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PREFACE

This book is an introductory text in modal logic, the logic of necessity
and possibility. It is intended for readers with the equivalent of a first
course in formal logic, and it is designed to be used as a basic text in
courses at the advanced undergraduate or beginning graduate level. The
material in the book can easily be covered in a full-year course; with
selectivity most of the material can be covered in a single term.

There are three parts to the book. Part I consists of two chapters,
meant to introduce the reader to the subject of modal logic and to furnish
a sufficient background for the parts that follow. Chapter 1 is a relatively
informal examination of S5, one of the best-known systems of modal
logic. Chapter 2 — ‘Logical preliminaries’ — contains almost everything
needed for an understanding of the rest of the book. Some readers may
prefer to go quickly through this chapter and then reread as necessary
sections required in the context of succeeding chapters.

Part II comprises four chapters on standard models and normal
systems of modal logic. The models, sometimes called ‘ Kripke models’,
are explained in chapter 3. In chapter 4 normal systems are presented
from an axiomatic standpoint. Chapter 5 contains theorems on complete-
ness and decidability, which bring together the model-theoretic and
deductive-theoretic treatments of the preceding chapters. As an illustra-
tion of normal systems chapter 6 offers a discussion of deontic logic, the
logic of obligation.

Part III is patterned like its predecessor, but here the topics are
minimal models and classical modal logics. Thus chapter 7 is about the
models (also known as ‘neighborhood’ or ‘Scott-Montague’ models),
chapter 8 is an axiomatic account of the logics, and chapter 9 deals with
completeness and decidability. Chapter 10 presents conditionality and
(again) obligation by way of example.

An important feature of the book is the exercises that follow the
sections of the chapters. These have been constructed both to con-
solidate understanding of the preceding material and to anticipate sub-
sequent developments. They are an integral part of the text, and I have
high hopes that the reader will attempt them as they appear.



Xii Preface

I have appended to the text a short bibliography citing most of the
works I found useful in writing this book. Many of these books and
articles will take the reader farther afield to topics and results not
treated here, and several contain good bibliographies.

I have a number of debts to record. First among these is to Lee Bowie,
who several years ago suggested that we author a textbook in modal
logic ~ I to write the chapters on propositional modal logic, he to write
on quantification, identity, naming, and description. When it later
became apparent that the material on propositional modal logic was
bulky enough to warrant separate publication, Bowie graciously en-
couraged me to proceed alone.

In this connection I also want to express my gratitude to Richard
Jefirey and David Lewis, for their advice and support, and for recom-
mending my project to Cambridge University Press and its distinguished
editor Jeremy Mynott,

My debts to several of the works cited in the bibliography will
perhaps be obvious to those already acquainted with the subject of modal
logic. In particular I should mention Lemmon and Scott’s Introduction
to modal logic and Segerberg’s Essay in classical modal logic.

"The contents of chapters 6 and 10 are largely adapted from my papers
‘Imperatives’, ‘Conditional obligation’, and ‘Basic conditional logic’,
cited in the bibliography. I wish to thank Krister Segerberg, editor of
Theoria, Soren Stenlund, editor of Logical theory and semantic analysis,
Richmond Thomason, editor of the Journal of philosophical logic, and
the D. Reidel Publishing Company for permission to use this material.

Steven Kuhn and Audrey McKinney read much of my manuscript at
different stages of its development, and I am grateful to them for criticism
and advice.,

Krister Segerberg has been a mainstay of counsel and encouragement
for many years. I have learned a great deal about modal logic from
Segerberg, and I have benefited enormously from conversations with him
in the course of writing this book.

Among many others who have contributed in various ways to this
book I would like to thank Roy Benton, Paul Golden, Deborah Mayo,
and Robert Pelcovits.

Finally, I owe an enduring debt to Dana Scott, who introduced me
to modal logic, who taught me how to think about it, and whose conception
of the subject fundamentally influenced my own.

Woodland Valley, New York B.F.C.
July 1978
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INTRODUCTION

In this chapter we introduce the subject of modal logic by surveying
some of the main features of the system of modal logic known as S$.
This system is but one of many we shall study. Because it is one of the
simplest, we choose it to begin with.

The system .S5 is determined semantically by an account of necessity
and possibility that dates to the philosopher Leibniz: a proposition is
necessary if it holds at all possible worlds, possible if it holds at some. The
idea is that different things may be true at different possible worlds, but
whatever holds true at every possible world is necessary, while that
which holds at at least one possible world is possible.

In section 1.1 we develop this semantic idea by means of a definition
of truth at a possible world in a model for a language of necessity and
possibility. This leads to a definition of validity, and we set out some valid
sentences and principles governing validity, as well as some examples
of invalidity.

The totality of valid sentences forms the modal logic .S5. In terms
of the principles set out in section 1.1 it is possible to deduce all the
valid sentences. Some evidence of this appears in section 1.2, where
we take the principles in section 1.1 as axioms and rules of inference,
formulate S5 as a deductive system, and derive a number of further
principles.

Sections 1.1 and 1.2 exemplify in miniature our approach to the
study of modal logic throughout this book: first, semantically in terms
of the notion of truth; second, syntactically by means of deductive
systems.

The exposition in this chapter is quite casual, and intentionally so.
The purpose, in part, is to acquaint the reader with many of the notions
and notations used in the rest of the book; but formality is deferred to
subsequent chapters. This leads to occasional wordiness, but not, it is
hoped, to loss of intelligibility.
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We study modal logic in the context of a language of necessity and
possibility. The sentences of the language are of the following forms.

P, Py, Py, ...
T, 1, TA, AAB, AvB, A>B, AoB, A, OA

Sentences of the form P, (forn = 0, 1,2, .. .) are atomic. T is a constant
for truth; 1 is a constant for falsity. 71, A, V, —, and « are signs of
negation, conjunction, disjunction, conditionality, and biconditionality,
respectively. [] is the necessity sign; ¢ is the possibility sign.

A more detailed account of the syntax of this language appears in
section 2.1, but it is not essential for an understanding of the rest of this

chapter.

1.1. Truth and possible worlds

According to the leibnizian idea, necessity is what is true at every possible
world and possibility is what is true at some. Linguistically: a sentence
of the form [JA — necessarily A — is true if and only if A itself is true at
every possible world; and a sentence of the form (A — possibly A —1s
true just in case A is true at some possible world.

The picture is of a collection of possible worlds — including our own,
the real world — at which sentences of the language are variously true
and false. Our purpose is to model this, and we do so by means of an
infinite sequence of sets of possible worlds,

PO,P].’Pz’ LI I ]

The intuition behind this modeling is that, for each natural number »,
the set P, collects just those possible worlds at which the corresponding
atomic sentence P, is true. In other words, the sequence P, P, B, ...
interprets the atomic sentences by stipulating at which possible worlds
they are true (and, by omission, at which they are false): P, is true at a
possible world « if and only if a is in the set F),.

More precisely, a model is a pair

(W, P)

in which W is a set of possible worlds and P abbreviates an infinite
sequence P, P, P,, ... of subsets of W. Note that I/ may contain possible
worlds not in any of the sets F,; indeed, any or all of these sets may be
empty. Also, we do not require that the actual world appear in every
model.
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In terms of a possible world in a model we state the truth conditions
for sentences according to their forms. Where A is a sentence and « is a
possible world in a model # = (W, P), we use the symbolism

F# A
as short for
Ais true at ¢ in ..

The truth conditions are stated thus:

WO EefP,iffech, for n=0,1,2,....
(2) F# 1.
(3) Not k1.
(4) E# 1A iff not FF A.
(5) E# A ABiff both k¥ A and F# B.
(6) F# A v B iff either F¥ A or F# B, or both,
(7) E# A—Biff if /A then k¢ B,
(8) k¥ A Biff F# A ifand only if F B.
(9) k¥ CJA iff for every fin A4, Ff A.

(10) E# O A iff for some Bin A, Ff A.

Some discussion of this definition may be helpful.

Clause (1) reflects our remarks about the sets B, P,, B, ... in a model:
an atomic sentence P, is true at a possible world « just in case « is a
member of the set P,. According to clause (2), the truth constant T is
always true at ot By (3), the falsity constant | is always false at «. Clause
(4) states that a negation TA is true at  if and only if its negate A is
false at «. The content of (5) is that a conjunction AA B is true at «
just in case both its conjuncts, A and B, are. According to (6), a dis-
junction AV B is true at « just when at least one of its disjuncts, A and
B, 1s. Our intention in clause (7) is that a conditional A—B is to be
understood as true at @ just so long as it fails to be the case that its ante-
cedent, A, is true at @ while its consequent, B, is false. And, similarly, in
(8) we intend that a biconditional A < B be accounted true at o just in
case its members, A and B, are either both true at o or both false. Clause
(9) formulates the leibnizian interpretation of necessity: a necessitation
[JA is true at « if and only if its necessitate, A, is true at every possible
world £ in the model. Finally, according to (10), QA is true at « just
in case there is at least one possible world £ in the model at which A
1s true.
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A sentence true at every possible world in every model is said to be
valid. We use the symbol F again - this time without subscripts or
superscripts — and write

FA

to mean that the sentence A is valid. More formally, then, the definition
of validity may be expressed:

E A iff for every model .# and every possible world « in .#,
FA.

In asking after the logic of necessity and possibility we seek to know
which sentences are valid — true, no matter how interpreted, at every
possible world — and which are not. For example, as we shall see, every
sentence of the form [JA — A is valid, whereas not every sentence of the
form A — JA is. In what follows we first set out some valid sentences
and principles governing validity, enough to form an axiomatic basis for
the derivation of all valid sentences. Then we mention some prominent
cases of invalidity.

Let us begin our survey of validity with the principle just mentioned:

T. JA-~A

According to T, whatever is necessary is so: ¢f necessarily A, then A. To
see that this schema —1i.e. every sentence of this form —is valid, it is
sufficient to prove that where « is any possible world in any model .#,
F-# [JA— A. And for this it will be enough to show that if k¥ [JA then
F# A (compare clause (7) in the definition of truth). So suppose that
k¥ CJA. By clause (9) of the truth definition, this means that F# A for
every possible world £ in .#. In particular, then, this holds for «, i.e.
FZ A,
Next let us consider the schema

5. OA->[JOA.

"The import of 5 is that what is possible is necessarily possible: if possibly
A, then necessarily possibly A. To see that 5 is valid, suppose that F# O A,
for possible world « in model .#. By clause (10) of the definition of truth
this means that .# has a possible world £ such that F# A. It follows from
this (again by (10)) that no matter what possible world in the model we
choose, A holds - i.e. F# O A for every possible world 8 in #. But by
clause (9) this means that F #[] O A, which is what we wished to show.
The schemas T and 5 are rather special in that they do not hold in
every system of modal logic we shall study. The next two principles are
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more widely accepted however; it is not until chapter 7 that they are
called into question,

The first of these expresses a principle of distributivity of necessity
with respect to the conditional :

K. OA-+B)-(OA-1B)

This means that if a conditional and its antecedent are both necessary,
then so is the consequent. For the validity of K, suppose that a is a
possible world in a model .# such that both k¥ [J(A— B) and F# [JA.
Then for every possible world f in .#, both F# A—B and F# A, from
which it follows that for every possible world £ in 4, k# B. Thus,
F# [B.

The second principle corresponds to a rule of inference in the next
section (RN, the rule of necessitation). It states that the necessitation
of a valid sentence is itself always valid. In symbols:

IfE A, then k [(A.

For suppose that F A, i.e. that FZ A for every possible world « in every
model .#. Then for every possible world « in every model .#, k¥ [JA,
which is to say that F [JA.

The last specifically modal validity we wish to mention holds in every
modal logic we shall discuss in this book.

DfG. OA—[]TA

This schema embodies the idea that what is possible is just what is
not-necessarily-not. Its validity means that possibility is always expres-
sible in terms of necessity and negation, and so is theoretically super-
fluous. In this sense ¢ is definable in terms of [} and 7. Df is valid
because to say that for some possible world £ in a model .#, kA, is
just to say that it is not the case that for every possible world £ in .4
it is not the case that k¥ A, Reference to clauses (4), (9), and (10) of the
truth definition reveals that the former expression means that F;¥ O A,
while the latter expression means that F;¥ 771 ]J1A. Hence the bicon-
ditional /A« 71[]71A holds at every possible world in every model.

Let us turn now to the relationship between our modal logic and
ordinary propositional, or truth-functional, logic. The relationship is
simple: the modal logic includes the propositional. In part, this means
that every propositionally valid sentence is modally valid, i.e.:

If A is a tautology, then k A.
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The explanation of this is as follows (there is a more careful account
in chapter 2). By a tautology we mean a sentence true in every valuation
of its propositionally atomic constituents. A sentence is propositionally
atomic if it is either atomic in the ordinary sense (P,) or modal ((JA or
OQA). A valuation 1s an assignment of truth values (truth and falsity) to
the propositionally atomic sentences. The truth conditions in a valuation
of the rest of the sentences in the language — those of the forms T, 1,
T1A, etc. —are determined just as they are by a possible world in a
model. Thus T is true in every valuation, 1 is false in every valuation,
71A is true in a valuation if and only if A is false, and so on; compare
clauses (2)—(8) in the definition of truth above.

In short, a valuation analyzes sentences semantically from the point
of view of their truth-functional structure, counting as atomic the modal
structure of sentences of the forms [JA and O A, as well as those of the
form P,. A sentence is a tautology, thus, if it comes out true no matter
how truth values are assigned to its propositional atoms. For example,
any sentence of the form [JA—[JA is a tautology, since [JA is pro-
positionally atomic and such a conditional is true in a valuation whether
[JA 1s assigned truth or falsity.

Now observe that in any model .# each possible world « is a valuation
in the sense just explained, since a assigns truth or falsity to each sentence
of the form P, (JA, and { A, i.e. to each propositionally atomic sentence.
The world « assigns truth to a propositionally atomic sentence A when
E# A, and falsity otherwise.

To prove, finally, that every tautology is valid, assume that A is a
tautology — that A is true in every valuation. Then A is true at every
possible world in every model, i.e. F# A for every possible world a in
every model .#. This means that F A, i.e. that A is valid.

To say that all tautologies are valid does not exhaust what is meant
by saying that modal logic includes propositional logic. It means more-
over that validity is preserved by propositionally correct patterns of
inference. For example, the inference from A—B and A to B is pro-
positionally correct; whenever both A— B and A are true in a valuation,
so is B. Corresponding to this we have the principle that whenever a
conditional and its antecedent are both valid, so is the consequent:

IfEA—>Bandk A, then ¥ B.

This emerges as the rule of inference modus ponens, MP, in the next
section. To prove the principle, suppose that both F A—B and F A. This
means that for every possible world  in every model .#, k¥ A—> B, and



1.1. Truth and possible worlds 9

that for every possible world « in every model .#, k4 A. Tt follows at
once that for every possible world « ineverymodel .#, k¥ B, i.e. that £ B.

In terms of this principle and the fact that every tautology is valid we
can prove that validity is preserved by propositionally correct patterns of
inference generally. For suppose that it is propositionally correct to infer
a sentence A from sentences A,,...,A,, i.e. that A is true in every
valuation in which all of A,, ..., A, are. Then the sentence

Aj—>(...(A,~A)..)

is a tautology. Thus this sentence is valid. Hence if each of A}, ..., A,
is valid, then by applying the modus ponens principle z times we arrive
at the result that A is valid.

For example, it is propositionally correct to infer A— C from A—B
and B— C (we leave it for the reader to check that A— C is true in any
valuation that verifies both A->B and B-—>C). So the sentence
(A—=>B)—>((B—~>C)—>(A—C)) is a tautology. Hence if k A~ B, then by
the principle of modus ponens, F (B— C)—~(A->C). And so FA—C, if
also F B—>C.

This ends our short survey of valid sentences and principles governing
validity. Let us turn now to some examples of invalidity.

To begin, the schema A — [JA ~ the converse of T — is not valid. To
see this, let « and £ be distinct possible worlds, let W = {«, £}, and let
B, = {a}foreverynaturalnumbern(ie.n = 0,1,2,...). Then .# = (W, P)
is a model in which k¥ P, (since P, contains ) and not k¥ [JP, (since
there is a world in .#, viz. B, not in Fy). Thus, not k¥ Py— [P,
which proves that the schema A— [JA is not valid. We say in this case
that .# is a countermodel to A— [JA.

Notice that if A—[JA were valid it would mean that whatever is the
case is so necessarily. Indeed, if this schema were valid, then given the
validity of T, the biconditional A« [JA would be valid, so that truth
and necessity would be the same. The reader should contrast the in-
validity of A-> [JA with the correctness of the principle of necessitation,
that if A is valid so is [JA. This will help in understanding the difference
between theorems and rules of inference in the next section.

Another example of invalidity is the schema [J(A v B)—([JA v [(JB).
The model .4 = (W, P} in which W = {a, g}, P, = {&}, and B, = {#} for
n > 0 is a countermodel to this schema. For F# P, and k4 P;, which
means that F Pyv P, and F# Py v Py. So, ki [J(P, Vv P,), sincethe dis-
junction Py v [, is true at every possible world in .#. On the other hand,
not k¥ P, and also not g Py. So neither k¥ (1P, nor F# []P;, and
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hence not k¢ [P, v [JP,. Therefore, not k¢ [1(Py v Py}~ (1P, v OOPy),
i.e. # is a countermodel to the schema.

An even simpler way to see the invalidity of the schema (J(Av B)—
(OAv [OB) is to consider the instance [J(PyV T1P)-> (0P Vv [1T1Py).
The disjunction P,V TP, is a tautology, so it is valid — and hence so is
its necessitation, [J(P,Vv 1P,). Thus it is sufficient to show that the
disjunction [JPyV []71P, is not valid. The model described above in
connection with A — []A does the job, as the reader may verify.

We have just shown that the necessity sign does not distribute into a
disjunction; the validity of K, above, means that [ does distribute into
a conditional. As a final example of invalidity, we describe a counter-
model to O(A->B)->(OA-> OB), thus showing that the possibility
sign does not distribute into a conditional. The model is # = (W, P},
where W = {a, f}, P, = {a}, and P, = & (the empty set) for n > 0. We
leave it for the reader to check that ks O(Py— P,) and E O P, but not
E# OP,. This being so, it follows that not k O(Py— Py)—> (O Py~
OP).

This concludes our semantical exposition of the modal logic S5.

EXERCISES

1.1. Prove that the following schemas are valid.

(@) JA—> QA (e) A— QA

(b) A->[JCA (f) COA-A
(¢) OA-0A () OOA>OQA
(d) OT (k) OOA~DA

1.2. Prove that the following schemas are valid.

(@ OT

(b)) CI(AAB)—~>(JAA[OB)
(¢) (DAAOB)—[(AAB)
(d) 1oL

(e) (CAvV OB)>O(AVB)
(f) O(AvB)=(OAV OB)

1.3. Prove that the schema [JA «» 1{ 71 A is valid.
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1.4. Prove each of the following.

(a) If F(AAB)—>C, thenk ((JAA OB)—~[]C.
() If EA— B, thenkF [ JA—>[]B.
(c) If kA~ B, thenk [JA~T]B.
(d) If FA—B, thenkF OA— OB.
() If FA— B, thenk QA OB.

L.5. Prove that for any 5 > 0, if E (A;A...AA,)—>A, then F (CALA ... A
[JA,)—JA. (When 7 = 0 this just means if F A then F []A.)

1.6. Referring to the model .# defined in connection with showing the
invalidity of (A ->B)—({A— OB) (see the penultimate paragraph of
section 1.1), verify that k¥ (Py— P,) and k¥ P, but not k% O P,

1.7. Prove that the following schemas are invalid (i.e. that each has an
invalid instance).

(@) OA—A

®) OA->[IA

(¢) OCA—-A

(@) (CAA OB)—> G(AAB)
(e) (JA~(B)~[}(A—B)

1.8. For each of the following, decide whether or not it is valid, and
prove it,

(@) OJA>[JA

(b)) JCA—~> QA

() O(AAB)>(OAA OB)
(d) COA-OCA

(60 OCA->ODOA

() (OOAA OB)>O (TAAB)
(&) CA=>OOA

(k) OJA—-OOA

(?) (ODAv[B)->[(AvVB)
() OL

1.9. Suppose that in every model there is just one possible world and
prove that under this assumption the schema A - []A is valid.
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1.10. Consider a structure # = (W, R, P) in which W and P are as they
are in a model, and R is an equivalence relation on W. That is, W is a set
of possible worlds, P is an infinite sequence P,, P, P,, ... of subsets of ¥,
and R is a binary relation on I that is reflexive (for every « in .#, aRa)
and euclidean (for every «, £, and y in .#, if aRf and aRY, then SRy).
Structures of this sort are models for S5, where the truth conditions for
non-modal sentences are given as usual (i.e. (1)~(8) in the fourth para-
graph of section 1.1) and those for sentences of the forms [JA and O A
are given by:

(9)E# DA iff for every fin 4 such thataRg, F# A.
(10") ¥ O A iff for some £ in 4 such that xRS, F# A.

Intuitively, R is a relation that relates a world to those that are possible
with respect to it; R/ means that the world f is possible with respect
to the world «. Thus according to (9') [JA is true at « just in case A is
true at all worlds possible with respect to «; and according to (10') QA
is true at & just in case A is true at some world possible with respect to «.
Obviously, these models represent a generalization of the analysis of
necessity and possibility in section 1.1: it is no longer assumed that every
world is possible with respect to every other world.

As before, validity means truth at every possible world in every model.

Show that these models are adequate for an analysis of the system S5
by proving that the schemas T, 5, K, and Df{ are all valid, that any
tautology is valid, that [JA is valid if A is, and that if A— B and A are
valid so1s B.

Hint: The validity of 'T' depends upon the reflexivity of R, and the
validity of 5 depends on the euclideanness of R. Nothing special is
needed for the others.

1.11. (This exercise presupposes an acquaintance with elementary
quantificational logic.) The reader may have noticed an analogy between
the signs of necessity and possibility, [] and ¢, on the one hand, and
the universal and existential quantifiers, ¥ and 3, on the other. [JA is
true at a possible world just in case A holds at every world; A is true
at a world if and only if A holds at some world.

Let us specify a language of elementary quantificational logic by
stipulating that its formulas are of the following forms:

Pa), T, L1, 1A, AAB, AvB, A-B,
A«B, VoA, 3FaA,
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where P, is one of denumerably many one-place predicates and « is a
variable, so that P,(«) is an atomic formula.

We define the mapping 7, from the language of modal logic to the
quantificational language, as follows.

(1) 7(P,) = P, («), for n=0,1,2,....

@r(r)="7.

(3) 7(L) = 1.

4) 7(0A) = 17(A).

(5) (A A B) = 1(A) A7(B).

(6) T(Av B) = 7(A) v 7(B).

(7) 7(A—B) = 7(A)—>1(B).

(8) (A~ B) = 7(A) —7(B).

(9) T((JA) = Var(A).

(10) 7(QA) = Jar(A).

Thus 7 associates with each sentence A in the modal language a unique
formula 7(A}) in the quantificational language by replacing each atomic
sentence P, by P,(2) and putting Va and Ja respectively for occurrences

of [] and ¢. For example, let us calculate the results of applying 7 to
[0Py— Pgand to OPy— [JOP,.

7(OPy—> Pg) = 7((OPg) > 7(Py)

= Yar(P,)—>1(Py)
= YaPy(a)— Pya)

(O P> OO Py) = 7(OPg)>1(LIOPy)
= 7(Q Pg)—> Yar( O Py)
= dar(P,)— Yadar(P,)
= JaPy(a)— YadaPy(e)

It should be apparent that 7 is in effect a specification of the truth
conditions of modal sentences at a possible world o in a model. The
transformation shows that [JP,—> P, holds at « just in case YaPy(a)—>
Py(a) is true, and that $Py— 1O P, holds at « just in case JaPy(a)—+
YadaPy(a) is true. Generally, we can see that a modal sentence A is valid
just when 7(A) is; i.e.

EA iff 7(A)1s a valid formula of elementary quantificational
logic.
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For example, the instances of T and 5 above are valid, and so are their
transformations. So 7 provides a way of investigating questions of
validity in the modal language.

(@) Apply 7 to K, Df, and selected tautologies, to see that their
transformations are valid quantificational formulas.

(b) Show that if 7(A) is a valid formula of elementary quantifi-
cational logic so is 7([JA), and that if 7(A— B) and 7(A) are
quantificationally valid so is 7(B).

(c) Use7 on the schemas in exercises 1.1-1.3, 1.7, and 1.8.

(d) Show that the principles in exercises 1.4 and 1.5 hold with
respect to quantificational validity and transformations of the
schemas.

(e) Explain how models .# = (W, P) for the modal language
serve equally well for the quantificational language.,

1.2. The system S5

In this section we examine necessity and possibility in S5 from an
axiomatic point of view. We begin with an axiomatization based on the
principles in the preceding section. That is, we adopt as axioms, or basic
theorems, all sentences of the following forms.

T. [JA—A

5. OCA—-[10A

K. [(A—B)-([JA-[B)
DfO. QA-T1O7A

PL. A, where A is a tautology

And we assume the following rules of inference.

A
RN. DA
A—-B,A
MP. B

By a theorem, generally, we mean any sentence that can be proved on the
basis of the axioms and rules of inference. (Axioms are automatically
theorems.) Where A is a sentence, we also write

FA

to mean that A is a theorem,



1.2. The system S5 15

Note that a rule of inference is properly understood as meaning that its
conclusion is a theorem if each of its hypotheses is. For example, the rule
RN means that | [JA whenever F A.

Before moving to proofs of genuinely modal theorems and further
rules of inference, let us see again that S5, now formulated as a deductive
system, includes propositional logic. Here this means that we can derive
within the system the rule of inference
Aot (>0,
where the inference from A,,...,A, to A is pro-
positionally correct.

RPL.

The proof that the rule RPL holds is like that for the analogous result
in section 1.1. We show that if the inference from A,,...,A, to A is
propositionally correct and each of A,,..., A, is a theorem, then A is a
theorem, too. The supposition that the inference is propositionally
correct means that A is true in every valuation in which each of A, ..., A,
1s, which in turn means that the sentence

Ay—>(...(A,~A)..)

is a tautology (PL), which means that it is a theorem. If each of A,, ..., A,
is a theorem, then by n applications of the rule MP, so is A.

We may illustrate RPL, as in section 1.1, with the rule of inference
sometimes called hypothetical syllogism:

A->B, B->C
A->C

Because A—C is true in every valuation in which both A—B and
B— C are, the sentence (A - B) > ((B—> C) > (A~ C)) is a tautology and
hence a theorem. Thus if both + A->Band FB—C, successive applica-
tions of MP yield first that F(B— C)->(A — C)and thenthat F A C. So
this rule is covered by RPL.

The rule MP is obviously also a special case of RPL, but it should be
noted that RPL covers the axioms PL as well. For when n# = 0, RPL is
the rule

A bl
where the inference to A is propositionally correct.
And this simply means that A is a theorem whenever A is true in every

valuation, i.e. whenever A is a tautology. Thus it is a matter of indifference
whether we adopt PL and MP, on the one hand, or simply RPL, on the
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other, in our axiomatization of S5, We choose PL and MP here because
this is closer to the traditional approach; in the rest of the book we use
RPL.

In any case, we shall hereinafter freely make use of tautologies and
propositionally correct patterns of inference in deducing theorems and
deriving rules of inference. Wherever we do, we signal this by PL (for
‘ propositional logic’).

Turning now to specifically modal principles, let us begin by proving
that the schema

TO., A—>OA

— whatever is so is possibly so — is a theorem of S5. First we note that as
a special case of the axiom T we have that F[JT1A—>7A. By PL, it
follows from this that FA > "1 ]71A. In view of the axiom Df¢, i.e.
that F O A «» 1[]71A, we may infer by PL that FA-> QAL

We can put this discursive proof that T ¢ is a theorem more neatly as
an annotated sequence of theorems:

1. O07A—-"1A T

2. A->"101A 1, PL
3. QAo101A DO

4. A>OA 2,3, PL

The annotations are meant to indicate the reasoning involved as the
proof proceeds. Thus line 1 is justified as an instance of T, line 2 comes
from line 1 by PL (i.e. RPL), line 3 is a statement of Df ), and line 4 is
inferred from lines 2 and 3 by PL (again, RPL). This way of setting out
proofs is perspicuous and often useful, especially where the discursive
mode is lengthy or tortuous. (But notice that line 2 might have been
omitted, since line 4 follows from lines 1 and 3 by PL. We prefer the
longer proof here for the sake of perspicuity.)

Next let us show that whatever is necessary is possible, i.e. that the
schema

D. OJA-> A

is a theorem of S5. The proof is simple: Since both [JA—>A and
A— QA are theorems, by PL (in fact, hypothetical syllogism) so is
OA— OA.

Likewise, using T {, we may show that the schema

B. A-[0CA
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— whatever is so is necessarily possibly so — is a theorem of S5.

1. OA->[JCA 5
2. A OA TO
3.AS[00A 1,2, PL

Before going on to prove more theorems of 59, it will be convenient
to derive two further rules of inference.

A—B
RM. ———DA—>DB
AoB
RE. HAo0E

The rule RM may be understood as asserting that a proposition is
necessary if it is implied by a necessary proposition. T'o show that S5
has this rule we argue that its conclusion is a theorem if its hypothesis 1s,
as follows.

1. A->B hypothesis
2. CJ(A—B) 1, RN

3. J(A-B)-»(OJA—-[B) K

4. JA-[]B 2,3, PL

Given RM, it is easy to derive the rule RE (which says in effect that
equivalent propositions are equally necessary). We leave the derivation
as an exercise for the reader.

Now let us prove that S6 has the theorem

D). QA< 10MA,

i.e. that necessity is definable in terms of possibility and negation. Our
proof uses just PL, RE, and the definability of possibility in terms of
necessity and negation, Df .

1. 0TA-1O07111A DfO

2.0777A«101A 1, PL

3. AoT7A PL
4. [JA~[]17A 3, RE
5. JA-107A 2,4, PL

(Notice that line 2 might have been omitted, since line 5 follows from
lines 1 and 4 by PL.)
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Dual to the theorem B, S5 has the theorem

BO., OOA-A,

which means that whatever is possibly necessary is simply so. By way of
proof, note first that in virtue of B, F1A— [(JO A, and so by PL,
F10 O 1A — A. Thusit is sufficient to show that F COA«T10O¢ AL
Our proof of this demonstrates the usefulness of being able to call upon
Df[7] and RE, as well as Df > :

. OA«10A Df[]

2. M0A- OIA 1, PL

3. 010A«JODA 2, RE

4. 10710A«100A 3, PL

5. OJA«1010A DfO

6. COA-T10OO A 4,5, PL
Here again our proof is spelled out in more detail than is necessary;
line 6 follows by PL from lines 3 and 5.

By a similar argument we can also show that S5 contains the following
dual of the axiom 5.

50. OCA—>[JA

For as a special case of 5, F O 7A—[]O A, and hence F I0C 1A~
¢ TA, by PL. Then 5¢ follows by PL, using Df[] and the theorem
on line 6 above. The import of 5¢ is, of course, that a proposition is
necessary if it is at least possibly necessary.

We come now to the schema

4. JA-[]A.

According to 4, whatever is necessary is necessarily necessary. We may
prove that 4 is a theorem of S5 as follows.

1. OOA-[JA 50
2.0¢C0A-0O0JA 1L,RM
3.0A—O0COA B

4. JA—-[JOA 2,3, PL

Corresponding to the theorem 4 is the dual schema

10. OO0A> QA
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according to which whatever is possibly possible is possible simply. T'o
show that 4> is a theorem of S5 we would argue that because of 4 and
PL, F100C011A—-"1[071A, and then prove that F O QA « []1A.
For 4 follows from these by PL. We leave the actual proof, however,
as an exercise for the reader.

The system S5 has the following noteworthy rule of inference.

(A A ...AA)—>A
(OAA...A A=

RK expresses a general rule of modal consequence: a proposition is
necessary if it is a consequence of a collection of propositions each of
which is necessary. The condition that #» > 0 is intentional, for we make
the convention that in the absence of antecedents — when # = 0 — the
conditionals are identified with their consequents, A and [JA. Thus
when n = 0 we have the rule RN as a special case of RK. Moreover,
when 7 = 1 the rule RK becomes RM.

A proper proof that S5 has the rule RK proceeds by induction on the
number 7z of conjuncts in the antecedents. The basis of the induction,
where # = 0, is trivial, since in this case RK is RN, a basic rule in the
axiomatization of S5. For the inductive part of the proof we suppose — as
an inductive hypothesis — that the rule holds for any number of conjuncts
in the antecedents up to (but not including) some number # > 0, and
show from this that it holds when the number of conjuncts is exactly z.
The argument for this is as follows. Suppose that

(A)A . AA))—>A
is a theorem. By PL this is equivalent to
(ALA ... AA, ) (A,—A).

By the inductive hypothesis the rule RK applies to this theorem, since
the number of conjuncts in the antecedent is less than #. Thus we have
the theorem

(OA A ... ATA, )~ A~ A).
Now from this and the axiom K, in the form

O(A,~A)—>(0A,~>A),
we infer by PL the theorem

(OALA ... ADA-) > (OA,~TA),
which is equivalent by PL to

(DAL A A TA)— DA

RK.

5 (n>0)



20 Introduction

This completes the inductive part of the proof. It follows now that the
rule RK holds for any number # > 0 of conjuncts in the antecedents,
since it holds for n = 0 and also for any #» > 0 whenever it holds up to .

Notice that only PL, RN, and K are used in the derivation of the rule
RK. Moreover, using only PL and RK we can prove RN (trivially) and
K (by RK on the tautology ((A—>B)AA)—B we get the theorem
(C(A—=B)A (JA)— 1B, which is equivalent to K by PL). The moral of
this is that we could equally well have chosen RK instead of RN and K
in our axiomatization of S5.

Another special case of RK, when n = 2, is the rule of inference

(AAB)—>C

RR. (OAAOB)—»OC’

which expresses a limited principle of consequence (a proposition is
necessary if it follows from a pair of propositions each of which is
necessary). A direct proof of RR — using PL, RM, and K - can also be
had, and it may illuminate the inductive part of the proof above for RK;
we leave it as an exercise.

Three further theorems are worth mention.

N. Ot
M. [(AAB)—>(JAA[JB)
C. ((JAAB)—[J(AAB)

Proofs of N, M, and C — using RN, RM, and RR, respectively — are not
hard to find, so we leave them as exercises.

It is clear from our results in section 1.1 that every theorem is valid:
all the axioms, T, 5, K, Df$, and PL, are valid, and the rules of inference
RN and MP preserve validity. In short, the axiomatization is sound. It is
moreover complete: every valid sentence is a theorem. This may not be
so obvious, however, and it is not until chapter 5 that we are in a position
to prove it.

We thus have two ways of characterizing the modal logic S5 — one
semantic, the other deductive. It bears emphasis, moreover, that the set
of principles T, 5, K, Df$, PL, RN, and MP is not the only selection
that provides an axiomatization — a deductive characterization — of .S5.
We have seen already, for example, that the rule RPL would do just as
well as MP plus PL, and that RK could take the place of RN plus K.
Such alterations result in equivalent, alternative axiomatizations of S§ —
equivalent since the axioms and rules of inference of each are derivable
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from the others, so that any sentence provable in one axiomatization
is provable in the others.

Let us conclude this section with yet another axiomatization of S5, one
of the best known. It is formulated on the basis of propositional logic by
means of the rule RN together with the schemas T, B, 4, K, and Df{
as axioms. In other words, this axiomatization differs from the one with
which we began only by having B and 4 as axioms in place of 5. For the
sake of exposition we dub the set of theorems axiomatized in this way S5'.

Clearly, every theorem of S5 is alsoa theorem of S5, since every axiom
and rule of S5’ can be (and has been) proved in S5. Showing the reverse,
that $5’ includes S5, boils down to proving that the schema 5 is a theorem
of §5’—1.e. that 5 can be derived on the basis of T, B, 4, K, Df{, PL,
RN, and MP. To this end, observe that S5 has the rule RPL (because of
PL and MP), that S5’ has the rule RM (because of RPL, RN, and K),
and that S5’ has the theorem 4  (exercise). So we may argue as follows.

1. 0OOCA—-> QA 40

2.000A-10A 1,RM

3.CA-OJ0COCA B

4. CA->[OA 2,3, PL
According to the last line the schema 5 is indeed a theorem of S5'.
Therefore, the two axiomatizations are equivalent.

EXERCISES

Except where otherwise noted use any theorem or rule of inference
established in section 1.2, and any theorems and rules established in
previous exercises.

1.12. Derive the rule of inference RE in S5.

1.13. Derive the following rules of inference in S5.
- P

@ s1~o5 © si—oE
1.14. Derive the rule of inference RR in S5 using only PL, RM, and K.
1.15. Prove that N, M, and C are theorems of S5.
1.16. Prove that the following schemas are theorems of S5.

(@) 10O L

(5) (OAV OB)-> O(AVB)

(6) O(AVB)>(OAV OB)
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1.17. Prove that the following schemas are theorems of S5.
(@) (DOAvV OB)—[I(Av B)
(5) O(AAB)>(OAA OB)
(¢) O(Av B)—($ AV [OB)
() (OAA OB)> O(AAB)

1.18. Derive the following rules of inference in .S5.
A 1A
@sa @ oA
1.19. Prove that the sentence T is a theorem of .S5.

1.20. Prove that the schema 4 ¢ is a theorem of .55.

1.21. Prove that the following schemas are theorems of S5.

(6) DA~ O0A
() OAc O OA
(0) CA=-[OA
(d) DA 0 0A
1.22. Prove that the schema Q[ JA-> []OA is a theorem of S5.
1.23. Derive the following rules of inference in S5.
OA—B A—[]B

(2) A-[]B () OA—>B

1.24. Prove that the schema 4 { is a theorem of S5’ (see the last paragraph
of section 1.2).

1.25. Prove that S5 is equivalently axiomatized if in the original axio-
matization the axiom 5 is deleted in favor of the schema A — [][] OA.

1.26. Prove that S5 is equivalently axiomatized if in the original axio-
matization the axiom K is replaced by the schemas N, M, and C, and the
rule of inference RN is replaced by RE.

1.27. We say that a system of modal logic is consistent when it does not
contain | as a theorem. It is clear that the system S5 is consistent: the
axiomatization is sound — i.e. every theorem is valid — and 1 is not valid.
Below we argue the consistency of S5 in another way.

Let the mapping ¢ on the set of sentences be defined by the following

Clauses- (1) E(Pn) — H:Dn’ for n= O, 1, 2, vee e
() e(T) = T.
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(3) (L) = L.
(4) e(T7A) = Te(A).
(5) e(A A B) = e(A) A e(B).
(6) (A v B) = e(A) Vv e(B).
(7) (A —B) = ¢(A)—¢(B).
(8) (A > B) = e(A) —¢(B).
(9) «(T0A) = «(A).
(10) e( OA) = e(A).
Thus € is an ‘erasure’ transformation. It erases all occurrences of the
modal operators [J and ¢ in a sentence A, but leaves A otherwise intact.
Now let us see that € transforms axioms of S5 into tautologies, and

rules of inference of S5 into rules of propositional logic. Clearly the
erasure of a tautology (PL) is always a tautology. Moreover:

T. ((JA—A) = e(A)—>¢(A).
5. (OA—>[JOA) = e(A)—>e(A).
K. e(CJ(A—B)—»([JA—-[1B)) =
(e(A)—>€(B))— (e(A) - &(B)).
DfO. e( QA 1[JT1A) = e(A) — 171e(A).
"The schemas on the right-hand side of these identities are all tautologies;

so the erasure of any non-propositional axiom is a tautology. Finally,
under erasure the rules of inference RN and MP become

€(A) and e(A)—>¢(B), €(A)
e(A) &(B) '

The first of these is merely a rule of repetition, and the second is just
MP again.

It follows that under the mapping € every theorem of S4 is transformed
into a tautology. Therefore, since ¢(1) —i.e. 1 —is not a tautology, 1 is
not a theorem of S§. So we have proved the consistency of S5 once again.

(a) Apply eto T, 5, K, Df {, and selected instances of PL to see
that their erasures are tautologies.

(b) Show that if e(A) is a tautology so is €((JA), and that if
e(A— B) and ¢(A) are tautologies so is ¢(B).

(c) Use ¢ on the schemas in exercises 1.15-1.17, 1.19-1.22, and
1.25.
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(d) Show that the rules of inference in exercises 1.12-1.14, 1.18,
and 1.23 hold under erasure.

(¢) Consider the system that results when the schema A —> [JA is
added as an axiom to S5. This system is not sound, since
A —[JA is not valid (see section 1.1), but it is consistent. Use
the erasure transformation to prove this.

(f) Prove the consistency of the system that results when the
schema [JOA-> O[JA is added as an axiom to S5. (Is this
system sound?)

(&) Referring to exercise 1.11, observe that the transformation 7
can be employed like € to prove the consistency of S5, since
L is not quantificationally valid. How do the schemas A -~ [JA
and [(JOA— O ]A fare under 7?

1.28. Sometimes there is confusion about the meaning of rules of
inference. For example, because of RN it might be thought that
A—[JA is a theorem. Similarly the rules RM and RE might mistakenly
be regarded as evidence for the theoremhood of the schemas

(A>B)>(JA—>[JB) and (A« B)—>(TJA«[JB).
Dispel this illusion by showing that neither schema is valid.

1.29. Show that A-> [JA is a theorem of the system that results when the
schema (A— B)— ([JA— [B) is added as an axiom to .S5. Is this true
if (A~ B)—>([JA <> []B) is added to S5? What about the consistency of
these systems?

1.30. Prove that A - []A is a theorem of the system that results when the
schema [ JOA - O [JA is added as an axiom to S5.
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2

LOGICAL PRELIMINARIES

This chapter is an introduction to most of the concepts we shall use in
studying modal logic.

In section 2.1 we set out most of the syntactic concepts. Section 2.2
introduces semantic concepts: the general idea of a model, truth con-
ditions for non-modal sentences, and definitions of truth in a model and
validity in a class of models. Filtrations of models are described in section
2.3. In section 2.4 the idea of a system of modal logic is explained, along
with such relevant notions as theoremhood, deducibility, and con-
sistency. Axiomatizability is discussed in section 2.5. Maximal sets of
sentences and Lindenbaum’s lemma occupy section 2.6. In section 2.7
we define determination and explain our approach, using canonical
models, to proofs of determination. Finally in section 2.8 we outline our
method of proving the decidability of systems of modal logic.

As the need arises the reader may wish to return to various sections of
this chapter, for important definitions and theorems.

2.I. Syntax

This section is devoted to a recital of the basic syntactic concepts for the
language of modal logic, many of which the reader has likely gleaned from
chapter 1. The ideas are very simple. The few formal definitions we offer
may be helpful, but they are not essential; we state them mainly for the
sake of completeness and future reference.

Sentences. The language is founded on a denumerable set of afomic
sentences.
Py Py, Py, ...
These are the simplest sentences.
The non-atomic molecular sentences are formed by means of nine
syntactic operations, or operators:

T’ J—’ —I’ /\3 V, -+1 H’ D) O
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As we said in chapter 1, T and 1 are zero-place operators, or constants;
71, [0, and { are one-place operators; and A, v, —, and < are two-place
operators.

The set of sentences may be defined formally as follows.

DEFINITION 2.1

(1) P, is a sentence, forn =0, 1,2, ....

(2) T is a sentence.

(3) L 1s a sentence.

(4) A is a sentence iff A is a sentence.

(5) AA B is a sentence iff A and B are sentences.
(6) AV B is a sentence iff A and B are sentences.
(7) A— B is a sentence iff A and B are sentences.
(8) A B is a sentence iff A and B are sentences.
(9) OJA is a sentence iff A is a sentence.

(10) O A is a sentence iff A is a sentence.

We use A, B, C, ..., sometimes with superscripts or subscripts, for
sentences. And we use I, A, E, ..., with occasional appurtenances, for sets
of sentences. When a set of sentences A includes a set of sentences
I'—i.e. whenT' © A — we often say that A is an extension of I,

‘The sentence T is called the verum or truth constant, and 1 is called the
Jfalsum or the falsity constant. 1A is the negation of A, the operand A
being the negate. A A B is the conjunction of A and B, the operands A and
B being respectively the left and right conjuncts. Av B is the disjunction
of A and B, where A and B are the left and right disjuncts. The sentence
A - B 1s the conditional of A and B; A is the antecedent and B is the
consequent. A« B is the biconditional of A and B, of which A and B are
the left and right members. The sentence [JA is the necessitation of A, the
operand A being the necessitate. There seems to be no standard ter-
minology for a sentence of the form A: let us call it the possibilitation of
A, and call A the possibilitate. In [JA and O A, A is also called the matrix,
and [] and ¢ are called prefixes.

(These identifications of the operators as representing truth, fa131ty,
negation, and so on, reflect the intended semantic analysis of the language.
Properly speaking such characterizations are out of place in an account
of the syntax of the language. Nevertheless, they do serve to reveal that
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the language has a surfeit of operators. For example, the meanings of all
the operators can be given in terms of 1, -, and [J. So we might have
adopted just these operators as primitive and defined the rest. Our
practice in this book is otherwise, however.)

The atomic sentences are all distinct. And of course it is intended that
sentences of different forms really be distinct — so that, for example, no
conditional is a necessitation. This is guaranteed by the assumption that
the ranges of the syntactic operations are disjoint from one another and
also from the set of atomic sentences. 'The unique readability of the
sentences — the lack of ambiguity in their structures — is secured by the
assumption that the operations are all one-to-one (so that, for example,
two conditionals are identical if and only if their antecedents are and
their consequents are).

It is important to remark that the set of sentences is enumerably
infinite (denumerable). This means that the sentences of the language
can be enumerated,

Al’ A2, A3, reey

completely in an infinite list. This can be done in many ways; for our
purposes it matters not how it can be done, but only hat it can be done.

Conventions. There are some important conventions we observe
throughout the book. One is that expressions of the forms

AN AA,
and AV...VA,

represent arbitrary but unspecified conjunction and disjunction of the
sentences Ay, ..., A,. The point here is that A and v obey the logical (but
not the syntactic) laws of associativity, so that it does not matter how
such conjunctions or disjunctions are formed.

Another convention concerns sentences of the form

(A;A .. AA)— A

When 7 = 0, so that there are no conjuncts in the antecedent, we stipulate
that the conditional is identical with its consequent, i.e. that (A;A ...
AA,)—A is just A when # = 0. Similarly, when » = 0 in a sentence of
the form

A—>(A,v...VA,)

we shall say that the conditional is identical with the negation of its
antecedent;i.e. A= (A, Vv ...vA,)is TA whenn = 0. These conventions
facilitate the expression of several principles.
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Subsentences. A subsentence of a sentence A is any sentence that is a
part of A, including A itself. This rather obvious idea is captured in the
following recursive definition of the set Sn{A) of subsentences of A.

DEFINITION 2.2

(1) Sn(P,) = {P,}, forn = 0,1,2, ....
(2) Sn(T) = {1}.
(3) Sn(L) = {1}.
(4) Sn(T1A) = {"1A} U Sn(A).
(5) Sn(AAB) = {AAB}u Sn(A)U Sn(B).
(6) Sn(Av B) = {Av B}u Sn(A) U Sn(B).
(7) Sn(A->B) = {A-B}U Sn(A) U Sn(B).
(8) Sn(A <> B) = {A «~»B}u Sn(A) U Sn(B).
(9) Sn((JA) = {{JA}U Sn(A).

(10) Sn(OA) = {GA}u Sn(A).

'Thus, for example, the set of subsentences of the sentence C(Py—
TO(PLAIP) —iee. Sn([(Py— TO(Py A TIP))) — is

{O(Pey—>10(Py A Pg)), Py 10(Py A TIRy),
Po, TO(PLATIRy), O(PiATIPy), PLA TP,
Pl; —'Hpo}a

as the reader should verify using the definition.

Another way of looking at the structure of a sentence is by way of a
‘construction tree’, as in figure 2.1 for the sentence ((Pe—T10
(PyA T1P)). The subsentences of the sentence appear at the nodes of
the tree, and the branches indicate the order of application of the syntactic
operations. Notice that a construction tree not only shows the sub-
sentences of a sentence but also indicates their occurrences (for example,
Py has two occurrences in [J(Py— 1O(Py A T1Py)) and so appears at
two nodes on the construction tree).

We say that a set of sentences is closed under subsentences just in case it
contains every subsentence of every sentence it contains, Thus the set
of subsentences of a sentence is closed under subsentences; but so also
is the set {Py, 1Py, T171P,, ...}, which shows that a set of sentences
closed under subsentences need not be the set of subsentences of any
single sentence.
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Modalities. Here it is easiest to think of the operators as symbols. By
a modality we mean any finite sequence, possibly empty, of the operators
1, [, and ¢ ; for example [J, 7171, 30¢, ¢0O0, 010, and O[]
The empty, or null, modality is signified by "; thus * A is the same as A.

A modality is classified as affirmative just in case 7] occurs in it an
even number of times (including zero); it is classified as negative other-
wise, i.e. just in case it contains an odd number of occurrences of .
The first four modalities mentioned above are affirmative, and the last
two are negative.

The dual of a modality ¢ is the modality ¢* that results from inter-
changing [] and ¢ throughout ¢. So, for example, the duals of the
modalities above are: O, 17, OO, 00 ¢, ¢ 10, and (OO

Notice that the affirmative or negative quality of a modality is preserved
by duality, and that the dual of the dual of ¢ is just ¢ (i.e. ¢** = @).
We write

¢nA
to indicate that the sentence A is subject to % iterations of the modality

¢. Here n can be any number, 0, 1, 2, ... ¢° A is just A, and ¢! A is pA.

Figure 2.1. Construction tree for (P — ~1O (Py A P,

(P~ mO(PLA 1 Py))

Py = QP A =Py)

Py —1Q(PL A —Py)

O(Pl A= ]po)

P]_A"l‘po
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Thus our usage slightly extends the idea of iteration, but it helps to
simplify the statement of many generalities. Formally, the idea may be
defined as follows.

DEFINITION 2.3
(1) ¢°A = A.
(2) ¢"A = g™ 1A, forn > 0.

Finally, we say that a set of sentences is modally closed just in case
@A is in the set whenever A is, for every modality ¢. By the modal
closure of a set of sentences we mean the result of adding to the set every
modalization ¢A of any sentence A in the set.

Replacement. Given sentences A, B, and B’, we often wish to consider
a sentence that results from the replacement of fixed occurrences of B
in A by B’. As a matter of convenience we designate such a replacement
by A[B/B’]. For example, let A be the sentence [J(Py— T1O(P; A 1Py)),
let B be Py, and let B” be the sentence P, v []71P;. Then A[B/B’] is any
one of the following:

C(Py—>T10(P1ATIPY)

O{(Pev O71P,) =1 O(PLA TIPy))

O(Po—>10(PLA WP, v O71Py)))

O((Pev O 1P} =10(P A (P v TI71PY)))
The point is that in any given context A[B/B’] is just one of these
sentences: replacement is occurrence specific. Each of the four sentences
can be obtained by making the replacement of P, by P,v []J1P; at
the appropriate place (node) in the construction tree for (P

O(Py A T1P,)) (figure 2.1). Note that in the first result no occurrences of
P, are replaced.

Duality. If the language did not have — and & we could define the
dual of a sentence A — written A* — simply as the result of replacing each
atomic sentence in A by its negation and interchanging all occurrences
of T and I, A and v, and [J and ¢ throughout. Because of the presence
of —+ and «, however, a more complicated definition is called for.

DEFINITION 2.4
(1) P,*="1P,, forn=0,1,2,....
(@) 7%= 1.
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(3) L¥=.

(4) (TA)* = (A¥).

(5) (AA B)* = A*v B*,

(6) (Av B)* = A*A B*,

(7) (A—B)* = T1(A*)A B*.
(8) (A B)* = A* 1(B¥).

(9) (DA)* = O(A%).
(10) (GA)* = [I(A¥).

According to clause (4) of this definition we may write T1A* in-
differently for 71(A*) or (T1A)*. We do so frequently. Some examples of
duality:

(OT)*=0.L.
(CIAV B)* = O(A* A B¥).
(JA--B)—>(OA—-[OB))* =
TO(TA*AB¥) A TO(A¥)A O(B¥).
Note that (pA)** = @¢*(A*), for any modality ¢ and sentence A.

Schemas. By a schema we mean a set of sentences, usually of a particular
form. For example, when we refer to the schema

5. CA-[JOA

we mean the set of sentences of this form —a conditional with a pos-
sibilitation as antecedent and the necessitation of the possibilitation as
consequent. An instance of a schema is thus a member of the set of
sentences that constitutes the schema.

It is natural to think of schemas as linguistic items of a special kind,
akin to but more abstract than the sentences that are their instances.
Though we often speak this way, we do so mainly as a matter of con-
venience.

Occasionally we speak of the dual of a schema. This usage is easier to
illustrate than to explain. So, for example, we regard the schemas in the
following pairs as dual to each other.

T. OJA-A TO. A= QA
5. CA-[CA 5. OOA—-[A
M. [AAB)—(TAALCIB) MO. (QOAV GB)—> O(AvB)
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Decidability. Finally, we need to say something about decidability, at
least as it applies to sets of sentences.

A set of sentences I'is decidable just in case there is a decision procedure
— an effective finitary method — for determining of any sentence in the
language whether or not it is in I'. For example, the set of sentences
containing the negation sign is decidable, since there is a routine way of
discovering whether or not a sentence has ™1 in its construction.

A related but weaker notion is that of effective enumerability. We say
that a set of sentences I is effectively enumerable just when there is an
effective method for telling of any sentence in I' that it is in I'. When a
set has this property we also say that there is a positive test for member-
ship in it. (Similarly, a negative test for T' is a positive test for its com-
plement —T', the set of sentences not in I'.)

Clearly, T is decidable if and only if both it and its complement are
effectively enumerable. For if I' has a positive test there is an effective
way of enumerating its members:

Ay, Ag Ayl

and if ' has a negative test there is an effective way of enumerating the
members of its complement:

A KA, ...

So to produce a decision procedure for T' it is enough to combine the
tests, for example by defining the effective enumeration

ALK, AyKy Ay K, ...

Then to discover whether or not a sentence A is in I it is sufficient to
check A against this series. Sooner or later (i.e. some finite distance into
the series) A must appear, either as A, or as A,, for somen.

EXERCISES

2.1. The schema 1A «»(A— 1) is a tautology and is always valid in this
book. Hence negation might as well have been introduced definitionally
in terms of the falsum and the conditional, by the stipulation that
—A = A—> 1. Similarly the verum could have been defined in terms of
the falsum and negation (T < 711 is a tautology), which means that T is
also definable in terms of 1 and —. Formulate tautological biconditionals
for the operators A, v, and «, to show that they might have been
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defined in terms of | and —. (Refer to section 1.1 for the meanings.)
Since the schema Df ¢, OA— 1] 14, is always valid in this book we
see that all the operators are definable in terms of L, —, and [].

2.2. Explain informally why the set of sentences is enumerable,
2.3. Describe construction trees for the following sentences.

(@ OT

(5) (OPv OPY) -~ (P v Py)

() Pp—> O

(d) O(PoA P> (OPoA OPy)

(e} OOP—> Py

() O(Pyv PY—~(O PV OPy)

(g) OOPy—> OP,

(7)) O(Po—>Py) = (0P~ OPy)

(1) OOPy— [P,

() OT = (OPy—> OPy)

2.4. Describe the sets of subsentences of the sentences in the preceding
exercise.

2.5. Classify the following modalities as affirmative or negative, and then
describe their duals.

(a) OO
(b)) 01010
() 71070
d) ¢007
() 0100011000 O7000
2.6. Prove that for every n > 0, ¢™ = ¢"1¢. (The proof is by induction

on 7.)

2.7. Using results from chapter 1 argue that in S5 every modality is
equivalent to one of the following six.

S0, 0 10
That is, show that where ¢ is any modality one of the following schemas
is a theorem of S5.
Ao dA [JA < gA OA—pA
TAogA T1JA«¢9A TOA-HA
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‘Then argue that there are no further reductions of modalities in S5, i.e.
that the list of six modalities is minimal for this system.

2.8. Describe the various results of replacing ¢ P, by 1[J1P, in the
following sentence.

(OPoA OPY—>(O(PoA PV O(OPA P) v O(Por OPy))

2.9. Describe the duals of the following sentences.

(e) O

(6) OPee 7P,

() O(PoA P> (OPyA OPy)
(@) CUPyV P> (O PV OPy)
(&) O(Po—>Py) (0P~ OPy)

2.10. Describe the duals of the following schemas.

D. OA—> CA
B. A->OOCA
4, OA—=[JJA

2.2. Models, truth, and validity

In chapter 1 a model is a structure (W, P) in which W is a set of possible
worlds and P is an assignment of truth values to atomic sentences at
possible worlds. The truth values of non-atomic sentences at possible
worlds are determined by this structure, from which a definition of
validity — as truth at all worlds in all models — emerges. In chapters
3 and 7 we successively generalize this notion of model to provide
semantic analyses of ever more general systems of modal logic. Although
it is impossible to say once for all what a model is, it will help to avoid
repetition and redundancy later on if we state here some of the common
features of the kinds of model introduced in chapters 3 and 7.

The set W of possible worlds and the assignment P of truth values are
elements of the models in both chapter 3 and chapter 7. So we may
describe a model in these senses as a structure

M= (W,..,P,
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where:
(1) Wis aset;
(i) P isa function on the set {0, 1, 2, ...} of natural numbers such
that for each such number n, B, is a subset of W (i.e. P:

0,1,2,..}>P(W));

and the ellipsis indicates the possibility of additional elements. (In (ii)
we abandon talk of P as an abbreviation of an infinite sequence of subsets
of W, in favor of describing it as a mapping from natural numbers to sets
of possible worlds.)

A model is said to be finite if its set of worlds has only finitely many
elements; otherwise the model is infinite. Finite models are important in
connection with questions of decidability for modal logics.

Our description of a model is of sufficient detail to permit a statement
of the truth conditions, at a possible world, of non-modal sentences, and
to permit definitions of various degrees of validity.

Again we write Fz¢ A to mean that A is true at the possible world o in
the model 4. For non-modal sentences — those not of the forms [JA
and QA - this notion is defined as follows.

DEFINITION 2.5, Let « be a world in a model # = (W, ..., P).
(W EfP,iffeecP, forn=0,1,2....
2)EfT.
(3) Not kg 1.
(4) E# 1A iff not FF A,
(5) FE# AA B iff both k¥ A and F #B.
(6) k¥ Av B iff either FZ A or k¥ B, or both.
(7) E# A— B iff if k¥ A then F# B.
(8) F# A Biff F# A if and only if F# B.

Statements of the truth conditions of sentences of the forms [JA and
O A - asinsection 1.1 — appear in chapter 3, in connection with standard
models, and again in chapter 7, in connection with minimal models.

Definition 2.5 may be regarded as an account of the lowest degree of
validity — truth at a possible world in a model. In chapter 1 we dis-
tinguished only one other degree of validity, the highest — truth at all
worlds in all models. This was appropriate, since we were interested
there only in an introductory exposition of one of the simplest systems
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of modal logic, S5. Because we seck both more subtlety and more
generality in the chapters that follow, we need to definesome intermediate
degrees of validity, of which the sort in chapter 1 is but a limiting case.

Let us say that a sentence is frue in a model just in case it is true at
every world in the model. This is a level of truth, or validity, a degree
above that of definition 2.5. Next, let us say that a sentence is valid in a
class of models if and only if it is true in every model in the class, i.e.
true at every world in every model in the class. Thus a sentence valid in
the class of a/l models is valid simpliciter, as in chapter 1.

We write -4 A to mean that A is true in the model .#, and kEC A to
mean that A is valid in the class C of models.We record these definitions
formally.

DEeFINITION 2.6, F# A iff for every world o in 4, E# A.
DEFINITION 2.7. k. A iff for every model .# in C, F A.

When F# A we also say that .# is a model of (or for) A; and that .# is a
model of (for) a set of sentences I" when .# is a model of every sentence
in I,

Falsity always means non-truth, so that to say A is false at o in .#
just means that not k¥ A, and to say A is false in .# means that A is false
at some world in .#. When A is false in .# we also say that .# is a counter-
model to (or for) A. Similarly, .# is a countermodel to (or for) a set of
sentences I just in case some sentence in I' is false at some world in .#.

Let us say that a sentence A .#-implies a sentence B if and only if B
is true at every world in .# at which A is, and that A and B are .#-
equivalent just when they are true (and hence false) at exactly the same
worlds in .#. Evidently, A and B are .#-equivalent just in case A
#-implies B and B .#-implies A. By saying that a set of sentences I
is logically finite relative to the model # we mean that every sentence in
I' is .#-equivalent to one or another of a finite number of sentences in I'.

Two further concepts are important. We say that two possible worlds
agree on a sentence when they both verify or both falsify it, and that two
models agree on a sentence when they are both models or both counter-
models for it. T'wo models are said to be pointwise equivalent if and only
if their world sets can be put in one-to-one correspondence in such a
way that corresponding worlds agree on all sentences. Two models are
(simply) equivalent just in case they agree on all sentences. It follows that
pointwise equivalent models are always equivalent, though not vice versa.
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The notion of model under discussion here is of course too insub-
stantial to produce any results about modal logic proper. But an important
result about propositional logic does emerge from the account so far given,
to wit, that this logic is a part of every modal logic we shall study. By
this we mean, here, that whenever a sentence A is a tautological con-
sequence of sentences A,, ..., A, then A is valid in any class of models in
which all of A,, ..., A, are. We state this formally.

'THEOREM 2.8. Let A be a tautological consequence of A,, ..., A, (n > 0).
Then if C is any class of models such that Ec A, ...,EcA,,

then ':c A.

Proof. We prove the theorem by showing first that where C is any
class of models:

(1) If A is a tautology, then Ec A.
(2) If FEcA—B and F¢ A, then E¢ B.

'The reasoning for (1) and (2) repeats that for the corresponding results
in section 1.1. Nevertheless, we go through it again here in detail.

For (1). Recall that a propositionally atomic sentence is one of the
form P,, (JA, or {A; that a valuation is an assignment of truth values
(truth, falsity) to each of the propositionally atomic sentences; that
sentences of other kinds are assigned truth values in the usual way
(compare definition 2.5); and that a tautology is a sentence true in every
valuation. In any model .# each possible world o determines a valuation
V., in the sense that for each propositionally atomic sentence A,

V(A) = truth iff F A,
Clearly, this definition yields the result that for any sentence A,
Aistruein V iff F# A,

(Clearly. But the proof is given as an exercise.)

Now to see that every tautology is valid in any class C of models.
Suppose that A 1s a tautology, so that it is true in every valuation. Then
for every world « in any model in C, A is true in the corresponding
valuation V. From this it follows by the result above that for every world
a in any model 4 in C, k¥ A, which means that Fc A.

For (2). Let C be a class of models, and suppose that both FcA—B
and Fc A. Then for every world « in every model .# in C, both k¥ A—> B
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and F# A. From this it follows that for every world « in every model .#
in C, k¥ B, which means that k. B.

Now we can prove the theorem. Suppose A is a tautological con-
sequence of A, ..., A, (n > 0). Then

A>(...(A,~A)...)

is a tautology, and hence by (1) is valid. If we suppose further that each
of A, ..., A, is valid in a class C of models, then by reference to (2) - n
times ~ we find that A is also valid in C. (Again, compare section 1.1.)
This concludes the proof.

In practical terms, theorem 2.8 means that all propositionally correct
modes of inference will be available when it comes to theorem proving
later on; more precisely, that the rule of inference RPL introduced in
chapter 1 is always correct.

We close this section with the idea of fruth sets. The truth set, |A[#,
of the sentence A in the model .# is the set of worlds in .# at which A
is true. Formally:

DEFINITION 2.9. |A|# = {x in #: E¥ A}.

The following theorem reveals the structures of truth sets of the several
sorts of sentences.

THEOREM 2.10. Let M = (W, ..., P) be a model. Then:

(1) |P,||# =P, forn=0,1,2,....

@ [T =w.

) [L]# =e.

(4) [DA]# = W] Al

(5) |AAB[-# = [A[“n|B]-“

(6) [Av B[4 = [A[-“u B[

(7) |A—>B|“ = (W[ A]-“)u |[B]-“.

(8) |A= B[4 = (W-|A|“)u |[B]#)
N((W—[B[“)u [A]#).

The proof of this theorem, using definitions 2.5 and 2.9, is easy and
is left as an exercise.

In a way, |A[|* can be regarded as the proposition expressed by the
sentence A in the model .#. See exercise 2.22.
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EXERCISES

2.11. Using definitions 2.6 and 2.7 prove that
Fe A iff F# A for every world « in every model .# in C.

2.12. Prove:
(a) A and B are .#-equivalent iff A .#-implies B and B
A -implies A,
(b) A A-implies B iff ¥ A B.
(¢) A and B are .#-equivalent iff =% A > B.

2.13. Prove that a finite set of sentences is logically finite with respect to
any model.

2.14. Prove that the set {P), 1P, 171P,,...} is logically finite (with
respect to any model).

2.15. Prove that two models are equivalent if they are pointwise equi-
valent.

2.16. Prove theorem 2.10.

2.17. Prove:
(a) |Al|# = ||B|-# iff ¥ A—B.
(8) |A|# = |B|-« iff - A > B.
2.18. Prove:
(a) A #-implies B iff | A||-# < ||B|.
(b) A and B are #-equivalent iff | A|-# = || B|-4.
2.19. In the proof of theorem 2.8 we say that the definition of the valuation
I yields the result that for any sentence A,
Aistruein V iff F;# A,

The proof of this is by induction on the complexity of A. That is, we
show that it holds if A is propositionally atomic, that it holds if A is T
or 1, and that it holds when A is a conjunction, disjunction, conditional,
or biconditional given that it holds for all sentences of less complexity
than A. We give the proof for the cases in which A is (a) propositionally
atomic, (b) a negation, "B, and (c¢) a conditional, B—C.

For (a). If A is propositionally atomic, then by the definition of truth
in a valuation we have that A is true in V if and only if (A) = truth, But
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by definition, V (A) = truth if and only if F7¥ A. So the result follows: A
istruein V if and only if F# A.

For the inductive cases (b) and (c) we make the hypothesis that the
result holds for all sentences shorter than A.

For (b). 7B is true in ¥} if and only if B is not true in ¥ (by the
definition of truth in a valuation) if and only if not k¥ B (by the inductive
hypothesis) if and only if F;¥ 1B (definition 2.5(4)). So the result obtains
when A is a negation.

For (¢):

B— Cis true in V, iff if B is true in ¥, then C is true in V,
— definition of truth in a valuation;
iff if E2# B then ¥ C
— inductive hypothesis;
iff E¥B—C
— definition 2.5 (7).
So the result holds when A is a conditional.

The remaining cases are left for the reader. (Note that the inductive
hypothesis does not apply to the cases in which Ais T or 1.)

2.20. Let us consider the models .# = (W, R, P) of exercise 1.10 and
the associated truth conditions (9') and (10’) for modal sentences. If we
drop the assumption that the relation R is reflexive in such models, then
the schema T is no longer valid. Similarly, if we drop the assumption
that R is euclidean, then the schema 5 is not valid. For example, consider
the model # = (W, R, P) in which W = {a, f} (where « # ), R = {{«,
B, {B, B>}, and B, = {B} for every natural number #. In this model the
relation R is euclidean, but not reflexive (it lacks the pair {«, «}). Clearly,
k# Py, and since £ is the only world to which « is related by R, E# [OP,.
But not E¥ P,. So the instance [P, P, of T fails at « in .# — 1.e. not
k¥ []P,— P,—which means that the schema T is not valid in the class
of models of this sort in which the relation R is not reflexive.

Describe a model of this sort in which R is reflexive but not euclidean,
such that an instance of the schema 5 is false at some possible world.

2.21. Consider models like those of the preceding exercise and exercise
1.10 except that no assumption whatever is made about the structure
of the binary relation R. Show that instances of the following schemas
can be falsified at possible worlds in such models.

D. OA-> A
T. JA-A
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B. A-[J0OA
4. [DA-[OA
5. OA-[]0A

Prove that K, Df §, and all tautologies are valid in any class of such

models, and that validity in a class of such models is preserved by RN
and MP.

2.22. If we think of the proposition expressed by a sentence as something
that has within it the information about how the sentence comes true or
false in various possible situations, then it is natural to regard a truth set
|AJ# as the proposition expressed by the sentence A in the model .
For such sets behave just like propositions in that for any possible world
ain A |A[*“ determines whether A is true or false at & (according as o
is or is not a member of | A||-#).

Notice that on this construal the truth set | T|# is a (perhaps the)
necessary proposition in a model .# (since it determines T as true
everywhere in .#), and the truth conditions in chapter 1 of a necessitation
can be stated:

DA T = A
— or, what comes to the same thing:
E# CA || T < | Al

In this latter formulation we have that [JA is true at « just in case the
proposition expressed by A in .# is implied by the necessary proposition
in #. (It is appropriate to regard inclusion between truth sets as im-
plication between propositions, since |A|# < ||B|-# if and only if
F-# A B; see exercise 2.17.)

Using the truth sets || 7| and |A|-#, give a succinct formulation of
the truth conditions of ¢>A at the world « in #.

2.3. Filtrations

Let I' be a set of sentences closed under subsentences. For any model
M =W, ..., P) we define the equivalence relation = on the worlds in
A by the stipulation that, for « and fin.#,

a = fiffforevery AeTl', F# Aif and only if F¥ A,

That is to say, worlds in .# are equivalent under = just in case they
agree on every sentence m I'. The relation = is indeed an equivalence,
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and so it divides the set of worlds in .# into mutually exclusive, non-
empty equivalence classes [«] for each « in #; i.e. for each « in A we

define: [al ={finA#:a =p(]}
Let us also define = -equivalence classes of sets of worlds in .#, by saying
[X] = {[«]: 2 € X},
whenever X is a set of worlds in .#; i.e. [X] is the set of equivalence
classes of worlds in X.
Notice that the definitions of =, [«], and [X] depend essentially on
T, so that we should properly write =, [«]y, and [X];.. But we do not,

since the omission is almost always harmless.
In terms of these constructions we can say in part what a filtration is.

To wit, a filtration of the model # = (W, ..., P) through I" is a model
M* = (W*, ..., P*)n which:

(i) W* =[W].
(ii) P¥ = [B,], for each n such that P, eT".

In other words, each world in .#* is an equivalence class of worlds in .#
(and each such class is a world in .#*), and for each such world [«] and
each atomic sentence P, in T

[«] e P iff x€P,.

We also call .#* a I'-filtration of #. A model is a filtration, simply, if
and only if it is a filtration through some set of sentences (closed under
subsentences).

The important thing about a filtration .#* of .# through I' is that a
world « in .# and its equivalence class [o] in .#* agree on every sentence
inI'; i.e. foreveryxin .# and every Ain I,

B A EET AL
Equivalently: [|A||#] = |A]#%, for every A in I'. This fundamental
filtration theorem is proved in chapter 3 for standard models, and again
in chapter 7 for minimal models. (Indeed, it can be proved already for
the cases in which A is non-modal. See exercise 2.27.)

It follows that a model .# and a T'-filtration .#* of it are always
equivalent modulo I', which is to say that for every Ain T,

B AT B4 AL
For the theorem implies that, where A is a sentence in I’

E& A, foreveryain A, iff, for every xin A4, F(fé’ A,
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The left side of this means that F# A (definition 2.6), and the right side
means that for every [] in A4*, k%" A, and hence that F4* A,

And, quite generally, it follows from this that a sentence in I is valid
in a class of models just in case it is valid in the class of I'-filtrations of
those models. That is, for every A in I,

FcA iff Frg A,

where C is any class of models and I'(C) is the class of I'-filtrations of
them. The argument here is left as an exercise.

We explain in section 2.8 how filtrations are used to demonstrate the
decidability of modal logics. In this connection it is important to observe
that filtration through a finite set of sentences always yields a finite model.
For if n is the number of sentences in I, then a filtration through I is a
model having at most 2 worlds (equivalence classes of worlds in the
original model), that being the maximum number of ways that worlds
can agree on sentences in I'. And 2" is finite if » is. In particular, if T is
the set of subsentences of a sentence A, then I is finite and closed under
subsentences, and every I'-filtration is a finite model.

More generally, if I is logically finite relative to a model .#, then every
[-filtration of .# is finite. For where # is the smallest number of finitely
many sentences in I' to which all others in I' are .#-equivalent, 2" is
finite and is the maximum number of ways that worlds in .# can agree
on the sentences in I'.

EXERCISES

Let I" be a set of sentences closed under subsentences, and let .#* =
(W*, ..., P*) be a I'-filtration of a model 4 = (W, ..., P).

2.23. Prove that = is an equivalence relation, i.e. that for every o, g,
and y in A4 :

(a) a = a;
() if « = fand a = v, then g = y.
2.24. Prove that for every world « and £ and every set X of worlds in .4 :
(a) pelo] iff x = B.
(b) If a € X, then [x] e[ X].

Give an example to show that () does not generally hold in reverse.
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2.25. Let P, be an atomic sentence in I'. Prove that for every a and £
in . #:

(a) If & = p, then [a] € P iff [f] e PE.

(b) [x] e P¥iff a€P,.

2.26. Prove the equivalence of (@) and (b).

(a) For every A in I and every o in .#, F# A if and only if
FéA.
(b) For every A in T, [||Al]-4] = | A||-#".

2.27. We can prove (a) (equivalently, (5)) in the preceding exercise for
non-modal sentences A in I'. The proof is inductive with respect to the
complexity of A in I. We give it for the cases in which A in I is (a)
atomic, P,, (b) a negation, 1B, and (¢) a conditional, B—C. The
remaining cases are left for the reader.
For (a):
F#P,iffacPh,
— definition 2.5 (1);
iff [a] e P¥
—since P, eI’;
iff K& P,
— definition 2.5 (1).

So the result holds when A in I' is atomic.

For the inductive cases we assume as an inductive hypothesis that the
result holds for all sentences in I" of less complexity than A; in particular,
then, we assume that the result holds for every subsentence of A.

For (b):

E# 1B iff not k¥ B
— definition 2.5 (4);
iff not 54’ B
— inductive hypothesis;
iff k%" 1B
— definition 2.5 (4).
So the result holds when A in I is a negation.
For (¢):
F# B— C iff if F B then ki C
— definition 2.5 (7);
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iff if (%" B then Fi#" C

— inductive hypothesis;
iff F#*B—>C

~ definition 2.5 (7).

So the result holds when A in T is a conditional.

2.28. Argue in detail that the result in the preceding exercise implies that
forevery Ain T,

(a) B4 Aift F#7A.

Then show that this in turn implies that for every Ain I,
(0) FcAiff Fr) A,

where I'(C) is the class of I'-filtrations of models in C.

2.29. Let T" be the set of subsentences of the sentence 11Py— Py, and
suppose that W = {a, 8, v}, P, = {o, v}, P, = {f}, and B, = {a} forn > 1.
Describe W*, P¥, and P#. How many worlds are there in .#*?

2.30. Suppose I' is the set {Py, 1P, 171P,, ...}, which is logically
finite relative to # (exercise 2.14) and closed under subsentences. What
is the maximum number of possible worlds in .#*?

2.31. Notice that the idea of a I'-filtration does not depend upon I' being
closed under subsentences. But give a simple example of the failure of
the filtration theorem in exercise 2.27 with respect to a filtration through
a set of sentences not closed under subsentences.

In general, when speaking of a I'-filtration we presuppose that I is
closed under subsentences.

2.4. Systems of modal logic

We encountered a number of rules of inference in connection with S5,
the system of modal logic presented in chapter 1. For example, modus

ponens:
A—->B A

MP. B

In general, a rule of inference has the form

Ay ... A,
A ?
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where n > 0. The sentences Aj, ..., A, are the hypotheses of the rule; A
is the conclusion. A set of sentences is said to be closed under — or, some-
times, simply to have — a rule of inference just in case the set contains
the conclusion of the rule whenever it contains the hypotheses (or just
contains the conclusion if, when z = 0, there are no hypotheses). Thus
a set of sentences I is closed under the rule MP if and only if whenever
A—>Band Aarein I, sois B.

We define systems of modal logic in terms of closure under the rule
of inference

Rpr, AnomA

x % (n 2 0),

where A is a tautological consequence of A, ..., A,.

DEFINITION 2.11. A set of sentences is a system of modal logic iff it is
closed under RPL.

Thus a system of modal logic is any set of sentences closed with respect
to all propositionally correct modes of inference. We shall reserve Z as
a variable for sets of sentences that are systems of modal logic, and for
brevity and variety we shall often call them systems or modal logics, or
even, simply, logics. Examples of systems abound already: S5; the sets
of sentences true at a world in a model, true in a model, valid in a class of
models (theorem 2.8); the set of sentences itself (it is the largest system).

The theorems of a system are just the sentences in it. We usually write
Fs. A to mean that A is a theorem of X:

DEFINITION 2.12. F; A iff AeX.

Because systems are simply sets of sentences, relative strength is
measured in terms of inclusion: a system is at least as strong as a system
2 —is a Z-system — just in case it contains every theorem of Z. (So X is
always itself a Z-system..)

We make official our usage in chapter 1 and denote the set of tautologies
by PL.

THEOREM 2.13

(1) PL is a system of modal logic.
(2) Every system of modal logic is a PL-system.
(3) PL is the smallest system of modal logic.
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Proof. For (1), suppose that A is a tautological consequence of tauto-
logies A;, ..., A,,. Then A, too, is a tautology. Thus PL is closed under
RPL, and hence is a system of modal logic. For (2), note that when
n = 0 the rule RPL means that A is a tautology. So any system of modal
logic must contain every tautology, i.e. PL < X, for every system 2. So
every system of modal logic is a PL-system. (3) follows from (1) and (2).

It does very little violence to the conception of what constitutes a
system of modal logic to count PL as one, and it simplifies matters
enormously to do so.

In terms of theoremhood we characterize notions of deducibility and
consistency. A sentence A is deducible from a set of sentences I' in a
system X — written I' F5 A — if and only if % contains a theorem of the

form A AL AAYSA,

where the conjuncts A, (i = 1, ..., n) of the antecedent are sentences in I'.
A set of sentences I' is consistent in 2 — written Conyg I" — just in case the
sentence | is not X-deducible from I'. Thus I is #nconsistent in X ~
CongI' —just when I' Fy; 1. We record these definitions formally.

DeFINITION2.14. '} Aiff thereare A,, ..., A,,e'(n > 0)
such that Fo(A; A ... AA,)—>A.

DerFiNITION 2.15. Cong I' iff not 't 1.

Theoremhood, deducibility, and consistency, so defined, have all the
expected properties, many of which are enumerated in the following
theorem.

THEOREM 2.16
(1) FgAiff o F A,
(2) F A iff for every T', T'Fg A,
(3) If Tk pp A, then TH- AL
(4) If A€l then '3 A.
(5) If "'ty B and {B} F A, then '} A.
(6) If Tt A and U < A, then AL A.
(7) I'kg A iff there is a finite subset A of I such that Alg A.
(8) 'ty A—>Biff 'u{A} I;B.
(9) Cong, I iff there is an A such that not I't3 A.
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(10) Cong I iff there is no A such that both I'Fz A and I’ | 1A,
(11) If Cony I, then Conpp I,

(12) If Cong I and A = T, then CongA.

(13) Cony I iff for every finite subset A of I', Cong A.

(14) Tt A dff ConT'y {MA}.

(15) Cony I'u {A} iff not 't 1A

Proof. We prove only some of the parts of the theorem and leave the
rest as exercises.

For (1). If F A, then there is a Z-theorem of the form (A;A...AA)})
— A - to wit, where n = 0 and the conditional is just A. Since the non-
existent As of the antecedent are all in o, oF3 A. Conversely, if ol A,
it must be that Fg(A;A ...AA,)—> A, where n = 0, etc. That is, Fz A,

For (2). The reasoning for left-to-right is like that for (1) and is left
to the reader. For the reverse, suppose that I'F; A, for every set of
sentences I'. Then in particular, oty A, which by (1) means that tg A.

For (3). This simply says that deducibility within the means of
propositional logic is acceptable within any system of modal logic. For
if C'Fpz A, then there is a PL-theorem of the form (A A...AA )= A,
where the antecedent’s conjuncts are members of I'. By theorem 2.13 (2),
it is also a Z-theorem, for any system X. So I'F; A.

For (4). This expresses the reflexivity of the deducibility relation.
Suppose that AeI'. The sentence A— A is a tautology, hence a PL-
theorem, hence a X-theorem for any system X. It is also a conditional
with consequent A, the antecedent of which is in I'. Therefore, I'F5 A.

For (5). This is a statement of the transitivity of the deducibility
reiation. The proof is somewhat complicated, and we leave it as an
exercise.

For (6). According to this, deducibility obeys a principle of augmenta-
tion, or strengthening. The proof is easy and is left for the reader.

For (7). Deducibility is compact, in the important sense that deduci-
bility from a set of sentences always implies deducibility from a finite
portion of the set. This follows at once from the fact that the number of
conjuncts in the antecedent of the requisite conditional (A, A ... A A, )~ A,
is always finite. The right-to-left part follows from (6).

For (8). This states the so-called deduction theorem for systems of
modal logic — that a conditional is deducible from a set of sentences just
in case its consequent is deducible from the set enlarged by the addition
of the antecedent. The proof is rather easy and is left as an exercise.
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For (9). This is an alternative way of characterizing consistency.
Suppose that ConyT', ie. that not I'ty 1. Clearly, then, there is a
sentence A such that not I'kg A. For the reverse, suppose that Cony T,
i.e. that I'ty 1. By PL and part (3), {L} F; A, for every sentence A. So
by (5), I't5 A, for every sentence A.

For (10). Another definition of consistency, the proof is left to the
reader. Note that it says that a set of sentences is inconsistent just in case
there is a sentence such that both it and its negation are deducible from
the set.

For (11). This is the same as saying that every PL-inconsistent set of
sentences is also X-inconsistent, for any system Z. For if ConyT', then
not 'ty 1. Hence by (3), not I'tp 1, i.e. Conp, I

For (12). This expresses a principle of diminution for consistency —
equivalently, augmentation for inconsistency. The proof uses (6) and is
left as an exercise.

For (13). This uses consistency to express compactness. Note the
contrapositive formulation: a set of sentences is inconsistent if and only
if it has a finite inconsistent subset. The proof, which uses (7), is left for
the reader.

For (14). Here is a characterization of deducibility in terms of con-
sistency (or inconsistency). Suppose that 'k A. By (6) we see that
FU{7A} b A, and by (4) that T'y{7A}F;JA. Hence by (10),
CongT'u{7A}. Conversely, suppose that CengT'U{71A}, i.e. that
FU{7A}Fy L. Then by (8), Ttz 1A— 1. By PL and (3), {1A—~ 1}
Fs A. So by (5), Tt A.

For (15). The proof uses (14) and is left as an exercise.

EXERCISES

Use the definitions and theorems in section 2.4 and any results established
in previous exercises.

2.32. With reference to definition 2.11, explain why the following sets of
sentences are systems of modal logic.

(a) the set of theorems of S5

(6) the set of sentences true at a possible world

(¢} the set of sentences true in a model

(d) the set of sentences valid in a class of models

(e) the set of (all) sentences
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2.33. Explain why a system 2 of modal logic is always a S-system.
2.34. Prove:

(@) I'ty T (for all T').

(b) {L}F5 A (forall A).

(c) {A, A} kg 1.

{d) {T1A—> 1} F;A.

(e) TFg AABIff T'Fg A and 'ty B,

(f) fT'FgAor 't B, then I'F AV B.

(g) If 'tz Av Band I'ty 1A, then T'F; B,

(A) If 'ty A—>Band 'ty A, then 'k, B.

(1) If 'ty (A~ B), then 'ty A and Tk 1B,
(j) If 'ty B, then 'F; A— B.

(k) If 'k 1A, then 'F, A—>B.

() HT'F:A—Band ', B—+C, then TH;A—C.
(m) I'ts(AAB)—> Ciff TF;A—(B—C).

(n) 'ty AoBiff 'ty A—>Band TH, B~ A,

2.35. Complete the proof of theorem 2.16 (parts (2), (5), (6), (7), (8), (10),
(12), (13), and (15)).

2.36. Prove the following generalization of part (5) of theorem 2.16.
If I’y B, for every sentence Bin A, and Ak A, then T F+ A,

2.37. We may define a concept of provable equivalence, with respect to
a system X, by saying that two sentences A and B are Z-equivalent
(written A ~ 3 B) just in case their biconditional is a theorem of I, i.e.
justin case by A — B. Using this definition, prove:

(@) A~sA

(b) If A ~, B, then B~ A.

() fA~yBand B~,C, then A ~,C.,
(d) f A~yBand A ~;C, then B~.C.

(¢) For every sentence A there is a sentence B such that
A ~s B.

(f) IfA NPLB) thenANEB.

2.38. With respect to a system X we say that a set of sentences I is
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deductively closed — E-closed, for short —just in case I' contains every
sentence that is Z-deducible from it; i.e. I'is X-closed if and only if AeT’
for every sentence A such that I'Fg A,

Prove that for each system X the X-closed sets of sentences are exactly
the Z-systems, i.e. that I is a Z-closed set of sentences just in case I
is a Z-system.

2.5. Axiomatizability

Let us say that a rule of inference is reasonable if there is an effective way
of telling when sentences are related by itas hypotheses and conclusion.
For example, the rule MP is reasonable, since it is a decidable matter
whether three sentences are of the forms A— B, A, and B (if so, the first
two are hypotheses of MP and the last is a conclusion).

Now every system of modal logic X can be regarded as the set of
sentences generated from some subset I of its theorems by a set of rules
of inference. This is trivial, since X is always generated from the subset

2 by the rule
A

K.

But when T is a decidable set of sentences and the rules of inference
are reasonable and finite in number, X is said to be axiomatizable, and
I is said to be a set of axioms for Z. Together the axioms and rules con-
stitute an axiomatization of the logic. For example, the system S5 was
axiomatized in chapter 1 by means of the axioms T, 5, K, Df{, and PL
and the rules RN and MP. These axioms form a decidable set, and the
rules are reasonable.

Though most of the systems of modal logic treated in this book are
axiomatizable, this is by no means true of every system. For example,
the set of sentences true at a world in a model is a system, but it is rarely
axiomatizable.

Axiomatizable systems are important because they admit a notion of
proof and hence a positive test for theoremhood. By a preof in an axio-
matizable system we mean a finite sequence of sentences each of which
either is an axiom or follows from previous sentences in the sequence by
one of the rules of inference. Thus, for example, the following sequence
of sentences is a proof in S§ relative to the axiomatization just mentioned.

A—-"A
(O1A—TA)—> (A "1[0114)
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A-"T1A

(A=>"T071A) > ((OA-101A) > (A= OA))
(CA=T[T7A)=> (A~ QA)

CA—"1]1A

A~ OA

The first, second, fourth, and sixth sentences are instances of T, PL,
PL, and Df{, respectively; each of the others follows from its im-
mediate two predecessors by MP. A proof is a proof of its last sentence.
"The theorems of an axiomatizable system are thus just the sentences for
which there are proofs, i.e. just the sentences that terminate proofs in an
axiomatization of the system. So the sequence above is a proof of A~ (A,
which shows that this is a theorem of S5.

(One must distinguish between a proof i a system, like the sequence
above, and proofs about the system, like that for A— (A in section 1.2.
‘Though the latter is set out in a sequence of lines, there is no claim that
the sequence of sentences there is a proof, relative to some axiomatization,
in .S5. It is, rather, a graphic way of stating a proof — about S5 — that
A— OA s a theorem.)

Note that it is a decidable question whether a sequence of sentences is
a proof relative to an axiomatization of a system. For a sentence can
appear in a proof if and only if it is a member of a decidable set of axioms
or is inferred from earlier sentences by a reasonable rule of inference.
This means that there is a positive test for theoremhood in an axiomatiz-
able system. For the proofs — being decidable finite sequences — can be
enumerated effectively in an infinite series,

P PasPss -

So if a sentence is a theorem it lies at the end of some proof p,, and hence
will be discovered after inspecting at most the first # proofs. This may
not be a practical test, but it is none the less foolproof: if a sentence is a
theorem there is a proof of it some finite distance into the enumeration.

Of course if a sentence is not a theorem it will never be discovered at
the end of a proof, and there is no guarantee that this will become known
after inspecting any finite number of proofs. But this is only to say that
we have a positive and not a negative test for theoremhood — that the
test is not a decision procedure for theoremhood. In general, axio-
matizability only implies the existence of a positive test for theoremhood;
something more is required to show the existence of a negative test. One
kind of negative test is described in section 2.8.
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EXERCISES
2.39. Explain why the rules of inference in section 1.2 are all reasonable.

Give an example of an unreasonable rule.

2.40. Explain, accurately but informally, why the proofs in an axio-
matization can be effectively enumerated.

2.41, The system PL (the set of tautologics) is axiomatizable. Why?

2.6. Maximality and Lindenbaum’s lemma

A set of sentences is maximal in a system X just in case it is Z-consistent
and has only Z-inconsistent proper extensions. Intuitively, a set 1s
maximal if it is consistent and contains as many sentences as it can
without becoming inconsistent. We write Max;I' to mean that T is
¥-maximal, and we state the definition as follows.

DEFINITION 2.17. Maxy, I'iff (i) Cong I, and (ii) for every A, if
Cong 'y {A}, then A€eT.

Note that clause (ii) says that, where I' is maximal, the addition of a
sentence not already in I" yields an inconsistent set of sentences.

THEOREM 2.18. Let T be a Z-maximal set of sentences. Then:
(1) Ael'iff Tk A.
2y cTI.
(3) Tell.
(4) LgT.
(5) TAeTl iff A¢T.
(6) AABeTl iff both Aecl' and BeT'.
(7) AvBeT iff esther AcT' or BeT'.
(8 A>Bel'iffif AcI' then Bel.
N A-Bel'iff AcT' if and only if BeT'.
(10) I' zs a Z-system.

Proof. We assume throughout that I' is a -maximal set of sentences.
For (1). According to this, deducibility from a maximal set of sentences
coincides with membership in it. Left-to-right is just theorem 2.16(4).
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For the reverse, suppose — to reach a contradiction — that Tz A, but
A ¢TI Then by the maximality of I, Cong I U {A}. From this by theorem
2.16(15), 'k 1A, So by theorem 2.16 (10), Ceny, I, which contradicts
the maximality of I".

For (2). To show that a Z-maximal set of sentences always contains the
theorems of %, suppose that A€Z, i.e. kg A. Then by theorem 2.16(2),
Ais Z-deducible from every set of sentences. In particular, 'y A, which
by (1) means that AcT..

For (3). Observe that k3 T, since Fp; T, and use (2).

For (4). Suppose, per absurdum, that | €. ThenT'F5 1|, which means
that Cong I'. This contradicts the maximality of T".

For (5). This is best divided into two: (i) Not both AeI"and A €T
(ii) Either AeI' or 1A €T For (i), assume to the contrary that T’
contains both A and 71A. Then by (1) both are deducible from T, which
means that I is inconsistent. This contradicts the maximality of I'. For
(ii), suppose to the contrary that I" contains neither A nor 7JA. Then by
(1) neither is deducible from I'. This means (theorem 2.16 (14, 15)) that
Cong I'U {A} and Cong I'U {T1A}. By definition, then, A eI"and 1A €T,
which we have just shown to be impossible.

For (6). Suppose that AA B €T, so that by (1), 't AA B. By PL each
of the conjuncts is deducible from the conjunction, so — via theorem
2.16(5) -T'tz A and T'Fy B. By (1), AeT and BT The reasoning for
right-to-left is similar and is left for the reader.

For (7). Suppose that AvBeI'. By (1), 'ty Av B. Now suppose
neither disjunct is in T, so that by (5), 7A€l and "1Bel'. Then by
(1), 'k 1A and 'k 1B, We leave it to the reader to reach a con-
tradiction from here. Conversely, suppose that either AeI” or BeT.
By (1), either I'F A or Tk B. By PL Av B is deducible from each
of its disjuncts. So by theorem 2.16(5), 'tz Av B. Hence by (1),
AvBel.

For (8). Note that left-to-right means that maximal sets of sentences
are closed under MP. To show it, suppose that A>Bel* and AeT.
By (1), 'ty A—Band I'F; A. By PL B is deducible from these sentences.
So by theorem 2.16(5), I'ty; B, and hence by (1), B e T". For right-to-left,
suppose that A—>B¢T', to show that AeT" and B¢T. By (5) and then
(1), 'k5 (A~ B). By PL each of A and 1B is deducible from —1(A— B).
So by theorem 2.16 (5) each isdeducible from I'. By (1),AeI'and 1B €T,
and by (5) the latter means that B¢ T,

For (9). The proof is left as an exercise, with the remark that A< B
is PL-interdeducible with (A—B)A (B— A).
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For (10). By exercise 2.38 it is sufficient to show that I' is 2-closed,
i.e. deductively closed with respect to . But it is, by part (1).

The next theorem is known as Lindenbaum’s lemma. It is the pro-
position that every consistent set of sentences has a maximal extension.

THEOREM 2.19. If Cong T, then there exists a A such that (i) ' < A, and
(i) Maxg A.

Proof. The proof is long and somewhat complicated. It involves
several definitions and lemmas, each of which we set out separately. We
begin with a set of sentences I' which we suppose to be consistent; that is,
we assume throughout that CongI'.

The plan now is to define a set of sentences A in terms of I' which we
can prove to be a Z-maximal extension of I',

For the duration of the proof we assume we have a fixed enumeration
of the set of sentences,

Ay Ay A, ...

That is, we suppose that each sentence in the language occurs at least
once in this list (it does not matter if a sentence shows up more than

once).
In terms of the set I and this enumeration of the sentences we define

an infinite sequence of sets of sentences,

Ay Ay, A ...

The definition is inductive. First we define the initial set in the sequence,
A,; then we specify how any other set in the sequence, A,, is to be
defined in terms of its immediate predecessor, A,,_;.

Definition 1

(1) A, =T.
A A} if CongA, U{A};
(2)A,,={ waU A, if Conz Ay U }}n>0.

A, _;, otherwise;

In other words: A, is the set I'; and, for n > 0, A, is formed by adding
the nth sentence in the enumeration, A,, to A, _; if that addition is
Z-consistent (if not, A, is the same as A, _,).

It is obvious from their construction that each of the sets in the
sequence is S-consistent. For the first setin the sequence is consistent by
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hypothesis, and the rest are formed only by making consistent additions
to their immediate predecessors. Thus:

Lemma 2. Cong A, forn > 0.

A proper inductive proof of this is left as an exercise.
Now we define the set A to be the infinite collection of all the sentences
in any of the sets in the sequence.

Definition 3. A = Lj A,.
0

n—
Note that A includes each of the sets in the sequence:
Lemma4. A, < A, forn > 0.
So in particular A includes I' (=A,):
Lemma 5. T' = A.

Thus A is an extension of I'. It remains only to be shown that A is
2-maximal. For this we need three more lemmas.

Lemma 6. A, = A,,fork <n = 0.
Lemma 7. A, e A;, whenever A, €A, for k > 0.
Lemma 8. For every finite subset A’ of A, A’ = A for some z > 0.

According to lemma 6, each set in the sequence includes all of its
predecessors. This is obvious from the construction of the sequence.
Lemma 7 states that a sentence in A with index £ in the enumeration of
the sentences is always in the set in the sequence having index k. This
may not be so obvious, but we leave the proof for the reader. The argu-
ment for lemma 8 — that every finite subset of A is included in one of
the sets in the sequence — is this. Suppose A’ to be a finite subset of A,
and let A, be the sentence in A’ with largest integer index 7 (there must
be such a sentence since A’ is finite). Now we show that A’ < A . Let A
be a sentence in A’. Because A occurs somewhere in the enumeration of
the sentences, A = A;, where 2 < 7. Since A (= A;) is in A/, it is in A.
So by lemma 7, A (= A;) is in the set A,. By lemma 6, A, < A_. Hence
AisinA,.

Lemma 9. MaxyA. That is, (a) CongA, and (b) for every A, if
Cong Ay {A}, then A €A,

For (a) it is enough by theorem 2.16(13) to prove that every finite
subset of A is Z-consistent. Suppose to the contrary that A has a 3-
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inconsistent finite subset, A’. Let A, be the sentence in A’ with largest
index n. Then A’ is a subset of the set A, in the sequence, and so - by
theorem 2.16(12) - A,, is also Z-inconsistent. This contradicts lemma 2.

For (b), suppose that Cong AU {A}, for some A. Because, for some #,
A appears as the nth sentence in the enumeration of the sentences, our
assumption can be equivalently stated: ConzAU{A,}. By theorem
2.16(12), every subset of this set is Z-consistent. In particular, Cony,
A, U{A,} (since A,_; € A, by lemma 4). By definition 1, then, A, =
A, U{A,}. Since A, isthusinA,, itisin Aitself, i.e. A€A.

This completes the proof.

From Lindenbaum’s lemma it follows that a sentence is deducible
from a set of sentences if and only if it belongs to every maximal extension
of the set, and also that a sentence is a theorem just in case it is a member
of every maximal set of sentences. We state these corollaries formally.

THEOREM 2.20

(1) Tk A iff A€A, for every Maxg A such that ' < A.
(2) Fs A dff A€, for every Maxz A.

Proof

For (1). Suppose that I'ty A, MaxgA, and ['< A. By theorem
2.16(6), Abs A, and so by theorem 2.18(1), AeA. For the reverse,
suppose that not I'F5 A, to show that there is a X-maximal extension of
I" not containing A. It follows by theorem 2.16 (14) that the set I'U {11A}
is -consistent. By Lindenbaum’s lemma this set has a X-maximal
extension A, which is also an extension of I'. Because TTA €A, it follows
by theorem 2.18(5) that A¢A.

For (2). Take e for I'in (1), and use theorem 2.16(1).

In terms of maximality we can define what we shall call the proof set
of a sentence. Relative to a system X, the proof set of a sentence A ~
denoted by |A |y —is the set of X-maximal sets of sentences containing A:

DEFINITION 2.21. |A|g = {MaxsI': AeTl}.

In other words, where I is Z-maximal,
Te|Alpiff Ael

We conclude this section with a theorem about proof sets.
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THEOREM 2.22

(1) |Alg = {Max, I 'tz A}

(2) |Alz = |B|z #ff b5 A—>B.

(3) Alg = |Blz iff Fz A B.

(4) [Ty = {I': Max, I'}.

() L]z = .

(6) NAlz =TIz~ Al

(7) IAA Bz = |A|zn [Bl;.

(8) AV Bz = |A|zU [Bly.

(9) IA>Blg = (|T|y— IAlz)U |Bly.
(10) [A- B[y = [A—B|:n |IB->Al;.

Proof

For (1). The proof here rests essentially on theorem 2.18(1) and is
left to the reader. According to this the proof set of a sentence consists
of just those maximal sets of sentences that prove the sentence — whence
the appellation.

For (2). Let us prove this by a chain of equivalences.

|Alg < |Bly iff for every Z-maximal set of sentences I, if
I'e |Alg, then I'e |B|g;

iff for every Z-maximal set of sentences L, if
Aerl, then Bel;

iff for every Z-maximal set of sentences L,
A->Bel
— theorem 2.18(8);

iff F;A-—>B
— theorem 2.20(2).

For (3). That the proof sets of two sentences are the same just when
their biconditional is a theorem may be proved by reference to (2) and
the fact that 3 A < Bif and only if both FzA—>Band k; B— A. Exercise.

For (4)-(10). These correspond to parts (3)-(9) of theorem 2.18. Proofs
left as an exercise.
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EXERCISES

Use definitions, theorems, and exercises from section 2.4, definitions and
theorems from section 2.6, and results from previous exercises.

2.42. Complete the proof of theorem 2.18 (parts (3), (6), (7), and (9)).

2.43. Prove lemmas 2 and 7 in the proof of theorem 2.19 (Lindenbaum’s
lemma).

2.44. Prove part (2) of theorem 2.20.
2.45. Complete the proof of theorem 2.22 (parts (1) and (3)-(10)).

2 46. Let T' and A be Z-maximal sets of sentences. Prove that I' = A
if and only if I < A,

2.47. Prove that Lindenbaum’s lemma (theorem 2.19) follows from its
corollary theorem 2.20(1) (and hence that the two are equivalent).

2.48. Let I be a S-consistent set of sentences satisfying the condition that
for every sentence A, either Ae T or TA €. Prove that I' is X-maximal.

2.49. Let T be a E-system satisfying the condition that for every sentence
A, 1A €T if and only if A ¢ T. Prove that I is X-maximal.

2.50. Let A, A, A,, ... be an enumeration of the sentences, and let T’
be a consistent set of sentences. Define the sequence Ag, Ay, A,, ... of sets
of sentences thus:

(1) A, = I
A UAYifA, 4 FpA,;
(Z)An={ n1U B 1E }n>0.

A,,_,, otherwise;
Show by an inductive proof that ConyA, for each n > 0. Could the
definition above replace definition 1 in the proof of theorem 2.19
(Lindenbaum’s lemma)?
2.51. Prove:
(a) |Alg < |Blgiff AbgB (ie. {A}Fg B).
(b) 1Aly = |B|g iff A ~ 5B (see exercise 2.37).

2.7. Soundness, completeness, and canonical models

A system of modal logic X is said to be sound with respect to a class of
models C just in case every theorem of X is valid in C; i.e. just in case
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for every sentence A,
if Fz A, then k¢ A.

2 is complete with respect to C if and only if every sentence valid in C
is a theorem of 2; i.e. if and only if for every A,

if Fc A, then k5 A.

And % is said to be determined by C just when it is both sound and
complete with respect to C; i.e. just when for every A,

he A Bff EC A

Note that it is possible that a system of modal logic be determined by
more than one class of models.

Much of this book is concerned with characterizing classes of models
that determine various well-known systems of modal logic, and with
proving that these systems are indeed so determined. Proof of complete-
ness is the more difficult part; soundness is usually relatively easy and
straightforward. In this section we lay the ground for the completeness
theorems in chapters 5 and 9 by introducing some of the principal ideas
and methods used in their proofs.

Perhaps the most important idea is that of a canonical model for a
system of modal logic. A canonical model for a system X is a model
M =W, ..., P)in which:

(1) Wis the set of Z-maximal sets of sentences.

(ii) E, is the proof set of the atomic sentence P,, i.e. P, = P,ls
forn=0,1,2,....

'Thus in a canonical model for a system I, each world is a Z-maximal set
of sentences (and each such set is a world), and for each such world «
and each natural number #,

axeP ift P, ca,
(Note that we use world-variables, a, f, etc., for the maximal sets of
sentences that are the possible worlds in a canonical model.)
The chief feature of 2 canonical model .# for a system of modal logic

% is this: in .# just thosc sentences are true at a world (E-maximal set
of sentences) as are contained by it; i.e. for every a in .,

F4AiffAca.

Put another way, A = [A|;. We prove this in chapter 5 with respect
to canonical standard models, and again in chapter 9 with respect to
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canonical minimal models. (Indeed, we can prove it already for the cases

in which A is non-modal. See exercise 2.53.)

Because the worlds in a canonical model for a system of modal logic
will always verify just those sentences they contain, it follows that the
sentences true in such a model are precisely the theorems of the system.
That is to say, if .# is a canonical model for a system %, then

B4 A Fs A,
For it follows from the preceding result that

k# A, for every o in A, iff, for every « in.#,Acax.
By definition 2.6 the left side of this means that 4 A, and by theorem
2.20(2) the right side means Fy A (since the worlds are just the Z-maximal
sets of sentences). Equivalently, then, we may say that every system of
modal logic is determined by each, and all, of its canonical models.

Our strategy in proving completeness should thus be apparent. In
order to show that a system of modal logic % is complete with respect
to a class C of models, it is sufficient to prove that C contains a canonical
model # for =. For then we can argue that if a sentence A is valid in G
then A is true in .#, and hence that A is a theorem of . So the main
problem in proving the completeness of a system of modal logic becomes
that of finding, or defining, a canonical model for the system that can be
shown to be in the class of models in question. This is not always a

trifling matter.

EXERCISES

2.52. Let 4 be a canonical model for a system of modal logic 2. Prove
the equivalence of () and ().

(@) For every possible world a in A (i.e. for every Z-maximal
set of sentences «), k¥ A if and only if A e,

) A4 = [Alx

2.53. We can prove (a) (equivalently, (b)) above, for every non-modal
sentence A. The proof is by induction on the complexity of A. We give it
for the cases in which A is () atomic, P,, (b) a negation, 1B, and (¢) a
conditional, B—> C. The remaining cases are left for the reader.

For (). By the definition of truth (2.5(1)), F# P, if and only if x € F,
i.e. x€|P, |z But by definition 2.21 this holds if and only if P, ea. So
the result holds when A is atomic.
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For the inductive cases we make the hypothesis that the result holds
for all sentences shorter than A.
For (b):
¥ 1B iff not ¥ B
— definition 2.5 (4);
iff not Bea
— inductive hypothesis;

iff 1Bea
— theorem 2.18(5).

So the result holds when A is a negation.
For (¢):
F# B— C iff if ¥ B then F¥ C
— definition 2.5 (7);
iff if Bea then Cex
— inductive hypothesis;

iff B>Cea
— theorem 2.18(8).

So the result holds when A is a conditional,

2.8. Decidability and the finite model property

A system of modal logic is decidable just in case its set of theorems is,
i.e. just in case there is an effective finitary method for deciding of any
sentence whether or not it is a theorem of the system. To understand our
approach to proving the decidability of modal logics we need the ideas of
axiomatizability (section 2.5) and the finite model property.

We say that a modal logic T has the finite model property — the f.m.p. —
if and only if each non-theorem of X is false in some finite model of X.

Recall that if ¥ is axiomatizable then there is a positive test for theorem-
hood in X. If X both has the f.m.p. and is axiomatizable by means of a
finite number of schemas then there is also a negative test for theorem-
hood in 2, For let

My, My, M, ...

be a complete enumeration of the finite models (this collection és enumet-
able since each model is finite). Then if A is a non-theorem of T it is false
in .#, for some #. To find such a falsifying model it is enough to proceed
through the ennmeration examining each model in turn — first to see
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whether the model is a model of X (a finite task since the model is finite
and ¥ is axiomatized by finitely many schemas and rules of inference)
and then, if it is, to see whether A is false (again a finite task since the
model is finite). Sooner or later, i.e. after examining a finite number of
models, a model of X will appear thatis a countermodel to A.

So a modal logic is decidable if it has the f.m.p. and is axiomatizable
by a finite number of schemas: there is both a positive and a negative

test for theoremhood in the logic.
In chapters 5 and 9 we use finite determination theorems to show the

f.m.p. for systems of modal logic. In outline, our strategy is as follows.
Suppose we have proved that X is determined by a class of models C,
i.e. that for every A,

Fo A ff Ec A,
From this result by means of filtrations we show that T is also determined
by the class Cypyy of finite models in C, i.e. that for every A,

Fo A ff Fepy A
Then we know that £ has the f.m.p.: if not bz A then there is a finite
model 4 (in Cgyy) such that not F4A.

The argument for the finite determination theorem is of course trivial
from left to right: if b5 A then Fc A, and s0 Fepy A since Cpy € C.
From right to left we argue, contrapositively, in the following way.
Suppose that not Fz A, so that not k4 A for some .4 in C. Then where T’
is finite (or at least logically finite relative to A) and contains the sub-
sentences of A we define a I-filtration .#* of 4 in such a way that .#*
isin C, and hence in Cypy since it is finite. By a general filtration theorem
(compare section 2.3) we then conclude that not F#*A, and so not
Fepm A

The interesting and often difficult part of proofs of this kind is defining
M* so that it is in C.

Note that when T is just the set of subsentences of A it is possible to
compute an upper bound on the size of .#*; it has at most 2" worlds,
where 7 is the number of subsentences of A. Thus a search fora mode] of
¥ that rejects A can be limited to models of at most this size.

In conclusion we should emphasize that the decision procedures
afforded by filtrations and the f.m.p. are seldom practical, even when the
number of subsentences of a sentence is relatively small. But this is not
to gainsay their validity, nor their theoretical interest. Indeed, discovery
of decidability by these methods may stimulate the quest for more
realistic decision procedures.
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EXERCISES

2.54. Explain informally why any collection of finite models is
enumerable,

2.55. Suppose a system X has the f.m.p. and is axiomatizable. Why is this
not in general sufficient for a negative test for theoremhood (of the kind
described)? That is, why is it stipulated that X be axiomatizable by a
finite number of schemas?

(This is perhaps the place to mention that in specifying the conditions
for a negative test for theoremhood we could as well have stipulated that
the system be axiomatizable by means of a finite number of non-tauto-
logical schemas. This is because PL holds in every model (theorem 2.8),
and so only non-tautological axiom schemas need to be verified. And, in
any case, PL is itself axiomatizable by a finite number of schemas and
reasonable rules, though we forbear giving an example.)

2.56. Explain why PL is decidable by describing a negative test for
theoremhood in PL (see exercise 2.41).

2.57. A system of modal logic is inconsistent just in case it contains |
(compare exercise 1.27). So there is just one inconsistent system, to wit,
the set of all sentences (since by PL every sentence is deducible from 1).
Of course the set of sentences is decidable; so the inconsistent system is
decidable.

Explain how to modify the decision procedure for theoremhood using
axiomatizability and the f.m.p. in case it is not known whether the
system in question is consistent.
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3

STANDARD MODELS FOR
MODAL LOGICS

According to the account of necessity and possibility in chapter 1, a
sentence of the form [JA is true at a possible world just in case A itself
is true at all possible worlds, and a sentence of the form (A holds at a
possible world if and only if A holds at some possible world. This idea
was modeled very simply in terms of a collection of possible worlds
together with an assignment of truth values, at each world, to the atomic
sentences. We saw that the ensuing notion of validity is quite strict,
encompassing as it does a large assortment of principles.

In the present chapter we modify this leibnizian conception of necessity
and possibility by introducing an element of relative possibility. The
result is a much more supple notion of validity, one that greatly reduces
the stock of principles that are bound to hold.

In section 3.1 we define the idea of a standard model, state the truth
conditions for modal sentences at worlds in models of this sort, and
prove a theorem about validity in classes of standard models. In section
3.2 we single out the schemas D, 'T', B, 4, and 5 for special attention,
both because of their historical prominence (recall that they are all
theorems of $4) and because the techniques required for their treatment
are illuminating and instructive. Section 3.3 contains a generalization of
the truth conditions of modal sentences, and we examine in these terms
a certain schema that has D, T, B, 4, and 5 as special cases. In section
3.4 we explain generated models and prove a theorem relating standard
models to those in chapter 1. In section 3.5 we specify the notion of
filtration for standard models, prove the basic theorem therefor, and
give an example of its application. Section 3.6 continues this with some
theorems that are useful in the context of decidability proofs in chapter 5.

3.1. Standard models

A standard model is a structure

M ={(W,R,P)
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in which, as usual, W is a set of possible worlds and P represents an
assignment of sets of possible worlds to atomic sentences. The new
element, R, is a relation between possible worlds. Formally:

DEFINITION 3.1. # = (W, R, P) is a standard model ift:

(1) Wis a set.
(2) R is a binary relation on W (i.e. R Wx W).

(3) P is a mapping from natural numbers to subsets of W (i.e.
P, = W, for each natural number n).

The interpretation of the relation R in a standard model will vary
significantly, but in general it may be thought of as relative possibility
or, perhaps better, relevance. We shall write

aRp

to mean that the world g is possible relative to — or is relevant to — the
world a. (Other variants are: f is an alternative to «; f is accessible
from o; f is reachable from a; £ is (once) removed from a.) It bears
emphasis here that R may be any sort of binary relation on W; no
assumption whatsoever is made concerning its content or structure. The
effect of this becomes apparent in the next section.

The truth conditions of non-modal sentences are given already in
definition 2.5. The truth conditions of modal sentences use the relation R
of relative possibility as follows: [JA is true at a world « if and only if
A is true at every world f that is possible relative to a, i.e. at every world
B such that aRB. And QA is true at o if and only if A is true at some
world f possible relative to «, i.e. at some world £ such that aRB. These
truth conditions are a simple generalization of the account in chapter 1.
Instead of truth at every or some possible world, we now have truth at
every or some world possible relative to the given one. Formally:

DEFINITION 3.2. Let & be a world in a standard model .# = (W, R, P).

(1) k# DA iff for every fin 4 such thataRS, Ef A.
(2) k¥ OA iff for some fin # suchthat xRS, Ff A.

To illustrate the role of the relation R in standard models, suppose
that we wish the operator [] to express a concept of moral necessity or
obligation like that expressed by ‘ought’. Clearly this notion of necessity
cannot be expected to obey all the laws of the system S5; [JA— A, for
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example, is wrong, since there are unfulfilled obligations. But let us
understand R as a relation of moral relevance — so that «Rf means that
/3 is morally better than «, at least in the sense that whatever ought to be
the case at o is in fact the case at 8. Then [JJA (it ought to be the case that
A) is true at « just in case A is true at every world £ such that aRp, i.e.
such that £ is morally better than a.

For another illustration, suppose [] to be a future tense modality,
with a reading like ‘it always will be the case that’. Here we have a
notion of temporal necessity, and so it is appropriate to think of the
possible worlds as points in time. The relation R then provides an
ordering of the set of times, so that aRf means that the moment o
precedes the moment B, or that # is later than «. Thus [(JA (it will always
be the case that A) is true at a moment « if and only if A is true at every
moment f such that «Rp, i.e. such that £ is later than .

We return in chapter 6 to these ways of understanding the modal
operators and the relation of relative possibility in standard models. We
mention them here in order to provide some motivation for the move
from the models of chapter 1 to these.

The ideas of truth in a model and validity in a class of models are
familiar from definitions 2.6 and 2.7. By theorem 2.8, validity in any
class of models is preserved by the rule RPL; so this holds for standard
models as well (in particular, then, tautologies are true in all standard
models). We prove now that the schema Df{ is true in every stan-
dard model, and that validity in a class of such models is preserved
by the rule RK.

TuEoREM 3.3. Let C be a class of standard models. Then:

(1) £c QA 1O7A.
(2) For n20, if Ec(AjA...AA)—A,
then Ec ((JAL A ...A TA,)— DA
Proof
For (1). Let « be a world in a standard model # = (W, R, P}. Then:
F# OA iff for some fin A such that xRS, FF A
— definition 3.2(2);
iff not every £ in .# such that aRf is such that not
FFA;
iff not every fin .4 such that aRA is such that F# 1A
— definition 2.5 (4);
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iff not k¥ []TA
— definition 3.2(1);
iff E% 1A
— definition 2.5 (4).
Therefore, E¥ OA« 1[J1A, for every world a in every standard
model .#.

For (2). The proof here is by induction on 7, and it rests on two
lemmas — to wit, where C is a class of standard models:

Lemma 1. If Fc A, then F¢ [JA.
Lemma 2. ke (J(A—B)—>([JA—[B).

That is, the rule of inference RN preserves validity in any class of
standard models (lemma 1), and the schema K is valid in every class of
standard models (lemma 2). The proofs of these lemmas are not difficult;
we leave them for the reader.

For the inductive proof of (2), now, recall that when z# = 0 the con-
ditionals in question are identified with their consequents. So for the
basis of the induction, we need to show that for any class C of standard
models, if k¢ A, then E¢ [JA. This is just lemma 1.

For the inductive part of the proof, we assume as an inductive hypo-
thesis that the theorem holds for all natural numbers k2 < n, and show
that it holds, too, at n. We put the inductive hypothesis as follows.

Fork <mn,if Fc (B;A...ABp)—B,
then k¢ (OB A ... A [OB,)—[IB.

Now suppose that
Fc(AjA ... AA))— Al
It follows by PL that
Fe(ArA . A A, ) > (A= A)
Hence by the inductive hypothesis,
Fc(COALA ... ATA, )~ O(A,—~A).
From this and lemma 2 it follows by PL that
Fe(COALA ... A TOA 1) > (DA, —~[OA).
And from this by PL,
Fe(OALA ... AJA)— AL
This completes the proof.
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There is of course much more to validity in the class of standard
models than the schema and rule covered in theorem 3.3. But, together
with theorem 2.8, theorem 3.3 provides for the soundness of the systems
of mecdal logic introduced in chapter 4. A number of further principles
appear in the exercises that follow.

EXERCISES

3.1. Prove lemmas 1 and 2 in the proof of part (2) of theorem 3.3. (It
may be helpful to compare the proof in section 1.2 that the system S4
has the rule RK.)

3.2. Identify some schemas (for example from the system .S5) that will
be valid, intuitively, if [] is taken to mean:

(@) it ought to be the case that

(b) it will always be the case that

(¢) John Doe believes that

(d) Jane Doe knows that

(e) God knows that

(Be sure to understand the meaning of { — via Df { —in each case.)

3.3. Show that instances of each of the following schemas can be falsified
at possible worlds in standard models.

D. JA->CA D.. CA-[A
T. JA-A Te. A=A

B. A-[]CA B.. OCA-A
4, JA-OOA 4. [OJOA-1A
5. CA->[JCA 5. OCA—= QA

(Compare exercise 2.21.)

3.4. Let us say that standard moaels .# = (W,R,P) and #' = (W',
R', P") agree on the atoms of a sentence A just in case (i) W= W', (ii)
R = R’,and (iii) B, = P, for every n such that P, is an atomic subsentence
of A. In other words, two standard models agree on the atoms of a
sentence if and only if they have the same set of possible worlds and the
same relation on them and they agree on the truth values assigned, per
world, to each atomic constituent of the sentence.
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Prove the following theorem.

If standard models M and M’ agree on the atoms of A, then

they agree on A tiself (in the sense that for any o in M (equally,
in M), &F A if and only if EF A).

The proof is by induction on the complexity of A. Give it at least for
the cases in which (@) A is atomic, P, (b) A is the falsum, 1, (c) Aisa
conditional, B—C, and (d) A is a necessitation, [ jB. N.B. for the
inductive cases the inductive hypothesis must be stated: for every
sentence X of complexity less than A, F# X if and only if k"X, for every
am H#.

In virtue of this theorem it is possible to ignore the values F, (in a
standard model .#) of atomic sentences [P, not in a sentence A, for
example when constructing a countermodel to A.

3.5. Prove that the following schemas are valid in any class of standard

models.
N. [OT

M. [C(AAB)—=(JAA[B)
C. (OAADOB)—-[J(AAB)

3.6. Prove that the schema Df(], []A <> 71 1A, is valid in any class of
standard models.

3.7. Prove the following, where C is any class of standard models.

(a) If Fc(A A B)—C, then kc((JA A (OB)— OC.
(b) If Fc A—B, then Fc [(JA—[B.
(c) If Fc Ao B, then Fc [JA« [B.
(d) If Ec A— B, then kFc QA OB.
() If Fc A« B, then Fc QA OB.

3.8 Prove that the following schemas are valid in any class of standard

models.
NO. 101

M. OAVB)=(OAv OB)
CoO. (CAv OB)—»> O(AvB)
Ko, (10AA OB)» O(TAAB)

3.9. Describe a single standard model that simultaneously falsifies
instances of [(J(Av B)->((JAv [OB)and (Q0AA OB)— O(AAB).
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3.10. For each of the following, decide whether or not it is valid in the
class of all standard models, and prove it.

(@) OT
(b)) (JAv OB)—[(AvV B)
(c) A~> QA
(d) O(AAB)>(OAA OB)
(&) OOA—-A
(/) O@AvB)—(CAV [OB)
(g) OOA—> QA
(h) O(A>B)—(OA~ OB)
() COA->A
(7) 0T (0A—>QA)

3.11. Let .# = (W, R, P) be a standard model. Prove:

(@) CJA— QA is true in . if R is serial, i.e. if R satisfies the
condition that for every a in .# there is a f in .4 such that
aRp.

() [JA - A is true in .# if R is reflexive (see exercise 1.10).

() A—[J QA istruein A if R is symmetric, i.e. if R satisfies the
condition that for every a and £ in .#, if @R then fRa.

(d) [JA—[JJA is true in 4 if R is transitive, i.e. if R satisfies
the condition that for every «, S, and v in 4, if aRf and
PRy, then aRy.

(¢) OA—[]OA istruein 4 if R is euclidean (see exercise 1.10).

Compare the countermodels to D, T, B, 4, and 5 in exercise 3.3. (But
do not peek at the proof of theorem 3.5 in the next section.)

3.12. Notice that if in a standard model .4 = (W,R,P), R=Wx W -
i.e. if R is the universal relation on W, relating each world to itself and
to every other — then we are once again in the situation in chapter 1:

F# (A iff Bf A for every world g in # (i.e. for every £ 1in
A such that «Rf);

F# QA Ff A for some world £ in 4 (i.e. for some £ in
# such that aRp).

Thus in this sense the models in chapter 1 are special cases of those in
the present chapter.
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Confirm this further by proving that the schemas T and 5 are valid
in the class of standard models in which the relation is universal.

Notice that a relation is reflexive and euclidean if it is universal (prove
this if necessary), but not vice versa (give an example of a relation that
is reflexive and euclidean, but not universal).

3.13. The relation in a standard model can be replaced equivalently by a
function that associates with each possible world in the model a set of
possible worlds. Let .# = (W, R, P) be a standard model, and define the
function f from worlds to sets of worlds (formally, f: W—2(W)) as
follows, for each « in #.

f(@) = {Bin A : aRp).

That is, f() is the set of worlds in # that are R-related to «; intuitively,
f(a) is the set of worlds relevant to c.

Thus with f in place of R the structure 4 = (W, f, P) is (as good as)
a standard model, and the truth conditions of a necessitation at a world
o in .# may be given by the clause:

F# [JA iff for every fef(a), FF A;
or, more simply, by using the notation of truth sets (definition 2.9):
k£ DA f(o) [ A]“.

This latter formulation suggests another way of looking at standard
models and the interpretation of necessity. To wit, we regard the set
f(@), for each world « in .#, as a certain proposition — the necessary
proposition with respect to the world a. (N.B. f(«) need not be expressed
by, i.e. need not be the truth set of, any sentence.) Then we understand the
formulation above as stating that a necessitation [JA is true at x in .#
if and only if the proposition expressed by A in .#, |A{#, is implied
by the necessary proposition, f(e), for « in .#. (Recall exercise 2.22
regarding the construal of truth sets as propositions and of inclusion as
implication between propositions.)

Using the propositions f(x) and ||A|-#, give a succinct formulation of
the truth conditions of QA at the world o in #. (Compare, again,
exercise 2.22 in which f(c) is always the set W of all worlds in .#.)

Given a model # = (W, f, P), define the relation R of relative pos-
sibility in terms of f.

3.14. Understand by a model, for the purposes of this exercise, a structure
M = (W, &, P)in which W and P are as usual and Z is a class of binary
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relations on W. That is, in such 2 model Z < {R: R = W x W}. Relative
to a world « in . the truth conditions for necessitations are defined by:

F# [JA iff there is an R € # such that for every £ in .# such
that aRp, FF A.

(a) State truth conditions for possibilitations so that Df { is valid
in the class of such models.

(b) Which of the schemas N, M, C, K, D, T, B, 4, and 5 (see
chapter 1) are valid in the class of such models?

(¢) Which of the rules RN, RM, RE, RK, and RR (see chapter
1) preserve validity in the class of such models?

3.15. Understand by a model, for the purposes of this exercise, a structure
M = (W,R,Q,P) in which W, R, and P are as in a standard model
and Qisa subset of W (the worlds in Q are ‘queer’). Relative to a world «
in.# the truth conditions for necessitations are defined by:

k4 (A iff a.¢ Q and for every § in 4 such that aRpS, k5 A.

(@) State truth conditions for possibilitations so that Df{ is
valid in the class of such models.

(b) Which of the schemas N, M, C, K, D, T, B, 4, and 5 are
valid in the class of such models?

(¢) Which of the rules RN, RM, RE, RK, and RR preserve
validity in the class of such models?

3.16. Recall exercise 1.11 and the mapping 7 from the modal language to
a language of elementary quantificational logic. We saw that 7 had the
effect of giving the truth conditions of modal sentences at a world a in
a model of the kind described in chapter 1. Here we redefine 7 for sen-
tences of the forms [JA and O A. 'To do so we add to the quantificational
language a single two-place predicate, R, and a second variable, f.
Writing A’ for the result of interchanging all occurrences of « and £ in
the quantificational formula A, we define 7 for necessitations and
possibilitations as follows.

(9) 7(CA) = YA(R(a, )~ (7(A)))-
(10) 7(OA) = IB(R(a, B) A (7(A)))-
Now 7 specifies the truth conditions of modal sentences at the world «

in a standard model. For example, the transformation shows that
[(JP,— P, holds at « just in case the formula

VB(R(x, f)—> Po(£))—> Po(«)
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is true, and ¢ Py— [ P, holds at & just in case the formula

3B(R(e, B)A Po(B)) > VB(R(x, B)—> Fa(R(f, &) A Po(a)))

is true. Writing k A now to mean that A is valid in the class of all standard
models, it can be seen that in general, for every A,

E A iff 7(A) is a valid formula of elementary quantificational

logic.
Neither (1P, P, nor Py— [ P, is valid in the class of all standard
models, since neither of their transformations is quantificationally valid.

(@) Check to see that 7 produces the stated results when applied
to [Py— Py and O Py— OO P,.

(b) Apply 7 to Df{, to see that its transformation is a valid
quantificational formula.

(c) Show thatif 7((A;A...AA,)>A) is a valid formula of
elementary quantificational logic so is T(([(JA A ... A [JA,)
- JA).

(d) Use r on the schemas in exercises 3.3, 3.5, 3.6, and 3.8-3.10.

(¢) Show that the principles in exercise 3.7 hold with respect to
quantificational validity and transformations of the schemas.

(f) Explain how standard models for the modal language serve
equally well for the quantificational language.

3.2. The schemas D, T, B, 4, and 5

Let us consider the following schemas.

D. OJA—-OA
T. QA=A
B. A-[0OA
4, JA-[OOCA
5. CA->CA
THEOREM 3.4, None of the schemas D, T, B, 4, and 5 is valid in the class
of all standard models.

Proof. Tt is enough in each case to exhibit an instance of the schema
in question and describe a standard model that falsifies it.

For D. Consider the instance [JP,— O Py, and let # = (W, R, P) be
a standard model in which W ={a}, R=9, and B, =9, for n >0.
Thus .# contains but one world, to which no world is related, and at
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which every atomic sentence is false. The unaccustomed reader may find
this a rather extraordinary standard model, but it is readily verified that
it is a standard model: W is a set, R is a binary relation (the empty
relation) on W, and P is a mapping from natural numbers to (empty)
subsets of W.

It is easy to see that:

(a) every fin .# such that aRf is such that Ff Py;
(b) there is not some fin .# such that aRf and k4 P,

By definition 3.2, (4) means that k; (], and (b) means that not
k4 &P, So by definition 2.5 (7), not k¥ [P, — { Py Thus the schema
D is false in a standard model.

This countermodel to D can be pictured as in figure 3.1. The box
represents the set I, and the circle represents the world & in W. Inside
the world are listed the essential facts about which sentences are true
there. Thus both [JP, and 71 P, appear inside a, to indicate that [JP,
is true at « and that { P, is false at «. In such a picture the content of the
relation R — the relative possibility of worlds — is indicated by means of
arrows from circle to circle; see figures 3.2-3.5, for example. In figure
3.1 there are no arrows, however, since there are no worlds relevant to
in the model. Notice that if there were an arrow leading from « to another
circle, 8, then a could not contain the sentences it does. For then both
P, and 1P, would show up inside S, which is impossible. The point is
that since a picture can coherently be drawn as in figure 3.1, the con-
ditional [(JP,~ O P, can be falsified, and hence the schema D is not
valid.

For T. Consider the instance [Py~ Py, and let A4 = (W, R, P) be
a standard model in which W = {a, 8} (where & # f), R = {{«, 8)}, and
P, = {f}, for n > 0. Since P, contains S, the only world relevant to «, the

Figure 3.1

[Py
QP
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atomic sentence P is true at every world possible relative to «; i.e.
every f in # such that aRf is such that k- P,,.

So by definition 3.2(1), £ (JP,. But since F, does not contain «, not
E# P,. Hence, not k¥ []P,— P,. Thus the schema T is false in a standard
model.

We have a picture of this countermodel to T in figure 3.2, Both
[P, and “1P, appear inside a, indicating that [(JP, is true and P, is
false at this world; and P, appears inside £ to show that it is true there.
The arrow from « to £ indicates that £ is relevant to a, and the absence
of any other arrows in the picture shows that this is the only case of
relative possibility in the model. Again, because this picture can co-
herently be drawn, we see that T is not in general valid. Notice that the
picture would be incoherent if there were an arrow leading from « back
to «.

For B. Consider the instance Py~ []{P,, and the standard model
M ={(W,R,P) in which W ={a,p} (distinct), R={a, )}, and
P, = {a}, for n > 0. Figure 3.3 pictures this model. Thus P, is true at a,

Figure 3.2

[P,

"'!Po

Figure 3.3
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and O P, is false at # (since there are no alternative worlds to 5, as the
lack of arrows leading away from £ shows). Hence [ O P, is false at <,
since fis accessible from a. So the instance of B is false at &, which means
that the schema B is invalid. Note the effect on the picture if an arrow
is drawn from £ to c.

For 4. Consider the instance [JPy—> []J[]P,, and the standard model
M = (W,R, P)inwhich W = {a, , v} (all distinct), R = {{a, £, {8, 7>}
and B, = {#}, for n > 0. We see, then, that k# Py and not F5¥ Py. Thus in
figure 3.4 f contains P, and y contains 7P, Because y is the only
world related to 3, £ also contains 71 JP,. But §is the only world related
to a. So a contains both [P, and T1[J[]P,, which means that k¥ (1P,
and not k¥ [J[JP,. Hence, not k¥ [JP,— [J[]P,. Thus the schema 4 is
false in a standard model. (What would happen if there were an arrow
from « to y in figure 3.4?)

For 5. We leave it to the reader to describe a countermodel to the
instance P,—> ] P, of the schema 5. Figure 3.5 provides a clue.

This concludes the proof of theorem 2.1. Figures 3.1-3.5 and the

Figure 3.4

Figure 3.5
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descriptions of the countermodels should enhance the reader’s under-
standing of standard models.

In a standard model A# = (W, R, P) the relation R is:
serial iff for every « in A there is a £ in .# such that aRf;

reflexive ift for every o in A, aRa;
symmetric iff for every @ and £ in A, if aRf, then fRa;
transitive iff for every o, B, and y in #, if aRf and SRy,
then aRy;
euclidean iff for every «, f, and y in A, if aRf and aRy,
then SRy.
Let us call the model .# itself serial, reflexive, symmetric, transitive, or
euclidean, according as the relation in it has these properties.

THEOREM 3.5. The following schemas are valid respectively in the indicated
classes of standard models.

(1) D: serial

(2) T: reflexive
(3) B: symmetric
(4) 4: transitive
(5) 5: euclidean

Proof
For (1). Let « be a world in a serial standard model # = (W, R, P),

and suppose that k¥ [JA. It is enough to show that k¥ O A. The as-
sumption means that Ff A, for every £ in .# such that aRf. By the
seriality of R, such a f exists. So for some £ in # such that aRf, F# A;
i.e. k¥ OA. Therefore, the schema D is valid in the class of serial
standard models.

For (2). Let a be a world in a reflexive standard model # = (W, R, P),
and assume that F¥ []A. We wish to show that F;¥ A. By the assumption,
for every £ in A, if aRp, then Ef A. In particular, if aRx, then A,
Hence, F¥ A, since R is reflexive. Therefore, the schema T is valid in
the class of reflexive standard models.

For (3). Let o be a world in a symmetric standard model .4 = {W¥, R,
P), and suppose that k¥ A. For the result that k¥ [JOA, we need to
show that

for every £ in .4 such that aRp, F5* OA,
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i.e. that
for every f in A such that aRf there is a ¢ in 4 such that
pRy and E¥ A,

So let £ be a world in .# such that aRS. By the symmetry of R, SRa.
So there is a y in .# — viz., a — such that SRy and k¥ A. Therefore, the
schema B is valid in the class of symmetric standard models.

For (4). Leta be a world in a transitive standard model # = (W, R, P),
and suppose that F;¥ [JA. We wish to show that F; [J[JA, which
means that

for every £ in .# such that aRfS, and for every v in .# such
that SRy, Ef A.

So let £ and vy be worlds in .# such that «aRf and SRy. It is left as an
exercise to show that from this together with the assumption and the
transitivity of R it follows that k;¥ A, This suffices to establish that the
schema 4 is valid in the class of transitive standard models.

For (5). Let e be a world in a euclidean standard model # = (W, R, P),
and suppose that F# O A, i.e. that there is a £ in .# such that «aRf and
Ff A. To show from this that F¥ [JA is to show that

for every £ in .# such that aRf there is a ¥ in # such that
ARy and B A,

It is left to the reader to show that this follows from the assumption
together with the euclideanness of R.

Theorem 3.5 is the basis of a number of soundness theorems in
chapter 5. It may enhance the reader’s understanding of the discursive
proofs above to refer to figures 3.1-3.5, for the models pictured there
violate, respectively, the conditions on the models in parts (1)-(5) of the
theorem.

Let us close this section by considering briefly the schema

G. OJA—~T]OA.

That G is not valid in the class of standard models is evident from the
model pictured in figure 3.6. Note that if there were arrows leading from
f and 7y to a circle § — if there were a single world & relevant to both £
and y - the diagram would be inconsistent. From this we see that G is
true in every standard model .# in which the relation R satisfies the
condition that for every a, £, and y in .#,

if «Rf and aRy, then for some d in .#, #RS and yRJ.
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When the relation R has this property, let us call it — and the model
A itself — incestual (since it means that offspring £ and y of a common
parent o have themselves an offspring & in common).

In the next section we see how each clause in theorem 3.5 is a special
case of a simple theorem that relates certain generalizations of the
schema G and the property of incestuality.

EXERCISES

3.17. Complete the proof of theorem 3.4 by describing a standard
countermodel to the instance {P,—[JOP, of the schema 5. (See
figure 3.5.)

3.18. Complete the proof of theorem 3.5 (parts (4) and (5)).
3.19. Prove that the schema G is true in every incestual standard model.

3.20. Prove that the schema D is true in every reflexive standard model.
3.21. Consider the duals of T, B, 4, and 5:

TO. A—> QA
BO. O[JA—-A
45, OOA—> OA

56. O[A—=[JA

Show that these schemas are valid respectively in the classes of reflexive,
symmetric, transitive, and euclidean standard models.

3.22. The results of this exercise aid in the proof of the distinctness of the
fifteen systems of modal logic registered on the diagram in figure 4.1 (see
also figure 5.1).

Figure 3.6
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(a) Describe reflexive symmetric standard models that falsify
instances of the schemas 4 and 5.

(b) Describe reflexive transitive standard models that falsify
instances of the schemas B and 5.

(c) Describe serial transitive euclidean standard models that
falsify instances of the schemas T and B.

(d) Describe a symmetric transitive standard model that falsifies
an instance of the schema D. _

(e) Describe a serial euclidean standard model that falsifies an
instance of the schema 4.

(f) Describe a serial symmetric standard model that falsifies an
instance of the schema T.

3.23. A binary relation on a set is said to be:
a similarity iff it is reflexive and symmetric;
a quasi-ordering iff it is reflexive and transitive;
an equivalence iff it is reflexive and euclidean.
Referring to theorem 3.5, prove:

(a) The schemas T and B are true in every standard model in
which the relation is a similarity.

(b) The schemas T and 4 are true in every standard model in
which the relation is a quasi-ordering.

(¢) The schemas T and 5 are true in every standard model in
which the relation is an equivalence.

3.24. Identify a condition on standard models to validate the sentence
P. OT.

(Hint: See exercise 3.10, parts () and (j).)

3.25. Identify a condition on standard models to validate the sentence
P. 10T,

3.26. Identify conditions on standard models to validate the converses
of D, T, B, 4, and 5:

D.. OCA-=[A
T.. A—-[JA
Bc. DOA%A

4. [COOA-[COA
Sc. DOA—> OA
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3.27. Show that the schema G is true in any standard model that is
symmetric or euclidean.

3.28. Falsify an instance of the schema G in a standard model in which
the relation is a quasi-ordering (i.e. is reflexive and transitive; see
exercise 3.23).

3.29. Recall the models 4 = (W, f, P) described in exercise 3.13 and
the explanation there of why they are equivalent to standard models. In
a model of this sort truth conditions for possibilitations are given by:

F# QA f(o)n Al # o.

The following conditions are equivalent to the properties of seriality,
reflexivity, symmetry, transitivity, and euclideanness. Which are which ?

(@) if Bef(e), then a ef(B)

(6) flx) # o

(c) if fef(x), then f(x) < f(B)
(d) xef(x)

(e) if Bef(a), then f(B) < f(a)

3.30. Let X be a set. By the identity (or diagonal) relation, I, on X we
mean the binary relation represented by the set {(x, x): xe X}. In other
words, for any x and y in X, xy if and only if x = y.

Let R be a binary relation on the set X. By the converse, ﬁ, of the
relation R we mean the binary relation represented by the set {(x,v):

yRx}. In other words, for any x and y in X, xﬁy if and only if yRx.

Let R and S be binary relations on the set X. By the relative product
(or composition), R[S, of R with S we mean the binary relation repre-
sented by the set {{x, y): for some 2 € X, xRz and 2.Sy}. In other words,
for any x and y in X, x(R|S)y if and only if there is a z in X such that
xRz and zSy.

Properties of binary relations can be neatly expressed using these
notions and notations. For example, the reflexivity, symmetry, and
transitivity of the relation R are expressed respectively as follows.

@I<R (B)R<R. ()RIR<R.

Prove this. Then give succinct expression in these terms to the properties
of seriality, euclideanness, and incestuality. Finally, prove:

@I=1I (IR=R (f)RI=R
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3.31. Equivalence relations have been characterized in terms of reflexivity
and euclideanness (see exercise 3.23). Prove that a relation is an equi-
valence if and only if it is:

(a) reflexive, symmetric, and transitive
(b) serial, symmetric, and transitive
(¢) serial, symmetric, and euclidean

3.32. The field of a binary relation is the set of things related by the
relation. Let R be an equivalence relation on a set X.

(@) Prove that X is the field of R.

For each xe X, define [x] to be {ye X: xRy}; i.e. for each x, y€X,
[x] =[] if and only if xRy. The set [x] is called the equivalence class
(under R) generated by x.

(b) Prove that any two R-equivalence classes are either identical
or disjoint, i.e. that for any x, yeX, either [x] =[y] or
[x]n[y] = .
Because of this we say that an equivalence relation R partitions its field
X into mutually exclusive, non-empty subsets.

Let R* be the relation R as restricted to the R-equivalence class [x];
i.e. for every y, 2 € X, yR*z if and only if y, 2 €[x].

(¢) Prove that within [x] the relation R—and hence R®-is
universal; i.e. that for any y, z €[x], ¥Rz (and so yR*z).

The point of this is that an equivalence relation is universal within any
of the equivalence classes in the partition of its field.

Let X be the union of a collection of pairwise disjoint non-empty sets,
and define the relation R on X by the stipulation that xRy just in case
x and y are both members of some one set in the collection.

(d) Prove that R is an equivalence relation on X.

The point here is that the union of universal relations on disjoint fields
is an equivalence relation.

3.3. The schema G*,m:n»

When aRp in a standard model # = (W, R, P), we say that £ is once
removed from «. Let us write

aR"B
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to mean that £ is # times removed from o —i.e. that £ can be reached
from a, so to speak, by = steps in the relation R. So aR"f just in case
thereare worlds y,, ..., ¥,_; in.# such thataRy,, ..., ¥, Rf. Pictorially:

R R R R
> @ > @
71 Ya—1 A

n @
W
o

¥
v

Of course, that £ is n worlds away from « does not preclude the pos-
sibility that £ is also removed from a by some other number of worlds.

The relation R" is called the nth relative product of R with itself, and it
is defined inductively as follows.

DEFINITION 3.6. Let  and £ be worlds in a standard model 4 =
(W, R, P).
(1) aROB iff a = B.
(2) Forn > 0, R iff for some y in A, Ry and yR"14.

Thus R? is the relation of identity, R! is the relation R itself, and, for
example, «R3f if and only if there exist v, and y, such that aRy,, y, Rv,,
and y, Rp.

Using R™ we can state truth conditions for sentences of the forms
[0"A and $™A. For just as [JA is true at a world exactly when A is true
at all worlds once removed from it, so [[]”A holds at a world just in case
A holds at all worlds # times removed; and similarly for ¢'A and O™A.

THEOREM 3.7. Let a be a world in a standard model M = (W, R, P).
Then, forn > 0:
(1) E# O"A iff for every B in M such that aR"S, F§ A.
(2) BX O™Aiff for some f in M such that aR™p, Ff A.

Proof. The proof in each case is by induction on n. We carry it out for
(1) and leave (2) to the reader as an exercise.
Base case:

FXTIPAMTEF A
— definition 2.3 (1);
iff for every fin .# such thata = 8, Ff A;
iff for every fin .4 such that a RS, Ff A
— definition 3.6 (1).



3.3. The schema G*.lm:n 87

Inductive case. For z > 0, assume as an inductive hypothesis that the
theorem holds for all & < 7. Then in particular, for every o in #,

k# [7-1A iff for every fin o such that aR"14, £ A,

Therefore:
B4 A M EZ OO A

— definition 2.3 (2);

iff for every y in  such that aRy, k¥ [J*1A
— definition 3.2(1);

iff for every 7 in .# such that aRy, and for every f
in .# such that yR* 18, Ff A
— inductive hypothesis;

iff for every § in 4, if there is a y in .# such that
aRy and yR*1p, then K A;

iff for every fin A, if aR"f, then Ff A
— definition 3.6 (2).

We are now in a position to generalize the results in the preceding
section concerning the validity of the schemas D, T, B, 4, and 5. For
example, for n > 0 the schema

4, DA->[O"A
is valid in the class of n-transitive standard models, i.e. models # =
(W, R, P) such that for every 2 and f in .#,

if aR"f, then aRf.

(Proof: Let & be a world in such a model .# and suppose that E# A,
i.c. that for every £ in # such that aRp, F# A. Then F# A whenever I
in . is such that aR*g; i.e. % []®A.) As an instance of this result we

have theorem 3.5 (4) — that the schema 4,
[JA—>[T%A,

is valid where R satisfies the condition that for every « and 5,
if aR2f3, then aRp.

For this is simply another way of expressing the transitivity of R — that
if A is twice removed from « it is also once removed (compare (c) in
exercise 3.30). More generally, for m, n > 0 the schema

gmn, A > A
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is valid in the class of standard models in which for all worlds  and 8,
if aR*f, then aR™A.

The reader may verify this as an exercise. Note that the schema 4 is also
an instance of 4™, and that T = 419,
But we are after even more generality. Let us consider the schema
Grlimmn <>k|:|lA_> ™ O'nA’

where &, I, m, n > 0. Note that all of the schemas D, T, B, 4, and 5 are
special cases of Gk+mn;

D = GoLo1
T = G100,
B = GooL1
4 — GoL20,
5 — GLOLL

The schema G*®+™" js a generalization of the schema

G. OJA—=[CCA,

discussed at the end of the last section. There we saw that G is valid in
the class of incestual standard models, where # = (W, R, P) is such that
foreverya, ff,and yin .#,

ifaRf and aR7y, then for some & in .#, SRS and yRS.

Let us generalize this condition and say that R (and also .# itself) is
k, I, m, n-incestual if and only if for every , £, and y in .#,

if aR*f and aR™y, then for some & in .#, SR'¢ and yR"S,

THEOREM 3.8. The schema G¥™n" is valid in the class of k,1,m,n-
incestual standard models.

Proof. The argument is an elaborate version of that for the validity of
the schema G in the class of incestual standard models. We give it here in
detail.

Letabeaworldinak, /,m, n-incestual standard model # = (W, R, P),
and suppose that F;¥ XA, This means that

(a) for some g in # such that aR¥g, every & in .4 such that
PR is such that F5? A,
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We wish to prove that k¥ (™ Q"A, i.e. that

(b) for every y in 4 such that aR™y, there is a § in .# such
that yR"8 and F3¥ A.

"To show this, we suppose 7y to be a world in .# such that «R™y, and argue
that there is a world & in .# such that yR™d and k5 A.
By our assumptions, then, £ and y are such that

aRkfR and aR™y.
So by the k, I, m, n-incestuality of R, there is a world & in .# such that
AR and yR"é.

From the first half of this and () it follows that Fg# A, so that indeed
there is a world & in .# such that yR™d and F# A.

As a corollary to theorem 3.8 we have theorem 3.5 — that the schemas
D, T, B, 4, and 5 are valid in the classes of serial, reflexive, symmetric,
transitive, and euclidean standard models, respectively. To see this it is
enough to notice that the properties of seriality, reflexivity, symmetry,
transitivity, and euclideanness are the same, respectively, as 0, 1,0,1-,
0,1,0,0-, 0,0,1,1-, 0,1,2,0-, and 1,0, 1, 1-incestuality. Let us show
this for the cases of reflexivity and symmetry, and leave the others as
eXercises.

Let R be the relation in a standard model .#. For reflexivity:

Ris 0, 1,0, O-incestual iff for every , 8, and y in #, if RS

and aR%, then for some ¢ in .#,
SR and yR%;

iff for every «, B, and y in #, if
o = B and @ = vy, then for some &
in A, fROand y =4
— definition 3.6;

iff for every @ and £ in #, if @ = §,
then aRf,;

iff for every « in 4, aRa;

iff R is reflexive.

For symmetry:

R is 0,0, 1, 1-incestual iff for every , f, and y in #, if aRO8
and aR'y, then for some ¢ in #,
JR% and yR4;
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iff for every a, f, and v in #, if
o = f# and aR7y, then for some 8 in
M, f =6, and yRS
— definition 3.6;

iff for every o and £ in #, if aRp,
then SRa;

iff R is symmetric.

EXERCISES

3.33. Give an example of a standard model .# = (W, R, P) in which
aR™f and aR" g for some worlds & and £ in .# and some natural numbers
m and n such that m # n.

3.34. Prove part (2) of theorem 3.7.

3.35. Prove that the schema 4™" is valid in the class of standard models
M = (W, R, P)such that for all « and #in #, if xR"f, then aR™B.

3.36. Check that the schemas D, T, B, 4, and 5 are all (the advertised)
special cases of the schema G#imn,

3.37. Prove that the properties of seriality, transitivity, and euclideanness
are the same, respectively, as 0,1,0,1-, 0,1,2,0-, and 1,0,1,1-incestuality.

3.38. Prove that 1,0,1,0-, 0,0,1,0-, and 0,2,1,0-incestuality are the same
as the following properties.

partial functionality: if aRf and aRy, then § =y
vacuity: if aRf, then o = £
(weak) density: if aRf, then for some y, Ry and YRS

We may infer from this that the schemas D¢ (= G1910), T (= G019),
and 4¢ (= G*%10) are valid respectively in classes of partially functional,
vacuous, and dense standard models. Prove this directly,

3.39. Let A = {W, R, P) be a standard model. Prove:

(a) The schema B, [JOA > A, is true in # when for every o in
# thereis a fin .# such that both R g and for every y in .4
such that SRy, & = .

(b) The schema 5., (JOA— OA, is true in .# when for every a
in # there is a £ in .# such that both aRp and for every
in .# such that SRy, 8 = .
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3.40. Prove that P, O T, is valid in the class of serial standard models.

3.41. Prove that P, 71T, is valid in the class of standard models in
which the relation is empty (the class of standard models .# = (W, R, P)
such that for every @ and fin .#, not aRf).

3.42. The following express the properties of seriality, euclideanness,
incestuality, partial functionality, vacuity, density, and emptiness of a
relation R (see exercises 3.30, 3.38, and 3.41). Which are which?

(@) RS RIR.

() RIR < R.
() R< o

@) I< RIR.
(©) RIR< L.

(f) RIR < RIR.
(g) Rc 1.
3.43. Consider the condition

A -/
R¥k|R™ = RYR™,
Prove that this is the same as &, [, m, n-incestuality.

3.44. Consider the condition

Rm|R < Rn|R!
on a standard model .# = (W, R, P). Prove:
(a) The condition validates the dual of GH™ viz.
O™"A-> (¥ QAL
(b) The condition is the same as %, /, m, n-incestuality.

3.45. Identify a single condition on standard models to validate the
following schemas.

(e) C(OAvV B)~(OAv OB)
(5) (OAA OB)= G(OAAB)

3.46. Identify a single condition on standard models to validate the
following schemas.

() O(Av B)>(CJAV [IB)
() (OAA OB)~> O(AAB)
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3.47. Identify conditions on standard models to validate the following
schemas.

H+. [)(OAV OB)->(0OAVOOB)

H*. (J(JAvB)A O(Av [OB))—~(JAv OB)

H. (OAvB)A[QO(OAvB)A[J(Av OB))=(OAv [IB)
3.48. Show that the schemas in the preceding exercise are true in every
euclidean standard model. Then falsify instances of each of the schemas

in standard models in which the relation is a quasi-ordering (see exercise

3.23).

3.49. Identify a condition on standard models to validate
Pt OkT

for every & > 0.

3.50. Try to identify a condition on standard models to validate the
schema G, [JOA— O [TA.

3.51. Consider the following conditions on a standard model # = (W7,

R, P),
secondary reflexivity: if aRp, then SRf

reverse secondary reflexivity: if fRo., then SRf

Prove that the following schemas are valid respectively in classes of
secondarily reflexive and reverse secondarily reflexive standard models.

(CA—-A) OT—(OA—A)

3.52. Consider the following conditions on a standard model .# =
(W,R,P).
(@) if RIS, then if fR*y and SR™J, then for some € in.#, YR
and dR%
(b) if fRIa, then if fR¥y and SR™), then for some € in A, yRe
and dR"
Prove that the following schemas are valid respectively in classes of
standard models satisfying (a) and ().
D(O*OA>O"O"A)  OIT>(OFIA>O"OA)
3.53. Consider again the models .# = (W, f, P) in exercises 3.13 and

3.28. The following conditions are equivalent to the properties of partial
functionality, vacuity, emptiness, incestuality, secondary reflexivity, and
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reverse secondary reflexivity (see exercises 3.38, 3.41, and 3.51). Which
are which?

(a) if a€f(p), then Bef(f)

(8) f() = {o}

(c) if B, v €f(a), then f(B) N f(7) # o

(d) f(e) is at most a singleton

(¢) if fef(a), then fef(f)

(f) fly)ce
3.54. Identify conditions on standard models to validate the following
schemas.

D!.. OJA<~ A
T, [JA<A

3.55. Consider models # = (W, f, P) in which W and P are as usual
and fis a function from W to W (not a point to set function as in exercise
3.13); i.c. for each world « in #, f(e) is some world in .#. In models of
this sort truth conditions for necessitations are given by:

ks DA ) A

(a) State truth conditions for possibilitations so that Df{ is valid
in the class of such models.

(b) Show that the rule RK (see chapter 1) preserves validity in
the class of such models.

(c) Show that the schema D!, [JA & OA, is valid in the class of
such models.

(d) Define a class of standard models equivalent to this class of

models.

3.56. Let A4 = (W, R, P) be a standard model. By an R-sequence we
mean a finite sequence (&, ..., &,y of worlds in .# such that a,Rz,,, for
i=1,...,n—1. We define the standard model .#’ = (W', R', P") as
follows.
(1) W’ = the set of all R-sequences.
(2) (CITRY an>R'<ﬂ1» ceey ﬂm) iff(ﬁl’ ceey ﬂm) = <a1’ veeyQpy ﬁm)
(3) (&g -vrryy € Pyiffa, By, fork = 0,1,2,....
Prove that for every world {a,, ..., @, in .4,

FE AR oA
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'The proof is by induction on the complexity of A. Give it at least for the
cases in which (a) A is atomic, P, () A is the falsum, 1, (¢) A is a con-
ditional, B— C, and (d) A is a necessitation, []B.

3.57. Consider the following conditions on a standard model A = (W,
R, P).

irreflexivity : not aRa

asymmetry: if aRf, then not fRo

antisymmetry: if aRf and fRa, thena = £

intransitivity: if aRf and SRy, then not aRy

(a) Prove that the models .#" in the preceding exercise have all
these properties.

(b) Let C,, C,, C;, and C; be the classes of irreflexive, asym-
metric, antisymmetric, and intransitive standard models, and
let C be the class of all standard models. Prove that each of
these classes determines the same modal logic —i.e. that for
any sentence A,

Fe A iff e, A,

for n =1, 2, 3, 4. (This comes down to showing — via part
(a) and the preceding exercise — that if a sentence is false in
any standard model it is also rejected by models that have the
properties in question.)

3.58. Prove:

(a) Every reflexive relation is serial, secondarily reflexive, and
reverse secondarily reflexive.

(b) Every euclidean relation is secondarily reflexive and incestual.

(¢) Every secondarily reflexive relation is dense.

(d) Every symmetric relation is incestual.

(¢) Every symmetric relation is transitive if and only if it is
euclidean.

(f) Every serial relation is reflexive that is vacuous or reverse
secondarily reflexive.

(g) Every vacuous relation is symmetric, transitive, euclidean,
and partially functional.

(h) Every reflexive partially functional relation is vacuous.

(z) The empty relation is vacuous.

(7) Every asymmetric relation is irreflexive and antisymmetric.

(k) Every intransitive relation is irreflexive.
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3.4. Generated models

Let o be a possible world in a standard model .# = (W, R, P). By an
R-descendant of & we mean any world in .# that can be reached from «
via the relation R in some finite number of steps (including zero, so that
« is an R-descendant of itself). In other words, a world £ in .# is an
R-descendant of a if and only if aR" g for some n = 0.

As the reader may well have noticed already, the truth value of a
sentence A at a possible world « in a standard model depends only on the
subsentences of A (including A) and the R-descendants of « (including
a). That is to say, sentences not involved in the structure of A and worlds
not descended from « are irrelevant to the question of what truth value
A has at . We can make this precise in terms of a theorem about generated
models.

DEFINITION 3.9. Let « be a world in a standard model A4 = (W, R, P).
Then 4= = { W=, R*, P*) is the standard model generated by
from A ift:

(1) We = {fin A : aR"p, for some n > 0}.
(2) R= = Rn (W= x W*).
(3) P2 = P,n W*, for each n > 0.
Thus the set of worlds W= is the set of R-descendants of «, and the

relation R* and sets P2 are just the restrictions of R and F, to the set of
R-descendants of «.

THEOREM 3.10. Let A= = (W=, R*, P*) be the standard model generated
by o from M = (W, R, P). Then for every f3 in #*:

bf Aiff EFT AL

Proof. The proof is by induction on the complexity of A. We give it
for the cases in which A is (@) atomic, P,, () the falsum, 1, (c) a con-
ditional, B—C, and (d) a necessitation, []B. We suppose throughout
that £ is a world in .4~

For (a):

b P, iff fEF,
— definition 2.5 (1);

iff feB,n W=
— since f e W?;
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iff fe P2

— definition 3.9(3);
iff Ef* P,

~ definition 2.5 (1).

So the theorem holds when A is atomic.

For (b). By definition 2.5 (3) L is not true at any world in any model.
So F# L if and only if F#* 1, and we see that the theorem holds when A
is the falsum.

For the inductive cases (¢) and (d) we make the hypothesis that the
theorem holds for all sentences shorter than A.

For (¢):

F#B—>C iff if Ff# B then k C
— definition 2.5 (7);
iff if F##* B then Ef#*C
— inductive hypothesis;
iff Ff*B~>C
— definition 2.5 (7).

Thus the theorem holds when A is a conditional.

For (d). For left-to-right, suppose that F# []B. Then by definition 3.2,
for every 7y in .# such that SRy, k;¥ B. To show from this that k#* B,
it is enough (by definition 3.2) to suppose that y is a world in .#% such
that fR*y and then argue that F:#*B. But if fR*y, then also SRy. So
F5¥ B, and - by the inductive hypothesis — F:#* B.

For right-to-left, assume that F#* B, so that for every world 7y in
A" such that fR*y, :#* B. Now let y be a world in .# for which it holds
that #Ry. Since e W#, v is also an R-descendant of a; and so y € W=,
Hence the pair {3, y) is in the relation R n (W= x W=), which means by
definition 3.9 that #R*y. So k;#* B, and - by the inductive hypothesis —
E:# B, which is what we wished to prove.

Thus the theorem holds when A is a necessitation. This concludes the
proof.

As an immediate corollary to theorem 3.10, a sentence is true in a
standard model just in case it is true in every model generated from (any
world in) the model.

THEOREM 3.11. Let A be an stadard model. Then:

E# A iff for every o in M, E#4* A,
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Proof. Suppose that &4 A, i.e. by definition 2.6, F#¢ A for every g in
M. Let M* be generated from .#. Then by theorem 3.10 it follows that
F#*A for every f in 4%, i.c. that F#*A. For the reverse, suppose that
not F# A, so that for some « in .#, not k¥ A. Then by theorem 3.10,
not E#* A, So not k4 A, which is what we wished to show.

Let us call a standard model generated just in case it is generated by
some world in some standard model. The following theorem relates
classes of generated models to the classes of models from which they are
generated.

THEOREM 3.12. Let C be a class of standard models, and let G(C) be the
class of models generated from the models in C. Then:

F:C A z_-ﬂ- F:g‘(c)A.

Proof. This is an immediate consequence of theorem 3.11. For if Fc A
and .# is a model in %(C) — i.e. A is generated from some model in C -
then clearly A is true in .#. Conversely, suppose Fg)A, and let .# be a
model in C. Then since A is true in every model generated from .#, it is
true in 4.

As we remarked in section 2.4, the set of sentences valid in a class of
models is a system of modal logic (see exercise 2.32(d)). Thus theorem
3.12 tells us that a system of modal logic that is determined by a class of
standard models is also determined by the associated class of generated
models.

This is often very interesting. For example, let us use theorem 3.12
to show that the system of modal logic determined by the class E of
standard models in which the relation is an equivalence is also determined
by the class U of standard models in which the relation is universal
(compare exercises 1.10, 3.12, and 3.32).

TueoOREM 3.13. Fe A iff Fy A.

Proof. The result follows via theorem 3.12 and the fact that U is
precisely the class (E) of models generated {from members of E. The
point is, roughly, that an equivalence relation can be taken apart into a
collection of universal relations, and any collection of universal relations
(with disjoint fields) can be patched together to form an equivalence
relation.

For the proof proper, suppose, first, that .# is a model in U. Then the
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relation in .# is an equivalence, since it is universal (see exercise 3.12),
So.# is in E, too. But .# is generated (by any of its worlds) from itself, so
it is in %(E), as we wished to show. Conversely, let #* = (W, R=, P=)
be 2 model in %(E) generated by « from .# = (W, R, P} in E. Then We,
the set of R-descendants of « in .#, is an equivalence class (see exercise
3.32) within which R - and hence R* — is universal. So .#% is in U, and
the proof is ended.

Universal models are, essentially, the models of chapter 1, i.e. models
without relations (see exercise 3.12). So we see that the same modal logic
is determined both by that class of models and by the class of equivalence
- 1.e. reflexive euclidean ~ standard models. Of course, this modal logic
is the system .§5; but the proof that this is so awaits us in chapter 5.

EXERCISES

3.59. Give the proof of theorem 3.9 for the cases in which A = T, 1B,
BAC,BvC,B«C, OB.
3.60. The p-morphism theorem. Let M = (W, R, P)and #° = (W°, R°,
P?) be standard models, and let f be a function from W to W° satisfying
the following conditions.

(1) f is onto.
(2) For every x and fin .# :
(a) if aRpB, then f(et) R°f(B);
(8) if f(x) R°f(p), then there is ayin.# such that (B
= f(7v) and aRY.
(3) For every a in .# and every n = 0,1,2,..., a cP, if and
only if f(x) e P;.
The function f is said to be a p-morphism (‘p’ for pseudo-epi) from A
to .#°, reliable on the atomic sentences. Prove that for every « in .#,
s AT 7 AL
The proof is by induction on the complexity of A. Give it at least for the

cases in which A is atomic, the falsum, a conditional, and a necessitation.

3.61. Use the p-morphism theorem in the preceding exercise to give
another proof of the theorem in exercise 3.56. That is, define a function
from the worlds of one model to those of the other, in exercise 3.56, and
prove that the function is a p-morphism reliable on the atomic sentences.
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3.62. The safe extension theorem. Let M = (W, R, P) and A# = (W¥,
R#, P#) be standard models satisfying the following conditions.

(1) W# = Wy X, where X is a set disjoint from .

(2) R# = RU S, where S is a binary relation on W# for which
it holds that @ ¢ X whenever a.Sg.

(3) P# = P.

MA# is said to be a safe extension of .# — safe in the sense that, since
R# does not lead from W into X, truth values of sentences at worlds
common to .# and .## are the same in both models. That is, for every
ain . 4,

B A ff E7 A,

The proof of this is by induction on the complexity of A. Give it at least
for the cases in which A is atomic, the falsum, a conditional, and a
necessitation. (For the modal cases it may be helpful first to prove that
aRpB if and only if «R#j, for every o in .#.)

3.63. Let us consider the following principle.
If I""c DA, then !:C A.

This principle holds for some classes of standard models, but not for
others. For example, it holds when C is any of the following classes.

(@) all

(b) serial

(¢) reflexive

(d) transitive

(e) serial symmetric
(f) serial transitive

(g) reflexive symmetric
(h) reflexive transitive
() reflexive euclidean

Cases (¢), (g), (h), and (7) are trivial: if all the models in C are reflexive,
then [JA-> A is valid in C (theorem 3.5); and so if k¢ [JA, then Fc A.

For cases (), (b), (d), and (f) we can use the safe extension theorem of
the preceding exercise. For example, let us show that the principle holds
in case (a), i.e. when C is the class of all standard models. We argue
contrapositively. Suppose that not Fc A, so that for some « in some
M = (W, R, P)in C, not k¥ A. Now, for a world &’ not in .#, we define
the standard model .## = (W#, R#, P#) by the following conditions.
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(1) W# = Wy {o).
(2) R# = Ry {{’, )},
(3) P# = P.

It is clear that .## is a safe extension of .#, and so by the theorem, not
E4% A, But o' R#«, and so by definition 3.2 not ;¥ #A. So not Ec(JA,
which is what we wished to prove.

Cases (b), (d), and (f) are for the reader. The problem in these cases
is to define safe extensions that have the right properties. We also leave
case (e) for the reader; the argument is simple (remember theorem 3.5)
but does not use the safe extension theorem.

The principle we are considering does not hold when C is any of the
following classes of standard models.

(7) symmetric

(k) euclidean

(I) serial euclidean

(m) transitive euclidean

(n) serial transitive euclidean
(o) symmetric transitive

For the cases in which the models in C are euclidean - i.e. (k)—(o) (for
(0) see exercise 3.58(e)) — it is enough to note that the schema [J([(JA —~ A)
is valid in each class (see exercises 3.51 and 3.58(5)), but that instances
of (JA—A have countermodels in each class (as the reader should
verify).

Case () is left for the reader (consider the schema [J(A— ¢ $A)).

The principle we have been considering is a special case (n = 1) of
the following principle.

IfFc (A, v ...v A, then ¢ A forsomei = 1,...,n (n > 0).

This ‘rule of disjunction’ holds for cases (a), (8), (), (d), (f), and (k)
above, but fails for the rest. The reader may wish to demonstrate the
new failures, cases (¢), (g), and (¢). We return to this matter in chapter 5.

3-5. Filtrations

We explained in section 2.3 the basis of what it means to say that a model
A* is a filtration through I' of a model .#. To wit, I is a set of sentences
closed under subsentences, the worlds in .#* are the equivalence classes
of worlds in .# that agree on the truth values of the sentences in I, and
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a world in .#* verifies exactly those atomic sentences in I that are verified
in # by any (hence all) of its members. (Recall the definitions of =,
[«], and [X] in 2.3.) To define this idea, now, for standard models it is
necessary only to insure that the relation in the filtration #* is in a
certain sense consistent with the relation in .#. The following definition
suffices for our purposes.

DEFINITION 3.14. Let .# = (W, R, P) be a standard model, and let
T be a set of sentences closed under subsentences. Then a
filtration of M through T is any standard model A* = (W*,
R*, P*) such that:

(1) w* = [W].
(2) For everyx and fin .#:
(a) if aRp, then [a] R*[S];
(b) if [x] R*¥[B], then for every sentence [JAel, if
F# (A, then Fff A;
(c) if [] R*[8], then for every sentence QA T, if k£ A,
then k¥ OA.
(3) P* = [B,], for each n such that P, €.

Thus R* is consistent with R in the sense that (@) R* imitates in .#* the
behavior of R in .#, (b) R* does not relate worlds [«] and [£] in .#* for
which it happens that some [JA in I' is true at & in .# while A is false at
Bin #, and (c) R* does not relate [«] and [#] in .#* for which it happens
that some OA in I is false at « in 4 while A is true at fin .#. We give
some examples of filtrations after the following three theorems.

THEOREM 3.15. Let A* = (W*, R*, P*) be a I'-filtration of a standard
model M = (W R, P). Then for every AcI':

In other words, [||AH“”] = |A[|-4°, for every AeT.

Proof. The proof is by induction on the complexity of Ael'. The
non-modal cases were discussed in section 2.3 (exercise 2.27). Of the
modal cases, let us treat only that in which A is a necessitation, []B. As
an inductive hypothesis we assume that the theorem holds for sentences
in T that are shorter than A. Since I is closed under subsentences, BeI'.
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So it follows from the inductive hypothesis that for every « in .#,
E#Biff -4’ B
Now let us show that this result holds for []B.

For left-to-right, suppose that F¥ []B. To show that k%’ B we
suppose that [#] is a world in .#* such that [¢] R*[f], and argue from
this to the conclusion that k{4’ B. But by clause (2)(b) of definition 3.14
it follows that if k7 [B, then k4 B. So k# B — whence, by the inductive
hypothesis, K%' B. For right- to left, suppose that k7% [(IB, so that for
every [f#]in .#* such that [a] R¥[§], ki# B. Let # be a world in .# for
which it holds that aRf; it is enough now to show that k4 B. But by
clause (2)(a) of definition 3.14 it follows that [e] R*[£]. So {4 B —whence,
by the inductive hypothesis, k4 B. ‘This completes the proof.

The next two theorems are corollaries of theorem 3.15. For their
proofs see the remarks in section 2.3.

THEOREM 3.16. Let M* be a T'-filtration of a standard model M. Then
M and M* are equivalent modulo I' — i.e. for every Ael':

A Gff kA A

THEOREM 3.17. Let C be a class of standard models and let I'(C) be the
class of D-filtrations of models in C. Then for every AeT':

A ’ﬁ[ Fr(c) A.

Definition 3.14 provides for the possibility of a number of filtrations
of a standard model A4 = (W, R, P) through a given set of sentences I'.
For example, consider #* = {(W*, R*, P*) in which (with W* and P*

as usual) for every @ and g,
[ec] R*[B]iff for some &’ €[] and some B’ €[f], &’ Rp".
To see that .#* is a filtration we must check that it satisfies conditions®
(a), (b), and (c) in clause (2) of the definition. We leave (a) and (c) as
exercises. 'T'o prove that (b) is satisfied, suppose that [a] R¥[£], (JA €T,
and k¥ [JA. Then &' RB’ for some o’ €[] and some B’ €[B]. So E# (A,
since & and &’ agree on I, from which it follows that F A. But AeT,
since I 1s closed under subsentences. Therefore, since £ and 4’ agree on
I, E# A, which is what we wished to show.
We call #* a finest filtration of .# through I'. By a coarsest I'-filtration
of .# we mean a case in which for every a and £ in .#,
[] R*[A]iff both for every [(JA €L, if ¥ (JA, then kA,
and for every QA el if Bf A, then ¥ OA.
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We leave it as an exercise for the reader to check that R*, so defined,
meets the conditions for a filtration.

We explained in section 2.8 how filtrations may be used to show that
a system of modal logic is determined by a class of finite models. The
point is that a filtration through a finite set of sentences is always a finite
model: if I' contains 7 sentences, then a I-filtration of a model .# has
at most 2" worlds (that being the maximum number of ways the worlds
in .# can agree on the sentences in I'); and 2" is finite if 7 is. Thus, in
particular, a model will be finite if it is a filtration through the set of
subsentences of a sentence, since such a set is always finite. For the most
part we reserve theorems about determination by classes of finite standard
models until chapter 5, in connection with decidability results. But as
an example let us show here that the modal logic determined by the
class U of universal standard models is also determined by the class
Uy of finite universal standard models.

THEOREM 3.18. Fy A iff Fygy A

Proof. Left-to-right is trivial, since Ugy < U. For right-to-left,
suppose that Fy.A. To prove that kyA it is enough, in virtue of
theorem 3.17, to prove that k) A, where I is the set of subsentences of
A (which of course contains A). So let #* = {W*, R*, P*) be a modelin
T'(U), i.e. a [-filtration of some model A = (W, R, P> in U. We wish
to argue that k4" A, and for this it is sufficient to show that #* is in
Uprn. Since .#* is finite, this amounts to showing that .#* is universal.
But it is: By clause (2)(a) of definition 3.14, [a] R¥[#] whenever and £
are worlds in .# for which it holds that «R#; and, since .# is universal -
i.e. aRp for every a and £ in .4 - it follows that [a] R*[£#] for every [c]
and [A] in #* —i.e. A* is universal. (Indeed, this argument can be
generalized ; any filtration of auniversal standard modelisitselfuniversal.)
To sum up, if A is valid in the class of finite universal standard models,
then A is true in every (finite) filtration of any universal model through its
set of subsentences and so, by theorem 3.17, is true in every universal
model. Put contrapositively, if A fails in some universal model it fails
in some finite universal model — to wit, any filtration, through its set of
subsentences, of the rejecting universal model.

Of course, as we have remarked, the set of sentences valid in the class
of universal standard models is the modal logic S5. So theorem 3.18
tells us that S5 has the finite model property: every non-theorem of S5
is false in some finite model for the system. This leads directly to the
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result that S5 is decidable, by the reasoning explained in section 2.8,
since S5 can be axiomatized by finitely many schemas.

The proof of theorem 3.18 turned on the fact that any filtration of a
universal model is itself universal. This result does not generalize,
however. For example, not every filtration of a transitive standard model
is itself transitive (exercise 3.67); so the proof that the modal logic
determined by the class of transitive standard models is also determined
by the class of finite transitive standard models cannot be so easily made.
The moral is that it is often necessary to select a more limited class of
filtrations of the models in a given class.

With an eye to the proofs of finite determination and decidability in
chapter 5, we devote the next section to the problem of finding appro-
priate filtrations of serial, reflexive, symmetric, transitive, and euclidean
models.

EXERCISES

3.64. Give the proof of theorem 3.15 for the case in which A = {B.

3.65. Check that finest and coarsest filtrations, described in section 3.5,
are indeed filtrations; i.e. check that the relations R¥ in these structures
satisfy the conditions in clause (2) of definition 3.14. Prove that in each
of these cases R* satisfies the following.

If ¢, = ay and B, = f,, then [o,] R*[,] iff [as] R*{[f,].
3.66. Prove that any filtration of a reflexive standard model is itself
reflexive.
3.67. Give examples of each of the following.
(a) a non-symmetric filtration of a symmetric standard model

(b) a non-transitive filtration of a transitive standard model
(¢) anon-euclidean filtration of a euclidean standard model

3.68. Let I be a set of sentences closed under subsentences. By #(I) -
the boolean closure of T' — we mean the result of closing I' with respect
to the (boolean) operations T, 1, 71, A, V, =, and <. In other words,
#(T") is defined as follows.

(1) T < #(I).
(2) T e B(T).
(3) Le®(T).
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(4) TA e (1) ift AcH(D).
(5) AABeZ(I')iff A, Be#(I').
(6) AvBeZ((I')iff A, BeZ(T').
(7) A>Be#() it A, Be#(I').
(8) A-BeZ(I'ift A, Be#(T').
Note that Z(I") is closed under subsentences.
(@) Let #* = (W*, R¥, P*) be a I"-filtration of a standard model
M = {W, R, P). Then for every A e #(I"),
FX AT FETA.
That is, [|A||#] = |A[|*#*, for every A e Z(I).

The proof of this improvement of theorem 3.15 is by
induction on the complexity of A e Z(I"). Give it at least for
the cases in which A is atomic, the falsum, a conditional, and
a necessitation.

(b) Prove or disprove: Z(I) is logically finite relative to a model
A if T is.

3.6. Filtrations, continued

THEOREM 3.19. Let A* = (W*, R* P*) be a filtration of a standard
model M = (W, R, P). Then:
(1) A* is serial iof M is.
(2) A* is reflexive if M 15.

Proof. Part (1) we leave as an exercise. For (2), suppose that .# is
reflexive, i.e. that aRa for every a in .#. By (2)(a) of definition 3.14 it
follows that [«] R*[a] for every [«x] in .#*, i.e. that .#* is reflexive.

There are no analogous results for arbitrary filtrations of symmetric,
transitive, and euclidean models. But we can define filtrations that do
have certain combinations of these properties.

Let I' be a set of sentences closed under subsentences, and let # = (I¥,
R, P) be a standard model. We consider the following conditions on

worlds & and £ in .#.

forevery (JAeT,if k¥ [JA, thenkf A
forevery QA el if kf A, thenk# OA
forevery (JA €T, if b [JA, thenF# A
“2 forevery QA el if ¥ A, then EA OA

Cy
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forevery (JA eI, if ki (A, then k¢ [JA
“ for every QA el if b OA, thenkf OA
forevery (JA e, if kff [JA, thenk [JA
forevery QA el if k¥ OA, thenkf OA
As their display and designations suggest, these conditions come in
pairs — one for [, and one for . Where W#* and P* are defined as usual,
we can obtain a ™-filtration .#* = (WW*, R¥* P*) of .# by defining R*
in terms of various combinations of the pairs. The details emerge in the
following theorem.

Cy

THEOREM 3.20. Let A* = {W*, R*, P*) be a standard model in which
W* and P* are defined as in a U'-filtration of a standard model
M = {(W,R,P). Then:

(1) If R* is defined by c, and c,, then (a) M#* is symmetric, and
(b) M* is a I'-filtration of M if M is symmetric.

(2) If R¥* is defined by c, and c,, then (a) #* is transitive, and
(b) MA* is a I'-filtration of A if M is transitive.

(3) If R* 1s defined by c,, c,, and c5, then (a) M* is symmetric
and transitive, and (b) A#* is a U-filtration of M if M is
symmetric and transitive.

(4) If R* is defined by c,, c,, and c,, then (a) M* is transitive
and euclidean, and (b) MA* is a U-filtration of M if M is

transitive and euclidean.

Proof. The complete proof is very long and involved. We choose to
give it in detail for part (2), hoping thereby to illuminate the argument
for the other parts, which we leave as exercises for the reader.

We assume that R* is defined by ¢; and c;. First we show that .#£* is
transitive. Suppose [x] R*[#] and [#] R*[y], for worlds «, f, and v in
A . 'This means that the following conditions obtain.

for every [JA €T, if k¥ [JA, then Ef A
cx(@ £) for every QA €T, if Ff A, then k¥ OA

for every [JA €T, if k¥ [JA, then k4 [(JA
(% B gor every QA€eT, if bf OA, then k¥ OA

for every (JA €T, if kf# (JA, then k¥ A
) for every QA el if k¥ A, then B OA
(B 7) for every [JA €T, if k# [JA, then k¥ [JA
’ for every QA €T, if k¥ OA, then Ff QA
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We wish to conclude from this that [«] R*[y], which means that we must
argue for the following conditions.

for every [JA €T, if # [(JA, then A
(2, 7) for every QA €T, if B A, then k¥ OA

for every [(JA T, if £ (JA, then Ef [JA
ca(% 7) for every QA el if k¥ OA, then k¥ OA

For c,(x,v). Suppose first that [JA el and k# [JA, to show that
F:# A. Then Ff [JA, by c4(«, ), and so E: A, by ¢y(5, 7). Next, suppose
that GA €l and k¥ A. Then F# OA, by ¢(B,7), and so £ OA, by
cy(e, f), which is what we wished to show.

For cy(a, ¥). Suppose again that [JA T and k# (JA. Then k£ (A,
by cy(a, 8), and so k5 [JA, by cy(B, ). Similarly, suppose that (A el
and F OA. Then k# OA, by cy(f, v), and so £ OA, by ci(a, §).

This takes care of the transitivity of .#*. It remains to be shown that
A* is a [-filtration of # if # is transitive.

Assume that .# is a transitive standard model. To see that #* is a
I'-filtration of .# we must check that R* satisfies the conditions in clause
(2) of definition 3.14. Parts (2)(b) and (2)(c) are just the condition ¢,
however, so the question reduces to (2)(a). Thus suppose that aRp, for
worlds o and S in .#. We wish to argue from this that [e] R¥[£], i.e. that
conditions c,(«, ) and cy4(x, B) are met.

For c,(a, B). Suppose first that [JA €T and k¥ [JA. Then for every
p in A such that aRp, Ef A. So kff A, since aRf. Next, suppose that
OAel and Ff A. Then there is a # in .# such that aRf and F4 A,
which means that F¥ O A.

For cy(a, 8). Suppose first that [JA €T and k# [JA. Because .# is
transitive, it follows by theorem 3.5 that F [JA— [J[JA, and hence that
k-# []JA. This means that for every £ in .# such that aRg, F# [JA.
So kf [JA, since @R, which is what we wished to prove. Now suppose
that A el and that F# OA. Then there is a § in .4 such that aRf
and F# O A, which means that £ { OA. By the transitivity of .# and
exercise 3.21 it follows that 4 O OA— OA, and hence that F OA,
which is what we wished to prove.

This concludes the proof of the theorem.

By putting together the contents of theorems 3.19 and 3.20 we manage
to cover most of the properties, and combinations of properties, of
standard filtrations in which we are interested. For example, if .# is a
reflexive symmetric transitive model, we can find a filtration .#* of .4
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that is symmetric and transitive by defining the relation in .#* as in part
(3) of theorem 3.20, and .#* will also be reflexive, by theorem 3.19. Thus,
reasoning as we did for theorem 3.18, we can prove a number of finite
determination theorems. We suggest some of these results in the exercises.

But we have not yet shown how to deal with filtrations of models that
are simply euclidean, or serial and euclidean. The case of reflexive
euclidean models is the same as, for example, that of reflexive symmetric
transitive models (see exercise 3.31); part (3) of theorem 3.20 takes care
of models that are symmetric and transitive and hence symmetric and
euclidean (see exercise 3.58(¢)); and part (4) of the theorem only deals
with models that are transitive and euclidean. Since by theorem 3.19
any way of constructing euclidean filtrations from euclidean models
yields a solution for the serial euclidean case, we may concentrate solely
on the simpler question.

In fact, it is impossible in general to produce euclidean filtrations
along the lines of theorem 3.20, i.e. by stating conditions on pairs of
worlds in the filtrated model with respect to an arbitrary set of sentences
closed under subsentences. The proof of this is worth setting out here.

Let I be the set {IP,, (1P}, which is closed under subsentences, and
let 4 = (W, R, P) be a standard model containing five distinct worlds,
a, B, v, 9, and ¢, related by R as indicated by the arrows in figure 3.7.
We leave it as an exercise for the reader to verify that .# is euclidean
and that the distribution of the sentences in I' and their negations is

Figure 3.7

=P,
(1P
o
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coherent. Note that o and 7 are the only worlds in .# that agree on all
the sentences in I'. Thus in a D-filtration .#%* = (WW*, R*, P*) of .#
there are four worlds: [o](= [¥]), [8], [6], and [e]. #* is pictured in
figure 3.8, where the arrows reflect the minimal pairings under R*
demanded by clause (2)(a) of definition 3.14. Note that .#* is not
euclidean, since [o] R*[#] and [«] R*[8], but not [#] R*[d]. Furthermore,
#A* cannot be made to be euclidean; for this would mean adding to R*
all the pairs of worlds represented by drawing double-headed arrows
between [] and [8] and between [4] and [¢], which in turn would mean
that the sentence [P, is false at [£], contrary to the fact of its truth at
that world. In short, this I'-filtration cannot be made to be euclidean on
pain of contradiction.

So something more special is required for the construction of euclidean
filtrations; we cannot in general deal with arbitrary sets of sentences
closed under subsentences. One approach to the problem uses the idea

Figure 3.8
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of the modal closure of a set of sentences. Because it is applicable also to
models that are symmetric or transitive we state the following theorem
for models of all three kinds.

THEOREM 3.21. Let " be a modally closed set of sentences closed under
subsentences, and let M* = (W*, R*, P*) be a coarsest I'-
Siltration of a standard model # = (W, R, P). Then:

(1) A* is symmetric if M is.
(2) A* is transitive if M is.
(3) A* is euclidean if M is.

Proof. We give the proof for part (3) only. Recall that the modal closure
of a set of sentences is the result of adding to the set every modalization
@A of any sentence A in the set. Suppose that .#* is a coarsest I'-filtration
of a euclidean model .#. That is to say, R* is defined by conditions (b)
and (¢) of clause (2) in definition 3.14. T'o show that .#* is euclidean,
let &, £, and y be worlds in .# such that [a] R*[f#] and [e] R*[7]. In other
words, we assume that the following conditions are satisfied.

for every [JA eI, if E¥ [JA, then Ff A
% B) for every QAT if Ef A, then k¥ OA

for every [JA eI, if F# [JA, then K¢ A
(% 7) for every QA el if 7 A, then k¥ OA

We wish to argue that [ ] R*[y], i.e. that the following conditions are met.

for every [(JA €T, if kf (JA, then kx¥ A
(4, 7) for every QA €T, if k¥ A, then Ff OA

Suppose first that [JAel and k# [JA, to show that k¥ A. Then
O[JAEeT, and so by ¢, ) Ff O[JA. Because .# is euclidean,
F# OJA—[JA (exercise 3.21). Hence F¥ [JA, from which it follows
by ci(a,y) that k¥ A. Next, suppose that GAel’ and E#A. Then
F# OA, by cy(a, v). By theorem 3.5 and the euclideanness of .#,
E¥ OA—-DOOA. So k¥ O OA. But JQAET. So, by cy(a, 8), FF OA,
which is what we wished to show.

Noticing that modally closed sets of sentences are infinite the reader
may wonder about the point of the last theorem: it does not seem to
provide the finite filtrations wanted for proofs of decidability. But, as
we shall see, modal closures of finite sets of sentences are logically finite
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relative to models of certain kinds. In particular, such sets are logically
finite relative to any euclidean model. And, as we observed in section
2.3, logical finiteness is sufficient to yield finite filtrations. We return to
these matters in chapter 5.

EXERCISES

3.69. Prove part (1) of theorem 3.19.
3.70. Prove parts (1), (3), and (4) of theorem 3.20.

3.71. Check that the model pictured in figure 3.7 is euclidean, and that
the distribution of the sentences to the worlds in the model is coherent.

3.72. Show that defining a filtration by conditions ¢, and ¢, (in section
3.6) does not always result in a euclidean model.

3.73. Prove parts (1) and (2) of theorem 3.21.

3.74. Let C be a class of standard models, and let Cy1 be the class of all
finite models in C. Using filtration theorems we can prove for a number
of cases that these classes determine the same modal logic, i.e. that for
every A,

Fc A iff Feppe A

The reasoning in each case is analogous to that for theorem 3.18, where
C is the class of universal standard models. Give the proofs for the cases
in which C is any one of the following classes.

(@) all

(b) serial

(¢) reflexive

(d) symmetric

(e) transitive

(f) serial symmetric

(g) serial transitive

(h) transitive euclidean
(1) serial transitive euclidean
(j) symmetric transitive
(k) reflexive symmetric



112 Standard models for modal logics

(I) reflexive transitive
(m) reflexive euclidean

Except for (a), the proofs use theorems 3.19 and 3.20, in addition to the
results in section 3.5. For (m), note exercise 3.31.

3.75. Give an example of a non-incestual filtration of an incestual
standard model.



4

NORMAL SYSTEMS OF MODAL
LOGIC

This chapter is devoted to studying, from a purely deductive standpoint,
a class of systems of modal logic we call normal.

In section 4.1 we first define the class of normal systems. Then we
derive a number of theorems and rules of inference common to all
normal modal logics and use some of them to formulate alternative
deductive characterizations of such systems. Theorems on replacement,
negation, and duality are proved in section 4.2 for normal modal logics
(they hold more generally for all classical systems, as we discover in
chapter 8). These results provide rules and theorems that serve to
facilitate derivations.

The smallest normal system of modal logic we call K. Thus every
normal system of modal logic is a K-system. ("The converse is false; not
all K-systems are normal.) To simplify naming normal systems we write

KS,...S,

to denote the normal modal logic obtained by taking the schemas
Sy -+ S, as theorems. In other words:

KS; ... S, = the smallest normal system of modal logic con-
taining (every instance of ) the schemas S,, ..., S,..

So, for example, K74 is the smallest normal system produced by treating
the schemas T and 4 as theorems in a normal modal logic. (It is also
denoted by K4T; the order of the schema names is irrelevant.) As the
limiting case, where there are no schemas, the definition yields K as the
smallest normal system.

In section 4.3 we begin a survey of the normal extensions of K con-
taining various combinations of the schemas D, T, B, 4, and 5. This
continues in section 4.4 with an account of the numbers of distinct
modalities present in certain of these systems.

The chapter concludes with section 4.5, which contains some theorems
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about maximal sets of sentences in normal modal logics. These result:
figure importantly with regard to some theorems in chapter 5.

4.1. Normal systems

As we learned in chapter 2, a system of modal logic is a set of sentences
containing all tautologies and closed under the rule of inference RPL
We characterize normal systems of modal logic in terms of the schema

Df$y. OA-1[MA

and the rule of inference

(AjA...AA)—>A
(OAA . ALIA,)—>[A

RK. (n > 0).

DEFINITION 4.1. A system of modal logic is normal iff it contains Df
and is closed under RK.

Beginning with theorem 4.2 and continuing with theorem 4.4 we
register some of the more important rules and theorems present in all
normal systems of modal logic. Many of theseare familiar from chapter 1.
Intheorems 4.3 and 4.5 we record some alternative ways of characterizing
normal modal logics.

THEOREM 4.2. Every normal system of modal logic has the following rules
of inference and theorems.

RN. S—A

RM. DQ%EB

RR. (Dﬁﬁﬂgfﬁc
RE. aﬁi%]éf;

N aT

M. [J(AAB)-=-(OAA[OB)

C. (OAAOB)=O(AAB)

R, CI(AAB)o(OAACIB)

K JA—-B)->(OJA—=[]B)



4.1. Normal systems 115

Proof. Let = be a normal system of modal logic. By theorem 2.13
propositional logic is a part of X, a fact we take advantage of frequently
and casually.

For RN, RM, and RR. These rules of inference are simply RK for
n =0, 1, and 2, respectively.

For RE. Suppose that Fz A« B. Then by PL both FzA—>B and
. B-—A. By RM in each case, by [JA-+ B and t; (0B~ [JA. Hence
by PL again, +y [(JA<[]B. '

For N. By PL, t5 T. Hence by RN, Fs[JT.

For M. By PL, F(AAB)—A and F-(AA B)—>B. So by RM, F; [
(AAB)>[JA and Fz[J(AAB)—[B. By PL again, Iy [J(AAB)—
(DA AB).

For C. By PL, Fy(AAB)—(AAB). Hence by RR, Fy(CJAA (OB)—
(A A B).

For R. This is just the biconditional of M and C.

For K. By PL, F.((A— B)A A)—>B. So by RR, Fx((J(A—>B)A [JA) >
[B. Therefore by PL, s [I(A—B)—((JA—[B).

As in chapter 1, proofs like these for theorem 4.2 can often be stated
more perspicuously as annotated sequences of theorems. For example,
the proof above for K can be presented thus:

1. (A->B)AA)—>B PL
2. (O(A—=B)A[JA)»[B 1,RR

3. J(A->B)—~(JA—[B) 2, PL

On top of propositional logic, the schema Df¢{ and the rule RK
provide an axiomatic basis for normal systems of modal logic. Together
with Df &> the rules and theorems listed in theorem 4.2 provide a number
of alternative bases for — i.e. alternative ways of characterizing — normal
systems. We select just four for attention in the next theorem; some
others appear in the exercises.

THEOREM 4.3. Let = be a system of modal logic containing DO . Then:

(1) T is normal iff it contains K and is closed under RN.
(2) X is normal iff it contains N and is closed under RR.
(3) X is normal iff it contains N and C and is closed under RM.

(4) = is normal iff it contains N, C, and M and is closed under
RE.
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Proof. Let X be a system containing Df . Theorem 4.2 takes care of
left-to-right in each case, so we show only right-to-left.

For (1). We need to show that if ¥ contains K and is closed under
RN, then X is closed under RK; i.e. that for n > 0,

if Fo(AjA . AA))—A,
then Fo(CJA A ... A[JA,)— [JA.
The proof is by induction on 7 and is like that for theorem 3.3 (2) (recall
lemmas 1 and 2 there). With this hint we leave the details to the reader.
For (2). Suppose X contains N and is closed under RR. In view of

(1) it is enough to show that X contains K and is closed under RN. As
to K, see the proof of theorem 4.2. For RN:

1.LA hypothesis
2.(TAT)=A 1, PL

3. (OrA0T)»JA 2,RR

4. 1T N

5. A 3,4, PL

Note that line 1 means that kg A, so that RR is applicable at line 2.
For (3). Suppose X contains N and C and is closed under RM. Given
(2), we need only show that X is closed under RR. Thus:

1. (AAB)»C hypothesis
2. O(AAB)-»[IC 1, RM

3. (OAAOB)~>[(AAB) C

4. (ODAA[OB)»IC 2,3, PL

For (4). If £ contains N, C, and M and is closed under RE, it is
sufficient, given (3), to show that ¥ is closed under RM. We leave this
as an exercise.

With the exception of Df{, the rules and theorems so far have
featured the necessity operator. The next theorem catalogues some rules
and theorems of normal systems in which the possibility operator
predominates.

THEOREM 4.4. Every normal system of modal logic has the following rules
of tnference and theorems.

A—>(A,V...VA,)
OAS(CA, V...V OA

RK . ) (n=0)
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RNG. :%%
A—>B
RMO. A5 OB
A—-(BvC)
RRO. OA—>(OBvV OC)
A-B
REG. Ao OB
Dff). [OA~1OTA
NoO. oL

MO. (OAvV OB)»O(AvVB)
Co. O(AVBY—>(OAV OB)
RO.  O(AVB)=(OAV OB)
Ko. (T10AAOB)=>O(TAAB)

Proof. Let Z be a normal system.

For RK ¢. Suppose that F; A—>(A; v ... V A,). Then by PL, Fe(TA,
A...AT1A,)—>T1A. By applying RK, F([(JT1A3A ... A [17A,)—~ A,
Hence by PL again, Fy 1071A~> (10714 V... vV I TA,). There-
foreby Df ) and PL, by OA > (OA V...V OAL).

For RN ¢, RM ¢, and RR¢. These are the rule RK ¢ for z = 0,1,
and 2, respectively. (For RN ¢, recall that when # = 0 the conditionals
in RK ¢ are identified with the negations of their antecedents.)

For RE¢. The proof uses RM{ and is like that for RE in theorem
4.3. Exercise.

For Df[]. Compare the proof of this in section 1.2, and note that it
uses only PL, Df$, and RE.

For NO. By PL, ks 11.So by RN G, k1O L.

For M. By PL, b A—>(A v B)and kB> (A v B). Hence by RM O,
by OA— G(AVB) and kg OB—> O(AVB). By PL, Fg(OAV OB}
O(Av B).

For C¢. The proof uses RR{ and the tautology (A v B)—>(A v B).
Exercise.

For RO. This is the biconditional of M and C$.

For K$:

1. B>(AVv(TAAB)) PL
2. OB—>(OAvV O(TAAB)) 1, RR$

3.(1OAA OB)=> O(TAAB) 2, PL
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The reader should appreciate the parallels between the proofs above
and those for the corresponding rules and theorems in theorem 4.2, We
have developed this analogy intentionally, for the sake of simplicity and
also to enhance the reader’s ability to create such proofs on his own.
There are of course other ways of doing this. As an example, let us
prove again that R {) is a theorem of all normal modal logics, as follows.

1. O(TAATB)(O7AA O71B) R

2. (TAATB)~ (A v B) PL

3. O0CAATB)~O(AVvB) 2, RE

4. O WAVB)~ (JTAA[J71B) 1,3, PL

5. 10WAvBYye(1O7AvVI[OB) 4, PL

6. O(AvB)~(OAv OB) 5,Df $ and PL

Other alternative proofs of rules and theorems are suggested in the

exercises.
'The characterization of normal systems of modal logic in terms of

Df¢$ and RK and in theorem 4.3 may be said to be necessity-based,
inasmuch as [] is treated as though it were primitive and ¢ is introduced
only definitionally, through Df{. In the next theorem we turn this
around by using rules and theorems from theorem 4.4 to give five
characterizations of normal systems that are possibility-based and intro-
duce necessity definitionally via DI[].

THEOREM4.5. Let X be a system of modal logic containing DI(]. Then:

(1) 2 s normal iff it is closed under RK $.

(2) 2 is normal iff it contains KO and is closed under RN §.

(3) Z is normal off 1t contains N O and is closed under RR §.

(4) X 25 normal iff it contains N and C and is closed under
RMO.

(5) X #s normal iff it contains N, CO, and MO and is closed
under RE$.

Proof. Let T be a system containing D3, The left-to-right cases are
covered by theorem 4.4, so we need show only the converses.

For (1). Suppose that X is closed under RK . We wish to prove first
that X is closed under RK. The argument is analogous to that given for
RK ¢, using RK, in theorem 4.4. Thus:
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1 (AjA . AA)—~A hypothesis

2. MA->(TA V... VTIA,) 1, PL

3. OTIA>(O1A V...V OTIA,) 2, RKO

4, (TOTALA . ATTIOTIA,) > TTOTIA 3, PL

5. (0A A ...AOA)—> A 4, Df]and PL

Next we must show that & contains Df &. The argument for this is like
that suggested for Df[] in theorem 4.4, if as a lemma it is shown first
that & is closed under RE Q. This is left to the reader as an exercise. If
thus £ contains Df¢ and is closed under RK, then by definition 4.1 it
is normal.

The proofs for parts (2)~(5) parallel those for (1)~(4) in theorem 4.3.

For (2). Suppose that X contains K and is closed under RN $. In
view of (1), just proved, it is enough to show that T is closed under RK O,

i.e. that forn > 0,

if FeA—>(A, V... VA,), then Fy OA—>(OA V...V OA,).

The proof is by induction on n. Where n = 0, we need to show that if
k. T1A, then by TOA. This is just RN O. So suppose as an inductive
hypothesis that the rule holds for k < #. Then we reason as follows.

1.A->(A,v...VA)) hypothesis

2. (1A AA)>(AyV ... VA,)) 1, PL

3. O(TALAA)=(QA V...V OA,) 2, inductive
hypothesis

4. (TOALA OA)—> O(TA1AA) Ko

5. (10A A QA)=>(OA V.V OA,) 3,4, PL

6. OA—>(OA V...V OA,) 5, PL

For (3). Suppose  contains N & and is closed under RR . Given (2),
we need only show that % contains K & and is closed under RN . The
proof of K ¢ appears in the proof of theorem 44, For RNG:

1. 1A hypothesis
2.A>(1LVv 1) 1, PL

3. OA—>(OLV OL) 2, RRO
4. 1041 NO

5. 10A 3,4, PL
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For (4). Suppose £ contains N and C{ and is closed under RM ¢.
Given (3), it is sufficient to prove that Z is closed under RR . Exercise
(compare the proof of theorem 4.3 (3)).

For (5). Suppose that £ contains N, CO, and MO and is closed
under RE$. In view of (4), it will do just to show that Z is closed under

RM . Thus:

1.A->B hypothesis
2.(AvB)~B 1, PL

3. O(AVB)«~ OB 2,REQ
4. (OAv OB)= O(AvB) MO

5. 0A—-> OB 3,4, PL

Many principles of normal systems can be generalized modally. For
example, for every k& > 0 every normal modal logic is closed under the
rule of inference
RKF (AjA...AA)—A
" ([JFALA ... AOFA) > [OFA

This should be evident, for the conclusion of the rule will follow from
the hypothesis by %k applications of the rule RK. More formally, it may
be proved quite simply by induction on k. When % = 0 the hypothesis
and the conclusion of the rule are the same, so of course the inference is
good in this case. And from an inductive hypothesis that the rule holds
whenever it has fewer than k [ s, it follows by RK that it holds also when
the number is k. That is to say, we may argue the inductive part of the
proof as follows.

(n=0).

1. (AjA...AA)—>A hypothesis

2. ([1F 1A A . A OFTA)) »> [ 1A 1, inductive
hypothesis

3.(O00F A A ... AOJ*A,) > OOA 2,RK

4. (1A A .. A [TFA) > [DFA 3, definition 2.3

Therefore, the rule RK* holds in any normal system, for every & > 0.
The schema Df  likewise generalizes along the modal dimension. For

every k > 0 the schema
DEfO . OFA - 1JF A

is a theorem of any normal modal logic. Here, too, a simple inductive
argument suffices. For the basis, note that Df ¥ is a tautology when
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% — 0. For the inductive part, assume that the schema is a theorem
whenever the number of [Js and s is less than k. Then we argue as

follows.
1. OF A 11A inductive hypothesis

2. O OFA o O 1TA 1, REG

3. (1A 1O 11A DEf]

4, O OF1A- 1O 11A 2,3, PL

5. OFA 1A 4, definition 2.3

It should be apparent, given RK* and Df {F, that similar generaliza-

tions of all the principles in theorems 4.2 and 4.4 are part of any normal
system of modal logic. More precisely, the results of putting (1% and OF
for [] and ¢ throughout these principles yield theorems and rules of
inference that belong to every normal system, for every k = 0. Because
we will need some of these principles later on (especially in chapter 5),
we record this formally.

T HEOREM 4.6. Every normal system of modal logic has the principles RK¥,
Df Ok, RNk, RM¥, RR¥, RE¥, Nk, M*, Ck, R¥, K¥, RK Ok,
RN Ok, RM O, RRO¥, REQ, DI[JF, NOF, MOk, COF%,
R Ok, and K O, for every k = 0.

Given the proofs above for RK¥ and Df Ok, the reader can easily
construct proofs for the remaining principles by attending to the proofs
of theorems 4.2 and 4.4. Separate inductive proofs are also possible in

each case.

EXERCISES

Where appropriate, freely make use of theorems and rules of inference
established in section 4.1 and, farther along, the results of previous

exercises.

4.1. Complete the proof of theorem 4.3 (parts (1) and (4)). (For (4), note
that A — B is PL-equivalent to A« (AA B).)

4.2. Complete the proof of theorem 4.4 by showing that every normal
system has the rule RE and the theorem CO.

4.3. Complete the proof of theorem 4.5 (parts (1) and (4)).

4.4, Prove some of the parts of theorem 4.6.
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4.5. Let X be a system of modal logic containing Df>. Prove:

(a) X is normal iff it is closed under RR and RN.
(b) X 1s normal iff it contains C and is closed under RM and RN.
(¢) X is normal iff it contains N and K and is closed under RM.

(d) X is normal iff it contains C and M and is closed under RE
and RN.

(e) X is normal iff it contains N and R and is closed under RE.
(f) X is normal iff it contains R and is closed under RE and RN.
(g) Z is normal iff it contains N and K and is closed under RE.

4.6. Let Z be a system of modal logic containing Df[7]. Prove:

(@) X is normal iff it is closed under RR ¢ and RN ¢.

(b) X is normal iff it contains C¢ and is closed under RM {
and RN O.

(¢) X is normal iff it contains N and K¢ and is closed under
RMO.

(d) Z is normal iff it contains C and M ¢ and is closed under
RE$ and RN .

(¢) Z is normal iff it contains N and R and is closed under
RE .

(f) Z 1s normal iff it contains R ¢ and is closed under RE ¢ and
RNO.

(g) T 1s normal iff it contains N ¢ and K¢ and is closed under
RE$.

4.7. Prove that the following schemas are theorems of any normal system.

(a) JA—-[(B—4A)

(6) [(17A—[J(A—B)

(¢) OTe10L

(d) OJ(A—-B)=(OA— ¢B)
(¢) O(A < B)~>(OA~[IB)
(f) OA<B)>(OA- OB)
(g) (OAv OB)—>[I(Av B)
(7)) O(AAB)—>(OAA OB)
(@) (0AA OB)> O(AAB)
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(/) O(A v B)->(OAV B)
(k) O(A=B)v[J(B—~A)

() O(A->B)e(0A~>OB)
(m) OT (A~ OA)

(n) (0A~>[B)~>(A~>B)
(o) (OA— [B)—(JA—~0OB)
() (OA—~0OB)>(OA—>OB)

4.8. Prove that the following schemas are theorems of any normal
system (for any n > 2).

(@) CALA .. AA) > (OALA . ATIA,)

() O(AV...VA)—(OA V...V OA,)

(©) (OALV...vOA)~> (A V...V A,)

(d) O(ALA . AA)—(OAA LA OA,)

(e) (DALA ... A[JA 1A OAL)— O(ALA ... AAY)

(f) DALY --. VA > (OA V...V QA V [JA,)
4.9. Prove that the following sentences are theorems of any normal
system whenever m < 7.

(@) O"T—->O™T (b)) O"L—-0O"L
4.10. Let = be any system of modal logic containing Df & and satisfying
the conditions that, for every n > 0,

(@) (O"AeZif bpL A,

(b)) OM(A->B)~(OA-[B))€Z,

(¢) X is closed under the rule MP.

Prove that T is normal. (This boils down to a proof, by induction on #,
that = is closed under the rule RN.)

4.11. Prove that every normal system has the following rule of inference,
for any k, m, n > 0.

(AjA . AALA OFBIA ... A OFBR)—> L
(OAA ... A DAL~ O (ByA .. AB)
4.12. Use the erasure transformation ¢ from exercise 1.27 to prove the

consistency of the system K. (Alternatively, consider the mappings 7 in
exercises 1.11 and 3.16.)
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4.13. Consider the following rules of inference.

A A
@% @

A->[1B A—- OB
6 S5 0 -

A-[]B A OB
© o O 5oy

These rules hold for some normal systems, but not for all. To prove that
they hold for the system K we first define the mapping o, as follows,

(1) o(P,)=P,, forn=0,1,2,....
(2) o(T)=TT.
(3) o(L) = 1.
(4) o(TA) = 10(A).
(5) o(A A B) = a(A) A a(B).
(6) a(A v B) = a(A) v o(B).
(7) o(A—>B) = c(A)— o(B).
(8) o(A - B) = o(A) - o(B).
(9) o(CIA) = A.
(10) o(QA) = A.
So to speak, o searches through a sentence — or schema — for its first, or
outermost, occurrences of [ ] and ¢, and ‘erases’ them. Thus o([(JA~>
¢A)is A— A. Note that o is not the same as ¢ in exercises 1.27 and 4.12:
o does not delete all occurrences of [] and {. For example, o((JA—
[J[JA) is A— A, not A=A,
Now consider K as axiomatized by Df, RK, and RPL. Prove by

induction on the length (number of lines) of a proof, relative to this
axiomatization, the following lemma.

If Fx A, then kg o(A).

That is, prove that if A appears on the first line of a proof, then o(A)
is also a K-theorem (this is the basis of the induction), and that, assuming
that the result holds for all lines k < #, it holds as well for line » (this is
the inductive step). (‘T'ake it for granted that the result holds with respect
to RPL, i.e. that if A is a tautological consequence of A}, ..., A,, then
o(A) is a tautological consequence of o(A,), ..., 6(4A,).)

It follows from this lemma that K has rules (a)}—(f). For example, for
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(¢) we argue as follows. If Fx [JA, then by the lemma tg o(CJA), and
so — by the definition of & — kg A.
Give the arguments for cases (b)-(f).

4.2. Replacement and duality

In this section we pause to state and prove some simple theorems about
replacement and duality in normal modal logics. These principles
function as theorems and rules of inference in every normal system, and
where possible we present them as such. Their usefulness is illustrated
by means of several examples.

THEOREM 4.7. Every normal system of modal logic has the rule of replace-
ment.

REP. B~B

Ao A[B/B]

(Recall from section 2.1 that A[B/B'] is any sentence that results from A
by replacing zero or more occurrences of B, in A, by B".)

Proof. Let  be a normal system, and suppose (throughout the proof)
that - B« B’. Then what we wish to prove is that Fy A~ A[B/B].

We consider first the possibility that A and B are the same sentence.
Then A[B/B'] is either A (when there is no replacement) or B’ (when A,
i.e. B, is replaced by B’). In either case, kg A <+ A[B/B']. For in the first
case thisis just k5 A & A, which is trivial;and in the second itis ky B— B,
which is the assumption.

Thus we may assume henceforth that A and B are distinct.

The proof proceeds now by induction on the complexity of A. We
give it for the cases in which A is (a) atomic, P,, (b) the falsum, 1, (c)
a conditional, C— D, and (d) a necessitation, []C; the rest are left for
the reader.

For (a). Given that P, and B are distinct, P,[B/B’] = P,.. So, F;P,
P, [B[B"), trivially. So the theorem holds when A is atomic.

For (b). The argument is the same as for (a).

For the inductive cases (¢) and (d) we make the hypothesis that the
result holds for all sentences shorter than A,

For (c). By the inductive hypothesis, b C+~ C[B/B’] and FzD«
D[B/B’]. It follows (by PL; the proof is left to the reader) that F5(C— D}
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< (C[B/B']—>D[B/B’]). But note that (C--D)[B/B'] = C[B/B']—~
D[B/B']. Therefore, F3(C— D)« (C—D)[B/B’]. So the theorem holds
when A is a conditional.

For (d). By the inductive hypothesis, FyC«> C[B/B’]. By the
rule RE it follows that Fg[]C« [J(C[B/B']). However, (OC)
[B/B'] = CO(C[B/B']). Therefore, . [JC« ([JC) [B/B']. So the theorem
holds when A is a necessitation.

This ends the proof of theorem 4.7.

"The use of the rule REP is illustrated in the following proof that the
schema

O(A-B)~(OA—> OB)

is a theorem in any normal system of modal logic.
1. O(A—>B)— O(TAVB) PL and REP
2. ~(OT7AvV OB) 1, RO and REP
3. =70 1A—-> OB) 2, PL and REP
4, ~(JA— OB) 3, Df[] and REP

"This highly abbreviated proof needs some explanation. The justification
of line 1 indicates a tacit use of REP in which, since (A—B)« (TA v B)
is a tautology, TJTAV B replaces A—B in the tautology ((A—B)e
O(A->B). In line 2, O TAvV OB replaces O(T1A vV B) in line 1, in
virtue of the theorem R¢{. Then in line 3, 1 T1A—> OB replaces the
tautologically equivalent ¢ JAv OB in line 2. Finally, in line 4 the
theorem Df[] is used in replacing 71¢> 1A by (JA in line 3.

Use of the rule REP is further illustrated in the proofs of theorems
4.8 and 4.10 below.

Let us turn now to the subject of duality (recall definition 2.4).

THEOREM 4.8. Every normal system of modal logic has the following
theorems and rules of inference, all referred to as DUAL.
(1) A 1A*
A 1A
@ =a% &=
A—-B
C) gv5as

A-B
Ry
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Proof. We assume throughout that X is a normal modal logic.

For (1). The proof here is by induction on the complexity of A. Let
us treat the cases in which A is (@) atomic, P,, (b) the falsum, 1, (c) a
conjunction, B A C, and (d) a necessitation, []B.

For (a):

1. P,«»1\P, PL
2. o P* 1, definition 2.4 (1)

So the theorem holds when A is atomic.
For (b):
1. 1T PL
2. 1% 1, definition 2.4(3)
So the theorem holds when A is the falsum.

For the inductive cases (¢) and (d), we make the hypothesis that the
theorem holds for sentences shorter than A. Thus, FgB«>1B¥ and

b C— 1C*,
For (¢c):
1. (BAC)—(T1B*A 11C¥)  inductive hypothesis and REP
2. ~(B*vC*) 1, PLand REP
3. « (BAC)* 2, definition 2.4 (5)

So the theorem holds when A is a conjunction.
For (d):
1. OB [J(71B*) inductive hypothesis and REP
2. ~1¢B*% 1, DfO and REP
3. —(OB)* 2, definition 2.4(9)

So the theorem holds when A is a necessitation.

This concludes the proof of (1). Parts (2)-(4) are corollaries.

For (2). It follows at once from (1) that if Fy A, then F; 1A*. So X
is closed under the first rule DUAL in (2). For the second, it is enough
to note that (1) means that 71A «» A* is always a theorem of Z.

For (3). If kg A~ B, then +; 1A*— 11B¥, by (1) and REP. Hence by
PL, b B*—> A*, So % is closed under the rule DUALin (3).

For (4). We leave this as an exercise.

This concludes the proof of theorem 4.8.

As an example of the use of DUAL, let us sce that OT+ 1[JLisa
theorem of every normal system. For by DUAL(1), OT « AT s,
and by definition 2.4, (O T)* = [1.L.
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Similarly, using DUAL(2) one can show that every normal system X
has 7(CJAA O7A) as a theorem if it has (Av (1A, (Note that
neither schema is a theorem of every normal system, however.) For
suppose that by GA v OT1A. Then also, Fy; O 1A v O 171A. Hence by
DUAL(2), Fg($1A v OT171A)*, But by definition 2.4 this means
that Fy (O(TA*)A [O(T1A*). So by DUAL(1) and REP, Hy
T(OAA [JA).

Finally, let us show that since ([(JAv [JB)—[J(A v B) is always a
theorem of a normal system, sois {(AAB)—>(OAA OB). The proof
uses DUAL(3):

1. (O7Av [O7B)—=J(TA v 11B) theorem

2. (A v IB)*— (1A v O1B)* 1, DUAL(3)

3. O(TIA* A IB*) > (O(TA*)A O(T1B¥)) 2, definition 2.4

4. O(AAB)—>(OAA OB) 3, DUAL(1)
and REP

In our last theorems of this section we state some simple principles
concerning duals of modalities. Recall that a modality ¢ is a finite (possibly
null) sequence of the operators 1, [], and ¢, and that the dual of a
modality ¢ - written ¢* —is the result of interchanging [J and ¢
throughout ¢ (see section 2.1).

THEOREM 4.9. Let Z be a normal system of modal logic. Then:
(1) kg pA > T1gp* A,
(2) Fz A Fx 1% TA.
(3) Fx PA YA, for every A, iff Fx y*A —> ¢*A, for every A.
(4) Fs dA YA, for every A, iff b5 ¢*A > Y*A, for every A.

Proof. Let Z be a normal system. The result is a corollary to theorem
4.8.
For (1):
1. Ao (gAY DUAL(D)
2. o T1¢*(A*) 1, definition of *
3. e7¢*1A 2, DUAL(1) and REP
For (2). This follows easily from (1). Exercise.
For (3):
Fs @A — YA, for every A, iff by 1¢* 1A 1Y* 1A, for
every A
~ (1) and REP;
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iff Fz ¥ 1A~ @* A, for every A
- PL;
iff Fgy*A— ¢*A, forevery A
— PL and REP.

For (4). 'This follows from (3). Exercise,

As an application of theorem 4.9 we see that a normal modal logic
contains the schema 4, [JA — [J[]A, as a theorem just in case it contains
the dual schema 4, ¢ OA— O A. Similarly, the schema B, A— [ OA,
is a theorem of a normal system if and only if its dual B$, O [JA—A, is.
(Of course not every normal system contains these schemas as theorems.)

Our final theorem is a rather obvious consequence of the preceding
one. We set it out primarily in order to simplify the discussion in the
next few sections. Recall that an affirmative modality contains an even
number of occurrences of .

THEOREM 4.10. Let X be a normal system of modal logic, and let ¢ and
be affirmative modalities. Then X has the schema
S. pA->yA
as a theorem iff 2 has any one of the following theorem and rules
of inference.
SO. YA ¢P*A

A—B
A —yB
A->B
RS O. A= 7B

RS.

Proof. Let X be a normal modal logic, and let ¢ and ¥ be affirmative
modalities. For the sake of simplicity we assume that ¢ and ¥ are in fact
composed solely of the operators [] and ¢, so that 71 does not appear.

For S . This follows from theorem 4.9 (3).

For RS. Suppose that F5; A+ B. Then by repeated applications of the
rules RM and RM O, F¥yA—-¢¥/B. So if by, pA— /A, then by PL,
s ¢A—3B. Thus X has RS if it has S. Conversely, suppose X is closed
under RS. Then Fg; ¢A— A, by RS on the tautology A->A. So X has
S if it has RS.

For RS {. Exercise.

Theorem 4.10 is illustrated by the fact that a normal system of modal
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logic has the schema 5, $ A-—>[JQA, as a theorem if and only if it has
its dual 5O, O JA—[JA, or either of these rules of inference:

A—~B
RS. CA—-[OB

A—B
BO A Ts

The theorems in this section afford the reader a handy means of
recognizing theorems of normal systems. It is not so important, at this
point, that the details of the several proofs be mastered and absorbed. It
is worth remarking, however, that the proofs of theorems 4.7, 4.8, and
4.9 (but not 4.10) all depend ultimately only on PL and the presence of
RE and Df  (or RE ¢ and Df[]) in normal systems of modal logic. This
becomes important in chapter 8, where we return to these results.

EXERCISES
4.14. Complete the proof of theorem 4.7 (for the cases in which A = T,
1C, CAD,CvD, CoD, &C).

4.15. Complete the proof of theorem 4.8 (part (1) —for the cases in
which A =T, 71B, BVvC, B—»C, B&C, OB - and part (4)).

4.16. Complete the proof of theorem 4.9 (parts (2) and (4)).
4.17. Give the proof of theorem 4.10 for RS ¢.

4.18. Prove that if X is a system of modal logic closed under the rule
REP, then X contains Df $ if and only if £ contains Df[].

4.19. Prove that a system of modal logic is normal if it contains Df ¢,
N, K, and is closed under REP.

4.20. Prove that A <> A** js a theorem of any normal modal logic.

4.21. Use REP and DUAL (and perhaps the result in the preceding
exercise) to prove that NO, MO, CO, RO, and K¢ are theorems of
every normal system given that N, M, C, R, and K are. Then prove the
reverse of this, i.e. that N etc. are theorems of every normal system given
that N ¢ etc. are.
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4.3- The schemas D, T, B, 4, and 5

"The smallest normal system of modal logic, K, contains as theorems just
what comes from Df{Q, RK, and propositional logic, nothing more.
'Thus we have canvassed the principal rules and theorems of the system
K already in the preceding sections.

In this and the next section we are interested in the normal extensions
of K obtained by adding as theorems the following schemas.

D. DA->CA
T. JA-A

B. A-[OCA
4, [JA-[JA
5. CA-[]0A

Including K itself there are just fifteen distinct normal systems produced
by taking these schemas as theorems in all possible combinations. These
systems appear on the diagram in figure 4.1.

The inclusions among the systems on the diagram are marked by lines:
extensions of a system are reached by going in a rightward direction
along the lines (for example, KT is shown to be an extension of KD).
Most of the inclusions are obvious; some of those that are not we shall
establish, and others are given as exercises. Likewise it is possible to
show that each of the seventeen systems apparently not registered on the
diagram is identical with one that is. Indeed, many of these identities
are obvious from the diagram ~ for example, that KDT is the same as
KT. The distinctness of the systems listed — and so the properness of
the inclusions — is proved in chapter 5.

Historically the most important of these systems are KD, KT, KTB,
KT4, and KT5. The first two are widely regarded as basic deontic and
alethic modal logics, respectively, and are sometimes referred to simply as
D and T. The other three systems — KTB, K74, and KT — are the
well-known Brouwersche system (sometimes called B) and the Lewis
systems S4 and S5. Nevertheless, we approach these logics more
analytically, by focusing on the systems KD, KT, KB, K4, Kb, and
their normal extensions. We begin with the following theorem about
some alternative characterizations of these systems.

THEOREM4.11. Let X be anormal system of modal logic. Then:
(1) 2 s a KD-system iff it has RD.
(2) Z is a KT-system iff it has any of T O, RT, and RT .
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(3) Z is a KB-system iff it has any of BO, RB, and RBO.
(4) X is a K4-system tff it has any of 4O, R4, and R4 $.
(5) T is a K5-system iff it has any of 5O, RS, and R5 .

Proof. The theorem is an immediate consequence of theorem 4.10 and
the fact that the modalities in the schemas D, T, B, 4, and 5 are all
affirmative.
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In what follows we freely make use of these theorems and rules of
inference wherever appropriate. The reader should consult theorem

4.10 to ascertain their identities.
Now let us examine in turn each of the systems KD, KT, KB, K4, and

K5, and their normal extensions.

Normal KD-systems. These come in many guises, as theorems 4.12
and 4.13 reveal.

THEOREM 4.12. A normal system of modal logic is a KD-system iff it has
any of the following theorems and rules of inference.

A

RP. 6‘5

P. OT

0. CAv oA
1A

PO, 1L

OO0 ~(OAALITA)

Proof. Suppose that X is a normal system.

For RP:
LA hypothesis
2. 1A 1, RN
3. 0JA-0A D
4. OA 2,3, PL

Thus X is closed under RP if it is a KD-system. For the reverse, suppose
that 2 has RP. Then F; O(A— A), by RP on the tautology A~ A. To
see from this that F; [[JA— QA, it is enough to recall that the schema

O(A->B)o ([JA— OB)

is a theorem of every normal system (see following the proof of theorem
4.7). So Z is a KD-system if it has the rule RP.
For P. Every normal modal logic has the theorem

OT«([JA— QA)

(exercise 4.7 (m)). So P is a theorem of 2 if and only if D is, which means
that X is a KD-system just in case it contains P.
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For O:
FeOA— QAff Fx 1O 1A OA
— Df[] and REP;
iff s QAV OTIA
- PL.

So T is a KD-system if and only if it contains O. More generally, this
follows from the fact that every normal system has the theorem

(COA— OB)« (OB vV OA).

For RP[], P[J, and O[1). These principles are dual to RP, P, and O,
and we leave the proofs as exercises. (See the examples after the proof of
theorem 4.8.)

This completes our proof of theorem 4.12.

The theorem D admits of generalization along the modal dimension.
To wit, for every & > 0 the schema

D [J¥A—> OkA
is a theorem of a normal KD-system. For D* is D itself when 2 = 1. And

if we suppose (as an inductive hypothesis) that the schema is a theorem

when it has fewer than & [Js and (s, then we can argue that DF is, too.
Thus:

1. (1A~ OF1A inductive hypothesis
2. O*A— O O%1A 1, RD
3. (A — OFA 2, definition 2.3

Therefore, D¥ is a theorem of every normal KD-system, for every &k > 0.

From this result one can readily perceive analogous generalizations of
the theorems and rules of normal KD-systems in theorems 4.11 (1) and
4.12. That is to say, the results of putting []* and {F for (] and ¢
throughout RD, RP, P, O, RP[], P[], and O[] are all principles of any
normal KD-system, for every k > 0.

Moreover, the reverse is true. If a normal system has D¥ or any one
of these generalizations — RD*, RP¥, P¥, Ok, RP[]*, P[J¥, and O[J* - for
any k > 0, then it is a KD-system. We may illustrate this by showing

that if Pk kT
is a theorem of a normal modal logic, for £ > 0, thensois P, {T, and
so the modal logic is a KD-system. The proof:

1. O T > PL

2. 0017017 1, RMO
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3. OFT = OT 2, definition 2.3
4. OFT P*
50T 3,4, PL

Therefore, a normal modal logic is a KD-system whenever it contains

P%, for any k > 0.

These proofs should be enough to convince the reader of the correct-
ness of these alternative ways of characterizing normal KD-systems of
modal logic. We state this formally as a theorem and leave the remaining

proofs as exercises.

THEOREM 4.13. A normal system of modal logic is a KD-system iff it has
any of the theorems and rules of inference D¥, RD¥, RP¥, P¥,
Ok, RP[%, P[¥, and O[J¥, for any k > 0.

Normal KT-systems. The schema D is a theorem of any modal logic
containing T and T ((JA— QA follows by PL from [(JA—>A and
A— QA). Therefore:

THEOREM 4.14. Every normal KT-system is a KD-system.

Thus all the principles mentioned in theorems 4.11 (1), 4.12, and 4.13
are present in any normal K7-system of modal logic. (This is not true
the other way around, as we shall prove.)

The theorem T can be generalized modally; i.e. the schema

Tk [JFA-A

is a theorem of every normal K T-system, for every & > 0. The inductive
proof of this is left to the reader as an exercise. Thus, in virtue of theorem

4.10:

THEOREM 4.15. Every normal KT-system has the theorems and rules of
inference Tk, T Ok, RTE, and R'T ¥, for every k > 0.

The name T for the logic KT derives from the designation logique ¢
of Feys. The system is also called M, following von Wright.

Normal KB-systems. We begin by noting some recondite ways of
characterizing systems of this kind.
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THEOREM 4.16. A normal system of modal logic is a KB-system iff it has
any of the following theorems and rules of inference.

X. [(OA->B)—>(A—[]B)
X$. O(A-[0OB)—»(OA—>B)
OA—-B
RX. A->[]B
A—->[]B
RX Q- OA—B
Proof
For X:
1. J(OA->B)=(OCA~OB) K
2. A-[JOCA B
3. O(QA—->B)»>(A~>[B) 1, 2, PL

So a normal KB-system contains X. For the reverse, note that [J(OA—~
OA)—>(A->[1OA) is a special case of X and that the antecedent is a
theorem by RN on the tautology O A— OA. By PL, then, Bis a theorem.
So a normal logic is a KB-system if X is a theorem.

For X {. Exercise.

For RX:

1. OA—~>B hypothesis

2.J0CA—-~[B 1,RM

J.LA-OJOCA B

4. A—>[]B 2,3, PL
So a normal KB-system has the rule RX. (Alternatively, if QA—>Bisa
theorem so is [(J({A— B) (by RN) — whence A— B is a theorem by
MP on X.) Conversely, a normal system closed under RX has the
theorem A—[JQA, by RX on the tautology ¢ A— O A. So a normal

modal logic is a KB-system if it has the rule RX,
For RX . Exercise.

The theorem B can be generalized modally in two ways. In the first,
the operators [J and { are each iterated % times, for 2 > 0:

B, A—[JFOFA

To prove that every normal KB-system has B for every k > 0, notice
first that B¥ = B, for £ = 1, and then suppose as an inductive hypothesis
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that the schema is a theorem whenever it has fewer than k [Js and {s.

Then:
1. QA>T 101G A inductive hypothesis

2. A 010A 1, RX
3. A->[ROFA 2, definition 2.3 and exercise 2.6

In the second way of generalizing B, the modality (] ¢ itself is iterated
k times, for & > 0:

B(Y. A-(OC¥A

We leave it to the reader to prove, inductively, that every normal KB-
system contains B( )* for every & > 0.

By means of theorem 4.10 the principles in theorem 4.11(3) can
similarly be generalized, and so can the rules RX and RX { in theorem
4.26. We record all these generalizations formally.

THEOREM 4.17. Every normal KB-system has the theorems and rules of
inference B*, B ¥, RBY, RB O, RXk, RX Ok, B( ), BO( ),
RB( ¥, and RB ()%, for every k > 0.

According to the next theorem the schema 4 is a theorem of a normal
K B-system just in case the schema 5 is.

THEOREM 4.18. 4 normal modal logic is a KB4-system iff it is a KB5-
system.

Proof. 'To show that 5 is a KB4-theorem we may argue as follows.

1. 0O0A> QA 40
2. GA->[JOA 1,RX

And to show that 4 is a KB5-theorem we may argue as follows.

1. O0A>TJA 56
2.MNA-[MNA 1, RX

In particular, then, the systems KB4 and KBS are identical. (Our
choice of the designation KB4 in the diagram in figure 4.1 is thus some-
what arbitrary.)

The schema B is called the Broumersche axiom for the curious reason
that when it is stated equivalently as

A->T107T10A
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and the modality 71 is replaced by the intuitionistic negation sign, ~,
the result is

A—->~ ~ A
the intuitionistically valid version of the law of double negation.
Brouwer was a leading exponent of intuitionism. So far as is known,

however, Brouwer had no concern with the modal schema B; the name
Brouwersche was given by Becker. The Brouwersche system, it should be

noted, i1s KTB, not KB.

Normal K4-systems. The important modal generalization of the schema
4 is
4% JA-[T*A.

This is a theorem of every normal K4-system, for any k£ > 0. The proof
is left as an exercise. Hence by theorem 4.10:

THEOREM 4.19. Every normal K4-system has the theorems and rules of
inference 4%, 4 Ok, R4%, and R4 OF, for every k > 0.

An interesting feature of normal K4-systems is that in them it is
inconsistent to hold that every proposition is at least possibly possible,
i.e. that the schema

O OA
is a theorem. For in conjunction with 4 this would lead to
CA,
and so in particular to
oL,
which conflicts with N, 10 1.
The schema 4 is often called the characteristic theorem of the system
S4. But note that S4is K74, which is stronger than K4.
Normal K5-systems. These all contain, for every k2 > 0, the schema
5. OA->[FOA.
(Again we leave the proof to the reader.) Hence:

THEOREM 4.20. Every normal Kb-system has the theorems and rules of
inference 5%, 5 OF, R5%, and R5 OF, for every k > 0.
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As the diagram in figure 4.1 shows, the strongest normal system that
can be formed using the schemas D, T, B, 4, and 5 is K73 — better
known as the Lewis system S5 — which we discussed in chapter 1, (Thus
the schema 5 or 5 is often referred to as the characteristic theorem of
54.) There are many ways of axiomatizing S5. The next theorem gives the
principal axiomatizations of S5 using D, T, B, 4, and 5; of course duality
(for example, putting T' ¢ for T') provides many more possibilities.

THEOREM 4.21. A normalmodal logic is a KT5-system iff it has as theorems
(1) T, B, and 4, (2) D, B, and 4, or (3) D, B, and 5. In particular,
then, KT5 = KTB4 = KDB4 = KDB).

Proof. Part (1) was established in chapter 1. In light of this and
theorems 4.14 and 4.18 it is then sufficient to show that T is a theorem of
every normal KDB4-system. We leave the details of the reasoning as an
exercise.

This is a good place to affirm the correctness of figure 4.1 with respect
to the inclusions advertised there. For the most part this is a matter of
definition — for example, KTB is obviously an extension of KT. For the
rest, note that KD < KT, and so KDB < KTB and KD4 < KT4, by
theorem 4.15; that K45 = KB4 by theorem 4.18; and that by theorem
4.21 KT5 is an extension of KTB, KT4, KD45, and KB4. Several of the
seventeen systems apparently missing from figure 4.1 have already been
mentioned, for example, in the alternative axiomatizations of S in
theorem 4.21. We leave it as an exercise for the reader to identify all the
missing systems and locate them in figure 4.1.

We might also remark here that although the system KD results
from the addition to K of D* (or any other of the principles listed in
theorem 4.13) for any k& > 0, there is no analogous result with respect to
the modal generalizations of T, B, 4, and 5, for £ > 1. We shall be in a
position to prove this in chapter 5.

The point of our analytical approach in this section may by now be
apparent. It enables us to see better the individual contributions of the
schemas D, T, B, 4, and 5 to more familiar modal logics such as KTB,
KT4, and KT5. Two examples will make this clear. First, it is often
pointed out that the rules of inference RX and RX ¢ are present in the
Brouwersche system, KTB. But as we have seen, these rules are already
in the modal logic KB (and hence in any normal KB-system); the
theorem T has no bearing on the matter. Second, the result that the
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schema ¢ QA is inconsistent as an addition to the Lewis system S4
(K T4) is frequently mentioned. But our analytical exposition shows this
to be so with respect to K4 and normal K4-systems generally. Here
again the presence of the theorem T is of no consequence.

EXERCISES
4.22. Use theorem 4.10 to ascertain the identities of the schemas and

rules of inference mentioned in theorem 4.11.

4.23. Complete the proof of theorem 4.12 (for RP[], P[], and O[]).
4.24. Complete the proof of theorem 4.13.

4.25. Prove by induction that, for any & > 0, the schema T* is a theorem
of every normal K7-system (for theorem 4.15).

4.26. Complete the proof of theorem 4.16 (for X and RX ).

4.27. Prove by induction that, for any k& > 0, the schema B( )*is a theorem
of every normal KB-system (for theorem 4.17).

4.28. Prove by induction that, for any k > 0, the schema 4* is a theorem
of every normal K4-system (for theorem 4.19).

4.29. Prove by induction that, for any & > 0, the schema 5* is a theorem
of every normal K5-system (for theorem 4.20).

4.30. Complete the proof of theorem 4.21 by proving that the schema T
is a theorem of any normal KDB4-system.

4.31. Identify and locate on the diagram in figure 4.1 the seventeen
systems not already listed there.

4.32. Prove that a normal modal logic is a KD-system if and only if it has
theorems of the form QA.

4.33. Consider the following schemas.

U. O(JA—~A) UO. OA—- QA)
4.. OJOA—=TA 4Oe. CA—->OOA
5. OJOCA—>OQA 50.. OA-QOA

Prove:
(a) U is a theorem of a normal system if and only if U is.

(b) 4 (and hence 4 ) is a theorem of any normal KU-system.
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(c) U (and hence 4¢) and 5. (and hence 5 ) are theorems of any
normal K7-system.

(d) D is a theorem of any normal K5¢-system.

4.34. Prove that the schema G, ¢ [JA—[1¢A, is a theorem of any
normal KB-system.

4.35. Prove that any normal KB-system is closed under the following
rules of inference.
A OT—>A
OT—A OJA

4.36. Prove that a normal system of modal logic is a K4-system if and
only if it has any of the following theorems.

(@) OA—-B)-~(OA~[OB)

() (OA v OB)~C)(CJA v OIB)

(¢) O(CHA~>B)—~C)~> (A~ B)—>[IC)
4.37. Prove that a normal system of modal logic is a K5-system if and
only if it has either of the following theorems.

(9) (OAvB)~(0OA v OB)
() (OAA OB)— O(OAAB)
438, Prove:

(a) U (and hence 4¢) is a theorem of any normal K5-system (see
exercise 4.33).

(b) G is a theorem of any normal K5-system.

4.39. Prove that every normal K5-system contains the following theorems.
(a) O(OA~DOOA) (0) O(CA= O OA)
() O(OA < <OA) (@) O(CA~O0A)

4.40. Referring to the preceding exercise, prove that every normal
K5-system contains the following theorems.

() DOA-OOOA (6) OCA=OO0A
(b)) O0A-O0OA (f) OCA=OOCA
() OOA<~OOBCA (&) OCA-~OOCA
(@) OOA~OOOA (h) OCA~OOCA

4.41. Notice that the interiors of the four necessitations listed in exercise
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4.39 are all theorems of any normal K75-system. This suggests the
following result (which leads at once to a solution for exercise 4.39).
Where ¥ is any normal Kd-system:

= (JA, whenever A is a theorem of KT5.

Prove this by induction on (the set of theorems of) K7'5. For the basis,
show that the necessitations of the axioms Df {, T, and 5 are theorems
of X; for the inductive part, show that the set {A: Fz [JA} is closed under
the rules RPL and RK.

4.42. Prove that every normal K5-system contains the following theorems.

(a) OLJA—~ OA (&) DA-[OCA
() OOA-DOOA (@) OOCA>O0A
4.43. Prove:
(@) 5cand 5. (see exercise 4.33) are theorems of any normal
KD4-system.

(6) The schemas O[JA« GO A and O0CA-OCOCA

are theorems of any normal KD4-system.

4.44. Prove that every normal KDj-system contains the following
theorems.

(9) DA~ OOA (b)) ©OA~OCA

4.45, Prove that every nmormal K45-system contains the following
theorems.

4!, JA<OOA 4Ol CA- O OA
4.46. Consider the following schemas.
5. CA-[]CA 50, A« OOA

Prove that 4! and 4! (see the preceding exercise) are theorems of any
normal K&/- or normal K5 { /-system.

4.47. Prove that 41, 4!, 5!, and 5 ! are theorems of any normal KD45-
system (see exercises 4.43(a), 4.45, and 4.46).

4.48. Let us say that a sentence A is fully modalized just in case every
atomic sentence in A is within the scope of an occurrence of [J or ¢.
Show that where X is any normal KD45-system and A is fully modalized:

FeA—[JA and kAo QA

The proof is by induction on the complexity of A.
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4.49, Consider the following rules of inference.
A—->B

A-[B’
A->B
OA—>B’

RFM. where A is fully modalized

RFM . where A is fully modalized

Using the results in the preceding exercise, prove:

(a) A normal system is closed under RFM if and only if it 1s
closed under REM {.
(b) Everynormal KD45-systemis closed under RFMand RFM .

(¢) The schemas 4 and 5 are theorems of any normal KD-system
closed under RFM or RFM {.

4.50. Prove that the schema [J(OA — B)«» [J(A— [1B) is a theorem of
any normal K'B4-system.

4.51. Prove that if any of the schemas B, Q0A— Q[JOA, and
O[JA-[JA is a theorem of a normal K7-system, then so are the
others.

4.52. Consider the following schemas.
Tc. A— DA T<>c. <>A—>A.
D.. OA->[A

F. [JAVB)>(OAvOB) FO. (OAAOB)—>
O(AAB)

Prove:
(@) Tecis a theorem of a normal system if and only if T $ 1s.

(b) If any one of D¢, [JAV [71A, (QAA OT1A), F, and FO
is a theorem of a normal system, then so are all the others.

(¢) D¢ (and hence the rest in (b)) is a theorem of any normal
KT,-system.
(d) B, 4,5, and G are theorems of any normal K7-system.
(¢) T is a theorem of any normal KDT -system.
(f) Tcisatheorem of any normal KD, T-system.
(g) 4 and 4. are theorems of any normal KD, 5 -system.
4.53. Consider the following schemas.

T, OJA-A TS OA-A
D!.. A« CA
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Prove:
(a) T!is a theorem of a normal system if and only if T {1 is.
(b) D!is a theorem of any normal K'7/-system.
(¢) If any of 4, 4, 5, and 5.is a theorem of a normal KD/-system,
then so are the others.
4.54. Consider the sentences P (71¢ T)and P[] ((J.1). Prove:

(@) P is a theorem of a normal system if and only if P is.
(6) T¢ (and hence D, etc., B, 4, 5, and G) is a theorem of any
normal KP-system.

4.55. Prove that a normal system of modal logic is a2 KG-system if and
only if it has either of the following theorems.

(@) OCAVOOTA

(4) (COAA OONA)
The system KT4G is known as S4.2. This system (properly) contains
S4 (KT4) and is (properly) contained in S5 (KT5); see exercise 4.38.
4.56. Consider the following schemas.

H.  [J(OAV OB)>(00AVOOB)
H+¢. (OOAA OOB)— O(OAAB)
H+  (C(OAvB)A (A v OB)—(JA v OB)
H+*O.  (OAA OB)>(O(GAAB)V O(AA OB))

H. (C(AvB)AO(COAvVB)AO(A v [OB))
~([JAv {OB)
HO.  (OAAOB)=>(O(AAB)V O(OAAB)
v O(AA OB))

L+, O(COA—-[OB) v O(OB—TA)
L+¢. C(OA—>OB)vI(OB-> OA)
L+ (OA-B)vO(OB—+A)
L+¢.  [O(A- OB)v (B> OA)
L. OA~(OB—>C)) v [I(Av(OC—B))
Lo. OA v (B OC) v OA~>(C— OB))
Taken as theorems these schemas are all equivalent additions to any

normal KT4-system; that is, any one of them is a theorem of a normal
KT4-system if and only if all the others are. Thus the systems KT4H*,
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.-y KT4L{ are identical. This system is known as .54.3: it is (properly)
contained in S (KT5), and it (properly) contains S4 (K7T4). Indeed,
S$4.3 is a (proper) extension of the system S4.2 (K74G) mentioned in
exercise 4.55. Except for properness, these facts are all consequences of
the following results (which are for the reader to prove) in conjunction
with exercises 4.33 and 4.38.
(a) Inany normal system H*+ is a theorem if and only if H++ ¢ is.
(6) In any normal system H+ is a theorem if and only if H* ¢ is.
(¢) In any normal system H is a theorem if and only if HO is.
(d) Inany normal system L++ is a theorem if and only if L++¢ is.
(e) Inany normal system L+ is a theorem if and only if L+¢) is.
(/) In any normal system L is a theorem if and only if L ¢ is.
(¢) Inany normal system H++is a theorem if and only if L++ s,
(h) In any normal system H* is a theorem if and only if L* is.
(¢) In any normal system H is a theorem if and only if L is.
(7) U is a theorem of any normal KH*-system.
(k) His a theorem of any normal KH*-system.
(/) H* is a theorem of any normal KUH-system.
(m) H* is a theorem of any normal K UH++-system.
(n) H** is a theorem of any normal K4H-system.
In proving (j)—(n) it may help to restate some of them using (a)-(). In

any case, the foregoing yield the identity of KT4H++, ..., KT4L - i.e.
54.3 ~ as the reader should confirm.

(0) H++is a theorem of any normal K5-system.

This is enough, given the preceding results, to show that S5 (KT5) is
an extension of S4.3. See also exercise 4.37 with respect to H+ (and hence
the rest).

(#) G is a theorem of any normal KH+-system.

This is enough, given the preceding results, to show that S4.3 is an
extension of S4.2. But also:

(g) G is atheorem of any normal KDH++-system.,
4.57. Consider the following schemas.
Av(QCA-[ICA) A->(OOA~»[A)
(CA=>A)V(CA~>[OOA) (A->DTA)V(OOA~[A)
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The two on the left we indifferently dub 5-, the two on the right, 5-.
Prove:

(a) Inany normal system 5~ is a theorem if and only if 5-¢ is.
(b) 5~ is a theorem of any normal K5-system.

() The schema [((O(A—CA)—=A)—»(OOA—~A) 18 a
theorem of any normal K5—-system.

Added as a theorem to S4 (KT4) the schema 5~ produces a system
called S4.4. By (b) S4.4 is contained in S5 (KT%) (in fact it is properly
contained). S4.4 does not, however, contain S4.3 or $4.2 (in exercises
4.55 and 4.56). Added as a theorem to S4 the schema mentioned in (¢)
produces a system that Hughes and Cresswell call $4.1, which is therefore
contained (in fact properly) in S4.4. But S4.1 is not extended by S4.2
or S4.3. N.B. this S4.1 is not the same as that described by McKinsey;

see the following exercise.

4.58. Consider the following schema.
Ge. OCA->OA

Prove:
(@) In any normal system the schema (O A— [JA)is a theorem
if and only if the schema Ge1s.
(b) D isatheorem of any normal KG-system.

(¢) Inany normal system the schema O([JA — OA)is a theorem
if and only if the schema Ge1s.

KT4G, is the system called S4.1 by McKinsey. It is clearly an extension
of S4 (KT4)-in fact a proper one (otherwise Q[ JA— GJOA and
[ OA « [J¢ 1A would be theorems of .54, which they are not). But this
S4.1 is not included in S5 (K79%) (if it were, D, would be a theorem of
S5, which it is not). S4.1 is equivalently axiomatized by adding to 54
any of the following schemas.

OO(A—[A) OO(CA—>A)
O(AVB)»(COAV OOB) (OCAAJOB)—> O(AAB)

This is for the reader to prove.

4.59. Consider the following schema and rule of inference.

MNA—-A
A

Gr. (OA—-A)—~[A RGr.
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Prove:
'(a) 4 is atheorem of any normal KGr-system.
(b) Every normal KGr-system is closed under RGr.

(c) Gr is a theorem of any normal K4-system that has the rule
RGr.

Is the system KG7 an extension of S4 (K T4)? Is it included in §5 (K T5)?

4.60. Use the erasure transformation ¢ from exercise 1.27 to prove the
consistency of the fourteen systems beyond K on the diagram in figure
4.1. Identify some consistent normal modal logics for which € cannot be
deployed to prove consistency. Prove the consistency of these examples.

4.61. Amplify the proof of the lemma in exercise 4.13 to show that the
systems KD, KD,, and KD/ have the rules (a)-(f) listed there.

4.62. Consider the rule (a) from exercise 4.13:

A
A

Of the fifteen systems in figure 4.1 only K, KD, KT, K4, KDB, KD{,
KTB, KT4, and KT5 have this rule. Exercise 4.13 and 4.61 cover the
first two cases, and it is obvious that any K 7-system has the rule (if (JA
is a theorem of a system containing [JA—> A, then A is a theorem of the
system). The cases of K4 and KD4 must await the developments in
chapter 5. Prove that every normal KDB-system has the rule.

4.4. Modalities

A modality, once again, is any sequence of the operators 71, [, and ¢,
including the empty sequence -. Within a system of modal logic two
modalities ¢ and r are equivalent if and only if for every A the sentence

PA YA

is a theorem; otherwise ¢ and ¥ are said to be distinct. For example,
in the system S4 we have the theorem [JA«~ [J[JA, so in S4 the
modalities (] and [J[] are equivalent.

Theorems like [JA < [J[JA are often called reduction laws, since in
virtue of them one modality is reducible to another.

In some systems of modal logic it happens that every modality is
equivalent to one or another in a finite class. For example, in the system
S5 every modality is equivalent to one of -, [, O, or their negations, 7,
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717, 1. Thus S5 is said to have at most six distinct modalities (three
affirmative, three negative). To see this it is sufficient to note that S
contains the following reduction laws.

(1) DA~ ODA
(2) CA=O0A
(3) DA OOA
(4) GA-TIOA

Because of these every modality in S5 reduces to one of the specified six.
An example may help to make this clear. Suppose we have the sentence

1000 100A.

First we put the modality 71[J[J{ 13 ¢ in a standard form by using
Df¢, Df[], and REP to bring the negation signs all to the outside —
successively,

100710004, 1O710000A, 110 e0O00A

— and then reducing the number of occurrences of 71 to zero (as in this
case) or one by PL:

¢od0A

According to reduction law (2) the modality ¢ ¢ can be replaced by ¢
alone, yielding

oOOoA

By (3), &[] becomes []:
O00A

By (1), ([} becomes []:
oA

And [J¢ reduces to $ by (4):
CA

Thus the modality 1] 11 is shown to be equivalentto {. In a
similar way one can show the modality 71J O 100 1[J to be equi-
valent to 1[]; details of the reduction are left to the reader.

Of course the presence of reduction laws can only put an upper bound
on the number of distinct modalities in a system. To show that S5 has at
least — and hence exactly —six distinct modalities it is necessary to
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establish that there are no further reduction laws in the system (for
example, that [JA < O A is not also a theorem). In general other means
are required to fix a lower bound (possibly infinite) for the number of
distinct modalities in a modal logic. We return to this point in chapter 5.

Systems of modal logic can have the same distinct modalities but differ
with respect to the pattern of implications among them. S5 and the
system KD45 provide an example of this; each has -, (], O, and their
negations, but the S5-theorems [JA— A and A— QA are absent from
KD45. Thediagramsin figures4.7 and 4.8 chart the differences (among the
affirmative modalities; for their negations, reverse the arrows). The
systems KD, K45, and KB4 provide another example; compare figures
4.4, 4.5, and 4.6. Moreover, systems may be different even though they
have the same distinct modalities and the same patterns of implications
among them. Some examples of this situation will be found in the
exercises at the end of the section.

It turns out that of the normal systems that can be formed using D,
T, B, 4, and 5, only seven have a finite number of distinct modalities:
KT4, K5, KD5, K45, KB4, KD45, and KT5. The following theorems
give the details.

THEOREM 4.22. Every normal KT4-system has at most fourteen distinct

modalities, viz. -, {1, &, ¢, OO, OO0, OO0, and their

negations, with implications among the affirmative seven us
diagramed in figure 4.2.

Proof. To show that a normal KT4-system has at most the specified

Figure 4.2. Modalities in normal KT4-systems.
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fourteen distinct modalities it is sufficient to show the following reduction
laws to be theorems of the system.

A« [JJA CA- OOA

COA-OOCOA [OCA«-OOCO0A
For then every modality will be reducible to one of those specified (as
the reader should confirm). The laws on the right are dual to those on

the left, and [JA «» [J[JA is obvious in view of T and 4. So it suffices to
establish O [JA « O] O[JA. For left-to-right:

1. JA—-OA TO
2. 00A-OCOA 1, RM
3. DA-0OA 4

4. DA-OOCOA 2,3, PL

5. 00A—-OOCTOA 4, RMO
And for right-to-left:

1. JCOA—>OA T

2. OOOOA> OOOA 1, RMO

3. 0O0OA-OOA 40

4, SOCOA—>COA 2,3, PL

For the eight implications diagramed in figure 4.2 we need consider
only the top four; the others are duals. Of these four, two are T and one
appears on line 4 of the first proof above. The remaining theorem,

OO OA—OA, follows from T by RM ¢ and RM.

Thus the system S4 —i.e. K74 itself — has at most fourteen distinct
modalities. In chapter 5 we prove it has exactly that many.

THEOREM 4.23. Every normal K5-system has at most fourteen distinct

modalities, viz. -, [J, <, (11, © ¢, OO, ©0O, and ther

negations, with implications among the affirmative seven as
diagramed in figure 4.3.

Proof. For this result we require the following reduction laws.

O0A-OO00A OQA=OO0A
OO0A=OCOA OQA-OOA
COA-SOOA  [HOA«OOOA
COA=OOOA  [O0A«-OOCA
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These laws might be summed up by the motto Drop the middle modality.
" The conditional halves of those on the left appear below on lines 2, 3,
and 9-14; those on the right follow by duality. The last six lines below
make implicit appeal to (QA—[1B)—([JA~[B) and (OA—[]B)
—~(OA-—> OB). Because both are theorems of any normal system
(exercise 4.7 (o, p)) we mark these steps K.

[

[ S S R
L N = O

© 0 NSk N

OOA—-A
OO0OA-OOA
OOOA~QOA
COA->-OCOA
CO0OA~[OOA
OOA—[OA
O¢0OA-OO0OA
COA-[OO0OA
OO0OA-DOOA
OOA-> O OOA

- O00OA-O0OA
. OODA- QDA
1B, 00A->-0O00OA

14.

COA-OOOA

50

1, RM
1, RMO
5

50

2, 4, PL
6, RM
4,7, PL
4 K

4, K

5, K
5K

8, K

8, K

As to the six implications pictured in figure 4.3, first note that those
on the right are duals of those on the left. Of the latter, GJA—~C0A

Figure 4.3. Modalities in normal K5-systems.
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appears on line 6 above, and the remaining two follow from the theorems
5 and 5¢ by the K-theorems mentioned in the last paragraph,

THEOREM 4.24. Every mormal KDb5-system has at most ten distinct

modalities, viz. -, [], {, one from each of the pairs (][], O]
and & O, (1O, and their negations, with implications among
the affirmative five as diagramed in figure 4.4.

Proof. By theorem 4.23 a normal KD4-system has at most the distinct
modalities, and at least the implications among them, pictured in figure
4.3. But in addition to the reduction laws in the proof above,
every normal KDS5-system contains the laws [JJA< Q[JA and
O OA - [1OA; each is the theorem D in one direction, and the con-
verses belong to any normal K5-system (as in figure 4.3). Finally, D
gives the implication from [Jto ¢. Hence the modalities and implications
in figure 4.4.

THEOREM 4.25. Every normal K45-system has at most ten distinct modal-
ities, viz. -, (1, O, (1O, O, and their negations, with
implications among the affirmative five as diagramed in figure
4.5.

Proof. By theorem 4.23 it is sufficient to point out that a normal
K45-system contains the reduction laws [JA— [J[JAand QA - O OA,
so that we may delete (][] and < ¢ from the diagram in figure 4.3. The
result is figure 4.5.

Figure 4.4. Modalities in normal KDJ-systems.
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THEOREM 4.26. Every normal KB4-system has at most ten distinct
modalities, viz. -, [ ], &, (10, O, and their negations, with
implications among the affirmative five as diagramed in figure 4.6.

Proof. Recall (theorem 4.18) that 5 is a theorem of any normal KB4-
system, so that every such system is an extension of K45. By theorem
4.25, then, a normal KB4-system has at most the distinct modalities -,
1, &, 1O, O, and their negations. The only new elements are the
implications involving the modalities - and 1. Thus figure 4.6,

Figure 4.5. Modalities in normal K45-systems.
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Figure 4.6. Modalities in normal KB4-systems.
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THEOREM 4.27. Every normal KD45-system has at most six distinct
modalities, viz. -, [, O, and their negations, with implications
among the affirmative three as diagramed in figure 4.7.

Proof. By the proofs for theorems 4.24 and 4.25 every normal KD45-
system has the reduction laws

JA-OOA CA=O A
OA-OOA OA«[OCA

as well as the implication [JA— QA. Thus a system of this kind has at
most the distinct modalities and at least the implication laid out in

figure 4.7.

THEOREM 4.28. Every normal KT5-system has at most six distinct
modalities, viz. -, [, {, and their negations, with implications
among the affirmative three as diagramed in figure 4.8.

Proof. By theorem 4.21 every normal K7T5-system contains D and 4.
So by theorem 4.27 every such system contains at most the distinct
modalities -, [], ¢, and their negations. In virtue of T and T ¢ we may
add arrows to and from - in figure 4.7. The result is figure 4.8. Alter-
natively, we may note that a normal K7T5-system contains B and 4
(theorem 4.21) and so has all the reduction laws and implications had
jointly by normal KT4- and normal KB4-systems. Applying theorems
4.22 and 4.26 — or, combining figures 4.2 and 4.6 — we arrive at the
desired result.

Thus, as we said at the beginning of the section, both KD45 and KT5
(S5) have at most the six modalities *, [], ¢, 7, 71[J, and 71¢. The
moral about modalities in systems of this sort is that steration is vacuous:
any sequence of [Js and (s can always be reduced to its innermost
term.

Figure 4.7. Modalities in normal KD45-systems.
0 A oY

Figure 4.8. Modalities in normal KT5-systems.
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EXERCISES

4.63. Show that the modalities [ 1] and T[] are equi-
valent in S5 (KT5).

4.64. Using the reduction laws mentioned in the proof of theorem 4.22,
show that every modality in a normal K74-system is reducible to one of

0,0, 00, ©0O, 00, &<, or the negation of one of these.

4.65. Prove that normal KD4!/- and normal KD4U-systems have at most
fourteen distinct modalities, viz. -, [, &, 11O, O, <O, ©0,

and their negations, with implications among the affirmative seven as
diagramed in figure 4.9. (See exercises 4.33(4) and 4.43(b)).

4.66. Prove that normal KT4G- and normal KT4H*-systems have at
most ten distinct modalities, viz. -, [], &, (1, O [, and their negations,
with implications among the affirmative five as diagramed in figure 4.10.
(See exercises 4.43, 4.55, and 4.56.)

4.67. Prove that normal KD4H+-systems have at most ten distinct
modalities, viz. -, [, ¢, (10, ¢, and their negations, with implica-
tions among the affirmative five as diagramed in figure 4.11. (See exercises
4.43 and 4.56.)

4.68. Prove that normal K74G, -systems have at most ten distinct
modalities, viz. -, (], ¢, (1<, ¢, and their negations, with implica-
tions among the affirmative five as diagramed in figure 4.12. (See exercises

4.43 and 4.58.) Note that the modalities (][] and {1 are equi-

Figure 4.9. Modalities in normal KD4/- and normal KD4U-systems.
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Figure 4.10. Modalities in normal KT4G- and normal KT4H*-
systems.
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Figure 4.11, Modalities in normal KD4H *-systems.
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Figure 4,12, Modalities in normal KT4G ~systems,
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valent, respectively, to []¢ and O[] in normal K T4G,-systems,
whereas in normal KT4G- and normal KT4H*-systems it is the other
way around.

4.69. Prove that normal K4G -systems have at most ten distinct modal-
ities, viz. -, (O, &, 1<, ¢, and their negations, with implications
among the affirmative five as diagramed in figure 4.13. (See exercises 4.43
and 4.58.) Compare the reduction laws here for J¢ ] and $0¢ with
those in normal KD4H*-systems.

4.70. Prove that normal K5/-systems have at most six distinct modalities,
viz. -, [, O, and their negations, with implications among the affirmative
three as in the diagram in figure 4.7 for normal KD45-systems. (See
exercise 4.47.)

4.71. Prove that normal extensions of KD!B, KD!B, KD!4, KD!4,,
KD!5, and KD,5, have at most four distinct modalities, viz. -, one of
[Jand ¢ and their negations. (See exercises 4.33(d), 4.38, 4.52, and 4.53.)

4.72. Prove that normal extensions of K7/ (and hence KDT,and KD, T)
have at most two distinct modalities, viz. - and 7. (See exercises 4.52

and 4.53.)

4.73. Describe a normal modal logic that has just one (distinct!) modality.

4.5 Maximal sets in normal systems

We bring this chapter to a close by stating and proving a few theorems
about maximal sets of sentences (section 2.6) in normal systems of modal

Figure 4.13. Modalities in normal K4G systems.
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logic. The importance of these theorems will become apparent in chapter
5, where they are useful in several proofs.

THEOREM 4.29. Let T and A be maximal sets of sentences in a normal
system X. Then:

(D{A: JAeT} c Aiff {QA: AcA} = T
and more generally, for any k > 0,
(2) {A: FAeT} = Aiff {OFA: AeA} < T

Proof. Let I and A be Z-maximal sets of sentences, and suppose that
Z is normal. We prove (1) only; (2) is a simple generalization. For
left-to-right, assume that {A: [JA €I} < A and that A is in A. We wish
to show that I'" contains {>A. By theorem 2.18(5), 71A is not in A. So
[J71A 1s not in T, which means that 71 ]71A is a member of I". Because
2 is normal, I" contains Df, and so — by theorem 2.18(9) - OA is
also in I'. For right-to-left, assume that {QA: A€ A} < I' and that (JA
is in I'. Since I contains D[], 1¢ 1A is in I, and so ¢ 1A is not.
Hence 1A is not a member of A, which means that A is, which is what
we wished to show.

Note that when & = 0 the preceding theorem means that for £-maximal
sets I' and A, ' < A if and only if A< I, and so I" = A just in case
I'c A

The next theorem may be regarded as an extension, for normal modal
logics, of theorem 2.18 (particularly parts (3)~(9)).

THEOREM 4.30. Let I' be a maximal set of sentences in a normal system
2. Then:

(1) DA eI tff for every Maxg A such that {A: [JAel'} c A,
AeA.

(2) OA el iff for some Maxg A such that {QA: AeA} = T,
AeA.

Proof. Suppose X is a normal system and that I' is a -maximal set of
sentences.

For (1). From left to right the theorem is trivial, for if (JA eI and
{A: JAel'} = A, then AeA.

The reverse is thus the interesting direction. Suppose that A €A, for
every X-maximal set A such that {A: [JAeI'} € A, i.e. that A belongs
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to every Z-maximal extension of the set {A: [JAel'}. By a corollary to
Lindenbaum’s lemma, theorem 2.20 (1), this means that A is X-deducible
from this set of sentences; i.e.

{A: JA€eT} kA

This in turn means that there are sentences Ay, ..., A, (# > 0) in the set
{A: [JA €I'} that are such that

Fe(A A ... AA,)—>A.

Because X is normal, we may infer by RK that

F(CJA A ... A JA,)—> TA.
But I' contains each of [JA, ..., [JA,, so [JA is X-deducible from I';

i.e.

I' H; OA.
By theorem 2.18(1) this means that
[JAel,

which was to be proved.
For (2):
OAeliff 1O1Ael

— DI ¢ and theorem 2.18(9);

iff J1A¢Dl
— theorem 2.18(5);

iff for some MaxzA such that {A: (JAel} €A,
TA¢A
~ part (1);

iff for some MaxzA such that {QA: AeA}lc T,
TA¢A
— theorem 4.29;

iff for some Max; A such that {OA: AeA}c T,
AeA
~ theorem 2.18(5).

THEOREM 4.31. Let T and A be maximal sets of sentences in a normal
system Z. Then for every k > 0:

{A: O¥A e} < A iff for some Max, E,
{A:DAeT}c Eand {A: (J*AcE} € A.

Proof. We assume that I' and A are maximal sets of sentences in a
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normal modal logic £. From right to left the proof is straightforward,
and we leave it as an exercise. For left-to-right we suppose that {A:
[1%+1A e I'} < A, to show that there exists a X-maximal set E such that

fA:JAeTl}<Eand {A: [J*A€E} = A,
i.e. by theorem 4.29, such that
{A:JAel'} cEand {Q*¥A: AeA} c E.

In other words, we wish to show that there is a Z-maximal set of sentences
E that includes the set

fA: JAeTTU{O*¥A: AeAl.

By Lindenbaum’s lemma (theorem 2.19) this is equivalent to showing
that this union is X-consistent.

Let us suppose otherwise, and argue to a contradiction. If the set is
2-inconsistent, then | is X-deducible from it, and this in turn means
that for some m, n > O there are sentences B, ..., B, in {A: [JAeI'} and
sentences OFC,, ..., O¥C, in {O*A : A e A} such that

Fe(BiA oo AB A OFCLA ..o A OFCL)— L.
By a rule of inference present in every normal modal logic (see exercise
4.11) we infer that

F(OOByA .. A TB,,) > [ 1(CyA ... A CY).

Because each of [B,,...,[]B,, is in I', the consequent [J*+!7(C; A
... AC,) is Z-deducible from I', and so belongs to I. By our original
assumption, then, A contains (C; A ... A C,). ButAcontains C;A ... A C,,
too, since this is the consequent of the theorem (C;A...AC,)—>(C,A
...AC,), for which A contains each conjunct of the antecedent. So A is
Z-inconsistent, which is a contradiction, and we may consider the proof
complete.

EXERCISES

4.74. Prove part (2) of theorem 4.29.
4.75. Give the proof for right-to-left in theorem 4.31.

4.76. Prove the following generalizations of theorem 4.30, for any & > 0,
where I 1s a maximal set of sentences in a normal system 2.
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(a) [1*A T iff for every Maxz A such that {A: [(*Ael'} € A,
AeA,

(b) OFA el iff for some MaxzA such that {QFA: AeA}cT,
AeA.

4/77. Let T be a normal system, and define the relation R on the set of
¥-maximal sets of sentences by:

CRAff{A: JAeTl} € A,
(Thus, by theorem 4.29, TRA if and only if { OA : A€A} < I'.) Prove:

(a) R is serial if £ contains D.

(b) R is reflexive if T contains 'T.
(¢) R is symmetric if ¥ contains B.
(d) R is transitive if Z contains 4.

(¢) R is euclidean if Z contains 5.

(See section 3.2 for these properties of R.)
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DETERMINATION AND
DECIDABILITY FORNORMAL
SYSTEMS

In this chapter we present and prove a number of determination theorems
for normal modal logics with respect to classes of standard models.
Section 5.1 contains the basic theorem for the soundness of such systems
and a proof that the fifteen systems on the diagram in figure 4.1 are all
distinct. In section 5.2 we return briefly to the topic of modalities in
normal systems. In section 5.3 we define the idea of a canonical standard
model for a normal system and prove some fundamental theorems about
completeness. Section 5.4 contains determination theorems for the logics
in figure 4.1, including a theorem to the effect that the system S5 is
determined by the class of models of the sort described in chapter 1.
In section 5.5 we generalize the ideas in sections 5.1 and 5.3 to obtain
a very large class of determination results in one fell swoop, by proving
that the system KG*:m» is determined by the class of k,Im,n-incestual
models. Finally, in section 5.6 we prove the decidability of the fifteen
systems in figure 4.1.

5.1. Soundness
'The following theorem provides the basis for proofs of soundness for
normal modal logics, with respect to classes of standard models.

THEOREM 5.1. Let S,,...,8, be schemas valid respectively in classes of
standard models C,, ..., C,. Then the system of modal logic
KS, ... S, is sound with respect to the class C,n ...n C,,.

Proof. If S, ..., S, are valid respectively in classes of standard models
Cy ..., C,, then each is valid in the intersection of these classes,
Cin...n C,. It remains to be shown that this class validates Df ¢, and
that validity in this class is preserved by the rules of inference RK and
RPL. This follows from theorems 2.8 and 3.3.
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Soundness theorems for the smallest normal system, K, are immediate
corollaries of theorem 5.1: K is sound with respect to every class of
standard models, including the whole class; for this system is axiomatized
by Df¢, RK, and RPL. The role of the theorem in connection with
normal extensions of K should moreover be apparent. For example, by
theorem 3.5 the schemas D, T, B, 4, and 5 are valid respectively in
classes of serial, reflexive, symmetric, transitive, and euclidean standard
models. So it follows by theorem 5.1 that the systems KD, KT, KB, K4,
and K5 are sound with respect to these classes of models. For another
example, the system S4 (K T4) is sound with respect to classes of quasi-
ordered standard models, since T and 4 are valid in classes, respectively,
of reflexive and transitive standard models. In general, each of the
fourteen normal systems beyond K in figure 4.1 is sound with respect to
classes of models of the kinds indicated in figure 5.1.

Some more soundness results appear in the exercises. We shall not
state any formally, however.

By means of the theorems in section 4.3 we established there the
inclusions among the fifteen systems of modal logic diagramed in figure
4.1. We can employ theorem 5.1 to demonstrate the distinctness of these
systems, and hence the properness of the inclusions. This is an appro-
priate place to do so.

THEOREM 5.2. The fifteen normal systems in figure 4.1 are all distinct.

Proof. In general, to show that a system X is distinct from a system
3 it is sufficient to exhibit a model of X that falsifies a theorem of X', or
vice versa. For example, to show that KD s KT, and so KD < KT, it
is enough to describe a serial standard model (of KD, by theorem 5.1)
that falsifies an instance of the theorem T of KT. This is our method.

Consider the following six standard models .# = (W, R, P}.

(1) W = {d, )8’ 7} (diStinCt); R = {<GC, OL), (ﬁ’ ﬂ>v <7; 7))
Cay B, 4B, ), B, ), <¥> BO}; Po={a, f}and F, = {a}

forn > 0.

(2) W= {a’ ﬁ} (diStinCt); R= {(OL, a), <ﬁ’ ﬂ>! <OC, ﬂ>}:
P, ={a}forn > 0.

(3) W = {a, B} (distinct); R = {(a, B), <, f}; Bu = {8} for

n>=0.

(4) W={a}; R=0; P, =oforn>0.
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(5) W={a, B, y} (distinct); R = {a, B>, {B, B, LB, ¥
(v, vl B, ={f}forn > 0.

(6) W= {a: ﬁ} (diStinCt); R = {(OL, ﬂ): <ﬁ’ a>}; F, = {ﬂ} for

n = 0.
Figure 5.1
serial reflexive |symmetric| transitive | euclidean
KD ®
KT ®
KB o
K1 ®
K5 ®
KDB ® o
KD¢ ® | ®
KDé5 ® ®
K45 ® o
KD45 o ® o
® ®
KB4
® ®
KTB ®
KT4 ® o
® L
o ° o |
KTs5
® o |
® ® ®
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Re (1). This is a reflexive symmetric model that falsifies instances of
4(0OP,—~ OOPgata) and 5 (O Py— [JO P, at ). By theorem 5.1, then,
this is a model of KTB and (by the results of section 4.3) all the systems
in figure 4.1 of which it is an extension (i.e. those reached along the lines
going in a leftward direction from KTB on the diagram). ‘These systems
are therefore distinct from all the others in figure 4.1, viz. those containing
4 or 5 as a theorem.

Re (2). This is a reflexive transitive model that falsifies instances of
B and 5 (Py— [J$ Py and O Py—> (1O Py at ). So it is a model of K74
and all the systems in figure 4.1 of which it is an extension. This means
that these systems are distinct from all the others in the figure — those
containing B or 5 as a theorem.

Re (3). This is a serial transitive euclidean model that falsifies instances
of T and B ((JP,~ P, and 1Py~ ] 1P, at &). Thus this is a model
of KD45 and all the systems in figure 4.1 that this system includes. So
these systems are distinct from all the others in the figure — those contain-
ing T or B as a theorem.

Re (4). This model is symmetric and transitive (hence also euclidean;
see exercise 3.58(e)), and it falsifies an instance of D ((JPy— ¢ Py). Thus
it is a model of KB4 and its inclusions in figure 4.1. These systems are
therefore distinct from the rest on the diagram, since these all contain D,

Re (5). This model is serial and euclidean, and it falsifies an instance
of 4 ((JPy— C1[JP, at «). Thus it models KD5 and the systems in figure
4.1 that KD5 extends. So these systems are all distinct from the others
in the figure, since these all contain 4.

Re (6). This is a serial symmetric model that falsifies an instance of
T (OP,— P, at «). So it is a model of KDB and all the systems in figure
4.1 that this system extends. Hence these systems are distinct from the
rest on the diagram, since these systems all contain T'.

The foregoing remarks suffice to establish the distinctness of all the
systems in figure 4.1, though there is much redundancy. It is left for the
reader (as an exercise) to work through the details to check that the six
models have the properties alleged and to check that these properties
ensure the advertised distinctness.

EXERCISES

5.1. Check that models (1)-(6) in the proof for theorem 5.2 (a) have the
properties stated, (b) falsify the sentences mentioned, and (thus) (¢)
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ensure the distinctness of the systems in figure 4.1. (Compare exercise
3.22)

5.2. Using results from sections 3.2 and 3.3, including the exercises,
describe classes of standard models with respect to which the following
systems are sound.

(a) KG (h) KP

(6) KD, (1) KGrhmn

() KT, (j) KU

(d) KB, (k) Kplus OT—(JA—+A)

(e) K4, () K plus [(J(OFFA— ™ O™A)

(f) Kb, (m) K plus OIT - (OF[TA—> 1™ O"A)
(&) KP

5.3. Consider the following conditions on a standard model .# = (W,
R, P).

(h**) if eRpB and aRy and FRE and yRe, then g = y or fRe or YRS
ord=¢
(h*) if aRp and aRy, then SRy or YRf
(h) if «Rf and aRy, then # = y or SRy or YRS

Prove that the systems KH++, KH*, and KH are sound, respectively,
relative to classes of standard models satisfying (h*+), (ht), and (h) (see
exercise 3.47). Using results in exercise 4.56, show that KL++, KL+
and KL are likewise sound with respect to classes of models satisfying
(h++), (h), and (h).

Prove also: (1) if .# is reflexive, then it satisfies one of (ht*), (ht),
and (h) just in case it satisfies the others; (2) if 4 is euclidean, then it
satisfies all three conditions.

5.4. Consider the following conditions on a standard model .# = (W,
R, P).
convergence: if o # f, then for some vy in A, Ry and SRy

strong convergence: for some 7y in 4, aRy and SRy
connectedness: o = f or aRf or fRa

strong connectedness: aRf or fRa
Prove:
(@) A reflexive relation is strongly convergent if and only if it is
convergent.
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(b) The system S54.2 (see exercise 4.55) is sound with respect to
classes of reflexive transitive standard models that are con-
vergent (and hence strongly convergent).

(¢) A reflexive relation is strongly connected if and only if it is
connected.

(d) The system S4.3 (see exercise 4.56) is sound with respect to
classes of reflexive transitive standard mode!ls that are con-
nected (and hence strongly connected).

5.5. Consider the following conditions on a standard model .# = (W,
R, P}.
functionality: (for every « in .#) there is exactly one f§ in A
such that aRS
tdentity: aRf if and only if & = §

Prove that KD! is sound with respect to classes of standard models in
which the relation is functional, and that K7 is sound with respect to

classes of standard models in which the relation is identity (see exercise
3.54).

5.6. Consider the following condition on a standard model .# = (W,
R, P}.
(for every o in .#) there is a £ in .# such that both «Rf and
for every y and § in .#, if SRy and SRG, theny = ¢

Prove that the system S4.1 of exercise 4.58 is sound with respect to
classes of reflexive transitive standard models that satisfy this condition.

5.7. Identify classes of standard models with respect to which the
following systems are sound.

(a) KD4! (b) KD4U (c) KD4H+ (d) K4G,

5.8. Prove the distinctness of the modal logics KG, KD,, KT,, K4,, KB,,
K5, KP, KP, KU, K plus O T—(JA—A), KH+t, KH*, KH, §4.2,
S4.3, KD!,KT!, §4.1, KD4!, KD4U, KD4H+, and K4G,(mentioned in

exercises 5.2-5.7), and prove that each is distinct from all the systems in
figure 4.1.

5.9. Prove, for any & > 1:
(a) KT # KT*. (c) K¢ # K4*.
(b)y KB # KBk, (d) Kb # K5*.
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(See the penultimate paragraph of section 4.3 for the point of this.)
5.10. Consider again the following rule of inference.

0A
A

Using exercise 3.63 and the soundness results in figure 5.1, show that
this rule does not hold in the systems KB, Kb, KD5, K45, KD45, and
KB4.(Inthis connection the reader may wish to prove that (J(A— O O A)
is a theorem of any normal KB-system.)

5.11. Using theorem 5.2 and exercise 4.32, prove that the systems X,
KB, K4, K5, K45, and KB4 have no theorems of the form (A.

5.12. Consider again the following rule of inference.

OA

A
By the results of exercises 4.13 and 4.61 this rule holds in K and KD,
and by the results of the preceding exercise it holds also in KB, K4,
K5, K45, and KB4 (vacuously, since none of these systems has theorems
of the form ¢ A). The remaining systems in figure4.1 - KT, KDB, KD4,
KD5, KD45, KTB, KT4, and KT5 - do not have this rule. This is a
consequence (as the reader should argue) of the soundness results in
figure 5.1 and the following, which are for the reader to prove.

(@) ©(A—[JA)is a theorem of any normal KT-system.
(b) A— [JA is not a theorem of KT, KTB, KT4, or KT9.

() O([JA—A) is a theorem of any normal KD4- or normal
KDj-system,

(d) [JA— Aisnotatheorem of KD4, KD5, or KD45.
(e) O O(A—(JA—[J{JA)) is a theorem of any normal KDB-

system.
(/) O(A—(OJA-[JJA))is not a theorem of KDB.

5.13. Prove:

(@) A relation is functional if and only if it is serial and partially
functional.

(b) A relation is identity if and only if it is reflexive and vacuous.

(¢) If a relation is functional, then it satisfies one of transitivity,
density, euclideanness, and condition () in exercise 3.39 if
and only if it satisfies the others.

(See exercise 3.58.)
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5.2. Postscript on modalities

In section 4.4 we established maximums for the numbers of distinct
modalities in normal extensions of the systems K74 and K& (fourteen
each), KD$, K45, and KB4 (ten each), and KD45 and KT (six each).
Figures 4.2-4.8 show the identities of these modalities and the implica-
tions among them. Now we can prove that for the smallest of each of the
seven types of systems these are exactly the distinct modalities. Formally:

THEOREM 5.3. The systems KT4, K5, KD5, K45, KB4, KD45, and KT5
have exactly the distinct modalities diagramed in figures 4.2-4.8,
respectively.

Proof. Theorems 4.22—4.28 affirm that the systems in question have
at most the advertised distinct modalities. For minimality it needs to be
demonstrated that none of the modalities in a diagram for a system 1is
equivalent to any of the others, i.e. that the logic has no reduction laws
@A —rA, where ¢ and i are (different) modalities in the diagram. To
prove this it suffices to show that ¢A — 1A is not valid in some class of
models with respect to which the logic is sound. Thus, for example, to
prove the theorem for K74 it must be shown, inter alia, that the modal-
ities ] and [} are distinct, and for this it will do (by theorems 3.5
and 5.1) to exhibit a reflexive transitive countermodel for an instance of
OCOA«[OA.

We 1nvite the reader — as an exercise — to work out the details of the
requisite proofs. With a little ingenuity and organization the number of
cases can be reduced. For example, a reflexive transitive countermodel
for O[JA « 3O A also falsifies an instance of A+«»[JA and so at one
stroke establishes distinctness in K74 for the pairs -, [] and $[],

Oo0.

Theorem 5.3 tells us about modalities in seven of the fifteen systems
in figure 4.1. What about modalities in the remaining eight?

THEOREM 5.4. Each of the systems K, KD, KT, KB, K4, KDB, KD{,
and KTB has infinitely many distinct modalities.

Proof. It is enough to show that for any n > m > 0 the schema
4mnl ™A« [J"A
is not a theorem of any of the systems in question. For this will mean

that none of these systems contains any reduction laws for modalities
of the form []*, and so each such modality is distinct from all the others.
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Let m and n be natural numbers such that m < n, and consider a
standard model .4 = (W, R, Py in which W ={x,,...,2,,...,2,} (all
distinct), By = {a, ..., ,}, and R relates worlds that are identical or
adjacent (i.e. a;Rer; if and only if £ = jor i =j+1 or j =7+ 1). Then, as
the reader should check, .# is a reflexive symmetric countermodel for
™A - []"A (consider at a, the instance in which A = P,). Since this
countermodel can be constructed for any m and =, it follows that for no
n > m > 0 1s the schema 4™"! valid in the class of reflexive symmetric
models. Thus by theorems 3.5 and 5.1 this schema is never a theorem of
KTB, nor of any of the systems in figure 4.1 that it (properly) extends — K,
KD, KT, KB, and KDB. Therefore, each of these modal logics has
infinitely many distinct modalities.

We leave it as an exercise for the reader to prove that for every
n > m > 0 there is a serial transitive countermodel for an instance of
A — ™A, which is all that is needed to show that the number of
distinct modalities is infinite in KD£ and K4 (as well as K and KD
again). With this the proof of the theorem will be complete.

EXERCISES

5.14. Give the details of the proof for theorem 5.3.

5.15. Verify that the model .# in the proof of theorem 5.4 is reflexive
and symmetric and falsifies [™P,— []*P,. 'Then complete the proof of
the theorem by showing that for every n > m > 0 there is a serial
transitive standard model that rejects an instance of [)"A— ™A,

5.16. Prove:

(@) KD4! and KD4U have exactly the distinct modalities
diagramed in figure 4.9 (see exercise 4.65).

() $4.2 (KT4G) and S4.3 (KT4H*) have exactly the distinct
modalities diagramed in figure 4.10 (see exercise 4.66).

(c) KD4H* has exactly the distinct modalities diagramed in
figure 4.11 (see exercise 4.67).

(d) S4.1 (KT4G,) has exactly the distinct modalities diagramed
in figure 4.12 (sce exercise 4.638).

(e) K4G, has exactly the distinct modalities diagramed in figure
4.13 (see exercise 4.69).
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(f) K5! has exactly the distinct modalities diagramed in figure
4.7 (see exercise 4.70).

(¢) KD!B, KD!B,, KD!4, KD!4,, KD!5, and KD,5, have
exactly the distinct modalities stated in exercise 4.71.

(k) KT!, KDT,, and KD, T have exactly the distinct modalities
stated in exercise 4.72.

5.17. Using exercise 4.34 prove that the system KG has infinitely many
distinct modalities.

5.18. Prove that KD4H has infinitely many distinct modalities (see
exercise 5.3(c) and, perhaps, the countermodel to [J*A—[J™A in the
solution to exercise 5.15). Then, using exercise 4.56(n, g), argue that
there are infinitely many distinct modalities in K and all the systems that
result from adding D, 4, G, Htt, and H in various combinations to K.

5.19. Prove that the systems KU and K plus {T->([JA—A) have
infinitely many distinct modalities. Then argue that this is true of K4,.

5.20. Prove that the systems KD/ and K4! have infinitely many distinct
modalities.

5.21. For each of the modal logics KH*, KDH*, K4H*, K4U, K4UG,
and KG! (where G! = {[JA« [JOA) prove or disprove that it has
infinitely many distinct modalities.

5.3. Completeness: basic theorems

We begin with the idea of a canonical standard model for a normal modal
logic.

DEFINITION 5.5. Let # = (W, R, P) be a standard model, and let &
be a normal system of modal logic. # is a canonical standard
model for Z iff:

(1) W = {T": Max T'}.

(2) For every a in .#,
[JA e iff for every B in .# such that RS, Aef.

(3) B, = |P,|g, forn=0,1,2, ...
Thus, as in section 2.7, W is the set of Z-maximal sets of sentences, and

for each natural number #n, P, collects just those of such sets as contain
the atomic sentences P,,.
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It is not immediately obvious, however, that there are any such models,
i.e. that there are relations R satisfying the condition in clause (2) of the
definition. We defer to theorem 5.11 the proof that indeed there are.
Meanwhile, the following theorem gives an alternative way of charac-
terizing canonical standard models.

THEOREM 5.6. # ={W, R, P) is a canonical standard model for anormal
system % iff W and P are as in definition 5.2, and for every o
in M,

O A eaiff for some B in M such that aRS, A e f.

Proof. For left-to-right, suppose that .# = (W, R, P) is a canonical
standard model for a normal system 2. Then W and P are of course as
specified, and for any world (2-maximal set of sentences) & in A:

OAeaiff 1] 1A €ea
— Df $ and the Z-maximality of a;
iff 1A¢a
— theorem 2.18 (5);
iff not every £ in . is such that if xRS, then TAepg
— definition 5.5;
iff for some f in 4 such that aRB, A ¢ B;

iff for some £ in .# such that RS, Acf
— theorem 2.18(5).

It is left for the reader to show the reverse, i.e. that .# is a canonical
standard model for Z if W, R, and P satisfy the specified conditions.

Now we show that in a canonical standard model the worlds verify
exactly the sentences they contain. This is the fundamental theorem for
the completeness of normal systems of modal logic.

THEOREM 5.7. Let M be a canonical standard model for anormal system X.
Then for every o in M :
& Aiff Aca.
In other words, | A4 = |Al;.

Proof. The proof is by induction on the complexity of A, and the
non-modal cases were discussed in section 2.7 (see exercise 2.53). Of
the modal cases, we treat only that in which A is a necessitation, []B.
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Asaninductive hypothesis we assume that the theorem holds for sentences
shorter than A, so that, in particular, for every a in .#,

4 Biff Bea.
Then:
k4 B iff for every 8 in # such that RS, k£ B

— definition 3.2(1);

iff for every f in 4 such that aRg, Be S
— inductive hypothesis;

iff [ Bea
— definition 5.5.

So the theorem holds when A is a necessitation.

As a corollary to theorem 5.7 it follows that a normal system of modal
logic is determined by each of its canonical standard models; i.e. that
the theorems of the system are just the sentences true in any such model.
Formally:

THEOREM 5.8. Let # be a canonical standard model for a normal system
3. Then:

4 A Gff b5 A.

Proof. See the remarks in section 2.7,

Nothing proved so far presupposes the existence of canonical standard
models. In definition 5.9 we introduce what we call the proper canonical
standard model for a normal modal logic; theorem 5.10 gives an alter-
native characterization. Then we prove that proper canonical standard
models are, indeed, canonical standard models (theorem 5.11), which
shows that such models exist.

DEFINITION 5.9. Let 4 = (W, R, P) be astandard model, and let = be
a normal system of modal logic. .# is the proper canonical
standard model for % iff:

(1) W= {I': MaxT}.
(2) For everyz and Bin .#, aRBiff {A: [JAea} < B.
(3) B, = |P,lg forn=0,1,2,....

In other words, proper canonical standard models are like canonical
standard models with respect to W and P, and R is defined so that the
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alternatives to a world o are just those worlds that contain the necessitates
of necessitations in a. Note that such models always exist.

THEOREM 5.10. A = (W, R, P) is the proper canonical standard model

for a normal system of modal logic Z iff W and P are as in
definition 5.9, and for every o. and [ in M,

aRBIUf{OA: Aef}ca.

Proof. By definition 5.9, .# = (W, R, P} is the proper canonical
standard model for a normal modal logic X just in case W and P are as
specified, and for all worlds (Z-maximal sets of sentences) a and £ in #,

{A: OAca} = fif {QA: Aecf} c a.
This is precisely theorem 4.29 (1).

Thus proper canonical standard models are like canonical standard
models with respect to W and P, and R is defined so that a world collects
all the possibilitations of sentences occurring in its alternatives.

THEOREM 5.11. Proper canonical standard models are canonical standard
models.

Proof. Let .# be the proper canonical standard model for a normal
system X. We need only to show that for every world (Z-maximal set of
sentences) « in A,

OAea iff for every f in .# —i.e. Max,f —such that
{A: JAecal = f,Acp.

This is theorem 4.30(1).

EXERCISES

5.22. Give the proof of theorem 5.6, right-to-left.
5.23. Give the proof of theorem 5.7 for the case in which A = {B.

5.24. Let A4 = (W, R, P) be the proper canonical standard model for a
normal system 2. Using the results of exercise 4.77, prove:

(a) A is serial if Z contains D.
(b) A is reflexive if 2 contains T.

(¢) A is symmetric if 2 contains B.
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(d) # is transitive if 2 contains 4.

(¢) # is euclidean if T contains 5.
Also prove:

(f) -# is incestual if X contains G.

5.4. Determination

We are ready now to prove our first determination results. We begin with
the system K.

THEOREM 5.12. K is determined by the class of standard models.

Proof. Soundness comes immediately from theorem 5.1. Completeness
follows from the fact of the existence of canonical standard models,
theorem 5.11: any sentence valid in the class of standard models is true
in the proper canonical standard model for K and hence, by theorem
5.8, 1s a theorem of the system.

In general, to prove the completeness of a normal modal logic with
respect to a class of models it is sufficient to show that the proper canonical
standard model for the system is contained in the class. For the logic is
determined by this model alone (theorem 5.8) and so is complete with
respect to any class that contains it. Compare the remarks in section 2.7.
This should serve to motivate the next theorem, which paves the way for
the determination results in theorem 5.14.

THEOREM 5.13. Let A be the proper canonical standard model for a
normal system Z. Then:

(1) A is serial if % contains D.

(2) A is reflexive if Z contains T
(3) A is symmetric if Z contains B.
(4) M is transitive if X contains 4.
(5) M is euclidean if 2. contains 5.

Proof. Let # = (W, R, P) be the proper canonical standard model for
a normal system X.

For (1). Assume that D is a theorem of X (so that X is a KD-system).
To show that .# is serial — that for every et in .#,

there is a § in .# such that aRf
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— is to show that for every Z-maximal set of sentences «,
there is a Maxy, £ such that {A: [JAea} = .

And by Lindenbaum’s lemma (theorem 2.19) it is enough, for this, to
establish the Z-consistency of the set {A : [JA €a}. So suppose, to reach
a contradiction, that this set is Z-inconsistent, i.e. that | is 2-deducible
from it. Then the set contains sentences A, ..., A, (n = 0) such that

Fe(AjA o AA)— L.
Hence by the rule RD,

Fo(OJALA ... AJA) = O L.
Since a contains [JA,, ..., [JA,, this means that {1 is Z-deducible
from a, and hence (theorem 2.18 (1)) that ¢ L is in e. But « also contains
1O L (NO), since £ is normal (theorems 2.18(2) and 4.4). This cannot

be (theorem 2.18 (5)).
There is a simpler proof of the seriality of .#. To wit, as a consequence

of theorem 5.6 it holds of every « in .# that
O T ea iff for some B in A such that aRS, T €.

But T (P)is a theorem of X (theorem 4.12), so every « in .# contains
it. Hence for every « in 4 there is a f in .4 such that aRp, i.e. A is
serial, Indeed, it should be noted, this proof is good for any canonical

standard model for a normal KD-system.
For (2). Suppose that ¥ contains the theorem T. We wish to show

that .# is reflexive, i.e. that for every o in #,
aRo.

This means that for every Z-maximal set of sentences
{A:JAea} < a.

So assume that A €{A : [JA €a}, to show that A ea. The assumption
just means that @ contains [JA. Since « is Y-maximal, [JA—~>A is 1n «,
too. But « is closed under MP, so it contains A.

For (3). Assume B to be a theorem of X. Let us prove that for all

¥-maximal sets of sentences « and 5,
if {A: JAeca} < B, then {QA: Aca} < f.

For by definition 5.9 and theorem 5.10 this means that .# is symmetric,
i.e. that for every @ and £ in .#,

if R f, then fRa.
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We assume that {A: [JA€a} < f, and also that A ec. It remains only
to be shown that $ A € 8. But if « contains A and the theorem A— A
too, then [(JOAisina. Hence QA cpf.

For (4). Assume that X contains the theorem 4, TJA— [][TJA. The
transitivity of .# is expressed by saying that for every X-maximal set of
sentences ¢, f, and v,

if{A:[JAea}c fand {A: [JA€ef} c v,
then {A: JAea} < 7.

We suppose that {A: [JAeca} < B, that {A: JAef} < v, and that
[JA ea, toshow that A € y. The presence of 4in « and the last assumption
imply that [J[JA is in «. By the first assumption, then, [JA is in £, and
by the second, A is in y.

For (5). We leave this for the reader (compare exercise 5.24(e)), with
the remark that the euclideanness of .# means that for every X-maximal
set of sentences «, £, and v,

if {A: JAea}l < fand {QA: Aey} cq,
then {QA: Aecy} c g
This ends the proof of theorem 5.13.

We are in a position at last to prove determination theorems for the
fourteen normal systems obtained by taking the schemas D, T, B, 4, and
5 as theorems in various combinations, i.e. for the systems beyond K in
figure 4.1. We state these results formally in the following theorem.

‘THEOREM 5.14. The fourteen normal systems beyond K in figure 4.1 are
determined by the classes of standardmodels indicated in figure 5.1.

Proof. Except perhaps for KB4 and KT the results are easily under-
stood. The soundness parts follow from theorems 3.5 and 5.1, as we
remarked earlier. For completeness it is enough to observe that the
proper canonical standard models for each system are in the appropriate
classes of models, by theorem 5.13. For example, by parts (2) and (4)
of theorem 5.13 the proper canonical standard model for K74 is both
reflexive and transitive. Thus K74 (S4) is determined by the class of
quasi-ordered standard models.

In the case of KB4, note that it is identical with KB (theorem 4.18),
or that transitivity and euclideanness are equivalent properties in the
presence of symmetry (exercise 3.58(e)). For KT§ (S5) recall that it is
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the same as KTB4, KDB4, and KDB5 (theorem 4.21) — or that anyway
the four sets of properties indicated in figure 5.1 indifferently characterize
an equivalence relation (exercise 3.31).

We can cover the content of theorems 5.12 and 5.14 together by
putting the matter as follows. Let Cy,, Cy, Cy, C,, and C, be respectively
the classes of serial, reflexive, symmetric, transitive, and euclidean
standard models, and let S,,...,S, be any selection (possibly empty)
from the schemas D, T, B, 4, and 5 (so that CSI, ..., Cg, are the corres-
ponding classes of standard models). Then: the system KS;...S, is
determined by the class Cg n...n Cq .

Of course this formulation does not really go beyond theorems 5.12
and 5.14, though it may seem to. It shows, for example, that the system
KDT4 is determined by the class of serial reflexive transitive standard
models. But D is redundant here as an axiom (theorem 4.14), just as
seriality is as a property (exercise 3.58(a)).

In chapter 3 we saw that systems of modal logic can be determined by
more than one class of models. For by theorem 3.12 a system of modal
logic determined by a class C of standard models is also determined by
the class ¥(C) of models generated from those in C, and these classes
are in general distinct. As a corollary we proved (theorem 3.13) that the
modal logic determined by the class of standard models in which the
relation is an equivalence is the same as the modal logic determined by
the class of standard models in which the relation is universal (like those
in chapter 1). By theorem 5.14 we see, at last, that this is indeed the
modal logic $5 (KT%). This is worth recording.

THEOREM 5.15. KT$§ is determined by the class of universal standard
models.

In section 5.6 we use filtrations to obtain more determination results
for K and its normal extensions.

Let us close this section by recalling the schema

G. OOA->OOA.

As we saw in chapter 3, G is valid in any class of incestual models, i.e.
standard models .# = (W, R, P) such that for every a, #, and v in .#,

if xRS and aRy, then for some & in A, SRS and yRS.
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This means that the system KG is sound with respect to any class of
incestual models. Let us show now that the proper canonical standard
model for any normal modal logic containing the schema G is incestual —
and thus that every normal KG-system is complete with respect to the
class of incestual models — as follows.

Let A4 = (W, R, P) be the proper canonical standard model for a
normal system containing the schema G, and suppose, for «, f, and y
in #, that «Rf and aRy. By definition 5.9 and theorem 5.10, this means
that

{OA:Aefica
and that
{A: JAea} < v.

The problem now is to show that for some & in .#, SRd and vRé, i.e.
{(A:JAepicdand{A: JAey;cd

_ in other words, that .# has a Z-maximal set of sentences ¢ that includes
the set

{A:[DAefU{A: OAey}
By Lindenbaum’s lemma (theorem 2.19) it is sufficient to show that this
set is Z-consistent, for then such an extension must exist. So suppose,
to reach a contradiction, that the set is X-inconsistent, i.e. that L is
¥-deducible from it. Then for some 7, j > 0 there are sentences By, ..., B;
in {A: [JA € 8} and sentences C,, ..., C;in {A: [JA ey} such that

Fo(BiA .. ABACIA L AC)~> L.
Equivalently, by PL,

Fo(BiA ... AB)—=>1(CiA...AC).
By RK it follows that

Fo(OIB3 A .. AB) > O (CA ... AC)).

Because each of (B, ..., [IB; belongs to 8, O (C;A...AC)) 1s Z-
deducible from f, and so belongs to 3. By the first inclusion above, then,
OO WCyA ... AC,) is a member of «. But « also contains this instance
of the schema G:

OO HCLA...AC)=>TO0UCA...AC)).

So the consequent [1¢ 1(Cy A...AC;) is also in a. By the second
inclusion above, then, ¢ (Cy A ... A C,) belongs to . Because y contains
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Df[], we may infer further that 1[J(C;A...AC;) is in y. But so is
[J(CyA ... A C)). For by RK on a tautology,
Fo(CIC1 A ... ATIC;) > C(CyA ... AC));

and vy contains each of []C,,...,[]C;, and so also [J(C;A...AC)).
Contradiction.

It follows from this and the soundness result that the modal logic KG
1s determined by the class of incestual standard models. In the next
section we generalize these proofs to obtain similar results about k,/,m,
n-incestuality and normal KG*4mn_gystems.

EXERCISES

5.25. Verify the determination claims for the systems beyond X in figure
4.1 not mentioned explicitly in the proof of theorem 5.14.

5.26. Let # = (W, R, P) be the proper canonical standard model for a
normal system X. Prove:

(@) A is partially functional if X contains D.
(b) A 1s functional if X contains D!.
(¢) A is vacuous if T contains T..
(d) A 1s 1dentity if X contains T'L.
(e) A is dense if 2 contains 4.
(f) # is empty if = contains P.
Using these results, theorem 5.13, and the result about G and incestuality

at the end of section 5.4, formulate and prove more determination
theorems like those in theorem 5.14.

5.27. Prove that the proper canonical standard model for any normal
extension of KG*im» is kI mn-incestual. Use this result to prove
theorem 5.13 and parts (a)—(e) of the preceding exercise.

5.28. Using exercise 3.57, prove that K is determined by each of the
classes of irreflexive, asymmetric, antisymmetric, and intransitive
standard models.

5.29. With reference to results in section 3.4 and exercise 5.4, prove:

(a) Every generated reflexive transitive incestual standard model
is convergent (and hence strongly convergent).
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(b) The system S£.2 is determined by the class of reflexive
transitive standard models that are convergent (and hence
strongly convergent).

5.30. Prove that the system KD4G is determined by the class of serial
transitive standard models that are convergent or strongly convergent.

5.31. Consider the rule of inference

DA
A

and the fifteen systems in figure 4.1. By the results of exercises 4.13,
4.61,4.62, and 5.10, K, KD, KT, KDB, KTB, KT4, and KT5 have the
rule, whereas KB, K5, KD5, K45, KD45, and KB4 do not.

Use theorem 5.14 and results in exercise 3.63 to prove that K¢ and
KD4 also have the rule. (Indeed, all these conclusions are immediate
consequences of theorem 5.14 and results in exercise 3.63, as the reader
should verify.)

5.32. Let = be a normal modal logic, and consider the following principle.

If b [JA, V... v [JA,, then
b A, for somei=1,...,n(n > 0).

This ‘rule of disjunction’ holds for the following systems in figure 4.1:
K, KD, KT, K4, KD4, KT4

We can use theorems 5.8, 5.13, and 5.14 and the safe extension theorem
from exercise 3.62 to prove this. For example, let us show that the
principle holds for K.

We argue contrapositively. Suppose that not Fx A foreachi=1,...,n.
Then by theorem 5.8 each A, is false at some world «; in the proper
canonical standard model # = (W, R, P) for K. Let « be a world not
in #, and define the standard model ## = (W#, R#, P*) as follows.

(1) W# = Wy {a.
(2) R¥ = Ru{{a,o):i=1,...,n}.
(3) P# = P,

Then ## is a safe extension of .#. So by the safe extension theorem each
A, is false at a; in ## as well. But aRe, for each &;. So each []A,fails at
a«, which means that [JA, v ... v [JA,, is false at «. By theorem 5.14, not
F TJA, V ... v [JA,, which is what we wished to prove.

The arguments for KD, KT, K4, KD4, and KT4 are left to the reader.
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The idea in each case is to define for the system’s proper canonical
standard model a safe extension that has the desired properties. (Indeed,
a single safe extension can be defined that will do the job for all the cases,
including K.)

The remaining systems in figure 4.1,

KB, K5, KDB, KD5, K45, KD45, KB4, KTB, KT5,

do not have the rule of disjunction. For KB, K5, KD5, K45, KD45,
and KB4 this was shown in exercise 5.10 (let # = 1 in the rule). The
cases of KDB, KTB, and KT are for the reader; it may be helpful to
recall that G is a theorem of each of these logics.

5.33. Consider again the following rules of inference.

OA—-[B CA-> OB
A->B A—>B

By the results of exercises 4.13 and 4.16, these rules are present in K
and KD.

(a) Prove that KB, K4, K5, KDB, KD4, KD5, K45, KD45,
KB4, KTB, KT4, and KT5 do not have these rules.

(b) Prove or disprove that KT has these rules.

5.34. Consider again the following rules of inference.

[JA<[JB OAo OB
AB AoB

By the results of exercises 4.13 and 4.61, these rules hold in K and KD.
In which of the other systems in figure 4.1 do these rules hold?

5.35. Referring to the discussion in section 2.8, use theorems 3.18 and
5.15 to prove that the system S5 (KT9) is decidable.

5.5. KGFktmmn

In section 3.3 we introduced the schema
Gk,l,m,n_ OleA—) Dm OnA

and the property of k,[,m,n-incestuality for a standard model .# = (W,
R, P): foreverya, §,and y in .#,

if a R%( and aR™y, then for some § in .#, SRS and yR"S,
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all where &, I, m, n > 0. In virtue of theorem 3.8, the modal logic
KG¥mnis sound with respect to any class of &,/,m,n-incestual models. In
this section we show that any normal KG*:mn-system is complete with
respect to the class of k,/,m,n-incestual models, by proving that the
proper canonical standard model for such a system is k,/,m,n-incestual.
These results yield determination theorems for an infinite class of normal
modal logics, including the systems covered in the preceding section. We
begin with the following theorem.

THEOREM 5.16. Let M = (W, R, P) be the proper canonical standard
model for a normal system . Then for every o. and f in M and
every k > 0:

(1) aR¥Biff {A: [*Aea} < B.
(2) aRkBiff {OFA: Aef} < a.

Proof. Assume that .# is the proper canonical standard model for a
normal system =. We give the proof for (1) only; (2) follows from (1)
by theorem 4.29 (2). Where k& = 0, (1) means that

aRBiff {A: [PAea} < 6,
which just amounts to
a=pfiffac f

(by definitions 3.6 (1) and 2.3 (1)). And this is obvious: for if « < £, then
f cannot properly include @ without being inconsistent; so o = B
(compare exercise 2.46). This establishes the basis of an induction. Next
we make the inductive hypothesis that (1) holds for every number up to
and including some number % — so that for every « and £ in .#,

aRkBIf{A: [T*Aea} <= B
— and show from this that

aRFIB T {A: (A ea} < 4.
Thus:
aR¥+14 iff for some y in #, Ry and yR*f
— definition 3.6(2);
iff for some 7y in A, {A:[JAea} < vy and
{A:*Aeyic B
— definition 5.9 and the inductive hypothesis;
iff {A: J¥t'Aealc B
— theorem 4.31.
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This completes the inductive part of the proof, and hence the proof
itself.

THEOREM 5.17. The proper canonical standard model for a normal
KG¥mnosystem is k,lm,n-incestual, for every k,l,m,n > 0.

Proof. Let £ be a normal KG¥*.™»-system. By theorem 5.16 and
Lindenbaum’s lemma the property of k,/mn-incestuality for the
proper canonical standard model for Z can be expressed as: for every
X-maximal set of sentences «, 8, and v,

if {O¥A:Aeflcaand{A: J"Aea} c v,
then Cong{A: [J'AeSIU{A: ["A ey}

The proof is a simple generalization of that at the end of the preceding
section for the case in which & = / = m = n = 1. Briefly, we assume that

{OF¥A:Aeflcaand {A: [J™Aeca} < v,
but also that
Cong{A: [JAep}U{A: O"A ey}
(and argue to a contradiction). From the latter assumption it follows that
F(BiA ... AB)—(CiA ... AC)),
and from this by RK* (theorem 4.6) that
Fo(O'ByA ... AOB)— 1" HCiA ... ACY),

where [1'B,, ..., [I'B; are in B, and [J*C,, ..., (J*C; are in 7. Hence £
contains [ 71(C A ...AC;), and so (by the initial assumption) *[]F
1(Ci A ... AC;) belongs to a. But a contains the instance

OFONCLA ... AC)—>[" O I(CyA ... AC))

of G¥+mn, So (™ O*(Cy A ... A C;) is a member of &, and hence (by the
initial assumption) O*1(CyA...AC)) is in y. Using Df[J* (theorem
4.6) we see that y contains 71 J*(C, A ... A C;). However, note that by
RK¥ on a tautology,

F(C17CyA .. A [07C;)— CI(Cy A ... A Cy).

So since y contains each conjunct of the antecedent, y also contains
CO™MCyA ... A Cy). Contradiction.
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EXERCISES

5.36. Formulate and prove determination theorems for some normal
modal logics not in figure 4.1 that are covered by KG*Amn,

5.37. Let 4 = (W, R, P) be the proper canonical standard model for a
normal system X. Prove:
(a) A is secondarily reflexive if X contains U.
(b) A is reverse secondarily reflexive if £ contains OT —
(OA—A).
(See exercise 3.51.)
5.38. Let # = (W, R, P) be the proper canonical standard model for a
normal system X, and consider the conditions in exercise 3.52. Prove:
(a) A satisfies condition () if Z contains [J/( O¥(J'A— [J™ O™A).
(b) A satisfies condition (b) if X contains OIT — (OFJA —
™ OrA).
Note that the results in exercises 5.27 and 5.37 are corollaries of these.

5.39. Prove that for each & > 0 the system KP¥is determined by the class
serial standard models. (See exercise 3.49 and theorem 4.13.)

5.40. For % > 0 formulate and prove a determination theorem for the
system KP* (Pk = 71OFT).

5.41. Let # = (W, R, P) be the proper canonical standard model for a
normal system X, and consider conditions (h*+), (hT), and (h) in exercise

5.3. Prove:
(a) A satisfies (h*7) if 2 contains H*.
(b) A satisfies (ht) if & contains H.
(¢) # satisfies (h) if = contains H.

(See exercise 4.56 for some alternatives to H++, H*, and H.)

5.42. With reference to results in section 3.4 and exercises.5.3 and 5.4,
prove:
(a) Every generated reflexive transitive standard model that
satisfies (h**), (ht), or (h) is connected (and hence strongly
connected).

(b) The system S£.3 is determined by the class of reflexive
transitive standard models that are connected (and hence
strongly connected).
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5.43. Prove that the system KD4H is determined by the class of serial
transitive connected standard models.

5.44. Prove that the system S£.7 of exercise 4.58 is determined by the
class of reflexive transitive standard models that satisfy the condition
given in exercise 5.6. To do this it may be helpful first to prove that for
every n > 0 the schema

C(OA~>DAYA .. A (OA,~>[TA,))

is a theorem of .S4.1. Then show that where is any normal extension
of S4.1 the proper canonical standard model A = (W, R, P) for ¥
satisfies the condition in exercise 5.6, (For this, begin by arguing that
for any « in .# the set

{A:JAe}U{QA>[JA: Aisa sentence}

is X-consistent.)
Prove also:

(@) K4G, is determined by the class of transitive standard models
that satisfy the condition in exercise 5.6.

(6) The normal extension of K obtained by taking the schema
above as a theorem for every n > 0 is determined by the class
of standard models that satisfy the condition in exercise 5.6.

Indeed, (a) and (b) may be used as lemmas in the proof of the determina-
tion theorem for S4.1.

5.45. Prove:

(2) KB, is determined by the class of standard models that satisfy
condition (a) in exercise 3.39,

(b) K5, is determined by the class of standard models that
satisfy condition (3) in exercise 3.39.

5.46. Investigate the status of the rules (@)~(f) in exercise 4.13 and the
rule of disjunction in exercise 5.32 with respect to normal modal logics
other than those in figure 4.1. (For example, compare KU and K plus
OT—>(OA—A))

5.47. Consider the modal logics determined by the classes of models
described in exercises 3.14 and 3.15. Describe axiomatizations for these
logics (they are non-normal), and adapt the techniques of the present
chapter to prove determination theorems for them.



5.5. Exercises 187

5.48. Investigate the construction of non-proper canonical standard
models for normal systems (consider extensions of K4).

5.6. Decidability

A system of modal logic is decidable, as we explained in section 2.8, if it
is axiomatizable by a finite number of schemas and has the finite model
property. In this section we show that the fifteen systems in figure 4.1
are decidable, by proving that each is axiomatizable by finitely many
schemas and has the f.m.p.

THEOREM 5.18. Each of the fifteen normal systems in figure 4.1 is axio-
matizable, indeed by a finite number of schemas.

Proof. Tt is sufficient to observe that in each case the logic can be
axiomatized by finitely many schemas together with the reasonable rules
RPL and RK.

We obtain f.m.p. results for the logics in question as a corollary to the
next two theorems.

THEOREM 5.19. K is determined by the class of finite standard models.

Proof. Soundness follows from theorem 5.12. For completeness,
suppose that A is true in every finite standard model, and let I be the set
of subsentences of A. Then A is true in every I-filtration of any standard
model, since these are all finite. By theorem 3.17 it follows that A is true
in every standard model, and by theorem 5.12 this means that A is a
theorem of K. To put the argument again, contrapositively, suppose A
is not a theorem of K, so that by theorem 5.12 A is false in some standard
model # (for example, the proper canonical standard model for K). Let
A* be a Ifiltration of .#, where I is the set of subsentences of A. Then
A* is a finite standard model, and by theorem 3.16 A is false in .#™.
Stated in this way it is readily seen that K has the f.m.p.: every non-
theorem of K is false in a finite model of K.

TuEOREM 5.20. The fourteen normal systems beyond K in figure 4.1 are
determined by the classes of finite standard models indicated in
figure 5.1.

Proof. Soundness in each case is a consequence of theorem 5.14. The



188 Determination and decidability for normal systems

completeness of all the systems except K5 and KD5 may be proved
using theorems 3.19 and 3.20. For example, let us show that K7B (the
Brouwersche system) is complete with respect to the class of finite
standard models that are reflexive and symmetric. Suppose A is a non-
theorem of KTB. Then by theorem 5.14 A is false in a reflexive sym-
metric standard model .#. Let I" be the set of subsentences of A, and let
A* be a symmetric ['filtration of .# defined as in part (1) of theorem
3.20. Then #* is finite, and by theorem 3.19 it is reflexive. So by theorem
3.16 .4* is a reflexive symmetric finite standard model in which A is false.

For K5 and KD5 we use theorems 3.19 and 3.21. Let us give the proof
for K5, by way of illustration. Suppose A is not a theorem of K5, so that
by theorem 5.14 it is false in some euclidean model .#. Let ' be the
modal closure of the set of subsentences of A, and let .#* be a coarsest
I'-filtration of .#. Now observe that I" is logically finite relative to .#.
For by theorem 4.23 K5 has only finitely many modalities, and so since
the set of subsentences of A is finite and .# is a model of K35, every
sentence in I'is .#-equivalent to one or another of finitely many sentences
in I'. Thus .#* is finite, and by theorems 3.16 and 3.21 it is a euclidean
standard model in which A is false.

This concludes the proof. We leave as exercises the details of the
arguments for the remaining systems.

"The corollary to theorems 5.19 and 5.20 is worth stating formally.

‘THEOREM 5.21. Each of the fifteen normal systems in figure 4.1 has the
finite model property.

And as a corollary to theorems 5.18 and 5.21 we have our final theorem.

'THEOREM 5.22. Each of the fifteen normal systems in figure 4.1 is decidable.

In closing, let us point out a certain limitation to the methods used in
the proof of theorem 5.20. As we showed in section 3.6, a filtration of a
euclidean model through an arbitrary set of sentences (closed under
subsentences) need not yield a euclidean model. So to prove theorem
5.20 for K5 we had to pick a more special set of sentences to get a finite
euclidean filtration. Because K5-systems have only finitely many distinct
modalities, we had recourse to filtrations through modally closed sets of
sentences. (Indeed, this device is apt for all the systems in figure 4.1 in
which the number of distinct modalities is finite.)

But consider the system KG, which is determined by the class of
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incestual standard models (section 5.4). There is no easy access, along
the lines of the proof of theorem 5.20, to a proof that KG is determined
by the class of finite incestual models. For a filtration of an incestual
model through an arbitrary set of sentences closed under subsentences
is not always an incestual model (exercise 3.75); and KG has infinitely
many distinct modalities (exercise 5.17). We leave it to the reader to try
to show the decidability of KG by finding appropriate filtrations for

incestual models.

EXERCISES

5.49. Give the details of the proof of theorem 5.20 for the systems other
than K, KTB, and K5 in figure 4.1 (compare exercise 3.74).

5.50. Prove the decidability of the normal extensions of K, KD, KB,
and K4 obtained by adding U or { T —([JA—> A) as theorems.

5.51. Try to prove the decidability of KG by defining suitable filtrations
for incestual models.

5.52. Prove the decidability of some normal systems other than those
mentioned in theorem 5.22 and the preceding two exercises.



6

DEONTIC LOGIC

In this chapter we introduce an operator O to represent the deontic
concept of obligation. (In order not to beg any important questions, we
do not — except for a single exercise — consider a correspondingly dual
operator P for the deontic concept of permissibility.) In section 6.1 we
present what we call standard deontic logic, and in section 6.2 we examine
some further principles that have been suggested. In section 6.3 we
discuss the role of time in the determination of obligations, and we
introduce temporal concepts into the language and into the models for
it. Section 6.4 contains a theorem about past tense obligations. Finally, in
section 6.5 we point out some shortcomings with respect to the adequacy
and correctness of the analysis of deontic logic in terms of normal systems
and standard models.

The purpose of this chapter is illustrative: we wish to show how
standard models and normal systems can be employed in the analysis of
philosophical questions. The reader must judge the merit of the endeavor,
as well as the extent of its success.

6.1. Standard deontic logic

Into the language of propositional logic we introduce sentences of the
form OA, meant to express propositions of the form it ought to be the
case that A, or it is obligatory that A. Thus the operator O represents a
concept of deontic necessity.

By standard deontic logic we mean the system D* based on propositional
logic and axiomatized by the rule of inference

(Ajn . AA)—~A
(OA A ...AQA,)—> QA

and the single schema
OD*. 1(OAAQO7TA).

ROK. (n > 0)
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'Thus D* is the smallest normal KD-system for O (the axiom OD* being
the counterpart of O[] in theorem 4.12).

The import of ROK is clear: obligation is closed under consequence,
in the sense that a proposition is obligatory if it is a consequence of
obligatory propositions. The import of OD* is simply that conflicts of
obligation are impossible, that there are no propositions that are jointly
impossible but both obligatory.

A review of theorems in chapter 4 will reveal a number of theorems
and rules of inference of D*. In particular, it can be seen that the system
is equivalently axiomatized by the rule

A—B

ROM. m

together with the following schemas.

OC. (OAAOB)—>O(AAB)
ON. OT
OD. 101

On the basis of propositional logic, ROM, OC, and ON are collectively
equivalent to the rule ROK (compare theorem 4.3 (3)). The import of
OD (the counterpart of P[] in theorem 4.12) is that nothing impossible
is obligatory. This is a version of the principle that ought implies can,
and it may be distinguished from OD*, which more generally rules out
pairs of obligations the contents of which are logically incompatible. We
return to this point in section 6.5.

From the determination theorem for KD in chapter 5 it can be seen
that D* is determined by a class of standard models in which the relation —
of ‘deontic alternativeness’ — between possible worlds is serial. Thus
standard deontic logic is determined by the following account of the
meaning of O.

Relative to each possible world, including our own, there is a non-
empty class of possible worlds that are deontic alternatives to the given
world. A sentence of the form QA is true at a possible world just in case
A is true at each of the world’s deontic alternatives. Alternatively, one
may picture the set of deontic alternatives to a world functioning
collectively as a proposition that represents a standard of obligation: the
proposition expressed by OA holds at a world if and only if the pro-
position expressed by A is entailed by the standard of obligation for the
world. (Compare exercises 3.13 and 3.29.)

It is the axiom OD* (equivalently OD) that guarantees the existence
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of deontic alternatives — of a non-vacuous standard of obligation — for
every possible world. Next we examine some further schemas that have
been suggested as theorems of deontic logic, and assess them in terms of
their implications for the structure of the relation of deontic alter-
nativeness.

EXERCISES

6.1. Referring to theorem 4.12, verify that D* is the smallest normal
K D-system for O (ignore the lack of a counterpart to ¢ in the language).

6.2. Check that the two axiomatizations of D* given in section 6.1 are
equivalent, i.e. that they generate the same set of theorems. (See
especially theorems 4.3 and 4.12.)

6.3. Formalize the idea of ‘standards of obligation’ in terms of models
of the kind described in exercises 3.13 and 3.29,

6.4. The schema OD* is described as expressing the principle that there
are no propositions that are jointly impossible but both obligatory. This
suggests the following rule of inference in D*.

A—-"B
OA—-"10B

Derive this rule. Then use it to derive QD*,

6.5. The sentence OD is described as expressing the principle that
nothing impossible is obligatory. This suggests the following rule of
inference in D*.

A
10A
Derive this rule using only propositional logic, ROM, and OD. Then

use propositional logic and the rule to derive OD.

6.6. Introduce a permissibility operator P into the language and a

theorem
PAo107A

like Df $ into D*. How plausible are the theorems that result (OA — PA,
for example)?
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6.2. Further principles

By deontic S5 is meant the normal extension of standard deontic logic
obtained by adding as theorems the counterparts for O of the schemas
4 and 5, which we may put as follows.

04. OQA—>QO0A
05. T0A->0O0A

Technically, deontic S5 is the system KD45 for O, determined by the
class of standard models in which deontic alternativeness is a serial
transitive euclidean relation. So the import of deontic S5 is that for each
world there is a (non-empty) collection of ‘best of all possible worlds’
that form the world’s standard of obligation — best in the sense that this
standard holds as well for all the worlds within it.

Deontic S5 seems too strong to capture the idea of obligation in the
moral sense, though it may be appropriate to weaker notions of obligation
such as that expressed by sentences in the imperative mood. So let us
examine the import of 04 and O5 individually.

The axiom O4 is not altogether implausible. It is this principle that
makes deontic alternativeness transitive, and thus makes possible the
interpretation of the relation as leading to worlds that are in some way
better from the standpoint of obligation. O4 means that what is obligatory
at a world continues to be so at the world’s deontic alternatives. So it
rules out the possibility, for example, that some of the deontic alter-
natives to our world should have for themselves standards of obligation
that are unrealistically high, perhaps utopian, from our point of view.

05, on the other hand, does appear to be unreasonable. Reading
(O™ as expressing permissibility, for example, O5 implies that what
is permissible ought to be permissible. Hence we should look for some
system weaker than deontic 59.

One direction in which the system can be weakened is by replacing
05 by the deontic counterpart of U:

OU. O(OA—A)

Note that OU is a theorem of deontic S5, indeed follows from O5 given
ROK and propositional logic (compare exercise 4.38). The schema
expresses the thesis that it ought to be the case that whatever ought to
be the case be the case. It is a much discussed principle in deontic logic,
because it is one of the few plausible cases of a theorem of the form OA
in which A is non-trivial (compare ON for example).

Semantically, OU means that the relation of deontic alternativeness is
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secondarily reflexive — deontic alternatives to a world are always deontic
alternatives to themselves. But this condition has the following perhaps
untoward consequence: if there are any unfulfilled obligations, then ours
is one of the worst of all possible worlds. For suppose that for some A
both QA and 1A are true. Then our world cannot be a deontic alter-
native to —cannot contribute to the standard of obligation of - any
possible world (for at all deontic alternatives QA — A is true). Thus ours
is not among the better worlds relative to any world; no world is worse
than our own.

The significance of OU, then, is that since what is not obligatory is not
the case in some deontic alternative, it cannot be obligatory in that
deontic alternative. That is, if OA is false, then, since A is false in some
deontic alternative, QA cannot be true there.

Given the pessimism implied by this construal of deontic alternative-
ness, a more reasonable contention might be that since what is not
obligatory is not the case in some deontic alternative, it cannot be
obligatory in every deontic alternative. That is, one might argue the
weaker conclusion that if QA is false, then, since A is false in at least one
deontic alternative, QA cannot be true in all.

This weaker assumption is equivalent to the condition that the relation
of deontic alternativeness be dense, i.e. that every deontic alternative is
a deontic alternative to a deontic alternative (possibly, but not necessarily,
itself). This at least has the merit that our world can have unfulfilled
obligations without being at the bottom of the scale of standards of
obligation.

Density as a condition on deontic alternativeness validates the schema

O4.. OQA-— (A,

which is implied (given ROK and PL) by OU, just as secondary reflexivity
implies density (compare exercises 3.58(c) and 4.33(b)).

Thus it appears that standard deontic logic might be strengthened by
the addition of a reduction law,

O4l. QA< QO0A,

for the operator O. (Note in this connection that from the standpoint
of modalities the normal extension of D* obtained by adding O4 and
O4. is equivalent to that obtained by adding O4 and OU; compare
exercise 4.65.) We leave it for the reader to judge.
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EXERCISES

6.7. Describe the conditions on the ‘standards of obligation’ models
M =W, f, P) of exercise 6.3 that are required for the validity of the
schemas O4 and O5 (as well as OD or OD¥).

6.8. What is the effect on the set of valid sentences if ‘best of all possible
worlds’ is construed as singular, i.e. if f() is required always to be a
singleton set in models .# = (W, f, P) for deontic logic? That is, what
is the significance of this constraint for the idea of a standard of obliga-
tion? (Exercises 4.52, 5.5, and 5.26 may be helpful.)

6.9. Let D¥, D¥, and D¥ be the smallest normal extensions of D* con-
taining, respectively, O4 and O4., O4 and OU, and O4 and O3 (thus
D# is deontic S5). Prove that

D* < D* < D¥ < D¥.

Each of the systems D¥, D¥, and D¥ has only finitely many distinct
modalities (constructed from -, 71, and Q). Identify these modalities
and the implications among them. (There are relevant results in sections
4.4 and 5.2.)

6.10. Prove that D* has the rule of inference

OA
A ’
which means, roughly speaking, that there are no logically true statements
of obligation with non-trivial content. Which of the systems D¥, D¥, and
D¥ in the preceding exercise have this rule? (Exercise 5.32 is relevant
here.)

6.11. Which of the deontic logics discussed in sections 6.1 and 6.2 are
decidable?

6.12. Examine some further schemas containing O with a view to their
plausibility as theorems of deontic logic.

6.3. Obligation and time

Obligations arise and pass away as a function of circumstances. In
particular, what is obligatory at a possible world varies from time to
time. Some obligations endure, of course, but others are merely transient.

To this point we have analyzed the logic of obligation in terms of
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standard models .# = (W, R, P) in which R is a serial relation of deontic
alternativeness. But these models do not reflect the dependence of
obligation on time. To remedy this, we shall modify the models so as to
recognize explicitly the role of temporal parameters in the determination
of obligation. What follows is but one way of accomplishing this — there
are others — but it gives a striking result about what we call ‘past tense
obligations’.

Let us think of time as a set of discrete moments, ordered in a linear
way, without end in past or future. Then time can be represented by the
set of integers,

Z={.,—-10+1,..}

and the relations of earlier and later are represented by < and >.

Since we wish to regard possible worlds as time-stretched, let us
construe a possible world as a function on Z into an otherwise unspecified
set of momentary world-states. Assuming this much, we can define a
relation of historical identity: worlds o and § have the same history at a
time £ — written a ~ ;8 — just in case they are identical up to t. Formally:

o~ B iff a(t’) = p(') for every t' < .

The relation of deontic alternativeness between worlds is of course
relativized to times, and it is to be constrained by the relation of historical
identity. Specifically, we insist that £ is a deontic alternative to a at a
time ¢ only if & and £ are historically identical at . Formally:

(R,) if aR.f, thena ~.f

This constraint gives voice to the view that obligations accrue to a world
as a function of events and actions that have occurred there; a world and
its deontic alternatives are merely different outcomes of their yesterdays’
events.

The evaluation of atomic sentences is also indexed by the set of times.
So B(n) is the set of worlds for which P, is true at ¢. In addition we put
the following condition on P.

(P, if a(?) = B(t), then a e B(n) iff #eFy(n)

This realizes our intention that the value of P, at a time ¢ in a world «
be a function solely of the world-state c(%).

With models .# = (W, R, P) thus revised so as to account for time,
sentences are evaluated with respect to pairs {«, ¢) of worlds and times.
In other words, we write sz, t, A to mean that A is true in « at £. The
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following are the interesting clauses of the definition of truth.
(1) k4 &, Py iff a € F(n), forn = 0,1,2, ...
(2) Fz‘f, #, OA iff for every £ in .# such that aR,f, K/ ¢, A.

Despite the temporal relativization of the models, nothing changes in
the logic of O : the valid sentences are just as they were before (valid now
means true at every point {a, ¢) in every model). So, on the assumption
that deontic alternativeness is serial at every moment, we still have
standard deontic logic, D*,

The effect of the new modeling emerges more clearly, however, if we
introduce into the language two further operators, [ and <>, to express
notions of historical necessity and possibility. Then we add to the truth
definition the following clauses.

(3) k4, ¢, DA iff for every fin .4 such that @ ~ B, £ 1, A.
4) k4 . O A iff forsome fin # suchthato ~ 8, F4 5 A,
@t A%

In other words, [JA holds at a world and time if and only if A holds at
all worlds having the same history as the given world at that time, and
<> A holds just in case there is some such world at which A is true.

Since ~,1s an equivalence relation for each time ¢, the logic of [ and
& is at least S5 (i.e. KTH; compare theorem 5.14). The following
validities are representative of the interaction of the operators [, <,

and O.

(a) DA-> QA

(b)) OA->CA

(c) JA- QDA

(@) CAOOA
The first of these corresponds to condition (R,). The second, it should
be noted, is another, stronger version of the thesis that ought implies
can; it 1s a consequence of (R;) and the timewise seriality of deontic
alternativeness. According to the last two schemas, statements of obli-
gation are deontically vacuous when they concern what is historically
necessary or possible — vacuous in the sense that the deontic sentences

are equivalent to their contents.
Let us define the operator © as follows.

OA = AV DA

This operator expresses a notion of historical determinacy. Given a
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possible world and time, (A means that the proposition expressed by A
either holds at every world having the same history or fails at all such.

The point of introducing © is to give succinct expression to the fact
that historically determinate propositions are deontically vacuous. That
is, the following schema is valid.

() A= (A< QA)

This raises the question of whether there are any valid sentences of the
form ©OA. We turn to this in the next section.

EXERCISES

6.13. Verify that, for each ¢ in Z, ~, is an equivalence relation. Then
argue that the logic of [ and < is at least a normal KT5-system.

6.14. Prove the validity of the following schemas in section 6.3.
(a) DA QA
() OA—>GA
(¢) A= QOEA
(d) CA-QOA

6.15. Derive ON (O T7)and OD (110 1) from (a) and (b) in the preceding
exercise together with appropriate principles for [ and .

6.16. State formally the truth conditions for sentences of the form ©OA.
6.17. Prove the validity of the following schemas.

QA-OTA QA-(TA-O7A)
6.18. Using the schema

() OA->(AwOA)

together with principles for [ and <, derive schemas (¢) and (d) in
exercise 6.14,

6.4. Past tense obligation

Let us add to the language operators [P], (—), and {(P). The members
of this trio correspond to simple past tense constructions, with readings,
respectively, 1 always was the case that, at the moment just past it was the
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case that, and it (at least) once was the case that. Formally, these operators
are evaluated as follows,

(1) FZ4 & [P]A iff for every ¢ in Z such that ' < ¢, Eda A
(2) B o (<A, o A,

(3) k& ¢, (P)A iff for some ¢’ in Zsuch that ¢’ < ¢, ko A

At the end of the last section we asked whether there are any valid
sentences of the form (©A, i.e. whether there are any valid historically
determinate propositions. With the introduction of the operators [P],
(—), and (P), the answer is affirmative.

By ® let us understand any genuine past tense modality, i.e. any
finite, non-empty sequence of the operators [P], (—), and (P). Then
where A contains no occurrences of [, &, and O, the sentence

O®A

is valid. That is to say, pure past tense sentences are historically deter-
minate,

Without going into the details of a full proof, we can illustrate this
claim by showing the validity of the simple sentence

O(=)P,.

For this it is enough to prove that, for any pair {«, ¢} in a model

M = (W, R, P),if

(@) k% e, (—)P, for some £ in A such that @ ~, 3,
then
(6) E4, 6, (—)P, for every v in .# such that & ~ .

So assume (a). Then
Fzﬁ,t_b P, for some B in .# such that & ~, 8,
which means that for some £ in .# such that a ~, §,
peP_,(0)

To show (b), let v be a world in .# such that & ~,v; it is sufficient to
argue that y e F,_,(0). But since t—1 < ¢, f(¢—1) = y(¢t—1), and so by
condition (P,) in the preceding section,

B eP,,(0) iff y eB_,(0).

From this the conclusion follows at once.
Given the historical determinacy of pure past tense propositions and
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the deontic vacuity of historically determinate propositions ((e) in the
preceding section), we see that pure past tense propositions are always
deontically vacuous. In other words, where A is devoid of [, <»,and O,
the sentence

®A- O®A

is valid. According to this, present obligations concerning past events
cannot have any deontic force: ‘You ought (now) to go to the zoo
yesterday’ means no more than ‘ You went to the zoo yesterday’.

EXERCISES

6.19. Describe some principles about past tenses, i.e. some valid sentences
involving the operators [P], (—), and (P).

6.20. Prove the validity of the following ‘induction schema’ for past
tenses.

(=)AA[P}(A>(-)A)—~[P]A

6.21. Examine some more instances of ©®A (where A does not contain
[, &, or Q) and show their validity. Explain how a general proof of the
validity of this schema might proceed.

6.22. Introduce into the language operators [F], (+), and (F) with
evaluations as follows.

(1) k% o [FlAiff for every ' in Zsuch thatt’ > £, FZ . A.

(2) B, (HAMEEL ¢ 0 A

(3) k&t KFYA iff for some ¢ in Z such that ¢ > ¢, ey A

Identify some validities involving these ‘future tense’ operators. What is
valid when these are mixed with [P], (—), and {P)?

6.23. Using the operators introduced in the preceding exercise, as well
as the rest, formulate a principle of fatalism — ‘What will be will be’.

6.5. Shortcomings

There are two important criticisms of standard deontic logic and its
account of obligation. One raises doubt about the adequacy of the
analysis; the other calls into question its correctness.

The doubt about adequacy concerns the expression of conditional
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obligation. Some obligations seem to be unconditional. For example,
you ought not to cough during the concert. But if you do, you ought to
apologize. The obligation to apologize is conditional on having coughed.
Let us represent the conditional obligation of B given that A by a
sentence of the form
O(B/A).
The question then is whether this form is definable in terms of O and
other familiar operators. The obvious suggestions for a definition are

A—- (OB,

O(A—B),
and
C(A—~> OB),
where [] expresses some suitable notion of necessity.

But all these fail. The first makes O(B/A) true whenever A is false or
OB is true. The second makes O(B/A) true whenever O 1A or OB is.
And all three have the unwanted consequence that if O(B/A) is true so is
O(B/A A A’), where A’ is any additional condition whatsoever.

So it seemns that the operator O( /) is either primitive — i.e. genuinely
novel — or definable only by means at present beyond ours. We return
to this matter in chapter 10.

The criticism touching on the correctness of standard deontic logic
has two parts.

First, by ROK, QA isatheorem if A is. So the logic is committed to the
view that obligations always exist, however trivial they may be (compare
ON). But it seems reasonable to assume that there exist possible worlds
(presumably very unlike our own) at which nothing at all is obligatory.

Second, and more serious, is the question of the correctness of the
theorem

OD*. 1(OAAOTA).
Tt is a matter of controversy whether deontic logic should thus rule on
the question whether contrary obligations QA and Q1A are always
inconsistent. Indeed, it is arguable that the possibility of such conflict is
a main feature of some concepts of obligation, that it is often this, for
example, that gives moral dilemmas their poignancy.

The difficulty is that OD* is a theorem of any normal system for O
in which the sentence

OD. 10.L
is a theorem. But OD is relatively uncontroversial, since it merely denies
the existence of impossible obligations.
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There 1s a more persuasive point to be made here. In any normal
system for O the deontic theses OD and OD* are equivalent — in the
strong sense that their biconditional,

10 Lo (OAAQTA),

is a theorem. Semantically, this means that in any standard model the
propositions expressed by OD and OD#* are identical: there is no way
to distinguish the principle that ought implies can from the principle that
conflicts of obligation cannot exist.

To the extent that the propositions expressed by OD and OD* are
indistinguishable, so that OD cannot be a theorem without OD*, the
analysis of deontic logic in terms of normal systems and standard models
is a failure.

If we examine the axiomatization of D¥* in terms of ROM, OC, ON,
and OD, in section 6.1, we can extract a weaker, more plausible system
of deontic logic — to wit, the system formed on the basis of propositional
logic by ROM and OD. Let us call this minimal deontic logic, or simply D.

By adopting ROM we accept the principle that obligation is closed
under implication — that a proposition is obligatory if it is implied by an
obligatory proposition. And, of course, OD rules out obligations that are
impossible simpliciter.

By abandoning ON we give up the view that obligations are present at
every possible world. By rejecting OC, on the other hand, the assumption
of the uniqueness of a world’s standard of obligation falls away. And
without this there is a no implication from OD to OD*.

The system D is not normal, and models for it cannot be standard.
So we must seek more subtlety in our semantic and proof-theoretic
analyses of modality generally. This is the point of the chapters that
follow.

EXERCISES

6.24. With regard to the suggested definientia for O(B/A),
A-> OB, O(A—B), (J(A-— OB),

prove:

(@) The first makes O(B/A) true if A is false or OB is true.
(b) The second makes O(B/A) true if either O 1A or OB s.

(¢) For all three, if O(B/A) is true then so is Q(B/AAA).
(Assume the logic of [] is normal.)
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6.25. Prove that the schema
TOL«T(OAAQTA)
is a theorem of any normal system for O. (Compare exercise 4.7.)

0.26. Using the result in the preceding exercise, explain why the pro-
positions expressed by OD and OD* are the same in any standard model.

6.27. By retaining the rule ROM in the system D we embrace the
theorem

OA-O(A vV B).

(Prove this.) This means that the inference from ‘You should post this
letter’ to ‘ You should post or burn this letter’ is correct. Is this defensible?

6.28. Describe a class of models of the kind in exercise 3.14 with respect
to which the system D is sound. Describe countermodels in this class for
ON and instances of OC and OD*.
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7

MINIMAL MODELS FOR
MODAL LOGICS

The truth conditions for modal sentences in minimal models are a
generalization of those in chapter 3. Possible worlds continue to figure
in the semantic analysis of necessity and possibility, but the meanings of
modal sentences are given a much simpler account. A necessitation [JJA
is said to be true at a possible world just in case the proposition expressed
by A is in a certain but very general sense necessary with respect to the
world; and QA is true at a world if and only if the proposition expressed
by A is, in a corresponding sense, possible. The resulting notion of
validity is such that far fewer principles hold generally on this account
than did in chapter 3.

In section 7.1 we set out the definition of a minimal model, state the
truth conditions of modal sentences, and prove the basic theorem about
validity in classes of minimal models. In section 7.2 we examine M, C,
and N from the standpoint of minimal models and define some key
concepts for the treatment of certain logics involving these schemas.
Section 7.3 contains a theorem to the effect that standard models can be
identified with minimal models of a special kind. Section 7.4 briefly
describes conditions on minimal models sufficient for the validation of
the schemas D, T, B, 4, and 5. In section 7.5 we introduce the idea of
filtration for minimal models and state some theorems that we use at the
end of chapter 9 to prove determination theorems.

7.1. Minimal models

A minimal model is a structure

M ={(W,N, P)
in which, as before, W is a set of possible worlds and P gives a truth
value to each atomic sentence at each world. The new component, N, is a

function that associates with each possible world a collection of sets of
possible worlds. Formally:
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DEFINITION 7.1. A4 = (W, N, P) is a minimal model iff:

(1) Wis a set.

(2) N is a mapping from W to sets of subsets of W (ie.
N, € #(W), for each world @ in W).

(3) P is a mapping from natural numbers to subsets of W (ie.
P, = W, for each natural number 7).

Once again, as we indicated in the introduction, the idea of this
modeling is that each possible world & in a minimal model.# = (W, N, Py
has associated with it a set N, of propositions that are in some sense
necessary at . Since we shall identify a proposition in .# with a set of
possible worlds in .#, N, becomes a collection of subsets of . It must
be emphasized that N, may be any collection of propositions, including
the empty collection; we make no assumptions about the nature of N
except that it be a function from W to 2(#(W)). This point will be
better appreciated when we describe some minimal countermodels to
familiar schemas in the next section.

The interpretation of the necessity operator in minimal models is thus
quite simple and natural: we shall say that a sentence of the form (A 1s
true at  in . just in case the proposition expressed by A - the truth
set | A]l# — is among those necessary at &, i.. is among those in NV,.

DEFINITION 7.2. Let a be a world in a minimal model .# = (W, N, P).

(1) k# [JA iff |A|# €N,
(2) B OAiff — A4 ¢N,.

Clause (2) above deserves comment. This treatment of the meaning
of the possibility operator in minimal models simply reflects our intention
that the notions of necessity and possibility be dual, in particular that
O have the meaning ~1[] 77 (as we sec in theorem 7.3 below). For clause
(2) stipulates that QA is true at o in .# just in case the denial of the
proposition expressed by A, i.e. —[A[#, is not necessary at &, ie. is
not in N,. (By —|A|# we mean of course the set W—|A|#; wherever
possible we shall use the shorter form of expression.)

By way of an example of the behavior of the function N in minimal
models, let us return to the interpretation of [] as expressing a notion of
obligation. We suggested in chapter 6 that P[], [ ].L, may be a law
of deontic logic while O[], T(TJAA J7A), is not; but we have
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observed that the biconditional of these is true in every standard model,
so that one is valid in a class of standard models if and only if the other is.
Within the framework of minimal models it is possible to distinguish the
propositions expressed by P[] and O[] and so have one valid without
the other. Specifically, consider the class of minimal models .# = (W,
N, P) such that for no o in .# does N, contain o. Then the proposition
|.L{# is contained in no NV,, and so P[] is true at every world in every
such model. None the less, there are countermodels to instances of 0o
within this class of models; we leave it as an exercise for the reader to
discover some.

For another illustration of the role of N in minimal models, suppose
(] to be a present continuous tense operator, with a reading like ‘it is
(being) the case that’. We think of the possible worlds in a minimal model
as points in time (on the real line, let us say), and for each moment & we
take IV, to be the set of open intervals around a. In this way [JA is true
at a moment « if and only if the proposition expressed by A is an open
interval around «, i.e. if and only if A is continuously true throughout
some (open) interval that contains the (present) moment a.

Let us close this section with the following theorem, which states that
the schema Df¢) is true in every minimal model, and that validity in a
class of minimal models is preserved by the rule RE.

‘THEOREM 7.3. Let C be a class of minimal models. Then.:
(1) kc OA < 1[]NA.

Proof. The proof for (1) rehearses our remarks earlier in the section.
Let a be a world in a minimal model .# = (W, N, P). Then:

QA — A ¢N,

— definition 7.2(2);
iff | A4 ¢ N,

— theorem 2.10;
iff not k¥ [171A

— definition 7.2(1);
iff E# 1]0A

— definition 2.5 (4).

Therefore, F¥ GA—107A, for every world a in every minimal
model .#.
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For (2). Suppose that Cis a class of minimal models such that F¢ A < B,
so that |A|-# = ||B|# for every 4 in C. From this it follows that for any
world « in any model # = (W, N, P} in C, |A|# €N, if and only if
| B|# € N,. So foi any « in any .# in C, F;¥ [JA if and only if k¥ [1B,
which means that k- [JA <> []B.

Theorem 7.3 provides (as the discerning reader no doubt suspects)
the basis of the soundness results for the classical modal logics introduced
in the next chapter. Indeed, as we shall see, the theorem means that every
class of minimal models determines a classical modal logic.

EXERCISES

7.1. Show that each of the following can be falsified in minimal models.
M. OAAB)-([JAA[B)
C. (OAADOB)=[(AAB)
N. dt
7.2. Falsify an instance of O[]- (TJAA [J7A) - in a minimal model
M = (W, N, P) for which it holds that 8¢ N, for every o in .#.
7.3. Let C be any class of minimal models. Prove:
(@) Fc A< 1O A
() If FcA- B, thenkc QA OB.

7.4. Prove that the following are valid in any class of minimal models.

(@) OT=T0L (0 OT«0L

7.5. We say that minimal models .4 = (W, N, Pyand 4" = {(W',N', P")
agree on the atoms of A just in case (i) W= W', (i1)) N = N’, and (i11)
P, = P, whenever P, is an atomic subsentence of A. Prove that if .#
and .#"' agree on the atoms of A then they agree on A, in the sense that
E# A if and only if F;# A for every a in 4. ('The proof is by induction
on the complexity of A. Give it at least for the cases in which A is atomic,
the falsum, a conditional, and a necessitation. Compare exercise 3.4.)

7.6. Consider the following conditions on a minimal model .# = (W,
N, P, for every world o and proposition (i.e. set of worlds) X and ¥
in. 4 :

(m) if Xn YeN, then XeN, and YeN,

(¢) if XeN,and YeN,, then XnYeN,

(n) WeN,
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Prove that the schemas M, C, and N are valid in classes of minimal
models satisfying, respectively, conditions (m), (c), and (n).

7.7. For a minimal model # = (W, N, P) inductively define N so that
for every o in .# and every natural number #:

(@) F# O A iff |A|#4 eNZ.

(B) K O"A I — | A4 ¢ N2
Then prove (a) and (4) (by induction on ).
7.8. Let # = (W, N, P) be a minimal model, but suppose the truth
conditions of modal sentences are given like this:

(a) B OAiff |A|# eN,.

(8) b DA - A4 ¢,
Prove theorem 7.3 and (a) and (b) in exercise 7.3, using these truth
conditions. What difference, if any, is there between the systems of modal

logic determined by the class of all minimal models under the different
ways of evaluating modal sentences?

7.9. Let # = (W, N, P) be a2 minimal model, but suppose truth con-
ditions for necessitations are given by:

E# A iff for some XeN,, X < [|Al#.

So to speak, [(JA is true at « in .# if and only if there is a proposition
necessary at  that entails the proposition expressed by A in .#.

(a) State truth conditions for possibilitations so that Df{ is
valid in any class of minimal models.

(b) Let C be any class of minimal models. Prove that if Fc A— B,
then k< [JA—> [B.

(¢} Prove theorem 7.3, relative to the revised truth conditions for
modal sentences.

(d) Which, if any, of schemas M, C, and N are valid in the class
of minimal models, given the revised truth conditions?

7.10. Consider a model .# = (W, f, P) in which W and P are as usual
and f is a mapping from propositions to propositions (i.e. for any set X
of worlds in .#, f(X) is a set of worlds in .#). Relative to a world « in
# we define the truth conditions for necessitations by:

F# A ff a ef([[A]#).
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Equivalently we may say:
| AL = 7(|AJ#).
(a) Prove the equivalence of these formulations.

(b) Prove part (2) of theorem 7.3, where C is any class of models
of this sort.

(¢) State truth conditions for possibilitations so that Df$ is
valid in any class of such models.

(d) Given a minimal model .# = (W, N, P} we can define an
equivalent model .#’ = (W, f, P) by stipulating that for any
aand X in .#, a€f(X) if and only if X € N,. Prove that .#
and .#’ are pointwise equivalent.

(e) Given a model A = (W, f, P), define an equivalent minimal
model.#’ = (W, N, P),and prove their pointwise equivalence.

(f) Conclude from (d) and (e) that models of this new sort are
essentially the same as minimal models.

7.11. ('This exercise presupposes a knowledge of boolean algebra.) A
boolean algebra is a structure

‘@:<B) 1)07 — My U>

in which B is a set containing 1 (the unit element) and 0 (the zero element)
and closed under the unary operation — (boolean complementation) and
the binary operations n (boolean intersection or meet) and U (boolean
union or join). We assume the relation < of boolean inclusion to be
defined — for example, @ < & if and only if any one of the following:

a=anb, avb="5b, an—-b=0, —aub=1.

By a modal algebra we mean a structure (%, *)inwhich # is a boolean
algebra and * is a unary operation in %, an algebraic counterpart of
necessitation.

An algebraic model is a structure A = (%, =, P) in which & and =
form a modal algebra and P is a mapping from the set of natural numbers
to elements of #. .# is said to be finite just in case & has a finite number
of elements.

Intuitively, the points in .# (i.e. in %) may be thought of as pro-
positions — including ‘truth’ and ‘falsity’ (1 and 0)- closed under
propositional analogues of negation, conjunction, disjunction, and neces-
sitation (—, N, U, and *). Then Pis in effect an assignment of propositions
in .# to the atomic sentences.
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It should be emphasized in this connection that the points in an
algebraic model are not possible worlds, nor even, necessarily, sets of
possible worlds. Though sometimes definable, possible worlds are not
in general a feature of algebraic models.

In an algebraic model .# = (%, *, P) sentences are evaluated by a
mapping || | to points (propositions) in .#. Here is the definition:
(1) |P,|# =P, forn=0,1,2,....
@ Tl =1
@) [L[#=0.
(4) [DA[# = — A}~
(5) |An B[4 = [|A|“n | B]-“.
(6) [Av B4 = |A]-“u |Bf4.
(7) [A—B|# = — || A}y || B|-“.
(8) A~ B[4 = ([ Al“v [B[-“)n (= [B[“U [A]-#).
(9) | CDA[-# = «| A~
(10) [ OA[# = —+—[A]-~.

A sentence A is said to be true in an algebraic model .# — written
k# A — if and only if [A| = 1. And A is valid in a class C of algebraic
models — Fc A —just in case F# A for every .# in C.

Prove, for any algebraic model .#':

(@) F#A—>Biff |A[# < |B|-“.
(b) B4 A Biff Al = |B]-4.

Prove, for any class C of algebraic models:

(©) ke OAoII7A.
(d) If FC Ao B, then FC DAH DB

Prove:
(¢) None of the schemas M, C, and N is valid in the class of all
algebraic models.
(f) For every minimal model there is an equivalent algebraic
model. (Compare exercise 7.10(d).)

We should note that the set of sentences valid in a class C of algebraic
models is closed under tautological consequence (RPL); i.e. if A is a
tautological consequence of A, ..., A, each of which is valid in C, then
Aisvalid in C too. This is perhaps obvious, but we shall not prove it.



214 Minimal models for modal logics

7.2. The schemas M, C, and N

Let us consider the following schemas.
M. OAAB)=([JAA[IB)
C. (OAAOB)—»>[I(AAB)
N. Ot

Though these are all valid in any class of standard models, each has a
counterexample in a minimal model. This is the content of the following

theorem.

THEOREM 7.4. None of the schemas M, C, and N is valid in the class of all
minimal models.

Proof. For each schema it is sufficient to describe an instance and a
minimal model that falsifies it. We begin with N, since it is the simplest.

For N. Here the instance is just []T. Let.# = (W, N, P) be a minimal
model such that W = {a} and N, = o (it does not matter about P).
Thus .# contains just one world, «, and at that world there are no
necessary propositions. In particular, the proposition W—1i.e. | T|| - is
not necessary at a, so that [T is false at @. So N has a minimal counter-
model.

Notice that the model above continues to falsify N if N, = {e}. In
this variation the proposition || L |- is necessary at « even though | T[4
is not.

For M. Consider the instance [J(PyA Py)—>((OP,A [JP,), and let
M = (W, N, P) be a minimal model in which W = {«, £} (distinct),
N, ={o}, P,={a}, and P, ={f}. Then neither the proposition {o}
expressed by P, nor the proposition {{} expressed by P, is necessary at
o; but the proposition expressed by PyA P, —viz. {e}n{f}=0-is
necessary at .. So [J(Po A P,) is true at &, whereas (JPy and [JP, are both
false at a. Hence [J(PyA Py)— ([P, A [(1P,) is false at a. Thus M has
a minimal countermodel.

For C. Consider the instance ((JPyA [1Py)— (P A Py), and let A
be a minimal model like that above for M except that N, = {{a}, {£}}.
Then the situation above is reversed: the propositions expressed by
P, and P, are both necessary at @, whereas the proposition expressed by
their conjunction is not necessary at «. Thus [P, and [JP, are true at «,
and [J(PyA P,) is false at a. From this it follows that ([(JP,A (JP,)
— [J(Py A P,) is false at a, so that C has a minimal countermodel.

This concludes the proof.
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It follows from theorem 7.4 that the set of sentences valid in a class
of minimal models is not in general closed under any of the rules of
inference RM, RR, RK, and RN, and also that the schemas R and K are
not generally valid. We set it as an exercise for the reader to prove these
things.

Let us turn now to some positive results about minimal models.

We consider the following conditions on the function N in a minimal
model A& = (W, N, P), for every world o in .# and every proposition
(i.e. set of worlds) X and Y in .#:

(m) if Xn YeN,, then XeN,and YeEN,
(c) if XeN,and YeN,, then Xn Y€EN,
(n) WeN,

It is important to observe that condition (m) is equivalently expressed in
terms of closure under supersets:

(m") if X € Yand XeN,, then YEN,

For suppose that (m) holds, and that X and Y are propositions in A
such that X < Y and XeN,. Then X = Xn Y, so that IV, contains
X Y and hence, by (m), Y. Conversely, suppose that (m’) holds, and
that X and Y are propositions in .# such that Xn Y €N,. Then Y eN,,
by (m'), since Xn Y < Y.

According as the function in a minimal model satisfies conditions (m),
(c), or (n), we shall say that the model is supplemented, is closed under
intersections, or contains the unit. When a model satisfies the first two
conditions, i.e. when it is supplemented and closed under intersections,
we shall say that it is a quasi-filter. When all three conditions are met, i.e.
in the case of a quasi-filter that contains the unit, we call the model a
filter. Thus every filter is a quasi-filter, and every quasi-filter (and hence
every filter) issupplemented. Note that filters are equally well characterized
as non-empty quasi-filters — non-empty in the sense that N, # e for
every a in a filter. This follows from the fact that in any supplemented
model N, is non-empty just in case it contains W; see exercise 7.13.
This terminology facilitates the statement of results about classes of
minimal models, for example in the next theorem.

THEOREM 7.5. The following schemas are valid respectively in the indica-
ted classes of minimal models.

(1) M: supplemented
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(2) C: closed under intersections
(3) N: contains the unit

Proof

For (1). Let « be a world in a supplemented minimal model A4 = (W,
N, P, and suppose that k¥ [[J(A A B). This means that |[AAB|-#4 €N,
i.e. that |A|-“n |B||# € N,. Because # is supplemented, N, contains
|A]-# and | B|-#, which means that k¥ []A and F-% []B. This is enough
to establish the contention that M is valid in the class of supplemented
minimal models.

For (2). Let & be a world in a minimal model .# = (W, N, P) that
is closed under intersections, and suppose that [JAA (B is true at «.
We leave it as an exercise for the reader to argue that [J(A A B) is true at
o, which is all that is required now to show that C is valid in the class of
minimal models closed under intersections.

For (3). Let # = (W, N, P) be a minimal model that contains the
unit. Then N, contains | T |, for every « in .#, which means that (] T
istruein.#. Therefore N is valid in the class of minimal models containing
the unit.

The reader should observe that the countermodels for M, C, and N
in the proof of theorem 7.4 fail to satisfy the respective conditions in
theorem 7.5 for the validity of these schemas.

The classes of minimal models selected for consideration here determine
some important systems of modal logic. For the most part these are
weaker than the smallest normal system, K, in the sense of being properly
included in K. As we shall see, however, K is determined by the class of
filters, i.e. by the class of supplemented minimal models closed under
intersections and containing the unit. Indeed, K is determined by a
special class of filters, the augmented minimal models introduced in the
next section.

We close the section with definitions of three types of construction on
minimal models.

DEFINITION 7.6. Let 4 = (W, N, P) be a minimal model. The sup-
plementation of A is the minimal model .#* = (W, N*, P)
in which N} is the superset closure of N,, for each o in .#.
That is, for every « and X in .#,

XeN!iff Y € X forsome YeN,.
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Thus .#+ differs from .# only in that N contains every proposition in
M that includes any proposition in N,. Notice that N, = N T, since every
proposition includes itself. Thus we may characterize a minimal model
as supplemented just in case it is its own supplementation, i.e. when
N} = N, foreverya.

DEFINITION 7.7. Let A4 = (W, N, P) be a minimal model. The inter-
section closure of A is the minimal model A4~ = (W, N-, P)
in which, for every @ and X in .#,

XeN;7 if X=X,n...nX, for some n>0 and X,..,
X,EN,.

Of course N, = N, since a proposition is identical with the intersection
of it with itself. So a minimal model is closed under intersections if and
only if it is its own intersection closure.

The models #+— and .4~ are always the same, which is to say that
itis a matter of indifference whether we first form the supplementation of a
minimal model and then take the intersection closure of the result, or
vice versa. For suppose that X e N, so that X = X;n...n X, where
each X; is a superset of some Y;e N,. Then N, contains Y,n...nY,
which is a subset of X;n ... n X, and hence of X, so that X e N, *. Thus
Ni— < N;* (and we leave the argument for the reverse as an exercise).
This result makes possible the following definition.

DEFINITION 7.8. Let # = (W, N, P) be a minimal model. The guasi-
filtering of A is the minimal model .4 + = (W, N*, P), where
ME =M= M

So a quasi-filter is a minimal model identical with its own quasi-filtering.

The supplementation, intersection closure, or quasi-filtering of a
minimal model does not in general produce an equivalent model. But
these constructions are valuable in connection with filtrations and
canonical models, as we shall see.

EXERCISES

7.12. Using theorem 7.4, prove that R and K are not generally valid in
classes of minimal models, and that validity in a class of minimal models
is not always preserved by the rules of inference RM, RR, RK, and RN.
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7.13. Prove that for any « in any supplemented minimal model .# = (W,
N, Py, N, #oifand only if WeN,,

7.14. Complete the proof of part (2) of theorem 7.5 (compare exercise
7.6).

7.15. Complete the proof that 4+~ = .#~—+ by showing that N;* < N}~
for every « (see before theorem 7.8).

7.16. Let .4 be a minimal model. Prove:

(a) A+ 1s closed under intersections if # is.
(b) A~ is supplemented if # is.
7.17. Give examples to show that the supplementation, intersection

closure, or quasi-filtering of a minimal model does not always yield an
equivalent model.

7.18. Consider the duals of M, C, and N:

MO. (CAv OB)» C(AVB)
CoO. CAvVB)»(OAV OB)
NO. 1oL
Show that these schemas are valid in classes of minimal models that are

respectively supplemented, closed under intersections, and contain the
unit.

7.19. Give examples of minimal models satisfying the following con-
ditions.
(a) supplemented, closed under intersections, and falsifying N

(b) supplemented, containing the unit, and falsifying an instance
of C

(¢) closed under intersections, containing the unit, and falsifying
an instance of M

These results aid in the proof of the distinctness of the modal logics
listed in figure 8.1; see theorem 9.2,

7.20. Identify conditions on minimal models to validate the schemas
R and K.

7.21. Identify a condition on minimal models to validate the following
schemas.

[(AAB)>A GA->O(AVB)
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722 Describe minimal countermodels for instances of each of the
following schemas.

D. [HA—- QA
T. [JA—-A

B. A->[O¢B
4. DJA-OCA
5. CA-TJOA

7.23. Consider the truth conditions for modal sentences given in exercise
7.8. Identify conditions on minimal models to validate the schemas
MO, CO, and N¢O. Compare the logics determined by classes of
minimal models satisfying these conditions with the logics determined
(under the usual interpretation of (] and {) by the classes of minimal
models that are supplemented, closed under intersections, or possessed
of the unit.

7.24. Let M4 = (W, N, P) be a supplemented minimal model. Prove, for
every ain 4 :
F# CJA iff for some XeN,, X < [A|#4.
7.25. Consider the truth conditions for modal sentences in exercise 7.9.
Prove:
(a) The schema M is valid in any class of minimal models,
relative to these truth conditions.

() For every minimal model with truth conditions of this sort
there is an equivalent supplemented minimal model with
truth conditions of the usual kind ; and vice versa.

7.26. Consider the models .# = (W, f, P) in exercise 7.10. Define
classes of models of this sort equivalent to the classes of minimal models
that are supplemented, closed under intersection, and possessed of the
unit.

7.27. Consider the following conditions on the algebraic models A4 = (%,
%, P) described in exercise 7.11.
(m*) *(anb) < *an*b
(c*) xan*b < x(anb)
(n*) x1 =1
Prove that the schemas M, C, and N are valid in classes of algebraic
models satisfying, respectively, conditions (m*), (c*), and (n¥).
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7.3- Augmentation

What is the relationship between standard models and minimal models?
'To answer this question precisely we introduce the idea of an augmented
model.

A minimal model A = (W, N, P) is augmented if and only if it is
supplemented and, for every world « in it,

NN, eN,.

'Thus in an augmented model each N, contains a smallest proposition, the
set comprising just those worlds that are members of every proposition
in NV,. Models of this kind are equally well characterized by the condition
that V, always contains NV, and every superset thereof. In other words,
A is augmented just in case for every « and X in .#,

(@) XeN,iff N, < X.

(In one direction this condition is of course trivial: NV, is a subset of
every sct in IV,.) The equivalence of this characterization is readily seen.
If A is augmented and NN, < X, then by supplementation X e N,. On
the other hand, suppose .# satisfics the condition. Then if X < ¥ and
XeN, it follows that NN, = ¥, which means that YeN,. So .# is
supplemented. Moreover, NN, eN,, since NN, < NN,. Hence the
model is augmented.

Notice, too, that an augmented model contains the unit, i.e. N,
always contains IV (since W always includes NN ,).

‘The condition that NN, €N, may be described as closure under
intersection, as distinguished from closure under finite intersections
(condition (c) of the preceding section). In the present context, closure
under intersection is equivalent to saying that the model is closed under
arbitrary intersections, i.e. that each N, contains the intersection of any
collection of its members. For this implies that, in particular, NN, <EN,;
and, conversely, if 2" is a subset of N,, then NN, < NZ, whence
NZ'eN, by supplementation. It follows as a corollary to this that
augmented models are closed under (finite) intersections.

Thus every augmented model is a filter: supplemented, closed under
intersections, and possessed of the unit. Moreover, when a filter contains
only finitely many worlds it is augmented. For then each N, contains only
finitely many propositions, and so closure under arbitrary intersections
reduces to closure under intersections. In short, every finite filter is
augmented.

Not every filter is augmented, however. For example, consider a
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minimal model # = (W, N, P) in which W is the set of real numbers
and, for each real number «,
N,={X< W:(a,f) < X for some fie W such that & < f}.

That is, N, contains every set of real numbers that includes some open
interval (o, ) where § is larger than a. It is left as an exercise for the
reader to show that.# is supplemented and contains the unit; we complete
the proof that .# is a filter by arguing, as follows, that it is closed under
intersections. Suppose for o in 4 that N, contains sets X and Y.
Then there exist intervals (&, £;) and (o, B,) such that (2, ) € X and
(a, Bs) € Y. We may assume without loss of generality that 8, < f,,
so that (a, ;) € (&, f,)- Then both X and Y include («, B,), from which
it follows that X n Y includes this interval. By supplementation, then,
Xn Yisin N,. So.# is closed under intersections. But it is not closed
under intersection; indeed, NNV, is not a member of N, for any a in .#.
For (N, is always the empty set (since there is no smallest interval
(e, B) where f# > a), whereas none of the sets in N, is empty (since for
no B> ais (&, B) empty). In short, NN, = @, but 6¢ N, for every
ain A.

The relationship between standard models and minimal models can
now be stated: a standard model is essentially an augmented minimal
model. We put this more precisely as a theorem.

THEOREM 7.9. For every standard model M° =W, R, P> there is a
pointwiseequivalent augmented minimalmodel 4™ == {W, N, P),
and vice versa.

Proof. Let 4 be a standard model and define the minimal model .4™

by stipulating that
XeN,iff {feW:aRf} < X,

for every a € Wand every X € W. Then NN, = {feW: aRp} for each
« & W. So 4™ satisfies condition (a), which means that it is augmented.
The proof that .#° and A™ are pointwise equivalent, i.e. that a world
verifies the same sentences in each model, is by induction on the com-
plexity of a sentence A. The only case of interest is that in which A is a
necessitation, (JB, where the argument goes like this:

k4" (1B iff for every € W such that aRg, Ff°B
~ definition 3.2(1);
iff (fe W aRB} < | B«
— compare exercise 3.13;
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iff [B[-4= <N,
— definition of N and the inductive hypothesis;
iff k™ OB
— definition 7.2(1).

For the other half of the theorem, let .#™ be an augmented minimal
model and define the standard model 4% by:

aRBiff feNN,,

for every o and £ in W. As before, necessitation is the only case of
interest in the inductive proof that the models are pointwise equivalent.
The argument proceeds as follows.

F#" B iff | B|#"e N,
— definition 7.2 (1);
iff NN, < | B|#™
— because 4™ is augmented;
iff for every f ¢ W such that aRg, F#°B
— definition of R and the inductive hypothesis;
iff E#°[B
— definition 3.2 (1).

This completes the proof of the theorem.

Thus we see that the standard models can be paired one-to-one with
the augmented minimal models in such a way that paired models are
pointwise equivalent. It is in this sense that we identify the two classes
of models.

In view of this we have already a completeness theorem for classes of
minimal models. In particular, every normal system is complete with
respect to the class of augmented models, since by theorems 5.8 and 7.9
any non-theorem of such a logic is false in some such model.

With an eye to proving this result directly in chapter 9 we define the
operation of augmentation, which turns a minimal model (of any sort)
into an augmented model.

DEerFiNITION 7.10. Let # = (W, N, P) be a minimal model. The
augmentation of # is the minimal model #' = (W, N!, P)
in which, for each x e W,

Ni={Xcs W:NN, c X}.
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That is, #' is the supplementation of .# closed under intersection. An
augmented model is thus a minimal model identical with its own
augmentation,

EXERCISES

7.28. Show that the model defined two paragraphs before theorem 7.9
is supplemented and contains the unit.

7.29. For both halves of theorem 7.9 give the proofs of pointwise
equivalence for the cases in which A is atomic, the falsum, a conditional,
and a possibilitation.

7.30. Consider the following conditions on a minimal model .# = (W,
N, P, for everya, X, and Yin .A:

() XnYeN,if XeN,and YeN,

(k) if —XU YeN,, then if X €N, then YeN,
Prove that the schemas R and K are valid in classes of minimal models
satisfying respectively conditions (r) and (k).

7.31. Prove that a supplemented minimal model is closed under inter-
sections just in case it satisfies condition (k) in the preceding exercise.

7 32. Describe conditions on minimal models to validate the schemas
D, T, B, 4, and 5. (Compare exercise 7.22.)

=.4. The schemas D, T, B, 4, and 5

We consider once again the following schemas.

D. (A QA
T. [JA—~>A

B. A->[CA
4. [DA-[OA
5. CA->[JCA

None of these is valid in the class of all minimal models; see exercise
792 But for each of these schemas we can identify a class of minimal
models that validates it. We wish to consider the following conditions on
a minimal model A& = (W, N, P), for every world a and proposition
Xin.#:
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(d) if XeN, then —X¢N,

(t) fXeN,thenaeX

(b) ifaeX, then{fin.#: —X¢NJeEN,
(iv) if XeN, then{fin.#:XeNj}eN,
(v) ifX¢N, then{fin.#:X¢NjeN,

THEOREM 7.11. The following schemas are valid respectively in the indica-
ted classes of minimal models.
(1) D: condition (d)
(2) T: condition (t)
(3) B: condition (b)
(4) 4: condition (iv)
(5) 5: condition (v)

Proof. Let o be a world in a minimal model # = (W, N, P).

For (1). Suppose .# satisfies (d), and that { JA is true at a. Then
|A|# e N,,and so by (d), — || A|-# ¢ N, which means that (A is true at
a. It follows that D is valid in the class of minimal models that satisfy
condition (d).

For (2). Assume that .# satisfies condition (t), and suppose [JA to be
true at «. Then |A[# € N,, and so by (t), « €| A4, which means that
A is true at . This suffices to show that T is valid in the class of minimal
models that satisfy condition (t).

For (3). Here we suppose that .# satisfies condition (b), and that A is
true at a. In other words, « €| A|#, from which it follows by (b) that
{Bin A: —||A|#¢ Nz} eN,. This means that {# in #: F# OA}eN,,
i.e. that || QA[ € N,. But this last just means that [JOA is true at a,
which is what we needed to show. Thus the schema B is valid in the
class of minimal models satisfying condition (b).

For (4). Exercise.

For (5). Exercise.

As the reader has probably noticed, it is often possible to ‘read off’
from a schema a constraint on the class of minimal models that yiclds a

class of models that validates the schema. We close this section by
remarking that the schema

G. OJA-0CA
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is valid in the class of minimal models .# = (W, N, P) that satisfy the
condition that for every world o and proposition X in .#:

(g) if —{Bin.#: XeNg¢N,,
then {f#in #: —X¢NgeN,

The proof is not difficult and is left as an exercise. In the exercises we
invite the reader to generalize this result for the schema G*™n, as well
as for its converse.

EXERCISES

7.33. Prove parts (4) and (5) of theorem 7.11.

7.34. Prove that the schema G is valid in any class of minimal models
that satisfy the condition (g) (in the last paragraph of section 7.4).

7.35. Consider the duals of T, B, 4, and 5:

TO. A= QA
B, OJA—A
4. OOA—> QA

5. OJA—>[A
Show that these schemas are valid in classes of minimal models satisfying

respectively conditions (t), (b), (iv), and (v).

7.36. Prove that a minimal model satisfies conditions (d), (b), (iv), and
(n) (contains the unit) if it satisfies (t) and (v).

7.37. 1dentify conditions on minimal models to validate the following
sentences.

P. OT P. 10T

7.38. For « and X in a minimal model .# = (W, N, P) we define N
inductively as follows.

(1) XeNliffaeX.
(2) XeNzift {fin A: XeNj}eN,, forn> 0.

Given this definition one can prove (a) and (b) in exercise 7.7.
Prove that the schema

Gk,l,m,n. Ok DIA_;, Dm OnA



226 Minimal models for modal logics

is valid in any class of minimal models # = (W, N, P) that satisfy the
condition,

(ghbmm) if —{fin .#: XeNi}¢ NE,
then {fin . #: - X¢NJ e N
Identify a condition (g%*™") on minimal models to validate the schema
GEbmn,  [JEGIA > OMMA.

Derive validating conditions on minimal models for schemas like D, T,
B, 4, and 5 from conditions (g*tmn) or (ghtmm),

7.39. Identify conditions on minimal models to validate schemas (like
U, O(CJA— A)) not covered by Grbmn or Glbmn,

7.40. Define conditions on the models # = (W, f, P) of exercise 7.10
equivalent to (d), (t), (b), (iv), (v), and (g).
7.41. For a model .# = (W, f, P) in exercise 7.10 inductively define f»
so that, for every n, | O"A[# = f(| A|-#).

7.42. Consider the following conditions on the algebraic models
M = (B, *, P) of exercise 7.11.

(d*) =a
(t*) #a

(b*) a<*x—x—a

VAN

—%—4a

a

A

(iv¥*) *a < x*a
(v¥) —%x—a<*x—%x—a
(g*¥) —x—xa<*—x—a
Prove that the schemas D, T, B, 4, 5, and G are valid in classes of algebraic

models satisfying, respectively, conditions (d*), (t*), (b¥), (iv¥*), (v¥),
and (g*).

7.43. Let M = (%, *, P) be an algebraic model, as in exercise 7.11, and
define:
(1) *% = a.

(2) *¥™a = ++""1a, for n > 0.
Prove, for any n > 0:
(@) [O"AJ# = =2[A]#. () | OmA]# = —s»—|A]-4.

Identify conditions on algebraic models to validate the schemas G#imn
and G and other schemas not covered by these.
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7.5. Filtrations

Filtrations of minimal models are very simply defined (recall the meanings
of =, [«], and [ X] from section 2.3).

DEFINITION 7.12. Let # = (W, N, P) be a minimal model, and let I"
be a set of sentences closed under subsentences. Then a
filtration of A through I is any minimal model A* = (W*,
N*, P*> such that:

(1) w* = [W].
(2) For every o in .4 :
(a) for every sentence [JA €I,
|A[# e N, iff [|A]-“] e Ns
(b) for every sentence QA€eT,
~ |A[# €N, iff —[|A]4]eNG;
(3) P¥ = [B,], for each n such that P, T

By a finest -filtration of .# we mean one in which each N¥%, contains
just (a) the sets [|A|-“] such that [JA eI and [|A|-¥ €N, and (b) the
sets — [|A[#] such that QA eI’ and —|A|-# eN,. This is perhaps the
simplest example of a minimal filtration. We leave it for the reader to
explain what is meant by a coarsest filtration of this sort.

The definition is designed precisely to make possible the proof of the
following basic theorem.

THEOREM 7.13. Let #* = (W*, N*, P*) be a I'-filtration of a minimal
model # = (W, N, P). Then for every Ac I and everyain # :
E# A dff B4 A
Equivalently: [|A|#] = |A|#", for every AeT.

Proof. We give the proof only for the case in which A in I' is a neces-
sitation, []B. Note that the inductive hypothesis implies that [|B|-#]
= | B||#". The reasoning then is straightforward, for any a in .#:

F# B iff | B|-# eN,
— definition 7.2 (1);
iff [|B]-#] € N,
— (2)(a) of definition 7.12;
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iff | BJ-#" € N

— inductive hypothesis;
iff K4’ (OB

— definition 7.2 (1).

The following two theorems are corollaries.

THEOREM 7.14. Let #* be a I'-filtration of a minimal model M. Then #
and M* are equivalent modulo I" — 1i.e. for every Ael':

4 A iff F#° A,

THEOREM 7.15. Let C be a class of minimal models, and let I'(C) be the
class of I'-filtrations of models in C. Then for every Ael':

The next two theorems are useful when it comes to proving finite
determination theorems in chapter 9.

THEOREM 7.16. Let A* be a finest U-filtration of a minimal model A,
and consider the supplementation M*+, the intersection closure
M *=, and the quasi-filtering M** of M*. Then:

(1) A* is a T-filtration of M if M s supplemented.
(2) A *—is a V-filtration of M if M is closed under intersections.
(3) A*L4s aD-filtration of M if M is a quasi-filter.

Proof. We give the proof for part (3) only; parts (1) and (2) are left as
exercises.

Let #** = (W*, N*t P*) be the quasi-filtering of a finest I'-
filtration .#* = (W*, N*, P*) of a quasi-filter 4 = (W, N, P) To
show that .#** is a I'-filtration of .# we must prove that N** satisfies
the following conditions, for every o in .#.

(a) for every [JA €T, |A|# eN, iff [|A|4] eNEF
() for every QAel', —|A|#eN,iff —[||A|-#]eNEF
We argue for (a) only; (b) is left as an exercise.

Let []A be a sentence in I'. For left-to-right, suppose that | Al|-4 e N,.
Then [|A|4] € N, since A * is a [-filtration of .#, and so [|| A|-#] € Nt}
by quasi-filtering. For the reverse suppose [| A[[#] e N¥+. Because .#* is
a finest I'-filtration of .#, this means that

A1 - n [ AT < T A]-],
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for some [JAg,...,[JA, €T such that |A[#,...,[A,[#€N,. Since
A,,...,A,,and A are in T, the inclusion implies that

|A 40 A4 < (A<

(exercise 7.47). But A is a quasi-filter. So [|A,|-#n ...n |A,]# €N, and
hence | A|# € N, which is what we wished to show.

THEOREM 7.17. Let MA* = (W*, N*, P*) be any T'-filtration of a minimal
model M = (W, N, P), and suppose that (JT €1'. Then A*
contains the unit if A does.

Proof. We have that for every o in .#,
for every (JA €T, |A|# e N, iff [|A|-4] e NE.

So [|| T|[#] € N if # contains the unit and (JT €T'. But [IT[-#]= W*
So .#* contains the unit.

EXERCISES
7.44. Explain what is meant by a coarsest I-filtration of a minimal model.
(See the text following definition 7.12.)

7 4%, Prove that N* in a finest or coarsest minimal filtration satisfies the

following.
Ifoa= ﬂ, then N[i] = N[f].

7.46. Give the proof of theorem 7.13 for the case in which A = $B.

7.47. Prove parts (1) and (2) of theorem 7.16, and give the argument for
condition () in the proof of part (3). In connection with the argument for
condition (a) in the proof of (3) show that

[AL# 0. A = AL
given the assumption that [JA,, ..., DA, €T, [|A4, ..., | A4 € N,, and
[ A4Tn .. 0 [|AL]#1 < [ A]#]-

7.48. Let Z(I") be the boolean closure of a set of sentences I closed under
subsentences (see exercise 3.68), and let .#* = (W*, N*, P¥) be a
[-filtration of a minimal model # = (W, N, P). Prove that for every
A eZ(T)and every a in .#,

A AT EE A,
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i.e. that [[|A|#] = [|A[#", for every A eZ(I"). (The proof is inductive;
give it for the cases in which A is atomic, the falsum, a conditional, and
a necessitation.)

7.49. Let C be a class of minimal models, and let Cg [ be the class of all
finite models in C. Using theorems 7.14, 7.16, and 7.17 prove that, for
every sentence A,

Fe A iff Fepy A,
where C is any one of the following classes of minimal models.
(a) all
() supplemented
(¢) closed under intersections
(d) containing the unit
(e) quasi-filters
(f) supplemented, containing the unit
(g) closed under intersections, containing the unit
(h) filters

7.50. Define the idea of a I'-filtration for the models .# = }W, f, P) of
exercise 7.10.

7.51. Let A = (&, *, P) be an algebraic model (see exercise 7.11), let
I" be a set of sentences closed under subsentences, and let

MT = (HT, xT, PT)
be an algebraic model satisfying the following conditions.

(1) BT is the boolean subalgebra of % based on the set
{|A]#: AeT}, i.e. the boolean algebra formed from this
set by adding 1 and 0 from &% and closing under the
operations —, N, and U in &.

(2) T agrees with % on points in #7T; i.e. *Ta = xa for all a
in AT,

(3) PT agrees with P on all atomic sentences in [';ie. P}, =B,
for all #» such that P, eI'.

We may call 4T an algebraic I-filtration of #. Note that #7T is finite if
I is. Prove that for every A eT’,

E4 A ff 4T A,
'The proof is by induction on the complexity of A. Give it for the cases in
which A is atomic, the falsum, a conditional, and a necessitation.
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CLASSICAL SYSTEMS OF
MODAL LOGIC

In this chapter we examine from a deductive point of view a class of

systems of modal logic we call classical.
In section 8.1 we define the class of classical systems, point out some
alternative characterizations, and state some theorems on replacement

and duality.
The smallest classical modal logic is called E. To name classical

systems we write

ES;... S,
for the classical modal logic that results when the schemas S, ..., S, are
taken as theorems; i.e.

ES, ... S, = the smallest classical system of modal logic con-

taining (every instance of) the schemas S, ..., S,.

The order of the schema names is a matter of indifference; for example,
we may write either EMC or ECM for the smallest classical logic con-
taining the schemas M and C. And note that when there are no schemas

the definition leaves E as the smallest classical system.
In section 8.2 we introduce two further classes of modal logics —
monotonic and regular — and set forth some alternative characterizations

of them.
Section 8.3 is a brief look at classical systems containing schemas such

as D, T, B, 4, and 5.

8.1. Classical systems
We define classical systems of modal logic in terms of the schema
Dfo. QA< []7A
and the rule of inference
A-B

RE. TAGOB’
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DEFINITION 8.1. A system of modal logic is classical iff it contains Df
and is closed under RE.

The following theorem provides another way of characterizing classical
systems.

THEOREM 8.2. A system of modal logic is classical iff it contains the schema
DI]. OA«71O1A
and ts closed under the rule of inference

A-B
REO. SAS OB
Proof. To see that a classical logic always contains Df[] the reader
should examine the proof of this principle in section 1.2 and note that it
uses only PL, Df §, and RE. For RE {, observe thatif A < Bisa theorem
of a classical system then so are 1A~ 7B, (J7A«[]7B, and
T071A« 1[J7B (by PL, RE, and PL); but by Df the last sentence
is equivalent to QA OB.
We leave the argument for the reverse — that a modal logic is classical
if it has Df[J and RE{ — as an exercise.

We turn next to theorems on replacement and duality in classical
systems.

THEOREM 8.3. Every classical system of modal logic has the rule of replace-
ment:

REP. BB

A~ A[B/B’]
(Recall the definition of A[B/B'] in section 2.1.)

Proof. The proof is exactly like that for theorem 4.7 — replacement in
normal systems — since it appeals only to PL, RE, and RE{ (as the
reader should confirm). \

Notice that the rules RE and RE{ are special cases of REP. This
suggests the following characterization of classical modal logics.

THEOREM 8.4. A system of modal logic is classical tff it contains Df or
Df[] and is closed under REP.
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Proof. Exercise.
For the next theorem the reader should recall the meaning of A* given

in definition 2.4.

THEOREM 8.5. Every classical system of modal logic has DUAL, i.e. all
the following theorems and rules of inference.

(1) Ao 1A

A 7A
@ =x+ &+

A—->B
) groan

A~B
) o5

Proof. See the proof of this for normal systems, theorem 4.8, which
uses only PL, Df $, Df[], and REP.

Finally, a theorem about duals of modalities.

THEOREM 8.6. Let X be a classical system of modal logic. Then:
(1) ks pA & T1¢* A,
(2) b5 A iff b 16* 1AL
(3) Fs A —> A, for every A, iff b5 Y *A — @*A, for every A.
(4) bg QA oA, for every A, iff Fx ¢*A — fr*A, for every A.

Proof. This 1s just theorem 4.9 (now for classical logics), the proof for
which suffices here as well.

EXERCISES

8.1. Complete the proof of theorem 8.2 by showing that a modal logic 1s
classical if 1t contains Df{] and is closed under RE .

8.2. Examine the proof of theorem 4.7 to confirm that it appeals only to
PL, RE, and RE { (with regard to theorem 8.3).

8.3. Prove theorem 8.4.
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8.4. Examine the proof of theorem 4.8 to confirm that it uses only PL,
Df &, D[], and REP (with regard to theorem 8.5).

8.5. Examine the proof of theorem 4.9 to see that it suffices as well for
theorem 8.6.

8.6. Prove that A — A** is a theorem of any classical modal logic.

8.7. Where S and S¢ are the schemas A —>1A and y*A - ¢*A, for
affirmative modalities ¢ and ¥, show that a classical system contains S if
and only if it contains S ) (compare theorem 4.10).

8.8. Show that a classical modal logic has one of the following theorems
and rules of inference if and only if it has them all.

PAGYA  FFA YA
AoB A-B
dA-yB ¢*A—y*B

8.2. Monotonic and regular systems

Thus far in this book we have distinguished two main classes of modal
logics: classical systems, which are closed under the rule RE; and normal
systems, which are closed under the rule

(A;A...AA)—A
(AN ...ATA)~>DOA

In this section we shall be interested as well in classes of modal logics

RK.

(n = 0).

defined by the rules
A—B
M FAS B
and
(AAB)—=C
RR. (OAAOB)-OC

DEFINITION 8.7. A system of modal logic is monotoniciff it contains Df
and is closed under RM.

DEFINITION 8.8. A system of modal logic is regular iff it contains Df §
and is closed under RR.

We denote the smallest monotonic system by M, and the smallest
regular system by R. As with classical and normal systems we write
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MS, ... S, and RS; ... S, respectively, for the smallest monotonic and
regular systems that have the schemas S, ..., S, as theorems.

The classes of classical, monotonic, regular, and normal systems form
a sequence of ever more encompassing kinds of modal logics, in the sense
of the following theorem.

THEOREM 8.9
/ (1) Every monotonic system of modal logic is classical.

(2) Every regular system of modal logic is monotonic, and hence
classical.

(3) Every normal system of modal logic is regular, and hence
monotonic and classical.

Proof. The proofs of parts (1) and (3) are to be found in the proof of
theorem 4.2 (as the reader should verify). For (2):

1.A->B hypothesis
2.(ANA)—>B 1, PL
3.(CJAAJA)=[IB 2,RR
4. JA->[B 3, PL

Thus a modal logic has the rule RM if it has the rule RR; so every
regular system is monotonic.

In particular, then, the smallest classical, monotonic, regular, and
normal logics — E, M, R, and K - are increasingly inclusive. (That the
inclusions are in fact proper is proved in chapter 9.)

Let us consider now the following schemas.

M. OAAB)=(JAAB)
C. (JAAOB)-C(AAB)
R. [OAAB)~(JAA[B)
K. [OJ(A—-B)-=(JA-[]B)

THEOREM 8.10

(1) Every monotonic system of modal logic contains M.

(2) Every regular system of modal logic contains M, C, R,
and K.

Proof. That monotonic (and hence regular) systems contain M is



236 Classical systems of modal logic

shown in the proof, for M, of theorem 4.2. Likewise, the proofs there for
C, R, and K show that these are theorems of every regular system.

The schemas mentioned in theorem 8.10 can be used to provide
several alternative characterizations of monotonic and regular systems of
modal logic. We single out three of these, using M and C, in the next
theorem; there are others in the exercises,

THEOREM 8.11. Let X be a system of modal logic containing Df. Then:

(1) X is monotonic iff it contains M and s closed under RE.
(2) X is regular iff it contains C and is closed under RM.
(3) Z s regular iff it contains C and M and is closed under RE.

Proof. We consider systems containing Df . The left-to-right cases
are covered by theorem 8.10, so we treat only right-to-left.
For (1):

1.A+>B hypothesis
2. A= (AAB) 1, PL

3. JA-[J(AAB) 2, RE

4. JAAB) - (JAA[B) M

5. JA—[]B 3,4, PL

Thus a system has RM - and so is monotonic — if it has M and RE.

For (2). The proof of theorem 4.3 (3) shows that a system has RR,
and so is regular, if it has C and RM.

For (3). If a modal logic has C, M, and RE, then by part (1) it has
RM, and so by part (2) it has RR, which means that it is regular,

By way of summarizing theorem 8.11: Monotonic logics are the
classical logics containing M. Regular logics are the monotonic logics
containing C, or the classical logics containing C and M. In particular,
M = EM and R = MC = EMC.

In theorem 4.3 (2,3,4) normal systems are characterized by using the
rules and theorems mentioned so far together with

N. Or.

We may summarize those results as follows. Normal modal logics are:
(1) the regular systems containing N ; (2) the monotonic systems contain-
ing N and C; (3) the classical systems containing N, C, and M. In
particular, K (the smallest normal system) = RN = MCN = EMCN.
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Other such characterizations of normal systems, involving the schema K
and the rule

RN. A

_D_K’
appear in theorem 4.3 (1) and exercise 4.5.

Theorem 8.11 makes it clear that in studying monotonic, regular, and
normal modal logics we may confine our attention to the classical exten-
sions of E produced by adding M, C, and N as theorems. Including E,
eight different classical logics result from taking these schemas as
theorems in all possible combinations. These systems and the inclusions
among them are registered on the diagram in figure 8.1 (an extension of

Figure 8.1
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a system is reached upward along the lines). That the systems are distinct
is proved in chapter 9.

Let us turn now to the following rules and schemas, in which the
possibility operator is featured.

A—-B

RMO- ®A5 0B
A—-(BvC)
RRO- SAS(0BV GO)

MO. (CAv OB)y—» O(AvB)
Co. O(AvB)>(OAvV OB)
RO.  OAVB)o(OAV OB)
KO, (TTCAAOB)—> O(TAAB)

THEOREM 8.12

(1) Every monotonic system of modal logic contains M and is
closed under RM .

(2) Every regular system of modal logic contains MO, CO, RO,
and K and is closed under RM O and RR O.

Proof

For (1). If A-> B is a theorem of a monotonic modal logic, then so are
B— A, [ B—=[7A, and 10 1A—"1[J71B (by PL, RM, and
PL), and the last is equivalent to ¢QA— OB by Df{. So monotonic
systems are closed under RM ¢{. That M is a theorem when RM {
is present is proved in the proof, for M, of theorem 4.4. Alternatively,
we may observe that by DUAL, M ¢ is a theorem of a classical logic if
and only if M is (see exercise 8.11(a)) and then argue for RM { as in
the proof for theorem 4.5 (5).

For (2). Because regular systems are monotonic they have RM{ and
M, by part (1). Moreover, if A—(Bv C) is a theorem of a regular
logic, then so are (TIBA 1C)— 1A, (O7BAO1C)—~ A, and
O7A—-(1dBv 1[J71C) - by PL, RR, and PL -and hence so
is OA— (OB v OC), by Df. So regular logics are closed under RR$.
By RR O on a tautology we obtain O(A v B)—>(QOA v OB); so regular
systems have C ¢, and hence R¢. The argument for K can be found
in the proof of theorem 4.4.

Theorem 8.12 provides the basis for some possibility-based char-
acterizations of monotonic and regular systems. We present five in the
next theorem.
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THEOREM 8.13. Let T be a system of modal logic containing Df[1). Then:

(1) Z is monotonic iff it is closed under RM {.

(2) X is monotonic iff it contains M and is closed under RE .
(3) X is regular iff it is closed under RR $>.

(4) T is regular iff it contains C and is closed under RM.$.

(5) T is regular iff it contains CO and M and is closed under
REO.

Proof. We consider logics containing Df[]. Theorem 8.12 takes care of
left-to-right, so we treat only the converses.

For (1). It suffices to show that a system has RM if it has RM {. The
argument is like that for RM ¢ (given Df$ and RM) in the proof of

theorem 8.12. Exercise.

For (2). By part (1) we need only argue that a system has RM ¢ if it
has M and RE ), as we did in the proof of theorem 4.5 (5).

For (3). Here it is enough to prove that a system has RR if it is closed

under RR $. Exercise.

For (4):
1.A-»(BvCQ) hypothesis
2. OA—- OBV Q) 1, RMO
3. O(BvC)—=(OBvV ¢C) CO
4. OA—-(OBvV OO 2,3, PL

Thus a system has RR¢{) — and so by part (3) is regular — if it has C
and RM $.

For (5). If a system has C{, M, and RE{, then by part (2) it has
RM ¢, and so by part (4) it has RR >, which means by part (3) that it is
regular.

Further characterizations of monotonic and regular modal logics,
especially using K {, appear in the exercises.

We also leave it as an exercise for the reader to summarize (as we did
following the proof of theorem 8.11) the content of theorem 8.13. By
attending to theorem 4.5 and exercise 4.6 — which involve RK $, RN §,
and N ¢ as well as the principles mentioned in theorem 8.13 — one can
discern a number of possibility-based characterizations of normal
systems as certain kinds of regular, monotonic, and classical systems.

The principles canvassed in this section can be generalized along the
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modal dimension. For example, for each & > 0, classical, monotonic, and
regular logics are closed respectively under the rules

A~B
kD
RE%, A< B’
A—>B
kTP
RIME, A S LB
and RRF (AAB)—>C

(CA A LIB)— (I*C ’
and they all contain, for each k2 > 0,
DOk OFA - [T A.

(For a proof of the last see the discussion preceding theorem 4.6.) For
the record we state the following theorem.

THEOREM 8.14. Let X be a system of modal logic, and let k > 0. If Z is
classical it has the principles RE*, Df O, RE O, and D[ 1%; if
Y. is monotonic it has in addition RM*, Mk, RM Ok, and M OF;
if T is regular it has in addition RR%, C¥, Kk, RRGY, COF,
and K Ok,

Proof. Exercise. (See the discussion preceding theorem 4.6.)

EXERCISES

Where appropriate, freely make use of theorems and rules of inference
established in sections 8.1 and 8.2, as well as the results of previous
exercises.

8.9. Check that the proofs of theorems 8.9(1, 3) and 8.10 are in the proof
of theorem 4.2.

8.10. Check that the proof of theorem 8.11(2) is in the proof of theorem
4.3(3).
8.11. Let X be a classical system of modal logic. Prove:

(a) X contains M iff it contains M {.

(b) X contains C iff it contains C¢.

(¢) = contains R iff it contains R.

(d) Z contains K iff it contains K {.

(¢) X contains N iff it contains N .
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8.12. Prove that C is a theorem of a monotonic system if and only if K is.

8.13. Extend theorem 8.11 by proving (where X is a system containing
Df$):

(a) X is regular iff it contains K and is closed under RM.

(b) X isregular iff it contains K and M and is closed under RE.

(¢) X isregular iff it contains R and is closed under RE.

8.14. Draw a diagram like that in figure 8.1 showing all the classical
systems obtained by adding M, C, K, and N as theorems to E (there are
ten).

8.15. Check the proof of theorem 4.4 to see that M > is a theorem of any
monotonic logic (theorem 8.12(1)) and that K is a theorem of any
regular modal logic (theorem 8.12(2)).

8.16. With regard to theorem 8.13:

(@) For part (1), show that a system has RM if it has RM ¢ and
Df{].

(b) For part (2), check the proof of theorem 4.5 (5) to see that a
system has RM ¢ if it has REQ and M .

(¢) For part (3), show that a system has RR if it has RR$ and
D[

8.17. Give a summary of theorem 8.13 like that following theorem 8.11.

8.18. Extend theorem 8.13 by proving (where X is a system containing

Df]):
(a) X is regular iff it contains K and is closed under RM .

(b) = is regular iff it contains K $ and M ¢ and is closed under
REO.
(¢) 2 1s regular iff it contains R and is closed under RE .

8.19. Prove some of the parts of theorem 8.14.

8.20. Prove that the following are theorems of any classical modal logic.
(@ OT1OL () OT«710L

8.21. Prove that the following are theorems of any monotonic modal logic.

(a) A~ [(B—A)
(6) O1A->J(A->B)
() (OAvOB)~[J(AVB)
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(d) O(AAB)=>(OAAOB)

(e) O(A—-B)v [J(B—A)

(/) (A~ OB)> O(A->B)

(&) (OA~>QA)>OT

() (0A~[DOB)—>(A—>B)
8.22. Prove that the following are theorems of any regular modal logic.

(@) OA~>B)>(0A—~> OB)

(6) O(A < B)—»(JA+ OB)

() OA~B)>(0A= OB)

(d) (OAA OB)—> O(AAB)

() O(A v B)—~(OAVIB)

(f) ¢(A->B)~(OA~ OB)

(&) OT = (0OA->OA)

(7)) (O0A~[B)~(OA~>[B)

(?) (CA—~[B)>(OA—~OB)
8.23. Prove that the following are theorems of any monotonic modal
logic (for any n > 2).

(@) AL A ... AA))—> (A A ... A [TA))

®) (OA,V...vOA)—>O(AV...VA)

() (A, V...v[OA,)~ Ay v...VA,)

(d) O(ALA...AA)>(OAIA...AOA,)
8.24. Prove that the following are theorems of any regular modal logic
(for any n > 2).

(@) CHALA...AA)=(CIA A ... AOAY)

&) OALV...VA)=(OA V...V OAY)

(©) (OAA .. AAL 1A QALY O(AA ... AA)

(d) (AL V...VA)—>(OA V...V OA, ;1 VIA,)
8.25. Prove that the following are theorems of any monotonic modal logic
whenever m < n.

(a) O"T—[I™T
(b) O™L—-O"L
(¢) O*T—>O™T
(d) OmL~["L
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8.26. Prove that a system is monotonic if and only if it is classical and

contains [ {AA B)—[JA or A~ O(A v B).

8.27. Prove that a system containing Df{ is regular if and only if, for
every # > 1, it is closed under the rule

(AjA .. AA)—>A
(OAA ... ALA,)—> A

8.28. Prove that a classical system contains N if and only if it is closed
under the rule RN.

8.29. Let ¢ and ¥ be affirmative modalities. Prove that a monotonic
system has one of the following theorems and rules of inference if and
only if it has them all.

GASYA  Y*A—> P*A
A-B A>B
JA>yYB Y*A— ¢*B

8.30. Use the erasure transformation ¢ in exercise 1.27 to prove the
consistency of the eight systems in figure 8.1.

8.31. Prove that the systems in figure 8.1 have the following rules of
inference.

A A
@xT @

A->[B A—> OB
OEEE @ s

A<[]B A« OB
© S ) g

(Compare exercise 4.13.)
8.32. Let I be a maximal set of sentences in a monotonic system X. Prove:
JAel iff |Blg < |Alg for some []Bel.

8.33. Let ~4 be the relation of X-equivalence (see exercise 2.37) in a
system X. We define |A|s to be the set of all sentences Z-equivalent to
A; i.e. for every sentence A,

|Alz={B: A~zB}.
(Note that here |A |y is not the proof set of A in Z.) Consider the structure
B = <B’ 1) 0) —, N, U>
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in which B is the set of all Z-equivalence classes of sentences ~ {|A]x: A
is a sentence} — and the elements 1 and 0 of B and operations —, n, and
U in B are defined as follows.

(1) 1 =Tl

(2)0=|Llz.

() —Alg = DAz

(4) |Alzn |Bly = [AA B3

(5) [AlzU |Bly = |AV Bl
‘Then #is called the lindenbaum algebra of . It is readily verified that
these definitions are unambiguous and that #is a boolean algebra (see
exercise 7.11). Prove:

(@) [A>B|z=—IA|5U |B|g.

(0) |A=Blz = (—1AlgU [Blg)n (= [BlzU [Alg).

(¢) FeAIff [Alg = 1.

(d) FsA—-Biff |A|y < |Blg.

() FxA-Biff |Aly = |Blg.

Now suppose that X is a classical system, and define the operation *

on the lindenbaum algebra #by:

*[Alg = |[CAg.
Verify that this definition is unambiguous by proving:
(f) I |Alg = [Blg, then #[Alp = *[B|;.

The structure (#, =) is a modal algebra in the sense of exercise 7.11;
we may call it the lindenbaum modal algebra of %. Prove:

(8) [OAlg=—*—I|Alz.

Finally, consider the following conditions on an algebraic model
M = (#, %, P) formed from the lindenbaum modal algebra (%, %) (see
exercises 7.11 and 7.27).

(m*) x(anb) < xan b
(c*) *an xb < =(an b)
(n*) %1 =1
Prove:
(h) A satisfies (m*) iff 2 contains M.
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(7) M satisfies (c*) iff Z contains C.
(j) A satisfies (n*) iff Z contains N.

8.3. Other schemas

We confine ourselves in this section to two theorems about classical
modal logics containing as theorems the schemas

T. JA-A
and

5. OA-[]OA.

'THEOREM 8.15. Every classical ET5-system hasthe following theorems and
rules of inference.
P. OT
A
CA
JA— OA
A->[]OA
COA-~[CA
JA—[]JA
aT
A

RN. A

RP.

Z >0 Ry

Proof. Except for N the proofs are left as exercises. For N we argue as
follows.

1. &1 P

2. O0TeT 1, PL

3. 001707 2,RE

4. OT->OT 5

5.07 1, 3,4, PL

‘THEOREM 8.16. Every classical ET5-system has at most six distinct
modalities, viz. -, [, , and their negations, with implications
among the affirmative three as diagramed in figure 8.2.

Proof. Recall from section 4.4 that modalities ¢ and i are equivalent
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in a system when @A A is a theorem; otherwise they are distinct.
Thus to prove the theorem it is enough to show that any classical ET5-
system has the following reduction laws.

OA«OOA CA=OOA
CA-[JCA CA- QA

This is left for the reader as an exercise, along with the demonstration
that the implications are as advertised.

The reader should compare theorems 4.28 and 8.16 (and the diagrams
in figures 4.8 and 8.2).

Theorems 8.15 and 8.16 are meant to be illustrative of results for
classical systems containing as theorems schemas like D, T, B, 4, and 5.
Some further results are suggested in the exercises.

EXERCISES

8.34. Complete the proof of theorem 8.15.

8.35. Give the proof of theorem 8.16.

8.36. Use theorems 8.9 and 8.16 to prove theorem 4.28,

8.37. Let £ be a monotonic modal logic. Prove:
(a) Z is an MN-system iff it has theorems of the form [JA.
(b) ¥ is an MP-system iff it has theorems of the form QA.

8.38. Recall the schemas 4! ((JA <« [J[JA) and 5! (OA— [JQA). Prove
that 4! is a theorem of any classical E5/-system.

8.39. Investigate the question of the number of distinct modalities in
some classical systems having as theorems schemas such as the ones
mentioned in theorem 8.15. For example:

(@) Every regular R5-system has at most ten distinct modalities.
(b) Every monotonic MD45-system has at most ten distinct
modalities.

Figure 8.2. Modalities in classical E7S5-systems.

O - -0
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(¢) Every classical ED45-system has at most six distinct modal-
ities.
Identify the modalities in these systems and describe the implications

among them.

8.40. Investigate the question of consistency for some classical systems
having as theorems schemas like those in theorem 8.15. Use the erasure
transformation of exercise 1.27, or argue by way of results in exercises

4.12 and 4.60 and theorem 8.9.

8.41. Investigate the presence of rules (a)-(f) from exercise 8.31 in

classical logics containing theorems like those in theorem 8.15. (Compare
exercises 4.13, 4.61, and 4.62.)

8.42. Let # = (&, *, P) be an algebraic model based on the lindenbaum
modal algebra of a classical system X (see exercise 8.33), and consider the
conditions (d*), (t*), (b*), (iv*), (v¥*), and (g*) in exercise 7.42. Prove:

(a) A satisfies (d¥)iff Z contains D.

(b) A satisfies (t*)iff X contains T.

(c) # satisfies (b*)iff X contains B.

(d) A satisfies (iv*)iff Z contains 4.

(e) A satisfies (v*)iff Z contains 5.

(f) A satisfies (g*) iff 2 contains G.

Also prove that .# satisfies the condition
(p*) —x—1=1

if and only if £ contains P.
Referring to the definition of " in exercise 7.43, prove:

(&) *"[Alz = |O"Alx.
(h) —*"—=Alx = |O"Alx.
Finally, consider the following conditions on .#.
(g*ebmn) — 4k —wlg < *™— " —q
(ghhlmn) 4k — ¥l — g < —*™—x"a

Prove:
(i) A satisfies (g¥5mn)iff Z contains G*Amn,

(j) A satisfies (g*s+mn) iff T contains GEAmn,
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DETERMINATION AND
DECIDABILITY FOR CLASSICAL
SYSTEMS

In this chapter we connect classical modal logics and classes of minimal
models by way of determination theorems. Our method is much the
same as in chapter 5 for normal systems and standard models. In section
9.1 we treat questions of soundness and prove the distinctness of the
eight classical systems on the diagram in figure 8.1 having M, C, and N
as theorems. Section 9.2 contains the definition of canonical minimal
models and the fundamental theorems for completeness. We do not
single out any particular canonical minimal model as ‘proper’, as we
did in the case of normal systems. But we indicate a uniform way of
describing canonical minimal models ~ a way that highlights two very
useful such models, which we call the smallest and the largest, for any
classical logic.

In section 9.3 there are determination theorems for the systems in
figure 8.1. The idea of supplementation plays an important part in
obtaining completeness results for the monotonic systems, and we use
augmentation to reach, again, the conclusion that normal systems are
complete with respect to the class of standard models. Then in section
9.4 we treat in an abridged fashion questions of completeness for classical
systems having as theorems familiar schemas such as D, T, B, 4, and 5.
Finally, in section 9.5 we prove the decidability of the systems E, M,
R, and, once again, K.

9.1. Soundness

The basic theorem for the soundness of classical modal logics with
respect to classes of minimal models is the following.

THEOREM 9.1. Let S,,...,S,, be schemas valid respectively in classes of
minimal models C,,...,C,. Then the system of modal logic
ES, ... S, is sound with respect to the class C;n ...n C,.
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Proof. By theorems 2.8 and 7.3, Df{ is valid in any class of minimal
models, and the rules RE and RPL preserve validity in any such class.
Moreover, if S,, ..., S, are valid respectively in C,, ..., C,, then they are
valid in the intersection of these classes. Therefore, every theorem of
ES;... S, is valid in this intersection, which means that this logic is
sound with respect to that class.

Thus E, the smallest classical system, is sound with respect to every
class of minimal models, in particular the class of all such models. More-
over, by referring to theorem 7.5 we obtain soundness results for all the
classical systems on the diagram in figure 8.1. In particular, the smallest
monotonic, regular, and normal systems — M, R, and K — are sound with
respect to classes of supplementations, quasi-filters, and filters, res-
pectively. The proofs of these and other soundness theorems we leave as
exercises.

Let us use theorem 9.1 to prove the distinctness of the systems in
figure 8.1.

THEOREM 9.2. The eight classical systems in figure 8.1 are all distinct.

Proof. Consider the following three minimal models .4 = (W, N, P).
(W) W={a}; N,=0; P,=0forn>0.

(2) W= {a, p} (distinct); N, = Ny = {{od}, {#}, W} B = {«}
and P, = {f}forn > 0.

(3) W = {«, B} (distinct); N, =N;={s, W}; P, ={o} and
B, ={f}forn > 0.

Re (1). .# is supplemented and closed under intersections, and it
falsifies N. By theorem 9.1 this is a model of EMC and all the systems
below it on the diagram in figure 8.1. Thus these systems are distinct
from all the others on the diagram, viz. those containing N as a theorem.

Re (2). Here # is supplemented and contains the unit, and it falsifies an
instance of C: ((JPyA [P = [(PyA P,). So # is a model of EMN
and all the systems in figure 8.1 that it extends. These systems are
therefore distinct from the others on the diagram, which all contain C.

Re (3). In this case .# is closed under intersections and contains the
unit, and it falsifies an instance of M: [J(PyA Py)—([1PeA [1Py).
Hence .# is a model of ECN and the systems below it in figure 8.1, which
means that these systems are all distinct from the others on the diagram,
wherein M 1is a theorem.
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We leave it as an exercise for the reader to check that the foregoing
considerations yield the pairwise distinctness of the eight systems in
figure 8.1.

EXERCISES

9.1. Prove:
(a) Eissound with respect to any class of minimal models.
(b) M is sound with respect to any class of supplementations.
(c) Rissound with respect to any class of quasi-filters.
(d) Kissound with respect to any class of filters.

Formulate and prove similar soundness theorems for the other four
systems in figure 8.1.

9.2. Verify that models (1)«(3) in the proof of theorem 9.2 (a) meet the
conditions stated, (b) falsify the sentences in question, and (thus) (c)

ensure the distinctness of the systems in figure 8.1. (Compare exercise
7.19.)

9.3. Using resuits from section 7.4, including the exercises, describe
classes of minimal models with respect to which the following systems
are sound.

(a) ED (e) E5

(b) ET (f) EG

(c) EB (g) EGHimn
(d) E4

9.4. Consider the following conditions on a minimal model .# = (W,

N, Pb.
(p) ¢N, (p) o€N,

Prove that EP and EP are sound respectively relative to classes of minimal
models satisfying (p) and (p).

9.5. Prove that EG%' ™" is sound with respect to anv class of minimal
¢ p y

models A = (W, N, P) for which the following condition holds.

(ght™m) if {fin #: —X¢ N eNE,
then —{fin #: XeN}}¢ NP

(Compare exercise 7.38.)
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9.6. Prove that EU is sound with respect to any class of minimal models
M = (W, N, P) satisfying the following condition.

(u) {Bin .#:if Xe Ny, then feX}eN,

9.7. Using exercise 8.37 (a) and theorem 9.2, prove that E, EM (M), EC,
and EMC (R) have no theorems of the form [JA.

9.8. Prove that M is sound with respect to any class of minimal models
in which modalities are evaluated as in exercise 7.9.

9.9. Prove that ETS has exactly the distinct modalities diagramed in
figure 8.2.

9.10. Extend the results of exercise 8.39 by establishing the exact numbers
of distinct modalities in the systems investigated. In particular, prove:

(@) R5 has exactly ten distinct modalities, the same as K9 (see
theorems 4.23 and 5.3).

(b) MDS5 has exactly ten distinct modalities, the same as KD5 (see
theorems 4.24 and 5.3).

(¢) ED45 has exactly six distinct modalities, the same as KD45
(see theorems 4.27 and 5.3).

9.11. Prove that each of the systems in figure 8.1 has infinitely many
distinct modalities.

9.12. Consider the following conditions on a model A4 = (W, f, P) of
the kind described in exercise 7.10.

(my) f(Xn Y) < f(X)nf(Y)
(cp) FX)INAY) = (XN Y)
(ng) f(W) =W
(dy) f(X) = —f(=X)

(t) f(X)= X

(by) X = f(=f(=X))

(ivy) f(X) € (X))

(v) —f(=X) s f(=f(=X))
(&) —f(—f(X) = f(—f(=X))

Prove that E is sound with respect to any class of such models, and that
the following systems are sound relative to classes of such models
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satisfying the indicated conditions.

(@) EM (M): (my)  (f) EB:(by)

(6) EC: (cr) (g) E4:(ivy)
(¢) EN: (ny) (h) E5: (vy)
(d) ED: (d)) (1) EG: (g)
(&) ET: (1)

9.13. Prove that E is sound with respect to any class of algebraic models
(defined in exercise 7.11). Then, referring to exercises 7.27 and 7.42,
show that the following systems are sound with respect to classes of
algebraic models that satisfy the indicated conditions.

(@) EM (M): (m*)  (f) EB: (b¥)

(5) EC: (c*) (g) E4: (iv¥)
(c) EN: (n*) (k) E5: (v¥)
(d) ED: (d*) (i) EG: (g*)
(e) ET: (t¥)

Finally, referring to exercises 7.43 and 8.42, show the soundness of the
following systems relative to classes of algebraic models satisfying the
indicated conditions.

(/) EP: (p¥)
(k) EGk,l,m,'n: (g*k,l,m,n)
(I) EGFhmmn. (ghlhm.n)

9.2. Completeness: basic theorems

We begin with the key idea of a canonical minimal model for a classical
modal logic.

DEeFINITION 9.3. Let A& = (W, N, P) be a minimal model, and let
be a classical system of modal logic. .# is a canonical minimal
model for X iff :

(1) W={I't MaxzI'}.
(2) For every a in #, [(JAca iff |A|z€N,.
3)B, = |P, g, forn=10,1,2,....
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Parts (1) and (3) of the definition conform to the account in section 2.7.
The acute reader will have noticed that the condition on NNV in part (2)
must be shown not to be ambiguous. That is, it must be shown that
whenever A and B are sentences such that |Aly = |Bly, then |AlgeN,
just in case |B|g e N,, for every world a in A . Only if this is true is the
definition correct.

That it is true depends on the assumption that the system ¥ is classical.
For suppose that |A|; = |B|g. By theorem 2.22(3) this means that
F A <> B. Because X is classical we may infer by RE that + (JA— [B.
So by theorem 2.20(2) [JA« [IB belongs to every Y-maximal set of
sentences, i.e. to every world & in .#. By theorem 2.18(9) it follows that
[JA e if and only if []B €, for every a in .#. Hence, by the condition
on N in the definition, |A|; € N, just in case |B|z € N, for every a in #.

It should be clear that functions N exist that satisfy the condition in a
canonical minimal model for a classical system. We mention some specific
examples at the end of the section, in connection with an important
alternative characterization of the class of models of this kind. Mean-
while, the following theorem characterizes canonical minimal models in
terms of the behavior of the possibility operator.

THEOREM 9.4. 4 = (W, N, P) is acanonical minimal model for a classical
system T iff W and P are as in definition 9.3, and for every a
in M,
OAeaiff —|Alg¢EN,.

Proof. For left-to-right, let # = (W, N, P} be a canonical minimal
model for a classical modal logic  (so that W and P are as specified).
'Then for any world  in .#:

OAeaiff 101Aex
~ Df ¢ and the Z-maximality of «;
iff (J1A¢a
— theorem 2.18 (5);
iff |[TA|¢ N,
— definition 9.3;
iff —|Alz¢ N,

— theorem 2.22 (4, 6).

The reverse is left as an exercise for the reader.

We come now to the fundamental theorem for the completeness of
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classical modal logics, to wit, that a world in a canonical minimal model
verifies precisely the sentences it contains.

THEOREM 9.5. Let .4 be a canonical minimal model for a classical system
2. Then for every ain M :

EFAiffAca.
In other words, |A||# = |Al;.

Proof. The only case that need be examined is that in which A is a
necessitation, [1B. By the inductive hypothesis, |B|¥ = |B|5. So for any
ain.#, |B|# €N, if and only if |B|z € N,. By definitions 7.2(1) and 9.3
it follows that 2 (1B if and only if []B €a.

From theorem 9.5 it follows at once (see the remarks in section 2.7)
that the theorems of a classical modal logic are exactly the sentences true
in a canonical minimal model for the logic. Formally:

THEOREM 9.6. Let A be a canonical minimal model for a classical system
2. Then:

E# A iff 5 A.

What are canonical minimal models like? The question comes to
asking what the function N may be like in a canonical minimal model .#
for a classical modal logic Z. The simplest example of such a model is
that in which, for each world @ in .#, N, is the set {|A|;: [JA €a}; i.e.
N, consists just of those proof sets |A|y such that [JA ea, and nothing
else. In this case we have what we shall call the smallest canonical minimal
model for £. At the opposite extreme there is the canonical minimal model
A in which, for each &, N, consists of {{A];: [JA ea} together with the
set of all non-proof sets relative to X - i.e. {|A]z: [JA €a} plus every set
X of worlds in .# that is not a proof set in I for any sentence. This is the
largest canonical minimal model for Z.

These examples should make it clear that as long as N, always consists
of the set {|Al;: [JA ea} together with a collection of non-proof sets
(relative to X) 4 will be a canonical minimal model for X. Thus we have
an alternative and often simpler way of recognizing canonical minimal
models. Because of the usefulness of this way of putting the matter, we
state it formally in the following theorem (the proof of which is left as
an exercise).
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THEOREM 9.7. # = (W, N, P)is acanonical minimal model for a classical
system of modal logic % iff W and P are as in definition 9.3,
and for every o in M,
N, ={|Alg: JAea}u Z,

where & is any collection of non-proof sets relative to X (i.e.
X' {X c W: X # |Alg for every sentence A}).

EXERCISES

9.14. Complete the proof of theorem 9.4.
9.15. Give the proof of theorem 9.5. for the case in which A = OB.
9.16. Prove theorem 9.7.

9.17. Let A4 = (W, N, P) be a canonical minimal model for a classical
system X. Use exercise 7.7 and theorem 9.5 to prove, for any n > 0:

(@) |D"Alg = fain A [Al;e N},
(b) 10™Aly = {ain A — [Alp¢ N},
9.18. Use theorem 9.6 to prove that the system E is complete with respect

to the class of all minimal models, and so is determined by it, in virtue
of exercise 9.1(a).

9.19. Let A4 = (W, N, P) be the smallest canonical minimal model for a
monotonic system 2. Prove:

(a) # is not supplemented.

(b) The supplementation .#+ = (W, N*, P) of A is a canonical
minimal model for 2. (Exercise 8.32 may be helpful.)

9.20. Use the second result in the preceding exercise to argue that the
system M is complete with respect to the class of supplemented minimal
models (and so is determined by it; see exercise 9.1(5)).

9.21. Let # = (W, N, P) be the smallest canonical minimal model for a
classical system containing the schema C. Prove that .# is closed under
intersections.

9.22. Using results in exercises 9.19 and 9.21, prove that the system R is
complete with respect to the class of quasi-filters (and hence is deter-
mined by it; see exercise 9.1(c)).
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9.23. Let 4 = (W, N, P) be any canonical minimal model for a classical
system in which N is a theorem. Prove that .# contains the unit.

9.24. Using results in exercises 9.19, 9.21, and 9.23, prove that the
system K is complete with respect to the class of filters (and is thus
determined by it, given exercise 9.1(d)).

9.25. Let#' = (W, N', P) be the augmentation of the smallest canonical
minimal model .# = (W, N, P) for a normal modal logic. Prove that
A" is also a canonical minimal model for the logic. (Theorem 4.30(1)

may be helpful.)

9.26. Conclude from the preceding exercise that the system K is complete
with respect to the class of augmented minimal models, and use exercise
9.24 to argue that this class determines X.

9.27. Let X be a monotonic system, and let # = (W, N, P) be a minimal
model in which W and P are as in a canonical model for £, and N satisfies

the following condition.
[JA € iff for some XeN,, X < |A|;

Relative to the truth conditions for modalities given in exercise 7.9, prove
that for every o in .#,

FAAffAca,

i.e. that |A||# = |A|g. The proof is by induction on the complexity of A,
Give it for the cases in which A is atomic, the falsum, a conditional, and

a necessitation.
Is .# a canonical minimal model for X, in the sense of definition 9.3?

9.28. Define the idea of a canonical model for a classical modal logic in
terms of the models .# = (W, f, P) of exercise 7.10.

9.29. Let (%, *) be the lindenbaum modal algebra of a classical system
%, and define the algebraic model A4 = (&, %, P) by:

F,=|P,|g forn=0,1,2,....

(See exercises 7.11 and 8.33.) Then # is a canonical algebraic model
(indeed, the such model) for X, in the sense that, for every sentence A,

4 A ff s A.

Prove this by induction on the complexity of A, at least for the cases in
which A is atomic, the falsum, a conditional, and a necessitation.
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9.3. Determination

We wish to prove determination theorems for the eight classical modal
logics obtained by taking the schemas M, C, and N as theorems in all
possible combinations (sec the diagram in figure 8.1). In particular, we
shall obtain results for the smallest classical, monotonic, regular, and
normal systems — E, M, R, and K.

Completeness is all that needs to be shown in each case; soundness
follows easily from theorems 7.5 and 9.1 (see exercise 9.1). We begin
with the smallest classical modal logic.

THEOREM 9.8. E is determined by the class of minimal models.

Proof. Completeness follows from theorem 9.6 and the existence of
canonical minimal models: a sentence valid in the class of minimal
models is true in any canonical minimal model for E, each of which
determines E.

To prove the completeness of a classical modal logic with respect to a
class of minimal models it suffices to show that some canonical minimal
model for the logic is in the class. (Recall the discussion in section 2.7.)
The problem in each case is to find a suitable canonical model, since it
can happen that not every such model for a system is in the class in
question (see exercise 9.19(a)). For the classical extensions of E using M,
C, and N we require theorems 9.9, 9.11, and 9.13 below. The first of these
concerns monotonic systems, i.e. classical systems containing M or
closed under the rule RM. It states that the supplementation of the
smallest canonical minimal model for a monotonic logicis itself a canonical
model for the system.

THEOREM 9.9. If M = (W, N, P) is the smallest canonical minimal model
for a monotonic system of modal logic, then its supplementation
M+ = (W, N+, P) is also a canonical minimal model for the
system.

Proof. Let £ be a monotonic logic. If .# is the smallest canonical
minimal model for =, then N, = {|A|5: [JA €a} for each a in .# (see the
" remarks following theorem 9.6). By the definition of supplementation,
7.6, it follows that N = {X < W: |A|y < X for some [JA ea}. To show
that .#+ is a canonical minimal model for X it is enough to argue that for
every sentence A and every world « in 4%,

TJAcaiff [AlgeN7.
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The result is trivial from left to right: if [JA €«, then [A[z €N, since
A is canonical for X. But N, € N}; so |A|geN}. For the reverse,
suppose that [A|zeN], so that for some [JBea, |B|z <= |A|z. By
theorem 2.22(2) this means that +z B— A. Because Z is monotonic we
can infer by RM that y, []B— [JA, which means that [JA is Z-deducible
from a (since this set contains []B). Hence by theorem 2.18(1), (JA e«,
as we wished to prove.

It follows at once that any monotonic modal logic is complete with
respect to the class of minimal models closed under supersets, i.e. the
class of supplementations. For a sentence in this class is true in the model
A+ and so is a theorem of any monotonic system. In particular, M, the
smallest monotonic system, is complete with respect to the class of
supplementations; since it is also sound with respect to this class (exercise
9.1(b)), we have the following theorem.

‘THEOREM 9.10. M is determined by the class of supplementations.

The next theorem provides the basis for the completeness of classical
modal logics that contain the schema C. According to it, the smallest
canonical minimal model for such a logic is closed under intersections.

THEOREM 9.11. Let A4 = (W, N, P) be the smallest canonical minimal
model for a classical system containing C. Then for every a, X,
and Yin M,if XeN, and YeN,, then Xn YeN,.

Proof. Let X be a classical logic that contains the schema C, and let
A be the smallest canonical minimal model for Z, i.e. that in which,
for every o, N, = {|A|g: [JA €a}. If we suppose that X and Y are
propositions in N,, then X = |B|; and Y = |Cly, for sentences []B and
[1C in a. Now Fg([OJBA (JC)— [J(BA C), from which it follows that
(B A C) is Z-deducible from a and so is in a. By the canonicity of .#,
|B A C|z belongs to IV,. But by theorem 2.22(7), |IBAC|y = |B|gn |Cly.
So Xn Y is in N, which is what we wished to show. Therefore, # is
closed under intersections.

From theorem 9.11 it follows that classical logics in which C is a theorem
are complete with respect to the class of minimal models closed under
intersections. The smallest system of this sort, EC, is indeed determined
by this class, since it is sound with respect to it (exercise 9.1). We are also
in a position to see that every regular modal logic is complete with respect
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to the class of quasi-filters. Recall that the regular logics are just the
monotonic systems containing C (theorem 8.11), and that a minimal
model is said to be a quasi-filter just in case it is supplemented and closed
under intersections (see the text before theorem 7.5). For the complete-
ness result it is enough to note that by exercise 7.16(a) and theorem
9.11 the supplementation of the smallest canonical minimal model for a
regular logic is closed under intersections. Thus a sentence is valid in the
class of quasi-filters only if it is true in this canonical model and so is a
theorem of any regular system. Because R (= EMC), the smallest regular
logic, is sound with respect to the class of quasi-filters (exercise 9.1(c)),
we arrive at the following theorem.

‘THEOREM 9.12. R is determined by the class of quasi-filters.

"To complete our account we have to treat classical systems that contain
N. The information needed here is that any canonical minimal model
for such a logic contains the unit. Formally:

THEOREM 9.13. Let # = (W, N, P) be a canonical minimal model for a
classical system containing N. Then W e N, for every o in M.

Proof. Let .4 be any canonical minimal model for a classical system
Z containing N. Then, since (] T ea for every ain.#, | T | € N, for every
o in .#. But, as in any canonical model, W = |T|5z. So .# contains the
unit.

"Thus any classical logic containing N is complete with respect to the
class of minimal models containing the unit, and we have determination
results for the four remaining systems, EN, EMN, ECN, and EMCN.
Let us focus on the last of these, otherwise known as K, the smallest
normal system (the others are left as exercises). From theorems 9.9, 9.11,
and 9.13 it follows that the supplementation of the smallest canonical
minimal model for a normal modal logic is a filter, i.e. a quasi-filter
containing the unit (see the text before theorem 7.5). So any normal
system, K in particular, is complete with respect to the class of filters.
Combining this with exercise 9.1(d), we have the following theorem.

‘THEOREM 9.14. K s determined by the class of filters.

This result can be improved. We pointed out in section 7.3 that any
normal modal logic is complete with respect to the class of filters that are
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augmented, i.c. the class of minimal models # = (W, N, P) such that
for every a and X in .4,

XeN,iff NN, € X.

We can now prove directly that a normal system is complete with
respect to the class of augmented models, simply by demonstrating the
existence of an augmented canonical minimal model for the logic. This
is the point of the next theorem.

TurEorREM 9.15. If A = (W, N, P) is the smallest canonical minimal
model for a normal system of modal logic, then its augmentation
M= (W, N, P) is also a canonical minimal model for the
system.

Proof. Let Z be a normal system, and suppose .# is the augmentation
of .#, the smallest canonical minimal model for Z. To prove that .# :
is canonical for & we must show that for every acin 4",

[JAeaiff |A|geN,.

By the definition of augmentation, 7.9, to say that |A|g e N, means that
NN, < |Als, which in turn means that

N{|Alg: JAea} < |Alg,

since # is a smallest canonical minimal model. In other words, A is a
member of every S-maximal set of sentences fin N{|Alz: (JA ca}. We
leave it as an exercise for the reader to prove that for any fin .#,

pen{Alg: OAea}iff {A: OAea} = B.

So what we wish to show is that [JA e« if and only if A belongs to every
Z-maximal set of sentences § such that {A: [JA €} = f. But this, once
again, is theorem 4.30(1).

Thus we have another determination theorem for the smallest normal
system.

THEOREM 9.16. K is determined by the class of augmentations.

EXERCISES

9.30. State and prove determination theorems for the systems EC, EN,
EMN, and ECN.
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9.31. In connection with the proof of theorem 9.15, show that for any
pin A, Ben{|Alg: JAea}iff {A: (JAeal < B
(This may have been proved already; see exercise 9.25.)

9.32. Using theorem 7.9, deduce theorem 5.12 from theorem 9.16, and
vice versa.

9.33. Prove determination theorems for some classical systems containing
the schema K, in particular, for the systems EK and ECK. Show that
EK and ECK are distinct from each other and from the systems in
figure 8.1. Finally, argue that EK, ECK, and the systems in figure 8.1
are all the classical systems that result from adding to E various combina-
tions of the schemas M, C, N, R, and K as theorems. (Exercises 7.30 and
8.14 are relevant.)

9.34. Let # = (W, N, P) be the smallest canonical minimal model for a
classical system in which T is a theorem. Prove that .# satisfies the
condition (t) in section 7.4.

9.35. Let # = (W, N, P) be the largest canonical minimal model for a
classical system in which 5 is a theorem. Prove that .# satisfies the
condition (V) in section 7.4.

9.36. Using the results in exercises 9.8 and 9.27, prove that the system
M is determined by the class of minimal models in which modalities are
evaluated as in exercise 7.9.

9.37. Collecting results from exercises 9.12 and 9.28, prove determina-
tion theorems for the systems in figure 8.1 with respect to classes of
models of the kind introduced in exercise 7.10.

9.38. Collecting results from exercises 8.33, 9.13, and 9.29, prove
determination theorems for the systems in figure 8.1 with respect to
classes of algebraic models.

9.4. The schemas D, T, B, 4, and 5

Let us deal briefly with classical systems containing D, T, B, 4, 5, and
the like by proving determination theorems for the systems ET, E5, and
ET5. These results are not meant to be exhaustive, but the proofs are
illustrative of the problems involved in demonstrating the completeness
of classical logics containing the five schemas. Further theorems of this
kind are in the exercises.
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We wish to consider minimal models .# = (W, N, P) in which, for
every « and X in .#,

(t) if XeN,, thenaelkX,
and
(v) if X¢ N, then {fin #: X¢ NgleN,.

In virtue of theorems 7.11 and 9.1, ET, E5, and ET5 are sound with
respect to classes of minimal models satisfying (t), (v), and (t) and (v)
(see exercise 9.3). For completeness it suffices to show that these logics
have canonical models that satisfy these conditions.

We may begin by observing that if # = (W, N, P) is the smallest
canonical minimal model for a classical system Z containing the schema
T, then # satisfies the condition (t). For if XeN,, then X = |A|; for
some [JA ca. So A €a, since T is a theorem of X, and this means that
ae|Aly = X. Moreover, .4 continues to satisfy (t) if to any N, we
add any collection of non-proof sets X (in X) for which it holds that
o € X. We state this formally.

TurEoREM 9.17. Let T be a classical system containing T, and let M = (W,
N, P) be any canonical minimal model for X in which for every ,

N, ={Alg: DAea}u Z,

where & is any collection of non-proof sets X (in X) such that
o€ X. Then M satisfies (t).

It follows that every classical ET-system is complete with respect to
the class of minimal models that satisfy (t). Thus we obtain our first

desired result:

TuEOREMY.18. ET is determined by the class of minimal models satisfying (t).

Next, for E5, we note that the largest canonical minimal model
M = (W, N, P) for a classical logic £ containing 5 satisfies (v). The
argument for this is as follows. Suppose that X ¢ N,. Then, since .#
is the largest canonical minimal model for 2, X is the proof set of some
sentence whose necessitation is notin a; i.e. X = |A|y for some [JA¢a.
By Df[] and theorem 2.18(5, 9), O 1A ea; So [JO A€, since 5 is
a theorem of X. By the definition of a canonical minimal model, 9.3,
|©1A|5 € N,. But this is what we wished to prove, since |OA|g =
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{Bin M : X¢Ng} (exercise 9.17). So A satisfies (v). Notice that # still
meets condition (v) if from any N, we subtract any collection of non-
proof sets X (in X) for which it holds that {# in .#: X ¢ Ny} eN,. Thus
we can state the following theorem.

THEOREM 9.19. Let Z be a classical system containing 5, and let M = (W,
N, P) be any canonical minimal model for X in which for every c,

N, ={Alz: NAea}u %,

where 2 is any collection of non-proof sets X (in X) such that
{Bin M: X¢ENYeN,. Then M satisfies (v).

Therefore, every classical E5-system is complete with respect to the
class of minimal models for which (v) holds. Hence our second desired

result:
TuroreM9.20. ES is determined by the class of minimalmodels satisfying (v).

Now for ET5. Let % be a classical system containing T and 5, and let
M = (W, N, P) be the smallest canonical minimal model for 2. Then
no N, contains any non-proof set relative to . By theorem 9.17 .#
satisfies (t). To see that the model satisfies (v), note that by theorem 9.19
it is enough to show that {# in .#: X¢ Ny} e N, whenever X is not a
proof set in Z. But foreachsuch X, {#in .#: X¢ N} = W,and W = | T|;
(theorem 2.22(4)). By theorem 8.15 N is a theorem of Z, which means
that [JT belongs to every « in .#. Hence by the definition of a canonical
minimal model, | T |z € N, for each « in .#, which is what we wished to
prove. Therefore, every classical ET5-system is complete with respect
to the class of minimal models for which both (t) and (v) hold. So we
achieve our last desired result:

THEOREM 9.21. ET9 is determined by the class of minimal models satisfying
(t) and (v).

It often happens that in seeking an appropriate canonical minimal
model for a classical system neither the smallest nor the largest will
serve; the trick then is to find a model ‘in between’. There are some
examples of this phenomenon in the exercises.
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EXERCISES

9.39. Prove determination theorems like 9.18, 9.20, and 9.21 for some
classical, monotonic, and regular systems containing as theorems various
combinations of the schemas D, T, B, 4, and 5, as well as such schemas
as G, P, P, Gkbmn GEEmn and U, In particular, prove that the following
systems are determined by classes of minimal models satisfying the
indicated conditions.

(@ ED:(d&)  (f) EP: (p)

(b) EB: (b) (g) EGhbmn; (ghtmn)
(c) E4: (iv) (k) EGKimn: (glbmmny
(d) EG: (g) (i) EU: (u)

() EP: (p)

See section 7.4 and exercises 9.4-9.6 for the conditions.

9.40. Using determination theorems and results in exercise 7.49, prove
the decidability of the systems E, M, R, and K. (See the discussion in
section 2.8.)

9.41. Extend the results of exercise 9.37 by proving determination
theorems for systems like those in exercise 9.39 (but include the schemas
T and 5) with respect to classes of models of the kind defined in exercise
7.10. (Results in exercises 7.41 and 9.12 are useful.)

9.42. Extend the results of exercise 9.38 by proving determination
theorems for systems like those in exercise 9.39 with respect to classes of
algebraic models. In particular, prove such theorems for the smallest
classical, monotonic, regular, and normal systems containing as theorems
various combinations of the schemas D, T, B, 4, 5, G, P, G&m%, and
GElmn (see the conditions in exercise 8.42).

9.5. Decidability

We focus on the smallest classical, monotonic, regular, and normal
logics — E, M, R, and (again) K. The reasoning involved in these cases
can be adapted for the remaining four classical systems in figure 8.1, as
well as others.
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THEOREM 9.22. E, M, R, and K are axiomatizable.

Proof. Each can be axiomatized by a finite number of schemas together
with the reasonable rules RPL and RE,

THEOREM 9.23. Eis determined by the class of finite minimal models.

Proof. Soundness comes from theorem 9.8. For completeness, suppose
A is not a theorem of E, so that by theorem 9.8 it is false in some minimal
model .#. Let .#* be a filtration of .# through the set of subsentences
of A. Then #%* is a finite minimal model, and by theorem 7.14 A is
false in .#*.

THEOREM 9.24. M is determined by the class of finite supplementations.

Proof. Soundness follows from theorem 9.10. For completeness, let A
be a non-theorem of M. By 9.10, again, A fails in some supplemented
minimal model .#. Let .#*" be the supplementation of a finest I'-
filtration .#* of .#, where I is the set of subsentences of A. Then .#**
is a finite supplementation. By part (1) of theorem 7.16 this model is a
I-filtration of .#, and so by theorem 7.14 it falsifies A.

THEOREM 9.25. R is determined by the class of finite quasi-filters.

Proof. The argument uses theorems 7.14, 7.16 (part (3)), and 9.12.

Exercise.

THEOREM 9.26. K is determined by the class of finite filters.

Proof. Theorem 9.14 implies soundness. For completeness, suppose A
is not a theorem of K. Then by 9.14 A is rejected by some filter .#.
Let .#** be the quasi-filtering of a finest ['-filtration .#* of .#, where I"
is any finite set of sentences, closed under subsentences, that contains A
and []T. Then .#*+ is a quasi-filter, and by theorem 7.17 it contains the
unit. So it is a finite filter. By part (3) of theorem 7.16 the model is a
Ifiltration of .#. So by theorem 7.14 it too rejects A.

THEOREM 9.27. E, M, R, and K have the finite model property.

Proof. This is a corollary to theorems 9.23-9.26.
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TuEOREM 9.28. E, M, R, and K are decidable.

Proof. This is a corollary to theorems 9.22 and 9.27.

EXERCISES

9.43. Prove theorem 9.25.

9.44. Prove the decidability of the systems in figure 8.1 other than E, M,
R, and K (see the results in exercise 7.49).

9.45. Prove the decidability of the systems EK and ECK.

9.46. Prove some decidability theorems for some classical, monotonic,
and regular systems containing various combinations of D, T, B, 4, 5,
G, P, Grbmn and GEAmn (for selected &, I, m, n), and others.

9.47. By a result of exercise 9.38, the system E is determined by the
class of all algebraic models. Let us prove:

E is determined by the class of finite algebraic models.

Soundness is immediate from the earlier determination result. For
completeness, suppose that not FzA, so that by the determination
result not k4 A for some algebraic model .#. Where I" is the set of
subsentences of A, define 4T to meet conditions (1)-(3) in exercise
7.51. Then, by the filtration theorem in that exercise, not F-#T A. But
AT is a finite algebraic model, so the theorem is proved.

Similarly, we can prove:

K is determined by the class of finite algebraic models
satisfying (m¥), (c¥*), and (n¥).

(See exercise 7.27 for these conditions.) We have that K is determined
by the class of all algebraic models that satisfy (m*), (c*), and (n¥)
(exercise 9.38), so soundness is again trivial. The proof of completeness
is like that for E, but more complicated, since *I' must be defined so as
to meet condition (2) in exercise 7.51 as well as (m*), (c*), and (n*). Let
us indicate how this may be done, and leave the details of the argument
for the reader.

For a point 4 in a finite boolean algebra let M(a) be the boolean union
of all the elements b in the algebra such that b < a. Note that M(a)
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exists in the algebra since there are only finitely many points & such that
b < a. Moreover,

M(anb) = M(a)n M(b),

for every a and b in the algebra.

Now if I' is the set of subsentences of a sentence A rejected by an
algebraic model A = (%, *, P) satisfying (m¥*), (c¥), and (n*), then any
algebraic filtration #T = (&, *T, PT') of .# through I is finite. And if
*T i defined by

*La = M (*a)

— for a in .#T - then conditions (2) and (m*), (c¥), and (n¥) are satisfied.
So by the filtration theorem in exercise 7.51 A is false in .#T, which
completes the proof.

Together with facts about their axiomatizability, these finite deter-
mination theorems for E and K lead again to decidability results (as the
reader should verify).

Using results in exercises 9.38 and 9.42, prove finite determination
theorems with respect to classes of algebraic models for the remaining
systems in figures 4.1 and 8.1, and others as well.
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CONDITIONAL LOGIC

Conditionality affords a good example of a concept susceptible of analysis
by means of the kinds of models and systems studied in this book. In
section 10.1 we present the basic systems of conditional logic and the
classes of models that determine them. In section 10.2 we return to the
subject of deontic logic and define a minimal logic for conditional
obligation. In section 10.3 we offer a definition of the conditional obliga-
tion operator in terms of simple obligation and non-deontic conditionality.

As with chapter 6, the purpose of this chapter is to illustrate the use of
our semantic and deductive-theoretic techniques in the analysis of
philosophically interesting concepts. Again, as in the earlier chapter, the
reader will be the judge of the merit of the endeavor and the extent to
which it is successful.

10.1. Conditionality

Into the language of propositional logic we introduce sentences of the
form A = B. The operator => is meant to express a notion of condition-
ality — a notion in general distinct from that expressed by —.

In a standard conditional model # = (W, f, P) for the language of
conditional logic f is a mapping that selects a proposition (set of worlds)
f(e, X) for each world « and proposition, or condition, X. Formally,
then, fis a function from W x Z(W)to Z(W).

To evaluate a conditional A= B ata world o in a model 4 = (W, f, P)

we say:
F# A = Biff f(a, |Al#) < |B||-4.

Thus a conditional is true at a world just in case the proposition ex-
pressed by the consequent is entailed by the proposition selected in
terms of the world and the condition expressed by the antecedent.
Equivalently, we may say that A = B is true at a possible world if and
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only if B is true in every world selected in terms of the given world and
the antecedent’s condition.

Viewed in the latter way it is clear that we are construing condition-
ality as a form of relative necessity: we might revise A =B to read
[A]B, and so make graphic the necessity of what B expresses relative to
the condition given by A.

This analysis of conditionality leads to the result that the logic of =~
is, so to speak, classical with respect to the antecedent and normal with
respect to the consequent. In other words, the following rules hold.

Ao Al
RCEA. (A=B)~(A"=B)
RCK. (ByA...AB,)—>B ; (n > 0)

(A=B)A...A(A=B,)—~>(A=B

We call a system of conditional logic based on propositional logic and
having these rules normal. The smallest normal conditional logic we call
CK.

CK is determined by the class of all standard conditional models.

By way of example of extensions of CK let us consider normal con-
ditional systems containing the following schemas.

I. A=A
MP. (A=-B)->(A—>B)

I expresses a law of identity, and MP is a principle of modus ponens
for =>. Neither schema is valid in the class of all standard conditional
models, i.e. neither is a theorem of CK. Each is plausible for some
notions of conditionality, though not for all.

The constraints on standard conditional models required for the
validity of I and of MP are perhaps obvious:

) fleu X)X
(mp) if x € X, then a ef(a, X)
Of course conditional logics weaker than CK can be obtained by
eliminating RCK in favor of weaker rules of inference. Let us say that

a conditional logic closed under RCEA is respectively classical, monotonic,
or regular according as it is closed under the following three rules.

B« B

RCEC. g A H)
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B—> B
RCM. A=B)>(A=B)
(BAB)—>C
RCR. (A= B)A(A=DB')) >(A=C)

Not unexpectedly, the smallest classical, monotonic, and regular con-
ditional logics are called CE, CM, and CR.

To model such weaker conditional logics we employ minimal con-
ditional models # = (W, f, P) in which f(x, X) is a collection of pro-
positions in .#, for each &« and X in .#, and the truth conditions of a
conditional A = B are given as follows.

F# A = B iff | B[ ef(x, [|A]4).

Intuitively, A = B is true at a world just in case the proposition expressed
by B is among those picked out as necessary relative to the condition
expressed by A at the world.

The system CE is determined by the class of all minimal conditional
models. CM is determined by the class of such models for which the

condition
(cm) if Yn Y’ ef(a, X), then Y ef(e, X)and Y’ ef(e, X)

holds. CR is determined by the class in which both (cm) and
(cc) if Yef(a, X)and Y’ ef(a, X), then Y n Y’ ef(a, X)

hold. And CK is determined by the class of minimal models that satisfy
(cm), (cc), and the following condition.

(cn) Wef(a, X)

EXERCISES

10.1. Prove that every normal conditional logic has the rules RCEC,
RCM, RCR, and
B

RCN. +—%.

as well as the following theorems.

CN. A=T
CM. (A= (BAB))>((A=B)A(A =B
CC. ((A=B)A(A=B")>(A=(BAB))
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CR. (A= (BAB)-((A=BA(A=DB"))
CK. (A= (B->B)—>((A=B)>(A=B"))
10.2. Use RCEA and various combinations of theorems and rules in the

preceding exercise to characterize normal conditional logics. (Compare
theorem 4.3 and exercise 4.5.)

10.3. Describe standard conditional models falsifying the schemas I and
MP (thus proving that neither is a theorem of CK). Then show that
these schemas are valid in the classes of standard conditional models
satisfying, respectively, (i) and (mp).

10.4. Prove that a normal conditional logic has I as a theoremif and only
if it is closed under the rule

A—-B

RI. .

10.5. Describe a standard conditional model in which the following
principle of augmentation is false.

AUG. (A=B)->((AAA")=B)
10.6. Call a normal conditional logic SICK if it contains the schema I
and a principle of syllogism:

S. (A=B)=>(B=C)>(A=0())
Prove that AUG in the preceding exercise is a theorem of every SICK

system.

10.7. Let X be a conditional logic closed under RCEA. With reference to
the schemas CM and CC in exercise 10.1, prove:
(a) X is monotonic iff it contains CM and is closed under RCEC.
(b) X is regular iff it contains CC and is closed under RCM.
(¢) Z is regular iff it contains CC and CM and is closed under
RCEC.
(Compare theorem 8.11.)

10.8. Consider the class of models .# = (W, R, P) in which R is a
ternary relation on ¥ and truth conditions for conditionals are given by:

F# A = B iff for every £ and vy in .# such that R(«, 8, v),
if F A then F# B.
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Prove that the conditional logic determined by the class of all such models
is normal and closed under the following rule of inference.

A->(A,v..VA)
(A= B)A- A (A, = B)>(A =)

(n = 0)

Also prove that a normal conditional logic is closed under this rule just
in case it contains the following schemas.

1=A

(AvA')=B)~>((A=B)r(A"=B))

((A=B)A(A" = B))>((AvA')=DB)
10.9. Prove that CK is determined by the class of all standard conditional
models.

10.10. Prove determination theorems for normal conditional logics
containing I and MP.

10.11. Define a notion of filtration appropriate to standard conditional
models. Use it to prove that CK is determined by the class of finite
standard conditional models. Conclude that CK is decidable.

10.12. What condition on standard conditional models makes = have the
logic of —?

10.13. Prove determination theorems for CE, CM, CR, and CK relative
to classes of minimal conditional models.

10.2. Conditional obligation
At the end of chapter 6 we defined minimal deontic logic, D, as the
smallest system, based on propositional logic, closed under the rule of

inference
A->B

OA—- OB
and containing the sentence
OD. 10.41.

We see now that D can be described as the smallest monotonic MP[]-

system for the operator O.
D is determined by the class of supplemented minimal models
M = (W, N, P) that satisfy the condition

(p) 8¢ N,

ROM.
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and in which truth conditions for O A are given by:
F# OAiff |A|# €N,

— or equivalently by:
E# OA iff for some XeN,, X < ||A||4

(compare exercise 7.24). In other words, for each ain.#, N, is a collection
of non-null propositions that are standards of obligation relative to «,
and OA is true at « just in case the proposition expressed by A is entailed
by one of these standards.

Note that none of the following schemas is a theorem of D.

OC. (OAAOB)->0O(AAB)
ON. OT
OD*. (OAA OTA)

This means that there are possible worlds that have no standards of
obligation, and that where standards do exist they may support con-
flicting obligations.

At the end of chapter 6 we also remarked the need for a logic of
conditional obligation, for a logic of sentences of the form O(B/A). If
we construct the logic of O(/) by analogy with that for O, then we
should adopt at least the following two rules of inference.

Ao A’
RCOEA. SEm-omm)

B—DB’
RCOM. 5Em) = oA

The import of RCOEA is that when A and A’ express the same pro-
position the one-place operators O( /A) and O( /A’) are equivalent. This
reflects our understanding that it is the conditions expressed by A and
A’ - and not, for example, the sentences themselves — that determine
what is obligatory. According to the second rule, RCOM, conditional
obligation is closed under implication.

The question now is what to regard as the conditional analogue of
OD. The simple schema

COD*. 10(L/A)

does not seem right. The significance of this is that nothing impossible
is obligatory under any condition. But this rules out even what is
impossible as a condition of an impossible obligation; i.e. COD* yields



274 Conditional logic

10O(L/L) as a theorem. It seems more reasonable to assume only that
nothing impossible is obligatory under any possible condition. That is to
say, the correct counterpart to OD is the weaker schema

COD. OA—>"10(L/A).

Here ¢ is to represent some suitable concept of possibility. For the sake
of simplicity, let us suppose that ¢ has the logic of a normal K75-
system, so that A can be taken to mean that A is true at some possible

world.
We may call the logic of O(/) defined in terms of propositional logic,

RCOEA, RCOM, and COD minimal conditional deontic logic, or CD. It
is the smallest monotonic conditional logic for O(/) containing the

theorem COD.
CD is determined by the class of minimal conditional models A = (W,

f, P) that satisfy the condition (cm), in the preceding section, and the
condition

(cd) if X # o, then ¢ f(x, X)
and in which truth conditions for O(B/A) are given by:

ke O(B/A) iff | BJ-“ ef (o [ A]4)
— or equivalently by:

k# O(B/A) iff for some X ef(a, |A[4), X = | B|-#.
(Because we assume [] and { to obey the laws of KT5 (S5), there is no

need to introduce an alternativeness relation for them into the models;

compare theorem 5.15.)
Given this determination result for CD, it is easy to sec that the

system has none of the conditional analogues of OC, ON, and OD*:
COC. (O(B/A)A O(B'/A))~>O(BAB'/A)
CON. O(T/A)
COD*. OA->1(O(B/AYA O(T1B/A))

Moreover, CD does not contain a principle of augmentation:
OAUG. O(B/A)-> O(B/AAA')

This is as it should be, since part of the point of conditional obligation is
that obligations can differ under different conditions.

The foregoing account of conditional obligation takes the operator
O( /) as primitive, and this leaves unresolved the connection between
this concept and that expressed by the simple O - although we might
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regard O as defined in terms of O( /), for example by O(/T). Another
way to explain the connection between the operators is to define O( /)
in terms of O and a suitable non-deontic notion of conditionality. We
turn to this idea in the next section.

EXERCISES

10.14. Explain why the system D is the smallest monotonic MP[]-
system for O.

10.15. Prove the equivalence of the truth conditions given in section 10.2
for sentences of the form OA.

10.16. Describe models for the system D in which OC, ON, and OD*
are false.

10.17. Prove the equivalence of the truth conditions given in section 10.2
for sentences of the form Q(B/A).

10.18. Describe models for the system CD in which COC, CON, COD*,
and OAUG are false.

10.19. Prove that if COC is a theorem of a monotonic CD-system then
COD* is too.

10.20. Prove that D is determined by the class of supplemented minimal
models for O that satisfy the condition (p) (compare exercise 9.39).

10.21. Sketch a proof that CD is determined by the class of minimal
conditional models satisfying (cm) and (cd). Along the way, explain why
[]and ¢ do not have to be represented in these models.

10.3. Conditional obligation defined

Let CKD be the smallest normal system for the conditional = in which
the schema

CD. QA—>"1(A=1)

is a theorem. CKD is determined by the class of standard conditional
models .# = (W, f, P) that satisfy the following condition.

(cd) if X + o, then 0 ¢ f(a, X)

As we remarked in the preceding section, the system D for the operator
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O is determined by the class of supplemented minimal models # = (W,
N, P) that satisfy the following condition,

(p) ¢ N,

If we combine the systems D and CK D, the resulting logic — D+ CKD
— is determined by the class of models 4 = (W, N, f, P) in which N
behaves as it does in the models for D and f behaves as it does in the
models for CKD. (Again, as in the preceding section, we ignore [] and

)

Now let us define the conditional obligation operator O( /) in terms
of O and =, thus:
O(B/A) = A = OB.

Given this definition, the logic of O( /) is precisely CD, the minimal
conditional deontic logic described in the preceding section,
If the models A4 = (W, N, f, P) satisfy the further condition

(def) flo, W) = {&},
then the following schema becomes a theorem.
DEF. Ao (T =A)
This is a reasonable law for non-deontic conditionality, and it has the
virtue of yielding
ODEF. QA+« QO(A/T)
as a special case. We suggested earlier thatif O(/) is taken as primitive O

could plausibly be defined in this way (and if both deontic operators are
taken as primitive one might expect ODEF to be a theorem).

EXERCISES

10.22. Describe models of the system D -+ CKD that falsify COC, CON,
COD#*, and OAUG.

10.23. Derive ODEF from DEF, and prove that DEF is true in any
model for D+ CKD that satisfies the condition (def).

10.24, Describe a model of D+ CKD in which I (A = A) is true, but

the schema
OI. O(A/A)
is false.
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10.25. Prove that
OMP. O(B/A)—~(A— OB)

is true in any model for D+ CKD that satisfies the condition (mp) in
section 10.1.

10.26. Let = be a system extending D+ CKD that is closed under ROM,
RCEA, and RCK. Prove:

(a) A - O Ais a theorem of X if the system contains O and OMP
(see exercises 10.24 and 10.25).

() T is inconsistent if it contains I (A= A) and COD+
(11O(L/A); see section 10.2).

10.27. Prove that principles of dilemma —

DIL. ((A=B)A(A’ =B))>((AvA')=B)
ODIL. (O(B/A)A O(B/A"))~>O(B/AV A’)

— are true in any models for D + CKD that satisfy the following condition.
(dil) f(&, XU Y) € f(a, X)U f(@, ¥)
What is the situation in models for which the converse of (dil) holds?

10.28. Prove that D+CKD is determined by the class of models
M = {W, N, f, P) satisfying the conditions stated in section 10.3.
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closure under intersection, 220
closure under intersections, 215, 217
closure under subsentences, 28
closure under supersets, 215
coarsest filtration
of a standard model, 102
of a minimal model, 227
compactness
of deducibility, 48
with respect to consistency, 49
completeness
of S5, 20
soundness, completeness, and
canonical models, 59—62
with respect to a class of models,
60
strategy for proving, 61
basic theorems for normal systems,
171-75
of K, 175, 187, 259-60, 265
of the systems beyond K in figure
4.1, 177-78, 187-88
of normal KG-systems, 178-80
of normal KG*™".systems,
183-84
basic theorems for classical
systems, 252-56
of E, 257, 265
of monotonic systems, 258

of M, 258, 265
of regular systems, 258-59
of R, 259, 265
of classical systems containing N,
259
of normal systems, 25960
of classical systems containing
D, T, B, 4, and 5, 261-64
of classical ET-systems, 262
of classical E5-systems, 263
of classical ET5-systems, 263
see also decidability, determina-
ation, soundness
composition, 84
Con, see consistency
Con, see inconsistency
conclusion of a rule of inference, 46
conditional, 4, 26
whenn = 0in (A; A ... AA) - A
and A - (A, v...VA)),27
the operator O( /), 201, 202, 273,
276
the operator =, 268
conditionality, 26872
conditional logic
conditional obligation, 200-202,
272-77
conditionality, 26872
standard conditional model for, 268
conditionality as relative necessity,
269
classical, monotonic, regular, and
normal systems of, 269
minimal conditional model for, 260
minimal conditional deontic logic,
274
conditional obligation defined,
275-77
the system CKD, 275-76
the system D+ CKD, 276-77
conditional obligation, 200-202,
272-77
conjunct, 26
conjunction, 4, 26
arbitrary (A; A ... A A)), 27
in (A; A... AA) > A, 27
connectedness, 166
connected relation, 167
connected standard model, 167

consequent, 26
inA —>(A;V..VA),?27
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consistency, 47
of S5, 22-23
properties of, 47—48
alternative characterizations of, 49
of K, 123
of the systems beyond K in figure
4.1, 147
systems for which € cannot be
used to prove, 147
of classical systems, 247
construction tree, 28, 29
conventions, 27
convergence, 166
convergent relation, 166
convergent standard model, 167
converse of a relation, 84
countermodel, 36

Cresswell, M. J., 146

decidability, 32
of a system of modal logic, 62-64
and the finite model property,
6264
of the systems in figure 4.1,
187-89
of E, M, R, and K, 264-67
see also decision procedure,
determination
decision procedure, 52, 63
deducibility, 47
properties of, 47-48
characterization in terms of con-
sistency, 49
characterization in terms of maxi-
mality, 57
deduction theorem, 48
deductively closed set of sentences, 51
deductive system, 3
dense standard model, 90
density, 90
deontically vacuous statement,
197-98, 200
deontic alternativeness, 191
deontic force, 200
deontic logic, 131
standard deontic logic, 190-92,
194, 197, 200-203
further principles, 193-95
deontic S5, 193, 195
modalities in, 195
obligation and time, 195-98
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past tense obligations, 196, 198-200
deontically vacuous statement,
197-98, 200
shortcomings of standard deontic
logic, 200-203
conditional obligation, 200-202,
272-77
minimal deontic logic, 202-3,
272-73, 275, 276
minimal conditional deontic logic,
274, 275-76
see also obligation
deontic necessity, 190
deontic S5, 193, 195
determination, 60
for K, 175, 187, 259-60, 265, 266
for the systems beyond K in figure
4.1, 177-78, 187-88
for KT5, 178
for KG, 178-80
for other normal systems, 180-81,
185-86
for KG*.tmn 182-87
for E, 257, 265, 266
for M, 258, 265
for EC, 258
for R, 259, 265
for other classical systems, 260-61,
264
for ET, 262
for E5, 263
for ETS, 263
see also completeness, decidability,
soundness
diagonal relation, 84
dilemma
moral, 201
principles of (the schemas DIL
and ODIL), 277
diminution, 49
disjunct, 26
disjunction, 4, 26
arbitrary (A V ... V Ay), 27
inA > (A, V...VA,) 27
distinctness
of modalities, 147
of the systems in figure 4.1, 163-66
of the systems in figure 8.1, 249-50
duality
dual of a modality, 29, 128-30,
233-34
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duality (cont.)
dual of a sentence, 30-31
dual of a schema, 31
in normal systems, 125-30
DUAL, 126, 233
in classical systems, 232-34

effectively enumerable set, 32
elementary quantificational logic,
12-14, 75-76
empty modality, 29
empty relation, 91
empty set, 10
empty standard model, 180
enumeration, 27
€ (erasure transformation), 2224,
123, 124, 147, 243, 247
equivalence
of sentences in a model (.#-
equivalence), 36
of models, 36
of models, pointwise, 36
modulo T', 42
of sentences in a system (Z-
equivalence), 50
of modalities, 147
equivalence class, 85
[, 42
|Als, 243
equivalence relation, 12, 83, 85

~ 3 (Z-equivalence), 50
erasure transformation, see €
euclidean filtration, 108-11
euclidean relation, 10, 40, 74, 80
euclidean standard model, 80
evaluation, 213
existential quantifier, 12
extension, 26

falsity (non-truth), 36
falsity (truth value), 8, 37
falsity constant, 4, 26
falsum, 4, 26
fatalism, 200
Feys, Robert, 135
field of a relation, 85
filter, 215
filtration, 4145
and the finite model property, 63

of standard models, 100-112
of minimal models, 227-30
of algebraic models, 230
finest filtration
of a standard model, 102
of a minimal model, 227
finite algebraic model, 212
finite determination theorem, 63
finite model, 35, 212
finite model property (f.m.p.), 62-64
for 85, 103
for the systems in figure 4.1,
187-88
for E, M, R, and K, 265
f.m.p., see finite model property
fully modalized sentence, 142—43
functionality, 167
functional relation, 167
functional standard model, 167, 180
future tense, 69, 200

I'-filtration, 42, 230
generated model, 95-100

historical determinacy, 197, 198
historical identity, 196

historical necessity, 197

historical possibility, 197

Hughes, G. E., 146

hypotheses of a rule of inference, 46
hypothetical syllogism, 15

identity
relation of, 84, 86
condition on a standard model,
167
historical, 196
law of (the schema I), 269
imperative mood, 193
implication
between sentences in a model
(# -implication), 36
between propositions, 41
obligation closed under, 202
conditional obligation closed under,
273
impossible proposition, 191
incestual relation, 82
incestual standard model, 82
inclusion, boolean, 212
inclusion between truth sets, 41
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inconsistency, 47
the inconsistent system, 64
see also consistency
induction schema for past tenses, 200
infinite model, 35
instance of a schema, 31
integers, the set of, 196
intersection, boolean, 212
intersection closure, 217
intransitive standard model, 94
intransitivity, 94
intuitionism, 138
intuitionistic negation, 138
irreflexive standard model, 94
irreflexivity, 94
iteration of a modality, 29-30
vacuous in S5, 154

join (boolean union), 212
k,l,m,n-incestual relation, 88
k,l,m,n-incestual standard model, 88

language
of necessity and possibility, 4
of elementary quantificational
logic, 12, 75
of modal logic, 25-27
of propositional logic, 190, 268
see also syntax
largest canonical minimal model, 254
Leibniz, Gottfried Wilhelm, 3
leibnizian interpretation of necessity
and possibility, 3, 4, 67
Lewis, Clarence Irving, 131
Lewis systems, 131
lindenbaum algebra, 244, 247, 256
lindenbaum modal algebra, 244, 247,
256
Lindenbaum’s lemma, 55-57
logic, see conditional logic, deontic
logic, elementary quantifica-
tional logic, propositional (truth-
functional) logic, systems of
modal logic
logically finite set of sentences, 36
logique t, 135

McKinsey, J. C. C., 146
matrix, 26

Max, see maximality
maximality, 53-59
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maximal sets of sentences as
possible worlds in a canonical
model, 60
maximal sets in normal systems,
157-61
meet (boolean intersection), 212
member of a biconditional, 26
M -equivalence, 36
A -implication, 36
minimal conditional deontic logic,

274, 276
minimal conditional model, 270, 272

minimal deontic logic, 202, 272
minimal models, 207-13
for M, C, and N, 214-19
augmented, 220-23
for D, T, B, 4, and 5, 223-26
filtrations of, 227-30
canonical, 252-56
modal algebra, 212, 244
modal closure, 30
modalities, 29-30
in normal systems, 147-57, 169-71
in classical systems, 24547, 251
modal logic, see systems of modal
logic
modally closed set of sentences, 30
model, 4-5, 34-35, see also algebraic
model, canonical model, com-
pleteness, determination, filtra-
tion, generated model, minimal
conditional model, minimal
models, soundness, standard
conditional model, standard
models, truth at a possible
world in a model, truth in a
model, validity
model of (for) a sentence or set of
sentences, 36
modus ponens
rule of inference (MP), 8, 9, 14,
15-16, 20, 45, 46, 54
principle of (the schema MP), 269
molecular sentence, 25
monotonic systems of conditional
logic, 269
monotonic systems of modal logic,
23445
moral dilemma, 201
moral necessity, 68
moral relevance, 69
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necessary proposition, 41, 74, 208,
211
necessitate, 26
necessitation, 26
algebraic counterpart of, 212
necessity
leibnizian interpretation of, 3, 4, 67
interpretation of, in standard
models, 68-69
moral, 68
temporal, 69
deontic, 190
historical, 197
interpretations of, in minimal
models, 208-9
relative, 269
necessity-based characterization of a
system of modal logic, 118
negate, 26
negation, 4, 26
intuitionistic, 138
see also disjunction in
A->A;v..VA)
negative modality, 29
negative test, 32, 62-63
non-normal systems, 186
non-proof set, 25455, see also proof
set
non-proper canonical standard
model, 187
normal KB-systems, 135-38
normal KD-systems, 133-35
normal KT -systems, 135
normal K4-systems, 138
normal K5-systems, 138-39
normal systems of conditional logic,
269
normal systems of modal logic
method of naming, 113
normal systems, 11425
replacement in, 125-30
duality in, 125-30
the schemas D, T, B, 4, and 5
in, 13147
normal KD-systems, 133-35
normal KT-systems, 135
normal KB-systems, 135-38
normal K4-systems, 138
normal K5-systems, 138-39
modalities in, 147-57, 169-71
maximal sets in, 157-61

determination and decidability
for, 16289
as classical systems, 23445
nth relative product, 86
n-transitive standard model, 87
null modality, 29

obligation, 68—69, 190, 208
conflicts of, 191, 201, 273
standard of, 191, 192, 194, 195,

202, 273
unfulfilled, 194
and time, 195-98
impossible, 201, 202, 273
closed under implication, 202
see also conditional obligation,
deontic logic, ‘ought’, past
tense obligation

obligatory proposition, 191

occurrence of a subsentence, 28, 30

operator, 25
as a symbol, 29

‘ought’, 68-69, 71, 190
ought implies can, 191, 197, 202
see also deontic logic, obligation

partial functionality, 90
partially functional standard model,
90
partition, 85
past tense, 198-200
past tense obligation, 196, 198-200
permissibility, 190, 192, 193
PL, 16, 46, see also propositional
(truth-functional) logic,
tautology
p-morphism, 98
pointwise equivalence, 36
positive test, 32, 52, 62-63
possibilitate, 26
possibilitation, 26
possibility
leibnizian interpretation of, 3, 4, 67
relative, 68—69
interpretation of, in standard
models, 68
historical, 197
interpretation of, in minimal
models, 208
possibility-based characterization of
a system of modal logic, 118



Index of subjects

possible worlds, 3
set of, in a model, 4, 34-35
as equivalence classes in a filtra-
tion, 42
maximal sets of sentences as, in a
canonical model, 60
as points in time, 69, 209
queer, 75
best of all, 193, 195
as functions from times to world-
states, 196
sets of, as propositions, 208
definability of, in a modal algebra,
213
predicate, 13, 75
prefix, 26
present continuous tense, 209
proof of a sentence, 52
proofs
as annotated sequences of theorems,
16
in axiomatizable systems, 51
distinguishing about from in, 52
effectively enumerable, 52
proof set, 57, see also non-proof set
proper canonical standard model,
173-74
propositionally atomic sentence, 8, 37
propositionally correct pattern (mode)
of inference, 8-9, 15-16, 38, 46
propositional (truth-functional) logic,
7,16, 37, 115
propositions
truth sets as, 38, 41
expressed by sentences, 38, 41,
202, 268
implication between, 41
necessary, 41, 74, 208, 211
possibly possible, 138
obligatory, 191
impossible, 191
as sets of possible worlds, 208
as points in algebraic models, 212
provable equivalence, 50
pure past tense, 199-200

quantificational logic, see elementary
quantificational logic

quantifier, 12

quasi-filter, 215, 217

quasi-filtering, 217

293

quasi-ordered standard model, 177
quasi-ordering relation, 83
queer possible worlds, 75

R-descendant, 95
reachability, 68
reasonable rule of inference, 51
reducibility of modalities, 147
reduction law, 147
reflexive relation, 10, 40, 74, 80
reflexive standard model, 80
reflexivity of deducibility, 48
regular systems of conditional logic,
269
regular systems of modal logic,
23445
relative necessity, 269
relative possibility, 68—69
relative product, 84, 86
relevance, 68, 69
removal, 68, 85-87
replacement, 30
REP, 125, 232
in normal systems, 125-30
in classical systems, 232
reverse secondarily reflexive stan-
dard model, 92
reverse secondary reflexivity, 92
R-sequence, 93
rule of disjunction, 100, 181-82, 186
rule of inference, 4546
meaning of, 15, 24
reasonable, 51
for particular rules of inference see
the index of schemas, rules, and
systems
rule of modal consequence, 19
rule of repetition, 23

safe extension, 99-100, 181-82

schemas, 31, for particular schemas
see the index of schemas, rules,
and systems

secondarily reflexive standard model,
92

secondary reflexivity, 92

sentence, 4, 25-27

serial relation, 80

serial standard model, 80

SICK system of conditional logic, 271

o, 124-25
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X-closed set of sentences, 51
Z-equivalence, 50
Z-system, 46
similarity, 83
smallest canonical minimal model,
254
soundness, 59-62
of S5, 20
of normal systems, 16269
of classical systems, 248-52
see also completeness, determination
standard conditional model, 268,
269, 272, 275
standard models, 67-76
for D, T, B, 4, and 5, 76-85
for GEtm» 85-94
generated, 95-100
filtrations of, 100-112
canonical, 171-75
for standard deontic logic, 190-92
for obligation and time, 196
correspondence with augmented
minimal models, 221-22
standard of obligation, 191, 192, 194,
195, 202, 273
strengthening, 48
strong connectedness, 166
strong convergence, 166
strongly connected relation, 167
strongly connected standard model,
167
strongly convergent relation, 166
strongly convergent standard model,
167
subsentence, 28
supplementation, 216
supplemented minimal model, 215,
217
syllogism
hypothetical syllogism, 15
principle of (the schema S), 271
symmetric relation, 80
symmetric standard model, 80
syntactic operation, 25
syntax, 25-34
system, see systems of modal logic
systems of modal logic, 45-51
axiomatizability of, 51-53
maximality in, 53-59
soundness and completeness of,

59-62

canonical models for, 59-62

determination of, 60

decidability of, 62—64

non-normal, 186

see also classical systems of modal
logic, conditional logic, deontic
logic, normal systems of modal
logic, and (for particular systems)
the index of schemas, rules, and
systems

T, 13-14, 24, 75-76, 123
tautological consequence, 37-38,
see also propositionally correct
pattern (mode) of inference
tautology, 8, 37, 46
temporal necessity, 69
theoremhood, 47
properties of, 4748
positive test for, 52, 62-63
negative test for, 52, 62-63
characterization in terms of maxi-
mality, 57
theorem of a system, 14, 46
time
possible worlds as points in, 69,
209
represented by the set of integers,
196
transitive relation, 80
transitive standard model, 80
transitivity of deducibility, 48
truth (truth value), 8, 37
truth at a possible world in a model, 5
for non-modal sentences, 35
for JA and QA in standard
models, 68
for OA, 191, 197, 273
for P, in models for obligation
and time, 197
for [JA and & A, 197
for [P]A, (—)A, and (P)A, 199
for [F]A, (+)A, and (F)A, 200
for [JA and CA in minimal
models, 208
for A = B in standard conditional
models, 268
for A = B in minimal conditional
models, 270
for O(B/A), 274
truth constant, 4, 26
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truth-functional logic, see proposi-
tional (truth-functional) logic
truth in a model, 36
truth in an algebraic model, 213
truth set, 38
truth value, 8, 37

union, boolean, 212

unique readability, 27

unit, minimal model that contains
(possesses) the, 215

unit element in a boolean algebra,
212

universal quantifier, 12

universal relation, 74, 85, 97-98

universal standard model, 97-98, 103
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vacuity, 90
vacuous standard model, 90
validity, 6

in a class of models, 35

in a class of algebraic models, 213
valuation, 8, 37
verum, 4, 26
von Wright, Georg Henrik, 135

weak density, 90
world, see possible worlds
world-state, 196

zero element in a boolean algebra,
212
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