23 for every jinite subset A of r, Con, A. 

(14) rt, A 2 3  Cen I? u {TA}. 

(15) Con, r u {A) @not X'k, 1 A .  

Proof. We prove only some of the parts of the theorem and leave the 
rest as exercises. 

For (I). If 1, A, then there is a E-theorem of the form (A, A . . . A A,) 
+ A  - to wit, where n = 0 and the conditional is just A. Since the non- 
existent &s of the antecedent are all in 0, 0 t-, A. Conversely, if 0 k cA, 
it must be that k,(A, A . . . A A,)-+A, where n = 0, etc. That is, tz A. 

For (2). The reasoning for left-to-right is like that for (1) and is left 
to the reader. For the reverse, suppose that I? tcA, for every set of 
sentences I?. Then in particular, 0 I-, A, which by (1) means that kc A. 

For (3). This simply says that deducibility within the means of 
propositional logic is acceptable within any system of modal logic. For 
if r I-, A, then there is a PL-theorem of the form (A, A . . . A A,)+ A, 
where the antecedent's conjuncts are members of r. By theorem 2.13 (2), 
it is also a Z-theorem, for any system E. So I? t, A. 

For (4). This expresses the reflexivity of the deducibility relation. 
Suppose that A E I?. The  sentence A- tA is a tautology, hence a PL- 
theorem, hence a Z-theorem for any system E. It is also a conditional 
with consequent A, the antecedent of which is in I?. Therefore, I' I-, A. 

For (5). This is a statement of the transitivity of the deducibility 
reiation. The  proof is somewhat complicated, and we leave it as an 
exercise. 

For (6). According to this, deducibility obeys a principle of augmenta- 
tion, or strengthening. The proof is easy and is left for the reader. 

For (7). Deducibility is compact, in the important sense that deduci- 
bility from a set of sentences always implies deducibility from a finite 
portion of the set. This follows at once from the fact that the number of 
conjuncts in the antecedent of the requisite conditional (A, A . . . A A,) -+ A, 
is always finite. The  right-to-left part follows from (6). 

For (8). This states the so-called deduction theorem for systems of 
modal logic - that a conditional is deducible from a set of sentences just 
in case its consequent is deducible from the set enlarged by the addition 
of the antecedent. The  proof is rather easy and is left as an exercise. 
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For (9). This is an alternative way of characterizing consistency. 
Suppose that Con, I?, i.e. that not I 1. Clearly, then, there is a 
sentence A such that not r tz A. For the reverse, suppose that Cen, I?, 
i.e. that l? t, I. By PI, and part (3), (1) I-, A, for every sentence A. So 
by (5), r I-, A, for every sentence A. 

For (10). Another definition of consistency, the proof is Ieft to the 
reader. Note that it says that a set of sentences is inconsistent just in case 
there is a sentence such that both it and its negation are deducible from 
the set. 

For (11). This is the same as saying that every PL-inconsistent set of 
sentences is also 2-inconsistent, for any system Z. For if Con, I?, then 
not I? kc i. Hence by (3), not r tPL I, i.e. ConpL I?. 

For (12). This expresses a principle of diminution for consistency - 
equivalently, augmentation for inconsistency. The  proof uses (6) and is 
left as an exercise. 

For (13). This uses consistency to express compactness. Note the 
contrapositive formulation: a set of sentences is inconsistent if and only 
if it has a finite inconsistent subset. The proof, which uses (7), is left for 
the reader. 

For (14). Here is a characterization of deducibility in terms of con- 
sistency (or inconsistency). Suppose that A By (6) we see that 

u { A }  A ,  and by (4) that r u {,A} kz TA. Hence by (lo), 
Csn, F u {,A}. Conversely, suppose that Cen, I?u {?A}, i.e. that 
~ u { - I A )  I-,I. Then by (a),  I't-,,A+i. By PL and (3), { ~ A - + L )  
1, A. So by (S), F I-, A. 

For (15). The proof uses (14) and is left as an exercise. 

EXERCISES 

Use the definitions and theorems in section 2.4 and any results established 
in previous exercises. 

2.32. With reference to definition 2.11, explain why the following sets of 
sentences are systems of modal logic. 

(a) the set of theorems of S5 

( b )  the set of sentences true at a possible world 

( c )  the set of sentences true in a model 

( d )  the set of sentences valid in a class of models 

(e)  the set of (all) sentences 
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2.33. Explain why a system 1: of modal logic is always a C-system. 

2.34. Prove: 

(a) rtc T (for all I?). 
(h )  (L) k, A (for all A). 

(c) {A, 1 A )  t z  1. 
(d )  { l A +  I] t,A. 

(e) I'k,Ar\ B iff rk,A and I't-,B. 

(f) If rk,A or rk,B, then Ft-,Av B. 

(g) If I'l-,AvB and r k , ~ A ,  then rt-,B. 

(h )  If I't-,A+B and I?t-=A, then I'k,B. 

(i) If r t ,7(A+B),  then r t , A  and F I - l B .  

(j) If rk, B, then r t, A+ B. 

(k) If r t , l A ,  then rk,A+B. 

(1) If rC,A+B and I'C-,B+C, then I'tzA+C. 

(m) rt,(Ar\B)-+C iff rk,A+(B-+C). 

(n) I ' t ,At,B iff I'k,A+B and I'l-,B+A. 

2.35. Complete the proof of theorem 2.16 (parts (2), (5), (6), (7), (8), (lo), 

(W, (13), and (15)). 

2.36. Prove the following generalization of part (5) of theorem 2.16. 

If I' 1, B, for every sentence B in A, and A 1-, A, then I' l-, A. 

2.37. We may define a concept of provable equivalence, with respect to 
a system X, by saying that two sentences A and B are X-equivalent 
(written A -, B) just in case their biconditional is a theorem of Z, i.e. 
just in case tz A - B. Using this definition, prove : 

(a)  A -,A. 

(b) If A -.B, then B -A. 

(c) I f A - c B a n d B - x C , t h e n A - c C .  

(d) I f A  m2:B a n d A w c C ,  thenB -.C. 

( e )  For every sentence A there is a sentence B such that 
A -,B. 

(f) I f A  wpLB, thenA -,B. 

2.38. With respect to a system Z we say that a set of sentences I? is 
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deductively closed - E-closed, for short -just in case I? contains every 
sentence that is 2-deducible from it; i.e. r is X-closed if and only if A E I' 
for every sentence A such that I? I-, A. 

Prove that for each system E the X-closed sets of sentences are exactly 
the X-systems, i.e. that r is a X-closed set of sentences just in case F 
is a 2-system. 

Let us say that a rule of inference is reasonable if there is an effective way 
of telling when sentences are related by it as hypotheses and conclusion. 
For example, the rule MP is reasonable, since it is a decidable matter 
whether three sentences are of the forms A+ B, A, and B (if so, the first 
two are hypotheses of MP and the last is a conclusion). 

Now every system of modal logic Z can be regarded as the set of 
sentences generated from some subset r of its theorems by a set of rules 
of inference. This is trivial, since Z is always generated from the subset 
X by the rule 

But when F is a decidable set of sentences and the rules of inference 
are reasonable and finite in number, X is said to be axiomatixable, and 
F is said to be a set of axioms for X. Together the axioms and rules con- 
stitute an axiomatixation of the logic. For example, the system 235 was 
axiomatized in chapter 1 by means of the axioms T, 5, K, DfO, and PL 
and the rules RN and MP. These axioms form a decidable set, and the 
rules are reasonable. 

Though most of the systems of modal logic treated in this book are 
axiomatizable, this is by no means true of every system. For example, 
the set of sentences true at a world in a model is a system, but it is rarely 
axiomatizable. 

Axiomatizable systems are important because they admit a notion of 
proof and hence a positive test for theoremhood. By aproof in an axio- 
matizable system we mean a finite sequence of sentences each of which 
either is an axiom or follows from previous sentences in the sequence by 
one of the rules of inference. Thus, for example, the following sequence 
of sentences is a proof in S5 relative to the axiomatization just mentioned. 
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The first, second, fourth, and sixth sentences are instances of T, PL, 
PL, and Df 0, respectively; each of the others follows from its im- 
mediate two predecessors by MP. A proof is a proof of its last sentence. 
The theorems of an axiomatizable system are thus just the sentences for 
which there are proofs, i.e. just the sentences that terminate proofs in an 
axiomatization of the system. So the sequence above is a proof of A+ ()A, 
which shows that this is a theorem of S5. 

(One must distinguish between a proof in a system, like the sequence 
above, and proofs about the system, like that for A+ OA in section 1.2. 
Though the latter is set out in a sequence of lines, there is no claim that 
the sequence of sentences there is a proof, relative to some axiomatization, 
in S5. I t  is, rather, a graphic way of stating a proof - about S5 - that 
A+ 0 A is a theorem.) 

Note that it is a decidable question whether a sequence of sentences is 
a proof relative to an axiomatization of a system. For a sentence can 
appear in a proof if and only if it is a member of a decidable set of axioms 
or is inferred from earlier sentences by a reasonable rule of inference. 
This means that there is a positive test for theoremhood in an axiomatiz- 
able system. For the proofs - being decidable finite sequences - can be 
enumerated effectively in an infinite series, 

Pl9 P 2 ,  P 3 ,  

So if a sentence is a theorem it lies at the end of some proof P, and hence 
will be discovered after inspecting at most the first n proofs. This may 
not be a practical test, but it is none the less foolproof: if a sentence is a 
theorem there is a proof of it some finite distance into the enumeration. 

Of course if a sentence is not a theorem it will never be discovered at 
the end of a proof, and there is no guarantee that this will become known 
after inspecting any finite number of proofs. But this is only to say that 
we have a positive and not a negative test for theoremhood -that the 
test is not a decision procedure for theoremhood. In general, axio- 
matizability only implies the existence of a positive test for theoremhood ; 
something more is required to show the existence of a negative test. One 
kind of negative test is described in section 2.8. 
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EXERCISES 

2.39. Explain why the rules of inference in section 1.2 are all reasonable. 
Give an example of an unreasonable rule. 

2.40. Explain, accurately but informally, why the proofs in an axio- 
matization can be effectively enumerated. 

2.41. The system PL (the set of tautologies) is axiomatizable. Why? 

2.6. Maximality and Lindenbaum's lemma 

A set of sentences is maximal in a system X just in case it is C-consistent 
and has only C-inconsistent proper extensions. Intuitively, a set is 
maximal if it is consistent and contains as many sentences as it can 
without becoming inconsistent. We write Max,r to mean that I' is 
2-maximal, and we state the definition as follows. 

DEFINITION 2.17. Maxz r iff (i) Con, I', and (ii) for every A, if 
Con, I? U (A), then A E r. 

Note that clause (ii) says that, where I? is maximal, the addition of a 
sentence not already in r yields an inconsistent set of sentences. 

THEOREM 2.18. Let I'be a Z-maximalset of sentences. Then: 

(1) A ~ r z f f r l - z A .  

(2) 2 G r. 
(3) T E r. 
(4) J- 6 r* 
(5) l A ~ r z ? J A $ r .  

(6) A A  B E F  zflboth AEI? and B €I?. 

(7) A v B ~ r i f l e i t h e v  AEI'OY  BE^. 
(8)A-+BeI?if lz jCA~r t h e n B ~ F .  

( 9 ) A t t B ~ r z y A ~ r 2 ; f m d o n l y $ B ~ r .  

(10) I? is a Z-system. 

Proof, We assume throughout that I' is a C-maximal set of sentences. 
For (1). According to this, deducibility from a maximal set of sentences 

coincides with membership in it. Left-to-right is just theorem 2.16 (4). 
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For the reverse, suppose - to reach a contradiction - that FI-, A, but 
A 6 I?. Then by the maximality of r, Can, I' u {A). From this by theorem 
2.16 (15), r I-, 1 A .  So by theorem 2.16 (lo), C0n, I?, which contradicts 
the maximality of I?. 

For (2). T o  show that a 2-maximal set of sentences always contains the 
theorems of 2, suppose that A E E, i,e. I-, A. Then by theorem 2.16 (2), 
A is C.-deducible from every set of sentences. In particular, I? 1, A, which 
by (1) means that A E I?. 

For (3). Observe that t, T, since I-, T, and use (2). 
For (4). Suppose, per absurdum, that _L E I?. Then I? I-, I, which means 

that Canz P. This contradicts the maximality of I?. 
For (5). This is best divided into two: (i) Not both A E I? and TA E I?. 

(ii) Either A E r or 1 A  €I?. For (i), assume to the contrary that I? 
contains both A and 7A.  Then by (1) both are deducible from I?, which 
means that I? is inconsistent. This contradicts the maximality of I?. For 
(ii), suppose to the contrary that r contains neither A nor 1 A .  Then by 
(1) neither is deducible from I?. This means (theorem 2.16 (14, 15)) that 
Con, I' u {A} and Con, I? u {-I A). By definition, then, A E I? and 1 A  E I?, 
which we have just shown to be impossible. 

For (6). Suppose that A A B E r, so that by (I), F k, A A B. By PL each 
of the conjuncts is deducible from the conjunction, so - via theorem 
2.16 (5) - I? 1, A and I'I-, B. By (I), A E I? and B E I?. The reasoning for 
right-to-left is similar and is left for the reader. 

For (7). Suppose that A v B E I?. By (I), I? t-, A v B. Now suppose 
neither disjunct is in I?, so that by (5), TA E I? and TB E r. Then by 
(I), I't, 1 A  and rt, 1B.  We leave it to the reader to reach a con- 
tradiction from here. Conversely, suppose that either A E r or B E r. 
By (I), either I?k, - A or r t, B. By PL A V  B is deducible from each 
of its disjuncts. So by theorem 2.16 (S), I? tz A v B. Hence by (I), 
AVBEI?. 

For (8). Note that left-to-right means that maximal sets of sentences 
are closed under MP. To  show it, suppose that A+ B E I' and A E I?. 
By (1), I? C, A+ B and I' t-, A. By PL B is deducible from these sentences. 
So by theorem 2.16 ( 5 ) ,  I? t, B, and hence by (I), B E r. For right-to-left, 
suppose that A+ B 4 I?, to show that A E I' and B $ r. By (5) and then 
(I), I' I-, l ( A  -+ B). By PL each of A and 1 B is deducible from 1 (A -+ B). 
So by theorem 2.16 (5) each is deducible from r. By (1), A E I? a n d l  B E I?, 
and by (5) the latter means that B $ I?. 

For (9). The proof is left as an exercise, with the remark that A t ,  B 
is PL-interdeducible with (A+ B) A (I3 +A). 
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For (lo). By exercise 2.38 it is sufficient to show that I' is 8-closed, 
i.e. deductively closed with respect to Z. But it is, by part (1). 

The next theorem is known as Lindenbaum's lemma. It is the pro- 
position that every consistent set of sentences has a maximal extension. 

T HEO R E M  2.19. If Conc I', then there exists a A such that (i) l? E A, and 
(ii) Max, A. 

Proof. The proof is long and somewhat complicated. It involves 
several definitions and lemmas, each of which we set out separately. We 
begin with a set of sentences I? which we suppose to be consistent ; that is, 
we assume throughout that Con, I?. 

The plan now is to define a set of sentences A in terms of I? which we 
can prove to be a E-maximal extension of r, 

For the duration of the proof we assume we have a fixed enumeration 
of the set of sentences, 

That is, we suppose that each sentence in the language occurs at least 
once in this list (it does not matter if a sentence shows up more than 
once). 

In terms of the set I' and this enumeration of the sentences we define 
an infinite sequence of sets of sentences, 

A,, A,, A,, . . . 

The definition is inductive. First we define the initial set in the sequence, 
A,; then we specify how any other set in the sequence, A,, is to be 
defined in terms of its immediate predecessor, A,-,. 

Definition 1 

(I)  A. = r. 
{A,-, u {An), if Con 

(2) An = A,-,, otherwise ; 

In other words: A, is the set I?; and, for n > 0, An is formed by adding 
the nth sentence in the enumeration, A,, to A,_, if that addition is 
X-consistent (if not, A, is the same as An-,). 

It is obvious from their construction that each of the sets in the 
sequence is X-consistent. For the first set in the sequence is consistent by 
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hypothesis, and the rest are formed only by making consistent additions 
to their immediate predecessors. Thus: 

Lemma 2.  Con, A,, for n 2 0. 

A proper inductive proof of this is left as an exercise. 
Now we define the set A to be the infinite collection of all the sentences 

in any of the sets in the sequence. 

u3 

Definition 3 .  A = IJ A,. 
n=O 

Note that A includes each of the sets in the sequence : 

Lemma 4.  A, E A, for n 2 0. 

So in particular A includes I' ( = A,): 

Lemma 5 .  I' G A. 

Thus A is an extension of r. I t  remains only to be shown that A is 
C-maximal. For this we need three more lemmas. 

Lemma 6 .  A, 2 A,, for k 6 n >, 0. 

Lemma 7 .  A, E Ak, whenever Ak E A, for k > 0. 

Lemma 8. For every finite subset A' of A, A' 5 A, for some n 2 0. 

According to lemma 6, each set in the sequence includes all of its 
predecessors. This is obvious from the construction of the sequence. 
Lemma 7 states that a sentence in A with index k in the enumeration of 
the sentences is always in the set in the sequence having index k. This 
may not be so obvious, but we leave the proof for the reader. The argu- 
ment for lemma 8 - that every finite subset of A is included in one of 
the sets in the sequence - is this. Suppose A' to be a finite subset of A, 
and let A, be the sentence in A' with largest integer index n (there must 
be such a sentence since A' is finite). Now we show that A' G A,. Let A 
be a sentence in A'. Because A occurs somewhere in the enumeration of 
the sentences, A = Ak, where k 6 n. Since A (= A,) is in A', it is in A. 
So by lemma 7, A (= Ak) is in the set Ak. By lemma 6, Ak E A,. Hence 
A is in A,. 

Lemma 9 .  Max,A. That is, ( a )  Con,A, and ( b )  for every A, if 
Con, A u {A), then A EA.  

For (a) it is enough by theorem 2.16(13) to prove that every finite 
subset of A is C-consistent. Suppose to the contrary that A has a Z- 
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inconsistent finite subset, A'. Let A, be the sentence in A' with largest 
index n. Then A' is a subset of the set A, in the sequence, and so - by 
theorem 2.16 (12) - A, is also 2-inconsistent. This contradicts lemma 2. 

For (b ) ,  suppose that Con, A u (A), for some A. Because, for some n, 
A appears as the nth sentence in the enumeration of the sentences, our 
assumption can be equivalently stated : Con, A u (A,). By theorem 
2.16(12), every subset of this set is C-consistent. In  particular, Con, 
A,-,U {A,) (since An-, G A, by lemma 4). By definition 1, then, A, = 

A,-, u {A,]. Since A, is thus in A,, it is in A itself, i.e. A E A. 
This completes the proof. 

From Lindenbaum's lemma it follows that a sentence is deducible 
from a set of sentences if and only if it belongs to every maximal extension 
of the set, and also that a sentence is a theorem just in case it is a member 
of every maximal set of sentences. We state these corollaries formally. 

(1) I' I-, A iff A E A, for every Max, A such that I' G A. 
(2) I-, A if/ A E A, for every Max, A. 

Proof 
For (1). Suppose that rt-, A, Max, A, and J? G A. By theorem 

2.16 (6), A 1, A, and so by theorem 2.18 (I), A E A. For the reverse, 
suppose that not T't, A, to show that there is a B-maximal extension of 
I' not containing A. I t  follows by theorem 2.16 (14) that the set u (,A} 
is C-consistent. By Lindenbaum's lemma this set has a C-maximal 
extension A, which is also an extension of I?. Because 1 A  E A, it follows 
by theorem 2.18(5) that AgA. 

For (2). Take 0 for I? in (I), and use theorem 2.16 (1). 

In  terms of maximality we can define what we shall call the proof set 
of a sentence. Relative to a system Z, the proof set of a sentence A - 
denoted by 1A 1, - is the set of C-maximal sets of sentences containing A : 

In other words, where F is Z-maximal, 

I?E \A(, iff A d .  

We conclude this section with a theorem about proof sets. 
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(1) IAIE = {Max,l?: rk,A}. 
(2) (A(, G (BI,i.'t,A+B. 
(3) lAlc = lBjc iff I-,A-B. 

(4) I T [ ,  = {I?: Max,I?). 

(5) ll I, = 0- 

(6) I lAlc  = IT lz - IAI,. 
(7) IAABI, = I A l d  IBIx* 

(8) IAvBI, = IAl,u IBI,. 

(9) IA+BI, = ( I ~ l z -  lAl,)U IBI,. 
(10) [A-BIZ = IA+BI,n IB+Al,. 

Proof 
For (1). The proof here rests essentially on theorem 2.18(1) and is 

left to the reader. According to this the proof set of a sentence consists 
of just those maximal sets of sentences that prove the sentence - whence 
the appellation. 

For (2). Let us prove this by a chain of equivalences. 

IAIZ 5 IB lr: iff for every C-maximal set of sentences I?, if 
I?E IAlc, then I'E ]BIZ; 

iff for every Z-maximal set of sentences I?, if 
A E  I', then B €I?; 

iff for every E-maximal set of sentences r, 
A-+BEI' 
- theorem 2.18 (8) ; 

iff txA-+B 
- theorem 2.20 (2). 

For (3). That the proof sets of two sentences are the same just when 
their biconditional is a theorem may be proved by reference to (2) and 
the fact that I-, A ++ B if and only if both t-, A+ B and B -+ A. Exercise. 

For (4)-(10). These correspond to parts (3)-(9) of theorem 2.18. Proofs 
left as an exercise. 
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EXERCISES 

Use definitions, theorems, and exercises from section 2.4, definitions and 
theorems from section 2.6, and results from previous exercises. 

2.42. Complete the proof of theorem 2.18 (parts (3), (6),  (7), and (9)). 

2.43. Prove lemmas 2 and 7 in the proof of theorem 2.19 (Lindenbaum's 
lemma). 

2.44. Prove part (2) of theorem 2.20. 

2.45. Complete the proof of theorem 2.22 (parts (1) and (3H10)). 

2.46. Let I7 and A be Z-maximal sets of sentences. Prove that I' = A 
if and only if I? G A. 

2.47. Prove that Lindenbaum's lemma (theorem 2.19) follows from its 
corollary theorem 2.20(1) (and hence that the two are equivalent). 

2.48. Let I' be a C-consistent set of sentences satisfying the condition that 
for every sentence A, either A E F or 1 A E I?. Prove that I? is Z-maximal. 

2.49. Let I? be a 8-system satisfying the condition that for every sentence 
A, 1 A  E I? if and only if A $ I'. Prove that r is Z-maximal. 

2.50. Let A,, A,, A,, ... be an enumeration of the sentences, and let r 
be a consistent set of sentences. Define the sequence A,, A,, A,, . . . of sets 
of sentences thus : 

A -  u { A  f - 1  FX An ;} , a 
An-,, otherwise ; 

Show by an inductive proof that Con,An for each n 2 0. Could the 
definition above replace definition 1 in the proof of theorem 2.19 
(Lindenbaum's lemma)? 

2.5 1. Prove : 

(a) IAlz E IBlZ iff A t z B  (i.e. {A}A)C,B). 

(b) [A = IB I z  iff A - B (see exercise 2.37). 

2.7. Soundness, completeness, and canonical models 
A system of modal logic B is said to be sound with respect to a class of 
models C just in case every theorem of Z is valid in C; i.e. just in case 
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for every sentence A, 

if t, A, then kc A. 

C is complete with respect to C if and only if every sentence valid in C 
is a theorem of E ; i.e. if and only if for every A, 

if kc A, then I-, A. 

And X is said to be determined by C just when it is both sound and 
complete with respect to C ; i.e. just when for every A, 

t cA  iff kcA. 

Note that it is possible that a system of modal logic be determined by 
more than one class of models. 

Much of this book is concerned with characterizing classes of models 
that determine various well-known systems of modal logic, and with 
proving that these systems are indeed so determined. Proof of complete- 
ness is the more difficult part; soundness is usually relatively easy and 
straightforward. In  this section we lay the ground for the completeness 
theorems in chapters 5 and 9 by introducing some of the principal ideas 
and methods used in their proofs. 

Perhaps the most important idea is that of a canonical model for a 
system of modal logic. A canonical model for a system B is a model 
JI = (W, ..., P) in which: 

(i) W is the set of C-maximal sets of sentences. 
(ii) Pn is the proof set of the atomic sentence Pn, i.e. Pn = I Pn/,, 

f o r n = 0 , 1 , 2  ,.... 
Thus in a canonical model for a system C, each world is a C-maximal set 
of sentences (and each such set is a world), and for each such world a 
and each natural number n, 

(Note that we use world-variables, a, P, etc., for the maximal sets of 
sentences that are the possible worlds in a canonical model.) 

The chief feature of a canonical model A for a system of modal logic 
E is this: in just those sentences are true at a world (E-maximal set 
of sentences) as are contained by it ; i.e. for every a in A, 

kfA iff A E ~ .  

Put another way, !IAllA = \A 1 We prove this in chapter 5 with respect 
to canonical standard models, and again in chapter 9 with respect to 
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canonical minimal models. (Indeed, we can prove it already for the cases 
in which A is non-modal. See exercise 2.53.) 

Because the worlds in a canonical model for a system of modal logic 
will always verify just those sentences they contain, it follows that the 
sentences true in such a model are precisely the theorems of the system. 
That is to say, if A is a canonical model for a system C, then 

kMA iff tz A. 
For it follows from the preceding result that 

l=f A, for every a in 4, iff, for every a in 4, A E a. 

By definition 2.6 the left side of this means that P A ,  and by theorem 
2.20 (2) the right side means t, A (since the worlds are just the 8-maximal 
sets of sentences). Equivalently, then, we may say that every system of 
modal logic is determined by each, and all, of its canonical models. 

Our strategy in proving completeness should thus be apparent. In 
order to show that a system of modal logic Z is complete with respect 
to a class C of models, it is sufficient to prove that C contains a canonical 
model d for Z. For then we can argue that if a sentence A is valid in C, 
then A is true in and hence that A is a theorem of C. So the main 
problem in proving the completeness of a system of modal logic becomes 
that of finding, or defining, a canonical model for the system that can be 
shown to be in the class of models in question. This is not always a 
trifling matter. 

EXERCISES 

2.52. Let A? be a canonical model for a system of modal logic C. Prove 
the equivalence of (a) and (b).  

(a) For every possible world or in (i.e, for every Z-maximal 
set of sentences a), If A if and only if A E a. 

(4 IIAll" = IAIZ* 

2.53. We can prove (a) (equivalently, (6) )  above, for every non-modal 
sentence A. The proof is by induction on the complexity of A. We give it 
for the cases in which A is (a) atomic, Pn, (b)  a negation, 1 B, and (c )  a 
conditional, B -+ C. The remaining cases are left for the reader. 

For (a). By the definition of truth (2.5 (I)) ,  C$ Pn if and only if a EP,, 
i.e. or E J Pn Jr. But by definition 2.21 this holds if and only if Pn E a. So 
the result holds when A is atomic. 
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For the inductive cases we make the hypothesis that the result holds 
for all sentences shorter than A. 

For (b) : 
S $ l B  iff not kf B 

- definition 2.5 (4); 
iff not B €a 

- inductive hypothesis ; 

iff 1 B ~ a  
- theorem 2.18 (5). 

So the result holds when A is a negation. 
For (c)  : 

k f B + C  iff if CfB then kfC 
- definition 2.5 (7) ; 

iff if  BE^ then C E ~  
- inductive hypothesis ; 

iff B + C € a  
- theorem 2.18 (8). 

So the result holds when A is a conditional. 

2.8. Decidability and the finite model property 

A system of modal logic is decidable just in case its set of theorems is, 
i.e. just in case there is an effective finitary method for deciding of any 
sentence whether or not it is a theorem of the system. To  understand our 
approach to proving the decidability of modal logics we need the ideas of 
axiomatizability (section 2.5) and the finite model property. 

We say that a modal logic 8 has thefinite modelproperty - the f.m.p. - 
if and only if each non-theorem of X is false in some finite model of 2. 

Recall that if 8 is axiomatizable then there is a positive test for theorem- 
hood in X. If X both has the f.m.p. and is axiomatizable by means of a 
finite number of schemas then there is also a negative test for theorem- 
hood in X. For let 

be a complete enumeration of the finite models (this collection is enumer- 
able since each model is finite). Then if A is a non-theorem of X it is false 
in An for some n. T o  find such a falsifying model it is enough to proceed 
through the enilrneration examining each model in turn - first to see 
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whether the model is a model of B (a finite task since the model is finite 
and C. is axiomatized by finitely many schemas and rules of inference) 
and then, if it is, to see whether A is false (again a finite task since the 
model is finite). Sooner or later, i.e, after examining a finite number of 
models, a model of B will appear that is a countermodel to A. 

So a modal logic is decidable if it has the f.m.p. and is axiomatizable 
by a fmite number of schemas: there is both a positive and a negative 
test for theoremhood in the logic. 

In chapters 5 and 9 we use finite determination theorems to show the 
f.m.p. for systems of modal logic. In  outline, our strategy is as follows. 
Suppose we have proved that X is determined by a class of models C, 
i.e. that for every A, 

t,A iff kcA. 

From this result by means of filtrations we show that Z is also determined 
by the class CFIN of finite models in C, i.e. that for every A, 

t, A iff \=,,A. 

Then we know that C has the f.m.p.: if not t,A then there is a finite 
model & (in C,,,) such that not I=" A. 

The argument for the finite determination theorem is of course trivial 
from left to right: if k, A then C, A, and so kc,,, A since CFIN c C. 
From right to left we argue, contrapositively, in the following way. 
Suppose that not t, A, so that not \"A for some A in C. Then where F 
is finite (or at least logically finite relative to A) and contains the sub- 
sentences of A we define a r-filtration &* of A in such a way that &* 
is in C, and hence in CFIN since it is finite. By a general filtration theorem 
(compare section 2.3) we then conclude that not CS* A, and so not 
I= cpm A' 

The interesting and often difficult part of proofs of this kind is defining 
A* so that it is in C. 

Note that when r is just the set of subsentences of A it is possible to 
compute an upper bound on the size of A*; it has at most 2n worlds, 
where n is the number of subsentences of A. Thus a search for a model of 
Z that rejects A can be limited to models of at most this size. 

In conclusion we should emphasize that the decision procedures 
afforded by filtrations and the f.m.p. are seldom practical, even when the 
number of subsentences of a sentence is relatively small. But this is not 
to gainsay their validity, nor their theoretical interest. Indeed, discovery 
of decidability by these methods may stimulate the quest for more 
realistic decision procedures. 
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EXERCISES 

2.54. Explain informally why any collection of finite models is 
enumerable, 

2.55. Suppose a system Z has the f.m.p. and is axiomatizable. Why is this 
not in general sufficient for a negative test for theoremhood (of the kind 
described)? That is, why is it stipulated that I: be axiomatizable by a 
finite number of schemas? 

(This is perhaps the place to mention that in specifying the conditions 
for a negative test for theoremhood we could as well have stipulated that 
the system be axiomatizable by means of a finite number of non-tauto- 
logical schemas. This is because PL holds in every model (theorem 2.8), 
and so only non-tautological axiom schemas need to be verified. And, in 
any case, PL is itself axiomatizable by a finite number of schemas and 
reasonable rules, though we forbear giving an example,) 

2.56. Explain why PL is decidable by describing a negative test for 
theorernhood in PL (see exercise 2.41). 

2.57. A system of modal logic is inconsistent just in case it contains 1 
(compare exercise 1.27). So there is just one inconsistent system, to wit, 
the set of all sentences (since by PL every sentence is deducible from I). 
Of course the set of sentences is decidable; so the inconsistent system is 
decidable. 

Explain how to modify the decision procedure for theoremhood using 
axiomatizability and the f.m.p. in case it is not known whether the 
system in question is consistent. 



PART I1 





S T A N D A R D  MODELS F O R  
MODAL L O G I C S  

According to the account of necessity and possibility in chapter 1, a 
sentence of the form n A  is true at a possible world just in case A itself 
is true at all possible worlds, and a sentence of the form OA holds at a 
possible world if and only if A holds at some possible world. This idea 
was modeled very simply in terms of a collection of possible worlds 
together with an assignment of truth values, at each world, to the atomic 
sentences. We saw that the ensuing notion of validity is quite strict, 
encompassing as it does a large assortment of principles. 

In  the present chapter we modify this leibnizian conception of necessity 
and possibility by introducing an element of relative possibility. The 
result is a much more supple notion of validity, one that greatly reduces 
the stock of principles that are bound to hold. 

In section 3.1 we define the idea of a standard model, state the truth 
conditions for modal sentences at worlds in models of this sort, and 
prove a theorem about validity in classes of standard models. I n  section 
3.2 we single out the schemas D, T, B, 4, and 5 for special attention, 
both because of their historical prominence (recall that they are all 
theorems of S5) and because the techniques required for their treatment 
are illuminating and instructive. Section 3.3 contains a generalization of 
the truth conditions of modal sentences, and we examine in these terms 
a certain schema that has D, T, B, 4, and 5 as special cases. In  section 
3.4 we explain generated models and prove a theorem relating standard 
models to those in chapter 1. In section 3.5 we specify the notion of 
filtration for standard models, prove the basic theorem therefor, and 
give an example of its application. Section 3.6 continues this with some 
theorems that are useful in the context of decidability proofs in chapter 5. 

3.1. Standard models 
A standard model is a structure 

= (W, R, P) 
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in which, as usual, W is a set of possible worlds and P represents an 
assignment of sets of possible worlds to atomic sentences. The new 
element, R, is a relation between possible worlds. Formally: 

DEFINITION 3.1. A = (W, R, P) is a standard modeliff: 

(1) W is a set. 

(2) R is a binary relation on W (i.e. R G W x W). 
(3) P is a mapping from natural numbers to subsets of W (i.e. 

P, G W, for each natural number n). 

The interpretation of the relation R in a standard model will vary 
significantly, but in general it may be thought of as relative possibility 
or, perhaps better, relevance. We shall write 

aRb' 

to mean that the world P is possible relative to - or is relevant to - the 
world a. (Other variants are : /3 is an alternative to a ; P is accessible 
from a ;  ,8 is reachable from a ;  P is (once) removed from a.) I t  bears 
emphasis here that R may be any sort of binary relation on W; no 
assumption whatsoever is made concerning its content or structure, The 
effect of this becomes apparent in the next section. 

The truth conditions of non-modal sentences are given already in 
definition 2.5. The truth conditions of modal sentences use the relation R 
of relative possibility as follows: O A  is true at a world or if and only if 
A is true at every world that is possible relative to a, i.e. at every world 
p such that aRP. And OA is true at a if and only if A is true at some 
world P possible relative to a ,  i.e. at some world P such that aRP. These 
truth conditions are a simple generalization of the account in chapter 1. 
Instead of truth at every or some possible world, we now have truth at 
every or some world possible relative to the given one. Formally : 

DEFINITION 3.2. L e t a  beaworldinastandard model A% = (W,R,P). 

(1) kf UA iff for every p in A such that aRP, k f  A. 
(2) C$ 0 A iff for some ,8 in A such that aRP, kf A. 

T o  illustrate the role of the relation R in standard models, suppose 
that we wish the operator to express a concept of moral necessity or 
obligation like that expressed by ' ought'. Clearly this notion of necessity 
cannot be expected to obey all the laws of the system S5; n A + A ,  for 
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example, is wrong, since there are unfulfilled obligations. But let us 
understand R as a relation of moral relevance - so that a R P  means that 
B is morally better than a, at least in the sense that whatever ought to be 
the case at a is in fact the case at p. Then UA (it ought to be the case that 
A) is true at a just in case A is true at every world /3 such that aRP, i.e. 
such that /3 is morally better than a. 

For another illustration, suppose to be a future tense modality, 
with a reading like 'it always will be the case that'. Here we have a 
notion of temporal necessity, and so it is appropriate to think of the 
possible worlds as points in time. The relation R then provides an 
ordering of the set of times, so that aRP  means that the moment a 
precedes the moment P, or that is later than a. Thus O A  (it will always 
be the case that A) is true at a moment a if and only if A is true at every 
moment p such that aRP, i.e. such that is later than a. 

We return in chapter 6 to these ways of understanding the modal 
operators and the relation of relative possibility in standard models. We 
mention them here in order to provide some motivation for the move 
from the models of chapter 1 to these. 

The ideas of truth in a mode1 and validity in a class of modeIs are 
familiar from definitions 2.6 and 2.7. By theorem 2.8, validity in any 
class of models is preserved by the rule RPL; so this holds for standard 
models as well (in particular, then, tautologies are true in all standard 
models). We prove now that the schema DfO is true in every stan- 
dard model, and that validity in a class of such models is preserved 
by the rule RK. 

THEOREM 3.3. Let C be a class of standard models. Then: 

(1) kc ()A++ 1 A. 
(2) For n > 0, if kc(A1h ... A A ~ + A ,  

then kc (nA1  A . . . A DAn)+ OA. 

Proof 
For (1). Let a be a world in a standard model A = (W, R, P). Then: 

I=$ ()A iff for some p in 4 such that aRP, k$A 
- definition 3.2 (2) ; 

iff not every p in A such that a R P  is such that not 
kf A; 

iff not every p in A such that aR/3 is such that k f  1 A  
- definition 2.5 (4) ; 
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iff not k t  U T A  
- definition 3.2 (1) ; 

iff k f 1 0 l A  
- definition 2.5 (4). 

Therefore, kf OA u 1 O l A ,  for every world or in every standard 
model A. 

For (2). The  proof here is by induction on n, and it rests on two 
lemmas - to wit, where C is a class of standard models : 

Lemma 1. If kcA, then kc UA. 

Lemma 2. kc  O(A+B)+(OA-+ OB). 

That is, the rule of inference RN preserves validity in any class of 
standard models (lemma I), and the schema K is valid in every class of 
standard models (lemma 2). The proofs of these lemmas are not difficult; 
we leave them for the reader. 

For the inductive proof of (2), now, recall that when n = 0 the con- 
ditionals in question are identified with their consequents. So for the 
basis of the induction, we need to show that for any class C of standard 
models, if k c  A, then k c  OA. This is just lemma 1. 

For the inductive part of the proof, we assume as an inductive hypo- 
thesis that the theorem holds for all natural numbers k < n, and show 
that it holds, too, at n. We put the inductive hypothesis as follows. 

Fo rk  < n, if kc (B,A ... A B k ) + B ,  
then kc (OBI A . . . A nBk)  + UB. 

Now suppose that 

k c ( A l ~  .., A An)-+A. 

It follows by PL that 

Hence by the inductive hypothesis, 

C,(nAl A . A nAn+l)+ (An+A). 

From this and lemma 2 it follows by PL that 

kc(OAl A . . . A []An-I)-+ (CIA,-+ CIA). 

And from this by PL, 

k c ( a A 1 ~  ... A UAn)+ CIA. 

This completes the proof. 



3.1. Standard mo&k 71 

There is of course much more to validity in the class of standard 
models than the schema and rule covered in theorem 3.3. But, together 
with theorem 2.8, theorem 3.3 provides for the soundness of the systems 
of mcdal logic introduced in chapter 4. A  number of further principles 
appear in the exercises that follow. 

EXERCISES 

3.1. Prove lemmas 1 and 2 in the proof of part (2) of theorem 3.3. (It  
may be helpful to compare the proof in section 1.2 that the system S5 
has the rule RK.) 

3.2. Identify some schemas (for example from the system S5) that will 
be valid, intuitively, if is taken to mean: 

(a) it ought to be the case that 

(b) it will always be the case that 

(c) John Doe believes that 

(d) Jane Doe knows that 

(e) God knows that 

(Be sure to understand the meaning of 0 - via DfO - in each case.) 

3.3. Show that instances of each of the following schemas can be falsified 
at possible worlds in standard models. 

D. O A + O A  D,. OA-+nA 
T. u A + A  Tc. A + n A  

B. A + a O A  B,. n O A - + A  
4. I J A + n B A  4,. 0 0 A + C I A  
5. OA-+OOA 5,. U O A +  OA 

(Compare exercise 2.21 .) 

3.4. Let us say that standard moaels 4 = (W, R, P) and A' = (W', 
R', P' )  agree on the atoms of a sentence A  just in case (i) W = W', (ii) 
R = R', and (iii) P, = PA for every n such that Pm is an atomic subsentence 
of A. In other words, two standard models agree on the atoms of a 
sentence if and only if they have the same set of possible worlds and the 
same relation on them and they agree on the truth values assigned, per 
world, to each atomic constituent of the sentence. 
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Prove the following theorem. 

If standard models A and X' agree on the a tom of A, then 
they agree on A itself(in the sense that for any a in A (equally, 
inA1) ,  kf A if and only if If' A). 

The  proof is by induction on the complexity of A. Give it at least for 
the cases in which (a) A is atomic, Pn, ( b )  A is the falsum, I, (c) A is a 
conditional, B+ C, and ( d )  A is a necessitation, UB. N.B. for the 
inductive cases the inductive hypothesis must be stated: for every 
sentence X of complexity less than A, Cf X if and only if C f '  X, for every 
a in A. 

In virtue of this theorem it is possible to ignore the values P, (in a 
standard model A) of atomic sentences Pn not in a sentence A, for 
example when constructing a countermodel to A. 

3.5. Prove that the following schemas are valid in any class of standard 
models. 

N. rJT 

M. ~ ( A A  B ) + ( ~ A A  UB) 

C. ( ~ A A o B ) + O ( A A B )  

3.6. Prove that the schema DfO,  UA ++ 1 0 TA, is valid in any class of 
standard models. 

3.7. Prove the following, where C is any class of standard models. 

(a) If C=(AA B)+ C, then Cc(aA A o B ) +  UC. 

(b )  If kc A +  B, then Cc  nA+ OB. 
( c )  If C c A ~ B ,  then k c  OA-OB. 

( d )  If kc A+ B, then kc O A +  OB. 

(e) IfCcA+-+B,thenkcOA(--rOB. 

3.8 Prove that the following schemas are valid in any class of standard 
models. 

N O .  101 
M O .  O ( A v B ) + ( O A v  OBI 

co. ( O A v  OB)+ O(Av B) 
KO. (IOAA OB)+ O ( - I A A  B) 

3.9. Describe a single standard model that simultaneously falsifies 
instances of ~ ( A v  B)-+(mAv UB) and ( O A A  OB)+ ~ ( A A  B). 
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3.10. For each of the following, decide whether or not it is valid in the 
class of all standard models, and prove it. 

(4 OT 
( b )  ( O A v  O B ) + O ( A v B )  

(4 A+ O A  

(4 O(AA B ) + ( O A A  OB) 

(e) O O A + A  

(f) O ( A v  B ) + ( O A v  r l B )  
(9) OOA- ,OA 

(4 O(A+B)*(OA+ OB) 

(4 O O A + O A  

(i) O T M ( O A + O A )  
3.1 1. Let A = { W, R, P )  be a standard model. Prove : 

(a) nA+ OA is true in A if R is serial, i.e. if R satisfies the 
condition that for every a in A there is a p in 4 such that 
aRP. 

(b)  n A +  A  is true in A if R  is reflexive (see exercise 1.10). 
( c )  A+ O A  is true in A if R is symmetric, i.e. if R satisfies the 

condition that for every a and p in A, if aRP then PRa. 

( d )  [7A+ UuA is true in J'Z if R is transitive, i.e. if R satisfies 
the condition that for every a, /3, and y in A, if a R P  and 
PR y,  then aRy. 

(e) 0 A -t 0 A  is true in A if R  is euclidean (see exercise 1.10). 

Compare the countermodels to D, T, B, 4, and 5 in exercise 3.3. (But 
do not peek at the proof of theorem 3.5 in the next section.) 

3.12. Notice that if in a standard model JY = (W, R, P), R = W x  W- 
i.e. if R is the universal relation on W, relating each world to itself and 
to every other - then we are once again in the situation in chapter 1 : 

Cf O A  iff Cf A  for every world P in A (i.e. for every B in 
A such that aRP)  ; 

Cf O A  iff t=fA for some world /3 in 4 (i.e. for some p in 
A? such that aRP).  

Thus in this sense the models in chapter 1 are special cases of those in 
the present chapter. 
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Confirm this further by proving that the schemas T and 5 are valid 
in the class of standard models in which the relation is universal. 

Notice that a relation is reflexive and euclidean if it is universal (prove 
this if necessary), but not vice versa (give an example of a relation that 
is reflexive and euclidean, but not universal). 

3.1 3. The relation in a standard model can be replaced equivalently by a 
function that associates with each possible world in the model a set of 
possible worlds. Let A = { W, R, P) be a standard model, and define the 
function f from worlds to sets of worlds (formally, f : W+P(W)) as 
follows, for each a! in A. 

f (a) = {B in X : aRP}. 

That is, f (a) is the set of worlds in X that are R-related to a ;  intuitively, 
f (a) is the set of worlds relevant to a. 

Thus with f in place of R the structure = (W, f, P) is (as good as) 
a standard model, and the truth conditions of a necessitation at a world 
a in A may be given by the clause: 

k&Y nA iff for every ,8 E f (a), ~f A; 

or, more simply, by using the notation of truth sets (definition 2.9): 

C&X OA iff f (a) c IIAll". 

This latter formulation suggests another way of looking at standard 
models and the interpretation of necessity. To  wit, we regard the set 
f(a), for each world a in A, as a certain proposition - the necessary 
proposition with respect to the world a. (N.B. f (a) need not be expressed 
by, i.e. need not be the truthset of, any sentence.) Then we understand the 
formulation above as stating that a necessitation OA is true at z in A 
if and only if the proposition expressed by A in X ,  IIAIId, is implied 
by the necessary proposition, f(a), for a in A?. (Recall exercise 2.22 
regarding the construal of truth sets as propositions and of inclusion as 
implication between propositions.) 

Using the propositions f (a) and IIAllA, give a succinct formulation of 
the truth conditions of OA at the world a in A. (Compare, again, 
exercise 2.22 in which f (a) is always the set W of all worlds in X . )  

Given a model A? = {W, f, P), define the relation R of relative pos- 
sibility in terms off. 

3.14. Understand by a model, for the purposes of this exercise, a structure 
= ( W, $2, P) in which Wand P are as usual and @ is a class of binary 
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relations on W. That is, in such a model Lii? s {R: R E W x W). Relative 
to a world a in A the truth conditions for necessitations are defined by: 

k;;K OA iff there is an R E 9 such that for every /? in A such 
that aRp, k- f A. 

(a) State truth conditions for possibilitations so that Df 0 is valid 
in the class of such models. 

(b) Which of the schemas N, M, C, K, D, T, B, 4, and 5 (see 
chapter 1) are valid in the class of such models? 

(c)  Which of the rules RN, RM, RE, RK, and RR (see chapter 
1) preserve validity in the class of such models? 

3.15. Understand by a model, for the purposes of this exercise, a structure 
X = (W, R, Q, P) in which W, R, and P are as in a standard model 
and Q is a subset of W (the worlds in Q are 'queer'). Relative to a world a 
in ,X the truth conditions for necessitations are defined by: 

C/ OA iff a $ Q and for every ,8 in A such that aRP, Cf A. 

(a) State truth conditions for possibilitations so that DfO is 
valid in the class of such models. 

(b) Which of the schemas N, M, C, K, D, T, B, 4, and 5 are 
valid in the class of such models? 

(c) Which of the rules RN, RM, RE, RK, and RR preserve 
validity in the class of such models? 

3.16. Recall exercise 1.11 and the mapping 7 from the modal language to 
a language of elementary quantificational logic. We saw that 7 had the 
effect of giving the truth conditions of modal sentences at a world a in 
a model of the kind described in chapter 1. Here we redefine T for sen- 
tences of the forms OA and OA. To do so we add to the quantificational 
language a single two-place predicate, R, and a second variable, #?. 
Writing A' for the result of interchanging all occurrences of a and in 
the quantificational formula A, we define 7 for necessitations and 
possibilitations as follows. 

Now T specifies the truth conditions of modal sentences at  the world a 
in a standard model. For example, the transformation shows that 
U P o  -+ Po holds at a just in case the formula 
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is true, and 0 Po+ 0 Po holds at a just in case the formula 

is true. Writing k A now to mean that A is valid in the class of all standard 
models, it can be seen that in general, for every A, 

!= A iff T(A) is a valid formula of eIementary quantificational 
logic. 

Neither Po + Po nor 0 Po + 0 Po is valid in the class of all standard 
models, since neither of their transformations is quantificationally valid. 

(a) Check to see that T produces the stated results when applied 
to n P o + P o a n d  OP,+OOPo.  

(b)  Apply T to DfO, to see that its transformation is a valid 
quantificational formula. 

( c )  Show that if r((A, A . . . A A,) + A) is a valid formula of 
elementary quantificational logic so is 7((OAl A . . . A UA,) 
-+ 

( d )  Use 7 on the schemas in exercises 3.3, 3.5, 3.6, and 3 ,8-3.10. 
(e)  Show that the principles in exercise 3.7 hold with respect to 

quantificational validity and transformations of the schemas. 
( f )  Explain how standard models for the modal language serve 

equally well for the quantificational language. 

3.2. The schemas D, T, B, 4, and 5 

Let us consider the following schemas. 

D. m A + O A  

T. O A + A  

B.  A-+OOA 
4. O A + g g A  
5 .  O A + n O A  

THEOREM 3.4. None of the schemas D,  T ,  B,  4, and 5 is valid in the class 
of all standard models. 

Proof. It is enough in each case to exhibit an instance of the schema 
in question and describe a standard model that falsifies it. 

For D. Consider the instance [7 Po+ 0 Po, and let A = ( W, R, P) be 
a standard model in which W = {a}, R = 0, and P, = 0, for n 2 0. 
Thus d contains but one world, to which no world is related, and at 
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which every atomic sentence is false. The unaccustomed reader may find 
this a rather extraordinary standard model, but it is readily verified that 
it is a standard model: W is a set, R is a binary relation (the empty 
relation) on W, and P is a mapping from natural numbers to (empty) 
subsets of W. 

I t  is easy to see that: 

(a) every /? in AZ such that a R P  is such that Cf Po; 
(b )  there is not some ,!? in A such that aR/? and Cf Po. 

By definition 3.2, (a) means that I=$ UPo, and (b )  means that not 
C$O Po. So by definition 2.5 (7), not Cf Po + () Po. Thus the schema 
D is false in a standard model. 

This countermodel to D can be pictured as in figure 3.1, The box 
represents the set W, and the circle represents the world a in W. Inside 
the world are listed the essential facts about which sentences are true 
there. Thus both Po and 1 0 Po appear inside a ,  to indicate that Po 
is true at a and that 0 Po is false at a. I n  such a picture the content of the 
relation R - the relative possibility of worlds - is indicated by means of 
arrows from circle to circle; see figures 3.2-3.5, for example. In figure 
3.1 there are no arrows, however, since there are no worlds relevant to a 
in the model. Notice that if there were an arrow leading from a to another 
circle, 8, then a could not contain the sentences it does. For then both 
Po and 1 Po would show up inside p, which is impossible. The point is 
that since a picture can coherently be drawn as in figure 3.1, the con- 
ditional UP,-+ () Po can be falsified, and hence the schema D is not 
valid. 

For T. Consider the instance [Po+ Po, and let A = (W, R, P) be 
a standard model in which W = {a, P)  (where a # P), R = {(a, B)}, and 
P, = (/?I, for n 2 0. Since Po contains p, the only world relevant to a, the 

Figure 3.1 
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atomic sentence Po is true at every world possible relative to a ;  i.e. 

every B in A such that aRB is such that I=f Po. 

So by definition 3.2(1), !=$ mPO. But since Po does not contain a, not 
Cf Po. Hence, not !=f Po+ Po. Thus the schema T is false in a standard 
model. 

We have a picture of this countermodel to T in figure 3.2. Both 
Po and 1 Po appear inside a, indicating that OP, is true and Po is 

false at this world; and Po appears inside fl  to show that it is true there. 
The arrow from a to B indicates that is relevant to a, and the absence 
of any other arrows in the picture shows that this is the only case of 
relative possibility in the model. Again, because this picture can co- 
herently be drawn, we see that T is not in general valid. Notice that the 
picture would be incoherent if there were an arrow leading from a back 
to a. 

For B. Consider the instance Po-+ 0 Po, and the standard model 
A = (W, R, P) in which W = {a, 13) (distinct), R = {{a, B)}, and 
P, = {a}, for n 3 0. Figure 3.3 pictures this model. Thus Po is true at a, 

Figure 3.2 

Figure 3.3 
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and 0 Po is false at ,8 (since there are no alternative worlds to /3, as the 
lack of arrows leading away from P shows). Hence 0 Po is false at a, 
since B is accessible from a. So the instance of B is false at a, which means 
that the schema B is invalid. Note the effect on the picture if an arrow 
is drawn from /? to a. 

For 4. Consider the instance Po -t 0 Po, and the standard model 
A = (W, R, P) in which W = {a, B, y }  (all distinct), R = {(a, b), (P, y)},  
and P, = {p),  for n 2 0. We see, then, that kf Po and not kf Po. Thus in 
figure 3.4 /9 contains Po and y contains l P O .  Because y is the only 
world related to /3, /3 also contains 1 Po. But /9 is the only world related 
to a. So a contains both Po and 1 Po, which means that I=$ Po 
and not kf :' Po, Hence, not k$ Po+ Po. Thus the schema 4 is 
false in a standard model. (What would happen if there were an arrow 
from a to y in figure 3.4?) 

For 5, We leave it to the reader to describe a countermodel to the 
instance 0 Po+ 0 Po of the schema 5. Figure 3.5 provides a clue. 

This concludes the proof of theorem 2.1. Figures 3.1-3.5 and the 

Figure 3.4 

Figure 3.5 
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descriptions of the countermodels should enhance the reader's under- 
standing of standard models. 

In a standard model A = ( W, R, P) the relation R is : 

serial iff for every or in A there is a /3 in X such that aRB; 

reflexive iff for every a in A ,  aRa;  

symmetric iff for every a and B in A, if uRB, then BRa; 

transitive iff for every or, 8, and y in A, if aRp  and PRY, 
then aRy ; 

euclidean iff for every a ,  /3, and y in A, if aRB and aRy, 
then ,8R y. 

Let us call the model A itself serial, reflexive, symmetric, transitive, or 
euclidean, according as the relation in it has these properties. 

T H E  o REM 3 -5.  The folluwing schemas are w l i d  respectively in the indicated 
classes of standard models. 

( 1 )  D :  serial 

( 2 )  T :  reflexive 

( 3 )  B: symmetric 
(4)  4 : transitive 

( 5 )  5 :  euclidean 

Proof 
For (1). Let a be a world in a serial standard model A = (W, R, P), 

and suppose that kf UA. It is enough to show that kf ()A. The as- 
sumption means that kf A, for every p in X such that aRB. By the 
seriality of R, such a 8 exists. So for some ,8 in AY such that aRp, I=f A; 
i.e. Cf VA. Therefore, the schema D is valid in the class of serial 
standard models. 

For (2). Let a be a world in a reflexive standard model X = ( W, R, P), 
and assume that kf UA. We wish to show that kf A. By the assumption, 
for every B in A, if aR/3, then Cf A. In particular, if aRa, then k t  A. 
Hence, I=$ A, since R is reflexive. Therefore, the schema T is valid in 
the class of reflexive standard models. 

For (3).  Let a be a world in a symmetric standard model 4 = (W, R, 
P), and suppose that kf A. For the result that Cf OA, we need to 
show that 

for every ,8 in A such that aRb, l=f VA, 
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i.e. that 
for every /? in 4 such that aRP there is a y in 4 such that 
j3Ry and CfA. 

So let j3 be a world in d such that aRP. By the symmetry of R, /?Ra. 
So there is a y in A - viz., a - such that PRy and t=;//A. Therefore, the 
schema B is valid in the class of symmetric standard models. 

For (4). Let a be a world in a transitive standard model = {W, R, P),  
and suppose that Ff OA. We wish to show that C$ OuA, which 
means that 

for every /? in A such that aRP, and for every y in A such 
that BRy, t=f A. 

So let p and y be worlds in .A such that aRP and m y .  It is left as an 
exercise to show that from this together with the assumption and the 
transitivity of R it follows that Cf A. This suffices to establish that the 
schema 4 is valid in the class of transitive standard models. 

For ( 5 ) .  Let a be a world in a euclidean standard model A = ( W, R, P), 
and suppose that I=$ OA, i.e. that there is a /? in A such that aR/? and 
!=$A. To show from this that kf ()A is to show that 

for every /3 in d such that aRP there is a y in A such that 
PRY and c ~ A .  

It is left to the reader to show that this follows from the assumption 
together with the euclideanness of R. 

Theorem 3.5 is the basis of a number of soundness theorems in 
chapter 5. I t  may enhance the reader's understanding of the discursive 
proofs above to refer to figures 3.1-3.5, for the models pictured there 
violate, respectively, the conditions on the models in parts (1)-(5) of the 
theorem. 

Let us close this section by considering briefly the schema 

That G is not valid in the class of standard models is evident from the 
model pictured in figure 3.6. Note that if there were arrows leading from 
p and y to a circle 6 - if there were a single world 6 relevant to both B 
and y - the diagram would be inconsistent. From this we see that G is 
true in every standard model 4 in which the relation R satisfies the 
condition that for every a, 1, and y in A, 

if aRP and aRy, then for some 6 in A, and yRS. 
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When the relation R has this property, let us call it - and the model 
.A itself - incestual (since it means that offspring P and y of a common 
parent a have themselves an offspring 6 in common). 

In the next section we see how each clause in theorem 3.5 is a special 
case of a simple theorem that relates certain generalizations of the 
schema G and the property of incestuality. 

EXERCISES 

3.17. Complete the proof of theorem 3.4 by describing a standard 
countermodel to the instance 0 Po+ OP, of the schema 5. (See 
figure 3.5.) 

3.18. Complete the proof of theorem 3.5 (parts (4) and (5)). 

3.19. Prove that the schema G is true in every incestual standard model. 

3.20. Prove that the schema D is true in every reflexive standard model. 

3.21. Consider the duals of T, B, 4, and 5: 

TO.  A + O A  

BO. OUA+A 

4 0 .  OOA+OA 
50- OUA+OA 

Show that these schemas are valid respectively in the classes of reflexive, 
symmetric, transitive, and euclidean standard models. 

3.22. The results of this exercise aid in the proof of the distinctness of the 
fifteen systems of modal logic registered on the diagram in figure 4.1 (see 
also figure 5.1). 

Figure 3.6 
- 
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( a )  Describe reflexive symmetric standard models that falsify 
instances of the schemas 4 and 5. 

(b)  Describe reflexive transitive standard models that falsify 
instances of the schemas B and 5. 

(c )  Describe serial transitive euclidean standard models that 
falsify instances of the schemas T and B. 

( d )  Describe a symmetric transitive standard model that falsifies 
an instance of the schema D. 

(e)  Describe a serial euclidean standard model that falsifies an 
instance of the schema 4. 

(f) Describe a serial symmetric standard model that falsifies an 
instance of the schema T. 

3.23. A binary relation on a set is said to be: 

a similarity iff it is reflexive and symmetric ; 

a quasi-ordering iff it is reflexive and transitive; 

an equivalence iff it is reflexive and euclidean. 

Referring to theorem 3.5, prove: 

(a) The schemas T and B are true in every standard model in 
which the relation is a similarity. 

(b)  The schemas T and 4 are true in every standard model in 
which the relation is a quasi-ordering. 

(c) The schemas T and 5 are true in every standard model in 
which the relation is an equivalence. 

3.24. Identify a condition on standard models to validate the sentence 

(Hint: See exercise 3.10, parts ( a )  and ( j ) . )  

3.25. Identify a condition on standard models to validate the sentence 
- 
P. TOT. 

3.26. Identify conditions on standard models to validate the converses 
of D, T, B, 4, and 5 : 
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3.27. Show that the schema G is true in any standard model that is 
symmetric or euclidean. 

3.28. Falsify an instance of the schema G in a standard model in which 
the relation is a quasi-ordering (i.e. is reflexive and transitive; see 
exercise 3.23). 

3.29. Recall the models 4 = (W,f, P) described in exercise 3.13 and 
the explanation there of why they are equivalent to standard modeIs. In 
a model of this sort truth conditions for possibilitations are given by: 

C$ OA iff f (a) n lIA1JA # 0. 

The following conditions are equivalent to the properties of seriality, 
reflexivity, symmetry, transitivity, and euclideanness. Which are which ? 

3.30. Let X be a set. By the idmtity (or diagonal) relation, I, on X we 
mean the binary relation represented by the set ((x, x )  : x EX). In other 
words, for any x and y in X, xIy if and only if x = y. 

u 

Let R be a binary relation on the set X. By the converse, R, of the 
relation R we mean the binary relation represented by the set ((x,y): 

u 
yRx}. In other words, for any x andy in X, xRy if and only ifyRx. 

Let R and S be binary relations on the set X. By the relative product 
(or composition), R IS, of R with S we mean the binary relation repre- 
sented by the set ((3, y): for some a E X ,  xRa and zSy}. In other words, 
for any x and y in X, x(R1S)y if and only if there is a x in X  such that 
xRx and xSy. 

Properties of binary relations can be neatly expressed using these 
notions and notations. For example, the reflexivity, symmetry, and 
transitivity of the relation R are expressed respectively as follows. 

u 
@ ) I s  A. ( ~ ) R G  R. (c) R l R s  R. 

Prove this. Then give succinct expression in these terms to the properties 
of seriality, euclideanness, and incestuality. Finally, prove : 

V 

( d ) I =  I. (e) IjR = R. (f) RII= R. 
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3.3 1. Equivalence relations have been characterized in terms of reflexivity 
and euclideanness (see exercise 3.23). Prove that a relation is an equi- 
valence if and only if it is: 

(a) reflexive, symmetric, and transitive 
(b) serial, symmetric, and transitive 
(c) serial, symmetric, and euclidean 

3.32. The field of a binary relation is the set of things related by the 
relation. Let R be an equivalence relation on a set X. 

(a) Prove that X is the field of R. 

For each x a X, define [XI to be { y  E X :  xRy] ; i.e. for each x, y EX, 
1x1 = Ly] if and only if xRy. The set [x] is called the equivalence elms 
(under R) generated by x. 

(b) Prove that any two R-equivalence classes are either identical 
or disjoint, i.e. that for any x,  EX, either [x] = b] or 
[XI n b] = 0. 

Because of this we say that an equivalence relation R partitions its field 
X into mutually exclusive, non-empty subsets. 

Let Rx be the relation R as restricted to the R-equivalence class [x]; 
i.e. for every y, z EX, yR"x if and only if y, z E 11x1. 

(c) Prove that within [x] the relation R - and hence Rx - is 
universal ; i.e. that for any y, z E [XI, yRa (and so yR2z). 

The point of this is that an equivalence relation is universal within any 
of the equivalence classes in the partition of its field. 

Let X be the union of a collection of painvise disjoint non-empty sets, 
and define the relation R on X by the stipulation that xRy just in case 
x and y are both members of some one set in the collection. 

(d) Prove that R is an equivalence relation on X. 

The point here is that the union of universal relations on disjoint fields 
is an equivalence relation. 

3.3. The schema @ D * J ~ ~ *  

When aRB in a standard model X = (W, R, P), we say that is once 
removed from a. Let us write 

aRnp 
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to mean that /9 is n times removed from a - i.e. that p can be reached 
from a,  so to speak, by n steps in the relation R. So aRnj3 just in case 
there are worlds y,, . . ., y,-, i n d  such that aRy,, . . . , yn-, Rp. Pictorially: 

Of course, that /9 is n worlds away from a does not preclude the pos- 
sibility that f l  is also removed from a by some other number of worlds. 

The relation Rn is called the nth relativeproduct of R with itself, and it 
is defined inductively as follows. 

DEFINIT I ON 3.6. Let a and ,O be worlds in a standard model A = 

(W, R, P)* 
( 1 )  aROP iff a = P. 
(2)  For n > 0, aRnj3 iff for some y in A ,  aRy and yRn-lp. 

Thus R0 is the relation of identity, R1 is the relation R itself, and, for 
example, aR3j3 if and only if there exist y, and y, such that aRy,, y, Ry,, 
and y, RP. 

Using Rn we can state truth conditions for sentences of the forms 
OnA and OnA. For just as U A  is true at a world exactly when A is true 
at all worlds once removed from it, so OnA holds at a world just in case 
A holds at all worlds n times removed; and similarly for O A  and OnA. 

T H E O R E M  3.7. Let a be a world in a standard model -K = ( W, R, P ) .  
Then, for n 2 0: 

(1) kf u n A  lq for every /3 in AT such that aRnb, C f  A. 
(2)  k$ OnA ;ff for some j3 in A such that aRnB, k f A. 

Proof. The proof in each case is by induction on n. We carry it out for 
(1) and leave (2) to the reader as an exercise. 

Base case : 

kf mOA iff !=$A 
- definition 2.3 (1); 

iff for every j3 in d such that a = p, C f  A;  

iff for every in d such that aR0p, kf A 
- definition 3.6 (1). 
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Inductive case. For n > 0, assume as an inductive hypothesis that the 
theorem holds for all k < n. Then in particular, for every a in A ,  

Cf On-lA iff for every B in A such that aRn-lP, Cf A. 

Therefore : 

bf n n A  iff Cf aDfl-lA 
- definition 2.3 (2) ; 

iff for every y in A such that aRy, Cf On-lA 
- definition 3.2 (1) ; 

iff for every y in A such that aRy, and for every B 
in A such that yRn-lP, kf A 
- inductive hypothesis ; 

iff for every ,!? in A ,  if there is a y in A such that 
aRy and yRn-lP, then Cf A; 

iff for every /I in A, if aPP ,  then k f A  
- definition 3.6 (2). 

We are now in a position to generalize the results in the preceding 
section concerning the validity of the schemas D, T, B, 4, and 5. For 
example, for n 2 0 the schema 

is valid in the class of n-transitive standard models, i.e. models A = 

(W, R, P) such that for every a and p in A, 

if aRnP, then aR/I. 

(Proof: Let a be a world in such a model X and suppose that Cf OA, 
i.e. that for every /? in A such that aRP, Cf A. Then l = f  A whenever 
in X is such that aRnP; i.e. I=$ OnA.) As an instance of this result we 
have theorem 3.5 (4) - that the schema 4, 

OA+ U2A, 

is valid where R satisfies the condition that for every a and P, 
if aR2P, then aRP. 

For this is simply another way of expressing the transitivity of R - that 
if /I is twice removed from cc it is also once removed (compare (c) in 
exercise 3.30). More generally, for m, n 2 0 the schema 
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is valid in the class of standard models in which for all worlds a and /3, 

if a P / 3 ,  then aP,!?. 

The reader may verify this as an exercise. Note that the schema 4 is also 
an instance of 4m9n, and that T = 41s0. 

But we are after even more generality. Let us consider the scbema 

where k, I ,  m, n 2 0. Note that all of the schemas D, T, B, 4, and 5 are 
special cases of Gk*n: 

The schema Gkhsn is a generalization of the schema 

discussed at the end of the last section. There we saw that G is valid in 
the class of incestual standard models, where 4 = ( W, R, P )  is such that 
for every a, ,!?, and y in A, 

if aRP and aR y, then for some 6 in A, pR6 and y RS. 

Let us generalize this condition and say that R (and also A itself) is 
k, I, m, n-incestual if and only if for every a, ,8, and y in A, 

if aRkp and a P y ,  then for some 6 in A, and yRn6. 

T H E o R E  M 3.8. The schema GkXmjn is valid in the class of k ,  1, m, n- 
incestual standard models. 

Proof. The argument is an elaborate version of that for the validity of 
the schema G in the class of incestual standard models. We give it here in 
detail. 

Let a be a world in a k, 1, m, n-incestual standard model A = ( W, R, P) ,  
and suppose that k;;K OkmzA. This means that 

(a) for some ,!? in JY such that aRkp, every 6 in A such that 
is such that kf A. 
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We wish to prove that Cf OmOnA, i.e. that 

(b)  for every y in A such that a-y, there is a 6 in such 
that yRn8 and k f A .  

To show this, we suppose y to be a world in J% such that a P y ,  and argue 
that there is a world S in A such that yRnS and t=f A. 

By our assumptions, then, and y are such that 

aRkj? and aRny. 

So by the k, I, m, n-incestuality of R, there is a world S in A such that 

bR26 and y P b .  

From the first half of this and (a)  it follows that kf A, so that indeed 
there is a world 6 in A such that yRn6 and Cf A. 

As a corollary to theorem 3.8 we have theorem 3.5 - that the schemas 
D, T, B, 4, and 5 are valid in the classes of serial, reflexive, symmetric, 
transitive, and euclidean standard models, respectively. T o  see this it is 
enough to notice that the properties of seriality, reflexivity, symmetry, 
transitivity, and euclideanness are the same, respectively, as O,1,0, I-, 
0,1,0,0-, 0,0,1, I-, 0,1,2,0-, and 1,0,1,l-incestuality. Let us show 
this for the cases of reflexivity and symmetry, and leave the others as 
exercises. 

Let R be the reIation in a standard model A. For reflexivity: 

R is 0, 1, 0,O-incestual iff for every a, #I, and y in AT, if aROp 
and aROy, then for some S in 4, 
PRIS and y P S ;  

iff for every a, p, and y in A, if 
a = /3 and a = y, then for some S 
i n ~ f , p 6 a n d  y = 6  
- definition 3.6 ; 

iff for every a and p in 4, if a = B, 
then aRP; 

iff for every a in A, aRa ; 
iff R is reflexive. 

For symmetry : 

R is O,0,1,l-incestual iff for every a, 1, and y in 4, if aROP 
and aR1y, then for some 6 in A, 
f lPS  and yRIS; 
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iff for every a, ,8, and y in A, if 
a = p and aR  y, then for some 6 in 
A, /3 = 6, and yRS 
- definition 3.6 ; 

iff for every a and ,8 in A, if aRP, 
then PRa; 

iff R is symmetric. 

EXERCISES 

3.33. Give an example of a standard model 4 = (W, R, P) in which 
aRmP and aRnp for some worlds a and ,8 in d and some natural numbers 
m and n such that m # n, 

3.34. Prove part (2) of theorem 3.7. 

3.35. Prove that the schema 4m~n is valid in the class of standard models 
d = (W, R, P )  such that for all a and p in A, if aRnP, then aRmP. 

3.36. Check that the schemas D, T, B, 4, and 5 are all (the advertised) 
special cases of the schema GkL"n. 

3.37. Prove that the properties of seriality, transitivity, and euclideanness 
are the same, respectively, as 0,1,0, I-, 0,1,2,0-, and 1,0,1,l-incestuality. 

3.38. Prove that 1,0,1,0-, 0,0,1,0-, and 0,2,1,O-incestuality are the same 
as the following properties. 

partial functionality: if aRP and af iy ,  then ,4 = y 
vacuity: if aRP, then a = ,8 
(weak) density: if aRP, then for some y, aRy and yRP 

We may infer from this that the schemas Dc (= G ~ ~ O J ~ ? ~ ) ,  TC(= GOJOJ~JO), 
and 4c ( = G0*2Jj0) are valid respectively in classes of partially functional, 
vacuous, and dense standard models. Prove this directly. 

3.39. Let A = (W, R, P) be a standard model. Prove: 

(a)  The schema Bc, [7 ()A+ A, is true in A when for every a in 
A there is a ,8 in AY such that both aRP and for every y in A 
such that f l y ,  a = y. 

(b) The schema 5,, OA+ OA, is true in d when for every a 
in A there is a ,8 in A such that both a R p  and for every y 
in A' such that @ y, = y. 
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3.40. Prove that P, 0 T, is valid in the class of serial standard models. 

3.41. Prove that H, 1 OT, is valid in the class of standard models in 
which the relation is empty (the class of standard models A = (W, R, P) 
such that for every a and p in A, not aRP). 

3.42. The following express the properties of seriality, euclideanness, 
incestuality, partial functionality, vacuity, density, and emptiness of a 
relation R (see exercises 3.30,3.38, and 3.41). Which are which? 

(a) R G RIR. 
V 

(b) R J R s R .  
(c) R c 0. 

u 
( d )  I G RIR, 

u 

(e )  RJR _c I. 
u 

( f )  ~ I R  c RIR. 
( g )  R G I .  

3.43. Consider the condition 
w w 
RklRm s REIRn. 

Prove that this is the same as k, I ,  m, n-incestuality. 

3.44. Consider the condition 
u i i " l~~  E RnlR1 

on a standard model A = (W, R, P). Prove: 

( a )The  condition validates the dual of GkLmtn, viz. 
OrnmnA-+ awZA. 

(b) The condition is the same as k, I,  m, n-incestuality. 

3.45. Identify a single condition on standard models to validate the 
following schemas. 

(a)  O(OAv B)-+(OAv UB) 

(4 (OAA OBI+ O(OAn B) 
3.46. Identify a single condition on standard models to validate the 
following schemas. 

(a) O(Av B)+ ( O A  v [3B) 
(b) (OAA OW+ O ( A W  
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3.47. Identify conditions on standard models to validate the following 
schemas. 

H++. O(OAV OB)+(OOAV noB) 
H+. (O(UAVB)AU(AVOB))+(OAVDB) 
H. (O(Av B)A O ( O A v  B)A U(Av CIB))+(UAv OB) 

3.48. Show that the schemas in the preceding exercise are true in every 
euclidean standard model. Then falsify instances of each of the schemas 
in standard models in which the relation is a quasi-ordering (see exercise 
3.23). 

3.49. Identify a condition on standard models to validate 

pk. O k ~  

for every k > 0. 

3.50. Try to identify a condition on standard models to validate the 
schema G,, OA+ 0 n A .  

3.51. Consider the following conditions on a standard model A = (W, 
R, P).  

secondary reflexivity: if aRp, then PR/? 

reverse secondary reflexivity: if p a ,  then /3RP 

Prove that the following schemas are valid respectively in classes of 
secondarily reflexive and reverse secondarily reflexive standard models. 

3.52. Consider the following conditions on a standard model A = 

(W, R, P) .  

(a) if aRjP, then if PRky and PIPS, then for some E i n d ,  yR1s 
and SRne 

(b )  if PRja, then if PRky and P S ,  then for some s in A, yRzs 
and SRnc 

Prove that the following schemas are valid respectively in classes of 
standard models satisfying (a) and (b).  

ni(OkOzA+ nmOnA) O ~ T  + (OknzA+ nmOnA) 

3.53. Consider again the models A = ( W, f, P) in exercises 3.13 and 
3.28. The following conditions are equivalent to the properties of partial 
functionality, vacuity, emptiness, incestuality, secondary reflexivity, and 
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reverse secondary reflexivity (see exercises 3.38, 3.41, and 3.5 1). Which 
are which? 

( d )  f (a) is at most a singleton 

3.54. Identify conditions on standard models to validate the following 
schemas. 

D!. nA++()A 
T!. OA-A 

3.55. Consider models A = ( W, f, P) in which W and P are as usual 
and f is a function from W to W (not a point to set function as in exercise 
3.13) ; i.e. for each world a in A, f (a) is some world in A. In models of 
this sort truth conditions for necessitations are given by: 

kf OA iff I=$, A. 

(a) State truth conditions for possibilitations so that Df 0 is valid 
in the class of such models. 

( b )  Show that the rule RK (see chapter 1) preserves validity in 
the class of such models. 

(c) Show that the schema D!, U A -  OA, is valid in the class of 
such models. 

( d )  Define a class of standard models equivalent to this class of 
models. 

3.56. Let = (W, R, P) be a standard model. By an R-sequence we 
mean a finite sequence (a,, . . . , a,) of worlds in 4 such that aiR%, for 
i = 1, . . ., n - 1. We define the standard model A' = (W', A', P') as 
follows. 

(1) W' = the set of all A-sequences. 

Prove that for every world (a,, . . ., a,) in A', 
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The proof is by induction on the complexity of A. Give it at least for the 
cases in which (a) A is atomic, Pk, ( b )  A is the falsum, I, (c) A is a con- 
ditional, B-t  C, and ( d )  A is a necessitation, OB. 

3.57. Consider the following conditions on a standard model JZ = (W, 
R, P) .  

irreflexivity : not a R a  

asymmetry: if aRP, then not 

antisymmetry: if aRP  and PRa, then a = /3 

intransitivity: if a R P  and PRY, then not aRy  

(a) Prove that the models A' in the preceding exercise have all 
these properties. 

(b)  Let C,, C,, C,, and C, be the classes of irreflexive, asym- 
metric, antisymmetric, and intransitive standard models, and 
let C be the class of all standard models. Prove that each of 
these classes determines the same modal logic - i.e. that for 
any sentence A, 

kc A iff kc,A, 
for n = 1, 2, 3, 4. (This comes down to showing - via part 
(a) and the preceding exercise - that if a sentence is false in 
any standard model it is also rejected by models that have the 
properties in question.) 

3.58. Prove: 

(a) Every reflexive relation is serial, secondarily reflexive, and 
reverse secondarily reflexive. 

(b)  Every euclidean relation is secondarily reflexive and incestual. 
(c) Every secondarily reflexive relation is dense. 
( d )  Every symmetric relation is incestual. 
(e)  Every symmetric relation is transitive if and only if it is 

euclidean. 
(f) Every serial relation is reflexive that is vacuous or reverse 

secondarily reflexive. 
(g) Every vacuous relation is symmetric, transitive, euclidean, 

and partially functional. 
(h) Every reflexive partially functional relation is vacuous. 
(i) The empty relation is vacuous. 
( j )  Every asymmetric relation is irreflexive and antisymmetric. 
(k) Every intransitive relation is irreflexive. 
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3.4. Generated models 
Let a be a possible world in a standard model X = (W, R, P). By an 
R-descendant of a we mean any world in X that can be reached from a 
via the relation R in some finite number of steps (including zero, so that 
a is an R-descendant of itself). In other words, a world p in A is an 
R-descendant of a if and only if aRnP for some n 3 0. 

As the reader may well have noticed already, the truth value of a 
sentence A at a possible world a in a standard model depends only on the 
subsentences of A (including A) and the R-descendants of a (including 
a). That is to say, sentences not involved in the structure of A and worlds 
not descended from a are irrelevant to the question of what truth value 
A has at a. We can make this precise in terms of a theorem aboutgenerated 
models. 

DEFINITION 3.9. Let a be a world in a standardmodel4 = (W, R, P). 
Then da = { (Wa, Ru, Pa) is the standard modelgenerated by a 
from A iff: 

(1 )  Wa = ( p  in A: aRnp, for some n > 0). 

(2) Ra = Rn (Wax Wa). 

( 3 )  P", PP, n Wu, for each n 2 0. 

Thus the set of worlds Wa is the set of R-descendants of a, and the 
relation Ra and sets P: are just the restrictions of R and P, to the set of 
R-descendants of a. 

THEO REM 3.10. Let Am = ( WU, Ra, Pa) be the standard model generated 
by a from 4 = (W, R, P). Then for every B in A&: 

Proof. The proof is by induction on the complexity of A. We give it 
for the cases in which A is (a) atomic, Pn, (b)  the falsum, I, (c )  a con- 
ditional, B + C, and (d )  a necessitation, OB. We suppose throughout 
that p is a world in Aa. 

For (a) : 

I=$ Pm iff 
- definition 2.5 (1) ; 

iff p€Pnn Wa 
- since /? E Wa; 
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iff PEP:  
- definition 3.9 ( 3 )  ; 

iff 
- definition 2.5 (1). 

So the theorem holds when A is atomic. 
For (b).  By definition 2.5 (3) 1 is not true at any world in any model. 

So kf I if and only if k p  1, and we see that the theorem holds when A 
is the falsum. 

For the inductive cases ( c )  and ( d )  we make the hypothesis that the 
theorem holds for all sentences shorter than A. 

For (c) : 

CfB-+C iff if k f B  then C J C  
- definition 2.5 (7) ; 

iff if ki$" B then Cp C 
- inductive hypothesis ; 

iff Cj.B-tC 
- definition 2.5 (7). 

Thus the theorem holds when A is a conditional. 
For (d ) .  For left-to-right, suppose that kf OB. Then by definition 3.2, 

for every y in such that PRY, C /  B. To show from this that k p  OB, 
it is enough (by definition 3.2) to suppose that y is a world in XU such 
that /3Ray and then argue that C;X" B. But if pRay, then also PRY. So 
C;U B, and - by the inductive hypothesis - C;X" B. 

For right-to-left, assume that Cp OB, so that for every world y in 
Xa such that PRay, CF B. Now let y be a world in X for which it holds 
that PR y. Since /? E Wa, y is also an R-descendant of a ; and so y E Wa. 
Hence the pair (/?, y) is in the relation R n (Wa x Wu), which means by 
definition 3.9 that PRuy. So Cp B, and - by the inductive hypothesis - 
k f  B, which is what we wished to prove. 

Thus the theorem holds when A is a necessitation. This concludes the 
proof. 

As an immediate corollary to theorem 3.10, a sentence is true in a 
standard model just in case it is true in every model generated from (any 
world in) the model. 

THEOREM 3.11. Let A be an stadard model. Then: 

kd A z$f for every a in A, CAa A. 



3.4. Generated models 97 

Proof. Suppose that P A ,  i.e. by definition 2.6, CfA for tvery B in 
X.  Let Au be generated from A. Then by theorem 3.10 it follows that 
CfaA for every ,4 in JdC, i.e. that CAE A. For the reverse, suppose that 
not P A ,  so that for some a in A, not CfA. Then by theorem 3.10, 
not I=? A, So not k d u  A, which is what we wished to show. 

Let us call a standard model generated just in case it is generated by 
some world in some standard model. The following theorem relates 
classes of generated models to the classes of models from which they are 
generated. 

T HE o R E  M 3.12. Let C be a clms of standard models, and let %( C )  be the 
class of models generated from the models in C .  Then: 

Proof. This is an immediate consequence of theorem 3.1 1. For if kc A 
and X is a model in S(C) - i.e. X is generated from some model in C - 
then clearly A is true in A. Conversely, suppose and let X be a 
model in C. Then since A is true in every model generated from 4, it is 
true in A. 

As we remarked in section 2.4, the set of sentences valid in a class of 
models is a system of modal logic (see exercise 2.32(d)). Thus theorem 
3.12 tells us that a system of modal logic that is determined by a class of 
standard models is also determined by the associated class of generated 
models. 

This is often very interesting. For example, let us use theorem 3.12 
to show that the system of modal logic determined by the class E of 
standard models in which the relation is an equivalence is also determined 
by the class U of standard models in which the relation is universal 
(compare exercises 1.10, 3.12, and 3.32). 

Proof. The result follows via theorem 3.12 and the fact that U is 
precisely the class 9(E)  of models generated from members of E. The 
point is, roughly, that an equivalence relation can be taken apart into a 
collection of universal relations, and any collection of universal relations 
(with disjoint fields) can be patched together to form an equivalence 
relation. 

For the proof proper, suppose, first, that A is a model in U. Then the 
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relation in A is an equivalence, since it is universal (see exercise 3.12). 
So 4 is in E, too. But A is generated (by any of its worlds) from itself, so 
it is in 9(E), as we wished to show. Conversely, let Aa = {Wa, Ra, P) 
be a model in B(E) generated by a from A = (W, R, P) in E. Then WE, 
the set of H-descendants of a in A, is an equivalence class (see exercise 
3.32) within which R - and hence Ra - is universal. So Aa is in U, and 
the proof is ended. 

Universal models are, essentially, the models of chapter 1, i.e. models 
without relations (see exercise 3.12). So we see that the same modal logic 
is determined both by that class of models and by the class of equivalence 
- i.e. reflexive euclidean - standard models. Of course, this modal logic 
is the system S5; but the proof that this is so awaits us in chapter 5. 

EXERCISES 

3.59. Give the proof of theorem 3.9 for the cases in which A = T, l B ,  
B A C ,  B v C ,  B-C, OB. 
3.60. The p-morphism theorem. Let A = (W, R, P) and do = ( WO, RO, 
Po) be standard models, and let f be a function from W to W0 satisfying 
the following conditions. 

(1) f is onto. 

(2) For every a and /3 in A: 

(a) if aRP, then f (a) RY(/?) ; 

(b )  if f(a) R"f(B), then there is a y in A such that f(P) 
= f ( y )  and aRy. 

(3) For every a in JY and every n = 0,1,2, ..., a EP, if and 
only iff (a) E Pi .  

The  function f is said to be a p-morphism (' p ' for pseudo-epi) from A 
to do, reliable on the atomic sentences. Prove that for every a in A, 

bfA iff Cjfa.A. 

The proof is by induction on the complexity of A. Give it at least for the 
cases in which A is atomic, the falsum, a conditional, and a necessitation. 

3.61. Use the p-morphism theorem in the preceding exercise to give 
another proof of the theorem in exercise 3.56. That is, define a function 
from the worlds of one model to those of the other, in exercise 3.56, and 
prove that the function is a p-morphism reliable on the atomic sentences. 
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3.62. The safe extension theorem. Let A = (W, R, P) and d# = (W#, 
R#, P#) be standard models satisfying the following conditions, 

(1) W# = W U  X, where X is a set disjoint from W. 
(2) R# = R u S, where S is a binary relation on W# for which 

it holds that a EX whenever aSP. 
(3) P# = P. 

A# is said to be a safe extension of A - safe in the sense that, since 
R# does not lead from W into X ,  truth values of sentences at worlds 
common to A and d# are the same in both models. That is, for every 
ol in A, 

c f ~  iff c ~ # A .  

The proof of this is by induction on the complexity of A. Give it at least 
for the cases in which A is atomic, the falsurn, a conditional, and a 
necessitation. (For the modal cases it may be helpful first to prove that 
aRP if and only if aR#P, for every a in d.) 

3.63. Let us consider the following principle. 

If kc OA, then kcA. 

This principle holds for some classes of standard models, but not for 
others. For example, it holds when C is any of the following classes. 

(a) all 
(b)  serial 
( c )  reflexive 
(d) transitive 
( e )  serial symmetric 
(f) serial transitive 
(g) reflexive symmetric 
(h)  reflexive transitive 
(i) reflexive euclidean 

Cases (c) ,  (g), (h), and (i) are trivial: if all the models in C are reflexive, 
then UA-t A is valid in C (theorem 3.5); and so if kc OA, then kc A. 

For cases (a), (b) ,  ( d ) ,  and (f) we can use the safe extension theorem of 
the preceding exercise. For example, let us show that the principle holds 
in case (a),  i.e, when C is the class of all standard models. We argue 
contrapositively. Suppose that not kcA, so that for some a in some 
J% = { W, R, P) in C, not k$ A. Now, for a world a' not in A, we define 
the standard model A# = ( W#, R#, P#) by the following conditions. 
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(1) W# = W U  {a'). 

(2) R# = R u {(a', a)}. 
(3) P# = P. 

It is clear that &# is a safe extension of A, and so by the theorem, not 
c;;Y#A. But atR#a, and so by definition 3.2 not f=j# n A .  So not CcOA, 
which is what we wished to prove. 

Cases (b),  (d), and (f) are for the reader. The problem in these cases 
is to define safe extensions that have the right properties. We also leave 
case (e) for the reader; the argument is simple (remember theorem 3.5) 
but does not use the safe extension theorem. 

The principle we are considering does not hold when C is any of the 
following classes of standard models. 

( j )  symmetric 
(k) euclidean 
(1) serial euclidean 

(m) transitive euclidean 
(n) serial transitive euclidean 
(0 )  symmetric transitive 

For the cases in which the models in C are euclidean - i.e. (k)-(0) (for 
(0) see exercise 3.58 (e ) )  - it is enough to note that the schema O ( 0 A - t  A) 
is valid in each class (see exercises 3.51 and 3.58(b)), but that instances 
of OA+A have countermodels in each class (as the reader should 
verify). 

Case (j) is left for the reader (consider the schema n ( A +  0 0 A)). 
The principle we have been considering is a special case (n = 1) of 

the following principle. 

This 'rule of disjunction' holds for cases (a), (b) ,  (c), (d), ( f ) ,  and (h) 
above, but fails for the rest. The reader may wish to demonstrate the 
new failures, cases (e) ,  (g), and (i). We return to this matter in chapter 5. 

3.5. Filtrations 

We explained in section 2.3 the basis of what it means to say that a model 
A* is a filtration through I? of a model A. T o  wit, I? is a set of sentences 
closed under subsentences, the worlds in X* are the equivalence classes 
of worlds in A that agree on the truth values of the sentences in I?, and 
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a world in X* verifies exactly those atomic sentences in T' that are verified 
in A by any (hence all) of its members. (Recall the definitions of =, 
[a], and [XI in 2.3.) T o  define this idea, now, for standard models it is 
necessary only to insure that the relation in the filtration A* is in a 
certain sense consistent with the relation in A. The following definition 
suffices for our purposes. 

DEFINITION 3.14. Let 4 = ( W, R, P) be a standard model, and let 
r be a set of sentences closed under subsentences. Then a 
filtration of A through I' is any standard model XX = (W*, 
R*, PX ) such that: 

(1) W* = [WJ. 
(2) For every a and b in A': 

( a )  if aRP, then [a] R*[)3]; 
(b)  if [a]R*[B], then for every sentence OA el?, if 

Cf UA, then Cf A; 
(c)  if [a] Rr[B], then for every sentence OA E I?, if Cf A, 

then Cf OA. 

(3) P$ = [Pn], fGr each n such that Pn E r. 

Thus RX is consistent with R in the sense that (a) R* imitates in XX the 
behavior of R in A, (b)  R* does not relate worlds [a] and [PI in A *  for 
which it happens that some nA in I' is true at a in A while A is false at 
B in A, and (c)  R* does not relate [a] and [PI in A* for which it happens 
that some OA in I? is false at a in A while A is true at P in A. We give 
some examples of filtrations after the following three theorems. 

T H E O R E M  3.15 .  Let A* = ( W*, R*, P*)  be a r-Jiltration of a standard 
model A? = ( W, R, P). Then for every A E I?: 

Cf A 2 3  C&*A. 

In other words, [IIAllq = llAll"*, for every A E r. 

Proof. The proof is by induction on the complexity of AEI'. The 
non-modal cases were discussed in section 2.3 (exercise 2.27). Of the 
modal cases, let us treat only that in which A is a necessitation, UB. As 
an inductive hypothesis we assume that the theorem holds for sentences 
in r that are shorter than A. Since l? is closed under subsentences, B E I?. 
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So it follows from the inductive hypothesis that for every a in A, 

kfB iff cKB. 
Now let us show that this result holds for aB. 

For left-to-right, suppose that c$' OB. To  show that Ci$ nB we 
suppose that [PJ is a world in A* such that [a] RX[P], and argue from 
this to the conclusion that C$ B. But by clause (2) ( b )  of definition 3.14 
it follows that if t=f OB, then t=$ B. So kf B - whence, by the inductive 
hypothesis, I=$ B. For right-to-left, suppose that /;B, so that for 
every [PJ in A* such that [a] R*[t?], k g  B. Let /3 be a world in & for 
which it holds that aRP; it is enough now to show that Cf B. But by 
clause (2) (a) of definition 3.14 it follows that [a] RX[P]. So C$ B -whence, 
by the inductive hypothesis, Cf B. This completes the proof. 

The next two theorems are corollaries of theorem 3.15. For their 
proofs see the remarks in section 2.3.  

THEO REM 3.16. Let A* be a I?-filtration of a standard model A. Then 
A and AX are equivalent modulo r - i.e. for every A E I?: 
FAA ifl l=A* A. 

THEOREM 3.17. Let C be a class of standard models and let r ( C )  be the 
class of r-filtrations of models in C. Then for every A E r : 
kc A ifl C,,,, A. 

Definition 3.14 provides for the possibility of a number of filtrations 
of a standard model dl = (W, R, P )  through a given set of sentences I?. 
For example, consider AX = (WX, RX, P X )  in which (with W3": and PX 
as usual) for every a and p, 

[a] R*[P] iff for some a' E [a] and some P' E [PI, a'RF. 
T o  see that AX is a filtration we must check that it satisfies conditions' 
(a), (b), and ( c )  in clause (2) of the definition. We leave (a) and (c) as 
exercises. To prove that ( 6 )  is satisfied, suppose that [a] R"[P], OA E r, 
and Cf OA. Then a'RP' for some a' E [a] and some p' E [PI. So C j  OA, 
since a and a' agree on r, from which it follows that Cf A. But A E I', 
since I' is closed under subsentences. Therefore, since ,!? and P' agree on 
r, Cf A, which is what we wished to show. 

We call A* afinest filtration of A through I?. By a coarsest I'-filtration 
of dl we mean a case in which for every a and ,8 in A, 

[a] RX[P] iff both for every OA E I', if I=$ UA, then Cf A, 
and for every OA E I', if k f  A, then Cf OA. 
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We leave it as an exercise for the reader to check that RX, so defined, 
meets the conditions for a filtration. 

We explained in section 2.8 how filtrations may be used to show that 
a system of modal logic is determined by a class of finite models. The  
point is that a filtration through a finite set of sentences is always a finite 
model: if J? contains n sentences, then a I?-filtration of a model d has 
at most 2n worlds (that being the maximum number of ways the worlds 
i.n 4 can agree on the sentences in I?); and Zn is finite if n is. Thus, in 
particular, a model will be finite if it is a filtration through the set of 
subsentences of a sentence, since such a set is always finite. For the most 
part we reserve theorems about determination by classes of finite standard 
models until chapter 5, in connection with decidability results. But as 
an example let us show here that the modal logic determined by the 
class U of universal standard models is also determined by the class 
UsI, of finite universal standard models. 

Proof. Left-to-right is trivial, since Urn, G U. For right-to-left, 
suppose that C,,,A. T o  prove that CU A it is enough, in virtue of 
theorem 3.17, to prove that krcu, A, where I' is the set of subsentences of 
A (which of course contains A). So let AX = ( WX, R*, PX) be a model in 
I'(U), i.e. a r-filtration of some model X = (W, R, P) in U. We wish 
to argue that I=-""A, and for this it is sufficient to show that 4" is in 
U,,,. Since A* is finite, this amounts to showing that A* is universal. 
But it is: By clause (2)(a) of definition 3.14, [a] RX[A whenever a and P 
are worlds in A for which it holds that aRP; and, since 4 is universal - 
i.e. aR,8 for every a and ,L? in A - it follows that [al R*[P] for every [d 
and [PI in X* - i.e. A* is universal. (Indeed, this argument can be 
generalized ; any filtration of a universal standard model is itself universal.) 
T o  sum up, if A is valid in the class of finite universal standard models, 
then A is true in every (finite) filtration of any universal model through its 
set of subsentences and so, by theorem 3.17, is true in every universal 
model. Put contrapositively, if A fails in some universal model it fails 
in some finite universal model - to wit, any filtration, through its set of 
subsentences, of the rejecting universal model. 

Of course, as we have remarked, the set of sentences valid in the class 
of universal standard models is the modal logic S5. So theorem 3.18 
tells us that S5 has the finite model property: every non-theorem of S5 
is false in some finite model for the system. This leads directly to the 
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result that S5 is decidable, by the reasoning explained in section 2.8, 
since S5 can be axiomatized by finitely many schemas. 

The proof of theorem 3.18 turned on the fact that any filtration of a 
universal model is itself universal. This result does not generalize, 
however. For example, not every filtration of a transitive standard model 
is itself transitive (exercise 3.67); so the proof that the modal logic 
determined by the class of transitive standard models is also determined 
by the class of finite transitive standard models cannot be so easily made. 
The moral is that it is often necessary to select a more limited class of 
filtrations of the models in a given class. 

With an eye to the proofs of finite determination and decidability in 
chapter 5, we devote the next section to the problem of finding appro- 
priate filtrations of serial, reflexive, symmetric, transitive, and euclidean 
models. 

EXERCISES 

3.64. Give the proof of theorem 3.15 for the case in which A = OB. 
3.65. Check that finest and coarsest filtrations, described in section 3.5, 
are indeed filtrations; i.e. check that the relations R* in these structures 
satisfy the conditions in clause (2) of definition 3.14. Prove that in each 
of these cases R* satisfies the following. 

If a, = a, and = P,, then [al] RX[pl]  iff [ad R*[PJ. 
3.66. Prove that any filtration of a reflexive standard model is itself 
reflexive. 

3.67. Give examples of each of the following. 

(a) a non-symmetric filtration of a symmetric standard model 
(b )  a non-transitive filtration of a transitive standard model 
(c) a non-euclidean filtration of a euclidean standard model 

3.68. Let r be a set of sentences closed under subsentences. By g(r) - 
the boolean closure of I? - we mean the result of closing I? with respect 
to the (boolean) operations T, 1, 1, A,  V, +, and *. In other words, 
B(r) is defined as follows. 

(1) r G aqr) .  

(2) T E q r ) .  

(3) 1 E 93yl-l). 
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(4) T A  E B ( r )  iff A E ~ ( J ? ) .  

(5) A A B E B ( ~ )  iff A, B ~a(l7). 

(6) A v B EB(I?) iff A, B E 9(r). 
(7 )  A -+ B E g(I7) iff A, B E g ( F ) .  

(8) A - B E g(r) iff A, B E B ( r ) .  

Note that g(T) is closed under subsentences. 

(a) Let A* = ( W*, RX, P X )  be a I?-filtration of a standard mode1 
A = (W,  R, P) .  Then for everyA~.a(I ' ) ,  

CfA iff Cff'A. 

That is, [IIAIIA] = IIAllA*, for every A EB(F). 
The  proof of this improvement of theorem 3.15 is by 

induction on the complexity of A EB(I'). Give it at least for 
the cases in which A is atomic, the falsum, a conditional, and 
a necessitation. 

(b)  Prove or disprove: g ( r )  is logically finite relative to a model 
A if I? is. 

3.6. Filtrations, continued 

THEOREM 3.19. Let AX = ( W X ,  RX, P X )  be a jiltration of a standard 
model A = (W, R, P).  Then: 

(1) A* is serial $A is. 

(2) AX is reflexive if& is. 

Proof. Part (1) we leave as an exercise. For (2), suppose that A is 
reflexive, i.e. that aRa for every a in A. By (2)(a) of definition 3.14 it 
follows that [a] RX[a] for every [a] in dX, i.e. that A* is reflexive. 

There are no analogous results for arbitrary filtrations of symmetric, 
transitive, and euclidean models. But we can define filtrations that do 
have certain combinations of these properties. 

Let I' be a set of sentences closed under subsentences, and let A = ( W, 
R, P )  be a standard model. We consider the following conditions on 
worlds a and p in A. 

for every U A  E r, if Cf OA,  then Cf A 
for every O A  E I?, if Cf A, then kf O A  

for every UA E r, if Cf OA, then I=f A 
for every OA E I?, if Cf A, then I=f O A  
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for every OA E I?, if kf UA,  then kf OA 
C3 for every O A  E I?, if kf OA, then kf O A  

for every U A  E I?, if k-f UA, then Cf HA 
c4 for every 0 A E r, if Cf 0 A, then kf 0 A 

As their display and designations suggest, these conditions come in 
pairs - one for 0, and one for 0. Where W* and P* are defined as usual, 
we can obtain a I?-filtration A* = (W*, R*, P*) of A by defining R* 
in terms of various combinations of the pairs. The details emerge in the 
following theorem. 

THEO R E M  3.20. Let AX = ( W X ,  RX, P*) be a standard model in which 
W* and P* are defined as in a I?-Jiltration of a standard model 
A = (W, R, P). Then: 

(1) I f  A* is de$ned by c, and c,, then (a )  A* is symmetric, and 
(b)  A* is a r-filtration of A% ifA? is symmetric. 

(2)  If R* is defined by c, and c,, then (a )  A* is transitive, and 
(b)  AX is a r-filtration of A i f  A? is transitive. 

(3) I f  RX is defiaed by c,, c,, and c,, then (a )  A* is symmetric 
and transitive, and (b)  A" is a I?-filtration of A $ A  is 
symmetric and transitive. 

(4) I f  R* is de$ned by cl, c3, and c,, then ( a )  A* is transitive 
and euclidean, and (6)  A* is a I?--Itration of A if A is 
transitive and euclidean. 

Proof. The complete proof is very long and involved. We choose to 
give it in detail for part (2), hoping thereby to illuminate the argument 
for the other parts, which we leave as exercises for the reader. 

We assume that RX is defined by c, and c,. First we show that A* is 
transitive. Suppose [a]RX[Bf and [P]R*[y] ,  for worlds a, P, and y in 
A. This means that the following conditions obtain. 

for every UA E F, if Cf UA, then CfA 
p, for every 0 A E r, if kf A, then Cf 0 A 

for every O A  E I?, if kf UA,  then !=f OA 
C3(a'P) for every OAEI?,  if Cf OA, then kf  V A  

for every U A  E I?, if kf OA, then Cf A 
cl(P' Y) for every 0 A E I?, if Cf A, then Cf OA 

c&P, Y )  
for every U A  E I?, if kf OA, then Cf OA 
for every OA E I?, if kf 0 A, then kf 0 A 
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We wish to conclude from this that [a-J Rg[y],  which means that we must 
argue for the following conditions. 

for every OA E I?, if Cf UA, then Cf A 
y, for every 0 A E I?, if kf A, then CfO A 

for every IJA E I?, if !=$ OA, then Cf O A  
C3(a' Y) for every O A  E I?, if !=f OA, then Cf O A  

For c,(a, y). Suppose first that O A  E I? and OA, to  how that 
kf A. Then kf CIA, by c3(a, P), and so Cf A, by cl(P, y). Next, suppose 
that OAEI? and kf A. Then Cf OA, by c,(p, y), and so kf OA, by 
c,(a, P), which is what we wished to show. 

For c3(a, y). Suppose again that O A  E I? and Cf UA. Then Cf OA, 
by c3(a, P), and so Cf OA, by c,(P, y). Similarly, suppose that O A  E I? 
and kf OA. Then Cf OA, by c3(P, y), and so kf OA, by c3(a, P). 

This takes care of the transitivity of 4". I t  remains to be shown that 
AX is a I?-filtration of AY if A is transitive. 

Assume that A is a transitive standard model. T o  see that AX is a 
I?-filtration of d we must check that RX satisfies the conditions in clause 
(2) of definition 3.14. Parts (2 ) (b )  and (2)(c) are just the condition c,, 
however, so the question reduces to (2)(a). Thus suppose that aRP, for 
worlds a and /3 in d. We wish to argue from this that [a] R"['], i.e. that 
conditions c,(a, p )  and c,(a, p )  are met. 

For c,(a, p). Suppose first that U A  E I? and Cf OA. Then for every 
/3 in A such that aRP, Cf A. So Cf A, since aRP. Next, suppose that 
OA E I? and Cf A. Then there is a P in A such that aR,8 and Cf A, 
which means that CfO A. 

For c3(a, P). Suppose first that O A  t I? and Cf OA. Because A? is 
transitive, it follows by theorem 3.5 that bf g A +  naA, and hence that 
Cf UOA. This means that for every /3 in A such that aRB, Cf OA. 
So kf UA, since aRP, which is what we wished to prove. Now suppose 
that OA E I? and that k f  ()A. Then there is a P in A such that aRP 
and t=$ OA, which means that kf 0 OA. By the transitivity of A and 
exercise 3.21 it follows that kf 0 O A +  OA, and hence that I=$ OA, 
which is what we wished to prove. 

This concludes the proof of the theorem. 

By putting together the contents of theorems 3.19 and 3.20 we manage 
to cover most of the properties, and combinations of properties, of 
standard filtrations in which we are interested. For example, if A is a 
reflexive symmetric transitive model, we can find a filtration 4" of 4 



108 Standard models for modal logics 

that is symmetric and transitive by defining the relation in AT* as in part 
(3) of theorem 3.20, and A* will also be reflexive, by theorem 3.19. Thus, 
reasoning as we did for theorem 3.18, we can prove a number of finite 
determination theorems. We suggest some of these results in the exercises. 

But we have not yet shown how to deal with filtrations of models that 
are simply euclidean, or serial and euclidean. The case of reflexive 
euclidean models is the same as, for example, that of reflexive symmetric 
transitive models (see exercise 3.31); part (3) of theorem 3.20 takes care 
of models that are symmetric and transitive and hence symmetric and 
euclidean (see exercise 3.58 ( e ) ) ;  and part (4) of the theorem only deals 
with models that are transitive and euclidean. Since by theorem 3.19 
any way of constructing euclidean filtrations from euclidean models 
yields a solution for the serial euclidean case, we may concentrate solely 
on the simpler question. 

In  fact, it is impossible in general to produce euclidean filtrations 
along the lines of theorem 3.20, i.e. by stating conditions on pairs of 
worlds in the filtrated model with respect to an arbitrary set of sentences 
closed under subsentences. The proof of this is worth setting out here. 

Let r be the set (Po, P,), which is closed under subsentences, and 
let 4 = (W, R, P )  be a standard mode1 containing five distinct worlds, 
a, p, y,  8, and e, related by R as indicated by the arrows in figure 3.7. 
We leave it as an exercise for the reader to verify that A is euclidean 
and that the distribution of the sentences in I? and their negations is 

Figure 3.7 
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coherent. Note that a and y are the only worlds in AY that agree on all 
the sentences in r. Thus in a I?-filtration A* = (W*, R*, P*) of AY 
there are four worlds: [a](= [y]), [PI, [a], and [el. A* is pictured in 
figure 3.8, where the arrows reflect the minimal pairings under R* 
demanded by clause (2)(a) of definition 3.14. Note that A* is not 
euclidean, since [a] R*[& and [a] R*[S], but not [/3] R*[6]. Furthermore, 
A* cannot be made to be euclidean; for this would mean adding to R* 
all the pairs of worlds represented by drawing double-headed arrows 
between [PI and [a] and between [PI and [E], which in turn would mean 
that the sentence UP, is false at [PI, contrary to the fact of its truth at 
that world. In short, this I?-filtration cannot be made to be euclidean on 
pain of contradiction. 

So something more special is required for the construction of euclidean 
filtrations; we cannot in general deal with arbitrary sets of sentences 
closed under subsentences. One approach to the problem uses the idea 

Figure 3.8 
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of the modal closure of a set of sentences. Because it is applicable also to 
models that are symmetric or transitive we state the following theorem 
for models of all three kinds. 

T HE o RE M 3.21. Let I' be a modally closed set of sentences closed under 
subsentences, and let dX = ( WX, R*, PX) be a coarsest r- 
Jiltration of a standard model& = ( W, R, P). Thm: 

( 1 )  A* is symmetric qA is. 

( 2 )  dX is transitive if& is. 

(3) A?* is euclidean if& is. 

Proof. We give the proof for part (3) only. Recall that the modal closure 
of a set of sentences is the result of adding to the set every modalization 
#A of any sentence A in the set. Suppose that AX is a coarsest I?-filtration 
of a euclidean model A. That is to say, R* is defined by conditions (6 )  
and (c) of clause (2) in definition 3.14. To  show that d* is euclidean, 
let a ,  p, and y be worlds in d such that [a] R*[P] and [a] RX[y]. In other 
words, we assume that the following conditions are satisfied. 

for every OA E I?, if kf OA, then Cf A 
for every OA E I', if kf A, then I=$ OA 
for every UA E TI, if kf UA, then I=f A 

y )  for every OA E TI, if I=/ A, then C$ OA 

We wish to argue that [PJ RX[yj, i.e. that the following conditions are met. 

for every UA E I', if Cf UA, then CfA 
c'(P' Y) for every OA E I', if kf A, then t=f OA 

Suppose first that OA EI' and I=-$ n A ,  to show that Cf A. Then 
0 OA E I', and so by c,(a, B) I=$ 0 UA. Because A? is euclidean, 
Cf OA-f UA (exercise 3.21). Hence Cf OA, from which it follows 
by c,(a, y) that kfA. Next, suppose that OA EI' and CfA. Then 
kf OA, by cl(a, y). By theorem 3.5 and the euclideanness of A, 
Cf OA+ OA. SO Cf OA. But ()A E r. SO, by c,(a, P), Cf VA, 
which is what we wished to show. 

Noticing that modally closed sets of sentences are infinite the reader 
may wonder about the point of the last theorem: it does not seem to 
provide the finite filtrations wanted for proofs of decidability. But, as 
we shall see, modal closures of finite sets of sentences are logically finite 
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relative to models of certain kinds. In particular, such sets are logically 
finite relative to any euclidean model. And, as we observed in section 
2.3, logical finiteness is sufficient to yield finite filtrations. We return to 
these matters in chapter 5. 

EXERCISES 

3.69. Prove part (1) of theorem 3.19. 

3.70. Prove parts (I), (3), and (4) of theorem 3.20. 

3.71. Check that the model pictured in figure 3.7 is euclidean, and that 
the distribution of the sentences to the worlds in the model is coherent. 

3.72. Show that defining a filtration by conditions c, and c, (in section 
3.6) does not always result in a euclidean model. 

3.73. Prove parts (1) and (2) of theorem 3.21. 

3.74. Let C be a class of standard models, and let CFI, be the class of all 
finite models in C. Using filtration theorems we can prove for a number 
of cases that these classes determine the same modal logic, i.e. that for 
every A, 

kc A iff kCFINA. 

The reasoning in each case is analogous to that for theorem 3.18, where 
C is the class of universal standard models. Give the proofs for the cases 
in which C is any one of the following classes. 

(a) all 
(b)  serial 
(c) reflexive 
( d )  symmetric 
( e )  transitive 
(f) serial symmetric 
(g) serial transitive 
(h) transitive euclidean 
(i) serial transitive euclidean 
( j )  symmetric transitive 
(k) reflexive symmetric 
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( E )  reflexive transitive 
(m) reflexive euclidean 

Except for (a), the proofs use theorems 3.19 and 3.20, in addition to the 
results in section 3.5. For (m), note exercise 3.3 1. 

3.75. Give an example of a non-incestual fihration of an incestual 
standard model. 



N O R M A L  S Y S T E M S  O F  M O D A L  
L O G I C  

This chapter is devoted to studying, from a purely deductive standpoint, 
a class of systems of modal logic we call normal. 

In section 4.1 we first define the class of normal systems. Then we 
derive a number of theorems and rules of inference common to all 
normal modal logics and use some of them to formulate alternative 
deductive characterizations of such systems. Theorems on replacement, 
negation, and duality are proved in section 4.2 for normal modal logics 
(they hold more generally for all classical systems, as we discover in 
chapter 8). These results provide rules and theorems that serve to 
facilitate derivations. 

The smallest normal system of modal logic we call K. Thus every 
normal system of modal logic is a K-system. (The converse is false; not 
all K-systems are normal.) To  simplify naming normal systems we write 

to denote the normal modal logic obtained by taking the schemas 
S,, ..., S, as theorems. In  other words: 

KS,  ... S, = the smallest normal system of modal logic con- 
taining (every instance of) the schemas s,, . . . , s,. 

So, for example, KT4 is the smallest normal system produced by treating 
the schemas T and 4 as theorems in a normal modal logic. (It is also 
denoted by K4T; the order of the schema names is irrelevant.) As the 
limiting case, where there are no schemas, the definition yields K as the 
smallest normal system. 

In section 4.3 we begin a survey of the normal extensions of K con- 
taining various combinations of the schemas D, T, B, 4, and 5. This 
continues in section 4.4 with an account of the numbers of distinct 
modalities present in certain of these systems. 

The chapter concludes with section 4.5, which contains some theorems 
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about maximal sets of sentences in normal modal logics. These resulti 
figure importantly with regard to some theorems in chapter 5. 

4.1. Normal systems 

As we learned in chapter 2, a system of modal logic is a set of sentence: 
containing all tautologies and closed under the rule of inference RPL 
We characterize normal systems of modal logic in terms of the schema 

and the rule of inference 

RK. ( A l ~  ... A A ~ ) - + A  
( ~ A , A  ... A g A , ) + O A  

(n  0). 

D E F I N I T I o N 4.1. A system of modal logic is normal iff it contains Df 0 
and is closed under RK. 

Beginning with theorem 4.2 and continuing with theorem 4.4 we 
register some of the more important rules and theorems present in all 
normal systems of modal logic. Many of these are familiar from chapter 1. 
I n  theorems 4.3 and 4.5 we record some alternative ways of characterizing 
normal modal logics. 

T H E O R E M  4.2. Every normal system of modal logic has the following~ules 
of inference and theorems. 

A 
RN. - 

CIA 

RM. 
A+B 

O A + O B  

RR. ( A A B ) + C  
(OAA OB)+ U C  

RE. 
A-B 

OA-UB 
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Proof. Let B be a normal system of modal logic. By theorem 2.13 
propositional logic is a part of 2, a fact we take advantage of frequently 
and casually. 

For RN, RM, and RR. These rules of inference are simply RK for 
n = 0, 1, and 2, respectively, 

For RE. Suppose that t, A-B. Then by PL both t, A+ B and 
t, B-t A. By RM in each case, t, uA-+ UB and t, nB+ OA. Hence 
by PL again, t-, O A  t, OB. 

For N. By PL, I-, T. Hence by RN, I-= T. 
For M. By PL, F,(AAB)-+A and ~ , ( A A B ) + B .  So by RM, t,m 

(A A B)+ OA and I-= O(A A B)+ UB. By PL again, t, ~ ( A A  B)+ 
(OAA OB). 

For C. By PL, t,(A A B) + (A A B). Hence by RR, t,(nA A OB) -+ 

O(AA B). 
For R. This is just the biconditional of M and C. 
For K. By PL, t,((A+ B) A A)+ B. So by RR, t ,(u(A-+ B) A u A ) +  

nB. Therefore by PL, t, O(A+ B)+ ( a A +  OB). 

As in chapter 1, proofs like these for theorem 4.2 can often be stated 
more perspicuously as annotated sequences of theorems. For example, 
the proof above for K can be presented thus: 

On top of propositional logic, the schema D f O  and the rule RK 
provide an axiomatic basis for normal systems of modal logic. Together 
with Df 0 the rules and theorems listed in theorem 4.2 provide a number 
of alternative bases for - i.e. alternative ways of characterizing - normal 
systems. We select just four for attention in the next theorem; some 
others appear in the exercises. 

T H E O R E M  4.3. Let C be a system of modal logic containing Df 0. Then: 

( 1 )  C is normal i .  it contains K and is closed under RN. 

( 2 )  C is normal iff it contains N and is closed under RR. 
(3) C is normal z f l  it contains N and C and is closed under RM.  
(4) C is normal iff it contains N ,  C, and M and is closed under 

RE. 
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Proof. Let Z be a system containing Df 0. Theorem 4.2 takes care of 
left-to-right in each case, so we show only right-to-left. 

For (1). We need to show that if Z contains K and is closed under 
RN, then 2 is closed under RK; i.e. that for n 2 0, 

if kx(Al A ... A An)+A, 

then k,(nA, A . . . A UA,) + OA. 

The proof is by induction on n and is like that for theorem 3.3 (2) (recall 
lemmas 1 and 2 there). With this hint we leave the details to the reader. 

For (2). Suppose X contains N and is closed under RR. In view of 
(1) it is enough to show that Z contains K and is closed under RN. As 
to K, see the proof of theorem 4.2. For RN : 

1. A hypothesis 

2. (T A T)+A 1, PL 

~ . ( ~ T A ~ T ) + ~ A  2,RR 

4. Or N 
5. OA 3,4, PL 

Note that line 1 means that t, A, so that RR is applicable at line 2. 
For (3). Suppose X contains N and C and is closed under RM. Given 

(2), we need only show that X is closed under RR. Thus: 

1. (AA B)+C hypothesis 

2. ~ ( A A  B)+[3C 1, RM 
3. ( ~ A A  nB)+ ~ ( A A  B) C 

4. ( ~ A A  nB)+ UC 2, 3, PL 

For (4). If B contains N, C, and M and is closed under RE, it is 
sufficient, given (3), to show that B is closed under RM. We leave this 
as an exercise. 

With the exception of DfO, the rules and theorems so far have 
featured the necessity operator. The next theorem catalogues some rules 
and theorems of normal systems in which the possibility operator 
predominates. 

THEOREM 4.4. Evmy normal system of modal logic has the following rules 
of inferme and theorems. 

A+(A,v ... v A,) 
RKo* OA-t(OA,v ... v OA,) (a 2 0) 
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DfO. [ ~ A - Y V T A  

N O .  1O-L 
MO* ( O A v  OB)+O(AvB)  

cow O ( A v  B)+(OAv VB) 

R V *  O(AvB)*(OAv OB) 
KO.  (1 OA A OB)+ O(1A A B) 

Proof. Let 2 be a normal system. 
For RK 0. Suppose that t, A + (A, v . . . v A,)). Then by PL, I-,(lAl 

A...  A -iA,)+-lA. By applying RK, t E ( O I A l ~  ... A a l A n ) + n ~ A .  
Hence by P L  again, t , ~ ~ l A + ( ~ ~ l A l v  ... v ~ a l A , ) .  There- 
fo rebyDf0  andPL, t, OA+(OA,V ... v OA,). 

For RN 0,  RM 0, and RR 0. These are the rule RK for n = 0, 1, 
and 2, respectively. (For RN 0,  recall that when n = 0 the conditionals 
in RKO are identified with the negations of their antecedents.) 

For RE 0. The proof uses RM 0 and is like that for RE in theorem 
4.3. Exercise. 

For DfO. Compare the proof of this in section 1.2, and note that it 
uses only PL, Df 0, and RE. 

For NO.  By PL, t-,l~. So by RNV,  l-,101. 
ForMO.  By PL, k,A+(AvB)and t ,B+(AvB). HencebyRMO, 

t, OA-+ ~ ( A v B )  and kZ OB+V(AvB).  By PL, t ,(OAv OB)+ 
O(A v B)* 

For C 0. The proof uses RR and the tautology (A v B) -+ (A v B). 
Exercise. 

For R 0. This is the biconditional of M 0 and C 0. 
For K O :  

1. B + ( A v ( ~ A A  B)) PL 
2. O B - + ( O A v  o ( i A ~  B)) 1, RRO 
3. (1 O A A  OB)+ 0 ( i A ~  B) 2, PL 
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The reader should appreciate the parallels between the proofs above 
and those for the corresponding rules and theorems in theorem 4.2. We 
have developed this analogy intentionally, for the sake of simplicity and 
also to enhance the reader's ability to create such proofs on his own. 
There are of course other ways of doing this. As an example, let us 
prove again that RO is a theorem of all normal modal logics, as follows. 

Other alternative proofs of rules and theorems are suggested in the 
exercises. 

The  characterization of normal systems of modal logic in terms of 
DfO and RK and in theorem 4.3 may be said to be necessity-based, 
inasmuch as is treated as though it were primitive and 0 is introduced 
only definitionally, through DfO. I n  the next theorem we turn this 
around by using rules and theorems from theorem 4.4 to give five 
characterizations of normal systems that are possibility-based and intro- 
duce necessity definitionally via Df . 

THEOREM 4.5. Let C be a system of modal logic containing Df 0. Then: 

( 1 )  C is normal z z i t  is closed under RK 0. 
(2 )  X is normal zf l  it contains K 0 and is closed under RN 0. 
(3) C is norma 1 2 3  it contains N \3 and is closed under R R 0. 
(4) C is normal iff i t  contains N 0 and C 0 and i s  closed under 

RMO. 
(5) C is normal zf l  it contains N 0, C 0 ,  and M 0 and is closed 

under RE 0. 

Proof. Let X be a system containing Df . The left-to-right cases are 
covered by theorem 4.4, so we need show only the converses. 

For (1). Suppose that C is closed under RK 0. We wish to prove first 
that C is closed under RK. The  argument is analogous to that given for 
RK 0, using RK, in theorem 4.4. Thus: 
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1. ( A l ~  ... A An)+A hypothesis 

2. iA+(?A, v ... v iA,) 1, PL 

3. O i A + ( V i A ,  v ... v O I A n )  2, RKO 
4. (1 O l A , h  ... A 1 OlA,)-t  1 O l A  3, PL 

5 ,  ( ~ A , A  ... A [7An)+ UA 4, D f a  and PL 

Next we must show that I: contains Df 0. The argument for this is like 
that suggested for D f a  in theorem 4.4, if as a lemma it is shown first 
that B is closed under REV. This is left to the reader as an exercise. If 
thus C contains DfV and is closed under RK, then by definition 4.1 it 
is normal. 

The proofs for parts (2)-(5) parallel those for (1)-(4) in theorem 4.3. 
For (2). Suppose that C contains K 0 and is closed under RN 0. I n  

view of (1), just proved, it is enough to show that B is closed under RK 0, 
i.e. that for n > 0, 

if t,A-+(A, v ... v A,), then I-, OA-+(OA, v ... v 0%). 

The proof is by induction on n. Where n = 0, we need to show that if 
I-, 1 A, then t, 1 0 A. This is just RN 0. So suppose as an inductive 
hypothesis that the rule holds for k n. Then we reason as follows. 

1. A+(A,v ... v A,) hypothesis 

2. (~A,AA)-+(A,v  ... vA,) 1, P L  

3 . O ( l A l h A ) - + ( O A z v  ... vOA,) 2,inductive 
hypothesis 

4. ( - I O A , A  OA)+ O( iA ,nA)  KO 
5 . ( ? O A l ~ O A ) + ( O A , v  ... v O A n )  3 ,4 ,PL  
6. OA+(OAl v ... v OA,) 5 ,  PL 

For (3). Suppose C contains N 0 and is closed under RR 0. Given (2) ,  
we need only show that C contains K 0 and is closed under RN 0. The 
proof of K 0 appears in the proof of theorem 4.4. For RNO : 

2. 1 A  hypothesis 

2. A+(L v L) 1, PL 

3. O A + ( O L  v  0 1 )  2, RRO 
4 . 7 0 1  N O  
5. i V A  3,4, PL 
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k = 0. For the inductive part, assume that the schema is a theorem 
whenever the number of us and 0 s  is less than k. Then we argue as 
follows. 

1. Ok-lAe, T ~ ~ - ~ T A  inductive hypothesis 

2. 0 Ok-lA* 0 - 1 n k - l ~ A  1, REO 
3. r ] g k - 1 1 A ~ 1 0 7 ~ k - 1 1 A  Df[7 
4. 0 0-A - -I 0 Uk-llA 2,3, PL 

5. OkA 6, - I ~ ~ T A  4, definition 2.3 

It should be apparent, given RKk and Df Ok, that similar generaliza- 
tions of all the principles in theorems 4.2 and 4.4 are part of any normal 
system of modal logic. More precisely, the results of putting ak and Ok 
for and 0 throughout these principles yield theorems and rules of 
inference that belong to every normal system, for every k 2 0. Because 
we will need some of these principles later on (especially in chapter 5), 
we record this formally. 

T H EO REM 4.6. Every normal system of modal logic has the principles RKk, 
DfOk, RNL, RMk, RRk, REk, Nk, Mk, Ck, Rk, Kk, RKOk, 
RNOk, RMOk, RROk, REOk, DfDk, NOk, MOk, COk, 
R Ok, and K Ok, for ewery k 0. 

Given the proofs above for RKk and DfOk, the reader can easily 
construct proofs for the remaining principles by attending to the proofs 
of theorems 4.2 and 4.4. Separate inductive proofs are also possible in 
each case. 

EXERCISES 

Where appropriate, freely make use of theorems and rules of inferencr 
established in section 4.1 and, farther along, the results of previous 
exercises. 

4.1. Complete the proof of theorem 4.3 (parts (1) and (4)). (For (4), note 
that A -+ B is PI,-equivalent to A ++ (A A B).) 

4.2. Complete the proof of theorem 4.4 by showing that every normal 
system has the rule RE () and the theorem C 0. 

4.3. Complete the proof of theorem 4.5 (parts (1) and (4)). 

4.4. Prove some of the parts of theorem 4.6. 
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4.5. Let C be a system of modal logic containing Df 0. Prove: 

(a) E is normal iff it is closed under RR and RN. 

(b)  C is normal iff it contains C and is closed under RM and RN. 

(c) I: is normal iff it contains N and K and is closed under RM. 

( d )  X is normal iff it contains C and M and is closed under RE 
and RN. 

(e)  C is normal iff it contains N and R and is closed under RE. 

(f) X is normal iff it contains R and is closed under RE and RN. 

(g) X is normal iff it contains N and K and is closed under RE. 

4.6. Let Z be a system of modal logic containing Dfn .  Prove: 

(a) Z is normal iff it is closed under RR 0 and R N  0. 
(b) B is normal iff it contains CO and is closed under R M O  

and R N O .  

(c) 2 is normal iff it contains N 0 and K O  and is closed under 
R M O .  

(d )  2 is normal iff it contains C 0 and M O  and is closed under 
R E 0  and R N  0. 

(e)  X is normal iff it contains N O  and R 0  and is closed under 
R E O .  

(f) C is normal iff it contains R 0 and is closed under RE 0 and 
RNO. 

(g) E is normal iff it contains N 0 and K 0 and is closed under 
R E O .  

4.7. Prove that the following schemas are theorems of any normal system. 

(a) CIA+ O(B-+A) 

(b) O l A +  O(A+B) 

( c )  O T - 1 0 1  
(4 O(A+B)+(OA+ OB) 
(4 O ( A + + B ) + ( O A ~ O B )  

( f )  O(A-B)+(OA- OB) 
(9) ( O A v  OB)+Cl(Av B) 

(h)  B)+(OAA OB) 

( i )  ( O A A  OB)+ O(AA B) 
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4.8. Prove that the following schemas are theorems of any normal 
system (for any n 2 2). 

(a)  ~ ( A , A  ... AA,)*([~A,A ... A CIA,) 

(b)  O(A,v ... vA, )++(OA1v ... v VA,) 
(c) (UA, v ... v OA,)+ O(Al v ... v An) 

( d )  ~ ( A , A  ... AA,)+(OA,A ... A OA,) 

(e) ( n A l ~  ... A CIA,-,A ()A,)+ O(Aln ... A&) 

(f) O(A, v - - a  v An)+(OA1 v - - a  v OA,-, v CIA,) 

4.9. Prove that the following sentences are theorems of any normal 
system whenever m < n. 

(a)  on^ -+ OmT (b)  O m l  -+ U n l  

4.10. Let C be any system of modal logic containing Df and satisfying 
the conditions that, for every n 3 0, 

(a) u w A  E C if kP, A, 

(b) O n ( O ( A + B ) + ( O A + n B ) ) ~ ~ ,  
(c)  X is closed under the rule MP. 

Prove that C is normal. (This boils down to a proof, by induction on n, 
that Z is closed under the rule RN.) 

4.11. Prove that every normal system has the following rule of inference, 
for any k, m, n 2 0. 

4.12. Use the erasure transformation s from exercise 1.27 to prove the 
consistency of the system K. (Alternatively, consider the mappings T in 
exercises 1.11 and 3.16.) 
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4.13. Consider the following rules of inference. 

These rules hold for some normal systems, but not for all. To  prove that 
they hold for the system K we first define the mapping cr, as follows. 

(1) u(Pn) = Pn, for n = 0, 1,2, ... . 
(2) U(T) = T. 

(3) a ( ~ )  = I. 
(4) a ( l A )  = I cr(A). 

(5) a(A A B) = a(A) A a(B). 

(6) u(A v 13) = a(A) v u(B). 

(7) u(A + B) = u(A) + u(B). 

(8) u(A - B) = a(A) - a(B). 

(9) u(DA) = A. 
(10) cr(OA) = A. 

So to speak, a searches through a sentence - or schema - for its first, or 
outermost, occurrences of and 0 ,  and 'erases' them. Thus cr(OA-+ 
OA) is A+ A. Note that c is not the same as e in exercises 1.27 and 4.12: 
o does not delete all occurrences of 0 and 0. For example, u(mA+ 
B n A )  is A+ OA, not A+ A. 

Now consider K as axiomatized by Df 0, RK, and RPL. Prove by 
induction on the length (number of lines) of a proof, relative to this 
axiornatization, the following lemma. 

If t, A, then k, a(A). 

That is, prove that if A appears on the first line of a proof, then c(A) 
is also a K-theorem (this is the basis of the induction), and that, assuming 
that the result holds for all lines k < n, it holds as well for line n (this is 
the inductive step). (Take it for granted that the result holds with respect 
to RPL, i.e. that if A is a tautological consequence of A,, . . ., An, then 
a(A) is a tautological consequence of c(Al), . . ., a((%)).) 

I t  follows from this lemma that K has rules (a)+). For example, for 
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(a) we argue as follows. If kg n A ,  then by the lemma tg u((OA), and 
so - by the definition of CT - kK A. 

Give the arguments for cases (b)-( f ), 

4.2. Replacement and duality 

In this section we pause to state and prove some simple theorems about 
replacement and duality in normal modal logics. These principles 
function as theorems and rules of inference in every normal system, and 
where possible we present them as such, Their usefulness is illustrated 
by means of several examples. 

THE o RE M 4.7. Every normal system of modal logic has the rule of replace- 
merat: 

(Recall from section 2.1 that A[B/Bf] is any sentence that results from A 
by replacing zero or more occurrences of B, in A, by B'.) 

Proof. Let 2 be a normal system, and suppose (throughout the proof) 
that k, B ct B'. Then what we wish to prove is that I-, A-A[B/B']. 

We consider first the possibility that A and B are the same sentence. 
Then A[B/Bf] is either A (when there is no replacement) or B' (when A, 
i.e. B, is replaced by B'). In either case, kZ A - A[B/Bt]. For in the first 
case this is just t-, A t. A, which is trivial ; and in the second it is tE B - B', 
which is the assumption. 

Thus we may assume henceforth that A and B are distinct. 
The proof proceeds now by induction on the complexity of A. We 

give it for the cases in which A is (a) atomic, Pn, (b) the falsum, 1, (c) 
a conditional, C -+ D, and (d) a necessitation, C ; the rest are left for 
the reader. 

For (a). Given that Pn and B are distinct, UDn[B/B'] = Pn. So, t,Pn 
-Pn[B/B1], trivially. So the theorem holds when A is atomic. 

For (b). The argument is the same as for (a). 
For the inductive cases (c) and (d) we make the hypothesis that the 

result holds for all sentences shorter than A. 
For (c). By the inductive hypothesis, I-, C r C[B/B'] and t-, D t* 

D[B/B']. It follows (by PL; the proof is left to the reader) that F,(C -+ D) 
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- (C[B/Br] + D[B/BfJ). But note that (C -+ D)[B/Bf] = C[B/Bf] + 
D[B/Bf]. Therefore, k,(C + D) ++ (C -+ D) [B/B']. So the theorem holds 
when A is a conditional. 

For (d ) .  By the inductive hypothesis, k, C - C[B/B']. By the 
rule RE it follows that U C H  O(C[B/B']). However, (OC)  
[BIB'] = n(C[B/B']). Therefore, t, OC++ (UC) [BIB']. So the theorem 
holds when A is a necessitation. 

This ends the proof of theorem 4.7. 

The use of the rule REP is illustrated in the following proof that the 
schema 

O(A+B)-(OA-, OB) 

is a theorem in any normal system of modal logic. 

1. O(A-+B)- O ( 1 A v  B) PL and REP 

2. w ( o l A v  OB) 1, R 0 and REP 
3. + - + ( ~ O - I A + O B )  2 ,PLandREP 

4. *(CIA+ OB) 3, D f n  and REP 

This highly abbreviated proof needs some explanation. The justification 
of line 1 indicates a tacit use of REP in which, since (A+ B) - ( 1 A  v B) 
is a tautology, ~ A v  B replaces A + B  in the tautology O(A+B)+-+ 
O(A+B). I n  line 2, 0 IA v O B  replaces O ( 7 A  v B) in line 1, in 
virtue of the theorem R 0. Then in line 3, 1 0 1 A  -+ 0 B replaces the 
tautologically equivalent 0 ?A v 0 B in line 2. Finally, in line 4 the 
theorem D f O  is used in replacing -I 0 1 A  by OA in line 3. 

Use of the rule REP is further illustrated in the proofs of theorems 
4.8 and 4.10 below. 

Let us turn now to the subject of duality (recall definition 2.4). 

THEOREM 4.8. Every normal system of modal logic has the following 
theorems and rules of inference, all referred to as DUAL. 

(I) A- l A *  
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Proof. We assume throughout that C is a normal modal logic. 
For (1). The proof here is by induction on the complexity of A. Let 

us treat the cases in which A is (a)  atomic, Pn, (b )  the falsum, I, (c) a 
conjunction, B A C, and ( d )  a necessitation, OB. 

For (a) : 
1. P n + + l l P n  PL 
2. 1 P 1, definition 2.4 (1) 

So the theorem holds when A is atomic. 
For ( b )  : 

1. I - l T  PL 
2. - I I* 1, definition 2.4 (3) 

So the theorem holds when A is the falsum. 
For the inductive cases (c) and (d) ,  we make the hypothesis that the 

theorem holds for sentences shorter than A. Thus, I-, B ++ l B 1  and 
I-, C* 1C". 

For (c )  : 

1. (B A C )  o ( 1  B* A 1 C X )  inductive hypothesis and REP 

2. - l ( B * v C * )  1 ,PLandREP 

3. ++ l ( B  A C)* 2, definition 2.4 (5) 

So the theorem holds when A is a conjunction. 
For ( d )  : 

1. OB ++ O(TB*) inductive hypothesis and REP 

2. ++lO(B*)  1 ,DfOandREP 

3. ++ l(nB)* 2, definition 2.4 (9) 

So the theorem holds when A is a necessitation. 
This concludes the proof of (1). Parts (2)-(4) are corollaries. 
For (2). It follows at once from (1) that if t, A, then I-= 7 A f .  So C 

is closed under the first rule DUAL in (2). For the second, it is enough 
to note that (1) means that TA - A* is always a theorem of C. 

For (3). If tZA+B, then t, l A * +  TB*, by (1) and REP. Hence by 
PL, I-, B* +A*. So X is closed under the rule DUAL in (3). 

For (4). We leave this as an exercise. 
This concludes the proof of theorem 4.8. 

As an example of the use of DUAL, let us see that 0 T ++ 1 L is a 
theorem of every normal system. For by DUAL(l), 0 T * l (  0 T)+ is, 
and by definition 2.4, ( 0 T)* = 1. 
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Similarly, using DUAL(2) one can show that every normal system B 
has l ( O A h  O l A )  as a theorem if it has O A V  OTA. (Note that 
neither schema is a theorem of every normal system, however.) For 
suppose that I-, OA v 0 i A. Then also, t, 0 + I A  v 0 1 1 A .  Hence by 
DUAL(2), ~ ( 0  TA v 0 1 lA)*. But by definition 2.4 this means 
that t , l ( O ( l A X ) ~  n ~ ( l A * ) ) .  So by DUAL(1) and REP, k, 
i ( ~ A A  O-IA). 

Finally, let us show that since ( ~ A v  OB)+ O(A v B) is always a 
theorem of a normal system, so is 0 (A A B) + ( 0 A A 0 B). The proof 
uses DUAL(3) : 

1. ( O i A  v O i B ) +  ~ ( T A  v i B )  theorem 

2. ( O ( 1 A  v l B ) ) * + ( U i A  v n i B ) +  1, DUAL(3) 
3. O(1A' A lB*)  -+ ( ~ ( T A * )  A O( iBX))  2, definition 2.4 

4. O(AA B)+(OAA OB) 3, DUAL(1) 
and REP 

In our last theorems of this section we state some simple principles 
concerning duah of modalities. Recall that a modality # is a finite (possibly 
null) sequence of the operators 1, 0 ,  and 0, and that the dual of a 
modality # - written #+ - is the result of interchanging and 0 
throughout 4 (see section 2.1). 

THEOREM 4.9. Let Z be a normal system of modal logic. Then: 
(1) t, #A ++ 1 4"7A. 

(2) t, #A zr F, 1 #"l A. 

(3) t, $A + $A, for every A, 23 k, @'A -+ #*A, for every A. 

(4)  t, #A - @A, for every A, z# I-, #*A ++ P A ,  for every A. 

Proof. Let Z be a normal system. The result is a corollary to theorem 
4.8. 

For (1) : 
1. #A w -(#A)* DUAL(1) 

2. tt 1 $*(AX) 1, definition of * 
3. - i#f 1 A  2, DUAL(1) and REP 

For (2). This follows easily from (1). Exercise. 
For (3) : 

I-x #A+- @A, for every A, iff I-, i #* TA+ -I$*%, for 
every A 
- (1) and REP; 
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iff I, $-*lA-+ $*?A, for every A 
- PL; 

iff 1, $*A + #*A, for every A 
- PL and REP. 

For (4). This follows from (3). Exercise. 

As an application of theorem 4.9 we see that a normal modal logic 
contains the schema 4, n A - +  a UA, as a theorem just in case it contains 
the dual schema 4 0, 0 0 A -+ 0 A. Similarly, the schema B, A + q 0 A, 
is a theorem of a normal system if and only if its dual B 0, 0 OA+ A, is. 
(Of course not every normal system contains these schemas as theorems.) 

Our final theorem is a rather obvious consequence of the preceding 
one. We set it out primarily in order to simplify the discussion in the 
next few sections. Recall that an affirmative modality contains an even 
number of occurrences of 1. 

THEOREM 4.10. Let Rt be a normal system of modal logic, and let $ and $ 
be afirrnative modalities. Then X has the schema 

as a theorem i f l Z  has any one of the following theorem and rules 
of inference. 

RS. 
A+B 

#A+ 11.B 

Proof. Let Z be a normal modal logic, and let $ and $ be affirmative 
modalities. For the sake of simplicity we assume that q5 and $ are in fact 
composed solely of the operators and 0 ,  so that 1 does not appear. 

For S 0. This follows from theorem 4.9 (3). 
For RS. Suppose that t, A -+ B. Then by repeated applications of the 

rules RM and RMO, I-, $A-+$B. So if f-, #A+ $A, then by P L ,  
1, $A+ @B. Thus C has RS if it has S. Conversely, suppose X is closed 
under RS. Then k, $A+ $A, by RS on the tautology A+ A. So X has 
S if it has RS. 

For RS 0. Exercise. 

Theorem 4.10 is illustrated by the fact that a normal system of modal 
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logic has the schema 5, ()A+ QA, as a theorem if and only if it has 
its dual 5 0, 0 UA + =A, or either of these rules of inference: 

The theorems in this section afford the reader a handy means of 
recognizing theorems of normal systems. It is not so important, at this 
point, that the details of the several proofs be mastered and absorbed. I t  
is worth remarking, however, that the proofs of theorems 4.7, 4.8, and 
4.9 (but not 4.10) all depend ultimately only on PL and the presence of 
RE and Df 0 (or RE and Dfn)  in normal systems of modal logic. This 
becomes important in chapter 8, where we return to these results. 

EXERCISES 

4.14. Complete the proof of theorem 4.7 (for the cases in which A = T, 

T C , C A D , C V D , C - D ,  OC). 

4.15. Complete the proof of theorem 4.8 (part (1) -for the cases in 
which A = T, lB, B v C, B-tC, B-C, OB - and part (4)). 

4.16. Complete the proof of theorem 4.9 (parts (2) and (4)). 

4.17. Give the proof of theorem 4.10 for RS 0. 

4.18. Prove that if Z is a system of modal logic closed under the rule 
REP, then Z contains Df 0 if and only if CI contains Dfm. 

4.19. Prove that a system of modal logic is normal if it contains Df 0, 
N, K, and is closed under REP. 

4.20. Prove that A +-+A** is a theorem of any normal modal logic. 

4.21. Use REP and DUAL (and perhaps the result in the preceding 
exercise) to prove that N 0 ,  M 0, C 0, RV, and K 0 are theorems of 
every normal system given that N, M, C, R, and K are. Then prove the 
reverse of this, i.e. that N etc. are theorems of every normal system given 
that N 0 etc. are. 
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4.3. The schemas D, T, B, 4, and 5 
The smallest normal system of modal logic, K,  contains as theorems just 
what comes from Df 0 ,  RK, and propositional logic, nothing more. 
Thus we have canvassed the principal rules and theorems of the system 
K already in the preceding sections. 

In  this and the next section we are interested in the normal extensions 
of K obtained by adding as theorems the following schemas. 

D. U A + O A  

T. O A + A  

B. A-+OOA 

4. O A + m r l A  

5. O A + U O A  

Including K itself there are just fifteen distinct normal systems produced 
by taking these schemas as theorems in all possible combinations. These 
systems appear on the diagram in figure 4.1. 

The inclusions among the systems on the diagram are marked by lines : 
extensions of a system are reached by going in a rightward direction 
along the lines (for example, K T  is shown to be an extension of K D ) .  
Most of the inclusions are obvious; some of those that are not we shall 
establish, and others are given as exercises. Likewise it is possible to 
show that each of the seventeen systems apparently not registered on the 
diagram is identical with one that is. Indeed, many of these identities 
are obvious from the diagram - for example, that K D T  is the same as 
KT. The distinctness of the systems listed - and so the properness of 
the inclusions - is proved in chapter 5. 

Historically the most important of these systems are K D ,  KT, K T B ,  
KT4, and KT5. The  first two are widely regarded as basic deontic and 
alethic modal logics, respectively, and are sometimes referred to simply as 
D and T .  The other three systems - K T B ,  KT4, and KT5 - are the 
well-known Bvouwersche system (sometimes called B )  and the Lewis 
systems S4 and S5. Nevertheless, we approach these logics more 
analytically, by focusing on the systems KD, KT, KB, K4, K5, and 
their normal extensions. We begin with the following theorem about 
some alternative characterizations of these systems. 

T H E O R E M  4.1 1. Let E be a normal system of modallogic. Then: 

( 1 )  X is a KD-system if it has RD. 

( 2 )  X is a KT-system za i t  has any of T 0, RT, and R T  0. 
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(3) B is a KB-system zy it has any of B 0, RB, and RB 0. 
(4)  B is a K4-system iff it has any of 4 0, R4, and R40. 
(5) X is a K5-system i .  it has any of 5 0, R5, and R5 0. 

Proof. The theorem is an immediate consequence of theorem 4.10 and 
the fact that the modalities in the schemas D, T, B, 4, and 5 are all 
affirmative. 
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In what follows we freely make use of these theorems and rules of 
inference wherever appropriate. The reader should consult theorem 
4.10 to ascertain their identities. 

Now let us examine in turn each of the systems KD, KT, KB, K4, and 
K5, and their normal extensions. 

Normal KD-systems. These come in many guises, as theorems 4.12 
and 4.13 reveal. 

THEOREM 4.12. A normal system of modal logic is a KD-system iff it has 
any of the foZZowing theorems and rules of inference. 

RP. 
A - 
0 A 

Proof. Suppose that Z is a normal system. 
For RP : 

1. A hypothesis 

2. O A  1, RN 

3. D A + O A  D 

4. OA 2, 3, P L  

Thus C is closed under RP if it is a KD-system. For the reverse, suppose 
that C has RP. Then I, O ( A +  A), by EIP on the tautology A+ A. T o  
see from this that kc n A +  OA, it is enough to recall that the schema 

is a theorem of every normal system (see following the proof of theorem 
4.7). So Z is a KD-system if it has the rule RP. 

For P. Every normal modal logic has the theorem 

(exercise 4.7(m)). So P is a theorem of C if and only if D is, which means 
that X is a KD-system just in case it contains P. 



134 Normal systems of modal logic 

For 0 : 
I-, a A +  OA iff t-, 7 0 1 A +  ()A 

- Df [7 and REP; 

iff I-,OAv O l A  
- PL. 

So X is a KD-system if and only if it contains 0. More generally, this 
follows from the fact that every normal system has the theorem 

(CIA+ OB)e,(OB v O l A ) .  
For RPO, PO,  and O n .  These principles are dual to RP, P, and 0, 

and we leave the proofs as exercises. (See the examples after the proof of 
theorem 4.8.) 

This completes our proof of theorem 4.12. 

The  theorem D admits of generalization along the modal dimension. 
T o  wit, for every k > 0 the schema 

Dk. OkA+ OkA 

is a theorem of a normal KD-system. For Dk is D itself when k = 1. And 
if we suppose (as an inductive hypothesis) that the schema is a theorem 
when it has fewer than k a s  and Os, then we can argue that Dk is, too. 
Thus : 1. Ok-lA + Ok-1A inductive hypothesis 

2. nQk-lA+OOk-lA 1, RD 

3. mkA+ OkA 2, definition 2.3 

Therefore, Dk is a theorem of every normal KD-system, for every k > 0. 
From this result one can readily perceive analogous generalizations of 

the theorems and rules of normal KD-systems in theorems 4.11 (1) and 
4.12. That is to say, the results of putting Ok and Ok for and 0 
throughout RD, RP, P, 0, RPO, PO, and 00 are all principles of any 
normal KD-system, for every k > 0. 

Moreover, the reverse is true. If a normal system has Dk or any one 
of these generalizations - RDk, RPk, Pk, Ok, R P n k ,  P a k ,  and O n k  - for 
any k > 0, then it is a KD-system. We may illustrate this by showing 

is a theorem of a normal modal logic, for k > 0, then so is P, QT, and 
so the modal logic is a KD-system. The  proof: 
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3. O k ~ + O T  2, definition 2.3 

4. o k ~  pk 

5. O T  3, 4, PL 

Therefore, a normal modal logic is a KD-system whenever it contains 
Pk, for any k > 0. 

These proofs should be enough to convince the reader of the correct- 
ness of these alternative ways of characterizing normal KD-systems of 
modal logic. We state this formally as a theorem and leave the remaining 
proofs as exercises. 

T HE o R E  M 4.13. A normal system of modal logic is a KD-system iff it has 
any of the theorem and rules of inference Dk, RDk, RPk, Pk, 
Ok, RPUk, P n k ,  and O n k ,  for any k > 0. 

Normal KT-systems. The schema D is a theorem of any modal logic 
containing T and T 0 (OA -+ 0 A follows by PL from 0 A - t  A and 
A+ OA). Therefore: 

THEOREM 4.14. Every normal KT-system is a KD-system. 

Thus all the principles mentioned in theorems 4.11 (I), 4.12, and 4.13 
are present in any normal KT-system of modal logic. (This is not true 
the other way around, as we shall prove.) 

The theorem T can be generalized modally; i.e. the schema 

is a theorem of every normal KT-system, for every k > 0. The inductive 
proof of this is left to the reader as an exercise. Thus, in virtue of theorem 
4.10: 

THEOREM 4.15. Every normal KT-system has the theorems and rules of 
inference Tk, T 0 k, RTk, and R T  Ok, for every k > 0. 

The name T for the logic KT derives from the designation logique t 
of Feys. The system is also called M, following von Wright. 

Normal KB-systems. We begin by noting some recondite ways of 
characterizing systems of this kind. 
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THEOREM 4.16. A normal system of modal logic is a KB-system z j f  it has 
any of the following theorem and rules of inference. 

Proof 
For X: 

So a normal KB-system contains X. For the reverse, note that O ( 0 A - t  
OA) + (A+ OA) is a special case of X and that the antecedent is a 
theorem by RN on the tautology OA+ OA. By PL, then, B is a theorem. 
So a normal logic is a KB-system if X is a theorem. 

For X 0. Exercise. 
For RX : 

l . O A + B  hypothesis 

2 . 1  ()A+ OB 1, RM 
3 . A - + n O A  B 
4. A + n B  2, 3, P L  

So a normal KB-system has the rule RX. (Alternatively, if ()A+- B is a 
theorem so is n ( O A  -+ B) (by RN) - whence A+ OB is a theorem by 
MP on X.) Conversely, a normal system closed under RX has the 
theorem A+ OA, by RX on the tautology ()A+ 0 A. So a normal 
modal logic is a KB-system if it has the rule RX. 

For RX 0. Exercise. 

The theorem B can be generalized modally in two ways. In the first, 
the operators and 0 are each iterated k times, for k > 0: 

T o  prove that every normal KB-system has Bk for every K > 0, notice 
first that Bk = B, for k = 1, and then suppose as an inductive hypothesis 



4.3. The schema D, T,  B, 4,  and 5 137 

that the schema is a theorem whenever it has fewer than k as and 0 s .  
Then : 

1. 0 A+ n k - 1  Ok-I 0 A  inductive hypothesis 

2. A + - r ~ r ~ ~ - - ' o ~ - - ' o A  1, RX 
3. A+ u k O k A  2, definition 2.3 and exercise 2.6 

I n  the second way of generalizing B, the modality 0 itself is iterated 
k times, for k > 0: 

BOk. A+(OO)kA 

We leave it to the reader to prove, inductively, that every normal K B -  
system contains B( )k for every k > 0. 

By means of theorem 4.10 the principles in theorem 4.1 1 (3) can 
similarly be generalized, and so can the rules RX and R X O  in theorem 
4.26. We record all these generalizations formally. 

THEOREM 4.17. Every normal KB-system has the theorem and rules of 
inference Bk, B Ok, RBk, RB Ok, RXk, RX Ok, B( )k, B ()( )k, 
RB( )k, and RB O (  )k, for every k > 0. 

According to the next theorem the schema 4 is a theorem of a normal 
KB-system just in case the schema 5 is. 

T H E O R E M  4.18. A normal modal logic is a KBCsystem ifl it is a KB5- 
system. 

Proof. T o  show that 5 is a KB4-theorem we may argue as follows. 

l . O O A + O A  4 0  

2. OA-+DOA 1 , R X  

And to show that 4 is a KBS-theorem we may argue as follows. 

l . O O A + D A  5 0  

2. DA-+naA 1 , R X  

In particular, then, the systems KB4 and K B 5  are identical. (Our 
choice of the designation KB4 in the diagram in figure 4.1 is thus some- 
what arbitrary.) 

The schema B is called the Brouwersche axiom for the curious reason 
that when it is stated equivalently as 
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and the modality 1 0 is replaced by the intuitionistic negation sign, - , 
the result is 

A + -  -A ,  

the intuitionistically valid version of the law of double negation. 
Brouwer was a leading exponent of intuitionism. So far as is known, 
however, Brouwer had no concern with the modal schema B ;  the name 
Brouwersche was given by Becker. The Brouwersche system, it should be 
noted, is KTB, not KB. 

Normal K4-systems. The important modal generalization of the schema 
4 is 

4k. U A + U k U A .  

This is a theorem of every normal K4-system, for any k > 0. The proof 
is left as an exercise. Hence by theorem 4.10: 

T H E O R E M  4.19. Every normal K4-system has the theorems and rules of 
inference 4k, 4 0 k, R P ,  and R4 0 k, for every k > 0. 

An interesting feature of normal K4-systems is that in them it is 
inconsistent to hold that every proposition is at least possibly possible, 
i.e. that the schema 

0 O A  

is a theorem. For in conjunction with 4 0  this would lead to 

OA, 

and so in particular to 

01, 
which conflicts with N 0, 1 0 I. 

The  schema 4 is often called the characteristic theorem of the system 
S4. But note that S4 is KT4, which is stronger than K4. 

Normal KS-systems. These all contain, for every k > 0, the schema 

(Again we leave the proof to the reader.) Hence : 

TH E O  R E M  4.20. Every normal K5-system has the theorems and rules of 
inference Sk, 5 Ok, RSk, and R5 Ok, for every k > 0. 
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As the diagram in figure 4.1 shows, the strongest normal system that 
can be formed using the schemas D, T, B, 4, and 5 is KT5 - better 
known as the Lewis system S5 - which we discussed in chapter 1. (Thus 
the schema 5 or 5 0 is often referred to as the characteristic theorem of 
S5.) There are many ways of axiomatizing S5. The next theorem gives the 
principal axiomatizations of S5 using D, T ,  B, 4, and 5 ; of course duality 
(for example, putting T 0 for T) provides many more possibilities. 

T H E O R E M  4.21. A normalmodal logic is a KT5-system z#it has as theorems 
(1) T ,  B,  and 4, ( 2 )  D ,  B, and 4, or ( 3 )  D, B, and 5. Inparticular, 
thm, KT5 = KTB4 = KDB4 = KDBS. 

Proof. Part (1) was established in chapter 1. I n  light of this and 
theorems 4.14 and 4.18 it is then sufficient to show that T is a theorem of 
every normal mB4-system. We leave the details of the reasoning as an 
exercise. 

This is a good place to affirm the correctness of figure 4.1 with respect 
to the inclusions advertised there. For the most part this is a matter of 
definition - for example, K T B  is obviously an extension of KT. For the 
rest, note that K D  G KT,  and so KDB c KTB and KD4 G KT4, by 
theorem 4.15 ; that K45 G KB4 by theorem 4.18; and that by theorem 
4.21 KT5 is an extension of KTB,  KT4, KD45, and KB4. Several of the 
seventeen systems apparently missing from figure 4.1 have already been 
mentioned, for example, in the alternative axiomatizations of S5 in 
theorem 4.21. We leave it as an exercise for the reader to identify all the 
missing systems and locate them in figure 4.1. 

We might also remark here that although the system KD results 
from the addition to K of Dk (or any other of the principles listed in 
theorem 4.13) for any k > 0, there is no analogous result with respect to 
the modal generalizations of T, B, 4, and 5, for k > 1. We shall be in a 
position to prove this in chapter 5. 

The point of our analytical approach in this section may by now be 
apparent. It enables us to see better the individual contributions of the 
schemas D, T, B, 4, and 5 to more familiar modal logics such as KTB, 
KT4, and KT5 .  Two examples will make this clear. First, it is often 
pointed out that the rules of inference RX and RXO are present in the 
Brouwersche system, KTB. But as we have seen, these rules are already 
in the modal logic KB (and hence in any normal KB-system); the 
theorem T has no bearing on the matter. Second, the result that the 
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schema 0 OA is inconsistent as an addition to the Lewis system S4 
(KT4) is frequently mentioned. But our analytical exposition shows this 
to be so with respect to K4 and normal K4-systems generally. Here 
again the presence of the theorem T is of no consequence. 

EXERCISES 

4.22. Use theorem 4.10 to ascertain the identities of the schemas and 
rules of inference mentioned in theorem 4.1 1. 

4.23. Complete the proof of theorem 4.12 (for RPCI], PO, and 0 0). 

4.24. Complete the proof of theorem 4.13. 

4.25. Prove by induction that, for any k > 0, the schema Tk is a theorem 
of every normal KT-system (for theorem 4.15). 

4.26. Complete the proof of theorem 4.16 (for X O  and RXO). 

4.27. Prove by induction that, for any k > 0, the schema B( )k is a theorem 
of every normal KB-system (for theorem 4.17). 

4.28. Prove by induction that, for any k > 0, the schema 4L is a theorem 
of every normal KPsystem (for theorem 4.19). 

4.29. Prove by induction that, for any k > 0, the schema Sk is a theorem 
of every normal K5-system (for theorem 4.20). 

4.30. Complete the proof of theorem 4.21 by proving that the schema T 
is a theorem of any normal KDB4-system. 

4.31. Identify and locate on the diagram in figure 4.1 the seventeen 
systems not already listed there. 

4.32. Prove that a normal modal logic is a KD-system if and only if it has 
theorems of the form - 0 A .  

4.33. Consider the following schemas. 

u. U(UA+A) uo* O(A+OA) 
4,. OOA+EIA 40,. O A + O O A  
5,. OOA+VA soc. CIA-+OCIA 

Prove : 
(a) U is a theorem of a normal system if and only if U 0 is. 
(b) 4, (and hence 4 0 e )  is a theorem of any normal KU-system. 
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(c) U (and hence 4,) and 5 ,  (and hence 5 0,) are theorems of any 
normal KT-system. 

(d) D is a theorem of any normal K5,-system. 

4.34. Prove that the schema G, 0 OA+ a OA, is a theorem of any 
normal KB-system. 

4.35. Prove that any normal KB-system is closed under the following 
rules of inference. 

OA OT+A 
OT+A OA 

4.36. Prove that a normal system of modal logic is a K4-system if and 
only if it has any of the following theorems. 

(a) O(A+B)-+ O(OA+ OB) 
(b) ( O A v  ClB)+O(OAv OB) 
(c) O(O(A+B)+C)+O(O(A+B)+OC) 

4.37. Prove that a normal system of modal logic is a K5-system if and 
only if it has either of the following theorems. 

(a) O(OA v B)+(OA v OB) 
(b) (OAA OBI+ O(OAAB) 

4.38. Prove: 

(a) U (and hence 4,) is a theorem of any normal K5-system (see 
exercise 4.33). 

(b) G is a theorem of any normal K5-system. 

4.39. Prove that every normal K5-system contains the following theorems. 

(a)  O(OA++ El n A )  (4 O(OA*OOA) 

(c) O(OA- 0 OA) (4 O(OA*OOA) 

4.40. Referring to the preceding exercise, prove that every normal 
K5-system contains the following theorems. 

4.41, Notice that the interiors of the four necessitations listed in exercise 
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4.39 are all theorems of any normal KT5-system. This suggests the 
following result (which leads at once to a solution for exercise 4.39). 
Where I: is any normal KS-system : 

t, OA, whenever A is a theorem of KT5. 

Prove this by induction on (the set of theorems of) KT5. For the basis, 
show that the necessitations of the axioms Df 0, T, and 5 are theorems 
of 8 ; for the inductive part, show that the set {A: I-, nA) is closed under 
the rules RPL and RK. 

4.42. Prove that every normal K5-system contains the following theorems. 

4.43. Prove : 

(a) 5, and 5 0, (see exercise 4.33) are theorems of any normal 
KD4-system. 

(6) The schemas OOA-OOOOA and U O A t l O O ~ O A  
are theorems of any normal KD4-system. 

4.44. Prove that every normal KD5-system contains the following 
theorems. 

(a) OOA-OOA (6) OOA-OOA 

4.45. Prove that every normal K45-system contains the following 
theorems. 

4!. OA*l-lflA 40 ! .  OAtt OOA 

4.46. Consider the following schemas. 

Prove that 4! and 4 0 ! (see the preceding exercise) are theorems of any 
normal K5!- or normal K5 O!-system. 

4.47. Prove that 4!, 4 0  !, 5 ! ,  and 5 0 ! are theorems of any normal KD45- 
system (see exercises 4.43 (a), 4.45, and 4.46). 

4.48. Let us say that a sentence A is fully modalized just in case every 
atomic sentence in A is within the scope of an occurrence of q or 0. 
Show that where Z is any normal KD45-system and A is fully modalized : 

k,A++BA and t ,At+OA. 

The proof is by induction on the complexity of A. 
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4.49. Consider the following rules of inference. 

A+B 
RFM' A - t O B '  

where A  is fully modalized 

A-t where A is fully rnodalized RFMO' OA+B, 

Using the results in the preceding exercise, prove: 

(a)  A normal system is closed under RFM if and only if it is 
closed under RFM 0. 

(b)  Every normal KD45-system is closed under RFM and RFM 0. 
(c) The schemas 4 and 5 are theorems of any normal KD-system 

closed under RFM or RFM 0. 

4.50. Prove that the schema a ( O A +  B)- u ( A +  OB) is a theorem of 
any normal KIM-system. 

4.51. Prove that if any of the schemas B, 0A-f  0 0 OA, and 
0 0 A - t  O A  is a theorem of a normal KT-system, then so are the 

others. 

4.52. Consider the following schemas. 

T c .  A + O A  TOc. OA+A 
Dc. V A + O A  

F. O ( A v  B)+(OAv UB) F O .  ( O A A  OB)+ 

Prove : 
B) 

(a )  Tc is a theorem of a normal system if and only if T 0, is. 
( b )  If any one of D,, UA v O l A ,  l ( O A  A 0 l A ) ,  F, and F 0 

is a theorem of a normal system, then so are all the others. 

( c )  Dc (and hence the rest in (b) )  is a theorem of any normal 
KTc-system. 

( d )  B, 4,5, and G are theorems of any normal KTc-system. 

( e )  T is a theorem of any normal KDT,-system. 

(f) T, is a theorem of any normal KD, T-system. 

( g )  4 and 4, are theorems of any normal KD, 5,-system. 
4.53. Consider the following schemas. 

T!. nA++A T O ! .  OA-A 
D!. n A * O A  
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Prove : 

(a) T! is a theorem of a normal system if and only if T 0 ! is. 
(6) D! is a theorem of any normal KT!-system. 

(c) If any of 4,4,, 5, and 5, is a theorem of a normal KD!-system, 
then so are the others. 

- 
4.54. Consider the sentences P (1 0 T) and P a  (0 1). Prove : 

(a) P is a theorem of a normal system if and only if PI is. 

(b) Tc (and hence D ,  etc., B, 4, 5, and G) is a theorem of any 
normal KP-system. 

4.55. Prove that a normal system of modal logic is a KG-system if and 
only if it has either of the following theorems. 

The system KT4G is known as S4.2. This system (properly) contains 
S4 (KT4) and is (properly) contained in S.5 (KT5); see exercise 4.38. 

4.56. Consider the following schemas. 

L++. 
L++V. 
L+. 
L+O. 
L. 

LO* 
Taken as theorems these schemas are all equivalent additions to any 
normal KT4-system; that is, any one of them is a theorem of a normal 
KT4-system if and only if all the others are. Thus the systems KT4H++, 
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- - 9  KTPLO are identical, This system is known as S4.3: it is (properly) 
contained in S5 (KT5), and it (properly) contains S4 (KT4). Indeed, 
S4.3 is a (proper) extension of the system S4.2 (KT4G) mentioned in 
exercise 4.55. Except for properness, these facts are all consequences of 
the following results (which are for the reader to prove) in conjunction 
with exercises 4.33 and 4.38. 

(a) In any normal system H++ is a theorem if and only if H++ 0 is. 
(b)  In  any normal system H+ is a theorem if and only if H+ 0 is. 
(c) In any normal system H is a theorem if and only if HO is. 
(d )  In any normal system L++ is a theorem if and only if L++ Q is. 
( e )  In any normal system L+ is a theorem if and only if L+O is. 

( f )  In any normal system L is a theorem if and only if L 0 is. 
(g) In any normal system H++ is a theorem if and only if L++ is. 
(h) In any normal system H+ is a theorem if and only if L+ is. 
(i) In  any normal system H is a theorem if and only if L is. 
( j )  U is a theorem of any normal KH+-system. 

(k) H is a theorem of any normal KH+-system. 

( I )  H+ is a theorem of any normal KUH-system. 

(m) H+ is a theorem of any normal 1YUH++-system. 

(n) H++ is a theorem of any normal K4H-system. 

In proving (j)-(n) it may help to restate some of them using (a)-(i). In 
any case, the foregoing yield the identity of KT4H++, . . . , KT4L 0 - i.e. 
S4.3 - as the reader should confirm. 

(0) H++ is a theorem of any normal KS-system. 

This is enough, given the preceding results, to show that S5 (KT5) is 
an extension of S4.3. See also exercise 4.37 with respect to H+ (and hence 
the rest). 

(p) G is a theorem of any normal KH+-system. 

This is enough, given the preceding results, to show that 34.3 is an 
extension of S4.2. But also: 

(q) G is a theorem of any normal KDH++-system. 

4.57. Consider the following schemas. 
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The two on the left we indifferently dub 5-, the two on the right, 5-0.  
Prove : 

(a)  In any normal system 5- is a theorem if and only if 5 -0  is. 

(6 )  5- is a theorem of any normal K5-system. 

(c) The schema n(O(A-+ mA)+A)+ m(OnA-+A) is a 
theorem of any normal K5--system. 

Added as a theorem to S4  (KT4) the schema 5- produces a system 
called S4.4. By (b) S4.4 is contained in S5 (KT5) (in fact it is properly 
contained). S4.4 does not, however, contain S4.3 or 234.2 (in exercises 
4.55 and 4.56). Added as a theorem to S4 the schema mentioned in ( c )  
produces a system that Hughes and Cresswell call S4.1, which is therefore 
contained (in fact properly) in S4.4. But S4.I is not extended by S4.2 
or S4.3. N.B. this S4.l is not the same as that described by McKinsey; 
see the following exercise. 

4.58. Consider the following schema. 

Prove : 
(a) In any normal system the schema 0 ( 0 A -t n A )  is a theorem 

if and only if the schema Gc is. 

(b) D is a theorem of any normal KG,-system. 

(c) In  any normal system the schema O(mA- ()A) is a theorem 
if and only if the schema G,  is. 

KT4Gc is the system called S4.I by McKinsey. It is clearly an extension 
of S4 (KT4) - in fact a proper one (otherwise 0 UA- 0 O 0 A  and 

()A++ 0 A would be theorems of S4, which they are not). But this 
S4.I is not included in S5 (KT5) (if it were, D, would be a theorem of 
S5, which it is not). S4.1 is equivalently axiomatized by adding to S4 
any of the following schemas. 

This is for the reader to prove. 

4.59. Consider the following schema and rule of inference. 

OA+A 
Gr. n(C]A+A)+ OA RGr* 

A 



Prove : 

I (a)  4 is a theorem of any normal KGr-system. 

(b )  Every normal KGr-system is closed under RGr. 

( c )  Gr is a theorem of any normal K4-system that has the rule 
RGr. 

Is the system KGY an extension of S4 (KT4)? Is it included in S5 (KT5)? 

4.60. Use the erasure transformation e from exercise 1.27 to prove the 
consistency of the fourteen systems beyond K on the diagram in figure 
4.1. Identify some consistent normal modal logics for which E cannot be 
deployed to prove consistency. Prove the consistency of these examples. 

4.61. Amplify the proof of the lemma in exercise 4.13 to show that the 
systems a, KD,, and KD! have the rules (a)-(f) listed there. 

4.62. Consider the rule (a)  from exercise 4.13 : 

Of the fifteen systems in figure 4.1 only K, KD, KT, K4, KDB, KD4, 
KTB, KT4, and KT5 have this rule. Exercise 4.13 and 4.61 cover the 
first two cases, and it is obvious that any KT-system has the rule (if O A  
is a theorem of a system containing a A + A ,  then A is a theorem of the 
system). The cases of K4 and KD4 must await the developments in 
chapter 5. Prove that every normal KDB-system has the rule. 

4.4. Modalities 
A modality, once again, is any sequence of the operators 1, 0, and 0 ,  
including the empty sequence -. Within a system of modal logic two 
modalities Q and $ are equivalmt if and only if for every A the sentence 

is a theorem; otherwise q5 and $ are said to be &tinct. For example, 
in the system S4 we have the theorem UA tt OA, so in S4 the 
modalities and are equivalent. 

Theorems like n A + +  gIImA are often called reduction laws, since in 
virtue of them one modality is reducible to another. 

In some systems of modal logic it happens that every modality is 
equivalent to one or another in a finite class. For example, in the system 
S5 every modality is equivalent to one of ., m, 0,  or their negations, 1, 
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-10, -I 0. Thus S5 is said to have at most six distinct modalities (three 
affirmative, three negative). T o  see this it is sufficient to note that S5 
contains the following reduction laws. 

Because of these every modality in S5 reduces to one of the specified six. 
An example may help to make this clear. Suppose we have the sentence 

First we put the modality -I 0 00 1 0 in a standard form by using 
Df 0, Df n, and REP to bring the negation signs all to the outside - 
successively, 

- and then reducing the number of occurrences of -I to zero (as in this 
case) or one by PL: 

According to reduction law (2) the modality 0 0 can be replaced by 0 
alone, yielding 

By (3), 0 becomes : 

O a O A  

By (I), becomes : 

OA 
And 0 reduces to 0 by (4): 

Thus the modality -I D O  1 0 is shown to be equivalent to 0. In a 
similar way one can show the modality 7 0 1 0 1 to be equi- 
valent to 1 ; details of the reduction are left to the reader. 

Of course the presence of reduction laws can only put an upper bound 
on the number of distinct modalities in a system. To  show that S5 has at 
least - and hence exactly - six distinct modalities it is necessary to 
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establish that there are no further reduction laws in the system (for 
example, that O A w  OA is not also a theorem). In general other means 
are required to fix a lower bound (possibly infinite) for the number of 
distinct modalities in a modal logic. We return to this point in chapter 5. 

Systems of modal logic can have the same distinct modalities but differ 
with respect to the pattern of implications among them. S5 and the 
system KD45 provide an example of this; each has a, 0, 0 ,  and their 
negations, but the S5-theorems n A + A  and A+ OA are absent from 
KD45. The diagrams in figures4.7 and 4.8 chart the differences (among the 
affirmative modalities; for their negations, reverse the arrows). The 
systems KD5, K45, and KB4 provide another example ; compare figures 
4.4, 4.5, and 4.6. Moreover, systems may be different even though they 
have the same distinct modalities and the same patterns of implications 
among them. Some examples of this situation will be found in the 
exercises at the end of the section. 

I t  turns out that of the normal systems that can be formed using D, 
T, B, 4, and 5, only seven have a finite number of distinct modalities: 
KT4, K5, KD5, K45, KB4, KD45, and KT5. The following theorems 
give the details. 

T H E O R E M  4.22. Every normal KT4-system has at most fourteen distinct 
modalities, vix. *, 0, 0, [7 0, 0 0, 0 0, 0 0 ,  and their 
negations, with implications among the afirrnative seven m 
diagramed in jigure 4.2. 

Proof. To show that a normal KT4-system has at most the specified 

Figure 4.2. Modalities in normal KT4-systems. 

avo 
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fourteen distinct modalities it is sufficient to show the following reduction 
laws to be theorems of the system. 

O A - O O A  OA- 0 OA 

OOA-on on^ a o A + + n o a o A  
For then every modality will be reducible to one of those specified (as 
the reader should confirm). The  laws on the right are dual to those on 
the left, and O A  +-+ B A  is obvious in view of T and 4. So it suffices to 
establish 0 O A  t, 0 0 OA. For left-to-right : 

1. U A - + O n A  T o  
2 . g n A - + n O O A  1,RM 
3 , O A + 0 1 3 A  4 

4. C7A+UOOA 2, 3, PL 
5. o n A + u n o n A  ~ , R M O  

And for right-to-left : 

1 . 0 0 O A + O [ 7 A  T 

2. O U O O A - +  O O U A  1, R M O  
3 . O O D A + O ~ A  4 0  

4. O n O n A + O O A  2 , 3 3 5  
For the eight implications diagramed in figure 4.2 we need consider 

only the top four; the others are duals. Of these four, two are T and one 
appears on line 4 of the first proof above. The remaining theorem, 

0 OA+ OA, follows from T by RM 0 and RM. 

Thus the system S4 - i.e. KT4 itself - has at most fourteen distinct 
modalities. In  chapter 5 we prove it has exactly that many. 

THE O R E M  4.23. Every normal K5-system has at most fourteen distinct 
modalities, vix. ., 0, 0, nrl, 0 0 ,  0, 00, and their 
negations, with implications among the afirmatiere sevm as 
diagramed in jigure 4.3. 

Proof. For this result we require the following reduction laws. 





152 Normal systems of modal logic 

appears on line 6 above, and the remaining two follow from the theorems 
5 and 5 0 by the K-theorems mentioned in the last paragraph. 

THEOREM 4.24. Every normal KD5-system has at most ten distinct 
modalities, vix. ., 0, 0, one from each of the pairs 0, 0 
and 0 0,  0 ,  and their negations, with implications among 
the afirmative3ve as diagramed in figure 4.4. 

Proof. By theorem 4.23 a normal KD5-system has at most the distinct 
modalities, and at least the implications among them, pictured in figure 
4.3. But in addition to the reduction laws in the proof above, 
every normal --system contains the laws 17 a A  - 0 UA and 
0 ()A++ [7 OA; each is the theorem D in one direction, and the con- 
verses belong to any normal K5-system (as in figure 4.3). Finally, D 
gives the implication from to 0. Hence the modalities and implications 
in figure 4.4. 

T H E 0 R E  M 4.25. fiery normal K45-system has at most ten distinct modal- 
ities, viz. ., 0, 0, 0,  0 0, and their negations, with 
implications among the afirmative fve as diagramed in figure 
4.5. 

Proof. By theorem 4.23 it is sufficient to point out that a normal 
K45-system contains the reduction laws UA H fl U A  and 0 A ++ 0 OA, 
so that we may delete a a and 0 0 from the diagram in figure 4.3. The 
result is figure 4.5. 

Figure 4.4. Modalities in normal KD5-systems. 

nC1/0rl 
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T H E O R E M  4.26. Every normal KB4-system has at most ten distinct 
modalities, vix. ., , 0, 0 ,  0 , and their negations, with 
implications among the afirmativefive as diagramed in figure 4.6. 

Proof. Recall (theorem 4.18) that 5 is a theorem of any normal KB4- 
system, so that every such system is an extension of K45. By theorem 
4.25, then, a normal KB4-system has at most the distinct modalities -, 
0, 0, 0 0, 0 0, and their negations. The only new elements are the 
implications involving the modalities . and 1. Thus figure 4.6. 

Figure 4.5. Modalities in normal K45-systems. 

00 

Figure 4.6. Modalities in normal KB4-systems. 

00 
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THEOREM 4.27. Evmy normal KD45-system has at most six distinct 
modalities, vix. a ,  0 ,  0, and their negations, with implications 
among the afirmative three as diagramed in figure 4.7. 

Proof. By  the proofs for theorems 4.24 and 4.25 every normal KD45- 
system has the reduction laws 

CIA-ODA O A - O O A  
CIA-OOA o A t - , a o A  

as well as the implication T]A+ OA. Thus a system of this kind has at 
most the distinct modalities and at least the implication laid out in 
figure 4.7. 

THEOREM 4.28. Every normal KTS-system has at most six distinct 
modalities, vix. -, 0, 0, and their negations, with implications 
among the aflrmative three as diagramed in figure 4.8. 

Proof. By theorem 4.21 every normal KT5-system contains D and 4. 
So by theorem 4.27 every such system contains at most the distinct 
modalities a ,  0, 0, and their negations. In virtue of T and T O  we may 
add arrows to and from - in figure 4.7. The result is figure 4.8. Alter- 
natively, we may note that a normal KT5-system contains B and 4 
(theorem 4.21) and so has all the reduction laws and implications had 
jointly by normal KT4- and normal KB4-systems. Applying theorems 
4.22 and 4.26 - or, combining figures 4.2 and 4.6 - we arrive at the 
desired result. 

Thus, as we said at the beginning of the section, both KD45 and KT5 
(S5) have at most the six modalities ., 0, 0, 1, -10, and 10. The 
moral about modalities in systems of this sort is that iteration is vacuous: 
any sequence of 0 s  and 0 s  can always be reduced to its innermost 
term. 

Figure 4.7. Modalities in normal KD45-systems. 

Figure 4.8. Modalities in normal KTS-systems. 

El-* -0 
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EXERCISES 

4.63. Show that the modalities 1 0-1 0 10 and 1 are equi- 
valent in S5 (KT5). 

4.64. Using the reduction laws mentioned in the proof of theorem 4.22, 
show that every modality in a normal KT4-system is reducible to one of 
., 0, 0, 00, 00, n O 0 ,  0 0 0 ,  or the negation of one of these. 

4.65. Prove that normal KD4!- and normal KD4U-systems have at most 
fourteen distinct modalities, viz. * ,  0, 0 ,  0 ,  0 0, 0 0, 0 0 ,  
and their negations, with implications among the affirmative seven as 
diagramed in figure 4.9. (See exercises 4.33 (b) and 4.43 (b)). 

4.66. Prove that normal KT4G- and normal KT4W-systems have at 
most ten distinct modalities, viz. . , 0, 0, 0, 0 0, and their negations, 
with implications among the affirmative five as diagramed in figure 4.10. 
(See exercises 4.43,4.55, and 4.56.) 

4.67. Prove that normal KD4H+-systems have at most ten distinct 
modalities, viz. , 0, 0,  0, 0 0, and their negations, with implica- 
tions among the affirmative five as diagramed in figure 4.11, (See exercises 
4.43 and 4.56.) 

4.68. Prove that normal KT4Gc-systems have at most ten distinct 
modalities, viz. , 0, 0 ,  0 ,  0 0, and their negations, with implica- 
tions among the affirmative five as diagramed in figure 4.12. (See exercises 
4.43 and 4.58.) Note that the modalities 0 and 0 0 are equi- 

Figure 4.9. Modalities in normal KD4!- and normal KD4U-systems. 
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Figure 4.10. Modalities in normal KT4G- and normal KT4H+- 
systems. 

00 

I Y 

no  

\ 0 1 
Figure 4.1 1 .  Modalities in normal KD4H"-systems. 

Figure 4.12. Modalities in normal KT4G,-systems. 
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valent, respectively, to 0 and 0 [7 in normal KT4Gc-systems, 
whereas in normal KT4G- and normal KT4H+-systems it is the other 
way around. 

4.69. Prove that normal K4Gc-systems have at most ten distinct modal- 
ities, viz. . , 0, 0, 0 0, 0 0, and their negations, with implications 
among the affirmative five as diagramed in figure 4.13. (See exercises 4.43 
and 4.58.) Compare the reduction laws here for 0 and 0 0 with 
those in normal KD4H+-systems. 

4.70. f rove that normal KS!-systems have at most six distinct modalities, 
viz. . , 0, 0, and their negations, with implications among the affirmative 
three as in the diagram in figure 4.7 for normal KD45-systems. (See 
exercise 4.47.) 

4.71. Prove that normal extensions of KD!B, KD!B,, KD!4, KD!4,, 
KD!5, and KD,5, have at most four distinct modalities, viz. ., one of 

and 0 and their negations. (See exercises 4.33 (d ) ,  4.38,4.52, and4.53.) 

4.72. Prove that normal extensions of KT! (and hence KDT, and KDc T) 
have at most two distinct modalities, viz. and 7. (See exercises 4.52 
and 4.53.) 

4.73. Describe a normal modal logic that has just one (distinct!) modality. 

4.5. Maximal sets in normal systems 

We bring this chapter to a close by stating and proving a few theorems 
about maximal sets of sentences (section 2.6) in normal systems of modal 

Figure 4.13. Modalities in normal K4G,-systems. 
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logic. The importance of these theorems will become apparent in chapter 
5, where they are useful in several proofs. 

T H EO REM 4.29. Let I? and A be maximal sets of sentences in a normal 
system Z. Then: 

(1) (A: UA E I?} E A #{()A: A EA} G r; 
and more generallj, for any k > 0, 

(2) {A: n k A ~ I ? }  E Aiff{OkA: AEA} c I?. 

Proof. Let I' and A be X-maximal sets of sentences, and suppose that 
X is normal. We prove (1) only; (2) is a simple generalization. For 
left-to-right, assume that (A: OA E r }  E A and that A is in A. We wish 
to show that I? contains 0 A. By theorem 2.18 (5), TA is not in A. So 
T ] l A  is not in I?, which means that 7 [ 7 7 A  is a member of r. Because 
Z is normal, I? contains Df 0, and so - by theorem 2.18 (9) - 0 A is 
also in r. For right-to-left, assume that {OA: A EA) c P and that U A  
is in I?. Since I? contains D f n ,  1 0 7 A  is in I?, and so 0 1 A  is not. 
Hence 1 A  is not a member of A, which means that A is, which is what 
we wished to show. 

Note that when k = 0 the preceding theorem means that for X-maxima1 
sets I? and A, I? E A if and only if A 5 r, and so r = A just in case 
r E A. 

The next theorem may be regarded as an extension, for normal modal 
logics, of theorem 2.18 (particularly parts (3)-(9)). 

T H E O R E M  4.30. Let I' be a maximal set of sentences in a normal system 
z. Then: 

(1) n A  E r if for every Max, A such that ( A :  f lA E I?} c A, 
A EA. 

(2) O A E ~  23 for some Max,A such that (OA: AEA} E F, 
A EA. 

Proof. Suppose C is a normal system and that r is a C-maximal set of 
sentences. 

For (1). From left to right the theorem is trivial, for if OA E I' and 
{A: OAEF}  G A, then A E A .  

The reverse is thus the interesting direction. Suppose that A E A, fox 
every C-maximal set A such that {A: OA E I?] r A, i.e. that A belongs 
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to every Z-maximal extension of the set {A: UA E I?}. By a corollary to 
Lindenbaum's lemma, theorem 2.20 (I) ,  this means that A is 8-deducible 
from this set of sentences; i.e. 

(A: OA E r) kp A. 

This in turn means that there are sentences A,, . . ., A, (n 2 0) in the set 
{A: OA E I?) that are such that 

k z ( A l ~  ... A An)+A, 

Because X is normal, we may infer by RK that 

J-,(OA, A . . . A OA,) + OA. 

But I? contains each of UA,, . . . , OA,, so UA is Z-deducible from I? ; 

By theorem 2.1 8 (1) this means that 

which was to be proved. 
For (2) : 

\ 

O A E ~  iff 1 u l A ~ I '  
- Df 0 and theorem 2.18 (9) ; 

iff D i A $ r  
- theorem 2.18 (5) ; 

iff for some Max, A such that {A: OA E I?} 5 A, 
i A $ A  
- part (1); 

iff for some Max,A such that {OA: A EA) E I?, 
i A $ A  
- theorem 4.29 ; 

iff for some Max, A such that {OA: A EA} E r, 
AEA 
- theorem 2.18 (5). 

THEOREM 4.3 1. Let I? and A  be maximal sets of sentences in a normal 
system X. Then for every k 2 0: 

{A: nk+lA E I?} G A  for some Max, E, 
{A: ~ A E I ? }  G E and{A: UkA€E) c A. 

Proof. We assume that I? and A are maximal sets of sentences in a 
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normal modal logic Z. From right to left the proof is straightforward, 
and we leave it as an exercise. For left-to-right we suppose that {A: 
Ok+lA E E} c A, to show that there exists a 8-maximal set E such that 

{A: OAEI?} c E and {A: n k A € E }  c A, 

i.e. by theorem 4.29, such that 

{A: OAEI?) c Eand{OkA:A€A)  SE.  

In  other words, we wish to show that there is a C-maximal set of sentences 
E that includes the set 

{A: ~ A E I ' ) u { O ~ A : A E A ) .  

By Lindenbaum's lemma (theorem 2.19) this is equivalent to showing 
that this union is C-consistent. 

Let us suppose otherwise, and argue to a contradiction. If the set is 
C-inconsistent, then I is C-deducible from it, and this in turn means 
that for some m, n > 0 there are sentences B1, . . ., B, in {A : U A  E r} and 
sentences OkC,, . . ., OkC, in {OkA : A E A) such that 

By a rule of inference present in every normal modal logic (see exercise 
4.11) we infer that 

Because each of OBI, . . ., [7Bm is in r, the consequent Ok+l1(C, A 

. . . A C,) is Z-deducible from r, and so belongs to I?. By our original 
assumption, then, A contains l (C ,  A . . . A C,). But A contains C, A . . . A C, 
too, since this is the consequent of the theorem (C, A . . . A C,)+ (Cl A 

. . . A C,), for which A contains each conjunct of the antecedent. So A is 
X-inconsistent, which is a contradiction, and we may consider the proof 
complete. 

EXERCISES 

4.74. Prove part (2) of theorem 4.29. 

4.75. Give the proof for right-to-left in theorem 4.31. 

4.76. Prove the following generalizations of theorem 4.30, for any k > 0, 
where I? is a maximal set of sentences in a normal system C. 
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(a) OkA E I' iff for every Max, A such that {A : n k A  E I?) c A, 
AEA. 

(b)  OkA E I' iff for some Max, A such that (OkA : A E A) G I', 
A €A. 

4.77. Let B be a normal system, and define the relation R on the set of 
C-maximal sets of sentences by : 

FRA iff (A: UAEI?) G A. 

(Thus, by theorem 4.29, rRA if and only if {OA : A EA) E I?.) Prove: 

(a) R is serial if X contains D. 

(b )  R is reflexive if C contains T. 
(c) R is symmetric if C contains B. 

( d )  R is transitive if X contains 4. 
( e )  R is euclidean if X contains 5. 

(See section 3.2 for these properties of R.) 



D E T E R M I N A T I O N  AND 
DECIDABILITY F O R  N O R M A L  
SYSTEMS 

I n  this chapter we present and prove a number of determination theorems 
for normal modal logics with respect to classes of standard models. 
Section 5.1 contains the basic theorem for the soundness of such systems 
and a proof that the fifteen systems on the diagram in figure 4.1 are all 
distinct. I n  section 5.2 we return briefly to the topic of modalities in 
normal systems. In section 5.3 we define the idea of a canonical standard 
model for a normal system and prove some fundamental theorems about 
completeness. Section 5.4 contains determination theorems for the logics 
in figure 4.1, including a theorem to the effect that the system S5 is 
determined by the class of models of the sort described in chapter 1. 
I n  section 5.5 we generalize the ideas in sections 5.1 and 5.3 to obtain 
a very large class of determination results in one fell swoop, by proving 
that the system K G k 9 k r n s n  is determined by the class of k,l,m,n-incestual 
models. Finally, in section 5.6 we prove the decidability of the fifteen 
systems in figure 4.1. 

5. I. Soundness 

The following theorem provides the basis for proofs of soundness for 
normal modal logics, with respect to classes of standard models. 

T H E  o R E  M 5.1. Let S,, . . . , S, be schemas valid respectively in classes of 
standard models C,, . . ., C,. Then the system of modal logic 
KS, . . . S, is sound with respect to the class C1 n . . . n C,. 

Proof. If S1, ,,. . ., S, are valid respectively in classes of standard models 
C,, ..., C,, then each is valid in the intersection of these classes, 
C, n . .. n C,. It remains to be shown that this class validates Df 0, and 
that validity in this class is preserved by the rules of inference RK and 
RPL. This follows from theorems 2.8 and 3.3. 
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Soundness theorems for the smallest normal system, K, are immediate 
corollaries of theorem 5.1: K is sound with respect to every class of 
standard models, including the whole class; for this system is axiomatized 
by DfO, RK, and RPL. The role of the theorem in connection with 
normal extensions of K should moreover be apparent, For example, by 
theorem 3.5 the schemas D, T, B, 4, and 5 are valid respectively in 
classes of serial, reflexive, symmetric, transitive, and euclidean standard 
models. So it follows by theorem 5.1 that the systems KD, KT, KB, K4, 
and K5 are sbund with respect to these classes of models. For another 
example, the system S4 (KT4) is sound with respect to classes of quasi- 
ordered standard models, since T and 4 are valid in classes, respectively, 
of reflexive and transitive standard models. In general, each of the 
fourteen normal systems beyond K in figure 4.1 is sound with respect to 
classes of models of the kinds indicated in figure 5.1. 

Some more soundness results appear in the exercises. We shall not 
state any formally, however. 

By means of the theorems in section 4.3 we established there the 
inclusions among the fifteen systems of modal logic diagramed in figure 
4.1. We can employ theorem 5.1 to demonstrate the distinctness of these 
systems, and hence the properness of the inclusions. This is an appro- 
priate place to do so. 

T H E O R E M  5.2. The $ifteen normal systems in$gure 4.1 are all distinct. 

Proof. In general, to show that a system X is distinct from a system 
2' it is sufficient to exhibit a model of C that falsifies a theorem of Z', or 
vice versa. For example, to show that KD # KT, and so KD c KT, it 
is enough to describe a serial standard model (of KD, by theorem 5.1) 
that falsifies an instance of the theorem T of KT. This is our method. 

Consider the following six standard models A = ( W, R, P) .  

(1) W = {a, B, Y} (distinct); R = {{a, a), (P, BP), (Y, Y), 
(a, P>, (B, a>, @, Y), ( Y ,  8)); Po = {a, P} and P, = {a} 
for n > 0. 

(2) W = {a, B} (distinct); R = {(a, a), (18, P), (a, B>}; 
c, = {a} for n 0. 

(3) W = {a, p) (distinct); R = {(a, B), (P, P)l; Pn = {Dl for 
n z 0. 
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(6) W = {a, P)  (distinct); R = {(a, P), (A  a)];  P, = (8) for 
n 2 0. 

Figure 5.1 
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ensure the distinctness of the systems in figure 4.1. (Compare exercise 
3.22.) 

5.2. Using results from sections 3.2 and 3.3, including the exercises, 
describe classes of standard models with respect to which the following 
systems are sound. 

(a) KG (h)  KP 
(4 KDc (;) KGk.l.m,n 

( 4  (i) KU 

(4 a (k) K plus OT -+(nA+A) 

( 4  K*c (1) K plus Oi(OkO1A-+ OmOnA) 

(f K5, (m) K plus O ~ T  -+ (QkOzA+ nmOnA) 

(g) KP 
5.3. Consider the following conditions on a standard model A = (W, 
R, P) .  

(h++) if aRP and aRy and w a n d  yRs, then P = y or PRs or yRS 
o r & = €  

(h+) if aRP and aRy, then PRy or yRP 

(h) if aRP and aR y, then ,8 = y or PRy or yRP 

Prove that the systems KH++, KH+, and KH are sound, respectively, 
relative to classes of standard models satisfying (h++), (h+), and (h) (see 
exercise 3.47). Using results in exercise 4.56, show that KL++, KL+, 
and KL are likewise sound with respect to classes of models satisfying 
(h++), (h+), and (h). 

Prove also: (1) if A is reflexive, then it satisfies one of (h++), (hf), 
and (h) just in case it satisfies the others; (2) if A is euclidean, then it 
satisfies all three conditions. 

5.4. Consider the following conditions on a standard model A = ( W, 
R, P). 

convergence' if a # ,!I, then for some y in A ,  aRy and ,8Ry 

strong convergence: for some y in 4, aRy and PRy 

connectedness: a = P or aRP or PRa 

strong connectedness: aRP or PRa 
Prove : 

(a) A reflexive relation is strongly convergent if and only if it is 
convergent. 



(b)  The system S4.2 (see exercise 4.55) is sound with respect to 
classes of reflexive transitive standard models that are con- 
vergent (and hence strongly convergent). 

(c) A reflexive relation is strongly connected if and only if it is 
connected. 

(d) The  system SP.3 (see exercise 4.56) is sound with respect to 
classes of reflexive transitive standard models that are con- 
nected (and hence strongly connected). 

5.5. Consider the following conditions on a standard mole1 A = (W, 
R, P ) .  

functionality: (for every a in A )  there is exactly one ,8 in A 
such that aRP 

identity: aRP if and only if a = P 

Prove that KD! is sound with respect to classes of standard models in 
which the relation is functional, and that KT! is sound with respect to 
classes of standard models in which the relation is identity (see exercise 
3.54). 

5.6. Consider the following condition on a standard model A = (W, 
R, p>. 

(for every a in 4) there is a p in A such that both aRP and 
for every y and 6 in A, if PR y and PRS, then y = 6 

Prove that the system S4.1 of exercise 4.58 is sound with respect to 
classes of reflexive transitive standard models that satisfy this condition. 

5.7. Identify classes of standard models with respect to which the 
following systems are sound. 

(a )  KD4! (b)  KD4U (c) KD4H+ ( d )  K4Gc 

5.8. Prove the distinctness of the modal logics KG, KD,, KT,, K4,, KB,, 
K5,, KP, KP, KU, Kplus O T - + ( ~ A - + A ) ,  K W + ,  KH+, KH,  S4.2, 
54.3, KD!, KT!, S4.1, KD4!, KD4U, KD4H+, and K4G, (mentioned in 
exercises 5.2-5.7), and prove that each is distinct from all the systems in 
figure 4.1. 

5.9. Pyve, for any k > 1 : 

(a )  KT # KTk. 

( b )  KZ? # KBk. 

(c)  K4 # Kdk. 

( d )  K5 # K5k. 
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(See the penultimate paragraph of section 4.3 for the point of this.) 
5.10. Consider again the following rule of inference. 

Using exercise 3.63 and the soundness results in figure 5.1, show that 
this rule does not hold in the systems KB, K5, KD5, K45, KD45, and 
KB4. (In this connection the reader may wish to prove that n ( A +  0 OA) 
is a theorem of any normal KB-system.) 

5.11. Using theorem 5.2 and exercise 4.32, prove that the systems K, 
KB, K4, K5, K45, and KB4 have no theorems of the form OA. 

5.12. Consider again the following rule of inference. 

By the results of exercises 4.13 and 4.61 this rule holds in K and KD, 
and by the results of the preceding exercise it holds also in KB, K4, 
K5, K45, and KB4 (vacuously, since none of these systems has theorems 
of the form OA). The  remaining systems in figure 4.1 - KT, KDB, KD4, 
KD5, KDS5, KTB, KT4, and KT5 - do not have this rule. This is a 
consequence (as the reader should argue) of the soundness results in 
figure 5.1 and the following, which are for the reader to prove. 

(a) O(A+ a A )  is a theorem of any normal KT-system. 

( b )  A+ O A  is not a theorem of KT, KTB, KT4, or KT5. 

( c )  ( ) (uA+A) is a theorem of any normal KD4- or normal 
KD5-system. 

( d )  C]A + A is not a theorem of KD4, KD5, or KD45. 

(e)  0 O(A+ ( U A  -t q a A ) )  is a theorem of any normal KDB- 
system. 

(f) O(A+ ([7A+ n CIA)) is not a theorem of KDB. 

5.13. Prove: 

(a )  A relation is functional if and only if it is serial and partially 
functional. 

( b )  A relation is identity if and only if it is reflexive and vacuous. 
(c) If a relation is functional, then it satisfies one of transitivity, 

density, euclideanness, and condition (b)  in exercise 3.39 if 
and only if it satisfies the others. 

(See exercise 3.58.) 
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5.2. Postscript on modalities 
In section 4.4 we established maximums for the numbers of distinct 
modalities in normal extensions of the systems KT4 and K5 (fourteen 
each), KD5, K45, and KB4 (ten each), and KD45 and KT5 (six each). 
Figures 4.24.8 show the identities of these modalities and the implica- 
tions among them. Now we can prove that for the smallest of each of the 
seven types of systems these are exactly the distinct modalities. Formally: 

T H E o R E  M 5.3. The systems K T4, K5, KD5, K45, KB4, KD45, and K T5 
have exactly the distinct modalities diagramed in figures 4.2-4.8, 
respectively. 

Proof. Theorems 4.224.28 affirm that the systems in question have 
at most the advertised distinct modalities. For minimality it needs to be 
demonstrated that none of the modalities in a diagram for a system is 
equivalent to any of the others, i.e. that the logic has no reduction laws 
#A - gA, where # and glr are (different) modalities in the diagram. T o  
prove this it suffices to show that $At,  $A is not valid in some class of 
models with respect to which the logic is sound. Thus, for example, to 
prove the theorem for KT4 it must be shown, inter alia, that the modal- 
ities 0 and 0 are distinct, and for this it will do (by theorems 3.5 
and 5.1) to exhibit a reflexive transitive countermodel for an instance of 
O U A - O O A .  

We invite the reader - as an exercise - to work out the details of the 
requisite proofs. With a little ingenuity and organization the number of 
cases can be reduced. For example, a reflexive transitive countermodel 
for 0 UA - [3 0 D A  also falsifies an instance of A +-+ [13A and so at one 
stroke establishes distinctness in KT4 for the pairs , and 0 0, 
000. 

Theorem 5.3 tells us about modalities in seven of the fifteen systems 
in figure 4.1. What about modalities in the remaining eight? 

T H EO H E M  5.4. Each of the systems K ,  KD, KT, RB,  K4, KDB, KD4,  
and R T B  has injinitely many distinct modalities. 

Proof. It is enough to show that for any n > m 2 0 the schema 

is not a theorem of any of the systems in question. For this will mean 
that none of these systems contains any reduction laws for modalities 
of the form On, and so each such modality is distinct from all the others. 
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Let m and n be natural numbers such that m < n, and consider a 
standard model A = (W, R, P) in which W = {a,, . .., an&, . . ., am) (a11 
distinct), Po = {a,, ...,a,}, and R relates worlds that are identical or 
adjacent (i.e. aiRaj if and only if i = j or i = j+  1 or j = i+ 1). Then, as 
the reader should check, A is a reflexive symmetric countermodel for 
nmA+ a n A  (consider at a, the instance in which A = Po). Since this 
countermodel can be constructed for any m and n, it follows that for no 
n > m 2 0 is the schema 4m?n! valid in the class of reflexive symmetric 
models. Thus by theoreins 3.5 and 5.1 this schema is never a theorem of 
KTB, nor of any of the systems in figure 4.1 that it (properly) extends - K, 
KD, KT, KB, and KDB. Therefore, each of these modal logics has 
infinitely many distinct modalities. 

We leave it as an exercise for the reader to prove that for every 
n > m 3 0 there is a serial transitive countermodel for an instance of 
u n A +  nmA,  which is all that is needed to show that the number of 
distinct modalities is infinite in K D 4  and K4 (as well as K and KD 
again). With this the proof of the theorem will be complete. 

EXERCISES 

5.14. Give the details of the proof for theorem 5.3. 

5.15. Verify that the model d in the proof of theorem 5.4 is reflexive 
and symmetric and falsifies OmPo+ OnPo.  Then complete the proof of 
the theorem by showing that for every n > m 0 there is a serial 
transitive standard model that rejects an instance of OnA+ nmA.  

5.16. Prove: 

(a) KD4! and KD4U have exactly the distinct modalities 
diagramed in figure 4.9 (see exercise 4.65). 

(b)  S4.2 (KT4G) and 234.3 (KT4H+) have exactly the distinct 
modalities diagramed in figure 4.10 (see exercise 4.66). 

(c) KD4H+ has exactly the distinct modalities diagramed in 
figure 4.11 (see exercise 4.67). 

( d )  S4.1 (KT4Gc) has exactly the distinct modalities diagramed 
in figure 4.12 (see exercise 4.68). 

(e)  K4Gc has exactly the distinct modalities diagramed in figure 
4.13 (see exercise 4.69). 
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(f) K5! has exactly the distinct modalities diagramed in figure 
4.7 (see exercise 4.70). 

(g) KD!B, KDLB,, KD!4, KD!4,, KD!5, and KD,5, have 
exactly the distinct modalities stated in exercise 4.71. 

(h) KT!, KDT,, and KD, T have exactly the distinct modalities 
stated in exercise 4.72. 

5.17. Using exercise 4.34 prove that the system KG has infinitely many 
distinct modalities. 

5.18. Prove that KD4H has infinitely many distinct modalities (see 
exercise 5.3 ( c )  and, perhaps, the countermodel to nnA+ mmA in the 
solution to exercise 5.15). Then, using exercise 4.56(n, q), argue that 
there are infinitely many distinct modalities in K and all the systems that 
result from adding D, 4, G, H++, and H in various combinations to K. 

5.19. Prove that the systems KU and K plus 0 T -+ ( 0 A - t  A) have 
infinitely many distinct modalities. Then argue that this is true of K4,. 
5.20. Prove that the systems KD! and K4! have infinitely many distinct 
modalities. 

5.21. For each of the modal logics KH+, KDH+, K 4 W ,  K4U, K4 UG, 
and KG! (where GI = 0 nA++ OVA) prove or disprove that it has 
infinitely many distinct modalities. 

5.3. Completeness: basic theorems 
We begin with the idea of a canonical standard model for a normal modal 
logic. 

DEFINITION 5.5. Let = (W, R, P) be a standard model, and let Z 
be a normal system of modal logic. A is a canonical standard 
model for Z iff: 

(1) W = {r : Max, r). 
(2) For every a in A, 

OA E a  iff for every B in d such that aRp, A A ,8. 

(3) Pn = IPn(,, for n = 0, 1, 2, ... . 
Thus, as in section 2.7, W is the set of Z-maximal sets of sentences, and 
for each natural number n, P, collects just those of such sets as contain 
the atomic sentences Pn. 
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I t  is not immediately obvious, however, that there are any such models, 
i.e. that there are relations R satisfying the condition in clause (2) of the 
definition. We defer to theorem 5.11 the proof that indeed there are. 
Meanwhile, the following theorem gives an alternative way of charac- 
terizing canonical standard models. 

T H EO R E  M 5.6. JY = { W, R, P) is a canonical standard model for a normal 
system C zy W and P are as in deJimtion 5.2, aad for every a 
in A!, 

OA E a zy for some P in d such that aRP, A  E P. 

Proof. For left-to-right, suppose that = (W, R, P )  is a canonical 
standard model for a normal system E. Then Wand P are of course as 
specified, and for any world (Z-maximal set of sentences) a in A: 

O A ~ a i f f  i a 7 A ~ a  
- Df Q and the Z-maximality of a; 

iff n ~ A $ a  
- theorem 2.18 (5) ; 

iff not every ,8 in X is such that if aRP, then TA E B 
- definition 5.5 ; 

iff for some /? in A such that aRP, 1 A  & p; 
iff for some p in d such that aRp, A E /3 

- theorem 2.1 8 ( 5 ) .  

I t  is left for the reader to show the reverse, i.e. that JY is a canonical 
standard model for E if W, R, and P satisfy the specified conditions. 

Now we show that in a canonical standard model the worlds verify 
exactly the sentences they contain. This is the fundamental theorem for 
the completeness of normal systems of modal logic. 

T N E o R E  M 5.7. Let X be a canonical standard model for a normalsystem E. 
Then for every a in d:  

I . $Ai f lA~a .  

In other worh,  IIAll" = 

Proof. The proof is by induction on the complexity of A, and the 
non-modal cases were discussed in section 2.7 (see exercise 2.53). Of 
the modal cases, we treat only that in which A  is a necessitation, RB. 
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As an inductive hypothesis we assume that the theorem holds for sentences 
shorter than A, so that, in particular, for every a in A, 

kf B iff B E a .  
Then: 

If OB iff for every b in X such that aRF, If B 
- definition 3.2 (1) ; 

iff for every ,8 in A such that aRB, B E 

- inductive hypothesis ; 

iff nB E a  

- definition 5.5. 

So the theorem holds when A is a necessitation. 

As a corollary to theorem 5.7 it follows that a normal system of modal 
logic is determined by each of its canonical standard models; i.e. that 
the theorems of the system are just the sentences true in any such model. 
Formally : 

THE o R E  M 5.8. Let be a canonical standard model for a normal system 
x. Then: 

Proof. See the remarks in section 2.7. 

Nothing proved so far presupposes the existence of canonical standard 
models. In definition 5.9 we introduce what we call the proper canonical 
standard model for a normal modal logic; theorem 5.10 gives an alter- 
native characterization. Then we prove that proper canonical standard 
models are, indeed, canonical standard models (theorem 5.1 I), which 
shows that such models exist. 

D EFI  N I T  I ON 5.9. Let = { W, R, P )  be a standard model, and let 2 be 
a normal system of modal logic. A is the propev canonical 
standard model for X iff: 

(1) W = (I' : Max, I?). 
(2) For every a and b in A, ,aRB iff {A : O A  E a} E ,8. 
(3)P,= IP,l,,forn=0,1,2 ,.... 

In other words, proper canonical standard models are like canonical 
standard models with respect to W and P, and R is defined so that the 
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alternatives to a world a are just those worlds that contain the necessitates 
of necessitations in a. Note that such models always exist. 

T H E o R E  M 5.10. A = ( W, R, P )  is the proper canonical standard model 
for a normal system of modal logic C W and P are as in 
definition 5.9, and for every a and P in A?, 

a R P i . { O A :  A E B } ~ ~ .  

Proof. B y  definition 5.9, = (W, R, P) is the proper canonical 
standard model for a normal modal logic Z just in case Wand P are as 
specified, and for all worlds ('C-maximal sets of sentences) a and B in A, 

{A: : A E ~ )  E Biff { O A : A E ~ ) E ~ .  

This is precisely theorem 4.29 (1). 

Thus proper canonical standard models are like canonical standard 
models with respect to Wand P, and R is defined so that a world collects 
all the possibilitations of sentences occurring in its alternatives. 

THE o RE M 5.1 1 .  Proper canonical standard models are canonical standard 
models. 

Proof. Let A be the proper canonical standard model for a normal 
system C. We need only to show that for every world (C-maximal set of 
sentences) a in A, 

n A  €a iff for every ,8 in 4 - i.e. Max,P - such that 
{ A :  ~ A E ~ ) E  B , A E P .  

This is theorem 4.30 (1). 

EXERCISES 

5.22. Give the proof of theorem 5.6, right-to-left. 

5.23. Give the proof of theorem 5.7 for the case in which A = OB. 

5.24. Let A = ( W, R, P) be the proper canonical standard model for a 
normal system C. Using the results of exercise 4.77, prove: 

(a)  A is serial if X contains D. 

(b)  is reflexive if Z contains T. 

(c) A is symmetric if Z contains B. 
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( d )  A is transitive if C contains 4. 

(e)  A is euclidean if C contains 5. 
Also prove: 

(f) A is incestual if C contains G. 

5.4. Determination 

We are ready now to prove our first determination results. We begin with 
the system K. 

THE o R E  M 5.12. K is detmmined by the class of standard models. 

Proof. Soundness comes immediately from theorem 5.1. Completeness 
follows from the fact of the existence of canonical standard models, 
theorem 5.1 1 : any sentence valid in the class of standard models is true 
in the proper canonical standard model for K and hence, by theorem 
5.8, is a theorem of the system. 

In  general, to prove the completeness of a normal modal logic with 
respect to a class of models it is sufficient to show that the proper canonical 
standard model for the system is contained in the class. For the logic is 
determined by this model alone (theorem 5.8) and so is complete with 
respect to any class that contains it. Compare the remarks in section 2.7. 
This should serve to motivate the next theorem, which paves the way for 
the determination results in theorem 5.14. 

THEO REM 5.13. Let A be the proper canonical standard model for a 
normal system C. Then: 

(1) JY is serial i fZ contains D. 

(2) is reflexive ifZ contains T .  
( 3 )  4 is symmetric $ C contains 8. 

(4) A i s  transitive if C contains 4. 

( 5 )  4 is euclidean if X contains 5 .  

Proof. Let J% = (W, R, P) be the proper canonical standard model for 
a normal system C. 

For (1). Assume that D is a theorem of C (so that C is a KD-system). 
T o  show that A is serial - that for every a in A, 

there is a p in A such that aRP 
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- is to show that for every Z-maximal set of sentences a, 

there is a Max, P such that {A : OA E a] G #I. 

And by Lindenbaum's lemma (theorem 2.19) it is enough, for this, to 
establish the C-consistency of the set {A : OA ~ a ) .  So suppose, to reach 
a contradiction, that this set is C-inconsistent, i.e. that I is C-deducible 
from it. Then the set contains sentences A,, . . . , A, (n 0) such that 

~ , (A,A ... AA,)+I. 

Hence by the rule RD, 

F z ( D A l ~  ... A OA,)+ O I .  
Since a contains mA,, . . ., UA,, this means that 01 is C-deducible 
from a, and hence (theorem 2.18 (1)) that 0 I is in a. But a also contains 
1 0 I (N O), since C is normal (theorems 2.18 (2) and 4.4). This cannot 
be (theorem 2.18 (5)). 

There is a simpler proof of the seriality of A. T o  wit, as a consequence 
of theorem 5.6 it holds of every a in A that 

0 T E a iff for some p in A such that aRP, T E B. 
But 0 T (P) is a theorem of 8 (theorem 4.12), so every a in X contains 
it. Hence for every a in X there is a p in A such that aRB, i.e. AY is 
serial. Indeed, it should be noted, this proof is good for any canonical 
standard model for a normal KD-system. 

For (2). Suppose that 8 contains the theorem T. We wish to show 
that AY is reflexive, i.e. that for every a in A, 

This means that for every X-maximal set of sentences a, 

{A: U A E ~ }  c_ a. 

So assume that A €{A : nA €a}, to show that A €a .  The assumption 
just means that a contains OA. Since n is 8-maximal, OA+A is in a, 
too. But a is closed under MP, so it contains A. 

For (3).  Assume B to be a theorem of Z. Let us prove that for all 
Z-maximal sets of sentences a and p, 

if{A: 0 A ~ a )  G F, then (OA:  AEU) E 8. 
For by definition 5.9 and theorem 5.10 this means that A is symmetric, 
i.e. that for every a and p in d, 

if aRP, then PRa. 
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We assume that {A : OA ~ a )  E 8 ,  and also that A €a. I t  remains only 
to be shown that O A  E p. But if cc contains A and the theorem A+ OA 
too, then r] ()A is in a. Hence O A  E p. 

For (4). Assume that X contains the theorem 4, n A +  n n A .  The  
transitivity of d is expressed by saying that for every Z-maximal set of 
sentences a, p, and y, 

if {A: n A ~ a }  r Band  {A: OAEB} c y, 

then{A: n A ~ a }  r y. 

We suppose that {A : OA €a} G 8, that {A : O A  E ,8} c y, and that 
[7A E a, to show that A E y. The  presence of 4 in a  and the last assumption 
imply that a a A  is in a. By the first assumption, then, HA is in P, and 
by the second, A is in y. 

For (5). We leave this for the reader (compare exercise 5.24(e)), with 
the remark that the euclideanness of A means that for every X-maximal 
set of sentences a, p, and y, 

if{A: n A ~ a }  5 p a n d { O A : A ~ y }  r a, 

then (OA : A E y] G p. 
This ends the proof of theorem 5.13. 

We are in a position at last to prove determination theorems for the 
fourteen normal systems obtained by taking the schemas D, T, B, 4, and 
5 as theorems in various combinations, i.e. for the systems beyond K in 
figure 4.1. We state these results formally in the following theorem. 

THEOREM 5.14. The fourteen normal systems beyond K in figure 4.1 are 
determined by the classesof standardmodels indicated infigure 5.1. 

Proof. Except perhaps for KB4 and KT5 the results are easily under- 
stood. The soundness parts follow from theorems 3.5 and 5.1, as we 
remarked earlier. For completeness it is enough to observe that the 
proper canonical standard models for each system are in the appropriate 
classes of models, by theorem 5.13. For example, by parts (2) and (4) 
of theorem 5.13 the proper canonical standard model for KT4 is both 
reflexive and transitive. Thus KT4 ( 8 4 )  is determined by the class of 
quasi-ordered standard models, 

In  the case of KB4, note that it is identical with KB5 (theorem 4.18), 
or that transitivity and euclideanness are equivalent properties in the 
presence of symmetry (exercise 3.58(e)). For KT5 (S5) recall that it is 
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the same as KTB4, KDB4, and KDB5 (theorem 4.21) - or that anyway 
the four sets of properties indicated in figure 5.1 indifferently characterize 
an equivalence relation (exercise 3.3 1). 

We can cover the content of theorems 5.12 and 5.14 together by 
putting the matter as follows. Let CD, CT, CB, C4, and C5 be respectively 
the classes of serial, reflexive, symmetric, transitive, and euclidean 
standard models, and let S,, . . ., S, be any selection (possibly empty) 
from the schemas D, T, B, 4, and 5 (so that Cs1, ..., Csn are the corres- 
ponding classes of standard models). Then : the system KS,. . . S, is 
determined by the class Csl n . . . CI CSn. 

Of course this formulation does not really go beyond theorems 5.12 
and 5.14, though it may seem to. It shows, for example, that the system 
KDT4 is determined by the class of serial reflexive transitive standard 
models. But D is redundant here as an axiom (theorem 4.14), just as 
seriality is as a property (exercise 3.58 (a)).  

In chapter 3 we saw that systems of modal logic can be determined by 
more than one class of models. For by theorem 3.12 a system of modal 
logic determined by a class C of standard models is also determined by 
the class 9 ( C )  of models generated from those in C, and these classes 
are in general distinct. As a corollary we proved (theorem 3.13) that the 
modal logic determined by the class of standard models in which the 
relation is an equivalence is the same as the modal logic determined by 
the class of standard models in which the relation is universal (like those 
in chapter 1). By theorem 5.14 we see, a t  last, that this is indeed the 
modal logic S5 (KT5). This is worth recording. 

THE o R E  M 5.15. KT5 is determined by the class of universal standard 
models. 

In  section 5.6 we use filtrations to obtain more determination results 
for K and its normal extensions. 

Let us close this section by recalling the schema 

As we saw in chapter 3, G is valid in any class of incestual models, i.e. 
standard models = ( W, R, P) such that for every a, ,8, and y in 4, 

if aRP and aRy, then for some 6 in A, pR6 and yR6. 



This means that the system KG is sound with respect to any class of 
incestual models. Let us show now that the proper canonical standard 
model for any normal modal logic containing the schema G is incestual- 
and thus that every normal KG-system is complete with respect to the 
class of incestual models - as follows. 

Let A = (W, R, P) be the proper canonical standard model for a 
normal system containing the schema G, and suppose, for a, /3, and y 
in 4, that aR/3 and aRy. By definition 5.9 and theorem 5.10, this means 
that 

{ o A : A ~ p ) z a  
and that 

{A: :AE~]  G y. 

The problem now is to show that for some 6 in A?, PR6 and yRS, i.e. 

(A: O A E ~ } E  Sand{A: ~ A E ~ } E  6 

- in other words, that 4 has a X-maximal set of sentences 8 that includes 
the set 

{A: ~ A E , ~ ] u  {A: n A ~ y ) .  

By Lindenbaum's lemma (theorem 2.19) it is sufficient to show that this 
set is C-consistent, for then such an extension must exist. So suppose, 
to reach a contradiction, that the set is E-inconsistent, i.e. that L is 
X-deducible from it. Then for some i, j 0 there are sentences B,, . . ., Bi 
in (A : n A  E ,8} and sentences C,, . . ., Cj in {A : OA E y}  such that 

Equivalently, by PL, 

By RK it follows that 

Because each of OBI, . . ,, mBi belongs to ,8, ( C  A . . . A C )  is C- 
deducible from p, and so belongs to P. By the first inclusion above, then, 
0 0 1(C, A . . . A Cj) is a member of a. But a also contains this instance 
of the schema G : 

So the consequent 0 1(C,  A . . . A Cj) is also in a. By the second 
inclusion above, then, 0 l ( C 1  A . . . A Cj) belongs to y. Because y contains 
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Dfn ,  we may infer further that 1 n(C,  A . . . A CI) is in y. But so is 
O(C, h . . . A Cj). For by RK on a tautology, 

FZ(UCI~ ... A 0 C j ) +  U(ClA ... A c j ) ;  

and y contains each of UC,, . . ., uCj ,  and so also n(C, A . . . A Cj). 
Contradiction. 

I t  follows from this and the soundness result that the modal logic KG 
is determined by the class of incestual standard models. In the next 
section we generalize these proofs to obtain similar results about k,l,m, 
n-incestuality and normal KPL%n-systems. 

EXERCISES 

5.25. Verify the determination claims for the systems beyond K in figure 
4.1 not mentioned explicitly in the proof of theorem 5.14. 

5.26. Let A = (W, IZ, P) be the proper canonical standard model for a 
normal system Z. Prove : 

(a) A is partially functional if Z contains Dc. 
(b)  A is functional if C contains D!. 

( c )  A is vacuous if X contains T,. 
(d) A is identity if C contains T!. 
(e) A is dense if X contains 4,. 

(f) X is empty if B contains P. 
Using these results, theorem 5.13, and the result about G and incestuality 
at the end of section 5.4, formulate and prove more determination 
theorems like those in theorem 5.14. 

5.27. Prove that the proper canonical standard model for any normal 
extension of K ( P h r n y n  is k,l,m,n-incestual. Use this result to prove 
theorem 5.13 and parts (a)-(e) of the preceding exercise. 

5.28. Using exercise 3.57, prove that K is determined by each of the 
classes of irreflexive, asymmetric, antisymmetric, and intransitive 
standard models. 

5.29. With reference to results in section 3.4 and exercise 5.4, prove: 

(a) Every generated reflexive transitive incestual standard model 
is convergent (and hence strongly convergent). 
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(b)  The system S4.Z is determined by the class of reflexive 
transitive standard models that are convergent (and hence 
strongly convergent). 

5.30. Prove that the system KDCG is determined by the class of serial 
transitive standard models that are convergent or strongly convergent. 

5.3 1. Consider the rule of inference 

and the fifteen systems in figure 4.1. By the results of exercises 4.13, 
4.61,4.62, and 5.10, K, KD, KT, KDB, KTB, KT4, and KT5 have the 
rule, whereas KB, K5, KD5, K45, KD45, and KB4 do not. 

Use theorem 5.14 and results in exercise 3.63 to prove that K4 and 
KD4 also have the rule. (Indeed, all these conclusions are immediate 
consequences of theorem 5.14 and results in exercise 3.63, as the reader 
should verify.) 

5.32. Let B be a normal modal logic, and consider the following principle. 

If t-, OA, v . . . v [?An, then 
t, Ai for some d = 1, . . ., n (n > 0).  

This ' rule of disjunction' holds for the following systems in figure 4.1 : 

K, K D ,  KT,  K4, KD4, KT4 

We can use theorems 5.8,5.13, and 5.14 and the safe extension theorem 
from exercise 3.62 to prove this. For example, let us show that the 
principle holds for K. 

We argue contrapositively. Suppose that not kg Aifor each i = 1 ,  . . ., n. 
Then by theorem 5.8 each A$ is false at some world q in the proper 
canonical standard model A = (W, R, P) for K. Let a be a world not 
in A, and define the standard model A# = ( W#, R#, P#) as follows. 

(1) W# = Wu (a). 
(2) R# = R u ((a,ai): i = 1 ,  ..., n). 
( 3 )  P# = P. 

Then A# is a safe extension of A. So by the safe extension theorem each 
A, is false at a, in &# as well. But aRai for each a,. So each n A i  fails at 
a, which means that OA, v . . . v OAn is false at a. By theorem 5.14, not 
I-, OA, v .. . v OA,, which is what we wished to prove. 

The arguments for KD, KT ,  K4, KD4, and KT4 are left to the reader. 
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The  idea in each case is to define for the system's proper canonical 
standard model a safe extension that has the desired properties. (Indeed, 
a single safe extension can be defined that will do the job for all the cases, 
including K.) 

The remaining systems in figure 4.1, 

KB, K5, KDB, KD5, K45, KD45, KBP, KTB, KT5, 

do not have the rule of disjunction. For KB, K5, KD5, K45, KD45, 
and KB4 this was shown in exercise 5.10 (let n = 1 in the rule). The 
cases of KDB, KTB, and KT5 are for the reader; it may be helpful to 
recall that G is a theorem of each of these logics. 

5.33. Consider again the following rules of inference. 

By the results of exercises 4.13 and 4.16, these rules are present in K 
and KD. 

(a) Prove that KB, K4, K5, KDB, KD4, KD5, K45, KD45, 
KB4, KTB, KT4, and K T 5  do not have these rules. 

(b)  Prove or disprove that KT has these rules. 

5.34. Consider again the following rules of inference. 

OA-OB O A - O B  
A-B A-B 

By the results of exercises 4.13 and 4.61, these rules hold in K and KD. 
In  which of the other systems in figure 4.1 do these rules hold? 

5.35. Referring to the discussion in section 2.8, use theorems 3.18 and 
5.15 to prove that the system S5 (KT5) is decidable. 

5.5. KGk.z~mfl 
In  section 3.3 we introduced the schema 

and the property of k,l,m,n-incestuality for a standard model .A = (W, 
R, P): for every a ,  p, and y in A, 

if aRkP and aRmy, then for some 6 in A, pRz8 and yRn6, 



all where k, I, m, n 2 0. In virtue of theorem 3.8, the modal logic 
KGk.'."" is sound with respect to any class of k,l,m,n-incestual models. In 
this section we show that any normal KGksl*msn-system is complete with 
respect to the class of k,l,m,n-incestual models, by proving that the 
proper canonical standard model for such a system is k,l,m,n-incestual. 
These results yield determination theorems for an infinite class of normal 
modal logics, including the systems covered in the preceding section. We 
begin with the following theorem. 

T H E o R E  M 5.16. Let A = ( W, R, P )  be the proper canonical standard 
model for a normal system C. Then for every a and P in 4 and 
every k 2 0: 

Proof. Assume that d is the proper canonical standard model for a 
normal system C. We give the proof for (1) only; (2) follows from (1) 
by theorem 4.29 (2). Where k = 0, (1) means that 

aR0/3 i f f  {A : mOA E a) E ,8, 

which just amounts to 

(by definitions 3.6 (1) and 2.3 (1)). And this is obvious: for if a G /3, then 
,9 cannot properly include a without being inconsistent; so a = B 
(compare exercise 2.46). This establishes the basis of an induction. Next 
we make the inductive hypothesis that (1) holds for every number up to 
and including some number k - so that for every a and P in A, 

aRkP iff { A  : g k A  €a} c /? 

- and show from this that 

aRk+l/3 iff (A : nkflA €a) G ,8. 
Thus : 

aRk+lP iff for some y in A, aRy and yRkB 
- definition 3 -6 (2) ; 

iff for some y in A ,  ( A  : [3A € a )  r y and 
{A: UkA€ y}  G p 
- definition 5.9 and the inductive hypothesis; 

iff (A : nk+lA ~ a )  G P 
- theorem 4.3 1. 
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This completes the inductive part of the proof, and hence the proof 
itself, 

THEOREM 5.17. The proper canonical standard model for a normal 
KGkxm~n-systern is k,l,rn,n-incestual, for every k, I, m, n 2 0. 

Proof. Let I: be a normal KGkJ~m~n-system. By theorem 5.16 and 
Lindenbaum's lemma the property of k,Z,m,n-incestuality for the 
proper canonical standard model for C can be expressed as: for every 
C-maximal set of sentences a, B, and y, 

i f { o k A : A ~ E B ) ~  aand{A:  U r n A ~ a ) &  7, 
then Con,(A : C]'A E 8) U {A : OnA E y}. 

The proof is a simple generalization of that at the end of the preceding 
section for the case in which k = l = m = n = 1. Briefly, we assume that 

but also that 

(and argue to a contradiction). From the latter assumption it follows that 

kX(Bl A . . . A Bi) + l (C1  A . . . A Cj), 

and from this by RKk (theorem 4.6) that 

where O'B,, ..., nzBi are in B, and nnC1, ..., OnCj are in y. Hence ,8 
contains n17(C, A . . . A Cj), and so (by the initial assumption) OknL 
l ( C 1  A . . . A Cj) belongs to a. But a contains the instance 

k 1 0 1(ClA ... A C ~ ) - + O ~ O ~ ~ ( C ~ A  ... A Cj) 

of W*m*n. So n m O n ~ ( C l  A . . . A Cj) is a member of a, and hence (by the 
initial assumption) Vnl (Cl  A . . . A Cj) is in y. Using DfOk (theorem 
4.6) we see that y contains 1 nn(C1 A . . . A Cj). However, note that by 
RKk on a tautology, 

So since y contains each conjunct of the antecedent, y also contains 
nn(C1 A . . . A C,). Contradiction. 
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EXERCISES 

5.36. Formulate and prove determination theorems for some normal 
modal logics not in figure 4.1 that are covered by KQLrnpn. 

5.37. Let A = (W, R, P) be the proper canonical standard model for a 
normal system X. Prove : 

(a) X is secondarily reflexive if B contains U. 

( b )  A is reverse secondarily reflexive if C contains OT -t 
(UA-,A). 

(See exercise 3.5 1 .) 

5.38. Let A = (W, R, P) be the proper canonical standard model for a 
normal system C, and consider the conditions in exercise 3.52. Prove: 

(a) JY satisfies condition (a)  if Z contains O'( Okn'A+ OmOnA). 
( b )  A satisfies condition (b) if B contains O ~ T  -+ (OkozA -+ 

OmOnA). 

Note that the results in exercises 5.27 and 5.37 are corollaries of these. 

5.39. Prove that for each k > 0 the system KPk is determined by the class 
serial standard models. (See exercise 3.49 and theorem 4.13.) 

5.40. For k > 0 formulate and prove a determination theorem for the 
system KPk (Fk = 7 O k ~ ) .  

5.41. Let A = (W, R, P) be the proper canonical standard model for a 
normal system E, and consider conditions (h++), (h+), and (h) in exercise 
5.3. Prove: 

(a) A satisfies (h++) if Z contains H++. 
(b) A satisfies (h+) if C contains H+. 

(c) A satisfies (h) if Z contains H. 

(See exercise 4.56 for some alternatives to H++, Hf, and H.) 

5.42. With reference to results in section 3.4 and exercises. 5.3 and 5.4, 
prove : 

(a)  Every generated reflexive transitive standard model that 
satisfies (hff), (h+), or (h) is connected (and hence strongly 
connected). 

(6) The system 54.3 is determined by the class of reflexive 
transitive standard models that are connected (and hence 
strongly connected). 
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5.43. Prove that the system KD4H is determined by the class of serial 
transitive connected standard models. 

5.44. Prove that the system 84.1 of exercise 4.58 is determined by the 
class of reflexive transitive standard models that satisfy the condition 
given in exercise 5.6. To  do this it may be helpful first to prove that for 
every n > 0 the schema 

0 ( ( O A l + f l A , ) ~  . . . A  (OA,+OA,)) 
is a theorem of S4.1. Then show that where T, is any normal extension 
of S4.I the proper canonical standard model X = (W, R, P) for C 
satisfies the condition in exercise 5.6. (For this, begin by arguing that 
for any ir: in A the set 

{A: O A E C Z ) U { O A + [ ~ A :  Aisasentence) 

is X-consistent.) 
Prove also : 

(a) K4Gc is determined by the class of transitive standard models 
that satisfy the condition in exercise 5.6. 

(b)  The normal extension of K obtained by taking the schema 
above as a theorem for every n > 0 is determined by the class 
of standard models that satisfy the condition in exercise 5.6. 

Indeed, (a) and (b )  may be used as lemmas in the proof of the determina- 
tion theorem for S4.1. 

5.45. Prove : 

(a) KB, is determined by the class of standard models that satisfy 
condition (a) in exercise 3.39. 

(b) K5, is determined by the class of standard models that 
satisfy condition (b) in exercise 3.39. 

5.46. Investigate the status of the rules (a)-(f) in exercise 4.13 and the 
rule of disjunction in exercise 5.32 with respect to normal modal logics 
other than those in figure 4.1. (For example, compare KU and K plus 
Ol-+(OA+A).) 

5.47. Consider the modal logics determined by the classes of models 
described in exercises 3.14 and 3.15. Describe axiomatizations for these 
logics (they are non-normal), and adapt the techniques of the present 
chapter to prove determination theorems for them. 
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5.48. Investigate the construction of non-proper canonical standard 
models for normal systems (consider extensions of K4). 

5.6. Decidability 
A system of modal logic is decidable, as we explained in section 2.8, if it 
is axiomatizable by a finite number of schemas and has the finite model 
property. In  this section we show that the fifteen systems in figure 4.1 
are decidable, by proving that each is axiomatizable by finitely many 
schemas and has the f.m.p. 

T H E O R E M  5.1  8. Each of the fifteen normal systems in &re 4.1 is axio- 
matixable, indeed by ajr t i te  number of schemas. 

Proof. It is sufficient to observe that in each case the logic can be 
axiomatized by finitely many schemas together with the reasonable rules 
RPL and RK. 

We obtain f.m.p. results for the logics in question as a corollary to the 
next two theorems. 

THEOREM 5.19. K is determined by the class of jinite standard models. 

Proof. Soundness follows from theorem 5.12. For completeness, 
suppose that A is true in every finite standard model, and let I' be the set 
of subsentences of A. Then A is true in every I'-filtration of any standard 
model, since these are all finite. By theorem 3.17 it follows that A is true 
in every standard model, and by theorem 5.12 this means that A is a 
theorem of K. T o  put the argument again, contrapositively, suppose A 
is not a theorem of K, so that by theorem 5.12 A is false in some standard 
model AT (for example, the proper canonical standard model for K). Let 
d* be a I?-filtration of 4, where r is the set of subsentences of A. Then 
4" is a finite standard model, and by theorem 3.16 A is false in d*. 
Stated in this way it is readily seen that K has the f.m.p.: every non- 
theorem of K is false in a finite model of K. 

THE o R E M  5.20. The fourteen normal systems beyond K in figure 4.1 are 
determined by the classes of $site standard models indicated in 
jigure 5.1. 

Proof. Soundness in each case is a consequence of theorem 5.14. The  
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completeness of all the systems except K5 and KD5 may be proved 
using theorems 3.19 and 3.20. For example, let us show that KTB (the 
Brouwersche system) is complete with respect to the class of finite 
standard models that are reflexive and symmetric. Suppose A is a non- 
theorem of KTB. Then by theorem 5.14 A is false in a reflexive sym- 
metric standard model A. Let I' be the set of subsentences of A, and let 
A* be a symmetric I?-filtration of A? defined as in part (1) of theorem 
3.20. Then AT* is finite, and by theorem 3.19 it is reflexive. So by theorem 
3.16 A* is a reflexive symmetric finite standard model in which A is false. 

For K5 and KD5 we use theorems 3.19 and 3.21. Let us give the proof 
for K5, by way of illustration. Suppose A is not a theorem of K5, so that 
by theorem 5.14 it is false in some euclidean model 4. Let I? be the 
modal closure of the set of subsentences of A, and let A* be a coarsest 
I?-filtration of A. Now observe that r is logically finite relative to A. 
For by theorem 4.23 K5 has only finitely many modalities, and so since 
the set of subsentences of A is finite and A is a model of K5, every 
sentence in I? is A-equivalent to one or another of finitely many sentences 
in r. Thus A?* is finite, and by theorems 3.16 and 3.21 it is a euclidean 
standard model in which A is false. 

This concludes the proof. We leave as exercises the details of the 
arguments for the remaining systems. 

The corollary to theorems 5.19 and 5.20 is worth stating formally. 

THEOR E M  5.21. Each of the jiftem normal systems in figure 4.1 has the 
finite model property. 

And as a corollary to theorems 5.18 and 5.21 we have our final theorem. 

THE o RE  M 5 22. Each of the$fteen nornzal systems in figure 4.1 is decidable. 

In  closing, let us point out a certain limitation to the methods used in 
the proof of theorem 5.20. As we showed in section 3.6, a filtration of a 
euclidean model through an arbitrary set of sentences (closed under 
subsentences) need not yield a euclidean model. So to prove theorem 
5.20 for K5 we had to pick a more special set of sentences to get a finite 
euclidean filtration. Because K5-systems have only finitely many distinct 
modalities, we had recourse to filtrations through modally closed sets of 
sentences. (Indeed, this device is apt for all the systems in figure 4.1 in 
which the number of distinct modalities is finite.) 

But consider the system KG, which is determined by the class of 



incestual standard models (section 5.4). There is no easy access, along 
the lines of the proof of theorem 5.20, to a proof that KG is determined 
by the class of finite incestual models. For a filtration of an incestual 
model through an arbitrary set of sentences closed under subsentences 
is not always an incestual model (exercise 3.75); and KG has infinitely 
many distinct modalities (exercise 5.17). We leave it to the reader to try 
to show the decidability of KG by finding appropriate filtrations for 
incestual models. 

EXERCISES 

5.49. Give the details of the proof of theorem 5.20 for the systems other 
than K, KTB, and K5 in figure 4.1 (compare exercise 3.74). 

5.50. Prove the decidability of the normal extensions of K, KD, KB, 
and K4 obtained by adding U or 0 T -+ ( 0 A - t  A) as theorems. 

5.5 1. Try to prove the decidability of KG by defining suitable filtrations 
for incestual models. 

5.52. Prove the decidability of some normal systems other than those 
mentioned in theorem 5.22 and the preceding two exercises. 



D E O N T I C  L O G I C  

I n  this chapter we introduce an operator 0 to represent the deontic 
concept of obligation. (In order not to beg any important questions, we 
do not - except for a single exercise - consider a correspondingly dual 
operator P for the deontic concept of permissibility.) In  section 6.1 we 
present what we call standard deontic logic, and in section 6.2 we examine 
some further principles that have been suggested. In section 6.3 we 
discuss the role of time in the determination of obligations, and we 
introduce temporal concepts into the language and into the models for 
it. Section 6.4 contains a theorem about past tense obligations. Finally, in 
section 6.5 we point out some shortcomings with respect to the adequacy 
and correctness of the analysis of deontic logic in terms of normal systems 
and standard models. 

The purpose of this chapter is illustrative: we wish to show how 
standard models and normal systems can be employed in the analysis of 
philosophical questions. The reader must judge the merit of the endeavor, 
as well as the extent of its success. 

6.1. Standard deontic logic 
Into the language of propositional logic we introduce sentences of the 
form OA, meant to express propositions of the form it ought to be the 
case that A, or it is oblkatory that A. Thus the operator 0 represents a 
concept of deontic necessity. 

By standard deontic logic we mean the system D* based on propositional 
logic and axiomatized by the rule of inference 

and the single schema 

OD*. ~ ( o A A  O1A).  
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Thus D* is the smallest normal KD-system for 0 (the axiom OD* being 
the counterpart of 00 in theorem 4.12). 

The import of ROK is clear: obligation is closed under consequence, 
in the sense that a proposition is obligatory if it is a consequence of 
obligatory propositions. The import of OD* is simply that conflicts of 
obligation are impossible, that there are no propositions that are jointly 
impossible but both obligatory. 

A review of theorems in chapter 4 will reveal a number of theorems 
and rules of inference of D*. In particular, it can be seen that the system 
is equivalently axiomatized by the rule 

together with the following schemas. 

OC. ( O A A  OB)+ ~ ( A A  B) 
ON. O T  
OD. 101 

On the basis of propositional logic, ROM, OC, and ON are collectively 
equivalent to the rule ROK (compare theorem 4.3 (3)). The import of 
OD (the counterpart of PO in theorem 4.12) is that nothing impossible 
is obligatory. This is a version of the principle that ought implies can, 
and it may be distinguished from OD*, which more generally rules out 
pairs of obligations the contents of which are logically incompatible. We 
return to this point in section 6.5. 

From the determination theorem for K D  in chapter 5 it can be seen 
that D* is determined by a class of standard models in which the relation - 
of 'deontic alternativeness' - between possible worlds is serial. Thus 
standard deontic logic is determined by the following account of the 
meaning of 0. 

Relative to each possible world, including our own, there is a non- 
empty class of possible worlds that are deontic alternatives to the given 
world. A sentence of the form OA is true at a possible world just in case 
A is true at each of the world's deontic alternatives. Alternatively, one 
may picture the set of deontic alternatives to a world functioning 
collectively as a proposition that represents a standard of obligation: the 
proposition expressed by OA holds at a world if and only if the pro- 
position expressed by A is entailed by the standard of obligation for the 
world. (Compare exercises 3.13 and 3.29.) 

I t  is the axiom OD* (equivalently OD) that guarantees the existence 



of deontic alternatives - of a non-vacuous standard of obligation - for 
every possible world. Next we examine some further schemas that have 
been suggested as theorems of deontic logic, and assess them in terms of 
their implications for the structure of the relation of deontic alter- 
nativeness. 

EXERCISES 

6.1. Referring to theorem 4.12, verify that D* is the smallest normal 
KD-system for 0 (ignore the lack of a counterpart to 0 in the language). 

6.2. Check that the two axiomatizations of D* given in section 6.1 are 
equivalent, i.e. that they generate the same set of theorems. (See 
especially theorems 4.3 and 4.12.) 

6.3. Formalize the idea of 'standards of obligation' in terms of models 
of the kind described in exercises 3.13 and 3.29. 

6.4. The schema OD* is described as expressing the principle that there 
are no propositions that are jointly impossible but both obligatory. This 
suggests the following rule of inference in D*. 

Derive this rule. Then use it to derive OD*. 

6.5. The sentence OD is described as expressing the principle that 
nothing impossible is obligatory. This suggests the following rule of 
inference in D*. 

Derive this rule using only propositional logic, ROM, and OD. Then 
use propositional logic and the rule to derive OD. 

6.6. Introduce a permissibility operator P into the language and a 
theorem 

P A - i 0 i A  

like Df 0 into D*. How plausible are the theorems that result (OA -+ PA, 
for example)? 
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6.2. Further principles 
By deontic S5 is meant the normal extension of standard deontic logic 
obtained by adding as theorems the counterparts for 0 of the schemas 
4 and 5, which we may put as follows, 

04. OA+OOA 

05.  lOA+O?OA 

Technically, deontic S5 is the system KD45 for 0, determined by the 
class of standard models in which deontic alternativeness is a serial 
transitive euclidean relation. So the import of deontic S5 is that for each 
world there is a (non-empty) collection of 'best of all possible worlds' 
that form the world's standard of obligation - best in the sense that this 
standard holds as well for all the worlds within it. 

Deontic S5 seems too strong to capture the idea of obligation in the 
moral sense, though it may be appropriate to weaker notions of obligation 
such as that expressed by sentences in the imperative mood. So let us 
examine the import of 0 4  and 0 5  individually. 

The axiom 0 4  is not altogether implausible. It is this principle that 
makes deontic alternativeness transitive, and thus makes possible the 
interpretation of the relation as leading to worlds that are in some way 
better from the standpoint of obligation. 0 4  means that what is obligatory 
at a world continues to be so at the world's deontic alternatives. So it 
rules out the possibility, for example, that some of the deontic alter- 
natives to our world should have for themselves standards of obligation 
that are unrealistically high, perhaps utopian, from our point of view. 

0 5 ,  on the other hand, does appear to be unreasonable. Reading 
10 1 as expressing permissibility, for example, 0 5  implies that what 
is permissible ought to be permissible. Hence we should look for some 
system weaker than deontic S5. 

One direction in which the system can be weakened is by replacing 
0 5  by the deontic counterpart of U: 

OU. O(OA-+A) 

Note that OU is a theorem of deontic S5, indeed follows from 0 5  given 
ROK and propositional logic (compare exercise 4.38). The schema 
expresses the thesis that it ought to be the case that whatever ought to 
be the case be the case. It is a much discussed principle in deontic logic, 
because it is one of the few plausible cases of a theorem of the form O A  
in which A is non-trivial (compare ON for example). 

Semantically, OU means that the relation of deontic alternativeness is 
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secondarily reflexive - deontic alternatives to a world are always deontic 
alternatives to themselves. But this condition has the following perhaps 
untoward consequence : if there are any unfulfilled obligations, then ours 
is one of the worst of all possible worlds. For suppose that for some A 
both O A  and 1 A  are true. Then our world cannot be a deontic alter- 
native to - cannot contribute to the standard of obligation of - any 
possible world (for at all deontic alternatives OA+ A is true). Thus ours 
is not among the better worlds relative to any world; no world is worse 
than our own. 

The significance of OU, then, is that since what is not obligatory is not 
the case in some deontic alternative, it cannot be obligatory in that 
deontic alternative. That is, if OA is fake, then, since A is false in some 
deontic alternative, OA cannot be true there. 

Given the pessimism implied by this construal of deontic alternative- 
ness, a more reasonable contention might be that since what is not 
obligatory is not the case in some deontic alternative, it cannot be 
obligatory in every deontic alternative. That is, one might argue the 
weaker conclusion that if OA is false, then, since A is false in at least one 
deontic alternative, OA cannot be true in all. 

This weaker assumption is equivalent to the condition that the relation 
of deontic alternativeness be dense, i.e. that every deontic alternative is 
a deontic alternative to a deontic alternative (possibly, but not necessarily, 
itself). This at least has the merit that our world can have unfulfilled 
obligations without being at the bottom of the scale of standards of 
obligation. 

Density as a condition on deontic alternativeness validates the schema 

which is implied (given ROK and PL) by OU, just as secondary reflexivity 
implies density (compare exercises 3.5 8 (c) and 4.33 (b) ) .  

Thus it appears that standard deontic logic might be strengthened by 
the addition of a reduction law, 

for the operator 0. (Note in this connection that from the standpoint 
of modalities the normal extension of D* obtained by adding 0 4  and 
04, is equivalent to that obtained by adding 0 4  and OU; compare 
exercise 4.65.) We leave it for the reader to judge. 
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EXERCISES 

6.7. Describe the conditions on the 'standards of obligation' models 
A? = (W, f, P) of exercise 6.3 that are required for the validity of the 
schemas 0 4  and 0 5  (as well as OD or OD*). 

6.8. What is the effect on the set of valid sentences if 'best of all possible 
worlds' is construed as singular, i.e. if f(a) is required always to be a 
singleton set in models A = (W, f, P) for deontic logic? That is, what 
is the significance of this constraint for the idea of a standard of obliga- 
tion? (Exercises 4.52,5.5, and 5.26 may be helpful.) 

6.9. Let DF, Df, and Dz be the smallest normal extensions of D* con- 
taining, respectiveIy, 0 4  and 04c, 0 4  and OU, and 0 4  and 0 5  (thus 
D; is deontic S5). Prove that 

Each of the systems Df, DZ, and D$ has only finitely many distinct 
modalities (constructed from * ,  1, and 0). Identify these modalities 
and the implications among them. (There are relevant results in sections 
4.4 and 5.2.) 

4.10. Prove that D* has the rule of inference 

which means, roughly speaking, that there are no logically true statements 
of obligation with non-trivial content. Which of the systems Df, D t ,  and 
Dp in the preceding exercise have this rule? (Exercise 5.32 is relevant 
here.) 

6.11. Which of the deontic logics discussed in sections 6.1 and 6.2 are 
decidable? 

6.12. Examine some further schemas containing 0 with a view to their 
plausibility as theorems of deontic logic. 

6.3. Obligation and time 

Obligations arise and pass away as a function of circumstances. In 
particular, what is obligatory at a possible world varies from time to 
time. Some obligations endure, of course, but others are merely transient. 

To  this point we have analyzed the logic of obligation in terms of 
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standard models = ( W, R, P) in which R is a serial relation of deontic 
alternativeness. But these models do not reflect the dependence of 
obligation on time. T o  remedy this, we shall modify the models so as to 
recognize explicitly the role of temporal parameters in the determination 
of obligation. What follows is but one way of accomplishing this - there 
are others - but it gives a striking result about what we call 'past tense 
obligations '. 

Let us think of time as a set of discrete moments, ordered in a linear 
way, without end in past or future. Then time can be represented by the 
set of integers, 

and the relations of earlier and later are represented by < and > . 
Since we wish to regard possible worlds as time-stretched, let us 

construe a possible world as a function on Z into an otherwise unspecified 
set of momentary world-states. Assuming this much, we can define a 
relation of historical identity: worlds a and /3 have the same history at a 
time t - written a -- ,,8 -just in case they are identical up to t .  Formally: 

a mtp iff a(t') = P(t f )  for every t' < t .  

The relation of deontic alternativeness between worlds is of course 
relativized to times, and it is to be constrained by the relation of historical 
identity. Specifically, we insist that ,8 is a deontic alternative to a at a 
time t only if a! and ,!? are historically identical at t .  Formally: 

(R,) if aR$, then a - tp  
This constraint gives voice to the view that obligations accrue to a world 
as a function of events and actions that have occurred there; a world and 
its deontic alternatives are merely different outcomes of their yesterdays' 
events. 

The evaluation of atomic sentences is also indexed by the set of times. 
So e ( n )  is the set of worlds for which Pn is true at t .  In addition we put 
the following condition on P. 

(b) if a(t) = P (t), then a E P , ( ~ )  iff p ~ e ( n )  

This realizes our intention that the value of Pn at a time t in a world a 
be a function solely of the world-state a(t). 

With models A = (W, R, P) thus revised so as to account for time, 
sentences are evaluated with respect to pairs (a, t )  of worlds and times. 
In other words, we write t=gjt>A to mean that A is true in a at t .  The 
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following are the interesting clauses of the definition of truth. 

(1) I=$, t) Pn iff a €P,(n), for n = 0,1,2, . . . . 
(2) k$,t) OA iff for every f l  in X such that aR&, I$, t)A. 

Despite the temporal relativization of the models, nothing changes in 
the logic of 0 : the valid sentences are just as they were before (valid now 
means true at every point (a, t )  in every model). So, on the assumption 
that deontic alternativeness is serial at every moment, we still have 
standard deontic logic, D*. 

The effect of the new modeling emerges more clearly, however, if we 
introduce into the language two further operators, o and 0, to express 
notions of historical necessity and possibility. Then we add to the truth 
definition the following clauses. 

(3) C$,t) i3A iff for every ,B in X such that a -, p, kg, t)A. 

(4) kg, t )  0 A iff for some ,8 in X such that a - ,p, kg, t> A. 

I n  other words, OA holds a t  a world and time if and only if A holds at 
all worlds having the same history as the given world at that time, and 
Q A  holds just in case there is some such world at which A is true. 

Since is an equivalence relation for each time i, the logic of and 
0 is at least S5 (i.e. KT5; compare theorem 5.14). The  following 
validities are representative of the interaction of the operators O ,  0, 
and 0. 

(a)  uA-+ O A  

(b)  O A + O A  
(c) DA-OOA 

( d )  O A - O O A  

The first of these corresponds to condition (R,). The second, it should 
be noted, is another, stronger version of the thesis that ought implies 
can; it is a consequence of (Kt) and the timewise seriality of deontic 
alternativeness. According to the last two schemas, statements of obli- 
gation are deontically vacuous when they concern what is historically 
necessary or possible - vacuous in the sense that the deontic sentences 
are equivalent to their contents. 

Let us define the operator a as follows. 

This operator expresses a notion of historical determinacy. Given a 
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possible world and time, OA means that the proposition expressed by A  
either holds at every world having the same history or fails at all such. 

The  point of introducing a is to give succinct expression to the fact 
that historically determinate propositions are deontically vacuous. That 
is, the following schema is valid, 

This raises the question of whether there are any valid sentences of the 
form OA. We turn to this in the next section. 

EXERCISES 

6.13. Verify that, for each t in 2, is an equivalence relation. Then 
argue that the logic of and 0 is at least a normal KT5-system. 

6.14. Prove the validity of the foHowing schemas in section 6.3. 

(a)  EIA+ O A  

(b)  O A + O A  
( c )  o A - 0 o A  

( d )  OA-OOA 

6.15. Derive ON (0 T) and OD (1 0 I) from (a) and (b )  in the preceding 
exercise together with appropriate principles for and 0, 
6.16. State formally the truth conditions for sentences of the form OA. 

6.17. Prove the validity of the following schemas. 

6.18. Using the schema 

together with principles for and 0, derive schemas ( c )  and (d) in 
exercise 6.14. 

6.4. Past tense obligation 
Let us add to the language operators [PI, ( - ), and (P). The  members 
of this trio correspond to simple past tense constructions, with readings, 
respectively, it always was the case that, at the moment just past it was the 
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case that, and it (at least) once was the case that. Formally, these operators 
are evaluated as follows. 

( 1 )  c$, t> [P]A iff for every t' in Z such that t' < t ,  kg, t f ,  A. 

(2) %,t) ( - )A iff kg, ,-I, A. 
( 3 )  I=$, ,) { P ) A  iff for some t' in Zsuch that t' < t, I$, t 3  A. 

At the end of the last section we asked whether there are any valid 
sentences of the form OA, i.e. whether there are any valid historically 
determinate propositions. With the introduction of the operators [PI, 
( - ), and (P), the answer is affirmative. 

By (a let us understand any genuine past tense modality, i.e. any 
finite, non-empty sequence of the operators [PI, ( - ), and { P ) .  Then 
where A contains no occurrences of O, 0, and 0, the sentence 

is valid. That is to say, pure past tense sentences are historically deter- 
minate. 

Without going into the details of a full proof, we can illustrate this 
claim by showing the validity of the simple sentence 

For this it is enough to prove that, for any pair (a, t )  in a model 
4 = (W,  R, P), if 

( a )  kg, t )  ( - )PO for some p in such that a - ,  /?, 
then 

( b )  I=$, ,, ( - )Po for every y in such that a - , y. 

So assume (a). Then 

k$, Po for some P in 4 such that a - ,  ,O, 

which means that for some ,O in such that a -, P, 

PE &-I (O) .  

To show (b), let y be a world in A% such that a -, y;  it is sufficient to 
argue that y EP,-,(O).  But since t - 1 < t, P(t - 1 )  = y ( t  - I), and so by 
condition (Pt) in the preceding section, 

From this the conclusion follows at once. 
Given the historical determinacy of pure past tense propositions and 



200 Deontic logic 

the deontic vacuity of historically determinate propositions ( (e)  in the 
preceding section), we see that pure past tense propositions are always 
deontically vacuous. I n  other words, where A is devoid of O, 0, and 0, 
the sentence 

is valid. According to this, present obligations concerning past events 
cannot have any deontic force: ' You ought (now) to go to the zoo 
yesterday' means no more than 'You went to the zoo yesterday'. 

EXERCISES 

6.19. Describe some principles about past tenses, i.e. some valid sentences 
involving the operators [PI, ( - ), and (P). 

6.20. Prove the validity of the following 'induction schema' for past 
tenses. 

(( - )AA [PI (A+( -)A))+ CPIA 

6.21. Examine some more instances of a @ A  (where A does not contain 
0, 0, or 0) and show their validity. Explain how a general proof of the 
validity of this schema might proceed. 

6.22. Introduce into the language operators [F], (+), and (F) with 
evaluations as follows. 

(1) kg, tt) [FIA iff for every tf  in Zsuch that t' z t, kgtt) A. 

(2) kg, t )  ( + )A iff t+l) A. 
(3) kgst) (F)A iff for some tf  in Z such that t' > t, kg, ,.) A. 

Identify some validities involving these 'future tense' operators. What is 
valid when these are mixed with [PI, ( -), and (P)? 

6.23. Using the operators introduced in the preceding exercise, as well 
as the rest, formulate a principle of fatalism - 'What will be will be'. 

6.5. Shortcomings 
There are two important criticisms of standard deontic logic and its 
account of obligation. One raises doubt about the adequacy of the 
analysis; the other calls into question its correctness. 

The doubt about adequacy concerns the expression of conditional 
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obligation. Some obligations seem to be unconditional. For example, 
you ought not to cough during the concert. But if you do, you ought to 
apologize. The obligation to apologize is conditional on having coughed. 

Let us represent the conditional obligation of B given that A by a 
sentence of the form 

O(B/A)- 
The question then is whether this form is definable in terms of 0 and 
other familiar operators. The  obvious suggestions for a definition are 

O(A+ B), 
and 

O(A+ OBI, 
where 0 expresses some suitable notion of necessity. 

But all these fail. The  first makes o(B/A) true whenever A is false or 
O B  is true. The second makes O(B/A) true whenever O l A  or O B  is. 
And all three have the unwanted consequence that if O(B/A) is true so is 
O(B]A A A'), where A' is any additional condition whatsoever. 

So it seems that the operator O (  / ) is either primitive - i.e. genuinely 
novel - or definable only by means at present beyond ours. We return 
to this matter in chapter 10. 

The criticism touching on the correctness of standard deontic logic 
has two parts. 

First, by ROK, O A  is a theorem if A is. So the logic is committed to the 
view that obligations always exist, however trivial they may be (compare 
ON). But it seems reasonable to assume that there exist possible worlds 
(presumably very unlike our own) at which nothing at all is obligatory. 

Second, and more serious, is the question of the correctness of the 
theorem 

ODx. ~ ( O A A  O - I A ) .  
It is a matter of controversy whether deontic logic should thus rule on 
the question whether contrary obligations O A  and O l A  are always 
inconsistent. Indeed, it is arguable that the possibility of such conflict is 
a main feature of some concepts of obligation, that it is often this, for 
example, that gives moral dilemmas their poignancy. 

The difficulty is that ODX is a theorem of any normal system for 0 
in which the sentence 

OD. 101 
is a theorem. But OD is relatively uncontroversial, since it merely denies 
the existence of impossible obligations. 
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There is a more persuasive point to be made here. In  any normal 
system for 0 the deontic theses O D  and OD" are equivalent - in the 
strong sense that their biconditional, 

is a theorem. Semantically, this means that in any standard model the 
propositions expressed by OD and ODX are identical: there is no way 
to distinguish the principle that ought implies can from the principle that 
conflicts of obligation cannot exist. 

T o  the extent that the propositions expressed by OD and OD" are 
indistinguishable, so that O D  cannot be a theorem without ODX, the 
analysis of deontic logic in terms of normal systems and standard models 
is a failure. 

If we examine the axiomatization of D* in terms of ROM, OC, ON, 
and OD, in section 6.1, we can extract a weaker, more plausible system 
of deontic logic - to wit, the system formed on the basis of propositional 
logic by ROM and OD. Let us call this minimal deontic logic, or simply D. 

By adopting ROM we accept the principle that obligation is closed 
under implication - that a proposition is obligatory if it is implied by an 
obligatory proposition. And, of course, OD rules out obligations that are 
impossible simpliciter. 

By abandoning ON we give up the view that obligations are present at 
every possible world. By rejecting OC, on the other hand, the assumption 
of the uniqueness of a world's standard of obligation falls away. And 
without this there is a no implication from OD to ODX. 

The  system D is not normal, and models for it cannot be standard. 
So we must seek more subtlety in our semantic and proof-theoretic 
analyses of modality generally. This is the point of the chapters that 
follow. 

EXERCISES 

6.24. With regard to the suggested definientia for O(B/A), 

A +  OB, O(A+B), O(A+ OB), 
prove : 

(a) The  first makes O(B/A) true if A is false or 0 B is true. 

( b )  The second makes O(B/A) true if either 0 1 A  or OB is. 

( c )  For all three, if O(B/A) is true then so is O(B/AA A'). 
(Assume the logic of is normal.) 
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6.25. Prove that the schema 

is a theorem of any normal system for 0. (Compare exercise 4.7.) 

6.26. Using the result in the preceding exercise, explain why the pro- 
positions expressed by OD and ODX are the same in any standard model. 

6.27. By retaining the rule ROM in the system D we embrace the 
theorem 

OA+ O(A v B). 

(Prove this.) This means that the inference from 'You should post this 
letter' to ' You should post or burn this letter' is correct. Is this defensible? 

6.28. Describe a class of models of the kind in exercise 3.14 with respect 
to which the system D is sound. Describe countermodels in this class for 
ON and instances of OC and OD*. 
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M I N I M A L  MODELS F O R  
M O D A L  L O G I C S  

The truth conditions for modal sentences in minimal models are a 
generalization of those in chapter 3. Possible worlds continue to figure 
in the semantic analysis of necessity and possibility, but the meanings of 
modal sentences are given a much simpler account. A necessitation OA 
is said to be true at a possible world just in case the proposition expressed 
by A is in a certain but very general sense necessary with respect to the 
world ; and OA is true at a world if and only if the proposition expressed 
by A is, in a corresponding sense, possible. The  resulting notion of 
validity is such that far fewer principles hold generally on this account 
than did in chapter 3. 

I n  section 7.1 we set out the definition of a minimal model, state the 
truth conditions of modal sentences, and prove the basic theorem about 
validity in classes of minimal models. In  section 7.2 we examine M, C, 
and N from the standpoint of minimal models and define some key 
concepts for the treatment of certain logics involving these schemas. 
Section 7.3 contains a theorem to the effect that standard models can be 
identified with minimal models of a special kind. Section 7.4 briefly 
describes conditions on minimal models sufficient for the validation of 
the schemas D, T ,  B, 4, and 5. In section 7.5 we introduce the idea of 
filtration for minimal models and state some theorems that we use at the 
end of chapter 9 to prove determination theorems. 

7.1. Minimal models 
A minimal model is a structure 

=A? = (W, N, P) 

in which, as before, W is a set of possible worlds and P gives a truth 
value to each atomic sentence at  each world. The new component, N, is a 
function that associates with each possible world a collection of sets of 
possible worlds. Formally: 
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DEFINITION 7.1. AY = (W, N, P) is a minimal modeliff: 

(1) W is a set. 

(2) N is a mapping from W to sets of subsets of W (i.e. 
Na G 9( W ) ,  for each world a in W). 

(3) P is a mapping from natural numbers to subsets of W (i.e. 
P, G W, for each natural number n). 

Once again, as we indicated in the introduction, the idea of this 
modeling is that each possible world a in a minimal model A = ( W, N, P) 
has associated with it a set Nu of propositions that are in some sense 
necessary at or. Since we shall identify a proposition in A with a set of 
possible worlds in A, N, becomes a collection of subsets of W. It must 
be emphasized that Nu may be any collection of propositions, including 
the empty collection; we make no assumptions about the nature of N 
except that it be a function from W to Y ( P ( W ) ) .  This point will be 
better appreciated when we describe some minimal countermode~s to 
familiar schernas in the next section. 

The  interpretation of the necessity operator in minima1 models is thus 
quite simple and natural: we shall say that a sentence of the form OA is 
true at a in A just in case the proposition expressed by A - the truth 
set IIA]lA - is among those necessary at or, i.e. is among those in Nu. 

D EFI  N I T I O N  7.2. Let a be a world in a minimal model = { W, N, P). 

(1) Cf OA iff (lAllA EN,. 
(2) Cf 0 A iff - llAl("$ Na. 

Clause (2) above deserves comment. This treatment of the meaning 
of the possibility operator in minimal models simply reflects our intention 
that the notions of necessity and possibility be dual, in particular that 
0 have the meaning 1 1 (as we see in theorem 7.3 below). For clause 
(2) stipulates that OA is true at cc in 4 just in case the denial of the 
proposition expressed by A, i.e. - llAlid, is not necessary at a, i.e. is 
not in N,. (By - IIAIIX we mean of course the set W - 11 AJI ; wherever 
possible we shall use the shorter form of expression.) 

By way of an example of the behavior of the function N in minimal 
models, let us return to the interpretation of as expressing a notion of 
obligation. We suggested in chapter 6 that P a ,  101, may be a law 
of deontic logic while 00,  l(nA A A), is not ; but we have 
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observed that the biconditional of these is true in every standard model, 
so that one is valid in a class of standard models if and only if the other is. 
Within the framework of minimal models it is possible to distinguish the 
propositions expressed by PO and 00 and so have one valid without 
the other. Specifically, consider the class of minimal models A = (W, 
i'V, P) such that for no a in X does N, contain 0. Then the proposition 
11 ~ 1 1 "  is contained in no N,, and so PO is true at every world in every 
such model. None the less, there are countermodels to instances of 00 
within this class of models; we leave it as an exercise for the reader to 
discover some. 

For another illustration of the role of N in minimal models, suppose 
I-J to be a present continuous tense operator, with a reading like ' it  is 
(being) the case that '. We think of the possible worlds in a minimal model 
as points in time (on the real line, let us say), and for each moment a we 
take N, to be the set of open intervals around a. In  this way OA is true 
at a moment a if and only if the proposition expressed by A is an open 
interval around a, i.e. if and only if A is continuously true throughout 
some (open) interval that contains the (present) moment a. 

Let us close this section with the following theorem, which states that 
the schema DfO is true in every minimal model, and that validity in a 
class of minimal models is preserved by the rule RE. 

T H E o R E  M 7.3. Let C be a class of minimal models. Then: 

(1) kc O A * l U l A .  
(2) If k c A + + B ,  then kcnA-nB. 

Proof. The proof for (1) rehearses our remarks earlier in the section. 
Let a be a world in a minimal model X = (W, N, P). Then: 

I=$ OA iff - lIAIIA$ N, 
- definition 7.2 (2) ; 

iff I /  lA11" #Na 
- theorem 2.10; 

iff not t=$ n l A  
- definition 7.2 (1) ; 

iff k f l n 7 A  
- definition 2.5 (4). 

Therefore, Cf OA - 1 A, for every world a in every minimal 
model A. 
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For (2). Suppose that C is a class of minimal models such that kc  A - B, 
so that IIAll" = 11 BIId for every in C. From this it follows that for any 
world a in any model X = (W, N, P) in C, IjAIA~N, if and only if 
1 1  BII" E Nu. So f o ~  any a in any A in C, Cf O A  if and only if Cf OB, 
which means that kc UA- OB. 

Theorem 7.3 provides (as the discerning reader no doubt suspects) 
the basis of the soundness results for the classical modal logics introduced 
in the next chapter. Indeed, as we shall see, the theorem means that every 
class of minimal models determines a classical modal logic. 

EXERCISES 

7.1. Show that each of the following can be falsified in minimal models. 

M. ~ ( A A  B)+(UAA UB) 

C .  ( D A A O B ) + ~ ] ( A A B )  

N. OT 

7.2. Falsify an instance of 00 - l ( n A  A U l A )  - in a minimal model 
A = ( W, N, P) for which it holds that 0 $ for every a in A. 

7.3. Let C be any class of minimal models. Prove: 

(a) k c  OA-TOIIA.  
(b) If kc A- B, then kc  OA- OB. 

7.4. Prove that the following are valid in any class of minimal models. 

(a )  O ~ t + l O l  ( 6 )  r ] ~ + - i O l  
7.5. We say that minimal models A = ( W, N, P) and A' = ( W',  N', P' ) 
agree on the atoms of A just in case (i) W = W', (ii) N = N', and (iii) 
P, = PA whenever P, is an atomic subsentence of A. Prove that if A 
and A' agree on the atoms of A then they agree on A, in the sense that 
I=fA if and only if If 'A for every a in A. (The proof is by induction 
on the complexity of A. Give it at least for the cases in which A is atomic, 
the falsum, a conditional, and a necessitation. Compare exercise 3.4.) 

7.6. Consider the following conditions on a minimal model ,X = (W, 
N, P), for every world a and proposition (i.e. set of worlds) X and Y 
in A: 

(m) i f X n  Y€Na,  t h e n X ~ N , a n d  Y € N a  

(c) if X E N ~  and Y E N , ,  then Xn  YEN^ 
(4 W E N ,  
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Prove that the schemas M, C, and N are valid in classes of minimal 
models satisfying, respectively, conditions (m), (c), and (n). 

7.7. For a minimal model JI = (W, N, P) inductively define Nn so that 
for every a in A and every natural number n : 

(a) kf n n A  iff 11 AllA E Ng. 
(6)  kr;K OnA iff - IIAIJX $ Ng. 

Then prove (a) and (b)  (by induction on n). 

7.8. Let JI = (W, N, P) be a minimal model, but suppose the truth 
conditions of modal sentences are given like this: 

(a)  If OA iff IIAlld E Na. 
( b )  kf OA iff - IIAIId$Na. 

Prove theorem 7.3 and (a)  and ( b )  in exercise 7.3, using these truth 
conditions. What difference, if any, is there between the systems of modal 
logic determined by the class of all minimal models under the different 
ways of evaluating modal sentences? 

7.9. Let 4 = (W, N, P) be a minimal model, but suppose truth con- 
ditions for necessitations are given by: 

Cf n A  iff for some X s N,, X 5 1112119. 

So to speak, n A  is true at cc, in d if and only if there is a proposition 
necessary at cc that entails the proposition expressed by A in A. 

(a) State truth conditions for possibilitations so that DfO is 
valid in any class of minimal models. 

( b )  Let C be any class of minimal models. Prove that if I=, A + B, 
then kc o A +  OB. 

(c) Prove theorem 7.3, relative to the revised truth conditions for 
modal sentences. 

( d )  Which, if any, of schemas M, C, and N are valid in the class 
of minimal models, given the revised truth conditions? 

7.10. Consider a model 4 = (W, f, P) in which Wand P are as usual 
and f is a mapping from propositions to propositions (i.e. for any set X 
of worlds in 4, f (X) is a set of worlds in A). Relative to a world a in 

we define the truth conditions for necessitations by: 

kf OA iff a E f (11 All"). 
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Equivalently we may say: 

(a) Prove the equivalence of these formulations. 

(b) Prove part (2) of theorem 7.3, where C is any class of models 
of this sort. 

(c) State truth conditions for possibilitations so that DfO is 
valid in any class of such models. 

(d) Given a minimal model A = (W, N, P) we can define an 
equivalent model A' = (W, f, P) by stipulating that for any 
cl and X in A, a E f (X) if and only if X EN,. Prove that 
and d' are pointwise equivalent. 

( e )  Given a model 4 = { W, f, P), define an equivalent minimal 
model&' = (W, N, P), and prove their pointwiseequivalence. 

(f) Conclude from (d) and ( e )  that models of this new sort are 
essentially the same as minimal models. 

7.11. (This exercise presupposes a knowledge of boolean algebra.) A 
boolean algebra is a structure 

in which B is a set containing 1 (the unit element) and 0 (the zero element) 
and closed under the unary operation - (boolean complementation) and 
the binary operations n (boolean intersection or meet) and u (boolean 
union or join). We assume the relation < of boolean inclusion to be 
defined - for example, a < b if and only if any one of the following: 

By a modalalgebra we mean a structure {rg, *) in which 3 is a boolean 
algebra and * is a unary operation in B', an algebraic counterpart of 
necessitation. 

An aZgebraic model is a structure A = (9, s, P) in which 93' and a 

form a modal algebra and P is a mapping from the set of natural numbers 
to elements of B. A is said to beJinite just in case B' has a finite number 
of elements. 

Intuitively, the points in 4 (i.e. in g) may be thought of as pro- 
positions - including ' truth ' and ' falsity ' (1 and 0) - closed under 
propositional analogues of negation, conjunction, disjunction, and neces- 
sitation ( - , n, U, and *). Then P i s  in effect an assignment of propositions 
in A to the atomic sentences. 
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It should be emphasized in this connection that the points in an 
algebraic model are not possible worlds, nor even, necessarily, sets of 
possible worlds. Though sometimes definable, possible worlds are not 
in general a feature of algebraic models. 

In  an algebraic model JZ = (4 *, P) sentences are evaluated by a 
mapping /I I I X  to points (propositions) in A. Here is the definition: 

(1) I(P,JIJY = P,, for n = 0, 1, 2, ... . 
(2) I I T I I ~  = I* 
(3) I ( I ~ "  = 0. 

(4) II  --IAII" = - IIAIl'. 

(5) IIAh BIId = I I  All" n IIBll" 

(6) I I  A v BII A = I I  All" u IIBII" 
(7) IIA+BIIA = - IlAll" u IIBII-U. 

(8) 1lAu Blld = ( - I 1  AllA U I 1  BIIX) n ( - I1 BIIXu l l  AllA)- 
(9) 11 OAll" = * IIAll"* 

(10) / I  OAII" = - * - IIAil" 

A sentence A is said to be true in an algebraic model - written 
P A  - if and only if l/AllX = 1. And A is valid in a class C of algebraic 
models - kc A -just in case kd A for every A in C. 

Prove, for any algebraic model 4 : 

(a) CA A + B iff IIAIA 4 11 B/IA. 
( b )  CAA+-+B iff IIAlIA = IIBII". 

Prove, for any class C of algebraic models: 

(c) OA--IOTA. 
( d )  If Cc A* B, then kc OA- a B .  

Prove : 
(e )  Nane of the schemas M, C, and N is valid in the class of all 

algebraic models. 
(f) For every minimal model there is an equivalent algebraic 

model. (Compare exercise 7.10 (d).)  

We should note that the set of sentences valid in a class C of algebraic 
models is closed under tautological consequence (RPL); i.e. if A is a 
tautological consequence of A,, .. ., A,, each of which is valid in C, then 
A is valid in C too. This is perhaps obvious, but we shall not prove it. 
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7.2. The schemas M, C,  and N 
Let us consider the following schemas. 

M. ~ ( A A  B)+(UAA OB) 
C. ( ~ A A  OB)+ ~ ( A A  B) 
N. l'-JT 

Though these are all valid in any class of standard models, each has a 
counterexample in a minimal model. This is the content of the following 
theorem. 

THE OREM 7.4. None of the schema M ,  C, and N is valid in the class of all 
minimal models. 

Proof. For each schema it is sufficient to describe an instance and a 
minimal model that falsifies it. We begin with N, since it is the simplest. 

For N. Here the instance is just q T . Let .A = ( W, N, P) be a minimal 
model such that W = {a] and N,  = 0 (it does not matter about P). 
Thus A contains just one world, a, and at that world there are no 
necessary propositions. In  particular, the proposition W - i.e. 11 T I IS - is 
not necessary at a, so that OT is false at a. So N has a minimal counter- 
model. 

Notice that the model above continues to falsify N if N, = (0). In 
this variation the proposition 11 I 11" is necessary at a even though 11  T 11" 
is not. 

For M. Consider the instance n(Po A PI)-+ ( ~ P , A  P,), and let 
A = (W, N, P) be a minimal model in which W = {a, P)  (distinct), 
N, = {0), Po = {a), and P, = {B}. Then neither the proposition {a) 
expressed by Po nor the proposition {b} expressed by P, is necessary at 
a; but the proposition expressed by Po A P, - viz. {a} n {p} = 0 - is 
necessary at a. So C](Po A P,) is true at a ,  whereas Po and P, are both 
false at a. Hence O(Po A P,) -+ (a Po A P,) is false at a. Thus M has 
a minimal countermodel. 

For C. Consider the instance (n Po A P,) +- m(Po A PI), and let 4 
be a minimal model like that above for M except that N, = {(a), {PI). 
Then the situation above is reversed: the propositions expressed by 
Po and P, are both necessary at a ,  whereas the proposition expressed by 
their conjunction is not necessary at a. Thus Po and P, are true at a ,  
and n(Po A P,) is false at a. From this it follows that (0 Po A PI) 
-+ n(Po A P,) is false at a, so that C has a minimal countermodel. 

This concludes the proof. 
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It follows from theorem 7.4 that the set of sentences valid in a class 
of minimal models is not in general closed under any of the rules of 
inference RM, RR, RK, and RN, and also that the schemas R and K are 
not generally valid. We set it as an exercise for the reader to prove these 
things. 

Let us turn now to some positive results about minimal models. 
We consider the following conditions on the function N in a minimal 

model X = (W, N, P), for every world a in and every proposition 
(i.e. set of worlds) X and Y in 4: 

(m) i f X n  Y ~ N , , t h e n X ~ N , a n d  Y E N ,  
(c) i f X ~ N , a n d  YEN,, thenXn Y E N ,  

( 4  WEN, 

It is important to observe that condition (m) is equivalently expressed in 
terms of closure under supersets: 

(m') if X G Y and X E N,, then YEN, 

For suppose that (m) holds, and that X and Y are propositions in .A 
such that X c Y and X E N,. Then X = X n Y, so that N, contains 
Xn Y and hence, by (m), Y. Conversely, suppose that (rn') holds, and 
that X and Y are propositions in 4 such that X n YEN,. Then Y EN,, 
by (m'), since X n Y G Y. 

According as the function in a minimal model satisfies conditions (m), 
(c), or (n), we shall say that the model is supplemented, is closed under 
intersections, or contains the unit. When a model satisfies the first two 
conditions, i.e. when it is supplemented and closed under intersections, 
we shall say that it is a quasi-filter. When all three conditions are met, i.e. 
in the case of a quasi-filter that contains the unit, we call the model a 
filter. Thus every filter is a quasi-filter, and every quasi-filter (and hence 
every filter) issupplemented. Note that filters are equally well characterized 
as non-empty quasi-filters - non-empty in the sense that N, # 0 for 
every a in a filter. This follows from the fact that in any supplemented 
model N, is non-empty just in case it contains W; see exercise 7.13. 
This terminology facilitates the statement of results about classes of 
minimal models, for example in the next theorem. 

THE o R E  M 7.5. The following schemas are valid respectively in the indica- 
ted classes of minimal models. 

(1)  M : supplemented 
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(2)  C : closed under intersections 

(3) N : contains the unit 

Proof 
For (1). Let a be a world in a supplemented minimal model A = ( W, 

N, P), and suppose that Cf m(A A B). This means that llA A Bllg EN,, 
i.e. that IIAllAn IIBllA EN,. Because A is supplemented, N, contains 
IIAliA and 11 BII", which means that Cf nA and Cf OB. This is enough 
to establish the contention that M is valid in the class of supplemented 
minimal models. 

For (2). Let a be a world in a minimal model A = (W, N, P) that 
is closed under intersections, and suppose that OA A (?B is true at a. 
We leave it as an exercise for the reader to argue that n(A A B) is true at 
a, which is all that is required now to show that C is valid in the class of 
minimal models closed under intersections. 

For (3).  Let AY = (W, N, P) be a minimal model that contains the 
unit. Then N, contains 11 T ll", for every a in A ,  which means that OT 
is true i n d .  Therefore N is valid in the class of minimal models containing 
the unit. 

The  reader should observe that the countermodels for M, C, and N 
in the proof of theorem 7.4 fail to satisfy the respective conditions in 
theorem 7.5 for the validity of these schemas. 

The  classes of minimal models selected for consideration here determine 
some important systems of modal logic. For the most part these are 
weaker than the smallest normal system, K ,  in the sense of being properly 
included in K. As we shall see, however, K is determined by the class of 
filters, i.e. by the class of supplemented minimal models closed under 
intersections and containing the unit. Indeed, K is determined by a 
special class of filters, the augmented minimal models introduced in the 
next section. 

We close the section with definitions of three types of construction on 
minimal models. 

DEFINITION 7.6. Let A = {W, N, P) be a minimal model. The sup- 
plementation of 4 is the minimal model ,X+ = (W, N+, P) 
in which N$ is the superset closure of N,, for each a in A. 
That is, for every a and X in A ,  

X E N ;  iff Y s X f o r  some YEN,. 
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Thus A+ differs from A only in that N$ contains every proposition in 
X that includes any proposition in N,. Notice that N, G N,C, since every 
proposition includes itself. Thus we may characterize a minimal model 
as supplemented just in case it is its own supplementation, i.e. when 
N z  = N, for every a. 

DEFINITION 7.7. Let A = (W, N, P) be a minimal model. The  inter- 
section closure of A is the minimal model A?- = (W, N-, P )  
in which, for every a and X in A, 

X E N ;  iff X = X , n  ... nXn for some n > 0 and X ,  ,..., 
Xn €Na.  

Of course N, r N;, since a proposition is identical with the intersection 
of it with itself. So a minimal model is closed under intersections if and 
only if it is its own intersection closure. 

The models A+- and &?-+ are always the same, which is to say that 
it is a matter of indifference whether we first form the supplementation of a 
minimal model and then take the intersection closure of the result, or 
vice versa. For suppose that X E Naf-, so that X = X ,  n . . . n X,, where 
each & is a superset of some Y,E N,. Then N,I contains Y ,  n . . . n Y,, 
which is a subset of XI n . . . n X,  and hence of X, so that X EN;". Thus 
N2- G N;+ (and we leave the argument for the reverse as an exercise). 
This result makes possible the following definition. 

DEFINITION 7.8. Let A = (I&', N, P )  be a minimal model. The quasi- 
filtering of &? is the minimal model Ah = ( W, N*, P), where 
&f = A+- = A-+. 

So a quasi-filter is a minimal model identical with its own quasi-filtering. 
The  supplementation, intersection closure, or quasi-filtering of a 

minimal model does not in general produce an equivalent model. But 
these constructions are valuable in connection with filtrations and 
canonical models, as we shall see. 

EXERCISES 

7.12. Using theorem 7.4, prove that R and K are not generally valid in 
classes of minimal models, and that validity in a class of minimal models 
is not always preserved by the rules of inference RM, RR, RK, and R N .  
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7.13. Prove that for any a in any supplemented minimal model d = ( W, 
N, P), N, # 0 if and only if WEN,. 

7.14. Complete the proof of part (2) of theorem 7.5 (compare exercise 
7.6). 

7.15. Complete the proof that &+- = A-+ by showing that N;+ r N2- 
for every a (see before theorem 7.8). 

7.16. Let A be a minimal model. Prove : 

(a) X+ is closed under intersections if A is. 

( b )  A- is supplemented if A is. 

7.17. Give examples to show that the supplementation, intersection 
closure, or quasi-filtering of a minimal model does not always yield an 
equivalent model. 

7.18. Consider the duals of M, C, and N: 

MO. (OAv OB)+O(AvB) 
CO. O(Av B)+(OAv OB) 
NO. 101 

Show that these schemas are valid in classes of minimal models that are 
respectively supplemented, closed under intersections, and contain the 
unit. 

7.19. Give examples of minimal models satisfying the following con- 
ditions. 

(a) supplemented, closed under intersections, and falsifying N 

(b)  supplemented, containing the unit, and falsifying an instance 
of C 

( c )  closed under intersections, containing the unit, and falsifying 
an instance of M 

These results aid in the proof of the distinctness of the modal logics 
listed in figure 8.1 ; see theorem 9.2. 

7.20. Identify conditions on minimal models to validate the schemas 
R and K. 

7.21. Identify a condition on minimal models to validate the following 
schemas. 

~ ( A A  B)+ O A  OA+ O(A v B) 
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7.22. Describe minimal countermodels for instances of each of the 
following schemas. 

7.23. Consider the truth conditions for modal sentences given in exercise 
7.8. Identify conditions on minimal models to validate the schemas 
M 0, C 0, and N 0. Compare the logics determined by classes of 
minimal models satisfying these conditions with the logics determined 
(under the usual interpretation of and 0) by the classes of minimal 
models that are supplemented, closed under intersections, or possessed 
of the unit. 

7.24. Let JI = {W, N, P) be a supplemented minimal model. Prove, for 
every a in A : 

kf OA iff for some X EN,,  X E JIAII 

7.25. Consider the truth conditions for modal sentences in exercise 7.9. 
Prove : 

(a)  The schema M is valid in any class of minimal models, 
relative to these truth conditions, 

( b )  For every minimal model with truth conditions of this sort 
there is an equivalent supplemented minimal model with 
truth conditions of the usual kind; and vice versa. 

7.26. Consider the models JI = {W, f, P) in exercise 7.10. Define 
classes of models of this sort equivalent to the classes of minimal models 
that are supplemented, closed under intersection, and possessed of the 
unit. 

7.27. Consider the following conditions on the algebraic models 4 = {g, 
* , P) described in exercise 7.1 1. 

Prove that the schemas M, C, and N are valid in classes of algebraic 
models satisfying, respectively, conditions (m*), (cX), and (nL). 
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7.3. Augmentation 

What is the relationship between standard models and minimal models? 
To answer this question precisely we introduce the idea of an augmented 
model. 

A minimal model A = (W, N,  P) is augmented if and only if it is 
supplemented and, for every world a in it, 

Thus in an augmented model each N, contains a smallest proposition, the 
set comprising just those worlds that are members of every proposition 
in Na. Models of this kind are equally well characterized by the condition 
that N, always contains ONu and every superset thereof. In other words, 
JZ is augmented just in case for every u and X in A?, 

(a) x ~ x i f f  nN, 5 X. 

(In one direction this condition is of course trivial: nN, is a subset of 
every set in N,.) The equivalence of this characterization is readily seen. 
If d is augmented and nNu c X, then by supplementation X E Nu. On 
the other hand, suppose satisfies the condition. Then if X G Y and 
X E Nu it follows that nlV, s Y, which means that YEN,. So A is 
supplemented. Moreover, n N a € N U ,  since n N ,  c nN,. Hence the 
model is augmented. 

Notice, too, that an augmented model contains the unit, i.e. N, 
always contains W (since W always includes n Nu). 

The condition that nNu E Nu may be described as closure under 
intersection, as distinguished from closure under finite intersections 
(condition (c) of the preceding section). In  the present context, closure 
under intersection is equivalent to saying that the model is closed under 
arbitrary intersections, i.e. that each Nu contains the intersection of any 
collection of its members. For this implies that, in particular, niVa t nT,; 
and, conversely, if X is a subset of N,, then n N ,  _c n%, whence 
OXEN,  by supplementation. It follows as a corollary to this that 
augmented models are closed under (finite) intersections. 

Thus every augmented model is a filter: supplemented, closed under 
intersections, and possessed of the unit. hloreover, when a filter contains 
only finitely many worlds it is augmented. For then each N, contains only 
finitely many propositions, and so closure under arbitrary intersections 
reduces to closure under intersections. I n  short, every finite filter is 
augmented. 

Not every filter is augmented, however. For example, consider a 
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minimal model A' = {W, N, P) in which W is the set of real numbers 
and, for each real number a, 

Na={Xz W : ( a , p ) ~ X f o r s o m e , 8 ~ W s u c h t h a t a < b ) .  

That is, N, contains every set of real numbers that includes some open 
interval (a, p) where ,O is larger than a. I t  is left as an exercise for the 
reader to show that& is supplemented and contains the unit; we complete 
the proof that A? is a filter by arguing, as follows, that it is closed under 
intersections. Suppose for a in AT that Na contains sets X and Y. 
Then there exist intervals (a, /3,) and (a, /3J such that (a, PI) c X and 
(a, pa) c Y. We may assume without loss of generality that 8, 4 p2, 
so that (a, a,) c (a, a,). Then both X and Y include (a, a), from which 
it follows that  XI^ Y includes this interval. By supplementation, then, 
X n  Y is in N,. So A is closed under intersections. But it is not closed 
under intersection; indeed, nN, is not a member of N, for any a in A. 
For nNa is always the empty set (since there is no smallest interval 
(a, p) where ,9 > a), whereas none of the sets in N, is empty (since for 
no /? > a is (a, 8) empty). In short, n N ,  = 0, but 04  N,, for every 
a in A?. 

The relationship between standard models and minimal models can 
now be stated: a standard model is essentially an augmented minimal 
model. We put this more precisely as a theorem. 

T K EOREM 7.9. For every standard model Xa = { W, R, P )  there is a 
pointwise equivalent augmentedminimaZmodelm = ( W, N, P) ,  
and vice versa. 

Proof. Let XB be a standard model and define the minimal model Am 
by stipulating that 

 EN, iff {BE W :  aRB} E X,  

for every a E Wand every X s W. Then nNa ;= {/3 E W: aRp} for each 
a E W. So dm satisfies condition (a), which means that it is augmented. 
The proof that As and Am are pointwise equivalent, i.e. that a world 
verifies the same sentences in each model, is by induction on the com- 
plexity of a sentence A. The only case of interest is that in which A is a 
necessitation, DB, where the argument goes like this: 

tp' IJB iff for every /3 E W such that aRp, Ifa B 
- definition 3.2 (1) ; 

i f f V ~  W: aRP] s IIBIIA8 
- compare exercise 3.13 ; 
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iff I/BII-@EN~ 
- definition of N and the inductive hypothesis ; 

iff kfrn UB 
- definition 7.2 (1). 

For the other half of the theorem, let Am be an augmented minimal 
model and define the standard model As by: 

aRp iff p E nN,, 

for every a and /3 in W. As before, necessitation is the only case of 
interest in the inductive proof that the models are pointwise equivalent. 
The argument proceeds as follows. 

tf" n B  iff I /  BllAm E N, 
- definition 7.2 (1) ; 

iff nNa c IIBIIdrn 
- because Am is augmented ; 

iff for every p E W such that aRP, I=$' B 
- definition of R and the inductive hypothesis; 

iff t=f O B  
- definition 3.2 (1). 

This completes the proof of the theorem. 

Thus we see that the standard models can be paired one-to-one with 
the augmented minimal models in such a way that paired models are 
pointwise equivalent. I t  is in this sense that we identify the two classes 
of models. 

In view of this we have already a completeness theorem for classes of 
minimal models. In particular, every normal system is complete with 
respect to the class of augmented models, since by theorems 5.8 and 7.9 
any non-theorem of such a logic is false in some such model. 

With an eye to proving this result directly in chapter 9 we define the 
operation of augmentation, which turns a minimal model (of any sort) 
into an augmented model. 

DEFINITION 7.10. Let A = (W, N, P) be a minimal model. The 
augmentation of X is the minimal model At! = (W, N',  P) 
in which, for each a E W, 

NL = { X r  W :  nN,  E XI. 
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That is, 4' is the supplementation of A closed under intersection. An 
augmented model is thus a minimal model identical with its own 
augmentation. 

EXERCISES 

7.28. Show that the model defined two paragraphs before theorem 7.9 
is supplemented and contains the unit. 

7.29. For both halves of theorem 7.9 give the proofs of pointwise 
equivalence for the cases in which A is atomic, the falsurn, a conditional, 
and a possibilitation. 

7.30. Consider the following conditions on a minimal model X = (W, 
N, P), for every a, X, and Y in 4: 

jr) Xn Y ~ N , i f f X ~ N , a n d  Y E N ,  
(k) if - X U  YEN,, then if X E N ,  then YEN, 

Prove that the schemas R and K are valid in classes of minimal models 
satisfying respectively conditions (r) and (k). 

7.31. Prove that a supplemented minimal model is closed under inter- 
sections just in case it satisfies condition (k) in the preceding exercise. 

7.32. Describe conditions on minimal models to validate the schemas 
D, T, B, 4, and 5. (Compare exercise 7.22.) 

7.4. The schemas D, T, B, 4, and 5 
We consider once again the following schemas. 

D, f iA+OA 
T. [3A-+A 

B. A - + [ 3 0 A  
4. a A + a n A  
5. OA-+OOA 

None of these is valid in the class of all minimal models; see exercise 
7.22, But for each of these schemas we can identify a class of minimal 
models that validates it. We wish to consider the following conditions on 
a minimal model A' = (W, N, P), for every world a and proposition 
X i n d :  
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(d) i f X ~ N , , t h e n  -X$N, 
(t) i f X ~ N , , t h e n a ~ X  

(b) if & E X ,  then{,8inA: -X$NP)eNa 

(iv) i f X ~ N , , t h e n { B i n d : x ~ N ~ ] ~ N ~  

(v) i fX$Na,  t h e n { B i n A :  X $ N P ) ~ N a  

THE o R E M 7.1 1 .  The following schemas are valid respectively in the indica- 
ted classes of minimal models. 

(1) D :  condition (d) 

(2) T :  condition (t) 

( 3 )  B :  condition (b) 

(4) 4: cadi t in t  (iv) 

(5) 5: condition (v) 

Proof. Let a be a world in a minimal model A = (W, N,  P). 
For (1). Suppose JY satisfies (d), and that UA is true at a. Then 

11 Alld E Na, and SO by (d), - IIA[ld $ Na, which means that 0 A is true at 
a. I t  follows that D is valid in the class of minimal models that satisfy 
condition (d). 

For (2). Assume that X satisfies condition (t), and suppose O A  to be 
true at a. Then I(AllA~ Na, and so by (t), a E IIAlld, which means that 
A is true at a. This suffices to show that T is valid in the class of minimal 
models that satisfy condition (t). 

For (3). Here we suppose that JY satisfies condition (b), and that A is 
true at a. I n  other words, a E /lAllA, from which it follows by (b) that 
{/? in A: - lIAIIA$ NB) EN,. This means that (P in A: Cf OA) EN,, 
i.e. that I (  0 AilJY E Na. But this last just means that 0 A is true at a, 
which is what we needed to show. Thus the schema B is valid in the 
class of minimal models satisfying condition (b). 

For (4). Exercise. 

For (5). Exercise. 

As the reader has probably noticed, it is often possible to 'read off' 
from a schema a constraint on the class of minimal models that yields a 
class of models that validates the schema. We close this section by 
remarking that the schema 
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is valid in the class of minimal models 4 = (W, N, P) that satisfy the 
condition that for every world a and proposition X in A: 

(g) if - { b i n d :  X E N ~ } $ N ~ ,  

then{/? inA:  - X $ N B ] c N a  

The proof is not difficult and is left as an exercise. In the exercises we 
invite the reader to generalize this result for the schema GkLrnpn, as  well 
as for its converse. 

EXERCISES 

7.33. Prove parts (4) and (5)  of theorem 7.1 1. 

7.34. Prove that the schema G is valid in any class of minimal models 
that satisfy the condition (g) (in the last paragraph of section 7.4). 

7.35. Consider the duals of T, B, 4, and 5 : 

TO.  A + O A  

BO. OOA-+A 

4 0 .  O O A + O A  

50- O O A + O A  
Show that these schemas are valid in classes of minimal models satisfying 
respectively conditions (t), (b), (iv), and (v). 

7.36. Prove that a minimal model satisfies conditions (d), (b), (iv), and 
(n) (contains the unit) if it satisfies (t) and (v). 

7.37. Identify conditions on minimal models to validate the following 
sentences. - 

P. OT P. l o r  
7.38. For a and X in a minimal model =A? = (W, N, P) we define Nn 
inductively as follows. 

(I) X E N ;  iff  EX. 

(2) X E N ~  iff { B i n d :  XEN?-~)EN, ,  for n > 0. 

Given this definition one can prove (a) and (b )  in exercise 7.7. 
Prove that the schema 
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is valid in any class of minimal models AT = (W, N, P) that satisfy the 
condition, 

(gkJ;nsn) if - {/? in A : X E Nj}  $ N,k, 

then( /? inA:  - X $ N ~ ) E N F .  

Identify a condition (gtAw) on minimal models to validate the schema 

Derive validating conditions on minimal models for schemas like D, T, 
B, 4, and 5 from conditions (gkjz*mpn) or (g~~z~mfi) .  

7.39. Identify conditions on minimal models to validate schemas (like 
U, O(nA+A)) not covered by Gk?'pm.n or G:J*mjn. 

7.40. Define conditions on the models A = { W, f, P) of exercise 7.10 
equivalent to (d), (t), (b), (iv), (v), and (g). 

7.41. For a model A = (W, f, P) in exercise 7.10 inductively define f n  

so that, for every n, 11 nnAll' = fn(llAIIA). 

7.42. Consider the following conditions on the algebraic models 
4 = {a, *, P) of exercise 7.11. 

Prove that the schemas D, T, B, 4,5, and G are valid in classes of algebraic 
models satisfying, respectively, conditions (dl), (t*), (b*), (ivr), (vr), 
and (g*). 

7.43. Let A = (g, *, P) be an algebraic model, as in exercise 7.11, and 
define : 

(I) *Oa = a. 

(2) = wn-la, for n > 0. 

Prove, for any n >, 0: 

(a) 11 OnAllA = *nllAIIS (b)  11 OnAlld = -*n- 11 All< 

Identify conditions on algebraic models to validate the schemas GkXmn 

and GiL%n and other schemas not covered by these. 
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7.5. Filtrations 

Filtrations of minimal models are very simply defined (recall the meanings 
of , [a], and [XI from section 2.3). 

DEFINITION 7.12. Let = (W, N, P) be a minimal model, and let I' 
be a set of sentences closed under subsentences. Then a 
Jciltration of 4 through I' is any minimal model 4# = (W*, 
N", PX) such that : 

( 1 )  W"= [q. 
(2) For every a in A: 

(a)  for every sentence O A  E r, 
IIAII'EN'Z iff [llAlldl ENLEI; 

( b )  for every sentence 0 A E r, 
- llAll"~Na iff - [IIAIIAl EN:]. 

(3) P: = [P,] ,  for each n such that Pn E r. 

By afinest I'-filtration of we mean one in which each N& contains 
just (a) the sets [llAd] such that OA EF and IIAIld~N, and (b )  the 
sets - [ I 1  AllJs] such that OA E I' and - j l  Alld EN,. This is perhaps the 
simplest example of a minimal filtration. We leave it for the reader to 
explain what is meant by a coarsest filtration of this sort. 

The definition is designed precisely to make possible the proof of the 
following basic theorem. 

THE o R E M  7.13. Let 4" = ( W*, N*, P") be a I'-filtration of a minimal 
mode l4  = ( W, N, P). Then for every A E I? and every a in A: 

Cf A iff C$; A. 

Equivalently: [IIAIq = llAlld*, for every A E r. 

Proof. We give the proof only for the case in which A in I' is a neces- 
sitation, UB. Note that the inductive hypothesis implies that [IIBII-Y] 
= 1 1  BIId*. The reasoning then is straightforward, for any a in A: 

kf UB iff IIB(Id E N ,  
- definition 7.2 (1) ; 

iff [ I 1  B l lT ENS, 
- ( 2 )  (a)  of definition 7.12 ; 
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iff IIBIId* EN& 
- inductive hypothesis ; 

iff I=${ UB 
- definition 7.2 (1). 

The  following two theorems are corollaries. 

THE o R E  M 7.14. Let A *  be a I?-jltration of a minimal model A. Then 4 
and A* are equivalent modulo I? - i.e. for every A E I?: 
kdA ifl kJY*A* 

THEOREM 7.15. Let C be a class of minimal models, and let r (C)  be the 
class of I'-filtrations of models in C. Then for every A E r : / 
kc A 23 br(c) A. 

The next two theorems are useful when it comes to proving finite 
determination theorems in chapter 9. 

T H EO R E  M 7.16. Let A* be a finest I?-3ltration of a minimal model A, 
and consider the supplementation A*+,  the intersection closure 
A*-, and the quasi-filtering A * *  of d*. Then: 

(1) &*+ is a r-jiltration of A $4 is supplemented. 

(2) A+- is a r-filtration of d if& is closed under intersections. 

(3) AQf is a r-J'iltration of A ifYX is a quasi-filter. 

Proof. We give the proof for part (3) only; parts (1) and (2) are left as 
exercises. 

Let A*& = (W*, N**, P*) be the quasi-fiItering of a finest r- 
filtration AT* = { W*, hT*, P*) of a quasi-filter A = (W, N, P) T o  
show that AT*k is a r-filtration of & we must prove that N** satisfies 
the following conditions, for every a in A. 

(a) for every O A  E I?, llAllJY E Nu iff [IIAllJY] 'I Ngf 

(b)  for every ()A E I?, - / I  All& E Nu iff - [ I /  AllJP] s Ng; 

We argue for (a) only; (b)  is left as an exercise. 
Let U A  be a sentence in I?. For left-to-right, suppose that llAlld EN,. 

Then [ I 1  A & ]  EN&, since dX is a I?-filtration of A, and so [11A11q E NT; 
by quasi-filtering. For the reverse suppose [lIAllA] E N E .  Because A* is 
a finest r-filtration of A, this means that 
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for some OA,, .. ., OAn e I? such that IIA1ll", . . ., IIAnllS E Na. Since 
A,, . . ., A,, and A are in r, the inclusion implies that 

IIAlllAn * * *  n IlAnll ' E ll AII " 
(exercise 7.47). But Jl is a quasi-filter. So 11 AIIIR n . . . n 11 An\lA E Na, and 
hence IAll' E Na, which is what we wished to show. 

THE OREM 7.17. Let A* = ( WP, NP, P*) be any l?-filiration of a minimal 
model X = ( W, N, P),  and suppose that 0 T E I?. Then d* 
contains the unit if A? does. 

Proof. We have that for every a in .A, 

for every OA E I?, 11 All& E Na iff [IIAIIJY] E Nz.  

So [I/ T I I ~ ]  E N.f if d! contains the unit and OT E r. But [\I TII'] = WP. 
So A* contains the unit. 

EXERCISES 

7.44. Explain what is meant by a coarsest I?-filtration of a minimal model. 
(See the text following definition 7.12.) 

7.4g Prove that N* in a finest or coarsest minimal filtration satisfies the 
following. 

If a - #I, then NZl = NJ,. 

7.46. Give the proof of theorem 7.13 for the case in which A = 0 B. 

7.47. Prove parts (1) and (2) of theorem 7.16, and give the argument for 
condition (6) in the proof of part (3). In connection with the argument for 
condition (a) in the proof of (3) show that 

lIA~ll"n *.. n llAnllA c llAllX, 

given the assumption that UA,, . . . , mAn E l?, 11 AIII . . . , ((AnII-Y EN,, and 

7.48. Let l(r) be the boolean closure of a set of sentences l? closed under 
subsentences (see exercise 3.68), and let A* = (WP, N X ,  P*) be a 
I?-filtration of a minimal model Jl = (W, N,  P ) .  Prove that for every 
A E 9(r) and every a in A, 

Cf A iff A, 
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i.e. that [((AI(J7 = //Alld*, for every AEB(I'). (The proof is inductive; 
give it for the cases in which A is atomic, the falsum, a conditional, and 
a necessitation.) 

7.49, Let C be a class of minimal models, and let C,,, be the class of all 
finite models in C. Using theorems 7.14, 7.16, and 7.17 prove that, for 
every sentence A, 

kc A iff kc PIN A, 
where C is any one of the following classes of minimal models. 

(a) all 

(b)  supplemented 

(c) closed under intersections 

(d) containing the unit 

(e) quasi-filters 

(f) supplemented? containing the unit 

(g) closed under intersections, containing the unit 

(h) filters 

7.50. Define the idea of a r-filtration for the models A 
exercise 7.10. 

7.51. Let A = (g, +, P) be an algebraic mode1 (see exercise 7.1 I), let 
I' be a set of sentences closed under subsentences, and let 

drr = (P, *r, Pr) 

be an algebraic model satisfying the following conditions. 

(1) gr is the boolean subalgebra of ~49 based on the set 
{IIAIIX : A E  r}, i.e. the boolean algebra formed from this 
set by adding 1 and 0 from a and closing under the 
operations - , n , and u in g. 

(2) agrees with * on points in gr; i.e. *ra = * a  for all a 
in Br .  

(3) Pr agrees with P on all atomic sentences in I?; i.e. Pz = P, 
for all n such that Pn E I". 

We may call Ar an algebraic r-Jiltration of A. Note that drr is finite if 
F is. Prove that for every A E P, 

P A  iff Vr A. 
The proof is by induction on the complexity of A. Give it for the cases in 
which A is atomic, the falsum, a conditional, and a necessitation. 



CLASSICAL SYSTEMS O F  

M O D A L  L O G I C  

In this chapter we examine from a deductive point of view a class of 
systems of modal logic we call classical. 

In section 8.1 we define the class of classical systems, point out some 
alternative characterizations, and state some theorems on replacement 
and duality. 

The smallest classical modal logic is called E. T o  name classical 
systems we write 

ES, ... S, 
for the classical modal logic that results when the schernas S,, . . . , S, are 
taken as theorems; i.e. 

ES, . . . S, = the smallest classical system of modal logic con- 
taining (every instance of) the schemas s,, . . ., s,. 

The order of the schema names is a matter of indifference; for example, 
we may write either EMC or ECM for the smallest classical logic con- 
taining the schemas M and C. And note that when there are no schemas 
the definition leaves E as the smallest classical system. 

In section 8.2 we introduce two further classes of modal logics - 
monotonic and regular - and set forth some alternative characterizations 
of them. 

Section 8.3 is a brief look at classical systems containing schemas such 
as D, T, B, 4, and 5. 

8.1. Classical systems 

We define classical systems of modal logic in terms of the schema 

DfO. O A + + l C ] l A  
and the rule of inference 

RE. A w B  
OA-OB' 
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D EF I N I T I 0 N 8.1. A system of modal logic is classical iff it contains Df 0 
and is closed under RE. 

The following theorem provides another way of characterizing classical 
systems. 

T H E  0 RE M 8.2. A system of modal logic is classicalzg it contains the schema 

Dfyl. n A - 7 V l A  

and is closed under the rule of in f i rme  

A-B 
VAH OB* 

Proof, T o  see that a classical logic always contains D f n  the reader 
should examine the proof of this principle in section 1.2 and note that it 
uses only PL, Df 0, and RE. For RE 0 ,  observe that if A H B is a theorem 
of a classical system then so are 1 A - l B ,  0 1 A -  OlB, and 
1 1 A  ++ 1 7 B (by PL, RE, and PL) ; but by Df the last sentence 
is equivalent to 0 A ++ 0 B. 

We leave the argument for the reverse - that a modal logic is classical 
if it has D f a  and RE 0 - as an exercise. 

We turn next to theorems on replacement and duality in classical 
systems. 

THE o R E  M 8.3. Every classical system of modal logic has the rule of replace- 
men t:  

REP. 

(Recall the definition of A[B/Br] in section 2.1 .) 

Proof, The proof is exactly like that for theorem 4.7 - replacement i r  
normal systems - since it appeals only to PL, RE, and REQ (as the 
reader should confirm). \ 

Notice that the rules RE and REV are special cases of REP. This 
suggests the following characterization of classical modal logics. 

TH EO R E M  8.4. A system of modal logic is classical zp it contains Df 0 or 
Df /J and is closed under REP. 
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Proof. Exercise. 

For the next theorem the reader should recall the meaning of A* given 
in definition 2.4. 

THEOREM 8.5. Evety classical system of modal logic has DUAL, i.e. all 
the following theorems and rules of inference. 

(1) A* l A *  

Proof. See the proof of this for normal systems, theorem 4.8, which 
uses only PL, Df 0, Df 17, and REP. 

Finally, a theorem about duals of modalities. 

THE o R E  M 8.6. Let Z be a classical system of modal logic. Then: 

(1) t-z #A - - l#*-IA.  

(2) k, #A ifl k, l @ * l A .  

(3) kc $A + $A, for every A, zfl  $*A + #*A, for every A. 

( 4 )  kc $A - $A, for every A, z f l  kc #*A - +*A, for every A. 

Proof. This is just theorem 4.9 (now for classical logics), the proof for 
which suffices here as well. 

EXERCISES 

8.1. Complete the proof of theorem 8.2 by showing that a modal logic is 
classical if it contains Df[7 and is closed under RE 0.  

8.2. Examine the proof of theorem 4.7 to confirm that it appeals only to 
PL, RE, and R E 0  (with regard to theorem 8.3). 

8.3. Prove theorem 8.4. 
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8.4. Examine the proof of theorem 4.8 to confirm that it uses only PL, 
Df 0, DfO, and REP (with regard to theorem 8.5). 

8.5. Examine the proof of theorem 4.9 to see that it suffices as well for 
theorem 8.6. 

8.6. Prove that A - A** is a theorem of any classical modal logic, 

8.7. Where S and S 0 are the schemas #A+ $A and $*A -t #*A, for 
affirmative modalities # and $, show that a classical system contains S if 
and only if it contains S 0 (compare theorem 4.10). 

8.8. Show that a classicaI modal logic has one of the following theorems 
and rules of inference if and only if it has them all. 

A-B A - B  
+A * $B #*AH $'B 

8.2. Monotonic and regular systems 

Thus far in this book we have distinguished two main classes of modal 
logics: classical systems, which are closed under the rule RE; and normal 
systems, which are closed under the rule 

( A l ~  ... A A ~ ) - + A  RK. --- 
(OA, A . . . A uA,)+ OA (n b 0). 

In this section we shall be interested as well in classes of modal logics 
defined by the rules 

RM. 
A+B 

CIA-+ OB 
and 

RR. (AA B)+C 
(KIA/\ OB)+OC' 

D EF I N I T  I o N 8.7. A system of modal logic is monotonic iff it contains Df 0 
and is closed under RM. 

D EF I N r T I o N 8.8. A system of modal logic is regular iff it contains Df 0 
and is closed under RR. 

We denote the smallest monotonic system by M, and the smallest 
regular system by R. As with classical and normal systems we write 
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MS, . .. S, and RS, . . . S,, respectively, for the smallest monotonic and 
regular systems that have the schemas S,, . . . , S, as theorems. 

The classes of classical, monotonic, regular, and normal systems form 
a sequence of ever more encompassing kinds of modal logics, in the sense 
of the following theorem. 

THEOREM 8.9 
I (1) Every monotonic system of modal logic is classical. 

(2)  Every regular system of modal logic is monotonic, and hence 
classical. 

(3) Every normal system of modal logic is regular, and hence 
monotonic and classical. 

Proof. The proofs of parts (1) and (3) are to be found in the proof of 
theorem 4.2 (as the reader should verify). For (2) : 

1. A-+B hypothesis 

2. (AAA)+B 1, PL 
3. ( ~ A A  a A ) +  DB 2, RR 
4 . O A + a B  3, PL 

Thus a modal logic has the rule RM if it has the rule RR; so every 
regular system is monotonic. 

In particular, then, the smallest classical, monotonic, regular, and 
normal logics - E, M, R, and K - are increasingly inclusive. (That the 
inclusions are in fact proper is proved in chapter 9.) 

Let us consider now the following schemas. 

( 1 )  Every monotonic system of modal logic contains M. 
(2)  Every regular system of modal logic contains M ,  C ,  R, 

and K. 

Proof. That monotonic (and hence regular) systems contain M is 
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shown in the proof, for M, of theorem 4.2. Likewise, the proofs there for 
C, R, and K show that these are theorems of every regular system. 

The schemas mentioned in theorem 8.10 can be used to provide 
several alternative characterizations of monotonic and regular systems of 
modal logic. We single out three of these, using M and C, in the next 
theorem; there are others in the exercises. 

THEOREM 8.11. Let X be a system of modullogic containing DfO. Then: 

(1) C is monotonic zjy-it cmtains M and is closed under RE. 
(2 )  Z is regular z#it contains C and is closed under RM. 

(3) C is regular #it contains C and M and is closed under RE. 

Proof. We consider systems containing Df 0. The  left-to-right cases 
are covered by theorem 8.10, so we treat only right-to-left. 

For (1) : 
1. A+B hypothesis 

2. A-(AA B) 1, PL 

3. IJA-O(AAB) 2, RE 
4. O ( A A B ) + ( O A A ~ B )  M 

5.OA+ [7B 3,4, PL 

Thus a system has RM - and so is monotonic - if it has M and RE. 
For (2). The proof of theorem 4.3 (3) shows that a system has RR, 

and so is regular, if it has C and RM. 
For (3). If a modal logic has C, M, and RE, then by part (1) it has 

RM, and so by part (2) it has RR, which means that it is regular. 

By way of summarizing theorem 8.11: Monotonic logics are the 
classical logics containing M. Regular logics are the monotonic logics 
containing C, or the classical logics containing C and M. In  particular, 
M = E M a n d R = M C = E M C .  

I n  theorem 4.3 (2,3,4) normal systems are characterized by using the 
rules and theorems mentioned so far together with 

We may summar'ize those results as follows. Normal modal logics are: 
(1) the regular systems containing N ; (2) the monotonic systems contain- 
ing N and C; (3) the classical systems containing N, C, and M. In  
particular, K (the smallest normal system) = dN = M C N  = EMCN. 
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Other such characterizations of normal systems, involving the schema K 
and the rule 

A 
RN. - 

CIA' 

appear in theorem 4.3 (1) and exercise 4.5. 
Theorem 8.1 1 makes it clear that in studying monotonic, regular, and 

normal modal logics we may confine our attention to the classical exten- 
sions of E produced by adding M, C, and N as theorems. Including E, 
eight different classical logics result from taking these schemas as 
theorems in all possible combinations. These systems and the inclusions 
among them are registered on the diagram in figure 8.1 (an extension of 
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a system is reached upward along the lines). That the systems are distinct 
is proved in chapter 9. 

Let us turn now to the following rules and schemas, in which the 
possibility operator is featured. 

MO. ( O A v  OB)+O(AvB) 

co* O(AvB)+(OAv OB) 

RO* O ( A v B ) w ( O A v  OW 
KO.  (TOAA OB)+ O(1Ah  B) 

(1) Every monotonic system of modal logic contains M 0 and is 
closed under RM 0. 

(2) Every regular system of modal logic contains M 0, C 0, R 0 ,  
and K 0 and is closed under RM 0 and RR 0. 

Proof 
For (1). If A+ B is a theorem of a monotonic modal logic, then so are 

l B + l A ,  n l B - + n l A ,  and l n 7 A - + 1 O l B  (by PL, RM, and 
PL), and the last is equivalent to 0 A - t  0 B by Df 0. So monotonic 
systems are closed under RM 0. That M 0 is a theorem when RM 0 
is present is proved in the proof, for M 0, of theorem 4.4. Alternatively, 
we may observe that by DUAL, MO is a theorem of a classical logic if 
and only if M is (see exercise 8.1 1 (a) )  and then argue for RM 0 as in 
the proof for theorem 4.5 (5). 

For (2). Because regular systems are monotonic they have RMO and 
M 0, by part (1). Moreover, if A+(B v C) is a theorem of a regular 
logic, then so are ( ~ B A - I C ) - + ~ A ,  ( ~ l B ~ u l C ) + l - J l A ,  and 
l ~ ~ A + ( ~ f l l B v ~ O ~ C ) - b y  PL, RR, and PL-and hence so 
is 0 A - t  ( OB v OC), by Df 0. So regular logics are closed under RRO . 
By RR 0 on a tautology we obtain O(A v B) + ( 0 A v 0 B) ; so regular 
systems have C 0 ,  and hence RO. The argument for K O  can be found 
in the proof of theorem 4.4. 

Theorem 8.12 provides the basis for some possibility-based char- 
acterizations of monotonic and regular systems. We present five in the 
next theorem, 
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T H EO REM 8.13. Let Z be a system of modal logic containing Dfn.  Thm: 

( 1 )  X is monotonic iff i t  is closed under RM 0. 
(2) C is monotonic iff it contains M 0 and is closed under RE 0. 
(3) C is regular zf l  it is closed under RR 0. 
(4) C is regular z# it contains C and is closed under RM 0. 
( 5 )  B is regular i f  it contains C V and M 0 and is closed under 

REO. 

Proof. We consider logics containing Df . Theorem 8.12 takes care of 
left-to-right, so we treat only the converses. 

For (1). It suffices to show that a system has RM if it has RMO. The 
argument is like that for RMO (given Df and RM) in the proof of 
theorem 8.12. Exercise. 

For (2). By part (1) we need only argue that a system has RMO if it 
has M 0 and REV, as we did in the proof of theorem 4.5 (5). 

For (3). Here it is enough to prove that a system has RR if it is closed 
under RR 0. Exercise. 

For (4) : 

1. A+(B v C) hypothesis 

2. OA-, O(B v C) 1, R M v  

3. O(B v C)+(OB v VC) CO 
4. OA-+(OB v OC) 2, 3, PL 

Thus a system has RRV - and so by part (3) is regular - if it has C 0 
and RM 0. 

For (5). If a system has C 0, M O ,  and RE 0, then by part (2) it has 
RM 0, and so by part (4) it has RR 0, which means by part (3) that it is 
regular. 

Further characterizations of monotonic and regular modal logics, 
especially using K 0, appear in the exercises. 

We also leave it as an exercise for the reader to summarize (as we did 
following the proof of theorem 8.11) the content of theorem 8.13. By 
attending to theorem 4.5 and exercise 4.6 - which involve RK 0, RN 0, 
and N 0 as well as the principles mentioned in theorem 8.13 - one can 
discern a number of possibility-based characterizations of normal 
systems as certain kinds of regular, monotonic, and classical systems. 

The principles canvassed in this section can be generalized along the 
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modal dimension. For example, for each k 2 0, classical, monotonic, and 
regular logics are closed respectively under the rules 

and (AA B)+C 
RRk* ( n k A  A mkB)-+ mkC ' 

and they all contain, for each k 2 0, 

Df Ok. @ A t ,  1 UklA. 
(For a proof of the last see the discussion preceding theorem 4.6.) For 
the record we state the following theorem. 

T H E O R E M  8.14. Let I: be a system of modal logic, and let k 2 0. If Z is 
classical it has the princ$les REk, Df 0 k, RE Ok, and Df nk; if 
X is monotonic it has in addition RMk, Mk, RM Ok, and M Ok; 
if X i s  regular it has in addition RRk, Ck, Kk, RR 0 k, C 0 k, 
and K O k .  

Proof. Exercise. (See the discussion preceding theorem 4.6.) 

EXERCISES 

Where appropriate, freely make use of theorems and rules of inference 
established in sections 8.1 and 8.2, as well as the results of previous 
exercises. 

8.9. Check that the proofs of theorems 8.9 (1 ,3 )  and 8.10 are in the proof 
of theorem 4.2. 

8.10. Check that the proof of theorem 8.11 (2) is in the proof of theorem 
4.3 (3). 
8.11. Let C be a classical system of modal logic. Prove: 

(a )  Z contains M iff it contains M 0. 
(b )  Z contains C iff it contains C 0. 
(c)  C contains R iff it contains R 0. 
( d )  C contains K iff it contains KO. 
(e) X contains N iff it contains N 0. 
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8.12. Prove that C is a theorem of a monotonic system if and only if K is. 

8.13. Extend theorem 8.1 1 by proving (where X is a system containing 
DfO): 

(a) C is regular iff it contains K and is closed under RM. 

(b) E is regular iff it contains K and M and is closed under RE. 

( c )  C is regular iff it contains R and is closed under RE. 

8.14. Draw a diagram like that in figure 8.1 showing all the classical 
systems obtained by adding M, C, K, and N as theorems to E (there are 
ten). 

8.15. Check the proof of theorem 4.4 to see that M 0 is a theorem of any 
monotonic logic (theorem 8.12 (1)) and that K O  is a theorem of any 
regular modal logic (theorem 8.12 (2)). 

8.16. With regard to theorem 8.13: 

(a) For part (I), show that a system has RM if it has RMO and 
Dfy]. 

( b )  For part (Z), check the proof of theorem 4.5 (5) to see that a 
system has RM 0 if it has RE 0 and M 0. 

( c )  For part (3), show that a system has RR if it has RRO and 
DfU. 

8.17, Give a summary of theorem 8.13 like that following theorem 8.11. 

8.18. Extend theorem 8.13 by proving (where C is a system containing 
Df 0) : 

(a )  Z is regular iff it contains K 0 and is closed under RM 0. 
( b )  C is regular iff it contains K 0 and M and is closed under 

REO. 

(c) X is regular iff it contains R 0 and is closed under RE 0. 
8.19. Prove some of the parts of theorem 8.14. 

8.20. Prove that the following are theorems of any classical modal logic. 

(a) O ~ + + i f l l  (b) O T - ~ O L  

8.21. Prove that the following are theorems of any monotonic modal logic. 
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(4 B)+(OAA OBI 

(4 O(A+B) v O(B+A) 

(f) (CIA-. OBI+ O(A+B) 

(9) (CIA-, OA)+ OT 
(4 (OA-, DB)+ O(A+B) 

8.22. Prove that the following are theorems of any regular modal logic. 

(a) U(A+B)+( OA+ OB) 

(b )  O(A-B)+(OA- OB) 

(c) O(A-B)-+(OA-OB) 

(4 (OAA OB)-,O(AAB) 

(e)  O ( A v  B ) + ( O A v  OB) 

(f) O(A-.B)-(OA-+ OBI 

(9) O T - ( O A + O A )  

(h)  (OA-, O B ) + ( O A + O B )  

(i) ( O A + O B ) + ( O A +  OB) 
8.23. Prove that the following are theorems of any monotonic modal 
logic (for any n 2 2). 

(a) n(A1 A ... A An)+ (UA, A . - -  A OA,) 

(b) (OA, v ... v ()An)+ O(A, v ... v A,) 

(c) ( n A l  v ... v UA,) 3 O(A1 v . . . v A,) 

(d) O ( A l ~  ... A A n ) - + ( o A l ~  - - -  A ()An) 

8.24. Prove that the following are theorems of any regular modal logic 
(for any n > 2). 

(a) ~ ( A , A  ... AA,)-(UA,A ... A OA,) 
(b) O(A,v ... vAn)+-+(OAlv ... v OA,) 

(c) ( o A ~ A  ... A U A , - I ~  OA,)+ O(Alh ... A A,&) 
(d) n ( A , v  ... vAn)+(OA,v  ... v OA-v nA3 

8.25, Prove that the following are theorems of any monotonic modal logic 
whenever rn ,< n. 

(a) nnT+ umT 
(b) O r n l  + 0 % ~  
(c) OnT -+ O r n ~  
(d) nml + OnL 
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8.26. Prove that a system is monotonic if and only if it is classical and 
contains a ( A  A B) -+ A or ()A -+ 0 (A v B). 

8.27. Prove that a system containing D f V  is regular if and only if, for 
every n 2 1, it is closed under the rule 

(A, A ... AA~,)-+A 

8.28. Prove that a classical system contains N if and only if it is closed 
under the rule RN. 

8.29. Let # and $ be affirmative modalities. Prove that a monotonic 
system has one of the following theorems and rules of inference if and 
only if it has them all. 

8.30. Use the erasure transformation e in exercise 1.27 to prove the 
consistency of the eight systems in figure 8.1. 

8.31. Prove that the systems in figure 8.1 have the following rules of 
inference. 

OA-EIB (f) VA-OB 
("I A-B A w B  

(Compare exercise 4.13 .) 

8.32. Let I' be a maximal set of sentences in a monotonic system X. Prove : 

D A ~ r i f f  IBIz G [Atc for some OBEI', 

8.33. Let -, be the relation of Z-equivalence (see exercise 2.37) in a 
system C. We define IAl, to be the set of all sentences %equivalent to 
A ; i.e. for every sentence A, 

lAlx={B:A-zB].  

(Note that here lAlc is not the proof set of A in 2.) Consider the structure 
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in which B is the set of all 8-equivalence classes of sentences - {/A/,: A 
is a sentence) - and the elements I and 0 of B and operations - , n, and 
u in B are defined as follows. 

( 1 )  1 = IT 12. 

( 2 )  0 = 111,. 

(3) - IAI, = I lAlc .  

(4) lAlc n lBl, = IAA BIZ.  

(5) lA1, lJ IBI, = IAv BIZ* 

Then B is called the Zindenbaum algebra of Z. It  is readily verified that 
these definitions are unambiguous and that 9 i s  a boolean algebra (see 
exercise 7.1 1). Prove : 

( a )  IA+BI, = - /AI, U BIZ. 
(b)  IA++BIz = ( -  IAIzu IBI,) n ( -  IBIzu IAJz). 
(c) I-,A iff IAlz = 1 .  
( d )  I-,A+B iff IAl, < /BIZ. 

(e)  I-,A-B iff lAlc = IBJc. 

Now suppose that C is a classical system, and define the operation * 
on the lindenbaum algebra B b y  : 

* IAl, = IOAlc. 

Verify that this definition is unambiguous by proving: 

(f) If lAlc = IBlc, then *lAl, = *IBIe. 

The structure (9, *) is a modal algebra in the sense of exercise 7.1 1 ; 
we may call it the Zindenbaum modal algebra of X. Prove: 

Finally, consider the following conditions on an algebraic model 
= (g, *, P) formed from the lindenbaum modal algebra (99, a )  (see 

exercises 7.1 1 and 7.27). 

(m*) *(a n b) < *a n *b 

(c*) * a n  *b 6 * (an  b) 

(ng) *1 = 1 

Prove : 

(h) A satisfies (m") iff Z contains M. 
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( i )  4 satisfies (c*) iff Z contains C. 

( j )  satisfies (n*) iff E contains N. 

8.3. Other schemas 

We confine ourselves in this section to two theorems about classical 
modal logics containing as theorems the schemas 

T. a A + A  
and 

5. O A + U O A .  

THE o RE M 8.15. Every classicalET5-system has the following theorems and 
rules of inference. 

p. OT 
A 

RP. - 
0 A 

A RN. - 
C7A 

Proof. Except for N the proofs are left as exercises. For N we argue as 
follows. 

1. OT P 
2. O T - T  I ,  PL 

~ . ~ O T - U T  2 , R E  
4. OT+OOT 5 

5. O T  1, 3,4, PL 

THEO REM 8.16. Every clmsical ET5-system has at most six distinct 
modalities, viz. - , 0, 0, and their negations, with implications 
among the afirmative three as diagramed in fgure 8.2. 

Proof. Recall from section 4.4 that modalities 4 and @ are equivalent 



in a system when +AH +-A is a theorem; otherwise they are distinct. 
Thus to prove the theorem it is enough to show that any classical ET5- 
system has the following reduction laws. 

This is left for the reader as an exercise, along with the demonstration 
that the implications are as advertised. 

The reader should compare theorems 4.28 and 8.16 (and the diagrams 
in figures 4.8 and 8.2). 

Theorems 8.15 and 8.16 are meant to be illustrative of results for 
classical systems containing as theorems schemas like D, T, B, 4, and 5. 
Some further results are suggested in the exercises. 

EXERCISES 

8.34. Complete the proof of theorem 8.15. 

8.35. Give the proof of theorem 8.16. 

8.36. Use theorems 8.9 and 8.16 to prove theorem 4.28, 

8.37. Let X be a monotonic modal logic. Prove: 

(a) C is an MN-system iff it has theorems of the form UA. 
(b)  Z is an MP-system iff it has theorems of the form OA. 

8.38. Recall the schemas 4! (OA +, 17 mA) and 5! ( OA o OA). Prove 
that 4! is a theorem of any classical E5!-system. 

8.39. Investigate the question of the number of distinct modalities in 
some classical systems having as theorems schemas such as the ones 
mentioned in theorem 8.15. For example : 

(a)  Every regular R5-system has at most ten distinct modalities. 
(b)  Every monotonic MD5-system has at most ten distinct 

modalities. 

Figure 8.2. Modalities in classical E T.5-systems. 

0-* *v  



(c) Every classical ED45-system has at most six distinct modal- 
ities. 

Identify the modalities in these systems and describe the implications 
among them. 

8.40. Investigate the question of consistency for some classical systems 
having as theorems schemas like those in theorem 8.15. Use the erasure 
transformation of exercise 1.27, or argue by way of results in exercises 
4.12 and 4.60 and theorem 8.9. 

8.41. Investigate the presence of rules (a)-(f) from exercise 8.31 in 
classical logics containing theorems like those in theorem 8.15. (Compare 
exercises 4.13,4.6 1, and 4.62.) 

8.42. Let A = (a, *, P) be an algebraic model based on the lindenbaum 
modal algebra of a classical system B (see exercise 8.33), and consider the 
conditions (d*), (t*), (b*), (iv*), (v*), and (gX) in exercise 7.42. Prove: 

(a) 4 satisfies (dX) iff S contains D. 
(b)  4 satisfies (tX) iff Z contains T. 
(c) A satisfies (b*) iff B contains B. 

( d )  A satisfies (iv*) iff S contains 4. 
( e )  A satisfies (vX) iff X contains 5. 

(f) X satisfies (gX) iff C contains G. 

Also prove that A satisfies the condition 

(p*) - * - I  = 1 

if and only if 22 contains P. 
Referring to the definition of *" in exercise 7.43, prove: 

(g) *"IAlZ = IOnAIB. 
(h)  - *n-  lAlc = IOnAIc. 

Finally, consider the following conditions on 4. 

(gfk$,Wn) *k - *'- a $ - *m - *"a 

Prove : 
(i) A satisfies (g*kAm*n) iff C contains Gkskmsn. 

(j) 4 satisfies (gfkAmpn) iff C contains GEAmsn. 



D E T E R M I N A T I O N  A N D  

DECIDABILITY F O R  CLASSICAL 
SYSTEMS 

I n  this chapter we connect classical modal logics and classes of minimal 
models by way of determination theorems. Our method is much the 
same as in chapter 5 for normal systems and standard models. In  section 
9.1 we treat questions of soundness and prove the distinctness of the 
eight classical systems on the diagram in figure 8.1 having M, C, and N 
as theorems. Section 9.2 contains the definition of canonical minimal 
models and the fundamental theorems for completeness. We do not 
single out any particular canonical minimal model as 'proper', as we 
did in the case of normal systems. But we indicate a uniform way of 
describing canonical minimal models - a way that highlights two very 
useful such models, which we call the smallest and the largest, for any 
classical logic. 

In  section 9.3 there are determination theorems for the systems in 
figure 8.1. The  idea of supplementation plays an important part in 
obtaining completeness results for the monotonic systems, and we use 
augmentation to reach, again, the conclusion that normal systems are 
complete with respect to the class of standard models. Then in section 
9.4 we treat in an abridged fashion questions of completeness for classical 
systems having as theorems familiar schemas such as D, T, B, 4, and 5. 
Finally, in section 9.5 we prove the decidability of the systems E, M, 
R, and, once again, K. 

9.1. Soundness 

The basic theorem for the soundness of classical modal logics with 
respect to classes of minimal models is the following. 

THEOREM 9.1. Let S,, . . . , S, be schemas valid respectively in classes of 
minimal models C,, . . ., C,. Then the system of modal logic 
ES, . . . S, is sound with respect to the class C, n . . . n C,. 
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Proof. By theorems 2.8 and 7.3, Df 0 is valid in any class of minimal 
models, and the rules RE and RPL preserve validity in any such class. 
Moreover, if S,, . . ., S,  are valid respectively in C,, . . ., C,, then they are 
valid in the intersection of these classes. Therefore, every theorem of 
ES, . .. S, is valid in this intersection, which means that this logic is 
sound with respect to that class. 

Thus E, the smallest classical system, is sound with respect to every 
class of minimal models, in particular the class of all such models. More- 
over, by referring to theorem 7.5 we obtain soundness results for all the 
classical systems on the diagram in figure 8.1. I n  particular, the smallest 
monotonic, regular, and normal systems - M, R, and K - are sound with 
respect to classes of supplementations, quasi-filters, and filters, res- 
pectively. The  proofs of these and other soundness theorems we leave as 
exercises. 

Let us use theorem 9.1 to prove the distinctness of the systems in 
figure 8.1. 

T H E O  REM 9.2. The eight clmsical systems in figure 8.1 are all distinct. 

Proof. Consider the following three minimal models 4 = (W, N, P). 

(1)  W =  {a); N,  = 0 ;  P, = 0 for n 2 0. 

(2) W = {a, p} (distinct); N,  = Ng = ({a}, {PI, W } ;  ' = {a) 
and P, = {p} for n 2 0. 

(3) W = {a, p} (distinct); N, = Ng = {0, W}; Po = {a} and 
P, = {p}  for n 2 0. 

Re (1). A is supplemented and closed under intersections, and it 
falsifies N. By theorem 9.1 this is a model of EMC and all the systems 
below it on the diagram in figure 8.1. Thus these systems are distinct 
from all the others on the diagram, viz. those containing N as a theorem. 

Re (2). Here A is supplemented and contains the unit, and it falsifies an 
instance of C: (a Po A P,) + n(Po A PI). So 4 is a model of EMN 
and all the systems in figure 8.1 that it extends. These systems are 
therefore distinct from the others on the diagram, which all contain C. 

Re (3). In  this case A is closed under intersections and contains the 
unit, and it falsifies an instance of M: n ( P o  A PI) -+ (0 Pa A PI). 
Hence 4 is a model of ECN and the systems below it in figure 8.1, which 
means that these systems are all distinct from the others on the diagram, 
wherein M is a theorem. 
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We leave it as an exercise for the reader to check that the foregoing 
considerations yield the pairwise distinctness of the eight systems in 
figure 8.1. 

EXERCISES 

9.1. Prove: 

(a)  E is sound with respect to any class of minimal models. 

(b)  M is sound with respect to any class of supplementations. 

(c) R is sound with respect to any class of quasi-filters. 

( d )  K is sound with respect to any class of filters. 

Formulate and prove similar soundness theorems for the other four 
systems in figure 8.1. 

9.2. Verify that models (1)-(3) in the proof of theorem 9.2 (a) meet the 
conditions stated, (b)  falsify the sentences in question, and (thus) (c) 
ensure the distinctness of the systems in figure 8.1. (Compare exercise 
7.19.) 

9.3. Using results from section 7.4, including the exercises, describe 
classes of minimal models with respect to which the following systems 
are sound. 

9.4. Consider the following conditions on a minimal model A = (W, 

Prove that EP and EP are sound respectively relative to classes of minimal 
models satisfying (p) and (p). 
9.5. Prove that EG,kJsmsn is sound with respect to any class of minimal 
models J% = (W, N, P) for which the fo1Iowing condition holds. 

(gZszyrn*") if (b in A : - X $ Nj} E N t ,  
then - ( B i n d :  X E N ~ ] $ N ~  

(Compare exercise 7.38.) 
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9.6. Prove that EU is sound with respect to any class of minimal models 
d = ( W, N, P )  satisfying the following condition. 

(u) { B i n d :  i fXeNB,  t h e n p ~ X } ~ N ,  

9.7. Using exercise 8.37(a) and theorem 9.2, prove that E, EM (M), EC, 
and EMC (R) have no theorems of the form n A .  

9.8. Prove that M is sound with respect to any class of minimal models 
in which modalities are evaluated as in exercise 7.9. 

9.9. Prove that ET5 has exactly the distinct modalities diagramed in 
figure 8.2. 

9.10. Extend the results of exercise 8.39 by establishing the exact numbers 
of distinct modalities in the systems investigated. In particular, prove: 

(a) R5 has exactly ten distinct modalities, the same as K5 (see 
theorems 4.23 and 5.3). 

( )  MD5 has exactly ten distinct modalities, the same as KD5 (see 
theorems 4.24 and 5.3). 

(c) ED45 has exactly six distinct modalities, the same as KD45 
(see theorems 4.27 and 5.3). 

9.11. Prove that each of the systems in figure 8.1 has infinitely many 
distinct modalities. 

9.12. Consider the following conditions on a model AV = (W, f, P) of 
the kind described in exercise 7.10. 

Prove that E is sound with respect to any class of such models, and that 
the following systems are sound relative to classes of such models 
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satisfying the indicated conditions. 

9.13. Prove that E is sound with respect to any class of algebraic models 
(defined in exercise 7.11). Then, referring to exercises 7.27 and 7.42, 
show that the following systems are sound with respect to classes of 
algebraic models that satisfy the indicated conditions. 

(a) EM (M) : (m") (f) EB : (be) 
(b) EC: (cX) (g) E4 : (iv*) 
(c) EN: (n*) (h) E5: (ve) 

(d) ED : (d*) (i) EG: (g") 
(e)  ET: (tX) 

Finally, referring to exercises 7.43 and 8.42, show the soundness of the 
following systems relative to classes of algebraic models satisfying the 
indicated conditions. 

9.2. Completeness: basic theorems 

We begin with the key idea of a canonical minimal model for a classical 
modal logic. 

DEFINITION 9.3. Let d = (W? N, P) be a minimal model, and let Z 
be a classical system of modal logic. is a canonical miaimal 
model for E iff: 

(1) W = {I? : Max, I?). 
(2) For every CG in d, OA E a iff [A 1, EN,. 

(3)P,= IPnj,,forn=0,1,2 ,.... 
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Parts (1) and (3) of the definition conform to the account in section 2.7. 
The acute reader will have noticed that the condition on N in part (2) 
must be shown not to be ambiguous. That is, it must be shown that 
whenever A and B are sentences such that (A 1, = IB I,, then I A Iz E N, 
just in case IB Iz E Nu, for every world a in A. Only if this is true is the 
definition correct. 

That it is true depends on the assumption that the system B is classical. 
For suppose that \A\ ,  = IB\,. By theorem 2.22(3) this means that 
I-, A - B. Because Z is classical we may infer by RE that I-, OA * UB. 
So by theorem 2.20(2) n A t t  OB belongs to every C-maximal set of 
sentences, i.e. to every world or in 4. By theorem 2.18 (9) it follows that 
OA E a if and only if OB E a, for every a in 4. Hence, by the condition 
on N in the definition, IAl, E N,  just in case (B  1, EN,,  for every or in A. 

It should be clear that functions N exist that satisfy the condition in a 
canonical minimal model for a classical system. We mention some specific 
examples at the end of the section, in connection with an important 
alternative characterization of the class of models of this kind. Mean- 
while, the following theorem characterizes canonical minimal models in 
terms of the behavior of the possibility operator. 

THE o R EM 9 . 4 . 4  = { W, N,  P )  is a canonical minimal model for a classical 
system C ifl W and P are as in definition 9.3, and for every a 
ziz A, 

Proof. For left-to-right, let X = (W, N, P) be a canonical minimal 
model for a classical modal logic C (so that W and P are as specified). 
Then for any world a in A: 

O A ~ a i f f  T ~ T A E L X  
- Df 0 and the C-maximality of a; 

iff nlA$a 
- theorem 2.18 (5)  ; 

iff IlAlz~N 
- definition 9.3 ; 

iff - lAl,$N, 
- theorem 2.22 (4, 6). 

The reverse is left as an exercise for the reader. 

We come now to the fundamental theorem for the completeness of 
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classical modal logics, to wit, that a world in a canonical minimal model 
verifies precisely the sentences it contains. 

THE o R E M 9.5. Let A? be a canonical minimal model for a classical system 
C. Then for every a in A: 
k-$A iff A E ~ .  

In 0 t h ~  words, IIAll" = IA 1,. 

Proof. The only case that need be examined is that in which A is a 
necessitation, UB. By the inductive hypothesis, 11 B]IA = IB I = .  So for any 
a in A, I(BI(X EN, if and only if [B 1, EN,. By definitions 7.2 (1) and 9.3 
it follows that kf UB if and only if UB €a. 

From theorem 9.5 it follows at once (see the remarks in section 2.7) 
that the theorems of a classical modal logic are exactly the sentences true 
in a canonical minima1 model for the logic. Formally: 

T H EO REM 9.6. Let d be a canonical minimal model for a classical system 
X. Then: 

What are canonical minimal models like? The question comes to 
asking what the function N may be like in a canonical minimal model 4 
for a classical modal logic C. The simplest example of such a model is 
that in which, for each world a in A, N, is the set {]A],: UA EOI); i.e. 
N, consists just of those proof sets (A(, such that OA €a, and nothing 
else. In this case we have what we shall call the smallest canonical minimal 
model for X. At the opposite extreme there is the canonical minimal model 
X in which, for each a, N,  consists of {/A/,: UA E a} together with the 
set of all na-proof sets relative to C - i.e. {]A/,:  UA €a) plus every set 
X of worlds in A that is not a proof set in X for any sentence. This is the 
largest canonical minimal model for E. 

These examples should make it clear that as long as N, always consists 
of the set { JA 1, : O A  €a) together with a collection of non-proof sets 
(relative to Z) dl will be a canonical minimal model for X. Thus we have 
an alternative and often simpler way of recognizing canonical minimal 
models. Because of the usefulness of this way of putting the matter, we 
state it formally in the following theorem (the proof of which is left as 
an exercise). 
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THEOREM 9.7. = (W, N, P ) i s  acmonicalminimalmodel for aclmical  
system of modal logic B i f l  W and P are as in definition 9.3, 
and for every a in d, 

where X is any collection of na-proof sets relative to X (i.e. 
3 c { X  G W: X # [A(,  for every sentence A}). 

EXERCISES 

9.14. Complete the proof of theorem 9.4. 

9.15. Give the proof of theorem 9.5. for the case in which A = OB. 
9.16. Prove theorem 9.7. 

9.17. Let A = (W, N, P) be a canonical minimal model for a classical 
system C.. Use exercise 7.7 and theorem 9.5 to prove, for any n 2 0: 

( a )  InnAlz = (a i n d :  \Alz~N:}*  
(b )  IOnAl, = { a i n X :  - IA1z$Nt]. 

9.18. Use theorem 9.6 to prove that the system E is complete with respect 
to the class of all minimal models, and so is determined by it, in virtue 
of exercise 9.1 (a) .  

9.19. Let X = (W, N, P )  be the smallest canonical minimal model for a 
monotonic system Z. Prove : 

( a )  X is not supplemented. 

(b)  The supplementation X+ = (W, N+, P )  of X is a canonical 
minimal model for 8. (Exercise 8.32 may be helpful.) 

9.20. Use the second result in the preceding exercise to argue that the 
system M is complete with respect to the class of supplemented minimal 
models (and so is determined by it ; see exercise 9. l (b) ) .  

9.21. Let X = (W, N, P) be the smallest canonical minimal model for a 
classical system containing the schema C. Prove that X is closed under 
intersections. 

9.22. Using results in exercises 9.19 and 9.21, prove that the system R is 
complete with respect to the class of quasi-filters (and hence is deter- 
mined by it ; see exercise 9.1 (c)) .  
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9.23. Let A = (W, N, P) be any canonical minimal model for a classical 
system in which N is a theorem. Prove that d contains the unit. 

9.24. Using results in exercises 9.19, 9.21, and 9.23, prove that the 
system K is complete with respect to the class of filters (and is thus 
determined by it, given exercise 9. l (d)).  

9.25. Let&! = (W, N!,  P) be the augmentation of the smallest canonical 
minimal model A = (W, N, P) for a normal modal logic. Prove that 
A! is also a canonical minimal model for the logic. (Theorem 4.30(1) 
may be helpful.) 

9.26. Conclude from the preceding exercise that the system K is complete 
with respect to the class of augmented minimal models, and use exercise 
9.24 to argue that this class determines K. 

9.27. Let 2 be a monotonic system, and let A = {W, N,  P) be a minimal 
model in which Wand P are as in a canonical model for Z, and N satisfies 
the following condition. 

C ] A E ~  iff for s o m e X ~ N , ,  X c  jAIC 

Relative to the truth conditions for modalities given in exercise 7.9, prove 
that for every a in d, 

l=fA iff A €a, 

i.e. that IIAlld = IAlr. The proof is by induction on the complexity of A. 
Give it for the cases in which A is atomic, the falsum, a conditional, and 
a necessitation. 

Is a canonical minimal model for X, in the sense of definition 9.3? 

9.28. Define the idea of a canonical model for a classical modal logic in 
terms of the models A = (W, f, P) of exercise 7.10. 

9.29. Let {g, a) be the lindenbaum modal algebra of a classical system 
C, and define the algebraic model d = (g, *, P) by: 

(See exercises 7.11 and 8.33.) Then A is a canonical akebraic model 
(indeed, the such model) for X, in the sense that, for every sentence A, 

C4A iff I-,A. 

Prove this by induction on the complexity of A, at least for the cases in 
which A is atomic, the falsum, a conditional, and a necessitation. 
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9.3. Determination 

We wish to prove determination theorems for the eight classical modal 
logics obtained by taking the schemas M, C, and N as theorems in all 
possible combinations (see the diagram in figure 8.1). I n  particular, we 
shall obtain results for the smallest classical, monotonic, regular, and 
normal systems - E, M, R, and K. 

Completeness is all that needs to be shown in each case; soundness 
follows easily from theorems 7.5 and 9.1 (see exercise 9.1). We begin 
with the smallest classical modal logic. 

THE o R E  M 9.8. E is determined by the class of minimal models. 

Proof, Completeness follows from theorem 9.6 and the existence of 
canonical minimal models: a sentence valid in the class of minimal 
models is true in any canonical minimal model for E, each of which 
determines E. 

T o  prove the completeness of a classical modal logic with respect to a 
class of minimal models it suffices to show that some canonical minimal 
model for the logic is in the class. (Recall the discussion in section 2.7.) 
The problem in each case is to find a suitable canonical model, since it 
can happen that not every such model for a system is in the class in 
question (see exercise 9.19 (a ) ) .  For the classical extensions of E using M, 
C, and N we require theorems 9.9,9.11, and 9.13 below. The  first of these 
concerns monotonic systems, i.e. classical systems containing M or 
closed under the rule RM. I t  states that the supplementation of the 
smallest canonical minimal model for a monotonic logic is itself a canonical 
model for the system. 

T H E o R E  M 9.9. If A = ( W, N,  P )  is the smallest canonical minimal model 
for a monotonic system of modal logic, then its supplementation 
A+ = (W,  N+, P )  is also a canonical minimal model for the 
system. 

Proof. Let C be a monotonic logic. If A is the smallest canonical 
minimal model for E ,  then N,  = (IA/, : C]A ~ o l }  for each a in A (see the 
remarks following theorem 9.6). By the definition of supplementation, 
7.6, it follows that N,f = fX E W: IA 1, c X for some UA E a). T o  show 
that A+ is a canonical minimal model for C it is enough to argue that for 
every sentence A and every world a in A+, 

O A E ~  iff jAIl:~N,f. 
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The  result is trivial from left to right: if U A  E a, then IA 1, EN,, since 
d is canonical for 2. But Nu G N,+ ; so ]A l c  EN:. For the reverse, 
suppose that IAI,EN,~, so that for some n B ~ a ,  IBl, G jAl,. By 
theorem 2.22 (2) this means that kc B -+A. Because C is monotonic we 
can infer by RM that k, OB + OA, which means that U A  is C-deducible 
from a (since this set contains OB). Hence by theorem 2.18 (I), O A  ~ a ,  
as we wished to prove. 

It follows at once that any monotonic modal logic is complete with 
respect to the class of minimal models closed under supersets, i.e. the 
class of supplementations. For a sentence in this class is true in the model 
A+ and so is a theorem of any monotonic system. In  particular, M, the 
smallest monotonic system, is complete with respect to the class of 
supplementations ; since it is also sound with respect to this class (exercise 
9.1 (b)) ,  we have the following theorem. 

T H E o R E  M 9.10. M is determined by the class of supplementations. 

The next theorem provides the basis for the completeness of classical 
modal logics that contain the schema C. According to it, the smallest 
canonical minimal model for such a logic is closed under intersections. 

T H E O R E M  9.1 1 .  Let A = (W, N ,  P )  be the smallest canonical minimal 
model for a classical system containing C. Then for every a, X ,  
and Y i n d , i f X ~ N , a n d  Y E N , ,  then Xn Y E N , .  

Proof. Let C be a classical logic that contains the schema C, and let 
A be the smallest canonical minimal model for Z, i.e. that in which, 
for every a, Nu = {]A I s  : OA E a}. If we suppose that X and Y are 
propositions in N,, then X = [B 1, and Y = ICI,, for sentences C]B and 
U C  in a. Now I-,(OB A u C ) +  u(B A C), from which it follows that 
a ( B  A C) is Z-deducible from a and so is in a. By the canonicity of d, 
I B A C ~ ,  belongs to N,. But bytheorem2.22(7), ~ B A C ~ ,  = lBI,n IClc. 
So X n  Y is in N,, which is what we wished to show. Therefore, A is 
closed under intersections. 

From theorem 9.11 it follows that classical logics in which C is a theorem 
are complete with respect to the class of minimal models closed under 
intersections. The  smallest system of this sort, EC, is indeed determined 
by this class, since it is sound with respect to it (exercise 9.1). We are also 
in a position to see that every regular modal logic is complete with respect 



to the class of quasi-filters. Recall that the regular logics are just the 
monotonic systems containing C (theorem 8.11), and that a minimal 
model is said to be a quasi-filter just in case it is supplemented and closed 
under intersections (see the text before theorem 7.5). For the complete- 
ness result it is enough to note that by exercise 7.1 6 ( a )  and theorem 
9.11 the supplementation of the smallest canonical minimal model for a 
regular logic is closed under intersections. Thus a sentence is valid in the 
class of quasi-filters only if it is true in this canonical model and so is a 
theorem of any regular system. Because R ( = EMC), the smallest regular 
logic, is sound with respect to the class of quasi-filters (exercise 9.1 (c)), 
we arrive at the following theorem. 

THE o R E M 9.12. R is determined by the class of quasi-filters. 

To  complete our account we have to treat classical systems that contain 
N. The information needed here is that any canonical minimal model 
for such a logic contains the unit. Formally: 

THEOREM 9.13. Let 4 = ( W, N, P )  be a canonical minimal model for a 
classical system containing N. Then W E N, for every a in A. 

Proof. Let A be any canonical minimal model for a classical system 
C containing N. Then, since (7 T E a for every a i n d ,  I T IE: EN, for every 
a in A. But, as in any canonical model, W = I T  I,. So A contains the 
unit. 

Thus any classical logic containing N is complete with respect to the 
class of minimal models containing the unit, and we have determination 
results for the four remaining systems, EN, EMN,  ECN, and EMCN. 
Let us focus on the last of these, otherwise known as K, the smallest 
normal system (the others are left as exercises). From theorems 9.9,9.11, 
and 9.13 it follows that the supplementation of the smallest canonical 
minimal model for a normal modal logic is a filter, i.e. a quasi-filter 
containing the unit (see the text before theorem 7.5). So any normal 
system, K in particular, is complete with respect to the class of filters. 
Combining this with exercise 9.1 (d ) ,  we have the following theorem. 

THEOREM 9.14. K i s  determined by the class of$lters. 

This result can be improved. We pointed out in section 7.3 that any 
normal modal logic is complete with respect to the class of filters that are 
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augmented, i.e. the class of minimal models 4 = (W, N, P) such that 
for every a and X in d ,  

We can now prove directly that a normal system is complete with 
respect to the class of augmented models, simply by demonstrating the 
existence of an augmented canonical minimal model for the logic. This 
is the point of the next theorem. 

T H EO R E  M 9.15. If A = ( W, N,  P )  is the smallest canonical minimal 
model for a rsormal system of modal logic, then its augmentation 

= (W, N ! ,  P) is also a canonical minimal model for the 
system. 

Proof. Let Z be a normal system, and suppose d' is the augmentation 
of A, the smallest canonical minimal model for 8. To prove that A! 
is canonical for C we must show that for every a in A!, 

O A E ~  iff /A/,ENL. 

By the definition of augmentation, 7.9, to say that /A]= EN.! means that 
n N, G 1 A],, which in turn means that 

since is a smallest canonical minimal model. In other words, A is a 
member of every C-maximal set of sentences p in n{lA\=: n A  €a}. We 
leave it as an exercise for the reader to prove that for any /? in A, 

p ~ n { l A I , :  n A ~ o l }  iff {A: ~ A E C X }  ~ , 8 .  

So what we wish to show is that n A  E a if and only if A belongs to every 
Z-maximal set of sentences /? such that {A: UA E a} E /?. But this, once 
again, is theorem 4.30 (1). 

Thus we have another determination theorem for the smallest normal 
system. 

T H E O R E M  9.16. K is determined by the class of augmentations. 

EXERCISES 

9.30, State and prove determination theorems for the systems EC, EN, 
EMN, and ECN. 
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9.31. In connection with the proof of theorem 9.15, show that for any 
in 

/?E ,{AIz: .A ~ a }  iff {A: I-JA ~ a }  E p. 
(This may have been proved already; see exercise 9.25.) 

9.32. Using theorem 7.9, deduce theorem 5.12 from theorem 9.16, and 
vice versa. 

9.33. Prove determination theorems for some classical systems containing 
the schema K, in particular, for the systems EK and ECK. Show that 
EK and ECK are distinct from each other and from the systems in 
figure 8.1. Finally, argue that EK, ECK, and the systems in figure 8.1 
are all the classical systems that result from adding to E various combina- 
tions of the schemas M, C, N, R, and K as theorems. (Exercises 7.30 and 
8.14 are relevant.) 

9.34. Let 4 = (W, N, P) be the smallest canonical minimal model for a 
classical system in which T is a theorem. Prove that A satisfies the 
condition (t) in section 7.4. 

9.35. Let A = (W, N, P) be the largest canonical minimal model for a 
classical system in which 5 is a theorem. Prove that A satisfies the 
condition (v) in section 7.4. 

9.36. Using the results in exercises 9.8 and 9.27, prove that the system 
M is determined by the class of minimal models in which modalities are 
evaluated as in exercise 7.9. 

9.37. Collecting results from exercises 9.12 and 9.28, prove determina- 
tion theorems for the systems in figure 8.1 with respect to classes of 
models of the kind introduced in exercise 7.10. 

9.38. Collecting results from exercises 8.33, 9.13, and 9.29, prove 
determination theorems for the systems in figure 8.1 with respect to 
classes of algebraic models. 

9.4. The schemas D, T, B, 4, and 5 
Let us deal briefly with classical systems containing D, T, B, 4, 5, and 
the like by proving determination theorems for the systems ET, E5, and 
ET5. These results are not meant to be exhaustive, but the proofs are 
illustrative of the problems involved in demonstrating the completeness 
of classical logics containing the five schemas. Further theorems of this 
kind are in the exercises. 
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We wish to consider minimal models A = (W, N, P) in which, for 
every a and X in X ,  

(t) if X E N , ,  t h e n a ~ X ,  
and 

(v) if X $  N,, then {B in A: X $  NB}eNa. 

In  virtue of theorems 7.1 1 and 9.1, ET, E5, and ET5 are sound with 
respect to classes of minimal models satisfying (t), (v), and (t) and (v) 
(see exercise 9.3). For completeness it suffices to show that these logics 
have canonical models that satisfy these conditions. 

We may begin by observing that if d = (W, N, P) is the smallest 
canonical minimal model for a classical system C containing the schema 
T, then A satisfies the condition (t). For if X E Na, then X = for 
some T]A €a. So A €a, since T is a theorem of C, and this means that 
a E lAlc = X. Moreover, A continues to satisfy (t) if to any Na we 
add any collection of non-proof sets X (in C) for which it holds that 
a EX. We state this formally. 

THEOREM 9.17. Let C. be a classical system containing T, and let A = { W, 
N, P) be any canonical minimal modelfor C in which for every a, 

N, = {JA],: UA E ~ } U  g 
where 3 is any collection of non-proof sets X (in E) such that 
a E X .  Then A satisfies (t). 

It follows that every classical ET-system is complete with respect to 
the class of minimal models that satisfy (t). Thus we obtain our first 
desired result : 

THE o R E M 9.18. E T is determined by the classof minimal models satisfying (t). 

Next, for E5, we note that 'the largest canonical minimal model 
A = (W, N,  P) for a classical logic I; containing 5 satisfies (v). The 
argument for this is as follows. Suppose that X$N,.  Then, since X 
is the largest canonical minimal model for 8, X is the proof set of some 
sentence whose necessitation is not in a ; i.e. X = IA l x  for some UA $a. 
By D f a  and theorem 2.18(5, 9), OTA ECZ; So U O T A  €a, since 5 is 
a theorem of 8. By the definition of a canonical minimal model, 9.3, 
I O l A l ,  EN,. But this is what we wished to prove, since ( O l A [ ,  = 
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{p  in A: X $  NB} (exercise 9.17). So A satisfies (v). Notice that A still 
meets condition (v) if from any N, we subtract any collection of non- 
proof sets X (in X) for which it holds that {p  in A: X$ NB} EN,. Thus 
we can state the following theorem. 

THEOREM 9.19. Let X be a classical system containing 5 ,  and let A = ( W, 
N, P) be any canonical minimal model for Z in which for every a, 

N, = (Al,:  UA €a}  u E 
where X is any collection of non-proof sets X (in C )  such that 
(p  in A : X 4 ND) E Na. Then A satisfies (v). 

Therefore, every classical E5-system is complete with respect to the 
class of minimal models for which (v) holds. Hence our second desired 
result : 

T H E OR E M 9.20. E5 is determined by the classof minimalmodeZssatisfying (v). 

Now for ET5. Let X be a classical system containing T and 5, and let 
A = (W, N, P )  be the smallest canonical minimal model for C. Then 
no Na contains any non-proof set relative to 2. By theorem 9.17 A 
satisfies (t). To see that the model satisfies (v), note that by theorem 9.19 
it is enough to show that {p  in A: X$ NB) E N ,  whenever X is not a 
proof set in X. But for each such X,  (P in A: X $ Nb] = W, and W = I T I 
(theorem 2.22(4)). By theorem 8.15 N is a theorem of 8, which means 
that OT belongs to every cc in A. Hence by the definition of a canonical 
minimal model, I T  1, E N, for each a in A, which is what we wished to 
prove. Therefore, every classical ET5-system is complete with respect 
to the class of minimal models for which both (t) and (v) hold. So we 
achieve our last desired result: 

THEOREM 9.21. ET5 is determined by the class of minimaEmodeZs satisfying 
(t) and (v). 

I t  often happens that in seeking an appropriate canonical minimal 
model for a classical system neither the smallest nor the largest will 
serve; the trick then is to find a model 'in between'. There are some 
examples of this phenomenon in the exercises. 
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EXERCISES 

9.39. Prove determination theorems like 9.18, 9.20, and 9.21 for some 
classical, monotonic, and regular systems containing as theorems various 
combinations of the schemas D, T, B, 4, and 5, as well as such schemas 
as G, P, P, Gumn, GtAmn, and U. In particular, prove that the following 
systems are determined by classes of minimal models satisfying the 
indicated conditions. 

(a)  ED: (d) (f) (p) 
(b )  EB: (b) (,) EGIE.l,m,n : (gk,&m,n) 

(c) E4 : (iv) (h) EG:L~,~ : (&[,m.n) 

(4 EG: (g) ( i )  E U: (u) 

(4 EP: (PI 
See section 7.4 and exercises 9.4-9.6 for the conditions. 

9.40. Using determination theorems and results in exercise 7.49, prove 
the decidability of the systems E, M, R, and K. (See the discussion in 
section 2.8.) 

9.41. Extend the results of exercise 9.37 by proving determination 
theorems for systems like those in exercise 9.39 (but include the schemas 
T and 5) with respect to classes of models of the kind defined in exercise 
7.10. (Results in exercises 7.41 and 9.12 are useful.) 

9.42. Extend the results of exercise 9.38 by proving determination 
theorems for systems like those in exercise 9.39 with respect to classes of 
algebraic models. In particular, prove such theorems for the smallest 
classical, monotonic, regular, and normal systems containing as theorems 
various combinations of the schemas D, T, B, 4, 5, G, P, GkJ-", and 
G2Am*n (see the conditions in exercise 8.42). 

9.5. Decidability 
We focus on the smallest classical, monotonic, regular, and normal 
logics - E, M, R, and (again) K. The reasoning involved in these cases 
can be adapted for the remaining four classical systems in figure 8.1, as 
well as others. 



THEOREM 9.22. E, M, R, and K are axiomatixable. 

Proof. Each can be axiomatized by a finite number of schemas together 
with the reasonable rules RPL and RE. 

THEOREM 9.23. E is determined by the class offinite minimal models, 

Proof. Soundness comes from theorem 9.8. For completeness, suppose 
A is not a theorem of E, so that by theorem 9.8 it is false in some minimal 
model A. Let d? be a filtration of A through the set of subsentences 
of A. Then A* is a finite minimal model, and by theorem 7.14 A is 
false in A*. 

THE o R E M 9.24. M is determined by the class offinite supplementations. 

Proof. Soundness follows from theorem 9.10. For completeness, let A 
be a non-theorem of M. By 9.10, again, A fails in some supplemented 
minimal model A. Let A*+ be the supplementation of a finest I?- 
filtration &* of A, where I? is the set of subsentences of A. Then d*+ 
is a finite supplementation. By part (1)  of theorem 7.16 this model is a 
I?-filtration of 4, and so by theorem 7.14 it falsifies A. 

T H E o R E  M 9.25. R is determined by the class of _finite quasi-$lters. 

Proof. The argument uses theorems 7.14, 7.16 (part (3)), and 9.12. 
Exercise. 

THEOREM 9.26. K is determined by the class of jnitefilters. 

Proof. Theorem 9.14 implies soundness. For completeness, suppose A 
is not a theorem of K. Then by 9.14 A is rejected by some filter A. 
Let d*f be the quasi-filtering of a finest I?-filtration A* of A ,  where r 
is any finite set of sentences, closed under subsentences, that contains A 
and UT. Then A** is a quasi-filter, and by theorem 7.17 it contains the 
unit. So it is a finite filter. By part (3) of theorem 7.16 the model is a 
I?-filtration of d. So by theorem 7.14 it too rejects A. 

THE o R EM 9.27. E, M, R, and K have thefinite modelproperty. 

Proof. This is a corollary to theorems 9.23-9.26. 
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THEOREM 9.28. E, M, R, and K are decidable. 

Proof. This is a corollary to theorems 9.22 and 9.27. 

EXERCISES 

9.43. Prove theorem 9.25. 

9.44. Prove the decidability of the systems in figure 8.1 other than E, M, 
R, and K (see the results in exercise 7.49). 

9.45. Prove the decidability of the systems EK and ECK. 

9.46. Prove some decidability theorems for some classical, monotonic, 
and regular systems containing various combinations of D, T, B, 4, 5, 
G, P, Gksmsn and G:Jvrnln (for selected k, I ,  m, n), and others. 

9.47. By a result of exercise 9.38, the system E is determined by the 
class of all algebraic models. Let us prove : 

E is determined by the class of finite algebraic models. 

Soundness is immediate from the earlier determination result. For 
completeness, suppose that not I-,A, so that by the determination 
result not V A  for some algebraic model A. Where I' is the set of 
subsentences of A, define Ar to meet conditions (1)-(3) in exercise 
7.5 1. Then, by the filtration theorem in that exercise, not Pr A. But 
Ar is a finite algebraic model, so the theorem is proved. 

Similarly, we can prove : 

K is determined by the class of finite algebraic models 
satisfying (m*), (c*), and (n*). 

(See exercise 7.27 for these conditions.) We have that K is determined 
by the class of all algebraic models that satisfy (m*), (c*), and (nX) 
(exercise 9.38), so soundness is again trivial. The proof of completeness 
is like that for E, but more complicated, since *r must be defined so as 
to meet condition (2) in exercise 7.51 as well as (m*), (c*), and (nX). Let 
us indicate how this may be done, and leave the details of the argument 
for the reader. 

For a point a in a finite boolean algebra let M(a)  be the boolean union 
of all the elements b in the algebra such that b < a. Note that M(a) 
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exists in the algebra since there are only finitely many points b such that 
b < a. Moreover, 

for every a and b in the algebra. 
Now if J? is the set of subsentences of a sentence A rejected by an 

algebraic model = (B', r, P) satisfying (m*), (c*), and (n"), then any 
algebraic filtration &r = ( B p ,  *r, Pr) of through I? is finite. And if 
*r is defined by 

- for a in Ar - then conditions (2) and (m*), (c*), and (n*) are satisfied. 
So by the filtration theorem in exercise 7.51 A is faIse in Ar, which 
completes the proof. 

Together with facts about their axiomatizability, these finite deter- 
mination theorems for E and K lead again to decidability results (as the 
reader should verify). 

Using results in exercises 9.38 and 9.42, prove finite determination 
theorems with respect to classes of algebraic models for the remaining 
systems in figures 4.1 and 8.1, and others as well. 



C O N D I T I O N A L  L O G I C  

Conditionality affords a good example of a concept susceptible of analysis 
by means of the kinds of models and systems studied in this book. I n  
section 10.1 we present the basic systems of conditional logic and the 
classes of models that determine them. I n  section 10.2 we return to the 
subject of deontic logic and define a minimal logic for conditional 
obligation. In  section 10.3 we offer a definition of the conditional obliga- 
tion operator in terms of simple obligation and non-deontic conditionality. 

As with chapter 6, the purpose of this chapter is to illustrate the use of 
our semantic and deductive-theoretic techniques in the analysis of 
philosophically interesting concepts. Again, as in the earlier chapter, the 
reader will be the judge of the merit of the endeavor and the extent to 
which it is successful. 

TO. I. Conditionality 
Into the language of propositional logic we introduce sentences of the 
form A + B. The  operator 3 is meant to express a notion of condition- 
ality - a notion in general distinct from that expressed by -+. 

In a standard conditional model = (W, f, P) for the language of 
conditional logic f is a mapping that selects a proposition (set of worlds) 
f(a,  X) for each world a and proposition, or condition, X. Formally, 
then, f is a function from W x B( W) to P(W) .  

T o  evaluate a conditional A+ B at a world a in a model A = (W, f, P) 
we say : 

C$A => B iff f (a, IIAliA) c IBIId. 

Thus a conditional is true at a world just in case the proposition ex- 
pressed by the consequent is entailed by the proposition selected in 
terms of the world and the condition expressed by the antecedent. 
Equivalently, we may say that A + B is true at a possible world if and 
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only if B is true in every world selected in terms of the given world and 
the antecedent's condition. 

Viewed in the latter way it is clear that we are construing condition- 
ality as a form of relative necessity: we might revise A - B to read 
[AIB, and so make graphic the necessity of what B expresses relative to 
the condition given by A. 

This analysis of conditionality leads to the result that the logic of 
is, so to speak, classical witb respect to the antecedent and normal with 
respect to the consequent. In other words, the following rules hold. 

RCEA. A-A' 
(A=.B)-(A' +B) 

We call a system of conditional logic based on propositional logic and 
having these rules normal. The smallest normal conditional logic we call 
CK. 

CK is determined by the class of all standard conditional models. 
By way of example of extensions of CK let us consider normal con- 

ditional systems containing the following schemas. 

I expresses a law of identity, and MP is a principle of modus ponens 
for *. Neither schema is valid in the class of all standard conditional 
models, i.e. neither is a theorem of CK. Each is plausible for some 
notions of conditionality, though not for all, 

The constraints on standard conditional models required for the 
validity of I and of MP are perhaps obvious : 

( f(a, X )  E X 

(mp) if a EX, then a E f (a, X )  

Of course conditional logics weaker than CK can be obtained by 
eliminating RCK in favor of weaker rules of inference. Let us say that 
a conditional logic closed under RCEA is respectively classical, monotonic, 
or regular according as it is closed under the following three rules. 

RCEC. 
B t, Bf 

(A B)*(A 3 Bf) 
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B+ B' 
RCM* (A B) -+ (A i. B') 

(B A B')+ C 
RCR' ((A B) A (A * B')) -+(A- C) 

Not unexpectedly, the smallest classical, monotonic, and regular con- 
ditional logics are called CE, CM, and CR. 

T o  model such weaker conditional logics we employ minimal con- 
ditional models A = (W, f, P) in which f(a, X) is a collection of pro- 
positions in A, for each a and X in A, and the truth conditions of a 
conditional A => B are given as follows. 

kf A 3 B iff 11 BIId E f (a, IIAIIJ'). 

Intuitively, A * B is true at a world just in case the proposition expressed 
by B is among those picked out as necessary relative to the condition 
expressed by A at the world. 

The system CE is determined by the class of all minimal conditional 
models. CM is determined by the class of such models for which the 
condition 

(cm) if Y n Y' E f (a, X), then Y E f (a, X) and Y' E f (a, X )  

holds. CR is determined by the class in which both (cm) and 

(CC) if Y ~ f ( a ,  X )  and Y ' ~ f ( a ,  X), then Y n  Y ' ~ f ( a ,  X )  

hold. And CK is determined by the class of minimal models that satisfy 
(cm), (cc), and the following condition. 

(cn) W ~f (a, X )  

EXERCISES 

10.1. Prove that every normal conditional logic has the rules RCEC, 
RCM, RCR, and 

B 
RCN. - A * B' 

as well as the following theorems. 

CN. A-T  

CM. (A =. (B A B')) + ((A =. B) A (A * B')) 

CC. ( ( A * B ) A ( A * B ' ) ) + ( A ~ ( B A B ' ) )  



10.1. Exercises 

CR. (A * (B A B')) ++ ((A B) A (A 3 B')) 
CK. (A (B -+ B')) -+ ((A =. B) -+ (A =. B')) 

10.2. Use RCEA and various combinations of theorems and rules in the 
preceding exercise to characterize normal conditional logics. (Compare 
theorem 4.3 and exercise 4.5.) 

10.3. Describe standard conditional models falsifying the schemas I and 
MP (thus proving that neither is a theorem of CK).  Then show that 
these schemas are valid in the classes of standard conditional models 
satisfying, respectively, (i) and (mp). 

10.4. Prove that a normal conditional logic has I as a theorem if and only 
if it is closed under the rule 

A+B 
RI. - A * B  

10.5. Describe a standard conditional model in which the following 
principle of augmentation is false. 

AUG. (A*B)+((AhA') *B) 

10.6. Call a normal conditional logic SICK if it contains the schema I 
and a principle of syllogism : 

Prove that AUG in the preceding exercise is a theorem of every SICK 
system. 

10.7. Let C be a conditional logic closed under RCEA. With reference to 
the schemas CM and CC in exercise 10.1, prove : 

(a) C is monotonic iff it contains CM and is closed under RCEC. 

(b)  C is regular iff it contains CC and is closed under RCM. 

(c)  Z is regular iff it contains CC and CM and is closed under 
RCEC. 

(Compare theorem 8.1 1 .) 

10.8. Consider the class of models 4 = (W, R, P) in which R is a 
ternary relation on W and truth conditions for conditionals are given by: 

I=$ A =. B iff for every /3 and y in A such that R(a, /I, y), 
if k f  A then kf B. 
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Prove that the conditional logic determined by the class of all such models 
is normal and closed under the following rule of inference, 

A-+(A, v ... v A,) 
((A, - B)A ... A (A, - B))+(A => B) (n 2 0) 

Also prove that a normal conditional logic is closed under this rule just 
in case it contains the following schemas. 

l * A  
((Av A') =.B)+((A *B)A(A' B)) 
((A* B)A(A' =.B))+((AvA') *B) 

10.9. Prove that CK is determined by the class of all standard conditional 
models. 

10.10. Prove determination theorems for normal conditional logics 
containing I and MP. 

10.11. Define a notion of filtration appropriate to standard conditional 
models. Use it to prove that C K  is determined by the class of finite 
standard conditional models. Conclude that CK is decidable. 

10.12. What condition on standard conditional models makes * have the 
logic of +? 

10.13. Prove determination theorems for CE, CM, CR, and CK relative 
to classes of minimal conditional models. 

10.2. Conditional obligation 

At the end of chapter 6 we defined minimal deontic logic, D, as the 
smallest system, based on propositional logic, closed under the rule of 
inference 

ROM. 
A+B 

O A + O B  

and containing the sentence 

OD. 10L. 

We see now that D can be described as the smallest monotonic MPO- 
system for the operator 0. 

D is determined by the class of supplemented minimal models 
= (W, N, P) that satisfy the condition 
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and in which truth conditions for O A  are given by: 

If O A  iff IIA//A E N ,  

- or equivalently by : 

If O A  iff for some X E  N,, X G IIAlld 

(compare exercise 7.24). In  other words, for each cc in&, N, is a collection 
of non-null propositions that are standards of obligation relative to a, 
and O A  is true at a just in case the proposition expressed by A is entailed 
by one of these standards. 

Note that none of the following schemas is a theorem of D. 

OC. ( O A A  OB)+ ~ ( A A  B) 

ON. OT 
OD*. ~ ( O A A  O i A )  

This means that there are possible worlds that have no standards of 
obligation, and that where standards do exist they may support con- 
flicting obligations. 

At the end of chapter 6 we also remarked the need for a logic of 
conditional obligation, for a logic of sentences of the form O(B/A). If 
we construct the logic of O( / ) by analogy with that for 0, then we 
should adopt at least the following two rules of inference. 

RCOM. 
B-+ B' 

O(B/A) + O(Bt/A) 

The import of RCOEA is that when A and A' express the same pro- 
position the one-place operators O (  /A) and 0 (  /Af) are equivalent. This 
reflects our understanding that it is the conditions expressed by A and 
A' - and not, for example, the sentences themselves - that determine 
what is obligatory. According to the second rule, RCOM, conditional 
obligation is closed under implication. 

The question now is what to regard as the conditional analogue of 
OD. The simple schema 

does not seem right. The significance of this is that nothing impossible 
is obligatory under any condition. But this rules out even what is 
impossible as a condition of an impossible obligation; i.e. COD+ yields 
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~ O ( L / L )  as a theorem. It seems more reasonable to assume only that 
nothing impossible is obligatory under any possible condition. That is to 
say, the correct counterpart to OD is the weaker schema 

COD. OA+ 7 o(L/A). 

Here 0 is to represent some suitable concept of possibility. For the sake 
of simplicity, let us suppose that 0 has the logic of a normal KT5- 
system, so that OA can be taken to mean that A is true at some possible 
world. 

We may call the logic of O( / ) defined in terms of propositional logic, 
RCOEA, RCOM, and COD minimal conditional deontic logic, or CD. It 
is the smallest monotonic conditional logic for 0(/) containing the 
theorem COD. 

CD is determined by the class of minimal conditional models = ( W, 
f, P) that satisfy the condition (cm), in the preceding section, and the 
condition 

(cd) if X # 0, then 0 4 f (a, X) 

and in which truth conditions for O(B/A) are given by: 

k;P O(B/A) iff I I  BIId ~f (a, IIAlld) 

- or equivalently by : 

If O(B/A) iff for some X E f (a, ([AllA), X E I[ BIld. 

(Because we assume /J and 0 to obey the laws of KT5 (S5), there is no 
need to introduce an alternativeness relation for them into the models; 
compare theorem 5.15.) 

Given this determination result for CD, it is easy to see that the 
system has none of the conditional analogues of OC, ON, and OD*: 

COC. (O(B/A)AO(B'/A))+O(BAB'/A) 
CON. o(T/A) 

COD*. ()A+ l(O(B1A) A o(IB/A)) 

Moreover, CD does not contain a principle of augmentation : 

OAUG. o(B/A)+O(B/AAA') 

This is as it should be, since part of the point of conditional obligation is 
that obligations can differ under different conditions. 

The foregoing account of conditional obligation takes the operator 
O( / )  as primitive, and this leaves unresolved the connection between 
this concept and that expressed by the simple 0 - although we might 



I0.2. Conditional oblkation 275 

regard 0 as defined in terms of O (  / ), for example by O( /T). Another 
way to explain the connection between the operators is to define O( / ) 
in terms of 0 and a suitable non-deontic notion of conditionality. We 
turn to this idea in the next section. 

EXERCISES 

10.14. Explain why the system D is the smallest monotonic MPO- 
system for 0. 

10.15. Prove the equivalence of the truth conditions given in section 10.2 
for sentences of the form OA. 

10.16. Describe models for the system D in which OC, ON, and ODk 
are false. 

10.17. Prove the equivalence of the truth conditions given in section 10.2 
for sentences of the form O(B/A). 

10.18. Describe models for the system CD in which COC, CON, COD*, 
and OAUG are false. 

10.19. Prove that if COC is a theorem of a monotonic CD-system then 
COD* is too. 

10.20. Prove that D is determined by the class of supplemented minimal 
models for 0 that satisfy the condition (p) (compare exercise 9.39). 

10.21. Sketch a proof that CD is determined by the class of minimal 
conditional models satisfying (cm) and (cd). Along the way, explain why 
17 and 0 do not have to be represented in these models. 

10.3. Conditional obligation defined 
Let CKD be the smallest normal system for the conditional * in which 
the schema 

CD. OA+ 1 ( A  - I) 
is a theorem. CKD is determined by the class of standard conditional 
models 4 = (W, f, P) that satisfy the following condition. 

(cd) if X # 0, then 0 6 f (a, X )  

As we remarked in the preceding section, the system D for the operator 
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0 is determined by the class of supplemented minimal models A = ( W, 
N, P) that satisfy the following condition. 

If we combine the systems D and CKD, the resulting logic - D + CKD 
- is determined by the class of models A% = (W, N, f, P) in which N 
behaves as it does in the models for D and f behaves as it does in the 
models for CKD. (Again, as in the preceding section, we ignore and 

0 *) 
Now let us define the conditional obligation operator O(  I )  in terms 

of 0 and a, thus: 

Given this definition, the logic of O( / ) is precisely CD, the minimal 
conditional deontic logic described in the preceding section. 

If the models A = (W, N, f, P) satisfy the further condition 

then the following schema becomes a theorem. 

DEF. A- (T = A) 

This is a reasonable law for non-deontic conditionality, and it has the 
virtue of yielding 

ODEF. oA- o(A/T) 

as a special case. We suggested earlier that if O( I) is taken as primitive 0 
could plausibly be defined in this way (and if both deontic operators are 
taken as primitive one might expect ODEF to be a theorem). 

EXERCISES 

10.22. Describe models of the system D + CKD that falsify COC, CON, 
CODX, and OAUG. 

10.23. Derive ODEF from DEF, and prove that DEF is true in any 
model for D + CKD that satisfies the condition (def). 

10.24. Describe a model of D + CKD in which I (A a A) is true, but 
the schema 

01. O(A/A) 
is false. 
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10.25. Prove that 

OMP. 0 (BIA) -+ (A -+ 0 B) 

is true in any model for D+ CKD that satisfies the condition (mp) in 
section 10.1. 

10.26. Let X be a system extending D + CKD that is closed under ROM, 
RCEA, and RCK. Prove: 

(a) A + 0 A is a theorem of X if the systemcontains OI andOMP 
(see exercises 10.24 and 10.25). 

(b)  8 is inconsistent if it contains I (A =>A) and COD+ 
(1 O(1 /A) ; see section 10.2). 

10.27. Prove that principles of dilemma - 

DIL. ((A=>B)A(A'*B))+((AvA')-B) 
ODIL. (O(B/A) A O(B/Af)) -+ o(B/A v A') 

- are true in any models for D + CKD that satisfy the following condition. 

What is the situation in models for which the converse of (dil) holds? 

10.28. Prove that D-i-CKD is determined by the class of models 
A = {W, N , f ,  P) satisfying the conditions stated in section 10.3. 
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Pn 4, 12,25 
T 4,25 
1 4,25 
-I 4,25 
A 4,25 
v 4,25 
+ 4,25 
e, 4,25 

4,25 
0 4925 
Pn 4, 35, 212 
(W,P) 4 
A = ( W , P )  5 
c f A  5,35 
kA 6 
.A? = (W, R, P) 12,67, 196,271 
aRP 12,68 
V, 3 12 
T 13,75 
I-A 14 
e 22 
A, B, C, ... 26 
, A, E, . 26 
A,A ... AA, 27 
A,v ... vA, 27 
(A,A ... hAn)-+A 27 
A+(A,v ... vAn) 27 
Sn 28 

29 
#, g 29,128 

# 29 
#n 29 
A[B/B'] 30 
A* 30 
AT = (W, ..., P) 34 
kdA 36,213 
kcA 36,213 
C 36,213 
v, 37 
llAlld 38, 213 

4 - 
- 9  = r 41,42 
[4 [.IF 42 
[XI, [XI, 42 
As = (W', ..., P") 42 
r(C) 43 

Z 46 
k,A 46 
r k , A  47 
Con, I', Con, I' 47 
A - , B  50 
Max,I' 53 
A 55 

57,243 
C FIN 63 
AT' = (W', R', P') 71,93 
f (a) 74, 93, 98 
A? = (W, f, P) 74,93,211, 

268, 270 
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( 9 , )  74 
= (W, R, Q, P) 75 

R 75 
1 84 
R 84 
R(S 84 
rx1 85 
Rx 85 
Rn 85 
an, 0" 86 
) 93 
Aa = (Wa,Ra,P)  95 
9 ( C )  97 
E 97 
U 97 
X 0  = (WO, RO, Po) 98 
A# = ( W#, R#, P#) 99 
X *  = (WX,  RX, PX)  101 
g(r) 104 
KS, ... S, 113 
a 124 
S ,  S O ,  RS, RSO 129 - 138 
rRA 161 
0 190 
P 192 
Z 196 
N, 196 
R, 196 
P, 196 
a(t) 196 
(a, t) 196 
, 0 197 
a 197 
[PI, ( - ), (P) 198 
@ 199 

[FI, ( + ), (F) 200 
o( / )  201 

= (W, N, P) 207 
Na 208 
A' = (W', N', P f )  210 
Nn 211,225 
f(X) 211 
a = (B, 1,0, -, n, U) 212 
< 212 
( ,  212 
( P )  212 
A?+ = (W, N+, P) 216 
A-= {W, N-, P) 217 
A+-,A-+ 217 
N+-, N-+ 217 
A* = ( W , N f ,  P) 217 
rKB = (W, R, P) 221 
Am = (W, N, P) 221 
A?! = (W, N' ,  P) 222 
f n  226 
+" 226 
A' = ( W X ,  N*, PI)  227 
A*+, AX- 228 
A'' = ( W*, NX* 9 P*) 228 
A?r = (gr, *r, P 3  230 
ES, ... Sn 231 
MS l...Sn 235 
RS, ... Sn 235 
M(a) 266 
3 268 
f (a, X )  268,270 
[A]B 269 
R(a, P, Y) 271 
O( /A) 273 
A?= (W, N, f, P) 276 



I N D E X  O F  S C H E M A S ,  RULES,  
A N D  S Y S T E M S  

Schemas 
AUG 271 
B 16, 76, 80, 131, 139, 175, 223, 

224, 245,261 
BO 18,82, 132 
Bk 136, 137 
130k 137 
BOk, BOOk 137 
B, 71 
C 20, 114, 115, 214, 216, 235, 

236,258 
CO 72, 117, 118,238,239 
Ck,COk 121,240 
CC 270 
CD 275 
CK 271 
CM 270 
CN 270 
COC 274 
COD 274 
CODX 274 
COD+ 273 
CON 274 
CR 271 
D 16, 76, 80, 131, 139, 175, 223, 

224, 245,261 
Dk 134, 135, 139 
D, 71 
D! 93 
DEF 276 

DfO 7, 14,69, 114, 115,209, 
231, 232,234,236 

DfOk 120, 121,240 
D f g  17, 117, 118,232,239 
D f n k  121,240 
DIL 277 
DUAL 126,233 
F, FO 143 
G 81, 178, 224,245 
G, 146 
G! 171 
G k . l , m , n  85-94 
GO.l,O,l G0,1,0,0 G0,0,1,1 G0,1,2,0 

9 

1 88 
GI, 0,1,0 GO, 0,1,0 G O ,  2,1,0 90 
G?&m#" 226 
Gr 146 
W,H+, Hf+ 92 
HO, H+O, H+f 0 144 
I 269 
K 7, 14, 114, 115,235 
KO 72,117, 118,238 
Kk, K O k  121,240 
L, Lf, I,-++ 144 
LO,L+O,L++O 144 
M 20, 114, 115, 214, 215, 235, 

236 
MO 72, 117, 118, 238,239 
Mk,Mok 121,240 
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MP 269 
N 20, 114, 115, 214, 216, 236, 

245,259 
N O  72, 117, 118 
Nk, NOk 121 
0 , O n  133 
Ok, Omk 135 
OAUG 274 
OC 191 
OD 191 
OD* 190 
ODEF 276 
ODIL 277 
0 1  276 
OMP 277 
ON 191 
OU 193 
0 4  193 
04, 194 
04!  194 
0 5  193 
P 83, 133,245 
Pn 133 
Pk 92, 134, 135 
P o k  135 - 
P 83 

144 
R 114,235 
R O  117,238 
Rk, ROk 121 
S 271 
T 6,14,76,80,131,139,175, 

223,224,245,261,262 
T O  16,131 
T k , T O k  135 
T, 71 
TO,  143 
T! 93 
TO! 143 
u ,uo 140 

X, X() 136 
4 18, 76, 80, 131, 139, 175, 223, 

224,245,26 1 
4 0  18, 132 
4k,40k 138 
4, 71 
4!, 4 0 !  142 
4" 87 
4"~" 87 
41s0 88 
4m3n! 169 
5 6, 14, 76, 80, 131, 139, 175, 

223,224,245,261,263 
5 0  18, 132 
5k, 5 0 k  138 
5, 71 
5 ! , 5 0 !  142 
5-, 5-0 146 
Rules 
DUAL 126,233 
MP 8, 9, 14,4546 
RB, RBO 132 
RBk, RRBOk 137 
RBOk, RB OOk 137 
RCEA 269 
RCEC 269 
RCK 269 
RCM 270 
RCN 270 
RCOEA 273 
RCOM 273 
RCR 270 
RD 131 
RDk 135 
RE 17, 114, 115,209,231,232, 

236 
RE 0 117, 118,232,239 
REk, REOk 121,240 
REP 125,232 
RFM, RFMO 143 
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RGr 146 
RI 271 
RK 19,69,114,234 
RKO 116,118 
RKk 120, 121 
RKOk 121 
RM 17,19,114,115,234,236 
RMO 117, 118,238,239 
RMk,RMOk 121,240 
RN 7, 14, 19, 114, 115,236,245 
RNO 117,118 
RNk, RNOk 121 
ROK 190 
ROM 191 
RP 133,245 
RPO 133 
RPk, Wok 135 
RPL 15,38,46 
RR 20, 114,115, 234 
RRO 117,118,238,239 
RRk, RROk 121,240 
RT,RTO 131 
RTk, RTQk 135 
RX, RXO 136,139 
RXk, RXOk 137 
R4, R40  132 
R4k, R40k 138 
R5, R5 0 130,132 
R5k, R50k 138 
Systems 
B 131 
CD 274,276 
CE 270 
CK 269,271,272 
CKD 275-76 
CM 270 
CR 270 
D ( K D )  131 
D (minimal deontic logic) 202, 

272-73,275-76 

D+CKD 276 
D* 190-91, 192,194,195, 197, 

202 
E 231,237,249,251,252,257, 

265,266 
EC 237,245,251,252,258 
ECM 231 
ECN 237,249,259 
EM 236,237,249,251,252 
EMC 231,236,237,249,251, 

259 
EMCN 236,237, 249,259 
EMN 237,249, 259 
EN 237,249,252,259 
ET 252,262 
ET5 245,251,263 
E.5 252,263 
K 113, 124, 132, 147,163,168, 

169, 175, 180, 181, 182, 187, 
188, 236, 237, 249, 259, 260, 
265,266 

I 3  131,132,136,137,139, 
141, 163, 164, 167, 168, 169, 
175,181, 182,187,188 

KB4 132,137,143, 153,163, 
164, 168, 169, 175, 181, 182, 
187,188 

KB5 137 
KD 131,132,133,135,140, 

147, 163, 164, 168, 169, 175, 
181, 182, 187, 188 

KDB 132, 147,163,164,168, 
169,175,181,182, 187,188 

KDB4 139 
KDB5 139 
KDT 131 
KDT4 178 
KD4 132,142,147,163,164, 

168, 169, 175, 181, 182, 187, 
188 



286 Index of schnnas, rules, and systems 
KD45 132,142,143,154,163, PL 14, 15,46,47-48, 50, 53,64 

164, 168, 169, 175, 181, 182, R 234,237,249,251,259, 265, 
187, 188 266 

KD5 132, 152, 163, 164,168, RN 236 
169,175, 181,182, 187, 188 S4, 131, 138,140,144,145,146, 

KG 144, 167,171, 180, 189 147, 150, 177 
KGkyz~m*n 182-87 S5 3-24,98,103-4,131,139, 
KT 131, 132, 135, 143, 147, 163, 144, 145, 146, 14749, 178 

164, 168,169, 175,181, 182, S5' 21 
187,188 T 131, 135 

KTB 131,132, 138, 139,147, 
163,164,168,169,175,181, Inadditiontotheforegoing,the 
182, 187, 188 following systems are mentioned 

KTB4 139 in the exercises for sections 4.3, 
KT4 113, 131, 132, 138, 140, 4.4, 5.1, 5.2, 5.4, 5.5, 6.2, 8.3, 

144, 145, 146, 147, 149, 163, 9.1, 9.3, and 10.2: D?, Dt, D f ,  EB, 
164,168,169,175,181,182, ECK,ED,ED45,EG,EGk""'", 
187, 188 EG$hm-n, EK, EP, EF, EU, E4, 

KT5 131, 132, 139, 142, 144, E5!, KBk, KB,, KDH+, KDH*, 

145, 146, 147, 154, 163, 164, KDT,, KD4G, K M H ,  KD4H+, 

168, 169, 175, 178, 181, 182, KD4 U, KD4!, K D ,  KD,T, 

187, 188 KDg,, KD!, KD!B, KD!B,, 

K4 131, 132, 138, 140, 141, 147, 
163, 164, 167, 168, 169, 175, 
181, 182, 187, 188 

K4T 113 
K45 132,152-53, 163, 164, 168, 

169,175, 181, 182,187, 188 
K5 131,132, 138, 141, 142, 145, 

146, 150-51, 163,164, 167, 
168, 169, 175, 181, 182, 187, 
188 

M (EM) 234, 236, 237,249, 
251,252,258,261,265,266 

M ( K T )  135 
MC 236 
MCN 236 

KD!4, KD!4,, KD!5, KG,, KG!, 
KGr, KH, KHf ,  KIP- ,  KL, KL+, 
KL++, KP, KP, KPk, KTQG, 
KT4G,, KT4W+, KT4H++, 
KT4L0,  KTk, KT,, KT!, KU, 
KUH, KUH++, K plus 0 T + 
( ~ A + A ) , K p l u s  Oj ( O k  m2A+ 
am OnA), Kplus Q ~ T + ( ( ) ~  
O'A+ am OnA), MG,, K4H, 
K4H+, K4U, K4UG, Kdk, K4,, 
K4!, Kjk,  K5,, KS!, K5 0 !, 
K.5-, MD.5, MN, MP, MPO, 
R5, 5'4.1, S4.1 (KT4Gc), S4.2, 
S4.3, S4.4 
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accessibility, 68 
affirmative modality, 29, 129, 243 
agreement 

of possible worlds on the sentences 
in a set, 41, 42 

of models on the atoms of a sen- 
tence, 71-72, 210 

of models on a sentence, 72 
in algebraic models, 230 

alethic modal logic, 13 1 
algebra, see boolean algebra, alge- 

braic models 
algebraic filtration, 230 
algebraic models, 212-13, 252, 261, 

264, 266-67 
for M, C, and N, 219 
for D, T, B, 4, 5, G, Gklzym$n, 

and GtJprnn", 226, 247 
filtrations of, 230 
formed from lindenbaum modal 

algebras, 244-45, 247 
canonical, 256 

alternativeness, 68, 191 
ambiguity, 27, 244, 253 
antecedent, 26 

in (A, A ... A A,) +A,  27 
antisymmetric standard model, 94 
antisymmetry, 94 
associativity, 27 
asymmetric standard model, 94 
asymmetry, 94 
atomic sentence, 4, 25, see also 

propositionally atomic sentence 
augmentation, principles of 

for deducibility, 48 
for inconsistency, 49 
the schema AUG, 271 
the schema OAUG, 274 

augmentation of a minimal model, 
220-23 

augmented minimal model, 220, 223 
axiom, 14, 51 
axiornatizabili ty, 5 1-53 

and decidability, 62 
of the systems in figure 4.1, 187 
of E, M, R, and K, 265 

axiomatization, 14, 20, 5 1 

Becker, Oskar, 138 
biconditional, 4, 26 
boolean algebra, 212, see also algebraic 

model, boolean subalgebra, 
lindenbaum algebra, lindenbaum 
modal algebra, modal algebra 

boolean closure, 104, 229 
boolean subalgebra, 230 
Brouwer, L. E. J., 138 
Brouwersche axiom, 1 37-38 
Brouwersche system, 131, 138, 139, 

188 

canonical algebraic model, 256 
canonical minimal model, 252 

alternative characterizations of, 
253, 254-55 

fundarnen tal theorem for, 253-54 
corollary to fundamental theorem 

for, 254 
smallest, 254 
largest, 254 

canonical model, 60-62, see also can- 
onical algebraic model, canonical 
minimal model, canonical stan- 
dard model 

canonical standard model, 171 
alternative characterization of, 172 
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canonical standard model (cont.) 
fundamental theorem for, 172 
corollary to fundamental theorem 

for, 173 
proper, 173-74 
non-proper, 187 

characteristic theorem of S4, 138 
characteristic theorem of 23.5, 139 
classical systems of conditional logic, 

269 
classical systems of modal logic 

method of naming, 231 
classical systems, 23 1-34 
replacement in, 232-33 
duality in, 233-34 
monotonic systems, 234-45 
regular systems, 234-45 
norrnal systems, 234-45 
other schemas in, 24547 
determination and decidability for, 

248-67 
closure under a rule of inference, 46 
closure under intersection, 220 
closure under intersections, 21 5, 2 17 
closure under subsentences, 28 
closure under supersets, 21 5 
coarsest filtration 

of a standard model, 102 
of a minimal model, 227 

compactness 
of deducibility, 48 
with respect to consistency, 49 

completeness 
of S5, 20 
soundness, completeness, and 

canonical models, 59-42 
with respect to a class of models, 

60 
strategy for proving, 61 
basic theorems for normal systems, 

171-75 
of K, 175, 187, 259-60, 265 
of the systems beyond K in figure 

4.1, 177-78, 187-88 
of normal KG-systems, 178-80 
of normal KGk~E~"~-systems, 

183-84 
basic theorems for classical 

systems, 252-56 
of E, 257, 265 
of monotonic systems, 258 

of M, 258, 265 
of regular systems, 258-59 
of R, 259, 265 
of classical systems containing N, 

259 
of norrnal systems, 259-60 
of classical systems containing 

D, T, B, 4, and 5, 261-64 
of classical ET-systems, 262 
of classical E5-systems, 263 
of classical ETS-systems, 263 
see also decidability, determina- 

ation, soundness 
composition, 84 
Con, see consistency 
Can, see inconsistency 
conclusion of a rule of inference, 46 
conditional, 4, 26 

when n = 0 in (Al A ... A An) + A  
and A +(A, v ... v A,), 27 

the operator 0( / ), 201, 202, 273, 
276 

the operator -, 268 
conditionality, 268-72 
conditional logic 

conditional obligation, 200-202, 
272-77 

conditionality, 268-72 
standard conditional mode1 for, 268 
conditionality as relative necessity, 

269 
classical, monotonic, regular, and 

norrnal systems of, 269 
minimal conditional model for, 260 
minimal conditional deontic logic, 

274 
conditional obligation defined, 

275-77 
the system CKD, 275-76 
the system D + CKD, 276-77 

conditional obligation, 200-202, 
272-77 

conjunct, 26 
conjunction, 4, 26 

arbitrary (A, A . . . A A,), 27 
in (A, A ... A A,) +A, 27 

connectedness, 166 
connected relation, 167 
connected standard model, 167 
consequent, 26 

in A +(A, v ... v A,), 27 
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consistency, 47 
of S5, 22-23 
properties of, 47-48 
alternative characterizations of, 49 
of K, 123 
of the systems beyond K in figure 

4.1, 147 
systems for which s cannot be 

used to prove, 147 
of classical systems, 247 

construction tree, 28, 29 
conventions, 27 
convergence, 166 
convergent relation, 166 
convergent standard model, 167 
converse of a relation, 84 
countermodel, 36 
Cresswell, M. J., 146 

decidability, 32 
of a system of modal logic, 62-64 
and the finite model property, 

62-64 
of the systems in figure 4.1, 

187-89 
of E, M, R, and K, 264-67 
see also decision procedure, 

determination 
decision procedure, 52, 63 
deducibility, 47 

properties of, 47-48 
characterization in terms of con- 

sistency, 49 
characterization in terms of maxi- 

mality, 57 
deduction theorem, 48 
deductively closed set of sentences, 51 
deductive system, 3 
dense standard model, 90 
density, 90 
deontically vacuous statement, 

197-98, 200 
deontic alternativeness, 191 
deontic force, 200 
deontic logic, 13 1 

standard deontic logic, 190-92, 
194, 197, 200-203 

further principles, 193-95 
deontic S5, 193, 195 
modalities in, 195 
obligation and time, 195-98 

past tense obligations, 196,198-200 
deontically vacuous statement, 

197-98, 200 
shortcomings of standard deontic 

logic, 200-203 
conditional obligation, 200-202, 

272-77 
minimal deontic logic, 202-3, 

272-73, 275, 276 
minimal conditional deontic logic, 

274, 275-76 
see also obligation 

deontic necessity, 190 
deontic S5, 193, 195 
determination, 60 

for K, 175, 187, 259-60, 265, 266 
for the systems beyond K in figure 

4.1, 177-78, 187-88 
for KT5, 178 
for KG, 178-80 
for other normal systems, 180-8 1, 

185-86 
for KGkJ*"sn, 182-87 
for E, 257, 265, 266 
for M, 258, 265 
for EC, 258 
for R, 259, 265 
for other classical systems, 260-61, 

264 
for ET, 262 
for E5, 263 
for ET5, 263 
see also completeness, decidability, 

soundness 
diagonal relation, 84 
dilemma 

moral, 201 
principles of (the schemas DIL 

and ODIL), 277 
diminution, 49 
disjunct, 26 
disjunction, 4, 26 

arbitrary (Al v . . . V A,), 27 
in A -t (Al v .. . v A,), 27 

distinctness 
of modalities, 147 
of the systems in figure 4.1, 163-66 
of the systems in figure 8.1, 249-50 

duality 
dual of a modality, 29, 128-30, 

233-34 
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duality (cont.) 
dual of a sentence, 30-31 
dual of a schema, 31 
in normal systems, 125-30 
DUAL, 126, 233 
in classical systems, 232-34 

effectively enumerable set, 32 
elementary quantificational logic, 

12-14, 75-76 
empty modality, 29 
empty relation, 91 
empty set, 10 
empty standard model, 180 
enumeration, 27 
rz (erasure transformation), 22-24, 

323, 124, 147, 243, 247 
equivalence 

of sentences in a model (A- 
equivalence), 36 

of models, 36 
of models, pointwise, 36 
modulo I?, 42 
of sentences in a system (C- 

equivalence), 50 
of modalities, 147 

equivalence class, 85 
[al, 42 
IAlc, 243 

equivalence relation, 12, 83, 85 
=, 41 

t ,  196-97 
(C-equivalence), 50 

erasure transformation, see e 
euclidean filtration, 108-1 1 
euclidean relation, 10, 40, 74, 80 
euclidean standard model, 80 
evaluation, 21 3 
existential quantifier, 12 
extension, 26 

falsity (non-truth), 36 
falsity (truth value), 8, 37 
falsity constant, 4, 26 
falsum, 4, 26 
fatalism, 200 
Feys, Robert, 135 
field of a relation, 85 
filter, 21 5 
filtration, 4 1 4 5  

and the finite model property, 63 

of standard models, 100-1 12 
of minimal models, 227-30 
of algebraic models, 230 

finest filtration 
of a standard model, 102 
of a minimal model, 227 

finite algebraic model, 212 
finite determination theorem, 63 
finite model, 35, 212 
finite model property (f.m.p.), 62-64 

for S5, 103 
for the systems in figure 4.1, 

187-88 
for E, M, R, and K, 265 

f.m.p., see finite model property 
fully modalized sentence, 142-43 
functionality, 167 
functional relation, 167 
functional standard model, 167, 180 
future tense, 69, 200 

r-filtration, 42, 230 
generated model, 95-100 

historical determinacy, 197, 198 
historical identity, 196 
historical necessity, 197 
historical possibility, 197 
Hughes, G. E., 146 
hypotheses of a rule of inference, 46 
hypothetical syllogism, 15 

identity 
relation of, 84, 86 
condition on a standard model, 

167 
historical, 196 
law of (the schema I), 269 

imperative mood, 193 
implication 

between sentences in a model 
(4-implication), 36 

between propositions, 41 
obligation closed under, 202 
conditional obligation closed under, 

273 
impossibfe proposition, 191 
incestual relation, 82 
incestual standard model, 82 
inclusion, boolean, 21 2 
inclusion between truth sets, 41 
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inconsistency, 47 
the inconsistent system, 64 
see also consistency 

induction schema for past tenses, 200 
infinite model, 35 
instance of a schema, 31 
integers, the set of, 196 
intersection, boolean, 21 2 
intersection closure, 21 7 
intransitive standard model, 94 
intransitivity, 94 
intuitionism, 138 
intuitionistic negation, 138 
irreflexive standard model, 94 
irreflexivity, 94 
iteration of a modality, 29-30 

vacuous in S5, 154 

join (boolean union), 21 2 
k,l,m,n-incestual relation, 88 
k,l,m,n-incestual standard model, 88 

language 
of necessity and possibility, 4 
of elementary quan tificational 

logic, 12, 75 
of modal logic, 25-27 
of propositional logic, 190, 268 
see also syntax 

largest canonical minimal model, 254 
Leibniz, Gottfried WiIhelm, 3 
leibnizian interpretation of necessity 

and possibility, 3, 4, 67 
Lewis, Clarence Irving, 1 31 
Lewis systems, 131 
lindenbaum algebra, 244, 247, 256 
lindenbaum modal algebra, 244, 247, 

256 
Lindenbaum's lemma, 55-57 
logic, see conditional logic, deontic 

logic, elementary quantifica- 
tional logic, propositional (truth- 
functional) logic, systems of 
modal logic 

logically finite set of sentences, 36 
logique t, 135 

McKinsey, J. C. C., 146 
matrix, 26 
Max, see maximality 
maximality, 53-59 

maximal sets of sentences as 
possible worlds in a canonical 
model, 60 

maximal sets in normal systems, 
157-61 

meet (boolean intersection), 21 2 
member of a biconditional, 26 
A-equivalence, 36 
A?-implication, 36 
minimal conditional deontic logic, 

274, 276 
minimal conditional model, 270, 272 
minimal deontic logic, 202, 272 
minimal models, 207-1 3 

for M, C, and N, 214-19 
augmented, 220-23 
for D, T, B, 4, and 5, 223-26 
filtrations of, 227-30 
canonical, 252-56 

modal algebra, 21 2, 244 
modal closure, 30 
modalities, 29-30 

in normal systems, 147-57, 169-71 
in classical systems, 245-47, 251 

modal logic, see systems of modal 
logic 

modally closed set of sentences, 30 
model, 4-5, 34-35, see also algebraic 

model, canonical model, com- 
pleteness, determination, filtra- 
tion, generated model, minimal 
conditional model, minimal 
models, soundness, standard 
conditional model, standard 
models, truth at a possible 
world in a model, truth in a 
model, validity 

model of (for) a sentence or set of 
sentences, 36 

modus ponens 
rule of inference (MP), 8, 9, 14, 

15-16, 20, 45, 46, 54 
principle of (the schema MP), 269 

molecular sentence, 25 
monotonic systems of conditional 

logic, 269 
monotonic systems of modaI logic, 

234-45 
moral dilemma, 201 
moral necessity, 68 
moral relevance, 69 
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necessary proposition, 41, 74, 208, 
21 1 

necessitate, 26 
necessitation, 26 

algebraic counterpart of, 21 2 
necessity 

leibnizian interpretation of, 3, 4, 67 
interpretation of, in standard 

models, 68-69 
moral, 68 
temporal, 69 
deontic, 190 
historical, 197 
interpretations of, in minimal 

models, 208-9 
relative, 269 

necessity-based characterization of a 
system of modal logic, 118 

negate, 26 
negation, 4, 26 

intuitionistic, 1 38 
see also disjunction in 

A +(A, v ... v A,) 
negative modality, 29 
negative test, 32, 62-63 
non-normal systems, 1 86 
non-proof set, 254-55, see also proof 

set 
non-proper canonical standard 

model, 187 
normal KB-systems, 135-38 
normal KD-systems, 133-35 
normal KT-systems, 135 
normal Khystems,  138 
normal K5-systems, 138-39 
normal systems of conditional logic, 

269 
norrnal systems of modal logic 

method of naming, 113 
normal systems, 114-25 
replacement in, 125-30 
duality in, 125-30 
the schemas D, T, B, 4, and 5 

in, 131-47 
normal KD-systems, 133-35 
normal KT-systems, 135 
normal KB-systems, 135-38 
normal K4-systems, 1 38 
normal K5-systems, 138-39 
modalities in, 147-57, 169-71 
maximal sets in, 157-61 

determination and decidability 
for, 162-89 

as cIassica1 systems, 234-45 
nth relative product, 86 
n-transitive standard model, 87 
null modality, 29 

obligation, 68-69, 190, 208 
conflicts of, 191, 201, 273 
standard of, 191, 192, 194, 195, 

202, 273 
unfulfilled, 194 
and time, 195-98 
impossible, 201, 202, 273 
closed under implication, 202 
see also conditional obligation, 

deontic logic, ' ought ', past 
tense obligation 

obligatory proposition, 191 
occurrence of a subsentence, 28, 30 
operator, 25 

as a symbol, 29 
' ought ', 68-69, 71, 190 

ought implies can, 191, 197, 202 
see also deontic logic, obligation 

partial functionality, 90 
partially functional standard model, 

90 
partition, 85 
past tense, 198-200 
past tense obligation, 196, 198-200 
permissibility, 190, 192, 193 
PL, 16, 46, see also propositional 

(truth-functional) logic, 
tautology 

p-morphism, 98 
pointwise equivalence, 36 
positive test, 32, 52, 62-63 
possibilitate, 26 
possibilitation, 26 
possibility 

leibnizian interpretation of, 3, 4, 67 
relative, 68-69 
interpretation of, in standard 

models, 68 
historical, 197 
interpretation of, in minimal 

models, 208 
possibility-based characterization of 

a system of modal logic, 1 18 
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possible worlds, 3 
set of, in a model, 4, 34-35 
as equivalence classes in a filtra- 

tion, 42 
maximal sets of sentences as, in a 

canonical model, 60 
as points in time, 69, 209 
queer, 75 
best of all, 193, 195 
as functions from times to world- 

states, 196 
sets of, as propositions, 208 
definability of, in a modal algebra, 

21 3 
predicate, 13, 75 
prefix, 26 
present continuous tense, 209 
proof of a sentence, 52 
proofs 

as annotated sequences of theorems, 
16 

in axiomatizable systems, 51 
distinguishing about from in, 52 
effectively enumerable, 52 
proof set, 57, see also non-proof set 

proper canonical standard model, 
173-74 

propositionally atomic sentence, 8, 37 
propositionally correct pattern (mode) 

of inference, 8-9, 15-16, 38, 46 . - 
propositional (truth-functional) logic, 

7, 16, 37, 115 
propositions 

truth sets as, 38, 41 
expressed by sentences, 38, 41, 

202, 268 
implication between, 41 
necessary, 41, 74, 208, 211 
possibly possible, 138 
obligatory, 191 
impossible, 191 
as sets of possible worlds, 208 
as points in algebraic models, 212 

provable equivalence, 50 
pure past tense, 199-200 

quantificational logic, see elementary 
quantificational logic 

quantifier, 12 
quasi-filter, 215, 217 
quasi-filtering, 21 7 

quasi-ordered standard model, 177 
quasi-ordering relation, 83 
queer possible worlds, 75 

R-descendant, 95 
reachability, 68 
reasonable rule of inference, 51 
reducibility of modalities, 147 
reduction law, 147 
reflexive relation, 10, 40, 74, 80 
reflexive standard model, 80 
reflexivity of deducibility, 48 
regular systems of conditional logic, 

269 
regular systems of modal logic, 

23445 
relative necessity, 269 
relative possibility, 68-69 
relative product, 84, 86 
relevance, 68, 69 
removal, 68, 85-87 
replacement, 30 

REP, 125, 232 
in normal systems, 125-30 
in classical systems, 232 

reverse secondarily reflexive stan- 
dard model, 92 

reverse secondary reflexivity, 92 
R-sequence, 93 
rule of disjunction, 100, 181-82, 186 
rule of inference, 4 5 4 6  

meaning of, 15, 24 
reasonable, 5 1 
for particular rules of inference see 

the index of schemas, rules, and 
s y s t m  

rule of modal consequence, 39 
rule of repetition, 23 

safe extension, 99-100, 181-82 
schemas, 3 1, for particular schemas 

see the index of schemas, rules, 
and systems 

secondarily reflexive standard model, 
92 

secondary reflexivity, 92 
sentence, 4, 25-27 
serial relation, 80 
serial standard model, 80 
SICK system of conditional logic, 271 
CT, 124-25 
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C-closed set of sentences, 51 
C-equivalence, 50 
Z-system, 46 
similarity, 83 
smallest canonical minimal model, 

254 
soundness, 59-62 

of 27.5, 20 
of normal systems, 162-69 
of classical systems, 248-52 
see also completeness, determination 

standard conditional model, 268, 
269, 272, 275 

standard models, 67-76 
for D, T, B, 4, and 5, 76-85 
for GLJ."*", 85-94 
generated, 95-1 00 
filtrations of, 100-1 12 
canonical, 171-75 
for standard deontic logic, 190-92 
for obligation and time, 196 
correspondence with augmented 

minimal models, 221-22 
standard of obligation, 191, 192, 194, 

195, 202, 273 
strengthening, 48 
strong connectedness, 166 
strong convergence, 166 
strongly connected relation, 167 
strongly connected standard model, 

167 
strongly convergent relation, 166 
strongly convergent standard model, 

167 
subsentence, 28 
supplementation, 21 6 
supplemented minimal model, 21 5, 

217 
syllogism 

hypothetical syllogism, 15 
principle of (the schema S), 271 

symmetric relation, 80 
symmetric standard model, 80 
syntactic operation, 25 
syntax, 25-34 
system, see systems of modal logic 
systems of modal logic, 45-51 

axiomatizability of, 5 1-53 
rnaximality in, 53-59 
soundness and completeness of, 
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canonical models for, 59-62 
determination of, 60 
decidability of, 62-64 
non-normal, 186 
see also classical systems of modal 

logic, conditional logic, deontic 
logic, normal systems of modal 
logic, and (for particular systems) 
the index of schemas, rules, and 
sys terns 

7,  13-14, 24, 75-76, 123 
tautological consequence, 37-38, 

see also propositionalIy correct 
pattern (mode) of inference 

tautology, 8, 37, 46 
temporal necessity, 69 
theoremhood, 47 

properties of, 47-48 
positive test for, 52, 62-63 
negative test for, 52, 62-63 
characterization in terms of maxi- 

mality, 57 
theorem of a system, 14, 46 
time 

possible worlds as points in, 69, 
209 

represented by the set of integers, 
196 

transitive relation, 80 
transitive standard model, 80 
transitivity of deducibility, 48 
truth (truth value), 8, 37 
truth at a possible world in a model, 5 

for non-modal sentences, 35 
for OA and QA in standard 

models, 68 
for OA, 191, 197, 273 
for P, in models for obligation 

and time, 197 
for DA and 0 A, 197 
for [PIA, (- )A, and (P)A, 199 
for [FIA, (+)A, and (F)A, 200 
for OA and OA in minimal 

models, 208 
for A * B in standard conditional 

models, 268 
for A * B in minimal conditional 

models, 270 
for o(B/A), 274 

truth constant, 4. 26 
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truth-functional logic, see proposi- 

tional (truth-functional) logic 
truth in a model, 36 
truth in an algebraic model, 213 
truth set, 38 
truth value, 8, 37 

union, boolean, 212 
unique readability, 27 
unit, minimal model that contains 

(possesses) the, 21 5 
unit element in a boolean algebra, 

212 
universal quantifier, 12 
universal relation, 74, 85, 97-98 
universal standard model, 97-98, 103 

vacuity, 90 
vacuous standard model, 90 
validity, 6 

in a class of models, 35 
in a class of algebraic models, 213 

valuation, 8, 37 
verum, 4, 26 
von Wright, Georg Henrik, 135 

weak density, 90 
world, see possible worlds 
world-state, 196 

zero eIement in a boolean algebra, 
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