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CHAPTER 5

Series Solutions of
Second-Order Linear
Equations

Finding the general solution of a linear differential equation depends on determining a
fundamental set of solutions of the homogeneous equation. So far, we have given a systematic
procedure for constructing fundamental solutions only when the equation has constant
coefficients. To deal with the much larger class of equations that have variable coefficients,
it is necessary to extend our search for solutions beyond the familiar elementary functions of
calculus. The principal tool that we need is the representation of a given function by a power
series. The basic idea is similar to that in the method of undetermined coefficients: we assume
that the solutions of a given differential equation have power series expansions, and then we
attempt to determine the coefficients so as to satisfy the differential equation.

5.1 Review of Power Series
In this chapter we discuss the use of power series to construct fundamental sets of solutions of
second-order linear differential equations whose coefficients are functions of the independent
variable. We begin by summarizing very briefly the pertinent results about power series that
we need. Readers who are familiar with power series may go on to Section 5.2. Those who
need more details than are presented here should consult a book on calculus.

1. A power series
∞∑

n=0
an( x − x0) n is said to converge at a point x if

lim
m→∞

m∑

n=0

an( x − x0) n

exists for that x . The series certainly converges for x = x0; it may converge for all x , or
it may converge for some values of x and not for others.

2. The power series
∞∑

n=0
an( x − x0) n is said to converge absolutely at a point x if the

associated power series
∞∑

n=0

|an( x − x0) n| =
∞∑

n=0

|an||x − x0|n

converges. It can be shown that if the power series converges absolutely, then the power
series also converges; however, the converse is not necessarily true.

3. One of the most useful tests for the absolute convergence of a power series is the ratio
test: If an �= 0, and if, for a fixed value of x ,

lim
n→∞

∣
∣
∣
∣
∣
an+1( x − x0) n+1

an( x − x0) n

∣
∣
∣
∣
∣
= |x − x0| lim

n→∞

∣
∣
∣
∣
an+1

an

∣
∣
∣
∣ = |x − x0|L ,

189
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then the power series converges absolutely at that value of x if |x − x0|L < 1 and
diverges if |x − x0|L > 1. If |x − x0|L = 1, the ratio test is inconclusive.

EXAMPLE 1

For which values of x does the power series
∞∑

n=1

(−1) n+1n( x − 2) n = ( x − 2) − 2( x − 2) 2 + 3( x − 2) 3 − · · ·

converge?

Solution:
We first test for absolute convergence using the ratio test. We have

lim
n→∞

∣
∣
∣
∣

(−1) n+2(n + 1) ( x − 2) n+1

(−1) n+1n( x − 2) n

∣
∣
∣
∣ = |x − 2| lim

n→∞

n + 1
n

= |x − 2|.

According to statement 3, the series converges absolutely for |x − 2| < 1, that is, for 1 < x < 3,
and diverges for |x − 2| > 1. The values of x corresponding to |x − 2| = 1 are x = 1 and x = 3.
The series diverges for each of these values of x since the nth term of the series does not approach
zero as n → ∞. This power series converges (absolutely) for 1 < x < 3 and diverges for x ≤ 1
and for x ≥ 3.

4. If the power series
∞∑

n=0
an( x − x0) n converges at x = x1, it converges absolutely for

|x − x0| < |x1 − x0|; and if it diverges at x = x1, it diverges for |x − x0| > |x1 − x0|.
5. For a typical power series, such as the one in Example 1, there is a positive number

ρ , called the radius of convergence, such that
∞∑

n=0
an( x − x0) n converges absolutely

for |x − x0| < ρ and diverges for |x − x0| > ρ . The interval |x − x0| < ρ is called
the interval of convergence; it is indicated by the hatched lines in Figure 5.1.1. The
series may either converge or diverge when |x − x0| = ρ . Many important power series
converge for all values of x . In this case it is customary to say that ρ is infinite and the
interval of convergence is the entire real line. It is also possible for a power series to
converge only at x0. For such a series we say that ρ = 0 and the series has no interval of
convergence. When these exceptional cases are taken into account, every power series
has a nonnegative radius of convergence ρ , and if ρ > 0, then there is a (finite or infinite)
interval of convergence centered at x0.

x

Series
diverges

Series
diverges

Series 
converges
absolutely

x0 x0 + 

Series may
converge or diverge

x0 – ρ ρ

FIGURE 5.1.1 The interval of convergence of a power series.

EXAMPLE 2

Determine the radius of convergence of the power series
∞∑

n=1

( x + 1) n

n2n .

▼
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▼ Solution:
We apply the ratio test:

lim
n→∞

∣
∣
∣
∣

( x + 1) n+1

(n + 1)2n+1
n2n

( x + 1) n

∣
∣
∣
∣ = |x + 1|

2
lim

n→∞

n
n + 1

= |x + 1|
2

.

Thus the series converges absolutely for |x + 1| < 2, that is, for −3 < x < 1, and diverges for
|x + 1| > 2. The radius of convergence of the power series is ρ = 2. Finally, we check the end-
points of the interval of convergence. At x = 1 the series becomes the harmonic series

∞∑

n=1

1
n

,

which diverges. At x = −3 we have
∞∑

n=1

(−3 + 1) n

n2n =
∞∑

n=1

(−1) n

n
.

Recognizing this as the alternating harmonic series, we recall that it converges but does not converge
absolutely. The power series is said to converge conditionally at x = −3. To summarize, the given
power series converges for −3 ≤ x < 1 and diverges otherwise. It converges absolutely for
−3 < x < 1 and has a radius of convergence of 2.

Suppose that
∞∑

n=0
an( x − x0) n and

∞∑

n=0
bn( x − x0) n converge to f ( x) and g( x) , respec-

tively, for |x − x0| < ρ , ρ > 0.

6. The two series can be added or subtracted termwise, and

f ( x) ± g( x) =
∞∑

n=0

(an ± bn) ( x − x0) n;

the resulting series converges at least for |x − x0| < ρ .
7. The two series can be formally multiplied, and

f ( x) g( x) =
⎛

⎝
∞∑

n=0

an( x − x0) n

⎞

⎠

⎛

⎝
∞∑

n=0

bn( x − x0) n

⎞

⎠ =
∞∑

n=0

cn( x − x0) n ,

where cn = a0bn + a1bn−1 + · · · + anb0. The resulting series converges at least for
|x − x0| < ρ .

Further, if b0 �= 0, then g( x0) �= 0, and the series for f ( x) can be formally divided
by the series for g( x) , and

f ( x)
g( x)

=
∞∑

n=0

dn( x − x0) n.

In most cases the coefficients dn can be most easily obtained by equating coefficients in
the equivalent relation

∞∑

n=0

an( x − x0) n =
⎡

⎣
∞∑

n=0

dn( x − x0) n

⎤

⎦

⎡

⎣
∞∑

n=0

bn( x − x0) n

⎤

⎦

=
∞∑

n=0

⎛

⎝
n∑

k=0

dkbn−k

⎞

⎠( x − x0) n.

In the case of division, the radius of convergence of the resulting power series may be
less than ρ .
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8. The function f is continuous and has derivatives of all orders for |x−x0| < ρ . Moreover,
f ′, f ′′, . . . can be computed by differentiating the series termwise; that is,

f ′( x) = a1 + 2a2( x − x0) + · · · + nan( x − x0) n−1 + · · ·

=
∞∑

n=1

nan( x − x0) n−1,

f ′′( x) = 2a2 + 6a3( x − x0) + · · · + n(n − 1)an( x − x0) n−2 + · · ·

=
∞∑

n=2

n(n − 1)an( x − x0) n−2,

and so forth, and each of the series converges absolutely for |x − x0| < ρ .
9. The value of an is given by

an = f (n) ( x0)
n!

.

The series is called the Taylor1 series for the function f about x = x0.

10. If
∞∑

n=0
an( x − x0) n =

∞∑

n=0
bn( x − x0) n for each x in some open interval with center x0,

then an = bn for n = 0, 1, 2, 3, . . . . In particular, if
∞∑

n=0
an( x − x0) n = 0 for each such

x , then a0 = a1 = · · · = an = · · · = 0.

A function f that has a Taylor series expansion about x = x0

f ( x) =
∞∑

n=0

f (n) ( x0)
n!

( x − x0) n ,

with a radius of convergence ρ > 0, is said to be analytic at x = x0. All of the familiar
functions of calculus are analytic except perhaps at certain easily recognized points. For
example, sin x and ex are analytic everywhere, 1/x is analytic except at x = 0, and tan x
is analytic except at odd multiples of π/2. According to statements 6 and 7, if f and g are
analytic at x0, then f ± g, f · g, and f/g (provided that g( x0) �= 0) are also analytic at
x = x0. In many respects the natural context for the use of power series is the complex plane.
The methods and results of this chapter nearly always can be directly extended to differential
equations in which the independent and dependent variables are complex-valued.

Shift of Index of Summation. The index of summation in an infinite series is a dummy
parameter just as the integration variable in a definite integral is a dummy variable. Thus it is
immaterial which letter is used for the index of summation. For example,

∞∑

n=0

2n xn

n!
=

∞∑

j=0

2 j x j

j!
.

Just as we make changes of the variable of integration in a definite integral, we find it
convenient to make changes of summation indices in calculating series solutions of differential
equations. We illustrate by several examples how to shift the summation index.

.........................................................................................................................................................................
1Brook Taylor (1685--1731), English mathematician, received his education at Cambridge University. His book
Methodus incrementorum directa et inversa, published in 1715, includes a general statement of the expansion theorem
that is named for him. This is a basic result in all branches of analysis, but its fundamental importance was not
recognized until 1772 (by Lagrange). Taylor was also the first to use integration by parts, was one of the founders
of the calculus of finite differences, and was the first to recognize the existence of singular solutions of differential
equations.
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EXAMPLE 3

Write
∞∑

n=2
an xn as a series whose first term corresponds to n = 0 rather than n = 2.

Solution:
Let m = n − 2; then n = m + 2, and n = 2 corresponds to m = 0. Hence

∞∑

n=2

an xn =
∞∑

m=0

am+2xm+2. (1)

By writing out the first few terms of each of these series, you can verify that they contain precisely the
same terms. Finally, in the series on the right-hand side of equation (1), we can replace the dummy
index m by n, obtaining

∞∑

n=2

an xn =
∞∑

n=0

an+2xn+2. (2)

In effect, we have shifted the index upward by 2 and have compensated by starting to count at a level
2 lower than originally.

EXAMPLE 4

Write the series
∞∑

n=2

(n + 2) (n + 1)an( x − x0) n−2 (3)

as a series whose generic term involves ( x − x0) n rather than ( x − x0) n−2.

Solution:
Again, we shift the index by 2 so that n is replaced by n + 2 and start counting 2 lower. We obtain

∞∑

n=0

(n + 4) (n + 3)an+2( x − x0) n . (4)

You can readily verify that the terms in the series (3) and (4) are exactly the same.

EXAMPLE 5

Write the expression

x2
∞∑

n=0

(r + n)an xr+n−1 (5)

as a series whose generic term involves xr+n .

Solution:
First, take the x2 inside the summation, obtaining

∞∑

n=0

(r + n)an xr+n+1. (6)

▼
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▼ Next, shift the index down by 1 and start counting 1 higher. Thus

∞∑

n=0

(r + n)an xr+n+1 =
∞∑

n=1

(r + n − 1)an−1xr+n . (7)

Again, you can easily verify that the two series in equation (7) are identical and that both are exactly
the same as the expression (5).

EXAMPLE 6

Assume that
∞∑

n=1

nan xn−1 =
∞∑

n=0

an xn (8)

for all x , and determine what this implies about the coefficients an .

Solution:
We want to use statement 10 to equate corresponding coefficients in the two series. In order to do
this, we must first rewrite equation (8) so that the series display the same power of x in their generic
terms. For instance, in the series on the left-hand side of equation (8), we can replace n by n + 1 and
start counting 1 lower. Thus equation (8) becomes

∞∑

n=0

(n + 1)an+1xn =
∞∑

n=0

an xn . (9)

According to statement 10, we conclude that

(n + 1)an+1 = an , n = 0, 1, 2, 3, . . .

or

an+1 = an

n + 1
, n = 0, 1, 2, 3, . . . . (10)

Hence, choosing successive values of n in equation (10), we have

a1 = a0, a2 = a1

2
= a0

2
, a3 = a2

3
= a0

3!
,

and so forth. In general,

an = a0

n!
, n = 1, 2, 3, . . . . (11)

Thus the relation (8) determines all the following coefficients in terms of a0. Finally, using the
coefficients given by equation (11), we obtain

∞∑

n=0

an xn =
∞∑

n=0

a0

n!
xn = a0

∞∑

n=0

xn

n!
= a0ex ,

where we have followed the usual convention that 0! = 1, and recalled that ex =
∞∑

n=0

xn

n!
for all

values of x . (See Problem 8.)
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Problems
In each of Problems 1 through 6, determine the radius of convergence
of the given power series.

1.
∞∑

n=0
( x − 3) n

2.
∞∑

n=0

n
2n xn

3.
∞∑

n=0

x2n

n!

4.
∞∑

n=0
2n xn

5.
∞∑

n=1

( x − x0) n

n

6.
∞∑

n=1

(−1) nn2( x + 2) n

3n

In each of Problems 7 through 13, determine the Taylor series about
the point x0 for the given function. Also determine the radius of
convergence of the series.

7. sin x , x0 = 0

8. ex , x0 = 0

9. x , x0 = 1

10. x2, x0 = −1

11. ln x , x0 = 1

12. 1
1 − x

, x0 = 0

13. 1
1 − x

, x0 = 2

14. Let y =
∞∑

n=0
nxn .

a. Compute y′ and write out the first four terms of the series.
b. Compute y′′ and write out the first four terms of the series.

15. Let y =
∞∑

n=0
an xn .

a. Compute y′ and y′′ and write out the first four terms of each
series, as well as the coefficient of xn in the general term.

b. Show that if y′′ = y, then the coefficients a0 and a1 are
arbitrary, and determine a2 and a3 in terms of a0 and a1.

c. Show that an+2 = an

(n + 2) (n + 1)
, n = 0, 1, 2, 3, . . . .

In each of Problems 16 and 17, verify the given equation.

16.
∞∑

n=0
an( x − 1) n+1 =

∞∑

n=1
an−1( x − 1) n

17.
∞∑

k=0
ak+1xk +

∞∑

k=0
ak xk+1 = a1 +

∞∑

k=1
(ak+1 + ak−1) xk

In each of Problems 18 through 22, rewrite the given expression as a
single power series whose generic term involves xn .

18.
∞∑

n=2
n(n − 1)an xn−2

19. x
∞∑

n=1
nan xn−1 +

∞∑

k=0
ak xk

20.
∞∑

m=2
m(m − 1)am xm−2 + x

∞∑

k=1
kak xk−1

21.
∞∑

n=1
nan xn−1 + x

∞∑

n=0
an xn

22. x
∞∑

n=2
n(n − 1)an xn−2 +

∞∑

n=0
an xn

23. Determine the an so that the equation
∞∑

n=1

nan xn−1 + 2
∞∑

n=0

an xn = 0

is satisfied. Try to identify the function represented by the series
∞∑

n=0
an xn .

5.2 Series Solutions Near an Ordinary
Point, Part I
In Chapter 3 we described methods of solving second-order linear differential equations with
constant coefficients. We now consider methods of solving second-order linear equations
when the coefficients are functions of the independent variable. In this chapter we will denote
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the independent variable by x . It is sufficient to consider the homogeneous equation

P( x)
d2 y
dx2 + Q( x)

dy
dx

+ R( x) y = 0, (1)

since the procedure for the corresponding nonhomogeneous equation is similar.
Many problems in mathematical physics lead to equations of the form (1) having

polynomial coefficients; examples include the Bessel equation

x2 y′′ + xy′ + ( x2 − ν 2) y = 0,

where ν is a constant, and the Legendre equation

(1 − x2) y′′ − 2xy′ + α (α + 1) y = 0,

where α is a constant. For this reason, as well as to simplify the algebraic computations, we
primarily consider the case in which the functions P , Q, and R are polynomials. However, as
we will see, the method of solution is also applicable when P , Q, and R are general analytic
functions.

For the present, then, suppose that P , Q, and R are polynomials and that there is no factor
( x−c) that is common to all three of them. If there is such a common factor ( x−c) , then divide
it out before proceeding. Suppose also that we wish to solve equation (1) in the neighborhood
of a point x0. The solution of equation (1) in an interval containing x0 is closely associated
with the behavior of P in that interval.

A point x0 such that P( x0) �= 0 is called an ordinary point. Since P is continuous, it
follows that there is an open interval containing x0 in which P( x) is never zero. In that interval,
which we will call I , we can divide equation (1) by P( x) to obtain

y′′ + p( x) y′ + q( x) y = 0, (2)

where p( x) = Q( x)/P( x) and q( x) = R( x)/P( x) are continuous functions on I . Hence,
according to the existence and uniqueness theorem, Theorem 3.2.1, there exists a unique
solution of equation (1) in the interval I that also satisfies the initial conditions y( x0) = y0
and y′( x0) = y′

0 for arbitrary values of y0 and y′
0. In this and the following section, we discuss

the solution of equation (1) in the neighborhood of an ordinary point.
On the other hand, if P( x0) = 0, then x0 is called a singular point of equation (1). In

this case, because ( x − x0) is not a factor of P , Q, and R, at least one of Q( x0) and R( x0)
is not zero. Consequently, at least one of the coefficients p and q in equation (2) becomes
unbounded as x → x0, and therefore Theorem 3.2.1 does not apply in this case. Sections
5.4 through 5.7 deal with finding solutions of equation (1) in the neighborhood of a singular
point.

We now take up the problem of solving equation (1) in the neighborhood of an ordinary
point x0. We look for solutions of the form

y = a0 + a1( x − x0) + · · · + an( x − x0) n + · · · =
∞∑

n=0

an( x − x0) n (3)

and assume that the series converges in the interval |x − x0| < ρ for some ρ > 0.
While at first sight it may appear unattractive to seek a solution in the form of a power

series, this is actually a convenient and useful form for a solution. Within their intervals of
convergence, power series behave very much like polynomials and are easy to manipulate both
analytically and numerically. Indeed, even if we can obtain a solution in terms of elementary
functions, such as exponential or trigonometric functions, we are likely to need a power series
or some equivalent expression if we want to evaluate the solution numerically or to plot its
graph.

The most practical way to determine the coefficients an is to substitute the series (3) and
its derivatives for y, y′, and y′′ in equation (1). The following examples illustrate this process.
The operations, such as differentiation, that are involved in the procedure are justified so long
as we stay within the interval of convergence. The differential equations in these examples are
also of considerable importance in their own right.
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EXAMPLE 1

Find a series solution of the equation

y′′ + y = 0, −∞ < x < ∞. (4)

Solution:
As we know, sin x and cos x form a fundamental set of solutions of this equation, so series methods
are not needed to solve it. However, this example illustrates the use of power series in a relatively
simple case. For equation (4), P( x) = 1, Q( x) = 0, and R( x) = 1; hence every point is an ordinary
point.

We look for a solution in the form of a power series about x0 = 0

y = a0 + a1x + a2x2 + a3x3 + · · · + an xn + · · · =
∞∑

n=0

an xn (5)

and assume that the series converges in some interval |x | < ρ . Differentiating equation (5) term by
term, we obtain

y′ = a1 + 2a2x + 3a3x2 + · · · + nan xn−1 + · · · =
∞∑

n=1

nan xn−1 (6)

and

y′′ = 2a2 + 3 · 2a3x + · · · + n(n − 1)an xn−2 + · · · =
∞∑

n=2

n(n − 1)an xn−2. (7)

Substituting the series (5) and (7) for y and y′′ in equation (4) gives
∞∑

n=2

n(n − 1)an xn−2 +
∞∑

n=0

an xn = 0.

To combine the two series, we need to rewrite at least one of them so that both series display the
same generic term. (See Problem 22 in Section 5.1.) Thus, in the first sum, we shift the index of
summation by replacing n by n + 2 and starting the sum at 0 rather than 2. We obtain

∞∑

n=0

(n + 2) (n + 1)an+2xn +
∞∑

n=0

an xn = 0

or
∞∑

n=0

(
(n + 2) (n + 1)an+2 + an

)
xn = 0.

For this equation to be satisfied for all x , the coefficient of each power of x must be zero; hence we
conclude that

(n + 2) (n + 1)an+2 + an = 0, n = 0, 1, 2, 3, . . . . (8)
Equation (8) is referred to as a recurrence relation. The successive coefficients can be

evaluated one by one by writing the recurrence relation first for n = 0, then for n = 1, and so
forth. In this example equation (8) relates each coefficient to the second one before it. Thus the even-
numbered coefficients (a0, a2, a4, . . . ) and the odd-numbered ones (a1, a3, a5, . . . ) are determined
separately. For the even-numbered coefficients we have

a2 = − a0

2 · 1
= −a0

2!
, a4 = − a2

4 · 3
= +a0

4!
, a6 = − a4

6 · 5
= −a0

6!
, . . . .

These results suggest that in general, if n = 2k, then

an = a2k = (−1) k

(2k) !
a0, k = 1, 2, 3, . . . . (9)

We can prove equation (9) by mathematical induction. First, observe that it is true for k = 1. Next,
assume that it is true for an arbitrary value of k and consider the case k + 1. We have

a2k+2 = − a2k

(2k + 2) (2k + 1)
= − (−1) k

(2k + 2) (2k + 1) (2k) !
a0 = (−1) k+1

(2k + 2) !
a0.

▼
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▼ Hence equation (9) is also true for k + 1, and consequently it is true for all positive integers k.
Similarly, for the odd-numbered coefficients

a3 = − a1

2 · 3
= −a1

3!
, a5 = − a3

5 · 4
= +a1

5!
, a7 = − a5

7 · 6
= −a1

7!
, . . . ,

and in general, if n = 2k + 1, then2

an = a2k+1 = (−1) k

(2k + 1) !
a1, k = 1, 2, 3, . . . . (10)

Substituting these coefficients into equation (5), we have

y = a0 + a1x − a0

2!
x2 − a1

3!
x3 + a0

4!
x4 + a1

5!
x5

+ · · · + (−1) na0

(2n) !
x2n + (−1) na1

(2n + 1) !
x2n+1 + · · ·

= a0

[
1 − x2

2!
+ x4

4!
+ · · · + (−1) n

(2n) !
x2n + · · ·

]

+ a1

[
x − x3

3!
+ x5

5!
+ · · · + (−1) n

(2n + 1) !
x2n+1 + · · ·

]

= a0

∞∑

n=0

(−1) n

(2n) !
x2n + a1

∞∑

n=0

(−1) n

(2n + 1) !
x2n+1. (11)

We identify two series solutions of equation (4):

y1( x) =
∞∑

n=0

(−1) n

(2n) !
x2n and y2( x) =

∞∑

n=0

(−1) n

(2n + 1) !
x2n+1.

Using the ratio test, we can show that the series for y1( x) and y2( x) converge for all x , and this
justifies retroactively all of the steps used in obtaining these solutions. Indeed, the series for y1( x) is
exactly the Taylor series for cos x about x = 0 and the series for y2( x) is the corresponding Taylor
series for sin x . Thus, as we anticipated in equation (11) we have obtained the general solution of
equation (4) in the form y = a0 cos x + a1 sin x .

Notice that no conditions are imposed on a0 and a1; hence they are arbitrary. From equations (5)
and (6) we see that y and y′ evaluated at x = 0 are a0 and a1, respectively. Since the initial conditions
y(0) and y′(0) can be chosen arbitrarily, it follows that a0 and a1 should be arbitrary until specific
initial conditions are stated.

Figures 5.2.1 and 5.2.2 show how the partial sums of the series solutions y1( x) and y2( x)
approximate cos x and sin x , respectively. As the number of terms increases, the interval over which

2

2 4 6

1

–1

–2

8 10

y = cos x

y

x

n = 4 n = 8 n = 20n = 16n = 12

n = 2 n = 6 n = 10 n = 14 n = 18

FIGURE 5.2.1 Polynomial approximations to y = cos x . The
value of n is the degree of the approximating polynomial.

.....................................................................................................................................................................................
2The result given in equation (10) and other similar formulas in this chapter can be proved by an induction
argument resembling the one just given for equation (9). We assume that the results are plausible and omit the
inductive argument hereafter. (See Problem 16.)

▼
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▼ the approximation is satisfactory becomes longer, and for each x in this interval the accuracy of
the approximation improves. However, you should always remember that a truncated power series
provides only a local approximation of the solution in a neighborhood of the initial point x = 0; it
cannot adequately represent the solution for large |x |.

2

2 4 6

1

–1

–2

8 10

y

x

y = sin x

n = 5 n = 9 n = 13 n = 17 n = 21

n = 3 n = 7 n = 11 n = 15 n = 19

FIGURE 5.2.2 Polynomial approximations to y = sin x . The
value of n is the degree of the approximating polynomial.

In Example 1 we knew from the start that sin x and cos x form a fundamental set
of solutions of equation (4). However, if we had not known this and had simply solved
equation (4) using series methods, we would still have obtained the solution (11). In
recognition of the fact that the differential equation (4) often occurs in applications, we might
decide to give the two solutions of equation (11) special names, perhaps

C( x) =
∞∑

n=0

(−1) n

(2n) !
x2n , S( x) =

∞∑

n=0

(−1) n

(2n + 1) !
x2n+1. (12)

Then we might ask what properties these functions have. For instance, can we be sure that C( x)
and S( x) form a fundamental set of solutions? It follows at once from the series expansions
that C(0) = 1 and S(0) = 0. By differentiating the series for C( x) and S( x) term by term,
we find that

S′( x) = C( x) , C ′( x) = −S( x) . (13)

Thus at x = 0, we have S′(0) = 1 and C ′(0) = 0. Consequently, the Wronskian of C and S
at x = 0 is

W [C, S](0) =
∣
∣
∣
∣
∣
1 0
0 1

∣
∣
∣
∣
∣
= 1, (14)

so these functions do indeed form a fundamental set of solutions. By substituting −x for x
in each of equations (12), we obtain C(−x) = C( x) and S(−x) = −S( x) . Moreover,
by calculating with the infinite series,3 we can show that the functions C( x) and S( x)
have all the usual analytical and algebraic properties of the cosine and sine functions,
respectively.

Although you probably first saw the sine and cosine functions defined in a more
elementary manner in terms of right triangles, it is interesting that these functions can be
defined as solutions of a certain simple second-order linear differential equation. To be precise,
the function sin x can be defined as the unique solution of the initial-value problem y′′+y = 0,
y(0) = 0, y′(0) = 1; similarly, cos x can be defined as the unique solution of the initial-value

.........................................................................................................................................................................
3Such an analysis is given in Section 24 of Knopp (see the References at the end of this chapter).
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problem y′′ + y = 0, y(0) = 1, y′(0) = 0. Many other functions that are important in
mathematical physics are also defined as solutions of certain initial-value problems. For most
of these functions there is no simpler or more elementary way to approach them.

EXAMPLE 2

Find a series solution in powers of x of Airy’s4 equation

y′′ − xy = 0, −∞ < x < ∞. (15)

Solution:
For this equation P( x) = 1, Q( x) = 0, and R( x) = −x ; hence every point is an ordinary point.
We assume that

y =
∞∑

n=0

an xn (16)

and that the series converges in some interval |x | < ρ . The series for y′′ is given by equation (7); as
explained in the preceding example, we can rewrite it as

y′′ =
∞∑

n=0

(n + 2) (n + 1)an+2xn . (17)

Substituting the series (16) and (17) for y and y′′ into the left-hand side of equation (15), we obtain

∞∑

n=0

(n + 2) (n + 1)an+2xn − x
∞∑

n=0

an xn =
∞∑

n=0

(n + 2) (n + 1)ax+2xn −
∞∑

n=0

an xn+1. (18)

Next, we shift the index of summation in the second series on the right-hand side of equation (18) by
replacing n by n − 1 and starting the summation at 1 rather than zero. Thus we write equation (15)
as

2 · 1a2 +
∞∑

n=1

(n + 2) (n + 1)an+2xn −
∞∑

n=1

an−1xn = 0.

Again, for this equation to be satisfied for all x in some interval, the coefficients of like powers of x
must be zero; hence a2 = 0, and we obtain the recurrence relation

(n + 2) (n + 1)an+2 − an−1 = 0 for n = 1, 2, 3, . . . . (19)

Since an+2 is given in terms of an−1, the a’s are determined in steps of three. Thus a0 determines
a3, which in turn determines a6, . . . ; a1 determines a4, which in turn determines a7, . . . ; and a2
determines a5, which in turn determines a8, . . . . Since a2 = 0, we immediately conclude that
a5 = a8 = a11 = · · · = 0.

For the sequence a0, a3, a6, a9, . . . we set n = 1, 4, 7, 10, . . . in the recurrence relation:

a3 = a0

2 · 3
, a6 = a3

5 · 6
= a0

2 · 3 · 5 · 6
, a9 = a6

8 · 9
= a0

2 · 3 · 5 · 6 · 8 · 9
, . . . .

These results suggest the general formula

a3n = a0

2 · 3 · 5 · 6 · · · (3n − 1) (3n)
, n ≥ 4.

.....................................................................................................................................................................................
4Sir George Biddell Airy (1801--1892), an English astronomer and mathematician, was director of the Greenwich
Observatory from 1835 to 1881. He studied the equation named for him in an 1838 paper on optics. One reason
why Airy’s equation is of interest is that for x negative the solutions are similar to trigonometric functions, and for
x positive they are similar to hyperbolic functions. Can you explain why it is reasonable to expect such behavior?

▼
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▼ For the sequence a1, a4, a7, a10, . . . , we set n = 2, 5, 8, 11, . . . in the recurrence relation:

a4 = a1

3 · 4
, a7 = a4

6 · 7
= a1

3 · 4 · 6 · 7
, a10 = a7

9 · 10
= a1

3 · 4 · 6 · 7 · 9 · 10
, . . . .

In general, we have

a3n+1 = a1

3 · 4 · 6 · 7 · · · (3n) (3n + 1)
, n ≥ 4.

Thus the general solution of Airy’s equation is

y( x) = a0

[
1 + x3

2 · 3
+ x6

2 · 3 · 5 · 6
+ · · · + x3n

2 · 3 · · · (3n − 1) (3n)
+ · · ·

]

+ a1

[
x + x4

3 · 4
+ x7

3 · 4 · 6 · 7
+ · · · + x3n+1

3 · 4 · · · (3n) (3n + 1)
+ · · ·

]

= a0 y1( x) + a1 y2( x) (20)

where y1( x) and y2( x) are the first and second bracketed expressions in equation (20).
Having obtained these two series solutions, we can now investigate their convergence. Because

of the rapid growth of the denominators of the terms in the series for y1( x) and for y2( x) , we might
expect these series to have a large radius of convergence. Indeed, it is easy to use the ratio test to
show that both of these series converge for all x ; see Problem 17.

Assume for the moment that the series for y1 and y2 do converge for all x . Then, by choosing
first a0 = 1, a1 = 0 and then a0 = 0, a1 = 1, it follows that y1 and y2 are individually solutions
of equation (15). Notice that y1 satisfies the initial conditions y1(0) = 1, y′

1(0) = 0 and that y2
satisfies the initial conditions y2(0) = 0, y′

2(0) = 1. Thus W [y1, y2](0) = 1 �= 0, and consequently
y1 and y2 are a fundamental set of solutions. Hence the general solution of Airy’s equation is

y = a0 y1( x) + a1 y2( x) − ∞ < x < ∞.

In Figures 5.2.3 and 5.2.4, respectively, we show the graphs of the solutions y1 and y2 of Airy’s
equation as well as graphs of several partial sums of the two series in equation (20). Again, the
partial sums provide local approximations to the solutions in a neighborhood of the origin. Although
the quality of the approximation improves as the number of terms increases, no polynomial can
adequately represent y1 and y2 for large |x |. A practical way to estimate the interval in which a
given partial sum is reasonably accurate is to compare the graphs of that partial sum and the next
one, obtained by including one more term. As soon as the graphs begin to separate noticeably, we
can be confident that the original partial sum is no longer accurate. For example, in Figure 5.2.3 the
graphs for n = 24 and n = 27 begin to separate at about x = −9/2. Thus, beyond this point, the
partial sum of degree 24 is worthless as an approximation to the solution.

2

2

–2

–2–4–6–8

y

x

n = 48 36 24 12

n = 45 33 21 9

39 27 15

3

42 30 18 6

y = y1(x)

n ≥ 6
n = 3

–10

FIGURE 5.2.3 Polynomial approximations to the solution y = y1( x) of Airy’s
equation. The value of n is the degree of the approximating polynomial.

▼
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▼
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2
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n ≥ 4

34
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n = 49

31 19 7
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22

43

37

–4

y

y = y2(x)

FIGURE 5.2.4 Polynomial approximations to the solution y = y2( x) of Airy’s
equation. The value of n is the degree of the approximating polynomial.

Observe that both y1 and y2 are monotone for x > 0 and oscillatory for x < 0. You can also
see from the figures that the oscillations are not uniform but, rather, decay in amplitude and increase
in frequency as the distance from the origin increases. In contrast to Example 1, the solutions y1 and
y2 of Airy’s equation are not elementary functions that you have already encountered in calculus.
However, because of their importance in some physical applications, these functions have been
extensively studied, and their properties are well known to applied mathematicians and scientists.

EXAMPLE 3

Find a solution of Airy’s equation in powers of x − 1.

Solution:
The point x = 1 is an ordinary point of equation (15), and thus we look for a solution of the form

y =
∞∑

n=0

an( x − 1) n ,

where we assume that the series converges in some interval |x − 1| < ρ . Then

y′ =
∞∑

n=1

nan( x − 1) n−1 =
∞∑

n=0

(n + 1)an+1( x − 1) n ,

and

y′′ =
∞∑

n=2

n(n − 1)an( x − 1) n−2 =
∞∑

n=0

(n + 2) (n + 1)an+2( x − 1) n .

Substituting for y and y′′ in equation (15), we obtain
∞∑

n=0

(n + 2) (n + 1)an+2( x − 1) n = x
∞∑

n=0

an( x − 1) n . (21)

Now to equate the coefficients of like powers of ( x − 1) , we must express x , the coefficient of y in
equation (15), in powers of x − 1; that is, we write x = 1 + ( x − 1) . Note that this is precisely the

▼
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▼ Taylor series for x about x = 1. (See Problem 9 in Section 5.1.) Then equation (21) takes the form
∞∑

n=0

(n + 2) (n + 1)an+2( x − 1) n = (1 + ( x − 1) )
∞∑

n=0

an( x − 1) n

=
∞∑

n=0

an( x − 1) n +
∞∑

n=0

an( x − 1) n+1.

Shifting the index of summation in the second series on the right gives
∞∑

n=0

(n + 2) (n + 1)an+2( x − 1) n =
∞∑

n=0

an( x − 1) n +
∞∑

n=1

an−1( x − 1) n .

Equating coefficients of like powers of x − 1, we obtain

2a2 = a0,

(3 · 2)a3 = a1 + a0,

(4 · 3)a4 = a2 + a1,

(5 · 4)a5 = a3 + a2,
...

The general recurrence relation is

(n + 2) (n + 1)an+2 = an + an−1 for n ≥ 1. (22)

Solving for the first few coefficients an in terms of a0 and a1, we find that

a2 = a0

2
, a3 = a1

6
+ a0

6
, a4 = a2

12
+ a1

12
= a0

24
+ a1

12
, a5 = a3

20
+ a2

20
= a0

30
+ a1

120
.

Hence

y = a0

[
1 + ( x − 1) 2

2
+ ( x − 1) 3

6
+ ( x − 1) 4

24
+ ( x − 1) 5

30
+ · · ·

]

+ a1

[
( x − 1) + ( x − 1) 3

6
+ ( x − 1) 4

12
+ ( x − 1) 5

120
+ · · ·

]
. (23)

In general, when the recurrence relation has more than two terms, as in equation (22), the
determination of a formula for an in terms a0 and a1 will be fairly complicated, if not impossible.
In this example such a formula is not readily apparent. Lacking such a formula, we cannot test the
two series in equation (23) for convergence by direct methods such as the ratio test. However, we
shall see in Section 5.3 that even without knowing the formula for an , it is possible to establish that
the two series in equation (23) converge for all x . Further, they define functions y3 and y4 that are a
fundamental set of solutions of the Airy equation (15). Thus

y = a0 y3( x) + a1 y4( x)

is the general solution of Airy’s equation for −∞ < x < ∞.

While Airy’s equation is not particularly complicated, Example 3 shows some of the
complications encountered when looking for a power series solution expressed in powers of
x − x0 with x0 �= 0. There is an alternative. We can make the change of variable x − x0 = t ,
obtaining a new differential equation for y as a function of t , and then look for solutions of
this new equation of the form

∞∑

n=0
antn . When we have finished the calculations, we replace t

by x − x0 (see Problem 15).
In Examples 2 and 3 we have found two sets of solutions of Airy’s equation. The

functions y1 and y2 defined by the series in equation (20) are a fundamental set of solutions of
equation (15) for all x , and this is also true for the functions y3 and y4 defined by the series in
equation (23). According to the general theory of second-order linear equations, each of the
first two functions can be expressed as a linear combination of the latter two functions, and
vice versa---a result that is certainly not obvious from an examination of the series alone.
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Finally, we emphasize that it is not particularly important if, as in Example 3, we are
unable to determine the general coefficient an in terms of a0 and a1. What is essential is that
we can determine as many coefficients as we want. Thus we can find as many terms in the
two series solutions as we want, even if we cannot determine the general term. While the
task of calculating several coefficients in a power series solution is not difficult, it can be
tedious. A symbolic manipulation package can be very helpful here; some are able to find a
specified number of terms in a power series solution in response to a single command. With a
suitable graphics package we can also produce plots such as those shown in the figures in this
section.

Problems
In each of Problems 1 through 11:

a. Seek power series solutions of the given differential equation
about the given point x0; find the recurrence relation that the
coefficients must satisfy.
b. Find the first four nonzero terms in each of two solutions y1
and y2 (unless the series terminates sooner).
c. By evaluating the Wronskian W [y1, y2]( x0) , show that y1
and y2 form a fundamental set of solutions.
d. If possible, find the general term in each solution.

1. y′′ − y = 0, x0 = 0
2. y′′ + 3y′ = 0, x0 = 0
3. y′′ − xy′ − y = 0, x0 = 0
4. y′′ − xy′ − y = 0, x0 = 1
5. y′′ + k2x2 y = 0, x0 = 0, k a constant
6. (1 − x) y′′ + y = 0, x0 = 0
7. y′′ + xy′ + 2y = 0, x0 = 0
8. xy′′ + y′ + xy = 0, x0 = 1
9. (3 − x2) y′′ − 3xy′ − y = 0, x0 = 0

10. 2y′′ + xy′ + 3y = 0, x0 = 0
11. 2y′′ + ( x + 1) y′ + 3y = 0, x0 = 2
In each of Problems 12 through 14:

a. Find the first five nonzero terms in the solution of the given
initial-value problem.
G b. Plot the four-term and the five-term approximations to the
solution on the same axes.
c. From the plot in part b, estimate the interval in which the
four-term approximation is reasonably accurate.

12. y′′ − xy′ − y = 0, y(0) = 2, y′(0) = 1; see Problem 3
13. y′′ + xy′ + 2y = 0, y(0) = 4, y′(0) = −1; see Problem 7
14. (1 − x) y′′ + xy′ − y = 0, y(0) = −3, y′(0) = 2
15. a. By making the change of variable x − 1 = t and assuming

that y has a Taylor series in powers of t , find two series solutions
of

y′′ + ( x − 1) 2 y′ + ( x2 − 1) y = 0
in powers of x − 1.
b. Show that you obtain the same result by assuming that y
has a Taylor series in powers of x − 1 and also expressing the
coefficient x2 − 1 in powers of x − 1.

16. Prove equation (10).

17. Show directly, using the ratio test, that the two series solutions
of Airy’s equation about x = 0 converge for all x ; see equation (20)
of the text.
18. The Hermite Equation. The equation

y′′ − 2xy′ + λy = 0, −∞ < x < ∞,

where λ is a constant, is known as the Hermite5 equation. It is an
important equation in mathematical physics.

a. Find the first four nonzero terms in each of two solutions
about x = 0 and show that they form a fundamental set of
solutions.
b. Observe that if λ is a nonnegative even integer, then one
or the other of the series solutions terminates and becomes a
polynomial. Find the polynomial solutions for λ = 0, 2, 4, 6,
8, and 10. Note that each polynomial is determined only up to a
multiplicative constant.
c. The Hermite polynomial Hn( x) is defined as the polynomial
solution of the Hermite equation with λ = 2n for which the
coefficient of xn is 2n . Find H0( x) , H1( x) , . . . , H5( x) .

19. Consider the initial-value problem y′ =
√

1 − y2, y(0) = 0.
a. Show that y = sin x is the solution of this initial-value
problem.
b. Look for a solution of the initial-value problem in the form of
a power series about x = 0. Find the coefficients up to the term
in x3 in this series.

In each of Problems 20 through 23, plot several partial sums in a
series solution of the given initial-value problem about x = 0,
thereby obtaining graphs analogous to those in Figures 5.2.1 through
5.2.4 (except that we do not know an explicit formula for the actual
solution).
G 20. y′′ + xy′ + 2y = 0, y(0) = 0, y′(0) = 1; see Problem 7
G 21. (4 − x2) y′′ + 2y = 0, y(0) = 0, y′(0) = 1
G 22. y′′ + x2 y = 0, y(0) = 1, y′(0) = 0; see Problem 5
G 23. (1 − x) y′′ + xy′ − 2y = 0, y(0) = 0, y′(0) = 1

.................................................................................................................................
5Charles Hermite (1822--1901) was an influential French analyst and
algebraist. An inspiring teacher, he was professor at the École Polytechnique
and the Sorbonne. He introduced the Hermite functions in 1864 and showed in
1873 that e is a transcendental number (that is, e is not a root of any polynomial
equation with rational coefficients). His name is also associated with Hermitian
matrices (see Section 7.3), some of whose properties he discovered.
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5.3 Series Solutions Near an Ordinary
Point, Part II
In the preceding section we considered the problem of finding solutions of

P( x) y′′ + Q( x) y′ + R( x) y = 0, (1)

where P , Q, and R are polynomials, in the neighborhood of an ordinary point x0. Assuming
that equation (1) does have a solution y = φ ( x) and that φ has a Taylor series

φ ( x) =
∞∑

n=0

an( x − x0) n (2)

that converges for |x − x0| < ρ , where ρ > 0, we found that the an can be determined by
directly substituting the series (2) for y in equation (1).

Let us now consider how we might justify the statement that if x0 is an ordinary point
of equation (1), then there exist solutions of the form (2). We also consider the question of
the radius of convergence of such a series. In doing this, we are led to a generalization of the
definition of an ordinary point.

Suppose, then, that there is a solution of equation (1) of the form (2). By differentiating
equation (2) m times and setting x equal to x0, we obtain

m!am = φ (m) ( x0) . (3)

Hence, to compute an in the series (2), we must show that we can determine φ (n) ( x0) for
n = 0, 1, 2, . . . from the differential equation (1).

Suppose that y = φ ( x) is a solution of equation (1) satisfying the initial conditions
y( x0) = y0, y′( x0) = y′

0. Then a0 = y0 and a1 = y′
0. If we are solely interested in finding

a solution of equation (1) without specifying any initial conditions, then a0 and a1 remain
arbitrary. To determine φ (n) ( x0) and the corresponding an for n = 2, 3, . . . , we turn to
equation (1) with the goal of finding a formula for φ ′′( x) , φ ′′′( x) , . . . . Since φ is a solution
of equation (1), we have

P( x)φ ′′( x) + Q( x)φ ′( x) + R( x)φ ( x) = 0.

For the interval about x0 for which P is nonzero, we can write this equation in the form

φ ′′( x) = −p( x)φ ′( x) − q( x)φ ( x) , (4)

where p( x) = Q( x)/P( x) and q( x) = R( x)/P( x) . Observe that, at x = x0, the right-hand
side of equation (4) is known, thus allowing us to compute φ ′′( x0) : Setting x equal to x0 in
equation (4) gives

φ ′′( x0) = −p( x0)φ ′( x0) − q( x0)φ ( x0) = −p( x0)a1 − q( x0)a0.

Hence, using equation (3) with m = 2, we find that a2 is given by

2!a2 = φ ′′( x0) = −p( x0)a1 − q( x0)a0. (5)

To determine a3, we differentiate equation (4) and then set x equal to x0, obtaining

3!a3 = φ ′′′( x0) = −( p( x)φ ′( x) + q( x)φ ( x) ) ′∣∣x=x0

= −2!p( x0)a2 − ( p′( x0) + q( x0) )a1 − q ′( x0)a0. (6)

Substituting for a2 from equation (5) gives a3 in terms of a1 and a0.
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Since P , Q, and R are polynomials and P( x0) �= 0, all the derivatives of p and q exist
at x0. Hence we can continue to differentiate equation (4) indefinitely, determining after each
differentiation the successive coefficients a4, a5, . . . by setting x equal to x0.

EXAMPLE 1

Let y = φ ( x) be a solution of the initial value problem (1 + x2) y′′ + 2xy′ + 4x2 y = 0, y(0) = 0,
y′(0) = 1. Determine φ ′′(0) , φ ′′′(0) , and φ (4) (0) .

Solution:
To find φ ′′(0) , simply evaluate the differential equation when x = 0:

(1 + 02)φ ′′(0) + 2 · 0 · φ ′(0) + 4 · 02 · φ (0) = 0,

so φ ′′(0) = 0.
To find φ ′′′(0) , differentiate the differential equation with respect to x :

(1 + x2)φ ′′′( x) + 2xφ ′′( x) + 2xφ ′′( x) + 2φ ′( x) + 4x2φ ′( x) + 8xφ ( x) = 0. (7)

Then evaluate the resulting equation (7) at x = 0:

φ ′′′(0) + 2φ ′(0) = 0.

Thus φ ′′′(0) = −2φ ′(0) = −2 (because φ ′(0) = 1).
Finally, to find φ (4) (0) , first differentiate equation (7) with respect to x :
(

1 + x2)φ (4) ( x) + 2xφ ′′′( x) + 4xφ ′′′( x) + 4φ ′′( x) + (2 + 4x2)φ ′′( x) + 8xφ ′( x)
+ 8xφ ′( x) + 8φ ( x) = 0.

Evaluating this equation at x = 0 we find

φ (4) (0) + 6φ ′′(0) + 8φ (0) = 0.

Finally, using φ (0) = 0 and φ ′′(0) = 0, we conclude that φ (4) (0) = 0.

Notice that the important property that we used in determining the an was that we could
compute infinitely many derivatives of the functions p and q. It might seem reasonable to
relax our assumption that the functions p and q are ratios of polynomials and simply require
that they be infinitely differentiable in the neighborhood of x0. Unfortunately, this condition
is too weak to ensure that we can prove the convergence of the resulting series expansion for
y = φ ( x) . What is needed is to assume that the functions p and q are analytic at x0; that
is, they have Taylor series expansions that converge to them in some interval about the point
x0:

p( x) = p0 + p1( x − x0) + · · · + pn( x − x0) n + · · · =
∞∑

n=0

pn( x − x0) n , (8)

q( x) = q0 + q1( x − x0) + · · · + qn( x − x0) n + · · · =
∞∑

n=0

qn( x − x0) n. (9)

With this idea in mind, we can generalize the definitions of an ordinary point and a singular
point of equation (1) as follows: if the functions p( x) = Q( x)/P( x) and q( x) = R( x)/P( x)
are analytic at x0, then the point x0 is said to be an ordinary point of the differential equation
(1); otherwise, it is a singular point.

Now let us turn to the question of the interval of convergence of the series solution.
One possibility is actually to compute the series solution for each problem and then to apply
one of the tests for convergence of an infinite series to determine its radius of convergence.
Unfortunately, these tests require us to obtain an expression for the general coefficient an as
a function of n, and this task is often quite difficult, if not impossible; recall Example 3 in
Section 5.2. However, the question can be answered at once for a wide class of problems by
the following theorem.
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Theorem 5.3.1

If x0 is an ordinary point of the differential equation (1)

P( x) y′′ + Q( x) y′ + R( x) y = 0,

that is, if p( x) = Q( x)/P( x) and q( x) = R( x)/P( x) are analytic at x0, then the general solution
of equation (1) is

y =
∞∑

n=0

an( x − x0) n = a0 y1( x) + a1 y2( x) ,

where a0 and a1 are arbitrary, and y1 and y2 are two power series solutions that are analytic at x0.
The solutions y1 and y2 form a fundamental set of solutions. Further, the radius of convergence for
each of the series solutions y1 and y2 is at least as large as the minimum of the radii of convergence
of the series for p and q.

To see that y1 and y2 are a fundamental set of solutions, note that they have the form
y1( x) = 1+b2( x −x0) 2 +· · · and y2( x) = ( x −x0) +c2( x −x0) 2 + · · · , where b2 +c2 = a2.
Hence y1 satisfies the initial conditions y1( x0) = 1, y′

1( x0) = 0, and y2 satisfies the initial
conditions y2( x0) = 0, y′

2( x0) = 1. Thus W [y1, y2]( x0) = 1.
Also note that although calculating the coefficients by successively differentiating the

differential equation is excellent in theory, it is usually not a practical computational procedure.
Rather, you should substitute the series (2) for y in the differential equation (1) and determine
the coefficients so that the differential equation is satisfied, as in the examples in the preceding
section.

We will not prove this theorem, which in a slightly more general form was established by
Fuchs.6 What is important for our purposes is that there is a series solution of the form (2) and
that the radius of convergence of the series solution cannot be less than the smaller of the radii
of convergence of the series for p and q; hence we need only determine these.

This can be done in either of two ways. Again, one possibility is simply to compute the
power series for p and q and then to determine the radii of convergence by using one of the
convergence tests for infinite series. However, there is an easier way when P( x) , Q( x) , and
R( x) are polynomials. It is shown in the theory of functions of a complex variable that the
ratio of two polynomials, say, Q( x)/P( x) , has a convergent power series expansion about a
point x = x0 if P( x0) �= 0. Further, if we assume that any factors common to Q( x) and P( x)
have been canceled, then the radius of convergence of the power series for Q( x)/P( x) about
the point x0 is precisely the distance from x0 to the nearest zero of P( x) . In determining this
distance, we must remember that P( x) = 0 may have complex roots, and these must also be
considered.

EXAMPLE 2

What is the radius of convergence of the Taylor series for (1 + x2)−1 about x = 0?

Solution:
One way to proceed is to find the Taylor series in question, namely,

1
1 + x2 = 1 − x2 + x4 − x6 + · · · + (−1) n x2n + · · · .

Then it can be verified by the ratio test that ρ = 1. Another approach is to note that the zeros of
1 + x2 are x = ±i . Since the distance in the complex plane from 0 to i or to −i is 1, the radius of
convergence of the power series about x = 0 is 1.

.........................................................................................................................................................................
6Lazarus Immanuel Fuchs (1833--1902), a German mathematician, was a student and later a professor at the University
of Berlin. He proved the result of Theorem 5.3.1 in 1866. His most important research was on singular points of linear
differential equations. He recognized the significance of regular singular points (Section 5.4), and equations whose
only singularities, including the point at infinity, are regular singular points are known as Fuchsian equations.
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EXAMPLE 3

What is the radius of convergence of the Taylor series for ( x2 − 2x + 2)−1 about x = 0? about
x = 1?

Solution:
First notice that

x2 − 2x + 2 = 0
has solutions x = 1 ± i . The distance in the complex plane from x = 0 to either x = 1 + i or

x = 1 − i is
√

2; hence the radius of convergence of the Taylor series expansion
∞∑

n=0
an xn about

x = 0 is
√

2.
The distance in the complex plane from x = 1 to either x = 1 + i or x = 1 − i is 1; hence the

radius of convergence of the Taylor series expansion
∞∑

n=0
bn( x − 1) n about x = 1 is 1.

According to Theorem 5.3.1, the series solutions of the Airy equation in Examples 2 and
3 of the preceding section converge for all values of x and x − 1, respectively, since in each
problem P( x) = 1 and hence is never zero.

A series solution may converge for a wider range of x than indicated by Theorem 5.3.1,
so the theorem actually gives only a lower bound on the radius of convergence of the series
solution. This is illustrated by the Legendre polynomial solution of the Legendre equation
given in the next example.

EXAMPLE 4

Determine a lower bound for the radius of convergence of series solutions about x = 0 for the
Legendre equation

(1 − x2) y′′ − 2xy′ + α (α + 1) y = 0,
where α is a constant.

Solution:
Note that P( x) = 1 − x2, Q( x) = −2x , and R( x) = α (α + 1) are polynomials, and that the zeros

of P , namely, x = ±1, are a distance 1 from x = 0. Hence a series solution of the form
∞∑

n=0
an xn

converges at least for |x | < 1, and possibly for larger values of x . Indeed, it can be shown that if
α is a positive integer, one of the series solutions terminates after a finite number of terms, that is,
one solution is a polynomial, and hence converges not just for |x | < 1 but for all x . For example, if
α = 1, the polynomial solution is y = x . See Problems 17 through 23 at the end of this section for
a further discussion of the Legendre equation.

EXAMPLE 5

Determine a lower bound for the radius of convergence of series solutions of the differential equation

(1 + x2) y′′ + 2xy′ + 4x2 y = 0 (10)

about the point x = 0; about the point x = − 1
2 .

Solution:
Again P , Q, and R are polynomials, and P has zeros at x = ±i . The distance in the complex plane

from 0 to ±i is 1, and from −1
2

to ±i is
√

1 + 1
4

=
√

5
2

. Hence in the first case the series
∞∑

n=0
an xn

converges at least for |x | < 1, and in the second case the series
∞∑

n=0
bn

(
x + 1

2

)n

converges at least

for
∣
∣
∣
∣x + 1

2

∣
∣
∣
∣ <

√
5

2
.

▼
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▼ An interesting observation that we can make about equation (10) follows from Theorems 3.2.1
and 5.3.1. Suppose that initial conditions y(0) = y0 and y′(0) = y′

0 are given. Since 1 + x2 �= 0 for
all x , we know from Theorem 3.2.1 that there exists a unique solution of the initial-value problem
on −∞ < x < ∞. On the other hand, Theorem 5.3.1 only guarantees a series solution of the

form
∞∑

n=0
an xn (with a0 = y0, a1 = y′

0) for −1 < x < 1. The unique solution on the interval

−∞ < x < ∞ may not have a power series about x = 0 that converges for all x .

EXAMPLE 6

Can we determine a series solution about x = 0 for the differential equation

y′′ + ( sin x) y′ + (1 + x2) y = 0,

and if so, what is the radius of convergence?

Solution:
For this differential equation, p( x) = sin x and q( x) = 1 + x2. Recall from calculus that sin x has
a Taylor series expansion about x = 0 that converges for all x . Further, q also has a Taylor series
expansion about x = 0, namely, q( x) = 1 + x2, that converges for all x . Thus there is a series

solution of the form y =
∞∑

n=0
an xn with a0 and a1 arbitrary, and the series converges for all x .

Problems
In each of Problems 1 through 3, determine φ ′′( x0) , φ ′′′( x0) , and
φ (4) ( x0) for the given point x0 if y = φ ( x) is a solution of the given
initial-value problem.
1. y′′ + xy′ + y = 0; y(0) = 1, y′(0) = 0
2. x2 y′′ + (1 + x) y′ + 3( ln x) y = 0; y(1) = 2, y′(1) = 0
3. y′′ + x2 y′ + ( sin x) y = 0; y(0) = a0, y′(0) = a1

In each of Problems 4 through 6, determine a lower bound for the
radius of convergence of series solutions about each given point x0
for the given differential equation.
4. y′′ + 4y′ + 6xy = 0; x0 = 0, x0 = 4
5. ( x2 −2x −3) y′′ + xy′ +4y = 0; x0 = 4, x0 = −4, x0 = 0
6. (1 + x3) y′′ + 4xy′ + y = 0; x0 = 0, x0 = 2
7. Determine a lower bound for the radius of convergence of series

solutions about the given x0 for each of the differential equations in
Problems 1 through 11 of Section 5.2.
8. The Chebyshev Equation. The Chebyshev7 differential

equation is

(1 − x2) y′′ − xy′ + α 2 y = 0,

where α is a constant.
a. Determine two solutions in powers of x for |x | < 1, and
show that they form a fundamental set of solutions.

.............................................................................................................................
7Pafnuty L. Chebyshev (1821--1894), the most influential nineteenth-century
Russian mathematician, was for 35 years professor at the University of St.
Petersburg, which produced a long line of distinguished mathematicians. His
study of Chebyshev polynomials began in about 1854 as part of an investigation
of the approximation of functions by polynomials. Chebyshev is also known
for his work in number theory and probability.

b. Show that if α is a nonnegative integer n, then there is
a polynomial solution of degree n. These polynomials, when
properly normalized, are called the Chebyshev polynomials.
They are very useful in problems that require a polynomial
approximation to a function defined on −1 ≤ x ≤ 1.
c. Find a polynomial solution for each of the cases α = n = 0,
1, 2, 3.

For each of the differential equations in Problems 9 through 11, find
the first four nonzero terms in each of two power series solutions about
the origin. Show that they form a fundamental set of solutions. What
do you expect the radius of convergence to be for each solution?
9. y′′ + ( sin x) y = 0

10. ex y′′ + xy = 0
11. (cos x) y′′ + xy′ − 2y = 0
12. Let y = x and y = x2 be solutions of a differential equation
P( x) y′′ + Q( x) y′ + R( x) y = 0. Can you say whether the point
x = 0 is an ordinary point or a singular point? Prove your answer.
First-Order Equations. The series methods discussed in this section
are directly applicable to the first-order linear differential equation
P( x) y′ + Q( x) y = 0 at a point x0, if the function p = Q/P has
a Taylor series expansion about that point. Such a point is called an
ordinary point, and further, the radius of convergence of the series

y =
∞∑

n=0
an( x − x0) n is at least as large as the radius of convergence

of the series for Q/P . In each of Problems 13 through 16, solve the
given differential equation by a series in powers of x and verify that
a0 is arbitrary in each case. Problem 17 involves a nonhomogeneous
differential equation to which series methods can be easily extended.
Where possible, compare the series solution with the solution obtained
by using the methods of Chapter 2.
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13. y′ − y = 0

14. y′ − xy = 0

15. (1 − x) y′ = y

16. y′ − y = x2

The Legendre Equation. Problems 17 through 23 deal with the
Legendre8 equation

(1 − x2) y′′ − 2xy′ + α (α + 1) y = 0.

As indicated in Example 4, the point x = 0 is an ordinary point of
this equation, and the distance from the origin to the nearest zero
of P( x) = 1 − x2 is 1. Hence the radius of convergence of series
solutions about x = 0 is at least 1. Also notice that we need to
consider only α > −1 because if α ≤ −1, then the substitution
α = −(1 + γ ) , where γ ≥ 0, leads to the Legendre equation
(1 − x2) y′′ − 2xy′ + γ (γ + 1) y = 0.
17. Show that two solutions of the Legendre equation for |x | < 1
are

y1( x) = 1 − α (α + 1)
2!

x2 + α (α − 2) (α + 1) (α + 3)
4!

x4

+
∞∑

m=3

(−1) m α · · · (α − 2m + 2) (α + 1) · · · (α + 2m − 1)
(2m) !

x2m ,

y2( x) = x − (α − 1) (α + 2)
3!

x3

+ (α − 1) (α − 3) (α + 2) (α + 4)
5!

x5

+
∞∑

m=3

(−1) m

× (α − 1) · · · (α − 2m + 1) (α + 2) · · · (α + 2m)
(2m + 1) !

x2m+1.

18. Show that if α is zero or a positive even integer 2n, the series
solution y1 reduces to a polynomial of degree 2n containing only even
powers of x . Find the polynomials corresponding to α = 0, 2, and 4.
Show that if α is a positive odd integer 2n + 1, the series solution y2
reduces to a polynomial of degree 2n + 1 containing only odd powers
of x . Find the polynomials corresponding to α = 1, 3, and 5.
19. The Legendre polynomial Pn( x) is defined as the polynomial
solution of the Legendre equation with α = n that also satisfies the
condition Pn(1) = 1.

a. Using the results of Problem 18, find the Legendre
polynomials P0( x) , . . . , P5( x) .
G b. Plot the graphs of P0( x) , . . . , P5( x) for −1 ≤ x ≤ 1.
N c. Find the zeros of P0( x) , . . . , P5( x) .

..............................................................................................................................
8Adrien-Marie Legendre (1752--1833) held various positions in the French
Académie des Sciences from 1783 onward. His primary work was in the fields
of elliptic functions and number theory. The Legendre functions, solutions of
Legendre’s equation, first appeared in 1784 in his study of the attraction of
spheroids.

20. The Legendre polynomials play an important role in
mathematical physics. For example, in solving Laplace’s equation
(the potential equation) in spherical coordinates, we encounter the
equation

d2 F(ϕ)
dϕ2 + cotϕ

d F(ϕ)
dϕ

+ n(n + 1) F(ϕ) = 0, 0 < ϕ < π ,

where n is a positive integer. Show that the change of variable
x = cosϕ leads to the Legendre equation with α = n for
y = f ( x) = F(arccos x) .

21. Show that for n = 0, 1, 2, 3, the corresponding Legendre
polynomial is given by

Pn( x) = 1
2nn!

dn

dxn ( x2 − 1) n .

This formula, known as Rodrigues’s formula,9 is true for all positive
integers n.

22. Show that the Legendre equation can also be written as
(

(1 − x2) y′)′ = −α (α + 1) y.

Then it follows that
(

(1 − x2) P ′
n( x)

)′ = −n(n + 1) Pn( x)

and
(

(1 − x2) P ′
m( x)

)′ = −m(m + 1) Pm( x) .

By multiplying the first equation by Pm( x) and the second equation
by Pn( x) , integrating by parts, and then subtracting one equation from
the other, show that

∫ 1

−1
Pn( x) Pm( x)dx = 0 if n �= m.

This property of the Legendre polynomials is known as the
orthogonality property. If m = n, it can be shown that the value of
the preceding integral is 2/(2n + 1) .
23. Given a polynomial f of degree n, it is possible to express f as
a linear combination of P0, P1, P2, . . . , Pn :

f ( x) =
n∑

k=0

ak Pk( x) .

Using the result of Problem 22, show that

ak = 2k + 1
2

∫ 1

−1
f ( x) Pk( x)dx .

..............................................................................................................................
9Benjamin Olinde Rodrigues (1795--1851) published this result as part of his
doctoral thesis from the University of Paris in 1815. He then became a banker
and social reformer but retained an interest in mathematics. Unfortunately, his
later papers were not appreciated until the late twentieth century.
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5.4 Euler Equations; Regular Singular Points
In this section we will begin to consider how to solve equations of the form

P( x) y′′ + Q( x) y′ + R( x) y = 0 (1)

in the neighborhood of a singular point x0. Recall that if the functions P , Q, and R are
polynomials having no factors common to all three of them, then the singular points of
equation (1) are the points for which P( x) = 0.
Euler Equations. A relatively simple differential equation that has a singular point is the
Euler equation10

L[y] = x2 y′′ + α xy′ + β y = 0, (2)

where α and β are real constants. Then P( x) = x2, Q( x) = α x , and R( x) = β . If β �= 0,
then P( x) , Q( x) , and R( x) have no common factors, so the only singular point of equation (2)
is x = 0; all other points are ordinary points. For convenience we first consider the interval
x > 0; later we extend our results to the interval x < 0.

Observe that ( xr ) ′ = r xr−1 and ( xr ) ′′ = r (r − 1) xr−2. Hence, if we assume that
equation (2) has a solution of the form

y = xr , (3)
then we obtain

L[xr ] = x2( xr ) ′′ + α x( xr ) ′ + β xr

= x2r (r − 1) xr−2 + α x(r xr−1) + β xr

= xr (r (r − 1) + αr + β ) . (4)

If r is a root of the quadratic equation
F(r ) = r (r − 1) + αr + β = 0, (5)

then L[xr ] is zero, and y = xr is a solution of equation (2). The roots of equation (5) are

r1, r2 = −(α − 1) ±
√

(α − 1) 2 − 4β
2

, (6)

and the quadratic polynomial F(r ) defined in equation (5) can also be written as F(r ) =
(r − r1) (r − r2) . Mirroring the treatment of second-order linear differential equations with
constant coefficients, we consider separately the cases in which the roots are real and different,
real but equal, and complex conjugates. Indeed, the entire discussion of Euler equations is
similar to the treatment of second-order linear equations with constant coefficients in Chapter
3, with er x replaced by xr .

Real, Distinct Roots. If F(r ) = 0 has real roots r1 and r2, with r1 �= r2, then y1( x) = xr1

and y2( x) = xr2 are solutions of equation (2). Since

W [xr1 , xr2 ] = (r2 − r1) xr1+r2−1

is nonzero for r1 �= r2 and x > 0, it follows that the general solution of equation (2) is
y = c1xr1 + c2xr2 , x > 0. (7)

Note that if r is not a rational number, then xr is defined by xr = er ln x .

EXAMPLE 1

Solve

2x2 y′′ + 3xy′ − y = 0, x > 0. (8)

▼

.........................................................................................................................................................................
10This equation is sometimes called the Cauchy--Euler equation or the equidimensional equation. Euler studied it in
about 1740, but its solution was known to Johann Bernoulli before 1700.
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▼ Solution:
Substituting y = xr in equation (8) gives

xr (2r (r − 1) + 3r − 1) = xr (2r2 + r − 1) = xr (2r − 1) (r + 1) = 0.

Hence r1 = 1
2

and r2 = −1, so the general solution of equation (8) is

y = c1x1/2 + c2x−1, x > 0. (9)

Equal Roots. If the roots r1 and r2 are equal, then we obtain only one solution y1( x) = xr1

of the assumed form. A second solution can be obtained by the method of reduction of order,
but for the purpose of our future discussion we consider an alternative method. Since r1 = r2, it
follows that F(r ) = (r −r1) 2. Thus in this case, not only does F(r1) = 0 but also F ′(r1) = 0.
This suggests differentiating equation (4) with respect to r and then setting r equal to r1. By
differentiating equation (4) with respect to r , we obtain

∂

∂ r
L[xr ] = ∂

∂ r
[xr F(r ) ] = ∂

∂ r

[
xr (r − r1) 2

]

= (r − r1) 2xr ln x + 2(r − r1) xr . (10)

However, by interchanging differentiation with respect to x and with respect to r , we also
obtain

∂

∂ r
L[xr ] = L

[
∂

∂ r
xr
]

= L[xr ln x].

The right-hand side of equation (10) is zero for r = r1; consequently, L[xr1 ln x] = 0 also.
Therefore, a second solution of equation (2) is

y2( x) = xr1 ln x , x > 0. (11)

By evaluating the Wronskian of y1and y2, we find that

W [xr1 , xr1 ln x] = x2r1−1.

Hence xr1 and xr1 ln x are a fundamental set of solutions for x > 0, and the general solution
of equation (2) is

y = (c1 + c2 ln x) xr1 , x > 0. (12)

EXAMPLE 2

Solve

x2 y′′ + 5xy′ + 4y = 0, x > 0. (13)

Solution:
Substituting y = xr in equation (13) gives

xr (r (r − 1) + 5r + 4) = xr(r2 + 4r + 4
) = 0.

Hence r1 = r2 = −2, and

y = x−2(c1 + c2 ln x) , x > 0 (14)
is the general solution of equation (13).

Complex Roots. Finally, suppose that the roots r1 and r2 of equation (5) are complex
conjugates, say, r1 = λ + iμ and r2 = λ − iμ , with μ �= 0. We must now explain what
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is meant by xr when r is complex. Remembering that

xr = er ln x (15)

when x > 0 and r is real, we can use this equation to define xr when r is complex. Then,
using Euler’s formula for eiμ ln x , we obtain

xλ+iμ = e(λ+iμ ) ln x = eλ ln x eiμ ln x = xλeiμ ln x

= xλ (cos(μ ln x) + i sin(μ ln x) ) , x > 0. (16)

With this definition of xr for complex values of r , it can be verified that the usual laws
of algebra and differential calculus hold, and hence xr1 and xr2 are indeed solutions of
equation (2). The general solution of equation (2) is

y = c1xλ+iμ + c2xλ−iμ . (17)

The disadvantage of this expression is that the functions xλ+iμ and xλ−iμ are complex-valued.
Recall that we had a similar situation for the second-order differential equation with constant
coefficients when the roots of the characteristic equation were complex. Just as we did then,
we can use Theorem 3.2.6 to obtain real-valued solutions of equation (2) by taking the real
and imaginary parts of xλ+iμ , namely,

xλ cos(μ ln x) and xλ sin(μ ln x) . (18)

A straightforward calculation shows (see Problem 29) that

W
[
xλ cos(μ ln x) , xλ sin(μ ln x)

] = μx2λ−1.

Hence these solutions form a fundamental set of solutions for x > 0, and the general solution
of the Euler equation (2) is

y = c1xλ cos(μ ln x) + c2xλ sin(μ ln x) , x > 0. (19)

EXAMPLE 3

Solve

x2 y′′ + xy′ + y = 0. (20)

Solution:
Substituting y = xr in equation (20) gives

xr (r (r − 1) + r + 1) = xr (r2 + 1) = 0.

Hence r = ±i , and the general solution is

y = c1 cos( ln x) + c2 sin( ln x) , x > 0. (21)

The factor xλ does not appear explicitly in equation (21) because in this example λ = 0 and xλ = 1.

Now let us consider the qualitative behavior of the solutions of equation (2) near the
singular point x = 0. This depends entirely on the values of the exponents r1 and r2. First, if r
is real and positive, then xr → 0 as x tends to zero through positive values. On the other hand,
if r is real and negative, then xr becomes unbounded. Finally, if r = 0, then xr = 1. Figure
5.4.1 shows these possibilities for various values of r . If r is complex, then a typical solution
is xλ cos(μ ln x) . This function becomes unbounded or approaches zero if λ is negative or
positive, respectively, and also oscillates more and more rapidly as x → 0. This behavior is
shown in Figures 5.4.2 and 5.4.3 for selected values of λ and μ . If λ = 0, the oscillation is of
constant amplitude. Finally, if there are repeated roots, then one solution is of the form xr ln x ,
which tends to zero if r > 0 and becomes unbounded if r ≤ 0. An example of each case is
shown in Figure 5.4.4.
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FIGURE 5.4.1 Solutions of an Euler equation; real roots (μ = 0).
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FIGURE 5.4.2 Solution of an Euler equation;
complex roots with negative real part.

1

–1

0.5 1 1.5 2

y = x1/2 cos(5 ln x)

y

x

FIGURE 5.4.3 Solution of an Euler equation;
complex roots with positive real part.
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FIGURE 5.4.4 The two typical second
solutions of an Euler equation with equal roots:
r > 0 (red), r < 0 (blue).

The extension of the solutions of equation (2) into the interval x < 0 can be carried out
in a relatively straightforward manner. The difficulty lies in understanding what is meant by
xr when x is negative and r is not an integer; similarly, ln x has not been defined for x < 0.
The solutions of the Euler equation that we have given for x > 0 can be shown to be valid
for x < 0, but in general they are complex-valued. Thus in Example 1 the solution x1/2 is
imaginary for x < 0.

It is always possible to obtain real-valued solutions of the Euler equation (2) in the interval
x < 0 by making the following change of variable. Let x = −ξ , where ξ > 0, and let
y = u(ξ ) . Then we have

dy
dx

= du
dξ

dξ
dx

= −du
dξ

,
d2 y
dx2 = d

dξ

(
−du

dξ

)
dξ
dx

= d2u
dξ2 . (22)
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Thus, for x < 0, equation (2) takes the form

ξ2 d2u
dξ2 + αξ

du
dξ

+ βu = 0, ξ > 0. (23)

But except for names of the variables, this is exactly the same as equation (2); from
equations (7), (12), and (19), we have

u(ξ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c1ξ
r1 + c2ξ

r2 if r1 and r2 are real-valued and different

(c1 + c2 ln ξ )ξ r1 if r1 and r2 are real-valued with r1 = r2

c1ξ
λ cos(μ ln ξ ) + c2ξ

λ sin(μ ln ξ ) if r1,2 = λ ± iμ are complex-valued
(μ �= 0) ,

(24)

depending on the nature of the zeros of F(r ) = r (r − 1) +αr +β = 0. To obtain u in terms
of x , we replace ξ by −x in equations (24).

We can combine the results for x > 0 and x < 0 by recalling that |x | = x when x > 0
and that |x | = −x when x < 0. Thus we need only replace x by |x | in equations (7), (12), and
(19) to obtain real-valued solutions valid in any interval not containing the origin.

Hence the general solution of the Euler equation (2)

x2 y′′ + α xy′ + β y = 0

in any interval not containing the origin is determined by the roots r1 and r2 of the equation

F(r ) = r (r − 1) + αr + β = 0

as follows. If the roots r1 and r2 are real and different, r1,2 = λ ± iμ , then

y = c1|x |r1 + c2|x |r2 . (25)

If the roots are real and equal, then

y = (c1 + c2 ln |x |) |x |r1 . (26)

If the roots are complex conjugates, r1,2 = λ ± iμ , then

y = |x |λ(c1 cos(μ ln |x |) + c2 sin(μ ln |x |)). (27)

The solutions of an Euler equation of the form

( x − x0) 2 y′′ + α ( x − x0) y′ + β y = 0 (28)

are similar. If we look for solutions of the form y = ( x − x0) r , then the general solution is
given by equation (25), equation (26), or equation (27) with x replaced by x−x0. Alternatively,
we can reduce equation (28) to the form of equation (2) by making the change of independent
variable t = x − x0.

Regular Singular Points. We now return to a consideration of the general equation (1)

P( x) y′′ + Q( x) y′ + R( x) y = 0,

where x0 is a singular point. This means that P( x0) = 0 and that at least one of Q and R is
not zero at x0.

Unfortunately, if we attempt to use the methods of the preceding two sections to solve
equation (1) in the neighborhood of a singular point x0, we find that these methods fail. This
is because the solution of equation (1) is often not analytic at x0 and consequently cannot be
represented by a Taylor series in powers of x − x0. Examples 1, 2, and 3 illustrate this fact; in
each of these examples, the solution fails to have a power series expansion about the singular
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point x = 0. Therefore, to have any chance of solving equation (1) in the neighborhood of a
singular point we must use a more general type of series expansion.

Since the singular points of a differential equation are usually few in number, we might
ask whether we can simply ignore them, especially since we already know how to construct
solutions about ordinary points. However, this is not feasible. The singular points determine
the principal features of the solution to a much larger extent than you might at first suspect.
In the neighborhood of a singular point the solution often becomes large in magnitude or
experiences rapid changes in magnitude. For example, the solutions found in Examples 1,
2, and 3 are illustrations of this fact. Thus the behavior of a physical system modeled by a
differential equation frequently is most interesting in the neighborhood of a singular point.
Often geometric singularities in a physical problem, such as corners or sharp edges, lead to
singular points in the corresponding differential equation. Thus, although at first we might
want to avoid the few points where a differential equation is singular, it is precisely at these
points that it is necessary to study the solution most carefully.

As an alternative to analytical methods, we can consider the use of numerical methods,
which are discussed in Chapter 8. However, these methods are ill suited for the study of
solutions near a singular point. Thus, even if we adopt a numerical approach, it is advantageous
to combine it with the analytical methods of this chapter in order to examine the behavior of
solutions near singular points.

Without any additional information about the behavior of Q/P and R/P in the
neighborhood of the singular point, it is impossible to describe the behavior of the solutions
of equation (1) near x = x0. It may be that there are two distinct solutions of equation (1)
that remain bounded as x → x0 (as in Example 3); or there may be only one, with the other
becoming unbounded as x → x0 (as in Example 1); or they may both become unbounded
as x → x0 (as in Example 2). If equation (1) has solutions that become unbounded as
x → x0, it is often important to determine how these solutions behave as x → x0. For
example, does y → ∞ in the same way as ( x − x0)−1 or |x − x0|−1/2, or in some other
manner?

Our goal is to extend the method already developed for solving equation (1) near an
ordinary point so that it also applies to the neighborhood of a singular point x0. To do this
in a reasonably simple manner, it is necessary to restrict ourselves to cases in which the
singularities in the functions Q/P and R/P at x = x0 are not too severe---that is, to what
we might call “weak singularities.” At this stage it is not clear exactly what is an acceptable
singularity. However, as we develop the method of solution, you will see that the appropriate
conditions (see also Section 5.6, Problem 16) to distinguish “weak singularities” are

lim
x→x0

( x − x0)
Q( x)
P( x)

is finite (29)

and

lim
x→x0

( x − x0) 2 R( x)
P( x)

is finite. (30)

This means that the singularity in Q/P can be no worse than ( x − x0)−1 and the singularity
in R/P can be no worse than ( x − x0)−2. Such a point is called a regular singular point of
equation (1). For equations with more general coefficients than polynomials, x0 is a regular
singular point of equation (1) if it is a singular point and if both11

( x − x0)
Q( x)
P( x)

and ( x − x0) 2 R( x)
P( x)

(31)

have convergent Taylor series about x0 ---that is, if the functions in equation (31) are analytic
at x = x0. Equations (29) and (30) imply that this will be the case when P , Q, and R are
polynomials. Any singular point of equation (1) that is not a regular singular point is called an
irregular singular point of equation (1).

.........................................................................................................................................................................
11The functions given in equation (31) may not be defined at x0, in which case their values at x0 are to be assigned
as their limits as x → x0.
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Observe that the conditions in equations (29) and (30) are satisfied by the Euler equation
(28). Thus the singularity in an Euler equation is a regular singular point. Indeed, we will see
that all equations of the form (1) behave very much like Euler equations near a regular singular
point. That is, solutions near a regular singular point may include powers of x with negative
or nonintegral exponents, logarithms, or sines or cosines of logarithmic arguments.

In the following sections we discuss how to solve equation (1) in the neighborhood
of a regular singular point. A discussion of the solutions of differential equations in the
neighborhood of irregular singular points is more complicated and may be found in more
advanced books.

EXAMPLE 4

Determine the singular points of the Legendre equation

(1 − x2) y′′ − 2xy′ + α (α + 1) y = 0 (32)

and determine whether they are regular or irregular.

Solution:
In this case P( x) = 1 − x2, so the singular points are x = 1 and x = −1. Observe that when we
divide equation (32) by 1−x2, the coefficients of y′ and y are −2x/(1−x2) and α (α+1)/(1−x2) ,
respectively. We consider the point x = 1 first. Thus, from equations (29) and (30), we calculate

lim
x→1

( x − 1)
−2x

1 − x2 = lim
x→1

( x − 1) (−2x)
(1 − x) (1 + x)

= lim
x→1

2x
1 + x

= 1

and

lim
x→1

( x − 1) 2 α (α + 1)
1 − x2 = lim

x→1

( x − 1) 2α (α + 1)
(1 − x) (1 + x)

= lim
x→1

( x − 1) (−α ) (α + 1)
1 + x

= 0.

Since these limits are finite, the point x = 1 is a regular singular point.
It can be shown in a similar manner that x = −1 is also a regular singular point.

EXAMPLE 5

Determine the singular points of the differential equation

2x( x − 2) 2 y′′ + 3xy′ + ( x − 2) y = 0

and classify them as regular or irregular.

Solution:
Dividing the differential equation by 2x( x − 2) 2, we have

y′′ + 3
2( x − 2) 2 y′ + 1

2x( x − 2)
y = 0,

so p( x) = Q( x)
P( x)

= 3
2( x − 2) 2 and q( x) = R( x)

P( x)
= 1

2x( x − 2)
. The singular points are x = 0

and x = 2. Consider x = 0. We have

lim
x→0

xp( x) = lim
x→0

x
3

2( x − 2) 2 = 0,

▼
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▼ and

lim
x→0

x2q( x) = lim
x→0

x2 1
2x( x − 2)

= 0.

Since these limits are finite, x = 0 is a regular singular point.
For x = 2 we have

lim
x→2

( x − 2) p( x) = lim
x→2

( x − 2)
3

2( x − 2) 2 = lim
x→2

3
2( x − 2)

,

so the limit does not exist; hence x = 2 is an irregular singular point.

EXAMPLE 6

Determine the singular points of
(

x − π

2

)2

y′′ + (cos x) y′ + ( sin x) y = 0

and classify them as regular or irregular.

Solution:
The only singular point is x = π

2
. To study it, we consider the functions

(
x − π

2

)
p( x) =

(
x − π

2

)
Q( x)
P( x)

= cos x
x − π/2

and
(

x − π

2

)2

q( x) =
(

x − π

2

)2 R( x)
P( x)

= sin x .

Starting from the Taylor series for cos x about x = π

2
, we find that

cos x
x − π/2

= −1 + ( x − π/2) 2

3!
− ( x − π/2) 4

5!
+ · · · ,

which converges for all x . Similarly, sin x is analytic at x = π

2
. Therefore, we conclude that

π

2
is a

regular singular point for this equation.

Problems
In each of Problems 1 through 8, determine the general solution of the
given differential equation that is valid in any interval not including
the singular point.
1. x2 y′′ + 4xy′ + 2y = 0
2. ( x + 1) 2 y′′ + 3( x + 1) y′ + 0.75y = 0
3. x2 y′′ − 3xy′ + 4y = 0
4. x2 y′′ − xy′ + y = 0
5. x2 y′′ + 6xy′ − y = 0
6. 2x2 y′′ − 4xy′ + 6y = 0
7. x2 y′′ − 5xy′ + 9y = 0
8. ( x − 2) 2 y′′ + 5( x − 2) y′ + 8y = 0

In each of Problems 9 through 11, find the solution of the given initial-
value problem. Plot the graph of the solution and describe how the
solution behaves as x → 0.
G 9. 2x2 y′′ + xy′ − 3y = 0, y(1) = 1, y′(1) = 4
G 10. 4x2 y′′ + 8xy′ + 17y = 0, y(1) = 2, y′(1) = −3
G 11. x2 y′′ − 3xy′ + 4y = 0, y(−1) = 2, y′(−1) = 3

In each of Problems 12 through 23, find all singular points of the given
equation and determine whether each one is regular or irregular.
12. xy′′ + (1 − x) y′ + xy = 0
13. x2(1 − x) 2 y′′ + 2xy′ + 4y = 0
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14. x2(1 − x) y′′ + ( x − 2) y′ − 3xy = 0

15. x2(1 − x2) y′′ +
(

2
x

)
y′ + 4y = 0

16. (1 − x2) 2 y′′ + x(1 − x) y′ + (1 + x) y = 0
17. x2 y′′ + xy′ + ( x2 − ν 2) y = 0 (Bessel equation)
18. ( x + 2) 2( x − 1) y′′ + 3( x − 1) y′ − 2( x + 2) y = 0
19. x(3 − x) y′′ + ( x + 1) y′ − 2y = 0
20. xy′′ + ex y′ + (3 cos x) y = 0
21. y′′ + ( ln |x |) y′ + 3xy = 0
22. ( sin x) y′′ + xy′ + 4y = 0
23. ( x sin x) y′′ + 3y′ + xy = 0
24. Find all values of α for which all solutions of

x2 y′′ + α xy′ + 5
2

y = 0 approach zero as x → 0.

25. Find all values of β for which all solutions of
x2 y′′ + β y = 0 approach zero as x → 0.
26. Find γ so that the solution of the initial-value problem
x2 y′′ − 2y = 0, y(1) = 1, y′(1) = γ is bounded as x → 0.
27. Consider the Euler equation x2 y′′ + α xy′ + β y = 0. Find
conditions on α and β so that:

a. All solutions approach zero as x → 0.
b. All solutions are bounded as x → 0.
c. All solutions approach zero as x → ∞.
d. All solutions are bounded as x → ∞.
e. All solutions are bounded both as x → 0 and as x → ∞.

28. Using the method of reduction of order, show that if r1 is a
repeated root of

r (r − 1) + αr + β = 0,

then xr1 and xr1 ln x are solutions of x2 y′′+α xy′+β y = 0 for x > 0.
29. Verify that W [xλ cos(μ ln x) , xλ sin(μ ln x) ] = μx2λ−1.
In each of Problems 30 and 31, show that the point x = 0 is a
regular singular point. In each problem try to find solutions of the

form
∞∑

n=0
an xn . Show that (except for constant multiples) there is only

one nonzero solution of this form in Problem 30 and that there are
no nonzero solutions of this form in Problem 31. Thus in neither case
can the general solution be found in this manner. This is typical of
equations with singular points.
30. 2xy′′ + 3y′ + xy = 0
31. 2x2 y′′ + 3xy′ − (1 + x) y = 0
32. Singularities at Infinity. The definitions of an ordinary point
and a regular singular point given in the preceding sections apply
only if the point x0 is finite. In more advanced work in differential
equations, it is often necessary to consider the point at infinity. This
is done by making the change of variable ξ = 1/x and studying the
resulting equation at ξ = 0. Show that, for the differential equation

P( x) y′′ + Q( x) y′ + R( x) y = 0,

the point at infinity is an ordinary point if

1
P(1/ξ )

(
2P(1/ξ )

ξ
− Q(1/ξ )

ξ2

)
and

R(1/ξ )
ξ4 P(1/ξ )

have Taylor series expansions about ξ = 0. Show also that the point at
infinity is a regular singular point if at least one of the above functions
does not have a Taylor series expansion, but both

ξ

P(1/ξ )

(
2P(1/ξ )

ξ
− Q(1/ξ )

ξ2

)
and

R(1/ξ )
ξ2 P(1/ξ )

do have such expansions.
In each of Problems 33 through 37, use the results of Problem 32 to
determine whether the point at infinity is an ordinary point, a regular
singular point, or an irregular singular point of the given differential
equation.
33. y′′ + y = 0
34. x2 y′′ + xy′ − 4y = 0
35. (1 − x2) y′′ − 2xy′ + α (α + 1) y = 0 (Legendre equation)
36. y′′ − 2xy′ + λy = 0 (Hermite equation)
37. y′′ − xy = 0 (Airy equation)

5.5 Series Solutions Near a Regular
Singular Point, Part I
We now consider the question of solving the general second-order linear differential equation

P( x) y′′ + Q( x) y′ + R( x) y = 0 (1)

in the neighborhood of a regular singular point x = x0. For convenience we assume that
x0 = 0. If x0 �= 0, the equation can be transformed into one for which the regular singular
point is at the origin by letting x − x0 equal t .

The assumption that x = 0 is a regular singular point of equation (1) means that
x Q( x)/P( x) = xp( x) and x2 R( x)/P( x) = x2q( x) have finite limits as x → 0 and are
analytic at x = 0. Thus they have convergent power series expansions of the form

xp( x) =
∞∑

n=0

pn xn , x2q( x) =
∞∑

n=0

qn xn , (2)
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on some interval |x | < ρ about the origin, where ρ > 0. To make the quantities xp( x) and
x2q( x) appear in equation (1), it is convenient to divide equation (1) by P( x) and then to
multiply by x2, obtaining

x2 y′′ + x( xp( x) ) y′ +
(

x2q( x)
)

y = 0, (3)

or

x2 y′′ + x( p0 + p1x + · · · + pn xn + · · ·) y′

+ (q0 + q1x + · · · + qn xn + · · ·) y = 0. (4)

Notice that the first terms of xp( x) and of x2q( x) are

p0 = lim
x→0

x Q( x)
P( x)

and q0 = lim
x→0

x2 R( x)
P( x)

. (5)

If all other coefficients pn and qn for n ≥ 1 in equation (2) are zero, then equation (4) reduces
to the Euler equation

x2 y′′ + p0xy′ + q0 y = 0, (6)

which was discussed in the preceding section.
In general, of course, some of the coefficients pn and qn , n ≥ 1, are not zero. However,

the essential character of solutions of equation (4) in the neighborhood of the singular point is
identical to that of solutions of the Euler equation (6). The presence of the terms p1x + · · · +
pn xn + · · · and q1x + · · · + qn xn + · · · merely complicates the calculations.

We restrict our discussion primarily to the interval x > 0. The interval x < 0 can be
treated, just as for the Euler equation, by making the change of variable x = −ξ and then
solving the resulting equation for ξ > 0.

The coefficients in equation (4) can be viewed as “Euler coefficients” times power series.
To see this, you can write the coefficient of y′ in equation (4) as

p0x
(

1 + p1

p0
x + p2

p0
x2 + · · · + pn

p0
xn + · · ·

)
,

and similarly for the coefficient of y. Thus it may seem natural to seek solutions of equation (4)
in the form of “Euler solutions” times power series. Hence we assume that

y = xr (a0 + a1x + · · · + an xn + · · ·) = xr
∞∑

n=0

an xn =
∞∑

n=0

an xr+n , (7)

where a0 �= 0. In other words, r is the exponent of the first nonzero term in the series, and a0
is its coefficient. As part of the solution, we have to determine:

1. The values of r for which equation (1) has a solution of the form (7)
2. The recurrence relation for the coefficients an

3. The radius of convergence of the series
∞∑

n=0
an xn

The general theory was constructed by Frobenius12 and is fairly complicated. Rather than
trying to present this theory, we simply assume, in this and the next two sections, that there
does exist a solution of the stated form. In particular, we assume that any power series in an
expression for a solution has a nonzero radius of convergence and concentrate on showing
how to determine the coefficients in such a series. To illustrate the method of Frobenius, we
first consider an example.

.........................................................................................................................................................................
12Ferdinand Georg Frobenius (1849--1917) grew up in the suburbs of Berlin, received his doctorate in 1870 from the
University of Berlin, and returned as professor in 1892. For most of the intervening years he was professor at the
Eidgenössische Polytechnikum at Zürich. He showed how to construct series solutions about regular singular points
in 1874. His most distinguished work, however, was in algebra, where he was one of the foremost early developers
of group theory.
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EXAMPLE 1

Solve the differential equation

2x2 y′′ − xy′ + (1 + x) y = 0. (8)

Solution:
It is easy to show that x = 0 is a regular singular point of equation (8). Further, xp( x) = −1/2 and
x2q( x) = (1 + x)/2. Thus p0 = −1/2, q0 = 1/2, q1 = 1/2, and all other pn’s and qn’s are zero.
Then, from equation (6), the Euler equation corresponding to equation (8) is

2x2 y′′ − xy′ + y = 0. (9)

To solve equation (8), we assume that there is a solution of the form (7). Then y′ and y′′ are
given by

y′ =
∞∑

n=0

an(r + n) xr+n−1 (10)

and

y′′ =
∞∑

n=0

an(r + n) (r + n − 1) xr+n−2. (11)

By substituting the expressions for y, y′, and y′′ in equation (8), we obtain

2x2 y′′ − xy′ + (1 + x) y =
∞∑

n=0

2an(r + n) (r + n − 1) xr+n

−
∞∑

n=0

an(r + n) xr+n +
∞∑

n=0

an xr+n +
∞∑

n=0

an xr+n+1. (12)

The last term in equation (12) can be written as
∞∑

n=1
an−1xr+n , so by combining the terms in

equation (12), we obtain

2x2 y′′ − xy′ + (1 + x) y = a0[2r (r − 1) − r + 1]xr

+
∞∑

n=1

(
(2(r + n) (r + n − 1) − (r + n) + 1)an + an−1

)
xr+n = 0. (13)

If equation (13) is to be satisfied for all x , the coefficient of each power of x in equation (13) must
be zero. From the coefficient of xr we obtain, since a0 �= 0,

2r (r − 1) − r + 1 = 2r2 − 3r + 1 = (r − 1) (2r − 1) = 0. (14)

Equation (14) is called the indicial equation for equation (8). Note that it is exactly the polynomial
equation we would obtain for the Euler equation (9) associated with equation (8). The roots of the
indicial equation are

r1 = 1, r2 = 1
2
. (15)

These values of r are called the exponents at the singularity for the regular singular point x = 0.
They determine the qualitative behavior of the solution (7) in the neighborhood of the singular point.

Now we return to equation (13) and set the coefficient of xr+n equal to zero. This gives the
relation

(2(r + n) (r + n − 1) − (r + n) + 1)an + an−1 = 0, n ≥ 1, (16)

or

an = − an−1

2(r + n) 2 − 3(r + n) + 1

= − an−1

( (r + n) − 1) (2(r + n) − 1)
, n ≥ 1. (17)

▼
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▼ For each root r1 and r2 of the indicial equation, we use the recurrence relation (17) to determine a
set of coefficients a1, a2, . . . . For r = r1 = 1, equation (17) becomes

an = − an−1

(2n + 1)n
, n ≥ 1.

Thus

a1 = − a0

3 · 1
,

a2 = − a1

5 · 2
= a0

(3 · 5) (1 · 2)
,

and

a3 = − a2

7 · 3
= − a0

(3 · 5 · 7) (1 · 2 · 3)
.

In general, we have

an = (−1) n

(3 · 5 · 7 · · · (2n + 1) )n!
a0, n ≥ 4. (18)

If we multiply both the numerator and denominator of the right-hand side of equation (18) by
2 · 4 · 6 · · · · · 2n = 2nn!, we can rewrite an as

an = (−1) n2n

(2n + 1) !
a0, n ≥ 1.

Hence, if we omit the constant multiplier a0, one solution of equation (8) is

y1( x) = x

⎛

⎝1 +
∞∑

n=1

(−1) n2n

(2n + 1) !
xn

⎞

⎠, x > 0. (19)

To determine the radius of convergence of the series in equation (19), we use the ratio test:

lim
n→∞

∣
∣
∣
∣

an+1xn+1

an xn

∣
∣
∣
∣ = lim

n→∞

2|x |
(2n + 2) (2n + 3)

= 0

for all x . Thus the series converges for all x .

Corresponding to the second root r = r2 = 1
2

, we proceed similarly. From equation (17) we

have

an = − an−1

2n
(

n − 1
2

) = − an−1

n(2n − 1)
, n ≥ 1.

Hence

a1 = − a0

1 · 1
,

a2 = − a1

2 · 3
= a0

(1 · 2) (1 · 3)
,

a3 = − a2

3 · 5
= − a0

(1 · 2 · 3) (1 · 3 · 5)
,

and, in general,

an = (−1) n

n!(1 · 3 · 5 · · · (2n − 1) )
a0, n ≥ 4. (20)

Just as in the case of the first root r1, we multiply the numerator and denominator by
2 · 4 · 6 · · · · · 2n = 2nn!. Then we have

an = (−1) n2n

(2n) !
a0, n ≥ 1.

Again omitting the constant multiplier a0, we obtain the second solution

y2( x) = x1/2

⎛

⎝1 +
∞∑

n=1

(−1) n2n

(2n) !
xn

⎞

⎠, x > 0. (21)

▼
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▼ As before, we can show that the series in equation (21) converges for all x . Since y1 and y2 behave like
x and x1/2, respectively, near x = 0, they are linearly independent and so they form a fundamental
set of solutions. Hence the general solution of equation (8) is

y = c1 y1( x) + c2 y2( x) , x > 0.

The preceding example illustrates that if x = 0 is a regular singular point, then sometimes
there are two solutions of the form (7) in the neighborhood of this point. Similarly, if there is
a regular singular point at x = x0, then there may be two solutions of the form

y = ( x − x0) r
∞∑

n=0

an( x − x0) n (22)

that are valid near x = x0. However, just as an Euler equation may not have two solutions of
the form y = xr , so a more general equation with a regular singular point may not have two
solutions of the form (7) or (22). In particular, we show in the next section that if the roots
r1 and r2 of the indicial equation are equal or differ by an integer, then the second solution
normally has a more complicated structure. In all cases, though, it is possible to find at least
one solution of the form (7) or (22); if r1 and r2 differ by an integer, this solution corresponds
to the larger value of r . If there is only one such solution, then the second solution involves a
logarithmic term, just as for the Euler equation when the roots of the characteristic equation are
equal. The method of reduction of order or some other procedure can be invoked to determine
the second solution in such cases. This is discussed in Sections 5.6 and 5.7.

If the roots of the indicial equation are complex, then they cannot be equal or differ by an
integer, so there are always two solutions of the form (7) or (22). Of course, these solutions
are complex-valued functions of x . However, as for the Euler equation, it is possible to obtain
real-valued solutions by taking the real and imaginary parts of the complex solutions.

Finally, we mention a practical point. If P , Q, and R are polynomials, it is often much
better to work directly with equation (1) than with equation (3). This avoids the necessity
of expressing x Q( x)/P( x) and x2 R( x)/P( x) as power series. For example, it is more
convenient to consider the equation

x(1 + x) y′′ + 2y′ + xy = 0

than to write it in the form

x2 y′′ + 2x
1 + x

y′ + x2

1 + x
y = 0,

which would entail expanding
2x

1 + x
and

x2

1 + x
in power series.

Problems
In each of Problems 1 through 6:

a. Show that the given differential equation has a regular
singular point at x = 0.
b. Determine the indicial equation, the recurrence relation, and
the roots of the indicial equation.
c. Find the series solution ( x > 0) corresponding to the larger
root.
d. If the roots are unequal and do not differ by an integer, find
the series solution corresponding to the smaller root also.

1. 2xy′′ + y′ + xy = 0

2. x2 y′′ + xy′ +
(

x2 − 1
9

)
y = 0

3. xy′′ + y = 0
4. xy′′ + y′ − y = 0
5. x2 y′′ + xy′ + ( x − 2) y = 0
6. xy′′ + (1 − x) y′ − y = 0
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7. The Legendre equation of order α is

(1 − x2) y′′ − 2xy′ + α (α + 1) y = 0.

The solution of this equation near the ordinary point x = 0 was
discussed in Problems 17 and 18 of Section 5.3. In Example 4 of
Section 5.4, it was shown that x = ±1 are regular singular points.

a. Determine the indicial equation and its roots for the point
x = 1.
b. Find a series solution in powers of x − 1 for x − 1 > 0.
Hint: Write 1 + x = 2 + ( x − 1) and x = 1 + ( x − 1) .
Alternatively, make the change of variable x − 1 = t and
determine a series solution in powers of t .

8. The Chebyshev equation is

(1 − x2) y′′ − xy′ + α 2 y = 0,

where α is a constant; see Problem 8 of Section 5.3.
a. Show that x = 1 and x = −1 are regular singular points, and
find the exponents at each of these singularities.
b. Find two solutions about x = 1.

9. The Laguerre13 differential equation is

xy′′ + (1 − x) y′ + λy = 0.

a. Show that x = 0 is a regular singular point.
b. Determine the indicial equation, its roots, and the recurrence
relation.
c. Find one solution (for x > 0). Show that if λ = m, a
positive integer, this solution reduces to a polynomial. When
properly normalized, this polynomial is known as the Laguerre
polynomial, Lm( x) .

10. The Bessel equation of order zero is

x2 y′′ + xy′ + x2 y = 0.

..............................................................................................................................
13Edmond Nicolas Laguerre (1834--1886), a French geometer and analyst,
studied the polynomials named for him about 1879. He is also known for an
algorithm for calculating roots of polynomial equations.

a. Show that x = 0 is a regular singular point.
b. Show that the roots of the indicial equation are r1 = r2 = 0.
c. Show that one solution for x > 0 is

J0( x) = 1 +
∞∑

n=1

(−1) n x2n

22n(n!) 2 .

The function J0 is known as the Bessel function of the first kind
of order zero.
d. Show that the series for J0( x) converges for all x .

11. Referring to Problem 10, use the method of reduction of order
to show that the second solution of the Bessel equation of order zero
contains a logarithmic term.
Hint: If y2( x) = J0( x)v( x) , then

y2( x) = J0( x)
∫

dx

x
(

J0( x)
)2 .

Find the first term in the series expansion of
1

x
(

J0( x)
)2 .

12. The Bessel equation of order one is

x2 y′′ + xy′ + ( x2 − 1) y = 0.

a. Show that x = 0 is a regular singular point.
b. Show that the roots of the indicial equation are r1 = 1 and
r2 = −1.
c. Show that one solution for x > 0 is

J1( x) = x
2

∞∑

n=0

(−1) n x2n

(n + 1) ! n! 22n .

The function J1 is known as the Bessel function of the first kind
of order one.
d. Show that the series for J1( x) converges for all x .
e. Show that it is impossible to determine a second solution of
the form

x−1
∞∑

n=0

bn xn , x > 0.

5.6 Series Solutions Near a Regular
Singular Point, Part II
Now let us consider the general problem of determining a solution of the equation

L[y] = x2 y′′ + x( xp( x) ) y′ +
(

x2q( x)
)

y = 0, (1)

where

xp( x) =
∞∑

n=0

pn xn , x2q( x) =
∞∑

n=0

qn xn , (2)

and both series converge in an interval |x | < ρ for some ρ > 0. The point x = 0 is a regular
singular point, and the corresponding Euler equation is

x2 y′′ + p0xy′ + q0 y = 0. (3)
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We seek a solution of equation (1) for x > 0 and assume that it has the form

y = φ (r, x) = xr
∞∑

n=0

an xn =
∞∑

n=0

an xr+n , (4)

where a0 �= 0, and we have written y = φ (r, x) to emphasize that φ depends on r as well as
x . It follows that

y′ =
∞∑

n=0

(r + n)an xr+n−1, y′′ =
∞∑

n=0

(r + n) (r + n − 1)an xr+n−2. (5)

Then, substituting from equations (2), (4), and (5) in equation (1) gives

L[φ ](r, x) = a0r (r − 1) xr + a1(r + 1)r xr+1 + · · · + an(r + n) (r + n − 1) xr+n + · · ·
+ (p0 + p1x + · · · + pn xn + · · ·)

(
a0r xr + a1(r + 1) xr+1 + · · · + an(r + n) xr+n + · · ·

)

+ (q0 + q1x + · · · + qn xn + · · ·)
(

a0xr + a1xr+1 + · · · + an xr+n + · · ·
)

= 0.

Multiplying the infinite series together and then collecting terms, we obtain

L[φ ](r, x) = a0 F(r ) xr + [a1 F(r + 1) + a0( p1r + q1)
]
xr+1

+ [
a2 F(r + 2) + a0( p2r + q2) + a1

(
p1(r + 1) + q1

)]
xr+2

+ · · · + [an F(r + n) + a0( pnr + qn) + a1
(

pn−1(r + 1) + qn−1
)

+ · · · + an−1
(

p1(r + n − 1) + q1
)]

xr+n + · · · = 0,

or, in a more compact form,

L[φ ] = a0 F(r ) xr

+
∞∑

n=1

⎛

⎝F(r + n)an +
n−1∑

k=0

ak( (r + k) pn−k + qn−k)

⎞

⎠xr+n = 0, (6)

where

F(r ) = r (r − 1) + p0r + q0. (7)

For equation (6) to be satisfied for all x > 0, the coefficient of each power of x must be zero.
Since a0 �= 0, the term involving xr yields the equation F(r ) = 0. This equation is

called the indicial equation; note that it is exactly the equation we would obtain in looking for
solutions y = xr of the Euler equation (3). Let us denote the roots of the indicial equation by
r1 and r2 with r1 ≥ r2 if the roots are real. If the roots are complex, the designation of the roots
is immaterial. Only for these values of r can we expect to find solutions of equation (1) of the
form (4). The roots r1 and r2 are called the exponents at the singularity; they determine the
qualitative nature of the solution in the neighborhood of the singular point.

Setting the coefficient of xr+n in equation (6) equal to zero gives the recurrence relation

F(r + n)an +
n−1∑

k=0

ak( (r + k) pn−k + qn−k) = 0, n ≥ 1. (8)

Equation (8) shows that, in general, an depends on the value of r and all the
preceding coefficients a0, a1, . . . , an−1. It also shows that we can successively compute
a1, a2, . . . , an , . . . in terms of a0 and the coefficients in the series for xp( x) and x2q( x) ,
provided that F(r + 1) , F(r + 2) , . . . , F(r + n) , . . . are not zero. The only values of r for
which F(r ) = 0 are r = r1 and r = r2; since r1 ≥ r2, it follows that r1 + n is not equal to r1
or r2 for n ≥ 1. Consequently, F(r1 + n) �= 0 for n ≥ 1. Hence we can always determine one
solution of equation (1) in the form (4), namely,

y1( x) = xr1

⎛

⎝1 +
∞∑

n=1

an(r1) xn

⎞

⎠, x > 0. (9)
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Here we have introduced the notation an(r1) to indicate that an has been determined from
equation (8) with r = r1. The solution involves an arbitrary constant; the solution in equation
(9) is obtained by assigning a0 the value 1.

If r2 is not equal to r1, and r1 − r2 is not a positive integer, then r2 + n is not equal to r1
for any value of n ≥ 1; hence F(r2 + n) �= 0, and we can also obtain a second solution

y2( x) = xr2

⎛

⎝1 +
∞∑

n=1

an(r2) xn

⎞

⎠, x > 0. (10)

Just as for the series solutions about ordinary points discussed in Section 5.3, the series in
equations (9) and (10) converge at least in the interval |x | < ρ where the series for both xp( x)
and x2q( x) converge. Within their radii of convergence, the power series 1 +

∞∑

n=1
an(r1) xn

and 1 +
∞∑

n=1
an(r2) xn define functions that are analytic at x = 0. Thus the singular behavior,

if there is any, of the solutions y1 and y2 is due to the factors xr1 and xr2 that multiply these
two analytic functions.

Next, to obtain real-valued solutions for x < 0, we can make the substitution x = −ξ
with ξ > 0. As we might expect from our discussion of the Euler equation, it turns out that we
need only replace xr1 in equation (9) and xr2 in equation (10) by |x |r1 and |x |r2 , respectively.

Finally, note that if r1 and r2 are complex numbers, then they are necessarily complex
conjugates and r2 �= r1 + N for any positive integer N . Thus, in this case we can always find
two series solutions of the form (4); however, they are complex-valued functions of x . Real-
valued solutions can be obtained by taking the real and imaginary parts of the complex-valued
solutions.

The exceptional cases in which r1 = r2 or r1 − r2 = N , where N is a positive integer,
require more discussion and will be considered later in this section.

It is important to realize that r1 and r2, the exponents at the singular point, are easy to find
and that they determine the qualitative behavior of the solutions. To calculate r1 and r2, it is
only necessary to solve the quadratic indicial equation

r (r − 1) + p0r + q0 = 0, (11)

whose coefficients are given by
p0 = lim

x→0
xp( x) , q0 = lim

x→0
x2q( x) . (12)

Note that these are exactly the limits that must be evaluated in order to classify the singularity
as a regular singular point; thus they have usually been determined at an earlier stage of the
investigation.

Further, if x = 0 is a regular singular point of the equation

P( x) y′′ + Q( x) y′ + R( x) y = 0, (13)

where the functions P , Q, and R are polynomials, then xp( x) = x Q( x)/P( x) and x2q( x) =
x2 R( x)/P( x) . Thus

p0 = lim
x→0

x
Q( x)
P( x)

, q0 = lim
x→0

x2 R( x)
P( x)

. (14)

Finally, the radii of convergence for the series in equations (9) and (10) are at least equal to the
distance from the origin to the nearest zero of P other than the regular singular point x = 0
itself.

EXAMPLE 1

Discuss the nature of the solutions of the equation

2x(1 + x) y′′ + (3 + x) y′ − xy = 0

near the singular points.

▼
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▼ Solution:
This equation is of the form (13) with P( x) = 2x(1 + x) , Q( x) = 3 + x , and R( x) = −x . The
points x = 0 and x = −1 are the only singular points. The point x = 0 is a regular singular point,
since

lim
x→0

x
Q( x)
P( x)

= lim
x→0

x
3 + x

2x(1 + x)
= 3

2
,

lim
x→0

x2 R( x)
P( x)

= lim
x→0

x2 −x
2x(1 + x)

= 0.

Further, from equation (14), p0 = 3
2

and q0 = 0. Thus the indicial equation is r (r − 1) + 3
2

r = 0,

and the roots are r1 = 0, r2 = −1
2

. Since these roots are not equal and do not differ by an integer,

there are two solutions of the form

y1( x) = 1 +
∞∑

n=1

an(0) xn and y2( x) = |x |−1/2

⎛

⎝1 +
∞∑

n=1

an

(
− 1

2

)
xn

⎞

⎠

for 0 < |x | < ρ . A lower bound for the radius of convergence of each series is 1, the distance from
x = 0 to x = −1, the other zero of P( x) . Note that the solution y1 is bounded as x → 0, indeed is
analytic there, and that the second solution y2 is unbounded as x → 0.

The point x = −1 is also a regular singular point, since

lim
x→−1

( x + 1)
Q( x)
P( x)

= lim
x→−1

( x + 1) (3 + x)
2x(1 + x)

= −1,

lim
x→−1

( x + 1) 2 R( x)
P( x)

= lim
x→−1

( x + 1) 2(−x)
2x(1 + x)

= 0.

In this case p0 = −1, q0 = 0, so the indicial equation is r (r − 1) − r = 0. The roots of the indicial
equation are r1 = 2 and r2 = 0. Corresponding to the larger root there is a solution of the form

y1( x) = ( x + 1) 2

⎛

⎝1 +
∞∑

n=1

an(2) ( x + 1) n

⎞

⎠.

The series converges at least for |x +1| < 1, and y1 is an analytic function there. Since the two roots
differ by a positive integer, there may or may not be a second solution of the form

y2( x) = 1 +
∞∑

n=1

an(0) ( x + 1) n .

We cannot say more without further analysis.
Observe that no complicated calculations were required to discover the information about the

solutions presented in this example. All that was needed was to evaluate a few limits and solve two
quadratic equations.

We now consider the cases in which the roots of the indicial equation are equal or differ
by a positive integer, r1 − r2 = N . As we have shown earlier, there is always one solution of
the form (9) corresponding to the larger root r1 of the indicial equation. By analogy with the
Euler equation, we might expect that if r1 = r2, then the second solution contains a logarithmic
term. This may also be true if the roots differ by an integer.

Equal Roots. The method of finding the second solution is essentially the same as the one
we used in finding the second solution of the Euler equation (see Section 5.4) when the roots
of the indicial equation were equal. We consider r to be a continuous variable and determine
an as a function of r by solving the recurrence relation (8). For this choice of an(r ) for n ≥ 1,
the terms in equation (6) involving xr+1, xr+2, xr+3, . . . all have coefficients equal to zero.
Therefore, since r1 is a repeated root of F(r ) , equation (6) reduces to

L[φ ](r, x) = a0 F(r ) xr = a0(r − r1) 2xr . (15)
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Setting r = r1 in equation (15), we find that L[φ ](r1, x) = 0; hence, as we already know,
y1( x) given by equation (9) is one solution of equation (1). But more important, it also follows
from equation (15), just as for the Euler equation, that

L
[
∂φ

∂ r

]
(r1, x) = a0

∂

∂ r

(
xr (r − r1) 2

)∣∣
∣
r=r1

= a0

(
(r − r1) 2xr ln x + 2(r − r1) xr

)∣∣
∣
r=r1

= 0. (16)

Hence, a second solution of equation (1) is

y2( x) = ∂φ (r, x)
∂ r

∣
∣
∣
∣
∣
∣
r=r1

= ∂

∂ r

⎛

⎝xr

⎛

⎝a0 +
∞∑

n=1

an(r ) xn

⎞

⎠

⎞

⎠

∣
∣
∣
∣
∣
∣
r=r1

= ( xr1 ln x)

⎛

⎝a0 +
∞∑

n=1

an(r1) xn

⎞

⎠+ xr1

∞∑

n=1

a′
n(r1) xn

= y1( x) ln x + xr1

∞∑

n=1

a′
n(r1) xn , x > 0, (17)

where a′
n(r1) denotes

dan

dr
evaluated at r = r1.

Although equation (17) provides an explicit expression for a second solution y2( x) , it may
turn out that it is difficult to determine an(r ) as a function of r from the recurrence relation
(8) and then to differentiate the resulting expression with respect to r . An alternative is simply
to assume that y has the form of equation (17). That is, assume that

y = y1( x) ln x + xr1

∞∑

n=1

bn xn , x > 0, (18)

where y1( x) has already been found. The coefficients bn are calculated, as usual, by
substituting into the differential equation, collecting terms, and setting the coefficient of each
power of x equal to zero. A third possibility is to use the method of reduction of order to find
y2( x) once y1( x) is known.

Roots r1 and r2 Differing by an Integer N. For this case the derivation of the second
solution is considerably more complicated and will not be given here. The form of this solution
is stated in equation (24) in the following theorem. The coefficients cn(r2) in equation (24)
are given by

cn(r2) = d
dr

[(r − r2)an(r ) ]
∣
∣
∣
∣
r=r2

, n = 1, 2, . . . , (19)

where an(r ) is determined from the recurrence relation (8) with a0 = 1. Further, the coefficient
a in equation (24) is

a = lim
r→r2

(r − r2)aN (r ) . (20)

If aN (r2) is finite, then a = 0 and there is no logarithmic term in y2. A full derivation of
formulas (19) and (20) may be found in Coddington (Chapter 4).

In practice, the best way to determine whether a is zero in the second solution is simply to
try to compute the an corresponding to the root r2 and to see whether it is possible to determine
aN (r2) . If so, there is no further problem. If not, we must use the form (24) with a �= 0.

When r1 − r2 = N , there are again three ways to find a second solution. First, we can
calculate a and cn(r2) directly by substituting the expression (24) for y in equation (1). Second,
we can calculate cn(r2) and a of equation (24) using the formulas (19) and (20). If this is the
planned procedure, then in calculating the solution corresponding to r = r1, be sure to obtain
the general formula for an(r ) rather than just an(r1) . The third alternative is to use the method
of reduction of order.

The following theorem summarizes the results that we have obtained in this section.
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Theorem 5.6.1

Consider the differential equation (1)
x2 y′′ + x( xp( x) ) y′ + (x2q( x)

)
y = 0,

where x = 0 is a regular singular point. Then xp( x) and x2q( x) are analytic at x = 0 with convergent
power series expansions

xp( x) =
∞∑

n=0

pn xn , x2q( x) =
∞∑

n=0

qn xn

for |x | < ρ , where ρ > 0 is the minimum of the radii of convergence of the power series for xp( x)
and x2q( x) . Let r1 and r2 be the roots of the indicial equation

F(r ) = r (r − 1) + p0r + q0 = 0,

with r1 ≥ r2 if r1 and r2 are real. Then in either the interval −ρ < x < 0 or the interval 0 < x < ρ ,
there exists a solution of the form

y1( x) = |x |r1

⎛

⎝1 +
∞∑

n=1

an(r1) xn

⎞

⎠, (21)

where the an(r1) are given by the recurrence relation (8) with a0 = 1 and r = r1.

CASE 1 If r1 − r2 is not zero or a positive integer, then in either the interval −ρ < x < 0 or the
interval 0 < x < ρ , there exists a second solution of the form

y2( x) = |x |r2

⎛

⎝1 +
∞∑

n=1

an(r2) xn

⎞

⎠. (22)

The an(r2) are also determined by the recurrence relation (8) with a0 = 1 and r = r2. The
power series in equations (21) and (22) converge at least for |x | < ρ .

CASE 2 If r1 = r2, then the second solution is

y2( x) = y1( x) ln |x | + |x |r1
∞∑

n=1

bn(r1) xn . (23)

CASE 3 If r1 − r2 = N , a positive integer, then

y2( x) = ay1( x) ln |x | + |x |r2

⎛

⎝1 +
∞∑

n=1

cn(r2) xn

⎞

⎠. (24)

The coefficients an(r1) , bn(r1) , and cn(r2) and the constant a can be determined by
substituting the form of the series solutions for y in equation (1). The constant a may turn
out to be zero, in which case there is no logarithmic term in the solution (24). Each of the
series in equations (23) and (24) converges at least for |x | < ρ and defines a function that is
analytic in some neighborhood of x = 0.

In all three cases, the two solutions y1( x) and y2( x) form a fundamental set of solutions
of the given differential equation.

Problems
In each of Problems 1 through 8:

a. Find all the regular singular points of the given differential
equation.
b. Determine the indicial equation and the exponents at the
singularity for each regular singular point.

1. xy′′ + 2xy′ + 6ex y = 0
2. x2 y′′ − x(2 + x) y′ + (2 + x2) y = 0
3. y′′ + 4xy′ + 6y = 0
4. 2x( x + 2) y′′ + y′ − xy = 0

5. x2 y′′ + 1
2

( x + sin x) y′ + y = 0

6. x2(1 − x) y′′ − (1 + x) y′ + 2xy = 0
7. ( x − 2) 2( x + 2) y′′ + 2xy′ + 3( x − 2) y = 0
8. (4 − x2) y′′ + 2xy′ + 3y = 0

In each of Problems 9 through 12:
a. Show that x = 0 is a regular singular point of the given
differential equation.
b. Find the exponents at the singular point x = 0.
c. Find the first three nonzero terms in each of two solutions
(not multiples of each other) about x = 0.

9. xy′′ + y′ − y = 0
10. xy′′ + 2xy′ + 6ex y = 0 (see Problem 1)
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11. xy′′ + y = 0
12. x2 y′′ + ( sin x) y′ − (cos x) y = 0
13. a. Show that

( ln x) y′′ + 1
2

y′ + y = 0

has a regular singular point at x = 1.
b. Determine the roots of the indicial equation at x = 1.
c. Determine the first three nonzero terms in the series
∞∑

n=0
an( x − 1) r+n corresponding to the larger root.

You can assume x − 1 > 0.
d. What would you expect the radius of convergence of the
series to be?

14. In several problems in mathematical physics, it is necessary to
study the differential equation

x(1 − x) y′′ + (γ − (1 + α + β ) x) y′ − αβ y = 0, (25)

where α , β , and γ are constants. This equation is known as the
hypergeometric equation.

a. Show that x = 0 is a regular singular point and that the roots
of the indicial equation are 0 and 1 − γ .
b. Show that x = 1 is a regular singular point and that the roots
of the indicial equation are 0 and γ − α − β .
c. Assuming that 1 − γ is not a positive integer, show that, in
the neighborhood of x = 0, one solution of equation (25) is

y1( x) = 1 + αβ

γ · 1!
x + α (α + 1)β (β + 1)

γ (γ + 1)2!
x2 + · · · .

What would you expect the radius of convergence of this series
to be?
d. Assuming that 1 − γ is not an integer or zero, show that a
second solution for 0 < x < 1 is

y2( x) = x1−γ

(
1 + (α − γ + 1) (β − γ + 1)

(2 − γ )1!
x+

(α − γ + 1) (α − γ + 2) (β − γ + 1) (β − γ + 2)
(2 − γ ) (3 − γ )2!

x2+· · ·
)
.

e. Show that the point at infinity is a regular singular point and
that the roots of the indicial equation are α and β . See Problem
32 of Section 5.4.

15. Consider the differential equation

x3 y′′ + α xy′ + β y = 0,

where α and β are real constants and α �= 0.
a. Show that x = 0 is an irregular singular point.

b. By attempting to determine a solution of the form
∞∑

n=0
an xr+n ,

show that the indicial equation for r is linear and that,
consequently, there is only one formal solution of the assumed
form.
c. Show that if β/α = −1, 0, 1, 2, . . . , then the formal series
solution terminates and therefore is an actual solution. For other
values of β/α , show that the formal series solution has a zero
radius of convergence and so does not represent an actual solution
in any interval.

16. Consider the differential equation

y′′ + α

xs y′ + β

xt y = 0, (26)

where α �= 0 and β �= 0 are real numbers, and s and t are positive
integers that for the moment are arbitrary.

a. Show that if s > 1 or t > 2, then the point x = 0 is an
irregular singular point.
b. Try to find a solution of equation (26) of the form

y =
∞∑

n=0

an xr+n , x > 0. (27)

Show that if s = 2 and t = 2, then there is only one possible
value of r for which there is a formal solution of equation (26) of
the form (27).
c. Show that if s = 1 and t = 3, then there are no solutions of
equation (26) of the form (27).
d. Show that the maximum values of s and t for which the
indicial equation is quadratic in r [and hence we can hope to find
two solutions of the form (27)] are s = 1 and t = 2. These are
precisely the conditions that distinguish a “weak singularity,” or
a regular singular point, from an irregular singular point, as we
defined them in Section 5.4.

As a note of caution, we point out that although it is sometimes
possible to obtain a formal series solution of the form (27) at an
irregular singular point, the series may not have a positive radius of
convergence. See Problem 15 for an example.

5.7 Bessel’s Equation
In this section we illustrate the discussion in Section 5.6 by considering three special cases of
Bessel’s14 equation,

x2 y′′ + xy′ + ( x2 − ν 2) y = 0, (1)

.........................................................................................................................................................................
14Friedrich Wilhelm Bessel (1784--1846) left school at the age of 14 to embark on a career in the import-export
business but soon became interested in astronomy and mathematics. He was appointed director of the observatory
at Königsberg in 1810 and held this position until his death. His study of planetary perturbations led him in 1824 to
make the first systematic analysis of the solutions, known as Bessel functions, of equation (1). He is also famous for
making, in 1838, the first accurate determination of the distance from the earth to a star.
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where ν is a constant. It is easy to show that x = 0 is a regular singular point of equation (1).
We have

p0 = lim
x→0

x
Q( x)
P( x)

= lim
x→0

x
1
x

= 1,

q0 = lim
x→0

x2 R( x)
P( x)

= lim
x→0

x2 x2 − ν 2

x2 = −ν 2.

Thus the indicial equation is
F(r ) = r (r − 1) + p0r + q0 = r (r − 1) + r − ν 2 = r2 − ν 2 = 0,

with the roots r = ±ν . We will consider the three cases ν = 0, ν = 1
2

, and ν = 1 for the

interval x > 0. Bessel functions will reappear in Sections 11.4 and 11.5.

Bessel Equation of Order Zero. In this case ν = 0, so differential equation (1) reduces to

L[y] = x2 y′′ + xy′ + x2 y = 0, (2)

and the roots of the indicial equation are equal: r1 = r2 = 0. Substituting

y = φ (r, x) = a0xr +
∞∑

n=1

an xr+n (3)

in equation (2), we obtain

L[φ ](r, x) =
∞∑

n=0

an( (r + n) (r + n − 1) + (r + n) ) xr+n +
∞∑

n=0

an xr+n+2

= a0(r (r − 1) + r ) xr + a1( (r + 1)r + (r + 1) ) xr+1

+
∞∑

n=2

(
an( (r + n) (r + n − 1) + (r + n) ) + an−2

)
xr+n = 0. (4)

As we have already noted, the roots of the indicial equation F(r ) = r (r − 1) + r = 0 are
r1 = 0 and r2 = 0. The recurrence relation is

an(r ) = − an−2(r )
(r + n) (r + n − 1) + (r + n)

= − an−2(r )
(r + n) 2 , n ≥ 2. (5)

To determine y1( x) , we set r equal to 0. Then, from equation (4), it follows that for the
coefficient of xr+1 to be zero we must choose a1 = 0. Hence, from equation (5), a3 = a5 =
a7 = · · · = 0. Further,

an(0) = −an−2(0)
n2 , n = 2, 4, 6, 8, . . . ,

or, letting n = 2m, we obtain

a2m(0) = −a2m−2(0)
(2m) 2 , m = 1, 2, 3, . . . .

Thus

a2(0) = −a0

22 , a4(0) = a0

2422 , a6(0) = − a0

26(3 · 2) 2 ,

and, in general,

a2m(0) = (−1) ma0

22m(m!) 2 , m = 1, 2, 3, . . . . (6)

Hence

y1( x) = a0

⎛

⎝1 +
∞∑

m=1

(−1) m x2m

22m(m!) 2

⎞

⎠, x > 0. (7)
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The function in brackets is known as the Bessel function of the first kind of order zero and
is denoted by J0( x) . It follows from Theorem 5.6.1 that the series converges for all x and that
J0 is analytic at x = 0. Some of the important properties of J0 are discussed in the problems.
Figure 5.7.1 shows the graphs of y = J0( x) and some of the partial sums of the series (7).

1

–1

2

4 6 8 10

y

x

n = 4

n = 2 n = 6 n = 10 n = 14 n = 18

n = 8 n = 12 n = 16 n = 20

y = J0(x)

2

FIGURE 5.7.1 Polynomial approximations to J0( x) , the Bessel
function of the first kind of order zero. The value of n is the degree
of the approximating polynomial.

To determine y2( x) we will use equation (17) in Section 5.6. This requires that we
calculate15 a′

n(0) . First we note from the coefficient of xr+1 in differential equation (4) that
(r + 1) 2a1(r ) = 0. Thus a1(r ) = 0 for all r near r = 0. So not only does a1(0) = 0 but also
a′

1(0) = 0. From the recurrence relation (5) it follows that

a′
3(0) = a′

5(0) = · · · = a′
2n+1(0) = · · · = 0;

hence we need only compute a′
2m(0) , m = 1, 2, 3, . . . . From equation (5) we have

a2m(r ) = − a2m−2(r )
(r + 2m) 2 m = 1, 2, 3, . . . .

By solving this recurrence relation, we obtain

a2(r ) = − a0

(r + 2) 2 , a4(r ) = a0

(r + 2) 2(r + 4) 2 ,

and, in general,

a2m(r ) = (−1) ma0

(r + 2) 2 · · · (r + 2m) 2 , m ≥ 3. (8)

The computation of a′
2m(r ) can be carried out most conveniently by noting that if

f ( x) = ( x − α 1)β1 ( x − α 2)β2 ( x − α 3)β3 · · · ( x − α n)βn ,

and if x is not equal to α 1, α 2, . . . , α n , then
f ′( x)
f ( x)

= β1

x − α 1
+ β2

x − α 2
+ · · · + βn

x − α n
.

Applying this result to a2m(r ) from equation (8), we find that
a′

2m(r )
a2m(r )

= −2
(

1
r + 2

+ 1
r + 4

+ · · · + 1
r + 2m

)
,

and setting r equal to 0, we obtain

a′
2m(0) = −2

(
1
2

+ 1
4

+ · · · + 1
2m

)
a2m(0) .

.........................................................................................................................................................................
15Problem 9 outlines an alternative procedure, in which we simply substitute the form (23) of Section 5.6 in
equation (2) and then determine the bn .
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Substituting for a2m(0) from equation (6), and letting

Hm = 1 + 1
2

+ 1
3

+ · · · + 1
m

, (9)

we obtain, finally,

a′
2m(0) = −Hm

(−1) ma0

22m(m!) 2 , m = 1, 2, 3, . . . .

The second solution of the Bessel equation of order zero is found by setting a0 = 1 and
substituting for y1( x) and a′

2m(0) = b2m(0) in equation (23) of Section 5.6. We obtain

y2( x) = J0( x) ln x +
∞∑

m=1

(−1) m+1 Hm

22m(m!) 2 x2m , x > 0. (10)

Instead of y2, the second solution is usually taken to be a certain linear combination of J0
and y2. It is known as the Bessel function of the second kind of order zero and is denoted
by Y0. Following Copson (Chapter 12), we define16

Y0( x) = 2
π

[y2( x) + (γ − ln 2) J0( x) ]. (11)

Here γ is a constant known as the Euler--Máscheroni17 constant; it is defined by the equation

γ = lim
n→∞

( Hn − ln n) ∼= 0.5772. (12)

Substituting for y2( x) in equation (11), we obtain

Y0( x) = 2
π

⎡

⎣
(
γ + ln

x
2

)
J0( x) +

∞∑

m=1

(−1) m+1 Hm

22m(m!) 2 x2m

⎤

⎦, x > 0. (13)

The general solution of the Bessel equation of order zero for x > 0 is

y = c1 J0( x) + c2Y0( x) .

Note that J0( x) → 1 as x → 0 and that Y0( x) has a logarithmic singularity at x = 0;
that is, Y0( x) behaves as (2/π ) ln x when x → 0 through positive values. Thus, if we are
interested in solutions of Bessel’s equation of order zero that are finite at the origin, which
is often the case, we must discard Y0. The graphs of the functions J0 and Y0 are shown in
Figure 5.7.2.

–0.5

2 4 6 8 10 12 14

0.5

1

y

x

y = Y0(x)

y = J0(x)

FIGURE 5.7.2 The Bessel functions of order zero:
y = J0( x) (blue) and y = Y0( x) (red).

.........................................................................................................................................................................
16Other authors use other definitions for Y0. The present choice for Y0 is also known as the Weber function, after
Heinrich Weber (1842--1913), who taught at several German universities.
17The Euler--Máscheroni constant first appeared in 1734 in a paper by Euler. Lorenzo Máscheroni (1750--1800) was
an Italian priest and professor at the University of Pavia. He correctly calculated the first 19 decimal places of γ in
1790.
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It is interesting to note from Figure 5.7.2 that for x large, both J0( x) and Y0( x) are
oscillatory. Such a behavior might be anticipated from the original equation; indeed it is
true for the solutions of the Bessel equation of order ν . If we divide equation (1) by x2, we
obtain

y′′ + 1
x

y′ +
(

1 − ν 2

x2

)

y = 0.

For x very large, it is reasonable to conjecture that the terms (1/x) y′ and (ν 2/x2) y are
small and hence can be neglected. If this is true, then the Bessel equation of order ν can
be approximated by

y′′ + y = 0.

The solutions of this equation are sin x and cos x ; thus we might anticipate that the solutions
of Bessel’s equation for large x are similar to linear combinations of sin x and cos x . This is
correct insofar as the Bessel functions are oscillatory; however, it is only partly correct. For
x large the functions J0 and Y0 also decay as x increases; thus the equation y′′ + y = 0 does
not provide an adequate approximation to the Bessel equation for large x , and a more delicate
analysis is required. In fact, it is possible to show that

J0( x) ∼=
(

2
π x

)1/2

cos
(

x − π

4

)
as x → ∞ (14)

and that

Y0( x) ∼=
(

2
π x

)1/2

sin
(

x − π

4

)
as x → ∞. (15)

These asymptotic approximations, as x → ∞, are actually very good. For example,
Figure 5.7.3 shows that the asymptotic approximation (14) to J0( x) is reasonably accurate
for all x ≥ 1. Thus to approximate J0( x) over the entire range from zero to infinity, you can
use two or three terms of the series (7) for x ≤ 1 and the asymptotic approximation (14) for
x ≥ 1.

y = J0(x)

y

x

2

–1

1

Asymptotic approximation: y = (2/  x)1/2 cos(x –   /4)π π

FIGURE 5.7.3 Asymptotic approximation to J0( x) .

Bessel Equation of Order One-Half. This case illustrates the situation in which the roots of
the indicial equation differ by a positive integer but there is no logarithmic term in the second
solution. Setting ν = 1

2 in equation (1) gives

L[y] = x2 y′′ + xy′ +
(

x2 − 1
4

)
y = 0. (16)
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When we substitute the series (3) for y = φ (r, x) , we obtain

L[φ ](r, x) =
∞∑

n=0

(
(r + n) (r + n − 1) + (r + n) − 1

4

)
an xr+n +

∞∑

n=0

an xr+n+2

=
(

r2 − 1
4

)
a0xr +

(
(r + 1) 2 − 1

4

)
a1xr+1

+
∞∑

n=2

((
(r + n) 2 − 1

4

)
an + an−2

)
xr+n = 0. (17)

The roots of the indicial equation r2 − 1
4

= 0 are r1 = 1
2

and r2 = −1
2

; hence the roots differ

by an integer. The recurrence relation is
(

(r + n) 2 − 1
4

)
an = −an−2, n ≥ 2. (18)

Corresponding to the larger root r1 = 1
2

, we find, from the coefficient of xr+1 in equation (17),

that a1 = 0. Hence, from equation (18), a3 = a5 = · · · = a2n+1 = · · · = 0. Further, for r = 1
2

,

an = − an−2

n(n + 1)
, n = 2, 4, 6 . . . ,

or, letting n = 2m, we obtain

a2m = − a2m−2

2m(2m + 1)
, m = 1, 2, 3, . . . .

By solving this recurrence relation, we find that

a2 = −a0

3!
, a4 = a0

5!
, . . .

and, in general,

a2m = (−1) ma0

(2m + 1) !
, m = 1, 2, 3, . . . .

Hence, taking a0 = 1, we obtain

y1( x) = x1/2

⎛

⎝1 +
∞∑

m=1

(−1) m x2m

(2m + 1) !

⎞

⎠ = x−1/2
∞∑

m=0

(−1) m x2m+1

(2m + 1) !
, x > 0. (19)

The second power series in equation (19) is precisely the Taylor series for sin x ; hence one
solution of the Bessel equation of order one-half is x−1/2 sin x . The Bessel function of the
first kind of order one-half, J1/2, is defined as (2/π ) 1/2 y1. Thus

J1/2( x) =
(

2
π x

)1/2

sin x , x > 0. (20)

Corresponding to the root r2 = −1
2

, it is possible that we may have difficulty in computing

a1 since N = r1 − r2 = 1. However, from equation (17) for r = −1
2

, the coefficients of xr

and xr+1 are both zero regardless of the choice of a0 and a1. Hence a0 and a1 can be chosen
arbitrarily. From the recurrence relation (18), we obtain a set of even-numbered coefficients
corresponding to a0 and a set of odd-numbered coefficients corresponding to a1. Thus no
logarithmic term is needed to obtain a second solution in this case. It is left as an exercise to

show that, for r = −1
2

,

a2n = (−1) na0

(2n) !
, a2n+1 = (−1) na1

(2n + 1) !
, n = 1, 2, . . . .
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Hence

y2( x) = x−1/2

⎛

⎝a0

∞∑

n=0

(−1) n x2n

(2n) !
+ a1

∞∑

n=0

(−1) n x2n+1

(2n + 1) !

⎞

⎠

= a0
cos x
x1/2 + a1

sin x
x1/2 , x > 0. (21)

The constant a1 simply introduces a multiple of y1( x) . The second solution of the Bessel
equation of order one-half is usually taken to be the solution for which a0 = (2/π ) 1/2 and
a1 = 0. It is denoted by J−1/2. Then

J−1/2( x) =
(

2
π x

)1/2

cos x , x > 0. (22)

The general solution of equation (16) is y = c1 J1/2( x) + c2 J−1/2( x) .
By comparing equations (20) and (22) with equations (14) and (15), we see that, except

for a phase shift of π/4, the functions J−1/2 and J1/2 resemble J0 and Y0, respectively, for
large x . The graphs of J1/2 and J−1/2 are shown in Figure 5.7.4.
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y = J–1/2(x)

y = J1/2(x)
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FIGURE 5.7.4 The Bessel functions of order one-half:
y = J1/2( x) (blue) and y = J−1/2( x) ( red) .

Bessel Equation of Order One. This case illustrates the situation in which the roots of the
indicial equation differ by a positive integer and the second solution involves a logarithmic
term. Setting ν = 1 in equation (1) gives

L[y] = x2 y′′ + xy′ + ( x2 − 1) y = 0. (23)

If we substitute the series (3) for y = φ (r, x) and collect terms as in the preceding cases, we
obtain

L[φ ](r, x) = a0(r2 − 1) xr + a1

(
(r + 1) 2 − 1

)
xr+1

+
∞∑

n=2

((
(r + n) 2 − 1

)
an + an−2

)
xr+n = 0. (24)

The roots of the indicial equation r2 − 1 = 0 are r1 = 1 and r2 = −1. The recurrence relation
is

(
(r + n) 2 − 1

)
an(r ) = −an−2(r ) , n ≥ 2. (25)

Corresponding to the larger root r = 1, the recurrence relation becomes

an = − an−2

(n + 2)n
, n = 2, 3, 4, . . . .

We also find, from the coefficient of xr+1 in equation (24), that a1 = 0; hence, from the
recurrence relation, a3 = a5 = · · · = 0. For even values of n, we can write n = 2m, where m
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is a positive integer; then

a2m = − a2m−2

(2m + 2) (2m)
= − a2m−2

22(m + 1)m
, m = 1, 2, 3, . . . .

By solving this recurrence relation, we obtain

a2m = (−1) ma0

22m(m + 1) !m!
, m = 1, 2, 3, . . . . (26)

The Bessel function of the first kind of order one, denoted by J1, is obtained by choosing
a0 = 1/2. Hence

J1( x) = x
2

∞∑

m=0

(−1) m x2m

22m(m + 1) !m!
. (27)

The series converges absolutely for all x , so the function J1 is analytic everywhere.
In determining a second solution of Bessel’s equation of order one, we illustrate the

method of direct substitution. The calculation of the general term in equation (28) below
is rather complicated, but the first few coefficients can be found fairly easily. According to
Theorem 5.6.1, we assume that

y2( x) = a J1( x) ln x + x−1

⎛

⎝1 +
∞∑

n=1

cn xn

⎞

⎠, x > 0. (28)

Computing y′
2( x) and y′′

2 ( x) , substituting in equation (23), and making use of the fact that J1
is a solution of equation (23), we obtain

2ax J ′
1( x) +

∞∑

n=0

( (n − 1) (n − 2)cn + (n − 1)cn − cn) xn−1 +
∞∑

n=0

cn xn+1 = 0, (29)

where c0 = 1. Substituting for J1( x) from equation (27), shifting the indices of summation in
the two series, and carrying out several steps of algebra, we arrive at

−c1 + (0 · c2 + c0
)
x +

∞∑

n=2

(
(n2 − 1)cn+1 + cn−1

)
xn

= −a

⎛

⎝x +
∞∑

m=1

(−1) m(2m + 1) x2m+1

22m(m + 1) ! m!

⎞

⎠. (30)

From equation (30) we observe first that c1 = 0, and a = −c0 = −1. Further, since there are
only odd powers of x on the right, the coefficient of each even power of x on the left must be
zero. Thus, since c1 = 0, we have c3 = c5 = · · · = 0. Corresponding to the odd powers of x ,
writing n = 2m + 1 on the left-hand side of equation (30), we obtain the following recurrence
relation:

(
(2m + 1) 2 − 1

)
c2m+2 + c2m = (−1) m(2m + 1)

22m(m + 1) ! m!
, m = 1, 2, 3, . . . . (31)

When we set m = 1 in equation (31), we obtain

(32 − 1)c4 + c2 = (−1)3
22 · 2!

.

Notice that c2 can be selected arbitrarily, and then this equation determines c4. Also notice
that in the equation for the coefficient of x , c2 appeared multiplied by 0, and that equation was
used to determine a. That c2 is arbitrary is not surprising, since c2 is the coefficient of x in the

expression x−1

(

1 +
∞∑

n=1
cn xn

)

. Consequently, c2 simply generates a multiple of J1, and y2

is determined only up to an additive multiple of J1. In accordance with the usual practice, we
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choose c2 = 1/22. Then we obtain

c4 = −1
24 · 2

(
3
2

+ 1
)

= −1
242!

((
1 + 1

2

)
+ 1
)

= (−1)
24 · 2!

( H2 + H1) .

It is possible to show that the solution of the recurrence relation (31) is

c2m = (−1) m+1( Hm + Hm−1)
22mm!(m − 1) !

, m = 1, 2, . . .

with the understanding that H0 = 0. Thus

y2( x) = −J1( x) ln x + 1
x

⎛

⎝1 −
∞∑

m=1

(−1) m( Hm + Hm−1)
22mm!(m − 1) !

x2m

⎞

⎠, x > 0. (32)

The calculation of y2( x) using the alternative procedure (see equations (19) and (20)
of Section 5.6) in which we determine the cn(r2) is slightly easier. In particular, the latter
procedure yields the general formula for c2m without the necessity of solving a recurrence
relation of the form (31) (see Problem 10). In this regard, you may also wish to compare
the calculations of the second solution of Bessel’s equation of order zero in the text and in
Problem 9.

The second solution of equation (23), the Bessel function of the second kind of order one,
Y1, is usually taken to be a certain linear combination of J1 and y2. Following Copson (Chapter
12), Y1 is defined as

Y1( x) = 2
π

(−y2( x) + (γ − ln 2) J1( x)
)
, (33)

where γ is defined in equation (12). The general solution of equation (23) for x > 0 is

y = c1 J1( x) + c2Y1( x) .

Notice that although J1 is analytic at x = 0, the second solution Y1 becomes unbounded in the
same manner as 1/x as x → 0. The graphs of J1 and Y1 are shown in Figure 5.7.5.
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FIGURE 5.7.5 The Bessel functions of order one:
y = J1( x) (blue) and y = Y1( x) (red).
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Problems
In each of Problems 1 through 3, show that the given differential
equation has a regular singular point at x = 0, and determine two
solutions for x > 0.
1. x2 y′′ + 2xy′ + xy = 0
2. x2 y′′ + 3xy′ + (1 + x) y = 0
3. x2 y′′ + xy′ + 2xy = 0
4. Find two solutions (not multiples of each other) of the Bessel

equation of order
3
2

x2 y′′ + xy′ +
(

x2 − 9
4

)
y = 0, x > 0.

5. Show that the Bessel equation of order one-half

x2 y′′ + xy′ +
(

x2 − 1
4

)
y = 0, x > 0

can be reduced to the equation

v ′′ + v = 0

by the change of dependent variable y = x−1/2v( x) . From this,
conclude that y1( x) = x−1/2 cos x and y2( x) = x−1/2 sin x are
solutions of the Bessel equation of order one-half.
6. Show directly that the series for J0( x) , equation (7), converges

absolutely for all x .
7. Show directly that the series for J1( x) , equation (27), converges

absolutely for all x and that J ′
0( x) = −J1( x) .

8. Consider the Bessel equation of order ν

x2 y′′ + xy′ + ( x2 − ν 2) y = 0, x > 0,

where ν is real and positive.
a. Show that x = 0 is a regular singular point and that the roots
of the indicial equation are ν and −ν .
b. Corresponding to the larger root ν , show that one solution is

y1( x) = xν

(

1 − 1
1!(1 + ν )

(
x
2

)2

+ 1
2!(1 + ν ) (2 + ν )

(
x
2

)4

+
∞∑

m=3

(−1) m

m!(1 + ν ) · · · (m + ν )

(
x
2

)2m
⎞

⎠.

c. If 2ν is not an integer, show that a second solution is

y2( x) = x−ν

(

1 − 1
1!(1 − ν )

(
x
2

)2

+ 1
2!(1 − ν ) (2 − ν )

(
x
2

)4

+
∞∑

m=3

(−1) m

m!(1 − ν ) · · · (m − ν )

(
x
2

)2m
⎞

⎠.

Note that y1( x) → 0 as x → 0, and that y2( x) is unbounded as
x → 0.
d. Verify by direct methods that the power series in the
expressions for y1( x) and y2( x) converge absolutely for all x .
Also verify that y2 is a solution, provided only that ν is not an
integer.

9. In this section we showed that one solution of Bessel’s equation
of order zero

L[y] = x2 y′′ + xy′ + x2 y = 0
is J0, where J0( x) is given by equation (7) with a0 = 1. According to
Theorem 5.6.1, a second solution has the form ( x > 0)

y2( x) = J0( x) ln x +
∞∑

n=1

bn xn .

a. Show that

L[y2]( x) =
∞∑

n=2

n(n − 1)bn xn +
∞∑

n=1

nbn xn

+
∞∑

n=1

bn xn+2 + 2x J ′
0( x) . (34)

b. Substituting the series representation for J0( x) in equation
(34), show that

b1x + 22b2x2 +
∞∑

n=3

(n2bn + bn−2) xn

= −2
∞∑

n=1

(−1) n2nx2n

22n(n!) 2 . (35)

c. Note that only even powers of x appear on the right-hand
side of equation (35). Show that b1 = b3 = b5 = · · · = 0,

b2 = 1
22(1!) 2 , and that

(2n) 2b2n + b2n−2 = −2
(−1) n(2n)

22n(n!) 2 , n = 2, 3, 4, . . . .

Deduce that

b4 = − 1
22 42

(
1 + 1

2

)
and b6 = 1

22 42 62

(
1 + 1

2
+ 1

3

)
.

The general solution of the recurrence relation is

b2n = (−1) n+1 Hn

22n(n!) 2 . Substituting for bn in the expression for

y2( x) , we obtain the solution given in equation (10).
10. Find a second solution of Bessel’s equation of order one by
computing the cn(r2) and a of equation (24) of Section 5.6 according
to the formulas (19) and (20) of that section. Some guidelines along
the way of this calculation are the following. First, use equation (24)
of this section to show that a1(−1) and a′

1(−1) are 0. Then show that
c1(−1) = 0 and, from the recurrence relation, that cn(−1) = 0 for
n = 3, 5, . . . . Finally, use equation (25) to show that

a2(r ) = − a0

(r + 1) (r + 3)
,

a4(r ) = a0

(r + 1) (r + 3) (r + 3) (r + 5)
,

and that

a2m(r ) = (−1) ma0

(r + 1) · · · (r + 2m − 1) (r + 3) · · · (r + 2m + 1)
, m ≥ 3.

Then show that

c2m(−1) = (−1) m+1
(

Hm + Hm−1
)

22mm!(m − 1) !
, m ≥ 1.
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11. By a suitable change of variables it is sometimes possible to
transform another differential equation into a Bessel equation. For
example, show that a solution of

x2 y′′ +
(
α 2β 2x2β + 1

4
− ν 2β 2

)
y = 0, x > 0

is given by y = x1/2 f
(
α xβ

)
, where f (ξ ) is a solution of the Bessel

equation of order ν .
12. Using the result of Problem 11, show that the general solution
of the Airy equation

y′′ − xy = 0, x > 0

is y = x1/2
(

c1 f1

(
2
3

i x3/2
)

+ c2 f2

(
2
3

i x3/2
))

, where f1(ξ ) and

f2(ξ ) are a fundamental set of solutions of the Bessel equation of order
one-third.
13. It can be shown that J0 has infinitely many zeros for x > 0.
In particular, the first three zeros are approximately 2.405, 5.520, and

8.653 (see Figure 5.7.1). Let λ j , j = 1, 2, 3, . . . , denote the zeros of
J0; it follows that

J0(λ j x) =
{

1, x = 0,
0, x = 1.

Verify that y = J0(λ j x) satisfies the differential equation

y′′ + 1
x

y′ + λ
2
j y = 0, x > 0.

Hence show that
∫ 1

0
x J0(λ i x) J0(λ j x)dx = 0 if λ i �= λ j .

This important property of J0(λ i x) , which is known as the
orthogonality property, is useful in solving boundary value
problems.
Hint: Write the differential equation for J0(λ i x) . Multiply it by
x J0(λ j x) and subtract that result from x J0(λ i x) times the differential
equation for J0(λ j x) . Then integrate from 0 to 1.
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