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CHAPTER 3

Second-Order Linear
Differential Equations

Linear differential equations of second order are of crucial importance in the study of
differential equations for two main reasons. The first is that linear equations have a rich
theoretical structure that underlies a number of systematic methods of solution. Further,
a substantial portion of this structure and of these methods is understandable at a fairly
elementary mathematical level. In order to present the key ideas in the simplest possible
context, we describe them in this chapter for second-order equations. The second reason
to study second-order linear differential equations is that they are vital to any serious
investigation of the classical areas of mathematical physics. One cannot go very far in
the development of fluid mechanics, heat conduction, wave motion, or electromagnetic
phenomena without finding it necessary to solve second-order linear differential equations.
We illustrate this at the end of this chapter with a discussion of the oscillations of some basic
mechanical and electrical systems.

3.1 Homogeneous Differential Equations
with Constant Coefficients

Many second-order ordinary differential equations have the form

dy dy
5 = t7 s . | 1
12 f( y dt) M

where f is some given function. Usually, we will denote the independent variable by ¢ since
time is often the independent variable in physical problems, but sometimes we will use x
instead. We will use y, or occasionally some other letter, to designate the dependent variable.
Equation (1) is said to be linear if the function f has the form

t dy)— 0 - p 2 — g 2
f<,y,5 =g p(t)— =40y, ()

that is, if f is linear in y and dy/dt. In equation (2) g, p, and g are specified functions of the
independent variable ¢ but do not depend on y. In this case we usually rewrite equation (1) as

V' p()y +q(t)y =g(1), 3

where the primes denote differentiation with respect to ¢. Instead of equation (3), we sometimes
see the equation

P(1)y" + Q(1)y + R(1)y = G(1). “

Of course, if P(t) # 0, we can divide equation (4) by P(¢) and thereby obtain equation (3)
with

0(1) _ R()

p(t) = m, q(t) = P(1)

0]

g(t) = PO

(&)
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104 CHAPTER 3 Second-Order Linear Differential Equations

In discussing equation (3) and in trying to solve it, we will restrict ourselves to intervals in
which p, ¢, and g are continuous functions.'

If equation (1) is not of the form (3) or (4), then it is called nonlinear. Analytical
investigations of nonlinear equations are relatively difficult, so we will have little to say about
them in this book. Numerical or geometical approaches are often more appropriate, and these
are discussed in Chapters 8§ and 9.

An initial value problem consists of a differential equation such as equations (1), (3), or
(4) together with a pair of initial conditions

y(t) = yo.  Y'(to) =y, (©6)

where y, and y; are given numbers prescribing values for y and y’ at the initial point #,.
Observe that the initial conditions for a second-order differential equation identify not only a
particular point (%, yo) through which the graph of the solution must pass, but also the slope
¥, of the graph at that point. It is reasonable to expect that two initial conditions are needed for
a second-order differential equation because, roughly speaking, two integrations are required
to find a solution and each integration introduces an arbitrary constant. Presumably, two initial
conditions will suffice to determine values for these two constants.

A second-order linear differential equation is said to be homogeneous if the term g(¢) in
equation (3), or the term G(¢) in equation (4), is zero for all 7. Otherwise, the equation is called
nonhomogeneous. Alternatively, the nonhomogeneous term g(#), or G(t), is sometimes
called the forcing function because in many applications it describes an externally applied
force. We begin our discussion with homogeneous equations, which we will write in the form

P(1)y"+ Q(1)y' + R(1)y =0. O

Later, in Sections 3.5 and 3.6, we will show that once the homogeneous equation has been
solved, it is always possible to solve the corresponding nonhomogeneous equation (4), or
at least to express the solution in terms of an integral. Thus the problem of solving the
homogeneous equation is the more fundamental one.

In this chapter we will concentrate our attention on equations in which the functions P,
0, and R are constants. In this case, equation (7) becomes

ay" +by +cy =0, )

where a, b, and c are given constants. It turns out that equation (8) can always be solved easily
in terms of the elementary functions of calculus. On the other hand, it is usually much more
difficult to solve equation (7) if the coefficients are not constants, and a treatment of that case
is deferred until Chapter 5. Before taking up equation (8), let us first gain some experience by
looking at a simple example that in many ways is typical.

EXAMPLE 1

Solve the equation

y'—y=0. Q)
Also find the solution that satisfies the initial conditions
y(0) =2, y'(0)=-1 (10)
Solution:
Observe that equation (9) is just equation (8) witha = 1, b = 0, and ¢ = —1. In words,

equation (9) says that we seek a function with the property that the second derivative of the function
is the same as the function itself. Do any of the functions that you studied in calculus have this
property? A little thought will probably produce at least one such function, namely, y;(7) = e', the
exponential function. A little more thought may also produce a second function, y,(7) = e~. Some
further experimentation reveals that constant multiples of these two solutions are also solutions.

IThere is a corresponding treatment of higher-order linear equations in Chapter 4. If you wish, you may read the
appropriate parts of Chapter 4 in parallel with Chapter 3.
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Y For example, the functions 2¢ and 5¢~" also satisfy equation (9), as you can verify by calculating
their second derivatives. In the same way, the functions ¢;y(#) = cje’ and ¢, y2(1) = cre”" satisfy
the differential equation (9) for all values of the constants ¢ and c;.

Next, it is vital to notice that the sum of any two solutions of equation (9) is also a solution.
In particular, since ¢;y;(#) and ¢, y,(t) are solutions of equation (9) for any values of ¢; and ¢, so
is the function

y =c1yi(0) + caya(1) = e’ + e (1)

Again, this can be verified by calculating the second derivative y” from equation (11). We have
Y =cie' —cre" and y’ = c1e' + cpe”; thus y” is the same as y, and equation (9) is satisfied.

Let us summarize what we have done so far in this example. Once we notice that the
functions y;(7r) = e’ and y,(r) = e~ are solutions of equation (9), it follows that the general
linear combination (11) of these functions is also a solution. Since the coefficients ¢; and ¢, in
equation (11) are arbitrary, this expression represents an infinite two-parameter family of solutions
of the differential equation (9).

We now turn to the task of picking out a particular member of this infinite family of solutions
that also satisfies the given pair of initial conditions (10). In other words, we seek the solution that
passes through the point (0, 2) and at that point has the slope —1. First, to ensure the solution passes
through the point (0, 2), we set = 0 and y = 2 in equation (11); this gives the equation

ci+c=2. (12)
Next, we differentiate equation (11) with the result that
Yy =cie' —cre". (13)
Then, to enforce the condition that the slope at (0, 2) is —1, we set = 0 and y’ = —1 in equation
(13); this yields the equation
cp—c=—1. (14)
By solving equations (12) and (14) simultaneously for ¢ and ¢,, we find that
1 3
=5 =3 15)
Finally, inserting these values in equation (11), we obtain
y= %e’ + %e”, (16)

the solution of the initial value problem consisting of the differential equation (9) and the initial
conditions (10).

What conclusions can we draw from the preceding example that will help us to deal with

the more general equation (8),
ay” +by +cy =0,

whose coefficients a, b, and ¢ are arbitrary (real) constants? In the first place, in the example
the solutions were exponential functions. Further, once we had identified two solutions, we
were able to use a linear combination of them to satisfy the given initial conditions as well as
the differential equation itself.

It turns out that by exploiting these two ideas, we can solve equation (8) for any values of
its coefficients and also satisfy any given set of initial conditions for y and y’.

We start by seeking exponential solutions of the form y = ¢, where r is a parameter to be
determined. Then it follows that y' = re’* and y” = r?e’’. By substituting these expressions
for y, y’, and y” in equation (8), we obtain

(ar> +br +c)e" =0.
Since e’" = 0, this condition is satisfied only when the other factor is zero:
ar* +br+c¢=0. 17

Equation (17) is called the characteristic equation for the differential equation (8). Its
significance lies in the fact that if r is a root of the polynomial equation (17), then y = ¢’
is a solution of the differential equation (8). Since equation (17) is a quadratic equation with
real coefficients, it has two roots, which may be real and different, complex conjugates, or real
but repeated. We consider the first case here and the latter two cases in Sections 3.3 and 3.4,
respectively.

105
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Assuming that the roots of the characteristic equation (17) are real and different, let them
be denoted by r and r,, where r| # r,. Then y (1) = €"" and y,(t) = €™ are two solutions
of equation (8). Just as in Example 1, it now follows that

y=cyi(t) + caya(t) = i€ + cpe™ (18)

is also a solution of equation (8). To verify that this is so, we can differentiate the expression
in equation (18); hence

Yy =cirie" + corye™ (19)
and
" 2 it 2 ot
Yo =cirje +crye. (20)

Substituting these expressions for y, y’, and y” in equation (8) and rearranging terms, we obtain
ay’ +by +cy=c (arl2 + bry + c) e+, (arz2 + bry + c) e, [e2))

The fact that r is a root of equation (17) means that arl2 + bri + ¢ = 0. Since r, is also a root

of the characteristic equation (17), it follows that ar22 + br, + ¢ = 0 as well. This completes
the verification that y as given by equation (18) is indeed a solution of equation (8).

Now suppose that we want to find the particular member of the family of solutions (18)
that satisfies the initial conditions (6)

y(to) = yo.  ¥'(to) = ;.
By substituting t =ty and y = y in equation (18), we obtain
1€ 4 cre"? = . (22)
Similarly, setting ¢ = #, and y" = y, in equation (19) gives
cir1e' 4 ey’ = . (23)
On solving equations (22) and (23) simultaneously for ¢; and c,, we find that

!
Yo — YoT2
— e ) =

rn—nr ry—rnr;

/
B Yo't — Yy
¢ = flto, e o

(24)
Since the roots of the characteristic equation (17) are assumed to be different, r; —r, # 0 so that
the expressions in equation (24) always make sense. Thus, no matter what initial conditions
are assigned —that is, regardless of the values of #y, yy, and y;, in equations (6)—it is always
possible to determine c¢; and ¢, so that the initial conditions are satisfied. Moreover, there is
only one possible choice of ¢; and ¢, for each set of initial conditions. With the values of c;
and ¢, given by equation (24), the expression (18) is the solution of the initial value problem

ay" +by +cy =0, y(to) =y, Y'(to) = (25

It is possible to show, on the basis of the fundamental theorem cited in the next section,
that all solutions of equation (8) are included in the expression (18), at least for the case in
which the roots of equation (17) are real and different. Therefore, we call equation (18) the
general solution of equation (8). The fact that any possible initial conditions can be satisfied
by the proper choice of the constants in equation (18) makes more plausible the idea that this
expression does include all solutions of equation (8).

Let us now look at some further examples.

EXAMPLE 2

Find the general solution of

Y+ 5y +6y=0. (26)




3.1 Homogeneous Differential Equations with Constant Coefficients 107

Solution:

We assume that y = ¢’?, and it then follows that » must be a root of the characteristic equation
1P+ 5r+6=(r+2)(r+3)=0.
Thus the possible values of r are r; = —2 and r, = —3; the general solution of equation (26) is

y=cre 2 + e, 27

EXAMPLE 3

Find the solution of the initial value problem

Y 45y +6y=0, y0) =2, y'(0)=3. (28)

Solution:

The general solution of the differential equation was found in Example 2 and is given by
equation (27). To satisfy the first initial condition, we set t = 0 and y = 2 in equation (27); thus ¢
and ¢, must satisfy

¢yt = 2. (29)

To use the second initial condition, we must first differentiate equation (27). This gives

y' = —2c1e7? — 3cye™. Then, setting t = 0 and y’ = 3, we obtain
—2¢; — 3¢y = 3. (30)
By solving equations (29) and (30), we find that ¢; = 9 and ¢, = —7. Using these values in the
expression (27), we obtain the solution
y=9¢ 2 —7e¥ (€19)

of the initial value problem (28). The graph of the solution is shown in Figure 3.1.1.

y

t
Solution of the initial value problem (28):
Y +5y" +6y=0, y(0) =2, y'(0) =3.
EXAMPLE 4
Find the solution of the initial value problem
1
4y" -8y +3y =0, y(0) =2, y(0) = 3 (32)

Solution:

If y = ¢'’, then we obtain the characteristic equation

4r* —8r+3=0
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\ 4

3 1
whose roots are r = 2 andr = 7 Therefore, the general solution of the differential equation is

y =cle3’/2+cze’/2. (33)

Applying the initial conditions, we obtain the following two equations for ¢; and c;:

fe =2 3 n 1
Cq Cy) = 4, 2C1 202— 5"
. Lo 1 5 . -

The solution of these equations is ¢; = — 7 = 7’ so the solution of the initial value problem (32)

is
1 5
— __ 3t/2 - 1/27 34
y J¢ Tt ge (34)

Figure 3.1.2 shows the graph of the solution.

y

__ 1 32, 5 2
y= 26 + 26

Solution of the initial value problem (32):
4y" —8y" +3y =0, y(0) =2, y'(0) =1/2.

EXAMPLE 5

The solution (31) of the initial value problem (28) initially increases (because its initial slope
is positive), but eventually approaches zero (because both terms involve negative exponential
functions). Therefore, the solution must have a maximum point, and the graph in Figure 3.1.1
confirms this. Determine the location of this maximum point.

Solution:

The coordinates of the maximum point can be estimated from the graph, but to find them more
precisely, we seek the point where the solution has a horizontal tangent line. By differentiating the
solution (31), y = 9¢~% — 7e~3, with respect to 7, we obtain

y = —18¢7% 217, (35)

Setting y" equal to zero and multiplying by e, we find that the critical value 1, satisfies e = 7/6;
hence

tm =1In(7/6) = 0.15415. (36)
The corresponding maximum value y,, is given by

_ —2tm __ —3tm __ E ~
Ym = 9e Te = = 2.20408. 37

In this example the initial slope is 3, but the solution of the given differential equation behaves
in a similar way for any other positive initial slope. In Problem 19 you are asked to determine how
the coordinates of the maximum point depend on the initial slope.
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Returning to the equation ay” + by’ + ¢y = 0 with arbitrary coefficients, recall
that when r; # r,, its general solution (18) is the sum of two exponential functions.
Therefore, the solution has a relatively simple geometrical behavior: as ¢ increases, the
magnitude of the solution either tends to zero (when both exponents are negative) or else
exhibits unbounded growth (when at least one exponent is positive). These two cases
are illustrated by the solutions of Examples 3 and 4, which are shown in Figures 3.1.1
and 3.1.2, respectively. Note that whether a growing solution approaches +0o or —oo as
t — oo is determined by the sign of the coefficient of the exponential for the larger root
of the characteristic equation. (See Problem 21.) There is also a third case that occurs
less often: the solution approaches a constant when one exponent is zero and the other is
negative.

In Sections 3.3 and 3.4, respectively, we return to the problem of solving the equation
ay” +by"+cy = 0 when the roots of the characteristic equation either are complex conjugates
or are real and equal. In the meantime, in Section 3.2, we provide a systematic discussion
of the mathematical structure of the solutions of all second-order linear homogeneous

109

equations.

Problems

In each of Problems 1 through 6, find the general solution of the given
differential equation.

y//+2y/_3y=O

2. y'+3y+2y=0
3. 6y —y —y=0
4. Yy +5y'=0

5. 4y" -9y =0

6. y' =2y —2y=0

In each of Problems 7 through 12, find the solution of the given
initial value problem. Sketch the graph of the solution and describe
its behavior as ¢ increases.

Q 7. y+y-2y=0 y0) =1, y(0) =1
O 8 Yy +4y+4+3y=0, y0) =2, y(0)=-1
@ 9. y+3y =0, y0)=-2, y(0)=3

O 10. 2y"+y —4y=0, y0) =0, y(0) =1
O 11. y+8y/—9y=0, y(I)=1, y(1)=0
O 12. 47—y=0, y(-2=1, y(-2)=-1

13. Find a differential equation whose general solution is
y =c1e¥ + e

@ 14. Find the solution of the initial value problem
5 3

" :O’ 0:—’ /O = ——,
yo-y y(0) 7 7 ()] 2

Plot the solution for 0 < ¢ < 2 and determine its minimum value.

15. Find the solution of the initial value problem
/) !’ 1
2y" =3y +y=0, y(0) =2, y/(O)zi,

Then determine the maximum value of the solution and also find the
point where the solution is zero.

16. Solve the initial value problem y” — y' — 2y = 0, y(0) = «,
y'(0) = 2. Then find o so that the solution approaches zero as
t — o0.

In each of Problems 17 and 18, determine the values of «, if any, for
which all solutions tend to zero as t — o0; also determine the values
of «, if any, for which all (nonzero) solutions become unbounded as
t — oQ.

17. v —Qa -1y +a(a—-1)y=0

18. Y +(B—-a)y —2(a—1)y=0

19. Consider the initial value problem (see Example 5)
Y45y +6y =0 y(0) =2 )(0) =4,

where 5 > 0.
a. Solve the initial value problem.
b. Determine the coordinates #,, and y,, of the maximum point
of the solution as functions of (3.
¢. Determine the smallest value of  for which y,, > 4.
d. Determine the behavior of 1,, and y,, as 8 — oc.

20. Consider the equation ay” + by’ + ¢y = d, where a, b, ¢, and d
are constants.
a. Find all equilibrium, or constant, solutions of this differential
equation.
b. Let y, denote an equilibrium solution, and let ¥ = y — y,.
Thus Y is the deviation of a solution y from an equilibrium
solution. Find the differential equation satisfied by Y.

21. Consider the equation ay” + by’ + cy = 0, where a, b, and ¢
are constants with @ > 0. Find conditions on a, b, and ¢ such that the
roots of the characteristic equation are:

a. real, different, and negative.

b. real with opposite signs.

c. real, different, and positive.
In each case, determine the behavior of the solution as t — oo.
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32 Solutions of Linear Homogeneous
Equations; the Wronskian

In the preceding section we showed how to solve some differential equations of the form
ay" +by +cy =0,

where a, b, and ¢ are constants. Now we build on those results to provide a clearer picture of
the structure of the solutions of all second-order linear homogeneous equations. In turn, this
understanding will assist us in finding the solutions of other problems that we will encounter
later.

To discuss general properties of linear differential equations, it is helpful to introduce
a differential operator notation. Let p and g be continuous functions on an open interval
I —that is, for & < t < 3. The cases for & = —o0, or § = 00, or both, are included. Then,
for any function ¢ that is twice differentiable on 7, we define the differential operator L by
the equation

Llgl=¢"+ po' +qo. (1)

It is important to understand that the result of applying the operator L to a function ¢ is another
function, which we refer to as L[¢]. The value of L[¢] at a point 7 is

L{¢1(1) = ¢"(1) + p()$'(1) +q(1)d (1).
For example, if p(1) =%, q(t) = 1+1¢,and ¢ (t) = sin3t, then
L[¢1(1) = (sin3¢)” 4+ t*(sin3¢)" + (1 + ) sin 3¢
= —9sin 3t + 3% cos 3t + (1 + 1) sin 3t.

The operator L is often written as L = D? + pD + g, where D is the derivative operator, that
is, D[¢p] = ¢'.

In this section we study the second-order linear homogeneous differential equation
L[¢](t) = 0. Since it is customary to use the symbol y to denote ¢ (t), we will usually
write this equation in the form

Liyl=y"+p()y +q)y =0. (©)
With equation (2) we associate a set of initial conditions
¥(t0) = Yo, ¥'(to) = ¥y, €)

where £y is any point in the interval 7, and y, and y; are given real numbers. We would like
to know whether the initial value problem (2), (3) always has a solution, and whether it may
have more than one solution. We would also like to know whether anything can be said about
the form and structure of solutions that might be helpful in finding solutions of particular
problems. Answers to these questions are contained in the theorems in this section.

The fundamental theoretical result for initial value problems for second-order linear
equations is stated in Theorem 3.2.1, which is analogous to Theorem 2.4.1 for first-order linear
equations. The result applies equally well to nonhomogeneous equations, so the theorem is
stated in that form.

Theorem3.2.1 | (Existence and Uniqueness Theorem)

Consider the initial value problem
Y+ p)y +q()y =g(1), y(t) =yo, ¥'(t0) =y “4)

where p, g, and g are continuous on an open interval / that contains the point #y. This problem has
exactly one solution y = ¢ (¢), and the solution exists throughout the interval /.
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We emphasize that the theorem says three things:

1. The initial value problem has a solution; in other words, a solution exists.
2. The initial value problem has only one solution; that is, the solution is unique.

3. The solution ¢ is defined throughout the interval I where the coefficients are continuous
and is at least twice differentiable there.

For some problems some of these assertions are easy to prove. For instance, we found in
Example 1 of Section 3.1 that the initial value problem

Y'=y=0, y(0) =2 y(0)=-I ©)
has the solution
y = le’ + Ee_t. 6)
2 2

The fact that we found a solution certainly establishes that a solution exists for this initial value
problem. Further, the solution (6) is twice differentiable, indeed differentiable any number of
times, throughout the interval (—oo, 0o) where the coefficients in the differential equation are
continuous. On the other hand, it is not obvious, and is more difficult to show, that the initial
value problem (5) has no solutions other than the one given by equation (6). Nevertheless,
Theorem 3.2.1 states that this solution is indeed the only solution of the initial value
problem (5).

For most problems of the form (4), it is not possible to write down a useful expression for
the solution. This is a major difference between first-order and second-order linear differential
equations. Therefore, all parts of the theorem must be proved by general methods that do not
involve having such an expression. The proof of Theorem 3.2.1 is fairly difficult, and we do not
discuss it here.?2 We will, however, accept Theorem 3.2.1 as true and make use of it whenever
necessary.

EXAMPLE 1

Find the longest interval in which the solution of the initial value problem
(1 =30y"+1y' = (1 +3)y=0, y(1) =2, y()=1

is certain to exist.

Solution:

If the given differential equation is written in the form of equation (4), then

1 t+3
t) = ——, t) =——, and t) =0.
p(1) p— q(1) =3 g(1)
The only points of discontinuity of the coefficients are r = 0 and ¢ = 3. Therefore, the longest open
interval, containing the initial point # = 1, in which all the coefficients are continuousis 0 < ¢ < 3.

Thus this is the longest interval in which Theorem 3.2.1 guarantees that the solution exists.

EXAMPLE 2

Find the unique solution of the initial value problem
Y+ p()y +q()y =0, y(to) =0, y'(ty) =0,

where p and g are continuous in an open interval / containing #;.

Solution:

The function y = ¢(#) = O for all 7 in / certainly satisfies the differential equation and initial
conditions. By the uniqueness part of Theorem 3.2.1, it is the only solution of the given problem.

2 A proof of Theorem 3.2.1 can be found, for example, in Chapter 6, Section 8 of the book by Coddington listed in
the references at the end of this chapter.
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Let us now assume that y; and y, are two solutions of equation (2); in other words,
Liyil=y{ + py; + gy =0,

and similarly for y,. Then, just as in the examples in Section 3.1, we can generate more
solutions by forming linear combinations of y; and y,. We state this result as a theorem.

Theorem 3.2.2 | (Principle of Superposition)

If y; and y, are two solutions of the differential equation (2),
Liyl=y"+p(1)y +q(t)y =0,

then the linear combination ¢ y; + ¢,y is also a solution for any values of the constants ¢; and c;.

A special case of Theorem 3.2.2 occurs if either ¢ or ¢, is zero. Then we conclude that
any constant multiple of a solution of equation (2) is also a solution.
To prove Theorem 3.2.2, we need only substitute

y = c1yi(1) + cay2(1) @)

for y in equation (2). By calculating the indicated derivatives and rearranging terms, we
obtain

Llciyi + eyl = [e1y1 + cay2l” + pleiyr + eyl + qleryr + eyl
= c1y] +cayy +eipyy +capys +cigy + gy
= c1ly{ + pyi + gyl + alyy + py;y + gyl
= ciLIy1]+ 2 L[y2].

Since L[y;] = 0and L[y,] = 0, it follows that L[c;y; + ¢c2y,] = 0 also. Therefore, regardless
of the values of ¢ and c;, the function y as given by equation (7) satisfies the differential
equation (2), and the proof of Theorem 3.2.2 is complete.

Theorem 3.2.2 states that, beginning with only two solutions of equation (2), we can
construct an infinite family of solutions by means of equation (7). The next question is whether
all solutions of equation (2) are included in equation (7) or whether there may be other solutions
of a different form. We begin to address this question by examining whether the constants c;
and ¢, in equation (7) can be chosen so as to satisfy the initial conditions (3). These initial
conditions require ¢; and c; to satisfy the equations

c1y1(to) + c2y2(to) = Yo,

/ , / )]
1Y (1) + 2y, (1) = Y-
The determinant of coefficients of the system (8) is
yi(to)  ya(to)
= , = y1(10) 5 (t0) — y1(t0) y2(to)- ©)
Yit)  y(g)| — TR SRR

If W = 0, then equations (8) have a unique solution (cy, ¢;) regardless of the values of
o and y,. This solution is given by

Yoy5(to) — ygy2(to) —Yoy;(t0) + yoyi(to) 10
= B C = 5
yi(to) y5(to) — y;(to) y2(to) yi(to) y5(to) — y;(to) y2(to)
or, in terms of determinants,
Yo ¥y2(fo) yi(to) Yo
¥y Yy(to) yi(to) ¥,
o=t = T (11

yi(to)  ya2(to)
yi(to)  yy(t)

1(to)  y2(t0)
yi(to)  y3(to)

With these values for ¢; and c,, the linear combination y = c¢1y(t) + cy,(t) satisfies the
initial conditions (3) as well as the differential equation (2). Note that the denominator in the
expressions for ¢; and ¢; is the nonzero determinant W'.
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On the other hand, if W = 0, then the denominators appearing in equations (10) and (11)
are zero. In this case equations (8) have no solution unless y, and y, have values that also
make the numerators in equations (10) and (11) equal to zero. Thus, if W = 0, there are many
initial conditions that cannot be satisfied no matter how ¢; and ¢, are chosen.

The determinant W is called the Wronskian® determinant, or simply the Wronskian,
of the solutions y; and y,. Sometimes we use the more extended notation W[y, y>](%y) to
stand for the expression on the right-hand side of equation (9), thereby emphasizing that the
Wronskian depends on the functions y; and y,, and that it is evaluated at the point #y. The
preceding argument establishes the following result.

Theorem 3.2.3

Suppose that y; and y, are two solutions of equation (2)
Liyl=y"+p®)y +q()y =0,
and that the initial conditions (3)
y(to) =yo. ¥ (t0) =,
are assigned. Then it is always possible to choose the constants ¢y, ¢, so that
y =ciy(t) + caya()
satisfies the differential equation (2) and the initial conditions (3) if and only if the Wronskian

Wiy, 21 = y195 — ¥i»2

is not zero at ;.

EXAMPLE 3

—3t

In Example 2 of Section 3.1 we found that y,(7) = e~ and y,(f) = e~ are solutions of the

differential equation
" ’
y'+5y'+6y=0.
Find the Wronskian of y; and y,.

Solution:
The Wronskian of these two functions is

Y Yy
o — e e
W[e 2 e 3’] =‘

—5t
—De~ 373 '

=—e

Since W is nonzero for all values of ¢, the functions y,; and y, can be used to construct solutions of
the given differential equation, together with initial conditions prescribed at any value of 7. One such
initial value problem was solved in Example 3 of Section 3.1.

The next theorem justifies the term “general solution” that we introduced in Section 3.1
for the linear combination ¢y, + ¢, y,.

3Wronskian determinants are named for Jésef Maria Hoéné-Wronski (1776-1853), who was born in Poland but spent
most of his life in France. Wronski was a gifted but troubled man, and his life was marked by frequent heated disputes
with other individuals and institutions.
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Theorem 3.2.4

Suppose that y; and y, are two solutions of the second-order linear differential equation (2),
Lyl =y"+p()y' +q(t)y =0.
Then the two-parameter family of solutions
y=cyi(t) + caya(1)

with arbitrary coefficients ¢; and ¢, includes every solution of equation (2) if and only if there is a
point 7y where the Wronskian of y; and y, is not zero.

Let the function ¢ be any solution of equation (2). To prove the theorem, we must
determine whether ¢ is included in the linear combinations c¢;y; + ¢,y,. That is, we must
determine whether there are values of the constants ¢; and ¢, that make the linear combination
the same as ¢. Let £, be a point where the Wronskian of y; and y, is nonzero. Then evaluate
¢ and ¢ at this point and call these values y, and y,, respectively; that is,

Yo =& (1), yy,=¢'(1).
Next, consider the initial value problem
Y4+ p(0)y +q()y =0, y(1) =y, ¥(t0) =Y. (12)

The function ¢ is certainly a solution of this initial value problem. Further, because we are
assuming that W[y, y,1(#y) is nonzero, it is possible (by Theorem 3.2.3) to choose ¢; and
cp such that y = ¢1y;(f) + cy,(¢) is also a solution of the initial value problem (9). In
fact, the proper values of c¢; and ¢, are given by equations (10) or (11). The uniqueness part
of Theorem 3.2.1 guarantees that these two solutions of the same initial value problem are
actually the same function; thus, for the proper choice of ¢; and c,,

@ (1) =c1yi(t) +cya(t), (13)

and therefore ¢ is included in the family of functions c¢;y; + c,y;. Finally, since ¢ is an
arbitrary solution of equation (2), it follows that every solution of this equation is included in
this family.

Now suppose that there is no point f#;, where the Wronskian is nonzero. Thus
Wly1, y21(t9) = O for every point #,. Then (by Theorem 3.2.3) there are values of y, and y;,
such that no values of ¢; and ¢, satisfy the system (8). Select a pair of such values for y, and
y(’) and choose the solution ¢ () of equation (2) that satisfies the initial condition (3). Observe
that this initial value problem is guaranteed to have a solution by Theorem 3.2.1. However, this
solution is not included in the family y = ¢;y; 4 ¢, y,. Thus, in cases where W[y, y,1(#) =0
for every t, the linear combinations of y; and y, do not include all solutions of equation (2).
This completes the proof of Theorem 3.2.4.

Theorem 3.2.4 states that the Wronskian of y; and y; is not everywhere zero if and only if
the linear combination c; y; + ¢, y, contains all solutions of equation (2). It is therefore natural
(and we have already done this in the preceding section) to call the expression

y =c1yi(t) + caya(1)

with arbitrary constant coefficients the general solution of equation (2). The solutions
y; and y, are said to form a fundamental set of solutions of equation (2) if and only if their
Wronskian is nonzero.

We can restate the result of Theorem 3.2.4 in slightly different language: to find the
general solution, and therefore all solutions, of an equation of the form (2), we need only
find two solutions of the given equation whose Wronskian is nonzero. We did precisely this
in several examples in Section 3.1, although there we did not calculate the Wronskians. You
should now go back and do that, thereby verifying that all the solutions we called “general
solutions” in Section 3.1 do satisfy the necessary Wronskian condition.

Now that you have a little experience verifying the nonzero Wronskian condition for the
examples from Section 3.1, the following example handles all second-order linear differential
equations whose characteristic polynomial has two distinct real roots.
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EXAMPLE 4

Suppose that y,(t) = 1" and V(1) = ¢"?" are two solutions of an equation of the form (2). Show
that if | # r,, then y; and y, form a fundamental set of solutions of equation (2).

Solution:

We calculate the Wronskian of y; and y,:

rit rat
el e?

W= = (ry —ry) expl(ry +r2)1].

rit Fat
rel re?

Since the exponential function is never zero, and since we are assuming that r, — r; # 0, it follows
that W is nonzero for every value of 7. Consequently, y; and y, form a fundamental set of solutions
of equation (2).

EXAMPLE 5

Show that y,(¢) = 112 and y,(#) = t~! form a fundamental set of solutions of
262y +3ty' —y =0, 1>0. (14)

Solution:

We will show how to solve equation (14) later (see Problem 25 in Section 3.3). However, at this
stage we can verify by direct substitution that y; and y, are solutions of the differential equation

1 1
(14). Since yj (1) = 51*1/2 and y{(1) = _ZF3/2’ we have

22 -3/2 3 -1/2 1/2_ 1 1/2_0.
! < 4t ! 2t ! 2 2 !

Similarly, y)(1) = —t~% and y)(1) =27, s0
22(u3) +3t(—17?) =1 =4 -3 -Dr ' =0.
Next we calculate the Wronskian W of y; and y,:
£1/2 1
W =1 =3 (15)
5171/2 _2 D) :

Since W # 0 for t > 0, we conclude that y; and y, form a fundamental set of solutions there. Thus
the general solution of differential equation (14) is y(¢) = ¢;¢"/2 + c,r ! for ¢ > 0.

In several cases we have been able to find a fundamental set of solutions, and therefore the
general solution, of a given differential equation. However, this is often a difficult task, and the
question arises as to whether a differential equation of the form (2) always has a fundamental
set of solutions. The following theorem provides an affirmative answer to this question.

Theorem 3.2.5

Consider the differential equation (2),
LIyl =y"+p()y' +q(1)y =0,

whose coefficients p and ¢ are continuous on some open interval /. Choose some point 7, in /. Let
y1 be the solution of equation (2) that also satisfies the initial conditions

y(tg) =1, y'(1) =0,
and let y, be the solution of equation (2) that satisfies the initial conditions
y(to) =0, y'(r) = 1.

Then y; and y, form a fundamental set of solutions of equation (2).
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First observe that the existence of the functions y; and y, is ensured by the existence
part of Theorem 3.2.1. To show that they form a fundamental set of solutions, we need only
calculate their Wronskian at #,:

yi(to)  y2(to)
yi(to)  y5(t)

W(yi, y2)(to) =

'10

o,

Since their Wronskian is not zero at the point 7y, the functions y, and y, do form a fundamental
set of solutions, thus completing the proof of Theorem 3.2.5.

Note that the potentially difficult part of this proof, demonstrating the existence of a pair
of solutions, is taken care of by reference to Theorem 3.2.1. Note also that Theorem 3.2.5 does
not address the question of how to find the solutions y; and y, by solving the specified initial
value problems. Nevertheless, it may be reassuring to know that a fundamental set of solutions
always exists.

EXAMPLE 6

Find the fundamental set of solutions y; and y, specified by Theorem 3.2.5 for the differential
equation

y'=y=0, (16)
using the initial point 7y = 0.

Solution:

In Section 3.1 we noted that two solutions of equation (16) are y () = €' and y,(¢) = e~'. The
Wronskian of these solutions is W[y, y,1(#) = —2 # 0, so they form a fundamental set of solutions.
However, they are not the fundamental solutions indicated by Theorem 3.2.5 because they do not
satisfy the initial conditions mentioned in that theorem at the point # = 0.

To find the fundamental solutions specified by the theorem, we need to find the solutions
satisfying the proper initial conditions. Let us denote by y3(¢) the solution of equation (16) that
satisfies the initial conditions

y(0) =1, y'(0) =0. (17)
The general solution of equation (16) is
y=cie + e, (18)

and the initial conditions (17) are satisfied if ¢; = 1/2 and ¢, = 1/2. Thus
(t)—1’+1*’— ht
y3(1) = 5e' + 5e™ = coshr.

Similarly, if y,(¢) satisfies the initial conditions
y(0) =0, y'(0) =1, (19)
then

1

(1) Ly 1- inh¢
= —e — —e = Sin .
Ya B B

Since the Wronskian of y; and y, is
Wlys, yal(t) = cosh® — sinh® 1 = 1,

these functions also form a fundamental set of solutions, as stated by Theorem 3.2.5. Therefore, the
general solution of equation (16) can be written as

y = ky cosht + k, sinh ¢, (20)

as well as in the form (18). We have used k; and k, for the arbitrary constants in equation (20) because
they are not the same as the constants ¢; and ¢, in equation (18). One purpose of this example is to
make it clear that a given differential equation has more than one fundamental set of solutions; indeed,
it has infinitely many (see Problem 16). As a rule, you should choose the set that is most convenient.




3.2 Solutions of Linear Homogeneous Equations; the Wronskian

In the next section we will encounter equations that have complex-valued solutions. The
following theorem is fundamental in dealing with such equations and their solutions.

Theorem 3.2.6

Consider again the second-order linear differential equation (2),
Lyl =y"+p®)y +4q()y =0,

where p and ¢ are continuous real-valued functions. If y = u(#) +iv(¢) is a complex-valued solution
of differential equation (2), then its real part # and its imaginary part v are also solutions of this
equation.

To prove this theorem, we substitute u(¢) + iv(z) for y in L[y], obtaining
LIyl(t) = u"(t) +iv"(1) + p(1) (' (1) +iv'(1)) + q(0) (u(t) +iv(1)). 2D

Then, by separating equation (21) into its real and imaginary parts—and this is where we need
to know that p(7) and g(t) are real-valued—we find that

LIyl(1) = (u"(1) + p()u'(1) + g(D)u(r)) +i(v"(1) + p(t)v'(t) + q(1)v(1))
= L{u](¢) +iL[v](1).

Recall that a complex number is zero if and only if its real and imaginary parts are both
zero. We know that L[y] = 0 because y is a solution of equation (2). Therefore, both L[u] = 0
and L[v] = 0; consequently, the two real-valued functions u# and v are also solutions of
equation (2), so the theorem is established. We will see examples of the use of Theorem 3.2.6
in Section 3.3.

Incidentally, the complex conjugate y of a solution y is also a solution. While this can
be proved by an argument similar to the one just used to prove Theorem 3.2.6, it is also a
consequence of Theorem 3.2.2 since y = u(t) —iv(¢) is alinear combination of two solutions.

Now let us examine further the properties of the Wronskian of two solutions of a second-
order linear homogeneous differential equation. The following theorem, perhaps surprisingly,
gives a simple explicit formula for the Wronskian of any two solutions of any such equation,
even if the solutions themselves are not known.

Theorem 3.2.7 | (Abel’s Theorem)*

If y; and y, are solutions of the second-order linear differential equation
Lyl =y"+p()y' +q()y =0, (22)

where p and ¢ are continuous on an open interval /, then the Wronskian W[yy, y,](?) is given by

Wilyi, y21(t) = cexp (—/p(t) dt), (23)

where c is a certain constant that depends on y; and y,, but not on ¢. Further, W[y, y,](#) either is
zero for all ¢ in 1 (if ¢ = 0) or else is never zero in [ (if ¢ # 0).

To prove Abel’s theorem, we start by noting that y; and y, satisfy
¥+ pyr+4q(0)y =0,

" / (24)
vy + p(t)y, +q(t)y, = 0.

If we multiply the first equation by —y,, multiply the second by y;, and add the resulting
equations, we obtain

(y1yYy = y{y2) + p(D)(n1ys — yiy2) = 0. (25)

4The result in Theorem 3.2.7 was derived by the Norwegian mathematician Niels Henrik Abel (1802-1829) in 1827
and is known as Abel’s formula. Abel also showed that there is no general formula for solving a quintic, or fifth
degree, polynomial equation in terms of explicit algebraic operations on the coefficients, thereby resolving a question
that had remained unanswered since the sixteenth century. His greatest contributions, however, were in analysis,
particularly in the study of elliptic functions. Unfortunately, his work was not widely noticed until after his death. The
distinguished French mathematician Legendre called it a “monument more lasting than bronze.”
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Next, we let W(¢) = W[y, y2](t) and observe that

W= y1y) =y (26)
Then we can write equation (25) in the form

W + p(t) W = 0. 7

Equation (27) can be solved immediately since it is both a first-order linear differential
equation (Section 2.1) and a separable differential equation (Section 2.2). Thus

W(t) = cexp (— / p(1) dt), (28)
where ¢ is a constant.

The value of ¢ depends on which pair of solutions of equation (22) is involved. However,
since the exponential function is never zero, W(t) is not zero unless ¢ = 0, in which case
W(t) is zero for all z. This completes the proof of Theorem 3.2.7.

Note that the Wronskians of any two fundamental sets of solutions of the same differential
equation can differ only by a multiplicative constant, and that the Wronskian of any
fundamental set of solutions can be determined, up to a multiplicative constant, without solving
the differential equation. Further, since under the conditions of Theorem 3.2.7 the Wronskian
W is either always zero or never zero, you can determine which case actually occurs by
evaluating W at any single convenient value of ¢.

EXAMPLE 7

In Example 5 we verified that y(7) = /2 and y,(t) = ¢! are solutions of the equation
262y 43ty —y =0, > 0. (29)
Verify that the Wronskian of y; and y, is given by Abel’s formula (23).

Solution:

3
From the example just cited we know that W[y, y,](#) = — 51*3/2. To use equation (23), we must

write the differential equation (29) in the standard form with the coefficient of y” equal to 1. Thus
we obtain
" + 3 !’ o — 0
Yy Tt T

3
so p(t) = —. Hence

2t
Wiyt y21(t) = c exp 3 dt | =cexp Int
12 ¢ 2t ¢ 2

=ct732 (30)
Equation (30) gives the Wronskian of any pair of solutions of equation (29). For the particular

solutions given in this example, we must choose ¢ = — 7

Summary. We can summarize the discussion in this section as follows: to find the general
solution of the differential equation

V' +p)y +q(0)y=0, a<t<p,

we must first find two functions y; and y, that satisfy the differential equationin « < ¢ < [3.
Then we must make sure that there is a point in the interval where the Wronskian W of y; and
v, is nonzero. Under these circumstances y; and y, form a fundamental set of solutions, and
the general solution is

y =cyi(t) +cy(t),

where ¢ and ¢, are arbitrary constants. If initial conditions are prescribed at a given point in
a < t < f3,then ¢y and ¢, can be chosen so as to satisfy these conditions.



Problems

In each of Problems 1 through 5, find the Wronskian of the given pair
of functions.

1. % , e—3t/2
2. cost, sint

—2t —2t
3. e, te

4. e'sint, e'cost
5. cos?0, 1 + cos(20)

In each of Problems 6 through 9, determine the longest interval in
which the given initial value problem is certain to have a unique twice-
differentiable solution. Do not attempt to find the solution.

6. 1y +3y=1, y()=1, y(1)=2

y(3) =0, y(3) =-1

8. y/ +(cost)y +3(Injthy =0, y(2) =3, y(2)=1

9. (x=2)y"+y +(x—2)(tanx)y =0, y(3) =1, y(3) =2

10.  Verify that y;(z) = t* and y,(¢) = t~! are two solutions
of the differential equation t>y” — 2y = 0 for ¢+ > 0. Then show
that y = ¢,12 + ¢t~ ! is also a solution of this equation for any c,
and ¢,.

7. t(t—4)y" +3ty +4y =2,

11. Verify that y,(t) = 1 and y,(+) = /% are solutions of the
differential equation yy” + (y")?> = 0 for t > 0. Then show that
y = ¢; + co1'/% is not, in general, a solution of this equation. Explain
why this result does not contradict Theorem 3.2.2.

12. Show that if y = ¢ (¢) is a solution of the differential equation
y' + p(t)y + q(t)y = g(t), where g(t) is not always zero, then
y = c¢(t), where ¢ is any constant other than 1, is not a solution.
Explain why this result does not contradict the remark following
Theorem 3.2.2.

13. Cany = sin(¢?) be a solution on an interval containing = 0 of
an equation y” + p(t)y’ + ¢g(t)y = 0 with continuous coefficients?
Explain your answer.

14. If the Wronskian W of f and g is 3¢*, and if f(1) = ¢, find
8(0).

15. If the Wronskian of f and g is rcost — sint, and if
u=f+3g,v=f—g, find the Wronskian of u and v.

16. Assume that y; and y, are a fundamental set of solutions
of y" + p()y' + q(t)y = 0 and let y3 = a;y; + azy, and
y4 = byy; + byy,, where ay, a,, by, and b, are any constants. Show
that

Wlys, yal = (a1by — axb) Wlyy, y2l.
Are y3 and y, also a fundamental set of solutions? Why or why not?

In each of Problems 17 and 18, find the fundamental set of solutions
specified by Theorem 3.2.5 for the given differential equation and
initial point.

17. y"+y —2y =0,
18. y'+4y +3y =0,
In each of Problems 19 through 21, verify that the functions y; and y,

are solutions of the given differential equation. Do they constitute a
fundamental set of solutions?

19. v +4y=0; y(t) =cos(2t), yy(t) = sin(2t)
20. Yy =2y +y=0; (1) =¢, yr) =te

21, X%y —x(x+2)yY +(x+2)y=0, x> 0;
yi(x) = x, yax) = xe*

th=0
tozl
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22. Consider the equation y” — y' — 2y = 0.
a. Show that y;(#) = e~ and y,(7) = ¢* form a fundamental
set of solutions.
b. Let y3(1) = —2¢%, yu(1) = yi(1) + 2y,(1), and
ys(1) = 2y1(1) — 2y3(1). Are y3(1), y4(1), and ys() also
solutions of the given differential equation?
c. Determine whether each of the following pairs forms a
fundamental set of solutions: {yl(t), v3(1) }; {yz(t), v3(1) };
{3340 }: {ra(0).ys5(0) }.

In each of Problems 23 through 25, find the Wronskian of two

solutions of the given differential equation without solving the
equation.

23. 2y —t(t+2)yY +(t+2)y=0
24. (cost)y” + (sint)y' —ty =0

25. (1—x%)y" —2xy +a(a +1)y =0, Legendre’s equation

26. Show that if p is differentiable and p(¢f) > 0, then the
Wronskian W (1) of two solutions of [p(£)y'] + g(t)y = 0 is
W(t) = ¢/ p(t), where c is a constant.

27. If the differential equation 7y” 42y’ +te'y = 0 has y; and y, as
a fundamental set of solutions and if W[y, y,](1) = 2, find the value
of Wlyr, »21(5).

28. 1f the Wronskian of any two solutions of y”+p(t) y'+q(t)y = 0
is constant, what does this imply about the coefficients p and ¢?

In Problems 29 and 30, assume that p and ¢ are continuous and
that the functions y; and y, are solutions of the differential equation
v+ p(t)y" + q(t)y = 0 on an open interval I.

29. Prove that if y; and y, are zero at the same point in /, then they
cannot be a fundamental set of solutions on that interval.

30. Prove that if y; and y, have a common point of inflection #y in
1, then they cannot be a fundamental set of solutions on / unless both
p and g are zero at t;.

31. Exact Equations. The equation
P(x)y"+ Q(x)y' + R(x)y =0
is said to be exact if it can be written in the form
(PO +(f(0)y) =0,

where f(x) is to be determined in terms of P(x), Q(x), and R(x).
The latter equation can be integrated once immediately, resulting
in a first-order linear equation for y that can be solved as in
Section 2.1. By equating the coefficients of the preceding equations
and then eliminating f(x), show that a necessary condition for
exactness is

P"(x) = Q'(x) + R(x) =0.

It can be shown that this is also a sufficient condition.

In each of Problems 32 through 34, use the result of Problem 31 to
determine whether the given equation is exact. If it is, then solve the
equation.

32. y'+xy+y=0
33. xy” —(cosx)y +(sinx)y=0, x >0
34, x?y"+xy—y=0, x>0
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35. The Adjoint Equation. If a second-order linear homogeneous
equation is not exact, it can be made exact by multiplying by an
appropriate integrating factor p(x). Thus we require that p(x) be
such that
p(xX) P(x)y" + p(x) Q(x)y + p(x) R(x)y =0
can be written in the form
(L) P)Y) + () =0.
By equating coefficients in these two equations and eliminating f(x),
show that the function p must satisfy
Pp"+ Q2P = Qp' +(P" = Q' + Ry =0.
This equation is known as the adjoint of the original equation and is
important in the advanced theory of differential equations. In general,

the problem of solving the adjoint differential equation is as difficult as
that of solving the original equation, so only occasionally is it possible
to find an integrating factor for a second-order equation.

In each of Problems 36 and 37, use the result of Problem 35 to find the
adjoint of the given differential equation.

36. x%y" +xy + (x> —v?)y =0, Bessel’s equation

37. y'—xy=0, Airy’sequation

38. A second-order linear equation P(x)y”+ Q(x)y' +R(x)y =0
is said to be self-adjoint if its adjoint is the same as the original
equation. Show that a necessary condition for this equation to be
self-adjoint is that P’(x) = Q(x). Determine whether each of the
equations in Problems 36 and 37 is self-adjoint.

33 Complex Roots of the Characteristic

Equation

We continue our discussion of the second-order linear differential equation

ay” + by +cy =0, )]

where a, b, and ¢ are given real numbers. In Section 3.1 we found that if we seek solutions of
the form y = ¢'’, then r must be a root of the characteristic equation

ar’> +br +c¢=0. 2)

We showed in Section 3.1 that if the roots r; and r, are real and different, which occurs
whenever the discriminant 5> — 4ac is positive, then the general solution of equation (1) is

y = Clerlt + Cze‘rzt. (3)

Suppose now that b> — 4ac is negative. Then the roots of equation (2) are conjugate
complex numbers; we denote them by

rn=A4ip, rp=X\A—iu, )

where A and o are real. The corresponding expressions for y are

yi(t) =exp((A +ip)t),

ya(t) = exp((A —ip)r). ©)

Our first task is to explore what is meant by these expressions, which involve evaluating the
exponential function for a complex exponent. For example, if A\ = —1, p = 2, and r = 3,
then from equation (5),

yi(3) = e (6)

What does it mean to raise the number e to a complex power? The answer is provided by an
important relation known as Euler’s formula.

Euler's Formula. To assign a meaning to the expressions in equations (5), we need to give
a definition of the complex exponential function. Of course, we want the definition to reduce
to the familiar real exponential function when the exponent is real. There are several ways
to discover how this extension of the exponential function should be defined. Here we use a
method based on infinite series; an alternative is outlined in Problem 20.
Recall from calculus that the Taylor series for e’ about r = 0 is
2 n o0 I

t
!

—00 < < Q. @)
n!

; s
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If we now assume that we can substitute iz for 7 in equation (7), then we have

o0 .
X in"
el = (1) ) 8)
n!
n=0
To simplify this series, we write (if)” = i"t" and make use of the facts that 2 = —1,
i = —i,i* = 1, and so forth. When 7 is even, there is an integer k with n = 2k; in this

case i" = i?* = (—1D)*. And when n is odd, n = 2k + 1, so i” = i**! = j(—=1)*. This
suggests separating the terms in the right-hand side of (8) into its real and imaginary parts.
The result is’

[o.¢] o0

_l)k 2k (—1)kl2k+1

Z (2k)! 2k + 1! ©

k=0 =0 ’
The first series in equation (9) is precisely the Taylor series for cos¢ about + = 0, and the
second is the Taylor series for sint about + = 0. Thus we have

e = cost +isint. (10)

Equation (10) is known as Euler’s formula and is an extremely important mathematical
relationship.

Although our derivation of equation (10) is based on the unverified assumption that the
series (7) can be used for complex as well as real values of the independent variable, our
intention is to use this derivation only to make equation (10) seem plausible. We now put
matters on a firm foundation by adopting equation (10) as the definition of ¢'*. In other words,
whenever we write e/, we mean the expression on the right-hand side of equation (10).

There are some variations of Euler’s formula that are also worth noting. If we replace ¢
by —t in equation (10) and recall that cos(—¢) = cost and sin(—t) = — sint, then we have

e " =cost —isint. (11

Further, if ¢ is replaced by w1 ¢ in equation (10), then we obtain a generalized version of Euler’s
formula, namely,
lut

= cos(pt) +isin(put). (12)
Next, we want to extend the definition of the exponential function to arbitrary complex
exponents of the form (A +i ) ¢. Since we want the usual properties of the exponential function
to hold for complex exponents, we certainly want exp((A +ip)?) to satisfy

e()\+[/1,)t _ e)\telpt (13)

Then, substituting for e'" from equation (12), we obtain
eI — A (cos(put) + i sin(pt))
= eMcos(ut) +ie sin(pt). (14)

We now take equation (14) as the definition of exp[( A + i )¢]. The value of the exponential
function with a complex exponent is a complex number whose real and imaginary parts are
given by the terms on the right-hand side of equation (14). Observe that the real and imaginary
parts of exp((\ + ip)t) are expressed entirely in terms of elementary real-valued functions.
For example, the quantity in equation (6) has the value

e = ¢ cos6 +ie 7 sin6 = 0.0478041 — 0.0139113i.

With the definitions (10) and (14), it is straightforward to show that the usual laws of
exponents are valid for the complex exponential function. You can also use equation (14) to
verify that the differentiation formula

d

E(e”) =re" (15)

holds for complex values of r.

SRecall from calculus that the reordering of terms in the right-hand side of equation (9) is allowed because the series
converges absolutely for all —oo < ¢ < oo.
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EXAMPLE 1

Find the general solution of the differential equation
y'+y +9.25y =0. (16)
Also find the solution that satisfies the initial conditions
y(0) =2, y'(0) =8, (17)
and draw its graph for 0 < ¢ < 10.

Solution:
The characteristic equation for equation (16) is
rP4+r+9.25=0
SO its roots are
1 1

r1:—5+3i, r2:—§—3i.

Therefore, two solutions of equation (16) are

1
(1) = exp(<—5 + 3i>z> = e~"/?(cos(3t) +isin(31)) (18)
and
(. i .
yo(t) = exp 5~ 3i |t ) =e (cos(3t) —isin(3t)). (19)
You can verify that the Wronskian W[y, y,](¢1) = —6ie™, which is not zero, so the general

solution of equation (15) can be expressed as a linear combination of y,(#) and y,(#) with arbitrary
coefficients.

However, the initial value problem (16), (17) has only real coefficients, and it is often desirable
to express the solution of such a problem in terms of real-valued functions. To do this we can make
use of Theorem 3.2.6, which states that the real and imaginary parts of a complex-valued solution
of equation (16) are also solutions of the same differential equation. Thus, starting from y;(z), we
obtain

u(t) = e ?cos(3t), v(t) = e "/?sin(3t) (20)

as real-valued solutions® of equation (16). On calculating the Wronskian of #(¢) and v(z), we find
that W{u, v](¢) = 3e™', which is not zero; thus u(¢) and v(¢) form a fundamental set of solutions,
and the general solution of equation (16) can be written as

y = cu(t) + (1) = e /* (¢ cos(31) + ¢y sin(31) ), @0

where ¢; and ¢, are arbitrary constants.
To satisfy the initial conditions (17), we first substitute # = 0 and y = 2 in the solution (20)
with the result that ¢; = 2. Then, by differentiating equation (21), setting ¢ = 0, and setting y’ = 8,

1
we obtain — EC' + 3¢, = 8 so that ¢c; = 3. Thus the solution of the initial value problem (16), (17) is

y = e /2(2cos(3t) + 3sin(3t)). (22)

The graph of this solution is shown in Figure 3.3.1.

From the graph we see that the solution of this problem oscillates, with period 27 /3 and a
decaying amplitude. The sine and cosine factors control the oscillatory nature of the solution, and
the negative exponential factor in each term causes the magnitude of the oscillations to decrease
toward zero as time increases.

°If you are not completely sure that (r) and v(r) are solutions of the given differential equation, you should
substitute these functions into equation (16) and confirm that they satisfy it. (See Problem 23.)
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Solution of the initial value problem (16), (17):
' +y +9.25y =0, y(0) =2, y'(0) =8.

Complex Roots; The General Case. The functions y(¢) and y,(t), given by equations (5)
and with the meaning expressed by equation (14), are solutions of equation (1) when the roots
of the characteristic equation (2) are complex numbers A & in. However, the solutions y;
and y, are complex-valued functions, whereas in general we would prefer to have real-valued
solutions because the differential equation itself has real coefficients. Just as in Example 1, we
can use Theorem 3.2.6 to find a fundamental set of real-valued solutions by choosing the real
and imaginary parts of either y,(#) or y,(¢). In this way we obtain the solutions

u(r) = eMcos(put), v(t) = e sin(ut). (23)
By direct computation (see Problem 19), you can show that the Wronskian of # and v is
W, vI(t) = pe*. 24)

Thus, as long as ;1 # 0, the Wronskian W is not zero, so u and v form a fundamental set of
solutions. (Of course, if ;1 = 0, then the roots are real and equal and the discussions in this
section, and in Section 3.1, are not applicable.) Consequently, if the roots of the characteristic
equation are complex numbers A £ iy, with p 5 0, then the general solution of equation (1)
is

y = creM cos(put) + cre’ sin(put), (25)

where ¢; and ¢, are arbitrary constants. Note that the solution (25) can be written down as
soon as the values of A and p are known. Let us now consider some further examples.

EXAMPLE 2

Find the solution of the initial value problem

16y” — 8y + 145y =0, y(0) = -2, y'(0) = 1. (26)
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Solution:
The characteristic equation is 167> — 87 4 145 = 0 and its roots are r = i = 3i. Thus the general
solution of the differential equation is
y(1) = cre'/* cos(3t) + cye'/* sin(31). 27
To apply the first initial condition, we set # = 0 in equation (27); this gives
y(0) =c¢; = -2.

For the second initial condition, we must differentiate equation (27) before substituting = 0. In this
way we find that

1
y'(0) = yid +3c =1,

1
from which we determine that ¢, = R Using these values of ¢; and ¢, in the general solution (27),

we obtain
1
y = —2¢'/* cos(3t) + Ee'/“ sin(31) (28)

as the solution of the initial value problem (26). The graph of this solution is shown in Figure 3.3.2.

In this case we observe that the solution is a growing oscillation. Again the trigonometric factors
in equation (28) determine the oscillatory part of the solution (again with period 27 /3), while the
exponential factor (with a positive exponent this time) causes the magnitude of the oscillation to
increase with time.

y
101~ y =-2e* cos (3t) + %e”“ sin (3¢)
5 -
/\ | | | |
S\ \4/ NG
_5 —
_]_O I

Solution of the initial value problem (26):
16y” — 8y’ 4+ 145y =0, y(0) = -2, y'(0) = 1.

EXAMPLE 3

Find the general solution of
y" 49y =0. (29)

Solution:

The characteristic equation is 7> +9 = 0 with the roots » = 43i; thus A = 0 and p = 3. The general
solution is

y = ¢y cos(3t) + ¢, sin(31). (30)
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phase shifts.

Solutions of equation (29): y” + 9y = 0, with two sets of
initial conditions: y(0) = 1, y'(0) = 2 (dashed, green) and y(0) =2, y’(0) =8
(solid, blue). Both solutions have the same period, but different amplitudes and

Note that if the real part of the roots is zero, as in this example, then there is no exponential factor
in the solution. Figure 3.3.3 shows the graph of two solutions of equation (28) with different initial
conditions. In each case the solution is a pure oscillation with period 27 /3 but whose amplitude
and phase shift are determined by the initial conditions. Since there is no exponential factor in the
solution (30), the amplitude of each oscillation remains constant in time.

Problems

In each of Problems 1 through 4, use Euler’s formula to write the given
expression in the form a + ib.

1. exp(2 —3i)

2. €7
3. Q2-(n/2)i
4, 2

In each of Problems 5 through 11, find the general solution of the given
differential equation.

5. y'=2y'+2y=0

y' =2y +6y=0

Y +2y'+2y=0

Y +6y +13y=0

y'+2y' +1.25y=0

10. 9y"+9y —4y=0

11. y"+4y 4625y =0

In each of Problems 12 through 15, find the solution of the given

initial value problem. Sketch the graph of the solution and describe
its behavior for increasing ¢.

O 12. y'+4y=0, y(0)=0, y(0)=1
O 13. y'—-2y/+5y=0, y(x/2)=0, y(x/2) =2

L ® A

14. y"+y=0, y(x/3) =2, y(n/3) =—4
15. y"+2y'+2y=0, y(n/4) =2, y(n/4) ==-2
16. Consider the initial value problem
3 —u' +2u =0, u(0) =2, u'(0)=0.
a. Find the solution u(#) of this problem.
b. Fort > 0, find the first time at which |u(7)| = 10.

17. Consider the initial value problem
Su” +2u' +7u=0, u(0)=2, u'(0)=1.
a. Find the solution u(#) of this problem.
b. Find the smallest 7 such that |u(z)| < 0.1forallt > T.

18. Consider the initial value problem
y' +2y' +6y=0, ¥(0) =2, y(0)=az>0.
Find the solution y(#) of this problem.

a.
b. Find « such that y = 0 when s = 1.
¢. Find, as a function of «, the smallest positive value of ¢ for

which y = 0.
d. Determine the limit of the expression found in part ¢ as
o — 00.
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19. Show that W [e)" cos(pt), eM sin(,ut)] = e,

20. In this problem we outline a different derivation of Euler’s
formula.
a. Show that y;(7) = cost and y,(¢) = sin¢ are a fundamental
set of solutions of y” 4y = 0; that is, show that they are solutions
and that their Wronskian is not zero.

b. Show (formally) that y = e’ is also a solution of y” +y = 0.
Therefore,

e’ =c cost 4 cysint 31)

for some constants ¢; and ¢,. Why is this so?

¢. Sett =0 in equation (31) to show that ¢; = 1.

d. Assuming that equation (15) is true, differentiate
equation (31) and then set # = 0 to conclude that ¢, = i. Use the
values of ¢ and ¢, in equation (31) to arrive at Euler’s formula.

21. Using Euler’s formula, show that

eit + e—it eit _ e—it
———— =cost, ——— =sint.
2 2i
22. If ¢ is given by equation (14), show that ¢1772" = ¢"1"¢"!

for any complex numbers | and r,.

23. Consider the differential equation
ay” +by +cy=0,

where b —4ac < 0 and the characteristic equation has complex roots
A &£ ip. Substitute the functions

u(t) =M cos(pr) and v(r) = e sin(ur)

for y in the differential equation and thereby confirm that they are
solutions.

24. 1If the functions y; and y, are a fundamental set of solutions of
y' 4+ p(t)y' + q(t)y = 0, show that between consecutive zeros of y,
there is one and only one zero of y,. Note that this result is illustrated
by the solutions y;(#) = cost and y,(¢#) = sint of the equation
y// + y — 0.

Hint: Suppose that #; and 7, are two zeros of y; between which
there are no zeros of y,. Apply Rolle’s theorem to y;/y, to reach a
contradiction.

Change of Variables. Sometimes a differential equation with variable
coefficients,

V' +p(0)y +q()y =0, (32)

can be put in a more suitable form for finding a solution by making
a change of the independent variable. We explore these ideas in
Problems 25 through 36. In particular, in Problem 25 we show that
a class of equations known as Euler equations can be transformed
into equations with constant coefficients by a simple change of the
independent variable. Problems 26 through 31 are examples of this
type of equation. Problem 32 determines conditions under which the
more general equation (32) can be transformed into a differential
equation with constant coefficients. Problems 33 through 36 give
specific applications of this procedure.

25. Euler Equations. An equation of the form

2 d?y

dy
P far— =0, t>0, 33
o2 ta dl+ﬁy (33)

where « and (3 are real constants, is called an Euler equation.
a. Let x = Int and calculate dy/dt and d*y/dt” in terms of
dy/dx and d*y/dx>.

b. Use the results of part a to transform equation (33) into
d*y
dx?
Observe that differential equation (34) has constant coefficients.
If y;(x) and y,(x) form a fundamental set of solutions of

equation (34), then y;(In¢) and y,(In¢) form a fundamental set
of solutions of equation (33).

d
+<a—1>d—i+ﬁy=0. (34)

In each of Problems 26 through 31, use the method of Problem 25 to
solve the given equation for r > 0.
26. t*y" 41ty +y=0
27. 2y 44ty +2y =0
28. 2y’ —4ry —6y =0
29. 2y —4ry +6y =0
30. 2y 43ty =3y =0
31. 2y 4+ 7ty +10y =0
32. In this problem we determine conditions on p and ¢ that
enable equation (32) to be transformed into an equation with constant
coefficients by a change of the independent variable. Let x = u(¢) be
the new independent variable, with the relation between x and 7 to be
specified later.

a. Show that

dy dx dy d?y (dx)zdzy

_ d*x dy
dr ~ dr dx°  dr? dt

dx? ' di? dx’

b. Show that the differential equation (32) becomes

dx 2d2y+ Cx BV sy =0 65)
ar ) ax2 T \ar TP )ax TP

¢. In order for equation (35) to have constant coefficients, the
coefficients of dy/dx?, dy/dx, and y must all be proportional.
If g(¢) > 0, then we can choose the constant of proportionality
to be 1; hence, after integrating with respect to 7,

x = u(t) =/(q(z))‘/2dr. (36)

d. With x chosen as in part c, show that the coefficient of dy/dx

in equation (35) is also a constant, provided that the expression
q'(1) +2p(1)q(1)

2(q(1))3/?

is a constant. Thus equation (32) can be transformed into

an equation with constant coefficients by a change of the

independent variable, provided that the function (¢’ +2pgq) / ¢>/?

is a constant.

e. How must the analysis and results in d be modified if

q(t) < 0?

In each of Problems 33 through 36, try to transform the given equation
into one with constant coefficients by the method of Problem 32. If this
is possible, find the general solution of the given equation.

33. Y41y + e_’zy =0,
34. Y 3ty +12y =0,
35. '+ (2 =1y +13y=0,
36. y' +1ty — e*’Zy =0

(37)

-0 <<
-0 << o0
0<t< o0
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34 Repeated Roots; Reduction of Order

In Sections 3.1 and 3.3 we showed how to solve the equation
ay’ +by +cy=0 (1
when the roots of the characteristic equation
ar’+br+c=0 2)

either are real and different or are complex conjugates. Now we consider the third possibility,
namely, that the two roots r; and r, are equal. This case is transitional between the other two
and occurs when the discriminant b?> — 4ac is zero. Then it follows from the quadratic formula
that

b (3)
rN=r,=—-—.
1 2 2a
The difficulty is immediately apparent; both roots yield the same solution
yi(1) = e /o @)
of the differential equation (1), and it is not obvious how to find a second solution.
EXAMPLE 1
Solve the differential equation
y' +4y +4y=0. 5)
Solution:
The characteristic equation is
PP4dr+4=(0r+22%=0,
sor; = r, = —2. Therefore, one solution of equation (5) is y;(¢) = e~ . To find the general

solution of equation (5), we need a second solution that is not a constant multiple of y;. This second
solution can be found in several ways (see Problems 15 through 17); here we use a method originated
by d’Alembert’ in the eighteenth century. Recall that since y;(¢) is a solution of equation (1), so
is cy;(¢) for any constant c¢. The basic idea is to generalize this observation by replacing ¢ by a
function v(7) and then trying to determine v(¢) so that the product v(#)y(7) is also a solution of
equation (1).

To carry out this program, we substitute y = v(¢)y;(#) in equation (5) and use the resulting
equation to find v(¢). Starting with

y=v(yi(n) =v(ne ™, 6)
we differentiate once to find
Yy =v(De ™ —2v(t)e ™ )
and a second differentiation yields
V' =v"()e ¥ — 4/ (1)e ¥ +4v(t)e . ®)

By substituting the expressions in equations (6), (7), and (8) in equation (5) and collecting terms, we
obtain

V(1) — 4 (1) + (1) + /(1) — 8v(1) +4v(1))e 2 =0,

TJean d’Alembert (1717-1783), a French mathematician, was a contemporary of Euler and Daniel Bernoulli and
is known primarily for his work in mechanics and differential equations. D’Alembert’s principle in mechanics
and d’Alembert’s paradox in hydrodynamics are named for him, and the wave equation first appeared in his paper
on vibrating strings in 1747. In his later years he devoted himself primarily to philosophy and to his duties as
science editor of Diderot’s Encyclopédie.
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which simplifies to

v'(1) = 0. )
Therefore,
V(1) = ¢
and
v(t) = cit + ¢y, (10)

where ¢ and ¢, are arbitrary constants. Finally, substituting for v(#) in equation (6), we obtain
y = cite” ¥ + cpe 2. (11)

The second term on the right-hand side of equation (11) corresponds to the original solution
yi1(t) = exp(—2t), but the first term arises from a second solution, namely, y,(¢) = texp(—2t).
We can verify that these two solutions form a fundamental set by calculating their Wronskian:

-2t te—2t

—626*2’ (1—-20e 2|~ et = die 4 2re

Wiy, y21(1) =

=e M £0.

Therefore,

!

yi(t) =e 2, y(t) =te ™ (12)

form a fundamental set of solutions of equation (5), and the general solution of that equation is given
by equation (11). Note that both y,(#) and y,(¢) tend to zero as t — o0; consequently, all solutions
of equation (5) behave in this way. The graphs of typical solutions are shown in Figure 3.4.1.

y
2.0

18
16
1.4
12
1.0
0.8-
0.6
0.4
02

T T T [ T T T T [ T T T T [ T T T T [ T t

0 0.5 1 1.5 2 2.5

Three solutions of equation (5):
y" +4y" + 4y = 0, with different sets of initial conditions:
y(0) =2, y’(0) =1 (blue, dashed); y(0) = 1, y’(0) = 1 (green,
solid); y(0) = 1/2, y'(0) =1 (red).

The procedure used in Example 1 can be extended to a general equation whose

characteristic equation has repeated roots. That is, we assume that the coefficients in equation
(1) satisfy b*> — 4ac = 0, in which case

n(e) =0

is a solution. To find a second solution, we assume that

y =v(0)yi(t) = v(r)e /3 (13)

and substitute for y in equation (1) to determine v(¢). We have

b
y/ — v/(t)e—bt/(Za) _ Z_V(t)e—bt/(za) (14)
a
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and

2
Y = (£)e D év/(t)e—bt/(Za) n b_v(t)e—bt/(2a). (15)
a 4a?

Then, by substituting in equation (1), we obtain

a2

<a (v”(t) - év/(t) + b—2v(t)> + b<v/(t) - iv(t)) + cv(t)>e’”/<2“> =0. (16)
a 4 2a -

Canceling the factor e =*/(2® | which is nonzero, and rearranging the remaining terms, we find
that

b? b?
av'(t) +(=b+b)V' (1) + <————|—c>v(t) =0. (17)
da 2a

The term involving v'(¢#) is obviously zero. Further, the coefficient of v(¢) is
c—b? /(4a), which is also zero because b? —4ac = 0in the problem that we are considering.
Thus, just as in Example 1, equation (17) reduces to

v'(t) =0,
S0
v(t) = c| + cot.
Hence, from equation (13), we have

y = c1e P CD a0 (18)

Thus y is a linear combination of the two solutions

yi(t) = e PCO (1) = 170, (19)
The Wronskian of these two solutions is
o—b1/(2a) te—b1/a)
_ _ ,—bt/a
WL =] b g (B e =€ (20)
2a 2a

Since W[y, y,1(t) is never zero, the solutions y; and y, given by equation (19) are a
fundamental set of solutions. Further, equation (18) is the general solution of equation (1)
when the roots of the characteristic equation are equal. In other words, in this case there is one
exponential solution corresponding to the repeated root and a second solution that is obtained
by multiplying the exponential solution by .

EXAMPLE 2

Find the solution of the initial value problem

i / 7 1
y—y+§=a ¥ =2, Y(0) = 3. @1

Solution:
The characteristic equation is
1
2
r —r+-=0,
4
so the roots are r; = r, = 1/2. Thus the general solution of the differential equation is

t/2

y =cre!? + cyte/?. (22)
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Y The first initial condition requires that

¥(0) = ¢; =2.
To satisfy the second initial condition, we first differentiate equation (22) and then set t = 0. This
gives
1 1
y'(0) = 51 +o= 3
$0 ¢; = —2/3. Thus the solution of the initial value problem is
/2 2 t/2
y =2/ — gte . (23)

The graph of this solution is shown by the blue curve in Figure 3.4.2.

y
41

y'(0) = 2: y = 2et’? 4 tetl?

1k

Solutions of y”" — y' + y/4 = 0, y(0) = 2,
with y'(0) = 1/3 (blue) and with y'(0) = 2 (red).

Let us now modify the initial value problem (16) by changing the initial slope; to be specific,
let the second initial condition be y'(0) = 2. The solution of this modified problem is

y =2¢"? 416!,

and its graph is shown by the red curve in Figure 3.4.2. The graphs shown in this figure suggest that
there is a critical initial slope, with a value between 1/3 and 2, that separates solutions that increase
as t — oo from those that ultimately decrease as r — oo. In Problem 12 you are asked to determine
this critical initial slope.

The asymptotic behavior of solutions is similar in this case to that when the roots are real
and different. If the exponents are either positive or negative, then the magnitude of the solution
grows or decays accordingly; the linear factor ¢ has little influence. A decaying solution is
shown in Figure 3.4.1 and growing solutions in Figure 3.4.2. However, if the repeated root
is zero, then the differential equation is y” = 0 and the general solution is a linear function
of 1.

Summary. We can now summarize the results that we have obtained for second-order linear
homogeneous equations with constant coefficients

ay” + by +cy =0. (24)
Let r; and r, be the roots of the corresponding characteristic equation

ar* +br +c¢=0. (25)
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If r1 and r, are real but not equal, then the general solution of differential equation (24) is
y =cie" + e’ (26)
If r| and r, are complex conjugates A = ix, then the general solution is
y = cre cos(put) + e sin(pur). 27
If r| = r,, then the general solution is
y =cie" + cpte. (28)

Reduction of Order. It is worth noting that the procedure used in this section for equations
with constant coefficients is more generally applicable. Suppose that we know one solution
y1(1), not everywhere zero, of

'+ p()y +q(t)y =0. (29)
To find a second solution, let
y =v()yi(1); (30)
then
y =V yi(t) +v(6)y (1)
and

Y =) yi(0) + 20 () yi (1) +v(0)y](1).
Substituting for y, y’, and y” in equation (29) and collecting terms, we find that

yiv" + 2y + py)v' + (] + py; +gy)v =0. 31

Since y; is a solution of equation (29), the coefficient of v in equation (31) is zero so that
equation (31) becomes

yiv" 4+ 2y + py)v' = 0. 32)

Despite its appearance, equation (32) is actually a first-order differential equation for the
function v’ and can be solved either as a first-order linear equation or as a separable equation.
Once v’ has been found, then v is obtained by an integration. Finally, y is determined from
equation (30). This procedure is called the method of reduction of order, because the crucial
step is the solution of a first-order differential equation for v’ rather than the original second-
order differential equation for y. Although it is possible to write down a formula for v(#), we
will instead illustrate how this method works by an example.

EXAMPLE 3

Given that y;(7) = ¢! is a solution of
202y 43ty —y =0, >0, (33)
find a fundamental set of solutions.

Solution:
We set y = v(¢)¢~!; then

—vi 2, Y =y T e

Substituting for y, y’, and y” in equation (33) and collecting terms, we obtain

212 (v”f1 — Wty 2vt73) + 3¢ (v/f1 — vfz) — !
=200+ (=443 + (47 =3 =y
=2n"—v' =0. (34)
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calculations.

It follows that

Y Note that the coefficient of v is zero, as it should be; this provides a useful check on our algebraic

If we let w = v/, then the second-order linear differential equation (34) reduces to the separable
first-order differential equation

2tw’ —w = 0.

Separating the variables and solving for w(#), we find that

w(t) =v'(1) = ct'/?;

then, one final integration yields

2
v(t) = gct3/2 + k.

2
y=v(t)t "= gczl/2 +kt 7, (35)

where ¢ and k are arbitrary constants. The second term on the right-hand side of equation (35) is a
multiple of y,(¢) and can be dropped, but the first term provides a new solution y,(¢) = /2. You
can verify that the Wronskian of y; and y, is

3
Wiyt y2l(6) = 5173/ .0 for 1 > 0. (36)

Consequently, y; and y, form a fundamental set of solutions of equation (33) for # > 0.

Problems

In each of Problems 1 through 8, find the general solution of the given
differential equation.

1. y/=2y4+y=0
9y" +6y +y=0
4y" —4y' =3y =0
y' =2y +10y =0
y' =6y +9y =0
4y" + 17y +4y =0
16y” 4+ 24y +9y =0
8. 2y"+2y+y=0
In each of Problems 9 through 11, solve the given initial value

problem. Sketch the graph of the solution and describe its behavior
for increasing 7.

9. 9y —12y' +4y =0,
10. y"—6y'+9y =0, y(0) =0, y'(0)=2
11. y'+4y +4y =0, y(—-1)=2, y(-1)=1
12. Consider the following modification of the initial value problem
in Example 2:

NSk WD

y(0) =2, y'(0) =—1

y”—y'-l—X:O,

1 y(0) =2, y(0) =b.

Find the solution as a function of b, and then determine the critical
value of b that separates solutions that remain positive for all # > 0
from those that eventually become negative.

0 13. Consider the initial value problem

4y"+4y +y=0, y(0) =1, y(0)=2.

a. Solve the initial value problem and plot the solution.

b. Determine the coordinates (7, yy) of the maximum point.

c. Change the second initial condition to y'(0) = b > 0 and

find the solution as a function of b.

d. Find the coordinates (s, yy) of the maximum point in terms

of b. Describe the dependence of #); and y,; on b as b increases.
14. Consider the equation ay” + by’ + ¢y = 0. If the roots of the
corresponding characteristic equation are real, show that a solution to
the differential equation either is everywhere zero or else can take on
the value zero at most once.

Problems 15 through 17 indicate other ways of finding the second

solution when the characteristic equation has repeated roots.

15. a. Consider the equation y” 4 2ay’ + a*y = 0. Show that the
roots of the characteristic equation are r; = r, = —a so that one
solution of the equation is e™%.

b. Use Abel’s formula [equation (23) of Section 3.2] to show
that the Wronskian of any two solutions of the given equation is

W(t) = yi(1) yy(1) — y[(Dya(t) = cre™ >,

where ¢ is a constant.

c. Let yi(t) = e~ and use the result of part b to obtain
a differential equation satisfied by a second solution y,(#). By
solving this equation, show that y,(7) = re™%.
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16. Suppose that r; and r, are roots of ar> + br + ¢ = 0 and that
r1 # rp; then exp(rt) and exp(r,t) are solutions of the differential
equation ay” + by’ 4+ ¢y = 0. Show that
rot ryt
e —e
G (t;r,1rp) =

Iy — 1]
is also a solution of the equation for r, # ry. Then think of | as fixed,
and use I’'Hopital’s rule to evaluate the limit of ¢ (¢; ry, r,) asr, — 7y,
thereby obtaining the second solution in the case of equal roots.

17. a. If ar? + br + ¢ = 0 has equal roots r;, show that

L [e”] =a(e +b(e") +ce =a(r —r)%".  (37)
Since the right-hand side of equation (37) is zero when r = ry, it
follows that exp(r;7) is a solution of L[y] = ay” +by’+cy = 0.
b. Differentiate equation (37) with respect to r, and interchange
differentiation with respect to r and with respect to ¢, thus
showing that

a I a I I
EL[e ’] :L[Ee t] =L[te ’]

=ate" (r —r)% +2ae" (r —ry).

(3%

Since the right-hand side of equation (36) is zero when r = ry,
conclude that 7 exp(r;¢) is also a solution of L[y] = 0.

In each of Problems 18 through 22, use the method of reduction of
order to find a second solution of the given differential equation.

18. 2y —dty +6y =0, t > 0; y (1) =1>
19. 2y 42ty =2y =0, t>0; y(1)=t
20. 2y 43ty +y=0, t>0; y (1) =1"
21, xy" —y 4+4x3y =0, x> 0; y(x) = sin(x?)

22, X2y 4xy' 4+(x2—0.25)y =0, yi(x) =x~/2sinx

23. The differential equation

x> 0;

Y +6(xy +y) =0

arises in the study of the turbulent flow of a uniform stream past a
circular cylinder. Verify that y;(x) = exp(—6x2/2) is one solution,
and then find the general solution in the form of an integral.

24. The method of Problem 15 can be extended to second-order
equations with variable coefficients. If y; is a known nonvanishing
solution of y” + p(t)y’ + q(t)y = 0, show that a second solution y,

3.5

Undetermined Coefficients
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satisfies (y2/y1) = W(y1, yz]/ylz, where W[y, y,]is the Wronskian

of y; and y,. Then use Abel’s formula (equation (23) of Section 3.2)

to determine y,.

In each of Problems 25 through 27, use the method of Problem 24 to

find a second independent solution of the given equation.

25. 12y 43ty +y=0, t>0; y(t)=t"

26. ty' —y +43y =0, t > 0; y (1) =sin(t?)

27. x2y"+xy +(x2—0.25)y =0, x > 0;

Behavior of Solutions as r — oco. Problems 28 through 30 are

concerned with the behavior of solutions as t — oo.

28. If a, b, and c are positive constants, show that all solutions of

ay” + by’ + cy = 0 approach zero as t — oo.

29. a. Ifa > Oand ¢ > 0, but b = 0, show that the result of
Problem 28 is no longer true, but that all solutions are bounded
ast — oo.
b. Ifa > 0and b > 0, but ¢ = 0, show that the result of
Problem 28 is no longer true, but that all solutions
approach a constant that depends on the initial conditions as
t — o0o. Determine this constant for the initial conditions
¥(0) = o, ¥'(0) = y;.

30. Show that y = sint is a solution of

yi(x) = x Y2sinx

v + (ksin® )y’ 4+ (1 — kcostsint)y = 0

for any value of the constant k. If 0 < k < 2, show that
1 — kcostsint > 0and ksin® 7 > 0. Thus observe that even though
the coefficients of this variable-coefficient differential equation are
nonnegative (and the coefficient of y’ is zero only at the points
t = 0,m,2m, ...), it has a solution that does not approach zero
as t — o0o. Compare this situation with the result of Problem 28.
Thus we observe a not unusual situation in the study of differential
equations: equations that are apparently very similar can have quite
different properties.

Euler Equations. In each of Problems 31 through 34, use the
substitution introduced in Problem 25 in Section 3.3 to solve the given
differential equation.

31. 2y =3ty +4y=0, >0

32. 2y 4+2ty +025y =0, >0
33. 2y" 43ty +y=0, t>0
34, 42y" — 8ty +9y =0, t>0

Nonhomogeneous Equations; Method of

We now turn our attention to the nonhomogeneous second-order linear differential equation

Liyl=y"+p)y +q(t)y = g(1),

ey

where p, g, and g are given (continuous) functions on the open interval /. The equation

Llyl=y"+ p()y +q()y =0,

(@)
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in which g(#) = 0 and p and ¢ are the same as in equation (1), is called the homogeneous
differential equation corresponding to equation (1). The following two results describe the
structure of solutions of the nonhomogeneous equation (1) and provide a foundation for
constructing its general solution.

Theorem 3.5.1

If Y| and Y, are two solutions of the nonhomogeneous linear differential equation (1), then their
difference Y; — Y, is a solution of the corresponding homogeneous differential equation (2). If, in
addition, y; and y, form a fundamental set of solutions of equation (2), then

Yi(1) = Ya(1) = c1y1(0) + o) (1), 3)

where ¢ and ¢, are certain constants.

To prove this result, note that Y; and Y, satisfy the equations

LY (1) =g(1), L[Y21(1) = g(1). @)
Subtracting the second of these equations from the first, we have
L{Y,1(2) — L[Y2](1) = g(1) — g(1) = 0. ®)

However,
L[Y,] = L[Y>] = L[Y, — Y],
so equation (5) becomes
L[Y, — Y,I(z) = 0. (6)

Equation (6) states that Y; — Y5 is a solution of equation (2). Finally, since by Theorem 3.2.4
all solutions of equation (2) can be expressed as linear combinations of a fundamental set of
solutions, it follows that the solution Y| — ¥, can be so written. Hence equation (3) holds and
the proof is complete.

Theorem 3.5.2

The general solution of the nonhomogeneous equation (1) can be written in the form
y=9¢(1) =ciyi(t) + (1) + Y(1), @)

where y; and y, form a fundamental set of solutions of the corresponding homogeneous equation (2),
¢y and ¢, are arbitrary constants, and Y is any solution of the nonhomogeneous equation (1).

The proof of Theorem 3.5.2 follows quickly from Theorem 3.5.1. Note that equation (3)
holds if we identify Y; with an arbitrary solution ¢ of equation (1) and Y, with the specific
solution Y. From equation (3) we thereby obtain

o(t) = Y(1) = c1y1(1) + caya(1), ®)

which is equivalent to equation (7). Since ¢ is an arbitrary solution of equation (1), the
expression on the right-hand side of equation (7) includes all solutions of equation (1); thus it
is natural to call it the general solution of equation (1).

In somewhat different words, Theorem 3.5.2 states that to solve the nonhomogeneous
equation (1), we must do three things:

1. Find the general solution c¢;y;(f) + c2y,(t) of the corresponding homogeneous equation.
This solution is frequently called the complementary solution and may be denoted by
Ye(1).

2. Find any solution Y (¢) of the nonhomogeneous equation. Often this solution is referred
to as a particular solution.

3. Form the sum of the functions found in steps 1 and 2.

We have already discussed how to find y.(¢), at least when the homogeneous equation
(2) has constant coefficients. Therefore, in the remainder of this section and Section 3.6, we
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will focus on finding a particular solution Y (#) of the nonhomogeneous linear differential
equation (1). There are two methods that we wish to discuss. They are known as the method
of undetermined coefficients (discussed here) and the method of variation of parameters (see
Section 3.6). Each has some advantages and some possible shortcomings.

Method of Undetermined Coefficients. The method of undetermined coefficients
requires us to make an initial assumption about the form of the particular solution Y (¢),
but with the coefficients left unspecified. We then substitute the assumed expression into the
nonhomogeneous differential equation (1) and attempt to determine the coefficients so as to
satisfy that equation. If we are successful, then we have found a solution of the differential
equation (1) and can use it for the particular solution Y (7). If we cannot determine the
coefficients, then this means that there is no solution of the form that we assumed. In this
case we may modify the initial assumption and try again.

The main advantage of the method of undetermined coefficients is that it is straightforward
to execute once the assumption is made about the form of Y (7). Its major limitation is
that it is useful primarily for equations for which we can easily write down the correct
form of the particular solution in advance. For this reason, this method is usually used
only for problems in which the homogeneous equation has constant coefficients and the
nonhomogeneous term is restricted to a relatively small class of functions. In particular,
we consider only nonhomogeneous terms that consist of polynomials, exponential functions,
sines, and cosines. Despite this limitation, the method of undetermined coefficients is useful for
solving many problems that have important applications. However, the algebraic details may
become tedious, and a computer algebra system can be very helpful in practical applications.
We will illustrate the method of undetermined coefficients by several simple examples and
then summarize some rules for using it.

EXAMPLE 1

Find a particular solution of
y' =3y —4y =3¢ ©)

Solution:

We seek a function Y such that the combination Y (t) — 3Y'(z) — 4Y(z) is equal to 3¢ Since the
exponential function reproduces itself through differentiation, the most plausible way to achieve the
desired result is to assume that ¥ (7) is some multiple of %,

Y(t) = A,

where the coefficient A is yet to be determined. To find A, we calculate the first two derivatives
of Y:

Y'(r) =24e%, Y'(r) =4Ae¥,
and substitute for y, y’, and y” in the nonhomogeneous differential equation (9). We obtain

Y' —3Y —4Y = (4A — 6A — 4A)e” = 37

1
Hence —6Ae? must equal 3¢¥, so —6A4 = 3 and we conclude that A = 5 Thus a particular
solution is
1
Y(1) = —=¢*. (10
2
EXAMPLE 2
Find a particular solution of
y' =3y —4y =2sint. (11)
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Y Solution:

By analogy with Example 1, let us assume that Y(#) = Asint¢, where A is a constant to be
determined. On substituting this guess in equation (11) we obtain

YY" —3Y' —4Y = —Asint —3Acost —4Asint = 2sint,

or, moving all terms to the left-hand side and collecting the terms involving sin# and cos?, we
arrive at,

(2+5A)sint +3Acost =0. (12)
We want equation (12) to hold for all #. Thus it must hold for two specific points, such as t = 0

and t = % At these points equation (12) reduces to 3A = 0 and 2 + 5A = 0, respectively.

These contradictory requirements mean that there is no choice of the constant A that makes

equation (12) true fort = O and t = I, much less for all 7. Thus we conclude that our assumption

concerning Y (#) is inadequate.
The appearance of the cosine term in equation (12) suggests that we modify our original
assumption to include a cosine term in Y (¢); that is,

Y(t) = Asint + Bcost,
where A and B are the undetermined coefficients. Then
Y'(t) = Acost — Bsint, Y"(t) = —Asint — Bcost.
By substituting these expressions for y, y’, and y” in equation (11) and collecting terms, we obtain
Y'—3Y' —4Y =(—A+3B —4A)sint +(—B —3A —4B) cost = 2sint. 13)

Now, working exactly as with the first guess, move all terms to the left-hand side and evaluate t = 0
™
andt = > to find that A and B must satisfy the equations

—5A4+3B-2=0, —-3A-5B=0.

Solving these algebraic equations for A and B, we obtain A = —15—7 and B = 13—7; hence a particular
solution of equation (11) is
Y(r) = —i sint + i cost.
17 17

The method illustrated in the preceding examples can also be used when the right-hand
side of the equation is a polynomial. Thus, to find a particular solution of

y' =3y —4y =42 — 1, (14)

we initially assume that Y (#) is a polynomial of the same degree as the nonhomogeneous term;
thatis, Y(¢) = At> + Bt + C.

To summarize our conclusions up to this point: if the nonhomogeneous term g(¢) in
differential equation (1) is an exponential function ¢®’, then assume that Y (#) is proportional
to the same exponential function; if g(r) is sin(/3¢) or cos(St), then assume that Y (¢) is a
linear combination of sin(/3¢) and cos(51); if g(7) is a polynomial of degree n, then assume
that Y (7) is a polynomial of degree n. The same principle extends to the case where g(7) is a
product of any two, or all three, of these types of functions, as the next example illustrates.

EXAMPLE 3

Find a particular solution of

vy =3y —4y = —8e' cos(2t). (15)
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Y Solution:

In this case we assume that Y (¢) is the product of e’ and a linear combination of cos(2¢) and sin(27);
that is,

Y(t) = Ae' cos(2t) + Be' sin(2t).
The algebra is more tedious in this example, but it follows that
Y'(t) = (A +2B)e' cos(2t) + (—2A + B)e' sin(2t)
and
Y'(t) =(=3A+4B)e' cos(2t) +(—4A —3B)e' sin(21).
By substituting these expressions in equation (15), we find that A and B must satisfy

10A+2B =8, 2A—-10B=0.

10 2
Hence A = B and B = E; therefore, a particular solution of equation (15) is

10 , 2, .
Y(t) = Ee cos(2t) + Ee sin(2t).

Now suppose that g(¢) is the sum of two terms, g(#) = g;(t) + g2(t), and suppose that
Y, and Y, are solutions of the equations

ay” +by' +cy = g1(1) (16)
and

ay” +by' +cy = g(1), a7
respectively. Then Y| + Y, is a solution of the equation

ay” + by +cy = g(1). (18)

To prove this statement, substitute Y;(#) + Y,(¢) for y in equation (18) and make use of
equations (16) and (17). A similar conclusion holds if g(¢) is the sum of any finite number of
terms. The practical significance of this result is that for an equation whose nonhomogeneous
function g(¢) can be expressed as a sum, you can consider instead several simpler equations
and then add together the results. The following example is an illustration of this procedure.

EXAMPLE 4

Find a particular solution of

y" =3y —4y = 3¢* + 2sins — 8¢’ cos(2r). (19)

Solution:
By splitting up the right-hand side of equation (19), we obtain the three equations

y// _ 3)/ _ 4y — 3€2t,

y' =3y —4y = 2sint,
and

" ! t
y' =3y —4y = —8e' cos(2t).

Solutions of these three equations have been found in Examples 1, 2, and 3, respectively. Therefore,

a particular solution of equation (19) is their sum, namely,

1 3 5 10 2
Y(1) = —EeZ’ + ot — 2 sint + Ee’ cos(2¢) + Ee’ sin(27).

The procedure illustrated in these examples enables us to solve a fairly large class of
problems in a reasonably efficient manner. However, there is one difficulty that sometimes
occurs. The next example illustrates how it arises.
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EXAMPLE 5

Find a particular solution of
y' =3y —4y =2e". (20)

Solution:

Proceeding as in Example 1, we assume that Y (¢) = Ae™’

obtain

. By substituting in equation (20), we

Y —3Y —4Y = (A+3A4 —4A)e™ =2¢7". @21

Since the left-hand side of equation (21) is zero, there is no choice of A for which 0 = 2e™".
Therefore, there is no particular solution of equation (20) of the assumed form. The reason for this
possibly unexpected result becomes clear if we solve the homogeneous equation

y' =3y —4y =0 (22)

that corresponds to equation (20). The two functions in a fundamental set of solutions of equation
(22) are y;(¢) = e~' and y,(¢) = e*. Thus our assumed particular solution of equation (20) is
actually a solution of the homogeneous equation (22); consequently, it cannot possibly be a solution
of the nonhomogeneous equation (20). To find a solution of equation (20), we must therefore consider
functions of a somewhat different form.

At this stage, we have several possible alternatives. One is simply to try to guess the proper form
of the particular solution of equation (20). Another is to solve this equation in some different way and
then to use the result to guide our assumptions if this situation arises again in the future; see Problems
22 and 27 for other solution methods. Still another possibility is to seek a simpler equation where
this difficulty occurs and to use its solution to suggest how we might proceed with equation (20).
Adopting the latter approach, we look for a first-order equation analogous to equation (20). One
possibility is the linear equation

Y 4 y=2e". (23)

If we try to find a particular solution of equation (23) of the form Ae™, we will fail because e~ is

a solution of the homogeneous equation y’ + y = 0. However, from Section 2.1 we already know
how to solve equation (23). An integrating factor is u(#) = e', and by multiplying by 1. (#) and then
integrating both sides, we obtain the solution

y=2te " +ce’. 24)

The second term on the right-hand side of equation (24) is the general solution of the homogeneous
equation y’ + y = 0, but the first term is a solution of the full nonhomogeneous equation (23).
Observe that it involves the exponential factor e~ multiplied by the factor . This is the clue that we
were looking for.

We now return to equation (20) and assume a particular solution of the form Y(7) = Ate™".
Then

Y'(1) = Ae™" — Ate™, Y'(t) = —2Ae~" + Ate™". (25)
Substituting these expressions for y, y’, and y” in equation (20), we obtain
Y’ —3Y —4Y = (=24 —3A)e™ 4+ (A +3A —4A) e~ =2¢".

2
The coefficient of re™" is zero, and from the terms involving ¢’ we have —5A = 2,50 A = —3

Thus a particular solution of equation (20) is

2
Y(t) = —gte . (26)

The outcome of Example 5 suggests a modification of the principle stated previously:
if the assumed form of the particular solution duplicates a solution of the corresponding
homogeneous equation, then modify the assumed particular solution by multiplying it by ¢.
Occasionally, this modification will be insufficient to remove all duplication with the solutions
of the homogeneous equation, in which case it is necessary to multiply by ¢ a second time. For
a second-order equation, it will never be necessary to carry the process further than this.

Summary. We now summarize the steps involved in finding the solution of an initial value
problem consisting of a nonhomogeneous linear differential equation of the form

ay” + by +cy = g(1), 27
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where the coefficients a, b, and ¢ are constants, together with a given set of initial conditions.

1. Find the general solution of the corresponding homogeneous equation.

2. Make sure that the function g(#) in equation (27) belongs to the class of functions
discussed in this section; that is, be sure it involves nothing more than exponential
functions, sines, cosines, polynomials, or sums or products of such functions. If this is
not the case, use the method of variation of parameters (discussed in Section 3.6).

3. If g(t) = g1(t) + -+ + gn(t)—that is, if g(¢) is a sum of n terms—then form n
subproblems, each of which contains only one of the terms g;(#), ..., g,(¢). The jth
subproblem consists of the equation

ay” + by +cy = g(1),

where i runs from 1 to n.

4. For the i subproblem, assume a particular solution Y;(#) consisting of the appropriate
exponential function, sine, cosine, polynomial, or combination thereof. If there is any
duplication in the assumed form of Y;(#) with the solutions of the homogeneous equation
(found in step 1), then multiply Y;(¢) by ¢, or (if necessary) by #2, so as to remove the
duplication. See Table 3.5.1.

TABLE 3.5.1  The Particular Solution of ay” + by’ + cy = g;(t)

8i(?) Y (¢)

Py(1) = apt" + at" '+ +ay, r(Agt" + A"l -+ Ay)
Py(1)e! F(Agt" + A" 4 Ay e
sin 3t 1
P”(z)eat{cosﬂt s ((Aot" + A" -+ Ay)e® cos(BE)

+(Bot" + Bit" ' + -+ B,)e sin( 1))

Notes: Here, s is the smallest nonnegative integer (s = 0, 1, or 2) that will ensure
that no term in Y;(¢) is a solution of the corresponding homogeneous equation.
Equivalently, for the three cases, s is the number of times O is a root of the
characteristic equation, « is a root of the characteristic equation, and « + if3 is a
root of the characteristic equation, respectively.

5. Find a particular solution Y;(#) for each of the subproblems. Then Y{(#) + - - - + Y,,(7) is
a particular solution of the full nonhomogeneous equation (27).

6. Form the sum of the general solution of the homogeneous equation (step 1) and the
particular solution of the nonhomogeneous equation (step 5). This is the general solution
of the nonhomogeneous equation.

7. When initial conditions are provided, use them to determine the values of the arbitrary
constants remaining in the general solution.

For some problems this entire procedure is easy to carry out by hand, but often the
algebraic calculations are lengthy. Once you understand clearly how the method works, a
computer algebra system can be of great assistance in executing the details.

The method of undetermined coefficients is self-correcting in the sense that if you assume
too little for Y(¢), then a contradiction is soon reached that usually points the way to the
modification that is needed in the assumed form. On the other hand, if you assume too many
terms, then some unnecessary work is done and some coefficients turn out to be zero, but at
least the correct answer is obtained.

Proof of the Method of Undetermined Coefficients. In the preceding discussion we have
described the method of undetermined coefficients on the basis of several examples. To prove
that the procedure always works as stated, we now give a general argument, in which we
consider three cases corresponding to different forms for the nonhomogeneous term g(¢).

Casel: g(f) = P,(t) = ayt" +a;" ' +--- +a,. Inthis case equation (27) becomes

ay’ +by +cy =apt" +a;t" '+ +a,. (28)
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To obtain a particular solution, we assume that
Y(1) = Agt" + A"+ At 4 Ayt + A, (29)
Substituting in equation (28), we obtain
a(n(n — DA+ 2An_2) Fb(nA" 44 A,
+e(Apt" + AT 4 A =apt" + -+ ay. (30)

Equating the coefficients of like powers of ¢, beginning with #”, leads to the following sequence
of equations:
CAO = dyp,
CA] + nbAO =da,

CA,‘L + bAn—l + 2ClAn_2 =dy.

Provided that ¢ # 0, the solution of the first equation is Ag = ay/c, and the remaining
equations determine A, ..., A, successively.

If ¢ = O but b # 0, then the polynomial on the left-hand side of equation (30) is of degree
n — 1, and we cannot satisfy equation (30). To be sure that aY”(t) + bY'(t) is a polynomial
of degree n, we must choose Y (¢) to be a polynomial of degree n + 1. Hence we assume that

Y(t) =t(Apt" +---+ A,).
Substituting this guess into equation (28), with ¢ = 0, and simplifying yields
aY" +bY' =bAy(n+ Dt" + (aAo(n + Dn +bA )" + .-
=apt" +a;t" ' 4+ a,.

There is no constant term in this expression for Y (), but there is no need to include such a
term since a constant is a solution of the homogeneous equation when ¢ = 0. Since b # 0, we
find Ay = ap/(b(n+1)), and the other coefficients Ay, ..., A, can be determined similarly.

If both ¢ and b are zero, then the characteristic equation is ar! = 0andr = Ois a

repeated root. Thus y; = ¢” = 1 and y, = re” = ¢ form a fundamental set of solutions of the
corresponding homogeneous equation. This leads us to assume that

Y(1) =12 (Apt" + -+ Ay).

The term aY”(¢) gives rise to a term of degree n, and we can proceed as before. Again the
constant and linear terms in Y (#) are omitted since, in this case, they are both solutions of the
homogeneous equation.

Case 2: g(f) = ¢™P,(f). The problem of determining a particular solution of

ay” + by +cy = e P,(1) (€3))
can be reduced to the preceding case by a substitution. Let

Y(t) = e*u(t);

then

Y'(t) = e (u'(t) + au(t))
and

Y'(1) = ' (u" () + 2au'(t) + a’u(t)).

Substituting for y, y’, and y” in equation (31), canceling the factor ¢, and collecting terms,
we obtain

au” (1) + aa + b)u'(t) + (aa® + ba + ) u(t) = P,(1). (32)

The determination of a particular solution of equation (32) is precisely the same problem,
except for the names of the constants, as solving equation (28). Therefore, if aa? + ba + c is
not zero, we assume that u(t) = Aot" + - - - + A,; hence a particular solution of equation (31)
is of the form

Y(1) = e (Agt" + A" 4 - 4+ Ay). (33)
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On the other hand, if aa? + b + ¢ is zero but 2aa + b is not, we must take u(#) to be
of the form #(Aot" + - - - + A,) . The corresponding form for Y (¢) is ¢ times the expression on
the right-hand side of equation (33). Note that if aar? + ba + c is zero, then e is a solution
of the homogeneous equation.

If both aa? + ba + ¢ and 2ac + b are zero (and this implies that both e’ and re®' are
solutions of the homogeneous equation), then the correct form for u(¢) is t*>( Agt" +- - -+ A,).
Hence Y (¢) is ¢ times the expression on the right-hand side of equation (33).

Case 3: g(f) = e“'P,(t) cos (31) or e™ P, (f)sin (31). These two cases are similar, so we
consider only the latter. We can reduce this problem to the preceding one by noting that, as a
consequence of Euler’s formula, sin(31) = (e’’" — e~¥%") /(2i). Hence g(¢) is of the form

(a+if)t _ e(afiﬁ)t

2i ’

g(1) = Pu(1)

and we should choose
Y(1) = DAy 4o+ A,) + T (Byt" + ...+ B,),
or, equivalently,
Y(t) = e (Agt" +--- + A,) cos(3t) + e“"(Byt" + --- + B,) sin([1t).

Usually, the latter form is preferred because it does not involve the use of complex-valued
coefficients. If o £ i3 satisfy the characteristic equation corresponding to the homogeneous
equation, we must, of course, multiply each of the polynomials by 7 to increase their degrees
by 1.

If the nonhomogeneous function involves both cos((3f) and sin(ft), it is usually
convenient to treat these terms together, since each one individually may give rise to the same
form for a particular solution. For example, if g(¢) = # sint +2 cos ¢, the form for Y (#) would
be

Y(t) = (Aot + Ay) sint + ( Byt + Bj) cost,

provided that sin ¢ and cos ¢ are not solutions of the homogeneous equation.

Problems

In each of Problems 1 through 10, find the general solution of the given 15. y"+2y +5y =4de"cos(2t), y(0)=1, y'(0) =0

differential equation. In each of Problems 16 through 21:

1. y" =2y —3y=3e" a. Determine a suitable form for Y(¢) if the method of
2. y'—y —2y=—2t+4s2 undetermined coefficients is to be used.
3.y 4y — 6y = 1263 + 12~ gtgé :iii ;al Z:Elﬂ?sil: algebra system to find a particular solution
4. y:; - Zy: —dy= _.3’8 [ 16. y" +3y = 2t* + 12~ + sin(31)
> y” + Zy/ =3+ 481}:(2” 17. " =5y 4+ 6y = ¢’ cos(2¢) + € (3¢ + 4) sint
6. y// +2y y. =2 18. y" 42y +2y =3¢ +2¢ " cost +4et?sint
7Yy = sin(n+reoszo 19,y +4y = 12sin(2t) + (61 +7) cos(21)
8. u'Fwou=cos(wn), w#w 20. V' 43y +2y = & (2 + 1) sin(21) + 3¢~ cost + de!
9. u"+ wéu = cos(wo!) 21. y' 42y +5y =3te ! cos(2t) — 2te > cost
10. y” +y' +4y =2sinhr Hint: sinht = (e —e™")/2 22. Consider the equation
In each of Problems 11 through 15, find the solution of the given initial Y =3y —dy=2e"" (34)
value problem.
1. Y4y —2y=2 y(0)=0, y(0)=1 from Example 5. Recall that y,(r) = e~ and y,(1) = e* are

., ) . , solutions of the corresponding homogeneous equation. Adapting the
12y +4y =" +3¢', y(0) =0, y'(0) =2 method of reduction of order (Section 3.4), seek a solution of the
13. y" =2y +y=te +4, »0) =1, y(0)=1 nonhomogeneous equation of the form Y (z) = v(#) y1(t) = v(t)e™
14. ' +4y =3sin(2t), y(0) =2, y'(0) =—1 where v(1) is to be determined.

s
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a. Substitute Y(7), Y'(1), and Y”(¢) into equation (34) and
show that v(¢) must satisfy v/ — 5v" = 2.
b. Letw(?r) = v/(¢) and show that w() satisfies w' — 5w = 2.
Solve this equation for w(z7).
c. Integrate w(?) to find v(¢) and then show that
2 1

Y(t) = —gte_’ + gcle4’ + e
The first term on the right-hand side is the desired particular
solution of the nonhomogeneous equation. Note that it is a

product of t and e™".

23. Determine the general solution of

N
V' + Ay = Zam sin(mmt),
m=1
where A > Oand A #mmw form=1, ... ,N.

@ 24. In many physical problems the nonhomogeneous term may
be specified by different formulas in different time periods. As an
example, determine the solution y = ¢ () of
L,
Yity= { ‘

Te™ !,

0<t=<m,
t>m,

satisfying the initial conditions y(0) = 0 and y’(0) = 1. Assume that
y and y’ are also continuous at z = 7. Plot the nonhomogeneous term
and the solution as functions of time. Hint: First solve the initial value
problem for ¢ < m; then solve for # > 7, determining the constants in
the latter solution from the continuity conditions at ¢ = 7.

Behavior of Solutions as + — co. In Problems 25 and 26, we
continue the discussion started with Problems 28 through 30 of Section

3.4. Consider the differential equation
ay” + by +cy = g(1), 35)

where a, b, and ¢ are positive.

25. 1If Y(r) and Y,(r) are solutions of equation (35), show that
Yi(t) — Yo(t) — 0ast — oo. Is this result true if b = 0?

3.6

26. Ifg(t) = d,aconstant, show thatevery solution of equation (35)
approaches d/c as t — co. What happens if ¢ = 0? Whatif b = 0
also?

27. Inthis problem we indicate an alternative procedure® for solving
the differential equation
Y'+ by +ey=(D*+bD+0)y = g(n), (36)
where b and ¢ are constants, and D denotes differentiation with respect
to . Let r| and r, be the zeros of the characteristic polynomial of the
corresponding homogeneous equation. These roots may be real and
different, real and equal, or conjugate complex numbers.
a. Verify that equation (36) can be written in the factored form

(D =r))(D—r)y=g(1),

where ry +r, = —b and rir, = c.

b. Let u = (D — ry)y. Then show that the solution of
equation (36) can be found by solving the following two first-
order equations:

(D—rpu=g@), (D—r)y=u(1).

In each of Problems 28 through 30, use the method of Problem 27 to
solve the given differential equation.

28. y”" —3y’ —4y =3e? (see Example 1)
29. y"+2y'+y=2e" (seeProblem 6)
30. y” +2y’ =3 +4sin(2¢) (see Problem 5)

8R. S. Luthar, “Another Approach to a Standard Differential Equation,”
Two Year College Mathematics Journal 10 (1979), pp. 200-201. Also see
D. C. Sandell and F. M. Stein, “Factorization of Operators of Second-Order
Linear Homogeneous Ordinary Differential Equations,” Two Year College
Mathematics Journal 8 (1977), pp. 132-141, for a more general discussion
of factoring operators.

Variation of Parameters

In this section we describe a second method of finding a particular solution of a
nonhomogeneous equation. This method, variation of parameters, is due to Lagrange and
complements the method of undetermined coefficients rather well. The main advantage of
variation of parameters is that it is a general method; in principle at least, it can be applied
to any equation, and it requires no detailed assumptions about the form of the solution. In
fact, later in this section we use this method to derive a formula for a particular solution of
an arbitrary second-order linear nonhomogeneous differential equation. On the other hand, the
method of variation of parameters eventually requires us to evaluate certain integrals involving
the nonhomogeneous term in the differential equation, and this may present difficulties. Before
looking at this method in the general case, we illustrate its use in an example.

EXAMPLE 1

Find the general solution of

y'+4y=8tant —7/2<t<m/2. 9]



Solution:

Observe that this problem is not a good candidate for the method of undetermined coefficients, as
described in Section 3.5, because the nonhomogeneous term g(#) = 8 tant involves a quotient (rather
than a sum or a product) of sin 7 and cos ¢. Therefore, the method of undetermined coefficients cannot
be applied; we need a different approach.

Observe also that the homogeneous equation corresponding to equation (1) is

y'+4y =0, ()

and that the general solution of equation (2) is
ve(t) = ¢y cos(2t) + ¢, sin(2t). 3)
The basic idea in the method of variation of parameters is similar to the method of reduction of
order introduced at the end of Section 3.4. In the general solution (3), replace the constants ¢; and ¢,

by functions u(#) and u,(7), respectively, and then determine these functions so that the resulting
expression

y = u(t) cos(2t) + u,(t) sin(2t) “4)

is a solution of the nonhomogeneous equation (1).

To determine u; and u,, we need to substitute for y from equation (4) in differential equation (1).
However, even without carrying out this substitution, we can anticipate that the result will be a single
equation involving some combination of u, u,, and their first two derivatives. Since there is only
one equation and two unknown functions, we can expect that there are many possible choices of
u; and u, that will meet our needs. Alternatively, we may be able to impose a second condition of
our own choosing, thereby obtaining two equations for the two unknown functions u; and u,. We
will soon show (following Lagrange) that it is possible to choose this second condition in a way that
makes the computation markedly more efficient.’

Returning now to equation (4), we differentiate it and rearrange the terms, thereby obtaining

¥ = =2u, (1) sin(21) + 2u(1) cos(21) + ' (¢) cos(2t) + u5H(1) sin(21). 5)

Keeping in mind the possibility of choosing a second condition on u; and u5,, let us require the sum
of the last two terms on the right-hand side of equation (5) to be zero; that is, we require that

(1) cos(21) + uy(1) sin(2r) = 0. 6)
It then follows from equation (5) that
v = —2u,(t) sin(2t) + 2u,(t) cos(2t). @)

Although the ultimate effect of the condition (6) is not yet clear, the removal of the terms involving
u} and )} has simplified the expression for y’. Further, by differentiating equation (7), we obtain

y" = —4u (1) cos(21) — 4uy(t) sin(2t) — 2u (1) sin(21) + 2u’y(t) cos(2t). )
Then, substituting for y and y” in equation (1) from equations (4) and (8), respectively, we find that
V' 4y = — 4uy (1) cos(2t) — 4uy (1) sin(2t) — 2u’ (1) sin(2r) + 2u)(t) cos(2t)
+ 4u (1) cos(2t) + 4u,(t) sin(2t) = 8tant.
Hence u©; and u, must satisfy
—2u/, (1) sin(2t) + 2u5(1) cos(2r) = 8tant. )

Summarizing our results to this point, we want to choose #; and u, so as to satisfy equations (6)
and (9). These equations can be viewed as a pair of linear algebraic equations for the two unknown
quantities 1,/1 (t) and u/z( t). Equations (6) and (9) can be solved in various ways. For example, solving
equation (6) for u, (1), we have

(1) = —u) (1) S22 (10)
u = —U .
2 " sin(21)
Then, substituting for u,(#) in equation (9) and simplifying, we obtain
8 tan ¢ sin(2¢
Wi (r) = — SAISINGD g2y, (11

2

9 An alternate, and more mathematically appealing, derivation of the second condition can be found in Problems
17 to 19 in Section 7.9.

3.6 Variation of Parameters
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Y Further, putting this expression for u} (1) back in equation (10) and using the double-angle formulas,
we find that

, SSin2tcos(2t) sint(2cos2t -1 . 1
u,(t) = =4 =4sint| 2cost — — |. (12)
2 cost

sin(2¢) cost
Having obtained u’l(t) and u/z(t) , we next integrate so as to find u(#) and u,(¢). The result is
u(t) =4sintcost — 4t + c; (13)
and
ur(t) = 41In(cost) —4c052t+c2. (14)
On substituting these expressions in equation (4), we have
y = (4sintcost) cos(2t) + (41In(cost) — 4cos’ t) sin(2t) + c¢; cos(2t) + ¢, sin(2¢).
Finally, by using the double-angle formulas once more, we obtain
y = —2sin(2t) — 4t cos(2t) 4+ 41In(cost) sin(2t) + ¢; cos(2t) + ¢, sin(2t). (15)

The terms in equation (15) involving the arbitrary constants ¢; and ¢, are the general solution of the
corresponding homogeneous equation, while the other three terms are a particular solution of the
nonhomogeneous equation (1). Thus equation (15) is the general solution of equation (1).

The particular solution identified at the end of Example 1 corresponds to choosing both
c1, and ¢, to be zero in equation (15). Any other choice of ¢; and ¢; is also a particular solution
of the same nonhomogeneous differential equation. Notice, in particular, that choosing ¢; = 0
and ¢, = 2 in equation (15) yields a particular solution with only two terms:

—4t cos(2t) 4+ 41n(cost) sin(2z).

We conclude this first look at the method of variation of parameters with the observation that
the particular solution involves terms that might be difficult to anticipate. This explains why
the method of undetermined coefficients is not a good candidate for this problem, and why the
method of variation of parameters is needed.

In the preceding example the method of variation of parameters worked well in
determining a particular solution, and hence the general solution, of equation (1). The next
question is whether this method can be applied effectively to an arbitrary equation. Therefore,
we consider

Y+ p(0)y +q()y = g1, (16)
where p, g, and g are given continuous functions. As a starting point, we assume that we know
the general solution

ye(1) = c1y1(2) + caya(1) (17)
of the corresponding homogeneous equation
Y+ p)y +q()y =0. (18)

This is a major assumption. So far we have shown how to solve equation (18) only if it
has constant coefficients. If equation (18) has coefficients that depend on ¢, then usually the
methods described in Chapter 5 must be used to obtain y.(?).

The crucial idea, as illustrated in Example 1, is to replace the constants ¢; and ¢; in
equation (17) by functions u(#) and u,(t), respectively; thus we have

y=ui(t)yi (1) +ux(t) y2(1). (19)

Then we try to determine u«(#) and u,(t) so that the expression in equation (19) is a solution
of the nonhomogeneous equation (16) rather than the homogeneous equation (18). Thus we
differentiate equation (19), obtaining

V' =ui (D) y1() +ur (1) y(1) + uy(6) ya(1) 4+ ua(1) y3(1). (20)



As in Example 1, we now set the terms involving u(¢) and u,(¢) in equation (20) equal to
zero; that is, we require that

uy (1) yi(6) +up(1) ya2(1) =0. @n
Then, from equation (20), we have
Y =ui(0)yi(0) +ua(0) yy(1). (22)
Further, by differentiating again, we obtain
Y = (DY) + ur (D) ¥ (1) +up(0) ya(1) +ua() y3 (1) (23)

Now we substitute for y, y’, and y” in equation (16) from equations (19), (22), and (23),
respectively. After rearranging the terms in the resulting equation, we find that

() (Y1) + Py +an(®)

u(0) (Y50 + P40 +a(D)y2(1))
+ Ui (DY) +ur (D) yy(1) = g(1). 24)

Each of the expressions in parentheses in the first two lines of equation (24) is zero because
both y; and y, are solutions of the homogeneous equation (18). Therefore, equation (24)
reduces to

uy (D) yy (1) + uy (1) ys (1) = g(1). (25)

Equations (21) and (25) form a system of two linear algebraic equations for the derivatives
u/l(t) and u’z(t) of the unknown functions. They correspond exactly to equations (6) and (9)
in Example 1.

Solving the system of equations (21), (25), we obtain

(1) g(1) , yi(1) g(1)

_ = - 26
Wil 2= Wiyl 20

where W[y, y,] is the Wronskian of y; and y,. Note that division by W[yy, y,] is permissible
since y; and y, are a fundamental set of solutions, and therefore their Wronskian is nonzero.
By integrating equations (26), we find the desired functions u(#) and u,(#), namely,
t t t t
() = — (e Ve () = nne@® Lo @7
Wiyr, y21(7) Wiy, y21(2)

If the integrals in equations (27) can be evaluated in terms of elementary functions, then we
substitute the results in equation (19), thereby obtaining the general solution of equation (16).
More generally, the solution can always be expressed in terms of integrals, as stated in the
following theorem.

Theorem 3.6.1

Consider the nonhomogeneous second-order linear differential equation

Y+ p)y +q()y =g(0). (28)

ui (1) = —

If the functions p, ¢, and g are continuous on an open interval /, and if the functions y; and y, form
a fundamental set of solutions of the corresponding homogeneous equation

Y+ p()y +q)y =0, (29)

then a particular solution of equation (28) is

y2(s)g(s) y1(s)g(s)
Y1) = — R 30
0= yl(”/o Whynvales) @ % )/0 Whyr. yal(s) eo

where 7, is any conveniently chosen point in /. The general solution is
y=cyi(t) + caya(t) + Y(1), (€20)

as prescribed by Theorem 3.5.2.

3.6 Variation of Parameters
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By examining the expression (30) and reviewing the process by which we derived it,
we can see that there may be two major difficulties in carrying out the method of variation
of parameters. As we have mentioned earlier, one is the determination of functions y;(?)
and y,(7) that form a fundamental set of solutions of the homogeneous equation (29) when
the coefficients in that equation are not constants. The other possible difficulty lies in the
evaluation of the integrals appearing in equation (30). This depends entirely on the nature of the
functions y;, y,, and g. In using equation (30), be sure that the differential equation is exactly
in the form (28); otherwise, the nonhomogeneous term g(¢) will not be correctly identified.

A major advantage of the method of variation of parameters is that equation (30) provides
an expression for the particular solution Y (#) in terms of an arbitrary forcing function g(¢).
This expression is a good starting point if you wish to investigate the effect of variations in the
forcing function, or if you wish to analyze the response of a system to a number of different
forcing functions. (See Problems 18 to 22.)

Problems

In each of Problems 1 through 3, use the method of variation of
parameters to find a particular solution of the given differential
equation. Then check your answer by using the method of
undetermined coefficients.

1. Yy =35y +6y=2¢
2. y'—y —2y=2e"
3. 4y —4y +y=16e"/?
In each of Problems 4 through 9, find the general solution of the

given differential equation. In Problems 9, g is an arbitrary continuous
function.

4. y'+y =tant,
y'+9y=9 sec” (31),
V' 4y 4+ 4y =127,
4y" +y =2sec(t/2), —-w<t<m
Y =2y +y=e/(1+17)

9. y' =5y +6y=g()
In each of Problems 10 through 15, verify that the given functions
y; and y, satisfy the corresponding homogeneous equation; then

find a particular solution of the given nonhomogeneous equation. In
Problems 14 and 15, g is an arbitrary continuous function.

10. 2y =2y =32—1, t>0; y (1) =12, (1) =1t"!

11, 2y —t(t+2)y + (1 +2)y =213, t > 0;

yi(t) =t, y(t) =te'

12, 1y —(140)y+y =12*, 1> 0, yi(1) =1+t y(1) =¢'
13. x2y" —=3xy +4y=x2Inx, x> 0; y(x) =x2,

yo(x) = x*Inx

0<t<m/2
0<t<m/6
t>0

o wm

14. x%y" 4+ xy 4+ (x%* — %)y =3x32sinx, x> 0;
yi(x) =x71/2 172
15. x%y" 4+ xy +(x*—0.25)y = g(x), x> 0;
yi(x) =x 2sinx, yo(x) =x"Y2cosx

16. By choosing the lower limit of integration in equation (30) in the
text as the initial point ¢y, show that Y (#) becomes

" yi(9)ya(1) — yi(1) ya(s)
Y(e) = ; ; g
i Y1) ¥5(8) = y1(5) a(s)

sinx, yy(x) =x"/“cosx

(s)ds

Show that Y () is a solution of the initial value problem

Llyl=g(1), y(1p) =0, ¥'(zp) =0.

17. Show that the solution of the initial value problem

Liyl=y"+p)y +qt)y=g(1), y(to) =y, ¥(t) =,

(32)
can be written as y = u(t) + v(t), where u and v are solutions of the
two initial value problems

Llu]l =0,
Liv] = g(1),

u'(t9) = yp, (33)
v(19) =0, (34)

u(fo) = yo,
v(ty) =0,

respectively. In other words, the nonhomogeneities in the differential

equation and in the initial conditions can be dealt with separately.

Observe that u is easy to find if a fundamental set of solutions of

L{u] = 0 is known. And, as shown in Problem 16, the function v

is given by equation (30).

18. a. Use the result of Problem 16 to show that the solution of the
initial value problem

Y +y =g, ¥ =0, () =0 (35)

is
y = / sin(t — ) g(s) ds . (36)
‘o

b. Use the result of Problem 17 to find the solution of the initial
value problem

Y +y=2g(, y0) =y, y(0) =y,

19. Use the result of Problem 16 to find the solution of the initial
value problem

Llyl=g(1), y(t9) =0, y'(1) =0,

where L[y] = (D —a) (D —b) y for real numbers a and b with a # b.
Note that L[y] = y” — (a + b)y' + aby.

20). Use the result of Problem 16 to find the solution of the initial
value problem

Liyl=g(1), y(t)) =0, y'(1) =0,

where L[y] = (D — (A 4+ ipn))(D — (A — ip))y; that is,
L[yl = y" =2y +(\2+1?) y. Note that the roots of the characteristic
equation are A\ £ ip.



21. Use the result of Problem 16 to find the solution of the initial
value problem

LIyl =g(1), y(to) =0, y'(19) =0,

where L[y] = (D — a)?y, thatis, L[y] = y” — 2ay’ + a’y, and a is
any real number.

22. By combining the results of Problems 19 through 21, show that
the solution of the initial value problem

Llyl=(D*+bD +c)y =g(1), (1) =0, y'(19) =0,

where b and ¢ are constants, can be written in the form
t
y=0¢(t) =/ K(t—s)g(s)ds, 37
ly

where the function K depends only on the solutions y; and y, of
the corresponding homogeneous equation and is independent of the
nonhomogeneous term. Once K is determined, all nonhomogeneous
problems involving the same differential operator L are reduced to
the evaluation of an integral. Note also that although K depends on
both # and s, only the combination ¢ — s appears, so K is actually a
function of a single variable. When we think of g(#) as the input to
the problem and of ¢ (¢) as the output, it follows from equation (37)
that the output depends on the input over the entire interval from the
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initial point #; to the current value ¢. The integral in equation (37) is
called the convolution of K and g, and K is referred to as the kernel.

23. The method of reduction of order (Section 3.4) can also be used
for the nonhomogeneous equation

Y+ p()y +q()y =g(1), (38)

provided one solution y; of the corresponding homogeneous equation
is known. Let y = v(#)y;(#) and show that y satisfies equation (38)
if v is a solution of

YOV + (251 + p(D)yi(D)v' = g(1). (39)

Equation (39) is a first-order linear differential equation for v'. By
solving equation (39) for v/, integrating the result to find v, and
then multiplying by y(#), you can find the general solution of
equation (38). This method simultaneously finds both the second
homogeneous solution and a particular solution.

In each of Problems 24 through 26, use the method outlined in Problem
23 to solve the given differential equation.

24. 2y =2y +2y =42, t >0, y(1) =t
25. 2y 4+ Tty +5y =1, t > 0; y(t) ="
26. 1y —(14+0)y +y=1%*, t>0; y(t) =141 (see

Problem 12)

37 Mechanical and Electrical Vibrations

One of the reasons why second-order linear differential equations with constant coefficients
are worth studying is that they serve as mathematical models of many important physical
processes. Two important areas of application are the fields of mechanical and electrical
oscillations. For example, the motion of a mass on a vibrating spring, the torsional oscillations
of a shaft with a flywheel, the flow of electric current in a simple series circuit, and many other
physical problems are all described by the solution of an initial value problem of the form

ay” 4+ by +cy = g(1),

y(0) =y, ¥'(0) = y. (1

This illustrates a fundamental relationship between mathematics and physics: many
physical problems may have mathematically equivalent models. Thus, once we know how to
solve the initial value problem (1), it is only necessary to make appropriate interpretations of
the constants a, b, and ¢, and of the functions y and g, to obtain solutions of different physical

problems.

We will study the motion of a mass on a spring in detail because understanding the
behavior of this simple system is the first step in the investigation of more complex vibrating
systems. Further, the principles involved are common to many problems.

Consider a mass m hanging at rest on the end of a vertical spring of original length /,
as shown in Figure 3.7.1. The mass causes an elongation L of the spring in the downward
(positive) direction. In this static situation there are two forces acting at the point where the
mass is attached to the spring; see Figure 3.7.2. The gravitational force, or weight of the mass,
acts downward and has magnitude w = mg, where g is the acceleration due to gravity. There
is also a force Fj, due to the spring, that acts upward. If we assume that the elongation L
of the spring is small, the spring force is very nearly proportional to L; this is known as
Hooke’s'” law. Thus we write F; = —kL, where the constant of proportionality k is called the

10Robert Hooke (1635-1703) was an English scientist with wide-ranging interests. His most important book,
Micrographia, was published in 1665 and described a variety of microscopical observations. Hooke first published
his law of elastic behavior in 1676 as ceiiinosssttuv; in 1678 he gave the interpretation ut tensio sic vis, which means,

roughly, “as the force so is the displacement.”
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spring constant, and the minus sign is due to the fact that the spring force acts in the upward
(negative) direction. Since the mass is in equilibrium, the two forces balance each other, which
means that

w+ F,=mg —kL =0. 2)

For a given weight w = mg, you can measure L and then use equation (2) to determine k.
Note that k has the units of force per unit length.

w=mg
Sl S8 Force diagram for a spring-mass system.

In the corresponding dynamic problem, we are interested in studying the motion of the
mass when it is acted on by an external force or is initially displaced. Let u(¢), measured
positive in the downward direction, denote the displacement of the mass from its equilibrium
position at time ¢; see Figure 3.7.1. Then u(t) is related to the forces acting on the mass through
Newton’s law of motion

mu’(t) = f(1), 3)

where u” is the acceleration of the mass and f is the net force acting on the mass. Observe
that both u and f are functions of time. In this dynamic problem there are now four separate
forces that must be considered.

1. The weight w = mg of the mass always acts downward.

2. The spring force F; is assumed to be proportional to the total elongation L + u of the
spring and always acts to restore the spring to its natural position. If L + u > 0, then
the spring is extended, and the spring force is directed upward. In this case

F, = —k(L +u). o

On the other hand, if L +u < 0, then the spring is compressed a distance | L + u|, and the
spring force, which is now directed downward, is given by F; = k|L+u|. However, when
L+u < 0,itfollows that |L+u| = —(L+u), so Fy is again given by equation (4). Thus,
regardless of the position of the mass, the force exerted by the spring is always expressed
by equation (4).

3. The damping or resistive force F; always acts in the direction opposite to the direction of
motion of the mass. This force may arise from several sources: resistance from the air or
other medium in which the mass moves, internal energy dissipation due to the extension
or compression of the spring, friction between the mass and the guides (if any) that
constrain its motion to one dimension, or a mechanical device (dashpot) that imparts a
resistive force to the mass. In any case, we assume that the resistive force is proportional
to the speed |du/dt| of the mass; this is usually referred to as viscous damping. If
du/dt > 0, then u is increasing, so the mass is moving downward. Then Fy is directed
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upward and is given by
Fo(1) = —yu'(1), ®)

where 7y is a positive constant of proportionality known as the damping constant. On the
other hand, if du/dt < 0, then u is decreasing, the mass is moving upward, and F is
directed downward. In this case, F; = ~|u'(t)[; since |u'(t)| = —u'(t), it follows that
F,(t) is again given by equation (5). Thus, regardless of the direction of motion of the
mass, the damping force is always expressed by equation (5).

The damping force may be rather complicated, and the assumption that it is modeled
adequately by equation (5) may be open to question. Some dashpots do behave as
equation (5) states, and if the other sources of dissipation are small, it may be possible
to neglect them altogether or to adjust the damping constant v to approximate them.
An important benefit of the assumption (5) is that it leads to a linear (rather than a
nonlinear) differential equation. In turn, this means that a thorough analysis of the system
is straightforward, as we will show in this section and in Section 3.8.

4. An applied external force F(t) is directed downward or upward as F(t) is positive or
negative. This could be a force due to the motion of the mount to which the spring is
attached, or it could be a force applied directly to the mass. Often the external force
is periodic.

Taking account of these forces, we can now rewrite Newton’s law (3) as

mu' (1) =w + Fy(1) + Fg(1) + F(1)
=mg — k(L +u(t)) —~u'(t) + F(1). 6)

Since mg — kL = 0 by equation (2), it follows that the equation of motion of the mass is
mu" (1) +yu'(t) + ku(r) = F(1), (7

where the constants m, 7, and k are positive. Note that equation (7) has the same form as
equation (1), that is, it is a nonhomogeneous second-order linear differential equation with
constant coefficients.

It is important to understand that equation (7) is only an approximate equation for
the displacement u(¢). In particular, both equations (4) and (5) should be viewed as
approximations for the spring force and the damping force, respectively. In our derivation
we have also neglected the mass of the spring in comparison with the mass of the attached
body.

The complete formulation of the vibration problem requires that we specify two initial
conditions, namely, the initial position u( and the initial velocity v, of the mass:

u(0) =ug, u'(0) = . ®)

It follows from Theorem 3.2.1 that these conditions give a mathematical problem that has a
unique solution for any values of the constants u and v(. This is consistent with our physical
intuition that if the mass is set in motion with a given initial displacement and velocity, then
its position will be determined uniquely at all future times. The position of the mass is given
(approximately) by the solution of the second-order linear differential equation (7) subject to
the prescribed initial conditions (8).

EXAMPLE 1

A mass weighing 4 Ib stretches a spring 2 in. Suppose that the mass is given an additional 6-in
displacement in the positive direction and then released. The mass is in a medium that exerts a viscous
resistance of 6 1b when the mass has a velocity of 3 ft/s. Under the assumptions discussed in this
section, formulate the initial value problem that governs the motion of the mass.

Solution:

The required initial value problem consists of the differential equation (7) and initial conditions (8),
so our task is to determine the various constants that appear in these equations. The first step is to
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Y choose the units of measurement. Based on the statement of the problem, it is natural to use the
English rather than the metric system of units. The only time unit mentioned is the second, so we
will measure ¢ in seconds. On the other hand, both the foot and the inch appear in the statement as
units of length. It is immaterial which one we use, but having made a choice, we must be consistent.
To be definite, let us measure the displacement u in feet.

Since nothing is said in the statement of the problem about an external force, we assume that
F(t) = 0. To determine m, note that

w4l 1§
T g 32ft/s2 8 ft
The damping coefficient 7y is determined from the statement that yu’ is equal to 6 1b when u” is 3 ft/s.
Therefore,
61b Ib-s
v = =2 —.
3ft/s ft

1
The spring constant & is found from the statement that the mass stretches the spring by 2 in or 3 ft.
Thus

_ 4 _ T
T1/eft T TR

Consequently, differential equation (7) becomes
1 ” ’ _
gu +2u' +24u =0,

or
u” 4+ 16u’ 4+ 192u = 0. 9)

The initial conditions are
u(0) = % u'(0) =0. (10)

The second initial condition is implied by the word “released” in the statement of the problem, which
we interpret to mean that the mass is set in motion with no initial velocity.

Undamped Free Vibrations. If there is no external force, then F(¢) = 0 in equation (7).
Let us also suppose that there is no damping so that v = 0; this is an idealized configuration of
the system, seldom (if ever) completely attainable in practice. However, if the actual damping
is very small, then the assumption of no damping may yield satisfactory results over short to
moderate time intervals. In this case the equation of motion (7) reduces to

mu” + ku = 0. (11)
The characteristic equation for equation (11) is
mr’4+k=0

and its roots are r = =i /k/m. Thus the general solution of equation (11) is

u = Acos(wgt) + B sin(wgt), (12)
where
k
wy = —. (13)
m

The arbitrary constants A and B can be determined if initial conditions of the form (8) are
given.

In discussing the solution of equation (11), it is convenient to rewrite equation (12) in the
form

u = Rcos(wot —0), (14)
or

u = Rcosé cos(wot) + Rsiné sin(wot). (15)
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By comparing equation (15) with equation (12), we find that A, B, R, and ¢ are related by the
equations

A= Rcosd, B = Rsind. (16)
Thus

B
R = M+B%tm§=z. (17)

In calculating 6, we must take care to choose the correct quadrant; this can be done by checking
the signs of cos ¢ and sin § in equations (16).

The graph of equation (14), or the equivalent equation (12), for a typical set of initial
conditions is shown in Figure 3.7.3. The graph is a displaced cosine wave that describes a
periodic, or simple harmonic, motion of the mass. The period of the motion is

27 my1/2
P2 (M) n
wo k

The circular frequency wg = +/k/m, measured in radians per unit time, is called the natural
frequency of the vibration. The maximum displacement R of the mass from equilibrium is the
amplitude of the motion. The dimensionless parameter § is called the phase, or phase angle,
and measures the displacement of the wave from its normal position corresponding to § = 0.

ALl Al Simple harmonic motion; # = R cos(wgt —6).
Note that the horizontal axis is labeled as w.

Note that the motion described by equation (14) has a constant amplitude that does not
diminish with time. This reflects the fact that, in the absence of damping, there is no way for the
system to dissipate the energy imparted to it by the initial displacement and velocity. Further,
for a given mass m and spring constant k, the system always vibrates at the same frequency
wy, regardless of the initial conditions. However, the initial conditions do help to determine
the amplitude of the motion. Finally, observe from equation (18) that the period T increases as
the mass m increases, so larger masses vibrate more slowly. On the other hand, the period T
decreases as the spring constant k increases, which means that stiffer springs cause the system
to vibrate more rapidly.

EXAMPLE 2

Suppose that a mass weighing 10 Ib stretches a spring 2 in. If the mass is displaced an additional 2 in
and is then set in motion with an initial upward velocity of 1 ft/s, determine the position of the mass
at any later time. Also determine the period, amplitude, and phase of the motion.

Solution:

The spring constant is k = 10 1b/2 in = 60 Ib/ft, and the mass is m = w /g = 10/32 Ib-s*/ft. Hence
the equation of motion reduces to

u” +192u =0, (19)
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Y and the general solution is

u = Acos(8y/3t) + Bsin(8+/31).
The solution satisfying the initial conditions u(0) = 1/6 ft and u’(0) = —1 ft/s is

u= écos(S\/gt) ~ 1 insy/30). (20)

8/3
The natural frequency is wy = 8\/5 = 13.856 rad/s, so the period is T = 27 /wg = 0.453 s.
The amplitude R and phase 6 are found from equations (17). We have

, 1.1 19

=—+4+—=—, so R=0.182ft.
36 192 576

The second of equations (17) yields tan§ = — \/§ /4. There are two solutions of this equation, one
in the second quadrant and one in the fourth. In the present problem, cos§ > 0 and sin < 0, so ¢
is in the fourth quadrant. In fact,

3
6 = — arctan ({) = —0.40864 rad.

The graph of the solution (20) is shown in Figure 3.7.4.

u =0.182 cos(8V3 ¢ + 0.409)

MDD\
VANANEAN

Al SR A An undamped free vibration:
u” 4+ 192u =0, u(0) =1/6, u'(0) = —1.
Note that the scale for the horizontal axis is wqt.

Damped Free Vibrations. When the effects of damping are included, the differential
equation governing the motion of the mass is

mu” +yu' + ku = 0. @1

We are especially interested in examining the effect of variations in the damping coefficient
~ for given values of the mass m and spring constant k. The corresponding characteristic
equation is

mr2+'yr+k=0,

and its roots are

ry,rp = =— | -1+ 1——. (22)

Depending on the sign of v2 — 4km, the solution u has one of the following forms:
v —4km > 0, u= Ae"' + Be™'; (23)
N2 —4km =0, u = (A+ Br)e "/, (24)

I 12

N2 —dkm < 0, u=e "M (Acos(ut) + Bsin(ut)), p = 2—(4km - 72) > 0.
m

25)
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Since m, ~y, and k are positive, v2 — 4km is always less than 2. Hence, if v2 — 4km > 0, then
the values of r; and r, given by equation (22) are negative. If v> — 4km < 0, then the values
of ry and r, are complex, but with negative real part. Thus, in all cases, the solution u tends to
zero as t — oo; this occurs regardless of the values of the arbitrary constants A and B —that
is, regardless of the initial conditions. This confirms our intuitive expectation, namely, that
damping gradually dissipates the energy initially imparted to the system, and consequently
the motion dies out with increasing time.

The most interesting case is the third one, which occurs when the damping is small. If we
let A = Rcosé and B = Rsin¢ in equation (25), then we obtain

u = Re "M cos(put — ). (26)

The displacement u lies between the curves u = +Re ™/ (2m)- hence it resembles a cosine
wave whose amplitude decreases as ¢ increases. A typical example is sketched in Figure 3.7.5.
The motion is called a damped oscillation or a damped vibration. The amplitude factor R
depends on m, 7, k, and the initial conditions.

- \_Re—n/@m)

A3k Damped vibration; u = Re™7"/2" cos(put —6).
Note that the scale for the horizontal axis is j7.

Although the motion is not periodic, the parameter p determines the frequency with
which the mass oscillates back and forth; consequently, p is called the quasi-frequency. By
comparing p with the frequency w( of undamped motion, we find that

1/2
p_ (dkm =)/ 2m) 2\
— = =|1—-— =1 - —. 27
wo Vk/m 4km 8km

The last approximation is valid when 2 /4km is small; we refer to this situation as “small
damping.” Thus the effect of small damping is to reduce slightly the frequency of the
oscillation. By analogy with equation (18), the quantity 7, = 2 / 11 is called the quasi-period
of the motion. It is the time between successive maxima or successive minima of the position
of the mass, or between successive passages of the mass through its equilibrium position while
going in the same direction. The relation between 7,; and T is given by

—1/2
T 2 2
L ~p4 (28)
T I 4km 8km

where again the last approximation is valid when ~2/4km is small. Thus small damping
increases the quasi-period.

Equations (27) and (28) reinforce the significance of the dimensionless ratio
2/ (4km). It is not the magnitude of  alone that determines whether damping is large or
small, but the magnitude of > compared to 4km. When ~2/(4km) is small, then damping
has a small effect on the quasi-frequency and quasi-period of the motion. On the other hand,
if we want to study the detailed motion of the mass for all time, then we can never neglect the
damping force, no matter how small.
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As ~2/(4km) increases, the quasi-frequency u decreases and the quasi-period Ty
increases. In fact, u — 0 and Ty — oo as v — 2+km. As indicated by equations (23),
(24), and (25), the nature of the solution changes as v passes through the value 2+/knm.
The motion with v = 2+/km is said to be critically damped. For larger values of ~,
v > 2+/km, the motion is said to be overdamped. In these cases, given by equations (24)
and (23), respectively, the mass may pass through its equilibrium position at most once (see
Figure 3.7.6) and then creep back to it. The mass does not oscillate about the equilibrium, as it
does for small . Two typical examples of critically damped motion are shown in Figure 3.7.6,
and the situation is discussed further in Problems 15 and 16.

oS
\

-1

Critically damped motions: u” + u’ 4+ 0.25u = 0;
u = (A + Bt)e~'/2. The solid blue curve is the solution satisfying
u(0) = 1/2,u’(0) = 7/4; the dashed green curve satisfies

u(0) = 1/2,u'(0) = —7/4.

EXAMPLE 3

The motion of a certain spring-mass system is governed by the differential equation
" ] /
u' + gu +u=0, 29)

where u is measured in feet and ¢ in seconds. If u(0) = 2 and u’(0) = 0, determine the position of
the mass at any time. Find the quasi-frequency and the quasi-period, as well as the time at which the
mass first passes through its equilibrium position. Also find the time 7 such that |u(7)| < 0.1 for all
t>T.

Solution:

The solution of equation (29) is

\/ 255 255
u(t)=e_'/16<Acos< T t>—|—Bsin< T t))

To satisfy the initial conditions, we must choose A = 2 and B = 2/4/255; hence the solution of the
initial value problem is

\/255 2 \/ 255
u=e"1% 2cos t] + sin t
16 \/ﬁ 16

32 /255
= = /Moo X2 — 5], (30)
\/255 16
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ALl A A Vibration with small damping (solid blue curve) and with no damping
(dashed green curve). Both motions have the same initial conditions: u(0) = 2, u’(0) = 0.

where ¢ is in the first quadrant with tand = 1/4/255, so 6 = 0.06254. The displacement of the
mass as a function of time is shown in Figure 3.7.7. For purposes of comparison, we also show the
motion if the damping term is neglected.

The quasi-frequency is u = 1/255/16 = 0.998, and the quasi-period is Ty = 27/ = 6.295s.
These values differ only slightly from the corresponding values (1 and 27, respectively) for the
undamped oscillation. This is evident also from the graphs in Figure 3.7.7, which rise and fall almost
together. The damping coefficient is small in this example: only one-sixteenth of the critical value,
in fact. Nevertheless, the amplitude of the oscillation is reduced rather rapidly.

u
01 /\ u=0.1
_ 32 16 V256,
u=2e cos( 2y 0.06254)
0.05
T
L | ! | | |
40 45 | 50 55, Yo t
|
~0.05F |
|
|
| u=-0.1
|
~0.15

Solution of Example 3 for 40 < ¢t < 60; determination of the time
7 after which |u(z)| < 0.1.

Figure 3.7.8 shows the graph of the solution for 40 < ¢ < 60, together with the graphs of
u = £0.1. From the graph it appears that 7 is about 47.5, and by a more precise calculation we find

that 7 = 47.5149 s.
To find the time at which the mass first passes through its equilibrium position, we refer to

equation (30) and set 1/255¢/16 — 6 equal to 7 /2, the smallest positive zero of the cosine function.
Then, by solving for ¢, we obtain

16
= —<3+5> ~1.637s.

v/255\ 2
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Resistance R Capacitance C
AWV 1€

(1 Inductance L

Impressed voltage E(t)

ALl AR A simple electric circuit.

Electric Circuits. A second example of the occurrence of second-order linear differential
equations with constant coefficients is their use as a model of the flow of electric current
in the simple series circuit shown in Figure 3.7.9. The current /, measured in amperes (A),
is a function of time ¢. The resistance R in ohms (£2), the capacitance C in farads (F), and
the inductance L in henrys (H) are all positive and are assumed to be known constants. The
impressed voltage E in volts (V) is a given function of time. Another physical quantity that
enters the discussion is the total charge Q in coulombs (C) on the capacitor at time ¢. The
relation between charge Q and current / is
dQ

Codr’

The flow of current in the circuit is governed by Kirchhoff’s!! second law: In a closed
circuit the impressed voltage is equal to the sum of the voltage drops in the rest of the circuit.

According to the elementary laws of electricity, we know that

I (€2Y)

The voltage drop across the resistor is R1.

The voltage drop across the capacitor is %

dl
The voltage drop across the inductor is L o

Hence, by Kirchhoff’s law,
Ld—I+RI+iQ=E(t). (32)
dt C
The units for voltage, resistance, current, charge, capacitance, inductance, and time are all
related:

1 volt = 1 ohm - 1 ampere = 1 coulomb/ 1 farad = 1 henry - 1 ampere/ | second.

Substituting for / from equation (31), we obtain the differential equation
1
LO"+ RO+ 0 =E() 33)
for the charge Q. The initial conditions are
O(1y) = Qo,  Q'(t0) = I(ty) = Io. (34)
Thus to know the charge at any time it is sufficient to know the charge on the capacitor and
the current in the circuit at some initial time 7.
Alternatively, we can obtain a differential equation for the current / by differentiating

equation (33) with respect to ¢, and then substituting for dQ/dt from equation (31). The
result is

1
LI" +RI' + E1 = E'(1), (35)

with the initial conditions
I(tp) =1y, I'(ty) =1 (36)

Gustav Kirchhoff (1824-1887) was a German physicist and professor at Breslau, Heidelberg, and Berlin. He
formulated the basic laws of electric circuits about 1845 while still a student at Albertus University in his native
Konigsberg. In 1857 he discovered that an electric current in a resistanceless wire travels at the speed of light. He
is also famous for fundamental work in electromagnetic absorption and emission and was one of the founders of
spectroscopy.



From equation (32) it follows that

E(ty) — RIy — Qo

: c
I = . :
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(37

Hence / is also determined by the initial charge and current, which are physically measurable

quantities.

The most important conclusion from this discussion is that the flow of current in the circuit
is described by an initial value problem of precisely the same form as the one that describes the
motion of a spring-mass system. This is a good example of the unifying role of mathematics:
once you know how to solve second-order linear equations with constant coefficients, you can
interpret the results in terms of mechanical vibrations, electric circuits, or any other physical

situation that leads to the same problem.

Problems

In each of Problems 1 and 2, determine w, R, and ¢ so as to write the
given expression in the form u = R cos(wot — 0).

1. u=3cos(2t) + 4sin(2t)

2. u=—2cos(wt) —3sin(mt)

3. A mass of 100 g stretches a spring 5 cm. If the mass is set in
motion from its equilibrium position with a downward velocity of
10 cm/s, and if there is no damping, determine the position u of the
mass at any time . When does the mass first return to its equilibrium
position?

4. A mass weighing 3 Ib stretches a spring 3 in. If the mass is
pushed upward, contracting the spring a distance of 1 in and then set in
motion with a downward velocity of 2 ft/s, and if there is no damping,
find the position u of the mass at any time 7. Determine the frequency,
period, amplitude, and phase of the motion.

@ 5. A mass of 20 g stretches a spring 5 cm. Suppose that the
mass is also attached to a viscous damper with a damping constant of
400 dyn-s/cm. If the mass is pulled down an additional 2 cm and then
released, find its position u at any time ¢. Plot u versus 7. Determine the
quasi-frequency and the quasi-period. Determine the ratio of the quasi-
period to the period of the corresponding undamped motion. Also find
the time 7 such that |u(7)| < 0.05cm forallz > 7.

6. A spring is stretched 10 cm by a force of 3 N. A mass of 2 kg
is hung from the spring and is also attached to a viscous damper that
exerts a force of 3 N when the velocity of the mass is 5 m/s. If the mass
is pulled down 5 cm below its equilibrium position and given an initial
downward velocity of 10 cm/s, determine its position u at any time .
Find the quasi-frequency p and the ratio of 1 to the natural frequency
of the corresponding undamped motion.

7. A series circuit has a capacitor of 10> F, a resistor of 3 x 10% €2,
and an inductor of 0.2 H. The initial charge on the capacitor is 107° C
and there is no initial current. Find the charge Q on the capacitor at
any time ¢.

8. A vibrating system satisfies the equation u” +~u’+u = 0. Find
the value of the damping coefficient v for which the quasi-period of
the damped motion is 50% greater than the period of the corresponding
undamped motion.

9. Show that the period of motion of an undamped vibration of
a mass hanging from a vertical spring is 27w +/L/g, where L is the
elongation of the spring due to the mass, and g is the acceleration due
to gravity.

10. Show that the solution of the initial value problem

mu" +yu' +ku=0, u(ty) =ug, u'(tp) =u,

can be expressed as the sum u = v 4+ w, where v satisfies the initial
conditions v(fy) = ug, v'(fy) = 0, w satisfies the initial conditions
w(ty) = 0,w'(ty) = uy, andboth v and w satisfy the same differential
equation as u. This is another instance of superposing solutions of
simpler problems to obtain the solution of a more general problem.

11. a. Show that A cos (wot) + Bsin (wot) can be written in the
form r sin(wgyt — #). Determine r and 6 in terms of A and B.
b. If Rcos(wogt — §) = rsin(wgt — ), determine the
relationship among R, r, 6, and 6.

12. If a series circuit has a capacitor of C = 0.8 x 107° F and an
inductor of L = 0.2 H, find the resistance R so that the circuit is
critically damped.

13. Assume that the system described by the differential equation
mu” +~u'+ku = 0is either critically damped or overdamped. Show
that the mass can pass through the equilibrium position at most once,
regardless of the initial conditions.

Hint: Determine all possible values of ¢ for which u = 0.

14. Assume that the system described by the differential equation
mu" +~u’ +ku = 0is critically damped and that the initial conditions
are u(0) = ugy, u'(0) = vg. If vg = 0, show that u — O ast — oo
but that u is never zero. If u is positive, determine a condition on v
that will ensure that the mass passes through its equilibrium position
after it is released.

15. Logarithmic Decrement. a. For the damped oscillation

described by equation (26), show that the time between successive

maximais Ty = 27w /.
b. Show that the ratio of the displacements at two successive
maxima is given by exp(y7;/(2m)). Observe that this ratio
does not depend on which pair of maxima is chosen. The natural
logarithm of this ratio is called the logarithmic decrement and
is denoted by A.
c. Showthat A =7~y /(mp). Since m, i, and A are quantities
that can be measured easily for a mechanical system, this result
provides a convenient and practical method for determining
the damping constant of the system, which is more difficult to
measure directly. In particular, for the motion of a vibrating
mass in a viscous fluid, the damping constant depends on the
viscosity of the fluid; for simple geometric shapes the form of
this dependence is known, and the preceding relation allows the
experimental determination of the viscosity. This is one of the
most accurate ways of determining the viscosity of a gas at high
pressure.
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16. Referring to Problem 15, find the logarithmic decrement of the
system in Problem 5.

17. The position of a certain spring-mass system satisfies the initial
value problem

3
—u" 4+ ku=0,

5 u(0) =2, u'(0) =v.

If the period and amplitude of the resulting motion are observed to be
7 and 3, respectively, determine the values of k£ and v.

18. Consider the initial value problem

mu" +~yu' +ku=0, u(0)=uy u'(0)=yv,.

Assume that v2 < 4km.
a. Solve the initial value problem.
b. Write the solution in the form u(r) = Re™7"/ @™ cos(pur—56).
Determine R in terms of m, 7, k, ug, and vy.
c. Investigate the dependence of R on the damping coefficient
v for fixed values of the other parameters.

19. A cubic block of side / and mass density p per unit volume is
floating in a fluid of mass density p per unit volume, where py > p.
If the block is slightly depressed and then released, it oscillates in the
vertical direction. Assuming that the viscous damping of the fluid and
air can be neglected, derive the differential equation of motion and
determine the period of the motion.

Hint: Use Archimedes’!? principle: an object that is completely or
partially submerged in a fluid is acted on by an upward (buoyant) force
equal to the weight of the displaced fluid.

20. The position of a certain undamped spring-mass system satisfies
the initial value problem

u +2u=0, u(0)=0, u'(0)=2.

a. Find the solution of this initial value problem.

@ b. Plot u versus  and u’ versus 7 on the same axes.

@ c. Plotu’ versus u; that is, plot u(¢) and u/(¢) parametrically

with ¢ as the parameter. This plot is known as a phase plot, and

the uu’-plane is called the phase plane. Observe that a closed

curve in the phase plane corresponds to a periodic solution u(t).

What is the direction of motion on the phase plot as ¢ increases?
21. The position of a certain spring-mass system satisfies the initial
value problem

1
W'+ +2u =0, u(0) =0, W'(0) =2

a. Find the solution of this initial value problem.
@ b. Plot u versus ¢ and u’ versus ¢ on the same axes.
@ c. Plot u’ versus u in the phase plane (see Problem 20).

Identify several corresponding points on the curves in parts b and
c. What is the direction of motion on the phase plot as 7 increases?

22. In the absence of damping, the motion of a spring-mass system
satisfies the initial value problem

mu” +ku=0, u(0)=a, u'(0)=0hb.

a. Show that the kinetic energy initially imparted to the mass
is mb®/2 and that the potential energy initially stored in the
spring is ka®/2, so initially the total energy in the system is
(ka® 4+ mb?) /2.

b. Solve the given initial value problem.

¢. Using the solution in part b, determine the total energy in the
system at any time ¢. Your result should confirm the principle of
conservation of energy for this system.

23. Suppose that a mass m slides without friction on a horizontal
surface. The mass is attached to a spring with spring constant k, as
shown in Figure 3.7.10, and is also subject to viscous air resistance
with coefficient . Show that the displacement u(7) of the mass
from its equilibrium position satisfies equation (21). How does the
derivation of the equation of motion in this case differ from the
derivation given in the text?

u(t)
k

m

SV AL A spring-mass system.

24. Inthe spring-mass system of Problem 23, suppose that the spring
force is not given by Hooke’s law but instead satisfies the relation

Fy = —(ku + eu?),

where &k > 0 and e is small but may be of either sign. The spring is
called a hardening spring if ¢ > 0 and a softening spring if ¢ < 0.
Why are these terms appropriate?
a. Show that the displacement u(t) of the mass from its
equilibrium position satisfies the differential equation

mu” +~yu' + ku + eu® =0.
Suppose that the initial conditions are
u(0) =0, u'(0)=1.

In the remainder of this problem, assume thatm = 1, k = 1, and
v =0.

b. Find u(t) when ¢ = 0 and also determine the amplitude and
period of the motion.

@c. Let ¢ = 0.1. Plot a numerical approximation to the
solution. Does the motion appear to be periodic? Estimate the
amplitude and period.

@ d. Repeat part ¢ for e = 0.2 and ¢ = 0.3.

@ e. Plot your estimated values of the amplitude A and the
period T versus €. Describe the way in which A and T,
respectively, depend on €.

@ f. Repeat parts c, d, and e for negative values of e.

12 Archimedes (287-212 BCE) was the foremost of the ancient Greek
mathematicians. He lived in Syracuse on the island of Sicily. His most notable
discoveries were in geometry, but he also made important contributions to
hydrostatics and other branches of mechanics. His method of exhaustion is a
precursor of the integral calculus developed by Newton and Leibniz almost
two millennia later. He died at the hands of a Roman soldier during the Second
Punic War.




3.8 Forced Periodic Vibrations

We will now investigate the situation in which a periodic external force is applied to a spring-
mass system. The behavior of this simple system models that of many oscillatory systems with
an external force due, for example, to a motor attached to the system. We will first consider
the case in which damping is present and will look later at the idealized special case in which
there is assumed to be no damping.

Forced Vibrations with Damping. The algebraic calculations can be fairly complicated in
this kind of problem, so we will begin with a relatively simple example.

EXAMPLE 1

Suppose that the motion of a certain spring-mass system satisfies the differential equation
5
u +u + Zu:3cost [€))

and the initial conditions
u(0) =2, u'(0) =3. ?2)

Find the solution of this initial value problem and describe the behavior of the solution for
large t.
Solution:
The homogeneous equation corresponding to equation (1) has the characteristic equation
24+ i 0 with roots r = —5 =+ i. Thus a general solution u.(¢) of this homogeneous
equation is

uc(t) = cre 2 cost + cre™/?sint. 3)

A particular solution of equation (1) has the form U(¢#) = Acost 4+ Bsint, where A and B
are found by substituting U(t) for u in equation (1). We have U'(t) = —Asint + Bcost and
U"(t) = —Acost — Bsint. Thus, from equation (1) we obtain

1 1
(ZA+B) cost + (—A+ ZB> sint = 3cost.

Consequently, A and B must satisfy the equations

1 1
~A+B=3, —-A+-B=0,
a4t *3

12 48
with the result that A = 7 and B = 7 Therefore, the particular solution is

U(r) = 12 t+ B t (@)
=1 cos 17 sint,
and the general solution of equation (1) is
12 48
w=u(t) +U) =cre/?cost + coe/?sint + I cost + T sint. )

The remaining constants ¢; and ¢, are determined by the initial conditions (2). From
equation (5), and its first derivative, we have

(0) + 12 2 '(0) ! +o+ 48 3
u =cC — =2, u = ——C C — =3,
" 2T
22 14 . . . . s
soc| = 7 and ¢; = TR Thus we finally arrive at the solution of the given initial value problem
(1), (2), namely,
22 14 12 48
u= ﬁe_’/zcosl—kﬁe_’/zsint—l-ﬁcost—l-ﬁsint. 6)

The graph of the solution (6) is shown by the green curve in Figure 3.8.1.
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Y It is important to note that the solution consists of two distinct parts. The first two terms on the
right-hand side of equation (6) contain the exponential factor e™* /2; as aresult, they rapidly approach
zero. It is customary to call these terms the transient solution. The remaining terms in equation (6)
involve only sines and cosines, so they represent an oscillation that continues indefinitely. We refer
to them as the steady-state solution. The dotted red and dashed blue curves in Figure 3.8.1 show
the transient and the steady-state parts of the solution, respectively. The transient part comes from
the solution of the homogeneous equation corresponding to equation (1) and is needed to satisfy the
initial conditions. The steady-state solution is the particular solution of the full nonhomogeneous
equation. After a fairly short time, the transient solution is vanishingly small and the full solution is
essentially indistinguishable from the steady state.

Full solution

Steady-state
solution

l’ Transient
1 .
o solution
1"
| | J
8 1 16 ¢
ke
o
3

Solution of the initial value problem (1), (2):
u”+u' +5u/4 =3cost,u(0) =2, u'(0) = 3. The full solution (solid green)
is the sum of the transient solution (dotted red) and steady-state solution (dashed
blue).

The equation of motion of a general spring-mass system subject to an external force F(7)
is equation (7) in Section 3.7:

mu (1) +yu'(1) + ku(t) = F(1), @

where m, 7, and k are the mass, damping coefficient, and spring constant of the spring-mass
system. Suppose now that the external force is given by Fycos(wt), where Fy and w are
positive constants representing the amplitude and frequency, respectively, of the force. Then
equation (7) becomes

mu" + yu' + ku = Fycos(wt). 8)

Solutions of equation (8) behave very much like the solution in the preceding example.
The general solution of equation (8) must have the form

u = ciu(t) + couy(t) + Acos(wt) + Bsin(wt) = uc(t) + U(t). 9)

The first two terms on the right-hand side of equation (9) are the general solution u.(#) of the
homogeneous equation corresponding to equation (8), and the latter two terms are a particular
solution U () of the full nonhomogeneous equation. The coefficients A and B can be found, as
usual, by substituting these terms into the differential equation (8), while the arbitrary constants
¢y and ¢, are available to satisfy initial conditions, if any are prescribed. The solutions u(?)



and u,(t) of the homogeneous equation depend on the roots r| and r, of the characteristic
equation mr? 4+ yr 4+ k = 0. Since m, 7, and k are all positive, it follows that 7, and r, either
are real and negative or are complex conjugates with a negative real part. In either case, both
ui(t) and u,(t) approach zero as t+ — oo. Since u.(t) dies out as ¢ increases, it is called the
transient solution. In many applications, it is of little importance and (depending on the value
of «v) may well be undetectable after only a few seconds.

The remaining terms in equation (9)—namely, U(t) = A cos(wt) + B sin(w?) —do not
die out as ¢ increases but persist indefinitely, or as long as the external force is applied. They
represent a steady oscillation with the same frequency as the external force and are called the
steady-state solution or the forced response of the system. The transient solution enables
us to satisfy whatever initial conditions may be imposed. With increasing time, the energy
put into the system by the initial displacement and velocity is dissipated through the damping
force, and the motion then becomes the response of the system to the external force. Without
damping, the effect of the initial conditions would persist for all time.

It is convenient to express U(#) as a single trigonometric term rather than as a sum
of two terms. Recall that we did this for other similar expressions in Section 3.7. Thus we
write

U(t) = Rcos(wt — 0). (10)

The amplitude R and phase ¢ depend directly on A and B and indirectly on the parameters in
the differential equation (8). It is possible to show, by straightforward but somewhat lengthy
algebraic computations, that

2 2
F, m(wy, —w?)
R:KO, COS(S:OT, and siné:%, (11)
where
A—\/ 20,2 2\2 2,72 d 2_k
=\/m*(w; —w?)*+y*w* an wo_z. (12)

Recall that wy is the natural frequency of the unforced system in the absence of damping.

We now investigate how the amplitude R of the steady-state oscillation depends on the
frequency w of the external force. Substituting from equation (12) into the expression for R
in equation (11) and executing some algebraic manipulations, we find that

) —1/2

RE w\2 w \2 ~2

=t 1— (= +T( = where I' = —. 13)
FO wo wo mk

Observe that the quantity Rk / Fy is the ratio of the amplitude R of the forced response to Fy/ k,
the static displacement of the spring produced by a force Fy.

For low frequency excitation—that is, as w — 0—it follows from equation (13) that
Rk/Fy — 1 or R — Fy/k. At the other extreme, for very high frequency excitation,
equation (13) implies that R — 0 as w — o00. At an intermediate value of w the amplitude
may have a maximum. To find this maximum point, we can differentiate R with respect to w
and set the result equal to zero. In this way we find that the maximum amplitude occurs when
W = Wmax, Where

2 2
2 2 Y 2 Y
”max=“o‘m=“0<1‘m>~ 1

Note that w,x < w and that w,y is close to wy when ~ is small. The maximum value
of Ris

F, F 2
Ry = 0 IR [ (15)
ywo/ 1 — (y%/4mk)  Ywo 8mk
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where the last expression is an approximation that is valid when ~ is small (see Problem 5). If

2
Lk > 2, then wy,x as given by equation (14) is imaginary; in this case the maximum value
m

of R occurs for w = 0, and R is a monotone decreasing function of w. Recall that critical
2

damping occurs when A 4.
mk

F
For small ~ it follows from equation (15) that R,,x = Sl Thus, for lightly damped

YWo

systems, the amplitude R of the forced response when w is near w, is quite large even
for relatively small external forces, and the smaller the value of v, the more pronounced
is this effect. This phenomenon is known as resonance, and it is often an important design
consideration. Resonance can be either good or bad, depending on the circumstances. It must
be taken very seriously in the design of structures, such as buildings and bridges, where it can
produce instabilities that might lead to the catastrophic failure of the structure. On the other
hand, resonance can be put to good use in the design of instruments, such as seismographs,
that are intended to detect weak periodic incoming signals.

RE/F,
10 — \
FHOv}’
\
\
8 |
I'=0.015625 —
6
4 |
r=0.1
2
\ \ \ \ \ \ \ >
02 04 06 08 1 12 14 16 18 2 wlo,

m Forced vibration with damping: amplitude of steady-state
response versus frequency of driving force for several values of the
dimensionless damping parameter I' = 2/ mk.

. . . Rk ,
Figure 3.8.2 contains some representative graphs of 7 versus §0 for several values of

0
2

I = 7—}( We refer to I' as a damping parameter, as the following examples will explain.

m
The graph corresponding to I' = 0.015625 is included because this is the value of I' that
occurs in Example 2 below. Note particularly the sharp peak in the curve corresponding to

I' = 0.015625 near — = 1. The limiting case as I' — 0 is also shown. It follows from

wo
Fo

equation (13), or from equations (11) and (12), that R — as v — 0 and hence

2 2
m‘wo—w ’

A is asymptotic to the vertical line w = w, as shown in the figure. As the damping in the
0
system increases, the peak response gradually diminishes.

Figure 3.8.2 also illustrates the usefulness of dimensionless variables. You can easily

verify that each of the quantities RFk, wi’ and I' is dimensionless (see Problem 9d). The
0 Wo

importance of this observation is that the number of significant parameters in the problem has

been reduced to three rather than the five that appear in equation (8). Thus only one family of

curves, of which a few are shown in Figure 3.8.2, is needed to describe the response-versus-

frequency behavior of all systems governed by equation (8).

The phase angle ¢ also depends in an interesting way on w. For w near zero, it follows
from equations (11) and (12) that cos 6 = 1 and sind = 0. Thus § = 0, and the response is
nearly in phase with the excitation, meaning that they rise and fall together and, in particular,
assume their respective maxima nearly together and their respective minima nearly together.



For w = w( we find that cos§ = 0 and sind = 1, so 6 = /2. In this case the response lags
behind the excitation by 7 /2; that is, the peaks of the response occur 7 /2 later than the peaks
of the excitation, and similarly for the valleys. Finally, for w very large, we have cos§ = —1
and sind = 0. Thus 6 = 7 so that the response is nearly out of phase with the excitation; this
means that the response is minimum when the excitation is maximum, and vice versa. Figure
3.8.3 shows the graphs of ¢ versus w /w for several values of I'. For small damping, the phase
transition from near 6 = 0 to near 6 = 7 occurs rather abruptly, whereas for larger values of
the damping parameter, the transition takes place more gradually.

S

I' = 0.015625—
r=0.1

w|a

0 1 2 3 4 wlo,

m Forced vibration with damping: phase of steady-state

response versus frequency of driving force for several values of the
dimensionless damping parameter T' = 2/ mk.

EXAMPLE 2

Consider the initial value problem
1
u” + gu/—f—u =3cos(wt), u(0) =2, u'(0)=0. (16)

Show plots of the solution for different values of the forcing frequency w, and compare them with
corresponding plots of the forcing function.

Solution:

For this system we have wy = 1 and I" = 1/64 = 0.015625. Its unforced motion was discussed in
Example 3 of Section 3.7, and Figure 3.7.7 shows the graph of the solution of the unforced problem.
Figures 3.8.4, 3.8.5, and 3.8.6 show the solution of the forced problem (16) forw = 0.3,w = 1, and
w = 2, respectively. The graph of the corresponding forcing function is also shown in each figure.
In this example the static displacement, Fy/ k, is equal to 3.

Figure 3.8.4 shows the low frequency case, w /wo = 0.3. After the initial transient response
is substantially damped out, the remaining steady-state response is essentially in phase with the
excitation, and the amplitude of the response is somewhat larger than the static displacement. To
be specific, R = 3.2939 and § = 0.041185.

The resonant case, w /wq = 1, is shown in Figure 3.8.5. Here, the amplitude of the steady-state
response is eight times the static displacement, and the figure also shows the predicted phase lag of
m /2 relative to the external force.

The case of comparatively high frequency excitation is shown in Figure 3.8.6. Observe that the
amplitude of the steady forced response is approximately one-third the static displacement and that
the phase difference between the excitation and the response is approximately 7. More precisely, we
find that R = 0.99655 and that § = 3.0585.

3.8 Forced Periodic Vibrations
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\ 4

Solution Forcing function

A forced vibration with damping; the solution (solid blue)

of equation (16) with w = 0.3: u” + %u’ +u = 3cos(0.31),
u(0) =2, u’(0) = 0. The dashed red curve is the external force:
F(t) =3cos(0.31).

20

10

-10

-20

Forcing function Solution

m A forced vibration with damping; the solution (solid blue)
of equation (16) withw = 1: u” + éu/ +u =3cost, u(0) =2,
u’'(0) = 0. The dashed red curve is the external force: F(t) = 3 cost.
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Forcing function Solution

A forced vibration with damping; the solution (solid blue)
of equation (16) with w = 2: u” + éu/ +u =3cos(2t), u(0) =2,
u'(0) = 0. The dashed red curve is the external force: F(t) = 3 cos(2t).




Forced Vibrations Without Damping. We now assume that v = 0 in equation (8), thereby
obtaining the equation of motion of an undamped forced oscillator,

mu” + ku = Fycos(wt). 17)

The form of the general solution of equation (17) is different, depending on whether the forcing
frequency w is different from or equal to the natural frequency wo = +/k/m of the unforced
system. First consider the case w # wy; then the general solution of equation (17) is

u=c cos(wot) + ¢y sin(wot) + cos(wt). (18)

m(w (2) —w?)
The constants ¢; and ¢, are determined by the initial conditions. The resulting motion is, in
general, the sum of two periodic motions of different frequencies (w, and w) and different
amplitudes as well.

It is particularly interesting to suppose that the mass is initially at rest so that the initial
conditions are #(0) = 0 and ©’(0) = 0. Then the energy driving the system comes entirely
from the external force, with no contribution from the initial conditions. In this case it turns
out that the constants ¢ and ¢, in equation (18) are given by

Fy

= — C) = 0, (19)

—
m(wy —w?)

and the solution of equation (17) is
Fy
U=—F—"7- (cos(wt) — cos(wot)). (20)
m(wy —w?)
This is the sum of two periodic functions of different periods but the same amplitude. Making
1 1
use of the trigonometric identities for cos( A+ B) with A = 3 (wop+w)tand B = 2 (wo—w)t,

we can write equation (20) in the form
2F 1 1
U= Wo(wé—wz) sin<§(w0—w)t)) sin(i(wo—i—w)t). @21

If lwg — w]| is small, then wy + w is much greater than |w, — w]|. Consequently,

1 1
sin (E(wo + w)t) is a rapidly oscillating function compared to sin (E(wo —w) t) . Thus the

motion is a rapid oscillation with frequency E(wo + w) but with a slowly varying sinusoidal

sin(%(wo—w)t)‘.

This type of motion, possessing a periodic variation of amplitude, exhibits what is called a
beat. For example, such a phenomenon occurs in acoustics when two tuning forks of nearly
equal frequency are excited simultaneously. In this case the periodic variation of amplitude is
quite apparent to the unaided ear. In electronics, the variation of the amplitude with time is
called amplitude modulation.

amplitude
2Fy

2 2
mjw, —w

EXAMPLE 3

Solve the initial value problem

' +u= %cos(0.8t), u(0) =0, u'(0) =0, (22)
and plot the solution.
Solution:

1
Inthiscasewy = 1,w = 0.8, and Fy = 7 so from equation (21) the solution of the given problem is

u = 2.778 sin(0.1¢) sin(0.9¢). (23)

3.8 Forced Periodic Vibrations
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Y A graph of this solution is shown in Figure 3.8.7. The amplitude variation has a slow frequency of
0.1 and a corresponding slow period of 277 /0.1 = 207 . Note that a half-period of 107 corresponds
to a single cycle of increasing and then decreasing amplitude. The displacement of the spring-mass
system oscillates with a relatively fast frequency of 0.9, which is only slightly less than the natural
frequency wy.

Now imagine that the forcing frequency w is increased, say, to w = 0.9. Then the slow
frequency is halved to 0.05, and the corresponding slow half-period is doubled to 207 . The multiplier
2.7778 also increases substantially, to 5.263. However, the fast frequency is only marginally
increased, to 0.95. Can you visualize what happens as w takes on values closer and closer to the
natural frequency wy = 1?

u
u =2.778sin (0.1¢)
= / u =2.778 sin (0.1¢) sin (0.9¢)
,/,’ \\\ /,’ \\\
2 J/ . ’ \
’ ! *
’ \ 4 *
/ \ ! *
17 \ / R
J \ / \
) I| M I T I 'I/\'l"
\ 10 20 304 40 50 60/v ¢
. KA '
\ U \\ ,I
-1 4 \ ’
4
. K S ’
\ 4 \ /,
_2 | \ 4 \ ya
Seo” u=-2.77778sin (0.1¢) S~ _-~
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1
A beat; the solution (solid blue) of equation (22): u” + u = 3 cos(0.8¢t),
u(0) =0,u'(0) = 0isu = 2.778sin (0.1¢7) sin(0.9¢). The dashed red curve is the external
1
force F(t) = 3 cos(0.8¢t).

Now let us return to equation (17) and consider the case of resonance, where w = wy;
that is, the frequency of the forcing function is the same as the natural frequency of the system.
Then the nonhomogeneous term F cos(wt) is a solution of the homogeneous equation. In this
case the solution of equation (17) is

F
U = ¢y coswot + ¢ sinwgt + 0 tsin(wot). 24)
2mwy
Consider the following example.
EXAMPLE 4
Solve the initial value problem
1
u +u= 2 cost, u(0)=0, u'(0)=0, (25)

and plot the graph of the solution.

Solution:

The general solution of the differential equation is

. r .
U =1 Cost +cpsint + Zsmt,




problem is
t .
u = —sint.
4

The graph of the solution is shown in Figure 3.8.8.

u

10—

3.8 Forced Periodic Vibrations 167

and the initial conditions require that ¢;, = ¢, = 0. Thus the solution of the given initial value

(20)

-10+—

1 t
u' 4+ u= Ecost,u(O) =0,u'(0) =0isu = Zsint.

40 t

Resonance; the solution (solid blue) of equation (25):

Because of the term ¢ sin(wgt), the solution (24) predicts that the motion will become
unbounded as t — oo regardless of the values of ¢; and ¢;, and Figure 3.8.8 bears this
out. Of course, in reality, unbounded oscillations do not occur, because the spring cannot
stretch infinitely far. Moreover, as soon as u becomes large, the mathematical model on
which equation (17) is based is no longer valid, since the assumption that the spring force
depends linearly on the displacement requires that u be small. As we have seen, if damping
is included in the model, the predicted motion remains bounded; however, the response to the
input function F cos(wt) may be quite large if the damping is small and w is close to wy.

Problems

In each of Problems 1 through 3, write the given expression as a
product of two trigonometric functions of different frequencies.

1. sin(7¢t) — sin(6t)

2. cos(mt) + cos(27t)

3. sin(31) + sin(41)

4. A mass of 5 kg stretches a spring 10 cm. The mass
is acted on by an external force of 10sin(z/2) N (newtons)
and moves in a medium that imparts a viscous force of 2 N
when the speed of the mass is 4 cm/s. If the mass is set in motion from
its equilibrium position with an initial velocity of 3 cm/s, formulate
the initial value problem describing the motion of the mass.

5. a. Find the solution of the initial value problem in

Problem 4.
b. Identify the transient and steady-state parts of the solution.
@ c. Plot the graph of the steady-state solution.

O d. If the given external force is replaced by a force of
2cos(wt) of frequency w, find the value of w for which the
amplitude of the forced response is maximum.

@O 6. A mass that weighs 8 Ib stretches a spring 6 in. The system
is acted on by an external force of 8sin(8¢) 1b. If the mass is pulled
down 3 in and then released, determine the position of the mass at any
time. Determine the first four times at which the velocity of the mass
is zero.

7. A spring is stretched 6 in by a mass that weighs 8 Ib. The mass
is attached to a dashpot mechanism that has a damping constant of

1
7 Ib-s/ft and is acted on by an external force of 4 cos(2¢) Ib.

a. Determine the steady-state response of this system.

b. If the given mass is replaced by a mass m, determine the
value of m for which the amplitude of the steady-state response
is maximum.
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8. A spring-mass system has a spring constant of 3 N/m. A mass of
2 kg is attached to the spring, and the motion takes place in a viscous
fluid that offers a resistance numerically equal to the magnitude of the
instantaneous velocity. If the system is driven by an external force
of (3cos(3r) — 2sin(3¢)) N, determine the steady-state response.
Express your answer in the form R cos(wt — 6).

9. In this problem we ask you to supply some of the details in the
analysis of a forced damped oscillator.

a. Derive equations (10), (11), and (12) for the steady-state
solution of equation (8).
b. Derive the expression in equation (13) for Rk/ Fy.
¢. Show that wzm and R,,,x are given by equations (14) and
(15), respectively.
d. Verify that Rk/Fy, w/wg, and T' = ~2/(mk) are all
dimensionless quantities.
10. Find the velocity of the steady-state response given by
equation (10). Then show that the velocity is maximum when w = w.

11. Find the solution of the initial value problem

u +u=F(), u0) =0, u'(0) =0,
where
Fot, 0<t=<m,
F(t) =< Fp(2mr —1t), m <t <2,
0, 2 < t.

Hint: Treat each time interval separately, and match the solutions in
the different intervals by requiring u and u’ to be continuous functions
of t.

@ 12. A series circuit has a capacitor of 0.25 x 107°F, a resistor
of 5% 10° Q, and an inductor of 1 H. The initial charge on the capacitor
is zero. If a 12 V battery is connected to the circuit and the circuit is
closed at r = 0, determine the charge on the capacitor at # = 0.001 s,
att = 0.01 s, and at any time 7. Also determine the limiting charge as
t — oo.

0 13. Consider the forced but undamped system described by the
initial value problem

" +u=3cos(wt), u(0)=0, u'(0)=0.

a. Find the solution u(¢) for w # 1.

@ b. Plot the solution u(t) versus t forw = 0.7, w = 0.8, and
w = 0.9. Describe how the response u(#) changes as w varies in
this interval. What happens as w takes on values closer and closer
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to 1? Note that the natural frequency of the unforced system is
wop = 1.
14. Consider the vibrating system described by the initial value
problem

u’ +u=3cos(wt), u(0)=1, 4'(0)=1.

a. Find the solution for w # 1.

@ b. Plot the solution u(7) versus 7 forw = 0.7, w = 0.8, and
w = 0.9. Compare the results with those of Problem 13; that is,
describe the effect of the nonzero initial conditions.

@ 15. For the initial value problem in Problem 13, plot u’ versus
uforw = 0.7, w = 0.8, and w = 0.9. (Recall that such a plot is
called a phase plot.) Use a ¢ interval that is long enough so that the
phase plot appears as a closed curve. Mark your curve with arrows to
show the direction in which it is traversed as ¢ increases.

Problems 16 through 18 deal with the initial value problem

1
u” + gu’ +4u=F(t), u(0)=2, u'(0)=0.

In each of these problems:

@ a. Plot the given forcing function F(¢) versus ¢, and also plot
the solution u(t) versus ¢ on the same set of axes. Use a ¢ interval
that is long enough so the initial transients are substantially
eliminated. Observe the relation between the amplitude and
phase of the forcing term and the amplitude and phase of the
response. Note that wy = /k/m = 2.

@ b. Draw the phase plot of the solution; that is, plot u’ versus
u.

16. F(r) =3cos(t/4)

17. F(t) = 3cos(2t)

18. F(t) = 3cos(6t)

@© 19. A spring-mass system with a hardening spring (Problem 24
of Section 3.7) is acted on by a periodic external force. In the absence

of damping, suppose that the displacement of the mass satisfies the
initial value problem

1
u +u+ §u3 =coswt, u(0) =0, u'(0)=0.
a. Let w = 1 and plot a computer-generated solution of the
given problem. Does the system exhibit a beat?
b. Plot the solution for several values of w between 1/2 and 2.
Describe how the solution changes as w increases.
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