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CHAPTER 2

First-Order Ditferential
Fquations

24

This chapter deals with differential equations of first order

dy )

dr f, ), Q)]
where f is a given function of two variables. Any differentiable function y = ¢ (¢) that
satisfies this equation for all ¢ in some interval is called a solution, and our objective is
to determine whether such functions exist and, if so, to develop methods for finding them.
Unfortunately, for an arbitrary function f, there is no general method for solving the equation
in terms of elementary functions. Instead, we will describe several methods, each of which is
applicable to a certain subclass of first-order equations.

The most important of these are linear equations (Section 2.1), separable equations
(Section 2.2), and exact equations (Section 2.6). Other sections of this chapter describe
some of the important applications of first-order differential equations, introduce the idea of
approximating a solution by numerical computation, and discuss some theoretical questions
related to the existence and uniqueness of solutions. The final section includes an example of
chaotic solutions in the context of first-order difference equations, which have some important
points of similarity with differential equations and are simpler to investigate.

21 Linear Differential Equations; Method
of Integrating Factors

If the function f in equation (1) depends linearly on the dependent variable y, then equation (1)
is a first-order linear differential equation. In Sections 1.1 and 1.2 we discussed a restricted
type of first-order linear differential equation in which the coefficients are constants. A typical
example is

dy

0= ay + b, 2)
where a and b are given constants. Recall that an equation of this form describes the motion
of an object falling in the atmosphere.

Now we want to consider the most general first-order linear differential equation, which
is obtained by replacing the coefficients a and b in equation (2) by arbitrary functions of . We
will usually write the general first-order linear differential equation in the standard form

dy

dt
where p and g are given functions of the independent variable f. Sometimes it is more
convenient to write the equation in the form

+ p(D)y = g(1), 3)

d
P(t)d—f +0(n)y =G(1), @)

where P, Q, and G are given. Of course, as long as P(#) # 0, you can convert equation (4)
to equation (3) by dividing both sides of equation (4) by P(¢).

In some cases it is possible to solve a first-order linear differential equation immediately
by integrating the equation, as in the next example.




2.1 Linear Differential Equations; Method of Integrating Factors

EXAMPLE 1

Solve the differential equation
2, 4y

Solution:

The left-hand side of equation (5) is a linear combination of dy/dr and y, a combination that also
appears in the rule from calculus for differentiating a product. In fact,

dy d
44+ +2uy=—((4+1Dy);
)2y = - ((4+1Dy);

it follows that equation (5) can be rewritten as

d 2

T (@+y) =4 (6)
Thus, even though y is unknown, we can integrate both sides of equation (6) with respect to ¢, thereby
obtaining

(4+y =27+, @)
where ¢ is an arbitrary constant of integration. Solving for y, we find that

_ 212 n c ®)
YT are i

This is the general solution of equation (5).

Unfortunately, most first-order linear differential equations cannot be solved as illustrated
in Example 1 because their left-hand sides are not the derivative of the product of y and some
other function. However, Leibniz discovered that if the differential equation is multiplied by
a certain function y (), then the equation is converted into one that is immediately integrable
by using the product rule for derivatives, just as in Example 1. The function p () is called an
integrating factor and our main task in this section is to determine how to find it for a given
equation. We will show how this method works first for an example and then for the general
first-order linear differential equation in the standard form (3).

EXAMPLE 2

Find the general solution of the differential equation

dy 1L

dt 2 2 ©)

Draw some representative integral curves; that is, plot solutions corresponding to several values of
the arbitrary constant c. Also find the particular solution whose graph contains the point (0, 1).

Solution:

The first step is to multiply equation (9) by a function x4 (¢), as yet undetermined; thus
dy 1 1 /3
H—+-p(t)y =-p(t . 10
p) -+ Su)y = su(t)e (10)

The question now is whether we can choose () so that the left-hand side of equation (10) is the
derivative of the product . (#) y. For any differentiable function 1 (¢) we have

dp(1)
di

Thus the left-hand side of equation (10) and the right-hand side of equation (11) are identical,
provided that we choose () to satisfy

d 1
M n. (12)

i( (Hy) = (t)d—y+ (1)
ar MY =R

25



26 CHAPTER?2 First-Order Differential Equations

\ 4

Our search for an integrating factor will be successful if we can find a solution of equation (12).
Perhaps you can readily identify a function that satisfies equation (12): What well-known function
from calculus has a derivative that is equal to one-half times the original function? More
systematically, rewrite equation (12) as

1 dup(r) 1
w(ty dr 2
which is equivalent to
ilnlu(t)l = 1. (13)
dt 2

Then it follows that
1
In|u()| = 5! +C,

or
w(t) = ce'’?. (14)

The function 4 (¢) given by equation (14) is an integrating factor for equation (9). Since we do
not need the most general integrating factor, we will choose ¢ to be 1 in equation (14) and use
u(t) = el
Now we return to equation (9), multiply it by the integrating factor e’ /2, and obtain
er/zd_y 1 /2

+ e

1 5t/6
= — . 15
ar T2¢ YT as

By the choice we have made of the integrating factor, the left-hand side of equation (15) is the

derivative of ¢'/2 v, so that equation (15) becomes
E;(eVZy)== %eSVG. (16)
By integrating both sides of equation (16), we obtain
¢y = 265’/6—1—6, 17

where c is an arbitrary constant. Finally, on solving equation (17) for y, we have the general solution
of equation (9), namely,

3
y=2el et (18)

To find the solution passing through the point (0, 1), we set # = 0 and y = 1 in equation (18),
obtaining 1 = 3/5 + ¢. Thus ¢ = 2/5, and the desired solution is

3 2
y=zel 4z (19)

Figure 2.1.1 includes the graphs of equation (18) for several values of ¢ with a direction field
in the background. The solution satisfying y(0) = 1 is shown by the green curve.
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2.1 Linear Differential Equations; Method of Integrating Factors

Let us now extend the method of integrating factors to equations of the form

dy
— +ay = g(1), 20
It y = g(1) (20)

where a is a given constant and g(¢) is a given function. Proceeding as in Example 2, we find
that the integrating factor ;¢ (¢) must satisfy
dp

28 e, 21
q; @1

rather than equation (12). Thus the integrating factor is . (¢) = ¢*. Multiplying equation (20)
by p(t), we obtain

eal% +aeaty — e“lg(t),
or
d at at
E(e y) =e“g(). (22)

By integrating both sides of equation (22), we find that
ey = /e‘”g(t) dt +c, (23)

where c is an arbitrary constant. For many simple functions g(¢), we can evaluate the integral
in equation (23) and express the solution y in terms of elementary functions, as in Example 2.
However, for more complicated functions g(¢), it is necessary to leave the solution in integral
form. In this case

t
y=e / e“g(s)ds + ce™ ™. (24)
fo

Note that in equation (24) we have used s to denote the integration variable to distinguish it
from the independent variable ¢, and we have chosen some convenient value #, as the lower
limit of integration. (See Theorem 2.4.1.) The choice of 7, determines the specific value of the
constant ¢ but does not change the solution. For example, plugging t = ¢, into the solution
formula (24) shows that ¢ = y(#y)e®.

EXAMPLE 3

Find the general solution of the differential equation
dy
— —2y=4—-1 25
T (25)

and plot the graphs of several solutions. Discuss the behavior of solutions as t — oo.

Solution:
Equation (25) is of the form (20) with ¢ = —2; therefore, the integrating factor is j(1) = e~ .
Multiplying the differential equation (25) by 1(#), we obtain
d
e—2t_y _ 26_2ty — 48—21 _ [€_2t,
dt
or
4 (eiZ’y) =4 — 17, (26)
dt

Then, by integrating both sides of this equation, we have

1 1
e—Zty — _26—21 + itefzt + Ze—Zt +ec,
where we have used integration by parts on the last term in equation (26). Thus the general solution

of equation (25) is

7 1 o
y=—1+5t+ce . 27)

27



28 CHAPTER2 First-Order Differential Equations

\ 4 Figure 2.1.2 shows the direction field and graphs of the solution (27) for several values of ¢. The
behavior of the solution for large values of 7 is determined by the term ce?. If ¢ # 0, then the solution
grows exponentially large in magnitude, with the same sign as c itself. Thus the solutions diverge
as ¢ becomes large. The boundary between solutions that ultimately grow positively and those that
ultimately grow negatively occurs when ¢ = 0. If we substitute ¢ = 0 into equation (27) and then set

t = 0, we find that y = —7/4 is the separation point on the y-axis. Note that for this initial value,
7 1
the solutionis y = — 7 + Et; it grows positively, but linearly rather than exponentially.
y
_1:
1
-Z]
~
N
-3]
4

m Direction field and integral curves of y/ — 2y =4 —t.

Now we return to the general first-order linear differential equation (3)
Y pyy =g

where p and g are given functions. To determine an appropriate integrating factor, we multiply
equation (3) by an as yet undetermined function p(#), obtaining

d
u(t)d—f+p(t)u(t)y=u(t)g(t). 28)

Following the same line of development as in Example 2, we see that the left-hand side of
equation (28) is the derivative of the product 1 () y, provided that 1 () satisfies the equation

dp(t)
g = pOnu). 29)

If we assume temporarily that 1 (#) is positive, then we have
I du(r)
w(t) dt

= p(0),
and consequently

In|p(t)] = /p(t) dr + k.

By choosing the arbitrary constant k to be zero, we obtain the simplest possible function for
1, namely,

p (1) =eXP/p(t) dr. (30)
Note that 1 (7) is positive for all 7, as we assumed. Returning to equation (28), we have

d

2, (DY) = p(0)g(). (€3]
Hence

p(r)y =/u(t)g(t) dt +c, (32)
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where c is an arbitrary constant. Sometimes the integral in equation (32) can be evaluated in
terms of elementary functions. However, in general this is not possible, so the general solution
of equation (3) is

y=ﬁ</ﬁj w(s)g(s) ds+c>, (33)

where again 7, is some convenient lower limit of integration. Observe that equation (33)
involves two integrations, one to obtain x (¢) from equation (30) and the other to determine y
from equation (33).

EXAMPLE 4

Solve the initial value problem
ty +2y = 4r%, (34)
y() =2 (35)

Solution:

In order to determine p(7) and g(¢) correctly, we must first rewrite equation (34) in the standard
form (3). Thus we have

2
y/+;y=4t, (36)

so p(1) =2/t and g(r) = 4r. To solve equation (36), we first compute the integrating factor p(7):

2
w(t) :exp(/td[> — 2l — 42

On multiplying equation (36) by () = 2, we obtain
2y + 2ty = (12y) =4r’,
and therefore
2y = /4t3 dt =t* +c,
where ¢ is an arbitrary constant. It follows that, for r > 0,
y=ﬁ+g 37)

is the general solution of equation (34). Integral curves of equation (34) for several values of ¢ are
shown in Figure 2.1.3.
To satisfy initial condition (35), sett = 1 and y = 2 in equation (37): 2 = 1 +¢, so ¢ = 1; thus

_o2, 1
y=rt o >0 (38)

is the solution of the initial value problem (24), (25). This solution is shown by the green curve in
Figure 2.1.3. Note that it becomes unbounded and is asymptotic to the positive y-axis as t — 0
from the right. This is the effect of the infinite discontinuity in the coefficient p(7) at the origin. It
is important to note that while the function y = r> 4 1/¢* for t < 0 is part of the general solution of
equation (34), it is not part of the solution of this initial value problem.

This is the first example in which the solution fails to exist for some values of 7. Again, this
is due to the infinite discontinuity in p(7) at t = 0, which restricts the solution to the interval
0<t< oo

Looking again at Figure 2.1.3, we see that some solutions (those for which ¢ > 0) are asymptotic
to the positive y-axis as  — 0 from the right, while other solutions (for which ¢ < 0) are asymptotic
to the negative y-axis. If we generalize the initial condition (35) to

y(1) = yo, (39)
then ¢ = yo — 1 and the solution (38) becomes

—1
2 Yo
y=1t + %

, t>0 (40)

Note that when y, = 1, so ¢ = 0, the solution is y = 2, which remains bounded and differentiable
even at t = 0. (This is the red curve in Figure 2.1.3.)

29



30 CHAPTER?2 First-Order Differential Equations

Y Asin Example 3, this is another instance where there is a critical initial value, namely, y, = 1, that
separates solutions that behave in one way from others that behave quite differently.

y

(1,2)

-1

Integral curves of the differential equation 7y’ + 2y = 4¢2;
the green curve is the particular solution with y(1) = 2. The red curve is the
particular solution with y(1) = 1.

EXAMPLE 5

Solve the initial value problem
2y +ty =2, (41)
y(0) =L (42)

Solution:

To convert the differential equation (41) to the standard form (3), we must divide equation (41) by
2, obtaining

, t
Ytgy=1 (43)

Thus p(t) = /2, and the integrating factor is () = exp(t>/4). Then multiply equation (43) by
(1), so that

ey 4 %e’2/4y = /4, (44)

The left-hand side of equation (44) is the derivative of e/ 4y, so by integrating both sides of
equation (44), we obtain

14y = /e’z/4dt+c‘ (45)

The integral on the right-hand side of equation (45) cannot be evaluated in terms of the usual
elementary functions, so we leave the integral unevaluated. By choosing the lower limit of integration
as the initial point # = 0, we can replace equation (45) by

1
e’2/4y = / 14 ds +c, (46)
0
where c is an arbitrary constant. It then follows that the general solution y of equation (41) is given by
t
y = e_’2/4/ 352/4 ds + ce_t2/4. 47)
0
To determine the particular solution that satisfies the initial condition (42), sett = 0 and y = 1 in
equation (47):
0
1= eo/ 4 ds + ce®
0
=0+c,
soc=1.
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The main purpose of this example is to illustrate that sometimes the solution must be left in terms
of an integral. This is usually at most a slight inconvenience, rather than a serious obstacle. For a given
value of 7, the integral in equation (47) is a definite integral and can be approximated to any desired
degree of accuracy by using readily available numerical integrators. By repeating this process for
many values of ¢ and plotting the results, you can obtain a graph of a solution. Alternatively, you can
use a numerical approximation method, such as those discussed in Chapter 8, that proceed directly
from the differential equation and need no expression for the solution. Software packages such as
Maple, Mathematica, MATLAB and Sage readily execute such procedures and produce graphs of

solutions of differential equations.

Figure 2.1.4 displays graphs of the solution (47) for several values of c. The particular solution
satisfying the initial condition y(0) = 1 is shown in black. From the figure it may be plausible to
conjecture that all solutions approach a limit as # — oo. The limit can also be found analytically (see

Problem 22).

N % NN s

Integral curves of 2y’ + ¢y = 2; the green curve is the particular

solution satisfying the initial condition y(0) = 1.

Problems

In each of Problems 1 through 8:

8.

AR O o

@ a. Draw a direction field for the given differential equation.
b. Based on an inspection of the direction field, describe how
solutions behave for large 7.

c. Find the general solution of the given differential equation,
and use it to determine how solutions behave as t — oo.

y+3y=t+e ¥
y/_2y =t2€2l
Y+y=te'+1

1
Y+ Ty = 3cos(2t), >0
y =2y =3¢
ty —y=1t%", t>0
¥y +y = 5sin(2t)
2y +y =32

In each of Problems 9 through 12, find the solution of the given initial
value problem.

9.
10.

11.
12.

y —y=2¥, y0) =1

y 42y =te™, y(1)=0

, 2 cost

Y+oy=—7 ym=01>0

ty'+(@+Dy=t, y(2)=1, t>0

In each of Problems 13 and 14:

13.
14.

@ a. Draw a direction field for the given differential equation.
How do solutions appear to behave as t becomes large? Does the
behavior depend on the choice of the initial value a? Let ay be
the value of a for which the transition from one type of behavior
to another occurs. Estimate the value of ay.

b. Solve the initial value problem and find the critical value
exactly.

¢. Describe the behavior of the solution corresponding to the
initial value a.

y(0) =a

y(0) =a

/_l _2
Y—gy= cost,

3)7/ _ 2y — 6—71'1/2,
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In each of Problems 15 and 16:
@ a. Draw a direction field for the given differential equation.
How do solutions appear to behave as + — 0? Does the behavior
depend on the choice of the initial value a? Let a be the critical
value of a, that is, the initial value such that the solutions for
a < agp and the solutions for a > a have different behaviors as
t — o0. Estimate the value of ay.
b. Solve the initial value problem and find the critical value aq
exactly.
c. Describe the behavior of the solution corresponding to the
initial value ay.

15. 0y +(t+ 1)y =2te™",
16. (sint)y’ + (cost)y = €',

y(l) =a, t >0
y(l)=a, O0<t<m
@ 17. Consider the initial value problem

1
y’+§y=2cosl, y(o) =-L

Find the coordinates of the first local maximum point of the solution
fort > 0.

@ 18. Consider the initial value problem

;2 1
ytzy=1-3t

0) = yp.
3 2 y(0) = yo

Find the value of y, for which the solution touches, but does not cross,
the 7-axis.

19. Consider the initial value problem

1
y 4+ ~y =3+2cos(2t),

1 y(0) =0.

a. Find the solution of this initial value problem and describe its
behavior for large 7.

@ b. Determine the value of ¢ for which the solution first
intersects the line y = 12.

20. Find the value of y, for which the solution of the initial value
problem

y —y=1+3sint, y(0) =y,
remains finite as t — oo.
21. Consider the initial value problem
3
Y =3y =342 y(0) =y

Find the value of y, that separates solutions that grow positively as
t — oo from those that grow negatively. How does the solution that
corresponds to this critical value of y, behave as t — c0?

22. Show that all solutions of 2y’ + ty = 2 [equation (41) of the
text] approach a limit as ¢+ — oo, and find the limiting value.
Hint: Consider the general solution, equation (47). Show that the first

term in the solution (47) is indeterminate with form O - co. Then, use
I’Hopital’s rule to compute the limit as 1 — oo.

23. Show that if a and \ are positive constants, and b is any real
number, then every solution of the equation
y +ay =be™
has the property that y — 0 as t — oo.
Hint: Consider the cases @ = A and a # A separately.

In each of Problems 24 through 27, construct a first-order linear
differential equation whose solutions have the required behavior as
t — oo. Then solve your equation and confirm that the solutions do
indeed have the specified property.

24. All solutions have the limit 3 as 1 — oo.

25. All solutions are asymptotic to the line y = 3 — ¢ as t — o0.
26. All solutions are asymptotic to the line y = 2¢ — 5 as t — 0.
27. All solutions approach the curve y = 4 — 12 as t — oo.

28. Variation of Parameters. Consider the following method of
solving the general linear equation of first order:

Y+ p(t)y = g(1). (48)

a. If g(r) = 0 for all ¢, show that the solution is

y = Aexp (—/p(t) dt), (49)

where A is a constant.
b. If g(¢) is not everywhere zero, assume that the solution of
equation (48) is of the form

y=A(1) eXp(-/P(l) dt>, (50)

where A is now a function of 7. By substituting for y in the given
differential equation, show that A(7) must satisfy the condition

A(t) = g(1) exp(/ p(t) dt). (51)

¢. Find A(r) from equation (51). Then substitute for A(¢) in
equation (50) and determine y. Verify that the solution obtained
in this manner agrees with that of equation (33) in the text. This
technique is known as the method of variation of parameters;
it is discussed in detail in Section 3.6 in connection with second-
order linear equations.

In each of Problems 29 and 30, use the method of Problem 28 to solve
the given differential equation.

29, y —2y =12

1
30. y/+?y=cos(2t), t>0
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In Section 1.2 we used a process of direct integration to solve first-order linear differential
equations of the form
dy

— = b, 1
g T M

where a and b are constants. We will now show that this process is actually applicable to a
much larger class of nonlinear differential equations.

We will use x, rather than ¢, to denote the independent variable in this section for two
reasons. In the first place, different letters are frequently used for the variables in a differential
equation, and you should not become too accustomed to using a single pair. In particular, x
often occurs as the independent variable. Further, we want to reserve ¢ for another purpose
later in the section.

The general first-order differential equation is

ol = f(x,y). (@)
dx
Linear differential equations were considered in the preceding section, but if equation (2) is
nonlinear, then there is no universally applicable method for solving the equation. Here, we
consider a subclass of first-order equations that can be solved by direct integration.
To identify this class of equations, we first rewrite equation (2) in the form

d
M(x,y) + N(x, y) % =0. 3)

It is always possible to do this by setting M(x, y) = — f(x,y) and N(x, y) = 1, but there
may be other ways as well. When M is a function of x only and N is a function of y only, then
equation (3) becomes

dy
M(x) + N(y)— =0. 4)
dx
Such an equation is said to be separable, because if it is written in the differential form
M(x)dx + N(y)dy =0, 3)

then, if you wish, terms involving each variable may be placed on opposite sides of the
equation. The differential form (5) is also more symmetric and tends to suppress the distinction
between independent and dependent variables.

A separable equation can be solved by integrating the functions M and N. We illustrate
the process by an example and then discuss it in general for equation (4).

EXAMPLE 1

Show that the equation

dy x?
2= ©
dx 1—y
is separable, and then find an equation for its integral curves.
Solution:
If we write equation (6) as
d
(1= =0, %
dx

then it has the form (4) and is therefore separable. Recall from calculus that if y is a function of x,
then by the chain rule,

d _49 D _ Y
Ef(y)—dyf(y) I —f(y)dx~

2.2 Separable Differential Equations
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Y Forexample, if f(y) =y — y?/3, then

d y’ 2 dy
Lly-L)=a-yE
dx(y 3> d=y0%

Thus the second term in equation (7) is the derivative with respect to x of y — y*/3, and the first
term is the derivative of —x3 /3. Thus equation (7) can be written as

d x> d y3
iy (Sl Zly-Z ) =o,
dx( 3>+dx<y 3

d (X Yo
x\ 3 7T 3 )T

Therefore, by integrating (and multiplying the result by 3), we obtain

or

—x*43y—y =g, (8)

where c is an arbitrary constant.

Equation (8) is an equation for the integral curves of equation (6). A direction field and
several integral curves are shown in Figure 2.2.1. Any differentiable function y = ¢ (x) that
satisfies equation (8) is a solution of equation (6). An equation of the integral curve passing through
a particular point (xg, yo) can be found by substituting xy and y, for x and y, respectively, in
equation (8) and determining the corresponding value of c.

NN
AR N\
AR\ N\
v\ A\
AN v
VoL (I
I |
| [
s |
T I
| |
||( |
(I (B
WA v
v L\ A\
NIV AN
NN N N\
AN NN N\
NN N

m Direction field and integral curves of y' = x2/(1 — y?).

Essentially the same procedure can be followed for any separable equation. Returning to
equation (4), let H; and H, be any antiderivatives of M and N, respectively. Thus

Hi(x) = M(x), Hy(y) =N(), ©
and equation (4) becomes
/ NS
Hi(x) + H,(y) T 0. (10)
If y is regarded as a function of x, then according to the chain rule,
HI S = 5 ) = ). an

Consequently, we can write equation (10) as

d
E(Hl(x) + Hy(y)) =0. (12)



By integrating equation (12) with respect to x, we obtain
Hi(x) + Hy(y) =c, (13)

where ¢ is an arbitrary constant. Any differentiable function y = ¢ (x) that satisfies
equation (13) is a solution of equation (4); in other words, equation (13) defines the solution
implicitly rather than explicitly. In practice, equation (13) is usually obtained from equation (5)
by integrating the first term with respect to x and the second term with respect to y. The
justification for this is the argument that we have just given.

The differential equation (4), together with an initial condition

y(xo0) = Yo, (14)

forms an initial value problem. To solve this initial value problem, we must determine the
appropriate value for the constant ¢ in equation (13). We do this by setting x = xg and y = yy
in equation (13) with the result that

¢ = Hi(xp) + Hy(yo). (15)

Substituting this value of ¢ in equation (13) and noting that

X y
Hy(x) — Hi(xo) =/ M(s)ds, Hx(y) — Hy(yo) = [ N(s)ds,
X0 Yo
we obtain
X y
/ M(s)ds +/ N(s)ds = 0. (16)

Equation (16) is an implicit representation of the solution of the differential equation (4) that
also satisfies the initial condition (14). Bear in mind that to determine an explicit formula for
the solution, you need to solve equation (16) for y as a function of x. Unfortunately, it is often
impossible to do this analytically; in such cases you can resort to numerical methods to find
approximate values of y for given values of x.

EXAMPLE 2

Solve the initial value problem

dy 3x% +4x 42

= oA YO=-L (17)

and determine the interval in which the solution exists.

Solution:

The differential equation can be written as
2y — Ddy = (3x* +4x + 2)dx.
Integrating the left-hand side with respect to y and the right-hand side with respect to x gives
y:—2y=x3+2x>+2x +¢, (18)

where c is an arbitrary constant. To determine the solution satisfying the prescribed initial condition,
we substitute x = 0 and y = —1 in equation (18), obtaining ¢ = 3. Hence the solution of the initial
value problem is given implicitly by

vy =2y =x* +2x% +2x 4 3. (19)

To obtain the solution explicitly, we must solve equation (19) for y in terms of x. That is a simple
matter in this case, since equation (19) is quadratic in y, and we obtain

y=1%+/x3+2x2+2x +4. (20)

Equation (20) gives two solutions of the differential equation, only one of which, however, satisfies
the given initial condition. This is the solution corresponding to the minus sign in equation (20), so

we finally obtain
y=¢(x)=1—+/x3+2x2+2x +4 @0

2.2 Separable Differential Equations
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Y as the solution of the initial value problem (15). Note that if we choose the plus sign by mistake in
equation (20), then we obtain the solution of the same differential equation that satisfies the initial
condition y(0) = 3. Finally, to determine the interval in which the solution (21) is valid, we must find
the interval in which the quantity under the radical is positive. The only real zero of this expression
is x = —2, so the desired interval is x > —2. Some integral curves of the differential equation are
shown in Figure 2.2.2. The green curve passes through the point (0, —1) and thus is the solution of
the initial value problem (15). Observe that the boundary of the interval of validity of the solution
(21) is determined by the point (—2, 1) at which the tangent line is vertical.

7(
\
1 x
NN
r(0,-1)
\\
Integral curves of y = (3x2 +4x +2) /2(y —1); the solution
satisfying y(0) = — 1 is shown in green and is valid for x > — 2.

y

EXAMPLE 3

Solve the separable differential equation

dy _4)c—x3

dx — 4+4y3

(22)

and draw graphs of several integral curves. Also find the solution passing through the point (0, 1)
and determine its interval of validity.

Solution:
Rewriting equation (22) as
(4+yHdy = (4x — x*)dx,
integrating each side, multiplying by 4, and rearranging the terms, we obtain
y 416y +x* —8x2 =, (23)

where c is an arbitrary constant. Any differentiable function y = ¢ (x) that satisfies equation (23) is
a solution of the differential equation (22). Graphs of equation (23) for several values of ¢ are shown
in Figure 2.2.3.

To find the particular solution passing through (0, 1), we set x = 0 and y = 1 in equation (23)
with the result that ¢ = 17. Thus the solution in question is given implicitly by

v 416y +x* —8x2 =17 (24)

It is shown by the green curve in Figure 2.2.3. The interval of validity of this solution extends on
either side of the initial point as long as the function remains differentiable. From the figure we see
that the interval ends when we reach points where the tangent line is vertical. It follows from the
differential equation (22) that these are points where 4 + y> = 0, or y = (—4)!/3 = —1.5874. From
equation (24) the corresponding values of x are x = £3.3488. These points are marked on the graph
in Figure 2.2.3.




Integral curves of y' = (4x —x3) /(4+y?). The solution passing
through (0, 1) is shown by the green curve.

Note 1: Sometimes a differential equation of the form (2):

dy
E—f(an)

has a constant solution y = y,. Such a solution is usually easy to find because if f(x, yp) =0
for some value y, and for all x, then the constant function y = yj is a solution of the differential
equation (2). For example, the equation

dy . (y —3)cosx

dx ~— 1+2y?
has the constant solution y = 3. Other solutions of this equation can be found by separating
the variables and integrating.

Note 2: The investigation of a first-order nonlinear differential equation can sometimes
be facilitated by regarding both x and y as functions of a third variable 7. Then

(25)

d dy/dt
dy _ dy/dt (26)
dx dx/dt

If the differential equation is
d F(x,
D _Fxy) @7
dx  G(x,y)

then, by comparing numerators and denominators in equations (26) and (27), we obtain the
system

D Gy, Y= Fxy) 28)
dr OV gy T Y

At first sight it may seem unlikely that a problem will be simplified by replacing a single
equation by a pair of equations, but in fact, the system (28) may well be more amenable to
investigation than the single equation (27). Chapter 9 is devoted to nonlinear systems of the
form (28).

Note 3: In Example 2 it was not difficult to solve explicitly for y as a function of x.
However, this situation is exceptional, and often it will be better to leave the solution in
implicit form, as in Examples 1 and 3. Thus, in the problems below and in other sections
where nonlinear equations appear, the words “solve the following differential equation” mean
to find the solution explicitly if it is convenient to do so, but otherwise to find an equation
defining the solution implicitly.

2.2 Separable Differential Equations
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Problems

In each of Problems 1 through 8, solve the given differential equation.

2
1. y = al
y
2. y' 4 y?sinx =0
3. y’:cosz(x) cosz(2y)
4. xy' =(1-y)1/?
5. Wy _xze”
dx y+ ey
6. & ¥
dx 1+ y2
7. D_Y
dx x
g 4 _—x
dx y

In each of Problems 9 through 16:

a. Find the solution of the given initial value problem in explicit

form.

@ b. Plot the graph of the solution.

¢. Determine (at least approximately) the interval in which the

solution is defined.

9. Yy =(1-2x))%

10. y' =(1—-2x)/y,
11. xdx+ ye*dy =0,
12. dr/do =r*/0,

y(0) =—1/6
y(1) =-2

y(0) =1
r(l) =2

13,y =xy’(1+20)712 y(0) =1

14. y' =2x/(1+2y), y(2)=0

15. y=3x2—¢€%/(2y—=5), y(0) =1

16. sin(2x) dx +cos(3y)dy =0, y(7/2) =7/3

Some of the results requested in Problems 17 through 22 can be
obtained either by solving the given equations analytically or by
plotting numerically generated approximations to the solutions. Try
to form an opinion about the advantages and disadvantages of each
approach.

@ 17. Solve the initial value problem

1+ 3x2
= 0) =1
Y =526y y(0)

and determine the interval in which the solution is valid.
Hint: To find the interval of definition, look for points where the
integral curve has a vertical tangent.

@ 18. Solve the initial value problem
_ 3x?
T 3y2—4

/

y , (1) =0

and determine the interval in which the solution is valid.

Hint: To find the interval of definition, look for points where the
integral curve has a vertical tangent.

@® 19. Solve the initial value problem
Y =2y +xy% y(0) =1
and determine where the solution attains its minimum value.
@ 20. Solve the initial value problem
, 2—e
y = 312y y(0) =0

and determine where the solution attains its maximum value.

O 21. Consider the initial value problem

y ==y

3 )

a. Determine how the behavior of the solution as ¢ increases
depends on the initial value y.

b. Suppose that yy = 0.5. Find the time 7 at which the solution
first reaches the value 3.98.

¥(0) = yo.

@ 22. Consider the initial value problem

Y= =0
a. Determine how the solution behaves as t — oo.
b. If yy = 2, find the time T at which the solution first reaches
the value 3.99.
c. Find the range of initial values for which the solution lies in
the interval 3.99 < y < 4.01 by the time t = 2.

23. Solve the equation

dy ay+b
dx ~ cy+d’

where a, b, ¢, and d are constants.
24. Use separation of variables to solve the differential equation
dQ

?zr(a—FbQ),

where a, b, r, and Q are constants. Determine how the solution
behaves as t — 00

0(0) = Qo,

Homogeneous Equations. If the right-hand side of the equation
dy/dx = f(x,y) can be expressed as a function of the ratio y/x
only, then the equation is said to be homogeneous.! Such equations
can always be transformed into separable equations by a change of
the dependent variable. Problem 25 illustrates how to solve first-order
homogeneous equations.

'The word “homogeneous” has different meanings in different mathematical
contexts. The homogeneous equations considered here have nothing to do with
the homogeneous equations that will occur in Chapter 3 and elsewhere.
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0 25. Consider the equation through the origin, although the slope changes from one line to
d 4y another. Therefore, the direction field and the integral curves are
& _ Y . (29) symmetric with respect to the origin. Is this symmetry property
dx -y evident from your plot?
a. Show that equation (29) can be rewritten as The method outlined in Problem 25 can be used for any
d _4 homogeneous equation. That is, the substitution y = xv(x) transforms
y _/x) -4 L ) )
P m ; (30) a homogeneous equation into a separable equation. The latter equation
Y can be solved by direct integration, and then replacing v by y/x
thus equation (29) is homogeneous. gives the solution to the original equation. In each of Problems 26
b. Introduce a new dependent variable v so that v = y/x, or through 31:
y = xv(x). Express dy/dx in terms of x, v, and dv/dx. a. Show that the given equation is homogeneous.
c. Replace y and dy/dx in equation (30) by the expressions b. Solve the differential equation.
from part b that involve v and d v/dx. Show that the resulting @ c. Draw a direction field and some integral curves. Are they
differential equation is symmetric with respect to the origin?
_4 2 2
prx VT2 2. D _FEIo+y
dx 1-—v dx x2
2 2
or 27, dy _ X 3y
dx 2x
dv v —4 Y
X— = ) G g dy 4y —3x
dx 1—v S —
X X —y
Observe that equation (31) is separable. dy 4x + 3y
. o TR 29, & _ _
d. Solve equation (31), obtaining v implicitly in terms of x. dx 2x+y
e. Find the solution of equation (29) by replacing v by y/x in d 232
the solution in part d. 30. a@v _r Zoy
f. Draw a direction field and some integral curves for dx 2xy

equation (29). Recall that the right-hand side of equation (29) 5, dy _ 3y* —«?

actually depends only on the ratio y/x. This means that integral dx 2xy
curves have the same slope at all points on any given straight line

23 Modeling with First-Order Differential
Equations

Differential equations are of interest to nonmathematicians primarily because of the possibility
of using them to investigate a wide variety of problems in the physical, biological, and social
sciences. One reason for this is that mathematical models and their solutions lead to equations
relating the variables and parameters in the problem. These equations often enable you to make
predictions about how the natural process will behave in various circumstances. It is often easy
to vary parameters in the mathematical model over wide ranges, whereas this may be very
time-consuming or expensive, if not impossible, in an experimental setting. Nevertheless,
mathematical modeling and experiment or observation are both critically important and
have somewhat complementary roles in scientific investigations. Mathematical models are
validated by comparison of their predictions with experimental results. On the other hand,
mathematical analyses may suggest the most promising directions to explore experimentally,
and they may indicate fairly precisely what experimental data will be most helpful.

In Sections 1.1 and 1.2 we formulated and investigated a few simple mathematical models.
We begin by recapitulating and expanding on some of the conclusions reached in those
sections. Regardless of the specific field of application, there are three identifiable steps that
are always present in the process of mathematical modeling.

Step 1: Construction of the Model. In this step the physical situation is translated into
mathematical terms, often using the steps listed at the end of Section 1.1. Perhaps most critical
at this stage is to state clearly the physical principle(s) that are believed to govern the process.
For example, it has been observed that in some circumstances heat passes from a warmer to
a cooler body at a rate proportional to the temperature difference, that objects move about
in accordance with Newton’s laws of motion, and that isolated insect populations grow at
a rate proportional to the current population. Each of these statements involves a rate of
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change (derivative) and consequently, when expressed mathematically, leads to a differential
equation. The differential equation is a mathematical model of the process.

It is important to realize that the mathematical equations are almost always only
an approximate description of the actual process. For example, bodies moving at speeds
comparable to the speed of light are not governed by Newton’s laws, insect populations do
not grow indefinitely as stated because of eventual lack of food or space, and heat transfer is
affected by factors other than the temperature difference. Thus you should always be aware of
the limitations of the model so that you will use it only when it is reasonable to believe that
it is accurate. Alternatively, you can adopt the point of view that the mathematical equations
exactly describe the operation of a simplified physical model, which has been constructed (or
conceived of) so as to embody the most important features of the actual process. Sometimes,
the process of mathematical modeling involves the conceptual replacement of a discrete
process by a continuous one. For instance, the number of members in an insect population
changes by discrete amounts; however, if the population is large, it seems reasonable to
consider it as a continuous variable and even to speak of its derivative.

Step 2: Analysis of the Model. Once the problem has been formulated mathematically,
you are often faced with the problem of solving one or more differential equations or, failing
that, of finding out as much as possible about the properties of the solution. It may happen
that this mathematical problem is quite difficult, and if so, further approximations may be
indicated at this stage to make the problem mathematically tractable. For example, a nonlinear
equation may be approximated by a linear one, or a slowly varying coefficient may be replaced
by a constant. Naturally, any such approximations must also be examined from the physical
point of view to make sure that the simplified mathematical problem still reflects the essential
features of the physical process under investigation. At the same time, an intimate knowledge
of the physics of the problem may suggest reasonable mathematical approximations that will
make the mathematical problem more amenable to analysis. This interplay of understanding
of physical phenomena and knowledge of mathematical techniques and their limitations
is characteristic of applied mathematics at its best, and it is indispensable in successfully
constructing useful mathematical models of intricate physical processes.

Step 3: Comparison with Experiment or Observation. Finally, having obtained the
solution (or at least some information about it), you must interpret this information in
the context in which the problem arose. In particular, you should always check that the
mathematical solution appears physically reasonable. If possible, calculate the values of the
solution at selected points and compare them with experimentally observed values. Or ask
whether the behavior of the solution after a long time is consistent with observations. Or
examine the solutions corresponding to certain special values of parameters in the problem. Of
course, the fact that the mathematical solution appears to be reasonable does not guarantee that
it is correct. However, if the predictions of the mathematical model are seriously inconsistent
with observations of the physical system it purports to describe, this suggests that errors have
been made in solving the mathematical problem, that the mathematical model itself needs
refinement, or that observations must be made with greater care.

The examples in this section are typical of applications in which first-order differential
equations arise.

EXAMPLE 1 | Mixing

At time r = 0 a tank contains Q Ib of salt dissolved in 100 gal of water; see Figure 2.3.1. Assume
1
that water containing 7 Ib of salt per gallon is entering the tank at a rate of » gal/min and that the

well-stirred mixture is draining from the tank at the same rate. Set up the initial value problem that
describes this flow process. Find the amount of salt Q(¢) in the tank at any time, and also find the
limiting amount Q that is present after a very long time. If r = 3 and Q¢ = 20/, find the time T
after which the salt level is within 2% of Q. Also find the flow rate that is required if the value of
T is not to exceed 45 min.
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Y Solution:

rgal/min, 1 Ib/gal

r gal/min

m The water tank in Example 1.

We assume that salt is neither created nor destroyed in the tank. Therefore, variations in the
amount of salt are due solely to the flows in and out of the tank. More precisely, the rate of change
of salt in the tank, d Q/dt, is equal to the rate at which salt is flowing in minus the rate at which it is
flowing out. In symbols,

—— = rate in — rate out. (D)
dt

The rate at which salt enters the tank is the concentration % Ib/gal times the flow rate r gal/min, or
r/4 1b/min. To find the rate at which salt leaves the tank, we need to multiply the concentration of
salt in the tank by the rate of outflow, r gal/min. Since the rates of flow in and out are equal, the
volume of water in the tank remains constant at 100 gal, and since the mixture is “well-stirred,” the
concentration throughout the tank is the same, namely, Q(#) /100 Ib/gal. Therefore, the rate at which
salt leaves the tank is » Q(#) /100 1b/min. Thus the differential equation governing this process is

dQ r rQ
. @
dt 4 100
The initial condition is
0(0) = Qo. 3)

Upon thinking about the problem physically, we might anticipate that eventually the mixture
originally in the tank will be essentially replaced by the mixture flowing in, whose concentration is

7 Ib/gal. Consequently, we might expect that ultimately the amount of salt in the tank would be very

close to 25 Ib. We can also find the limiting amount Q; = 25 by setting d Q/dt equal to zero in
equation (2) and solving the resulting algebraic equation for Q.

To solve the initial value problem (2), (3) analytically, note that equation (2) is linear. (It is
also separable, see Problem 24 in Section 2.2.) Rewriting the differential equation (2) in the standard
form for a linear differential equation, we have

dg rQ r

— =-. 4
dt+100 4 @)

Thus the integrating factor is /100

and the general solution is
O(1) = 25+ ce™"/10, )

where c is an arbitrary constant. To satisfy the initial condition (3), we must choose ¢ = Qy — 25.
Therefore, the solution of the initial value problem (2), (3) is

o(t) =254+ (Qp — 25)e—rt/100, ©
or
O(1) = 25(1 — e~ "1/100y 4 Qoe—n/mo_ o

From either form of the solution, (6) or (7), you can see that Q(t) — 25 (Ib) as t — o0, so the
limiting value Q is 25, confirming our physical intuition.
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\ 4

Further, Q(t) approaches the limit more rapidly as r increases. In interpreting the solution (7),
note that the second term on the right-hand side is the portion of the original salt that remains at time
t, while the first term gives the amount of salt in the tank as a consequence of the flow processes.
Plots of the solution for » = 3 and for several values of Q are shown in Figure 2.3.2.

Q
50

40

30

20

10

\ \ \ \ \
20 40 60 80 100 ¢

Solutions of the initial value problem (2):
dQ/dt =r/4 —rQ/100, Q(0) = Q for r = 3 and several values of Q.

Now suppose that » = 3 and Qg = 20, = 50; then equation (6) becomes
O(1) =25 4 25¢0-0% ®)
Since 2% of 25 is 0.5, we wish to find the time 7 at which Q(#) has the value 25.5. Substituting
t =T and Q = 25.5 in equation (8) and solving for 7', we obtain

T— In(50)
0.03

= 130.4 (min). ©)

To determine r so that T = 45, return to equation (6), set t = 45, Q¢ = 50, Q(t) = 25.5, and
solve for . The result is
100 .
r = — In50 = 8.69 gal/min. (10)
45
Since this example is hypothetical, the validity of the model is not in question. If the flow rates
are as stated, and if the concentration of salt in the tank is uniform, then the differential equation
(1) is an accurate description of the flow process. Although this particular example has no special
significance, models of this kind are often used in problems involving a pollutant in a lake, or a drug
in an organ of the body, for example, rather than a tank of salt water. In such cases the flow rates
may not be easy to determine or may vary with time. Similarly, the concentration may be far from
uniform in some cases. Finally, the rates of inflow and outflow may be different, which means that
the variation of the amount of liquid in the problem must also be taken into account.

EXAMPLE 2 | Compound Interest

Suppose that a sum of money, Sy, is deposited in a bank or money fund that pays interest at an
annual rate r. The value S(7) of the investment at any time ¢ depends on the frequency with which
interest is compounded as well as on the interest rate. Financial institutions have various policies
concerning compounding: some compound monthly, some weekly, and some even daily. Assume
that compounding takes place continuously. Set up an initial value problem that describes the growth
of the investment.
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Y Solution:

The rate of change of the value of the investment is dS/dt, and this quantity is equal to the rate at
which interest accrues, which is the interest rate r times the current value of the investment S(¢). Thus
as
T
is the differential equation that governs the process. If we let ¢ denote the time, in years, since the
original deposit, the corresponding initial condition is

S(0) = Sp. (12)

rS (11)

Then the solution of the initial value problem (8) gives the balance S(7) in the account at any time
t. This initial value problem is readily solved, since the differential equation (11) is both linear and
separable. Consequently, by solving equations (11) and (12), we find that

S(t) = Spe”. (13)

Thus a bank account with continuously compounding interest grows exponentially.

The model in Example 2 is easily extended to situations involving deposits or withdrawals
in addition to the accrual of interest, dividends, or annual capital gains. If we assume that the
deposits or withdrawals take place at a constant rate k, then equation (11) is replaced by

ds
— =rS+k,
dt ot
or, in standard form,
ds
= _—rS=k, 14
a7 (14)

where k is positive for deposits and negative for withdrawals.
Equation (14) is linear with the integrating factor e, so its general solution is

k
S(t) =ce" — -,
,

where c is an arbitrary constant. To satisfy the initial condition (12), we must choose ¢ =
So + k/ r. Thus the solution of the initial value problem (10), (8) is

k
S(t) = Spe’" + ;(e” - 1. (15)

The first term in expression (15) is the part of S(#) that is due to the return accumulated on
the initial amount Sy, and the second term is the part that is due to the deposit or withdrawal
rate k.

The advantage of stating the problem in this general way without specific values for S,
r, or k lies in the generality of the resulting formula (15) for S(z). With this formula we can
readily compare the results of different investment programs or different rates of return.

For instance, suppose that one opens an individual retirement account (IRA) at age 25
and makes annual investments of $2000 thereafter in a continuous manner. Assuming a rate
of return of 8%, what will be the balance in the IRA at age 65? We have S, = 0, » = 0.08,
and k = $2000, and we wish to determine S(40). From equation (15) we have

S(40) = 25,000(e>* — 1) = $588,313. (16)

It is interesting to note that the total amount invested is $80,000, so the remaining amount of
$508,313 results from the accumulated return on the investment. The balance after 40 years
is also fairly sensitive to the assumed rate. For instance, S(40) = $508,948 if » = 0.075 and
S(40) = $681,508 if r = 0.085.

Let us now examine the assumptions that have gone into the model. First, we have
assumed that the return is compounded continuously and that additional capital is invested
continuously. Neither of these is true in an actual financial situation. We have also assumed
that the return rate r is constant for the entire period involved, whereas in fact it is likely to
fluctuate considerably. Although we cannot reliably predict future rates, we can use solution
(15) to determine the approximate effect of different rate projections. It is also possible to
consider » and k in equation (14) to be functions of ¢ rather than constants; in that case, of
course, the solution may be much more complicated than equation (15).

The initial value problem (10), (8) and the solution (15) can also be used to analyze a
number of other financial situations, including annuities, mortgages, and automobile loans.

43
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Let us now compare the results from the model with continuously compounded interest
(and no other deposits or withdrawals) with the corresponding situation in which compounding
occurs at finite time intervals. If interest is compounded once a year, then after ¢ years

S(t) = So(1+41r)".

If interest is compounded twice a year, then at the end of 6 months the value of the investment
is So(1 4 (r/2)), and at the end of 1 year it is So(1 + r/2)2. Thus, after ¢ years, we have

r 2t
S(t) = 50(1 + 5) .

In general, if interest is compounded m times per year, then
7\ mt
sty =So(1+ )" (17)
m
The relation between formulas (13) and (17) is clarified if we recall from calculus that

ro\mt
lim 50(1 + —> = Spe’".
m—00 m

The same model applies equally well to more general investments in which dividends and
perhaps capital gains can also accumulate, as well as interest. In recognition of this fact, we
will from now on refer to r as the rate of return.

Table 2.3.1 shows the effect of changing the frequency of compounding for a return
rate r of 8%. The second and third columns are calculated from equation (17) for quarterly
and daily compounding, respectively, and the fourth column is calculated from equation (13)
for continuous compounding. The results show that the frequency of compounding is not
particularly important in most cases. For example, during a 10-year period the difference
between quarterly and continuous compounding is $17.50 per $1000 invested, or less than
$2/year. The difference would be somewhat greater for higher rates of return and less for lower
rates. From the first row in the table, we see that for the return rate r = 8%, the annual yield
for quarterly compounding is 8.24% and for daily or continuous compounding it is 8.33%.

Growth of Capital at a Return Rater = 8%

TABLE 2.3.1 for Several Modes of Compounding

S(¢)/S(ty) From Equation (17) S(¢)/S(ty)
Years m=4 m = 365 From Equation (13)
1 1.0824 1.0833 1.0833
2 1.1717 1.1735 1.1735
5 1.4859 1.4918 1.4918
10 2.2080 2.2253 2.2255
20 4.8754 4.9522 4.9530
30 10.7652 11.0203 11.0232
40 23.7699 24.5239 24.5325

EXAMPLE 3 | ChemicalsinaPond

Consider a pond that initially contains 10 million gallons of fresh water. Water containing an
undesirable chemical flows into the pond at the rate of 5 million gallons per year, and the mixture
in the pond flows out at the same rate. The concentration v (¢) of chemical in the incoming water
varies periodically with time according to the expression y(#) = 2 + sin(2¢) g/gal. Construct a
mathematical model of this flow process and determine the amount of chemical in the pond at any
time. Plot the solution and describe in words the effect of the variation in the incoming concentration.

Solution:

Since the incoming and outgoing flows of water are the same, the amount of water in the pond remains

constant at 107 gal. Let us denote time by 7, measured in years, and the chemical by Q(7), measured

in grams. This example is similar to Example 1, and the same inflow/outflow principle applies. Thus
daQ

—— = rate in — rate out,
dt
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where “rate in” and “rate out” refer to the rates at which the chemical flows into and out of the pond,
respectively. The rate at which the chemical flows in is given by

rate in = (5 x 10%) gal/yr (2 + sin(2t)) g/gal. (18)
The concentration of chemical in the pond is Q(t) /107 g/gal, so the rate of flow out is
rate out = (5 x 10°) gal/year (Q(r)/107) g/gal = Q(r)/2 g/yr. (19)
Thus we obtain the differential equation
‘;—? = (5 x 10°)(2 +sin(21)) — %, (20)

where each term has the units of g/yr.

To make the coefficients more manageable, it is convenient to introduce a new dependent
variable defined by ¢(t) = Q(t)/10°, or Q(t) = 10°¢(¢). This means that ¢(¢) is measured
in millions of grams, or megagrams (metric tons). If we make this substitution in equation (20), then
each term contains the factor 10°, which can be canceled. If we also transpose the term involving
q(t) to the left-hand side of the equation, we finally have

49 1 104 5sin(2n) @
— 4+ -qg = sin(21).
ar 217

Originally, there is no chemical in the pond, so the initial condition is

q(0) =0. (22)

Equation (21) is linear, and although the right-hand side is a function of time, the coefficient
of ¢ is a constant. Thus the integrating factor is e’/2. Multiplying equation (21) by this factor and
integrating the resulting equation, we obtain the general solution

40 10
51([) =20— _COS(ZI) =+ —sin(zz) +C€7t/2, (23)
17 17
The initial condition (22) requires that c = —300/17, so the solution of the initial value problem
17), (18) is
40 10 300
q(t) =20 — 7 cos(2t) + 7 sin(2¢t) — T e /2. 24)

A plot of the solution (24) is shown in Figure 2.3.3, along with the line ¢ = 20 (shown in black).
The exponential term in the solution is important for small #, but it diminishes rapidly as ¢ increases.
Later, the solution consists of an oscillation, due to the sin(2¢) and cos(2¢) terms, about the constant
level g = 20. Note that if the sin(2¢) term were not present in equation (21), then ¢ = 20 would be
the equilibrium solution of that equation.

q
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Solution of the initial value problem (17), (18):
dq/dt +q/2 =10+ 5sin(2t), g(0) = 0.

Let us now consider the adequacy of the mathematical model itself for this problem. The model
rests on several assumptions that have not yet been stated explicitly. In the first place, the amount of
water in the pond is controlled entirely by the rates of flow in and out—none is lost by evaporation
or by seepage into the ground, and none is gained by rainfall. The same is true of the chemical; it
flows into and out of the pond, but none is absorbed by fish or other organisms living in the pond. In
addition, we assume that the concentration of chemical in the pond is uniform throughout the pond.
Whether the results obtained from the model are accurate depends strongly on the validity of these
simplifying assumptions.
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EXAMPLE 4 | Escape Velocity

A body of constant mass m is projected away from the earth in a direction perpendicular to the earth’s
surface with an initial velocity vy. Assuming that there is no air resistance, but taking into account
the variation of the earth’s gravitational field with distance, find an expression for the velocity during
the ensuing motion. Also find the initial velocity that is required to lift the body to a given maximum
altitude A, above the surface of the earth, and find the least initial velocity for which the body will
not return to the earth; the latter is the escape velocity.

A body in the earth’s gravitational field is pulled
towards the center of the earth.

Solution:

Let the positive x-axis point away from the center of the earth along the line of motion with
x = 0 lying on the earth’s surface; see Figure 2.3.4. The figure is drawn horizontally to remind
you that gravity is directed toward the center of the earth, which is not necessarily downward from
a perspective away from the earth’s surface. The gravitational force acting on the body (that is, its
weight) is inversely proportional to the square of the distance from the center of the earth and is given
by w(x) = —k/(x + R)?, where k is a constant, R is the radius of the earth, and the minus sign
signifies that w(x) is directed in the negative x direction. We know that on the earth’s surface w(0)
is given by —mg, where g is the acceleration due to gravity at sea level. Therefore, k = mgR* and

2
w(x) = - % . 25)
Since there are no other forces acting on the body, the equation of motion is
2
m Z—: =— % : (26)
and the initial condition is
v(0) = vq. 27

Unfortunately, equation (26) involves too many variables since it depends on 7, x, and v. To
remedy this situation, we can eliminate ¢ from equation (26) by thinking of x, rather than ¢, as the
independent variable. Then we can express dv/dt in terms of dv /dx by using the chain rule; hence

dv dv dx dv

dit dxdt dx’
and equation (26) is replaced by
2
vj—; = —% . (28)
Equation (28) is separable but not linear, so by separating the variables and integrating, we obtain
2 ¢R>

Vo . 29
2 T Ryx € 2

Since x = 0 when ¢ = 0, the initial condition (27) at + = 0 can be replaced by the condition that
v = vy when x = 0. Hence ¢ = (vé/Z) — gR and

2gR?
R+x

2
v=d=4/vy—2gR+ (30)
Note that equation (30) gives the velocity as a function of altitude rather than as a function of time.
The plus sign must be chosen if the body is rising, and the minus sign must be chosen if it is falling
back to earth.
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To determine the maximum altitude A, that the body reaches, we set v = 0 and x = A, in
equation (30) and then solve for A,,y, obtaining

2

vOR

Amax = - - (31
2gR — vy

Solving equation (31) for v(, we find the initial velocity required to lift the body to the altitude Ay,
namely,

(32

The escape velocity v, is then found by letting A,,.,x — 00. Consequently,

ve =\/28R. (33)

The numerical value of v, is approximately 6.9 mi/s, or 11.1 km/s.

The preceding calculation of the escape velocity neglects the effect of air resistance, so the
actual escape velocity (including the effect of air resistance) is somewhat higher. On the other hand,
the effective escape velocity can be significantly reduced if the body is transported a considerable
distance above sea level before being launched. Both gravitational and frictional forces are thereby
reduced; air resistance, in particular, diminishes quite rapidly with increasing altitude. You should
keep in mind also that it may well be impractical to impart too large an initial velocity instantaneously;
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space vehicles, for instance, receive their initial acceleration during a period of a few minutes.

Problems

1. Consider a tank used in certain hydrodynamic experiments.
After one experiment the tank contains 200 L of a dye solution with
a concentration of 1 g/L. To prepare for the next experiment, the tank
is to be rinsed with fresh water flowing in at a rate of 2 L/min, the
well-stirred solution flowing out at the same rate. Find the time that
will elapse before the concentration of dye in the tank reaches 1% of
its original value.

2. A tank initially contains 120 L of pure water. A mixture
containing a concentration of v g/L of salt enters the tank at a rate
of 2 L/min, and the well-stirred mixture leaves the tank at the same
rate. Find an expression in terms of + for the amount of salt in the
tank at any time #. Also find the limiting amount of salt in the tank as
t — 00.

3. A tank contains 100 gal of water and 50 oz of salt. Water
1 1
containing a salt concentration of 7 14 3 sint | oz/gal flows into

the tank at a rate of 2 gal/min, and the mixture in the tank flows out at
the same rate.
a. Find the amount of salt in the tank at any time.
@ b. Plot the solution for a time period long enough so that you
see the ultimate behavior of the graph.
¢. The long-time behavior of the solution is an oscillation about
a certain constant level. What is this level? What is the amplitude
of the oscillation?

4. Suppose that a tank containing a certain liquid has an outlet near
the bottom. Let /() be the height of the liquid surface above the outlet
at time ¢. Torricelli’s” principle states that the outflow velocity v at the
outlet is equal to the velocity of a particle falling freely (with no drag)
from the height .

2Evangc:lista Torricelli (1608-1647), successor to Galileo as court
mathematician in Florence, published this result in 1644. In addition to this
work in fluid dynamics, he is also known for constructing the first mercury
barometer and for making important contributions to geometry.

a. Show that v = /2gh, where g is the acceleration due to
gravity.

b. By equating the rate of outflow to the rate of change of liquid
in the tank, show that 4(#) satisfies the equation

A(h)‘jl—}; = —aan/2gh, (34)

where A(h) is the area of the cross section of the tank at height /
and a is the area of the outlet. The constant « is a contraction
coefficient that accounts for the observed fact that the cross
section of the (smooth) outflow stream is smaller than a. The
value of « for water is about 0.6.

c. Consider a water tank in the form of a right circular cylinder
that is 3m high above the outlet. The radius of the tank is 1m,
and the radius of the circular outlet is 0.1 m. If the tank is initially
full of water, determine how long it takes to drain the tank down
to the level of the outlet.

5. Suppose that a sum S is invested at an annual rate of return r
compounded continuously.
a. Find the time T required for the original sum to double in
value as a function of r.
b. Determine T if r = 7%.
c. Find the return rate that must be achieved if the initial
investment is to double in 8 years.

6. A young person with no initial capital invests k dollars per
year at an annual rate of return r. Assume that investments are made
continuously and that the return is compounded continuously.

a. Determine the sum S(7) accumulated at any time 7.

b. If r =7.5%, determine k so that $1 million will be available
for retirement in 40 years.

c. If k = $2000/year, determine the return rate r that must be
obtained to have $1 million available in 40 years.
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7. A certain college graduate borrows $8000 to buy a car. The
lender charges interest at an annual rate of 10%. Assuming that interest
is compounded continuously and that the borrower makes payments
continuously at a constant annual rate k, determine the payment rate
k that is required to pay off the loan in 3 years. Also determine how
much interest is paid during the 3-year period.

O 8. A recent college graduate borrows $150,000 at an interest
rate of 6% to purchase a condominium. Anticipating steady salary
increases, the buyer expects to make payments at a monthly rate of
800 + 10z, where ¢ is the number of months since the loan was made.
a. Assuming that this payment schedule can be maintained,
when will the loan be fully paid?
b. Assuming the same payment schedule, how large aloan could
be paid off in exactly 20 years?

9. An important tool in archeological research is radiocarbon
dating, developed by the American chemist Willard F. Libby.? This
is a means of determining the age of certain wood and plant remains,
and hence of animal or human bones or artifacts found buried at the
same levels. Radiocarbon dating is based on the fact that some wood
or plant remains contain residual amounts of carbon-14, a radioactive
isotope of carbon. This isotope is accumulated during the lifetime
of the plant and begins to decay at its death. Since the half-life of
carbon-14 is long (approximately 5730 years),* measurable amounts
of carbon-14 remain after many thousands of years. If even a tiny
fraction of the original amount of carbon-14 is still present, then by
appropriate laboratory measurements the proportion of the original
amount of carbon-14 that remains can be accurately determined. In
other words, if Q(t) is the amount of carbon-14 at time 7 and Q) is
the original amount, then the ratio Q(7)/ Qg can be determined, as
long as this quantity is not too small. Present measurement techniques
permit the use of this method for time periods of 50,000 years or more.

a. Assuming that Q satisfies the differential equation
Q' = —rQ, determine the decay constant r for carbon-14.

b. Find an expression for Q(¢) at any time 7, if Q(0) = Q.

¢. Suppose that certain remains are discovered in which the
current residual amount of carbon-14 is 20% of the original
amount. Determine the age of these remains.

@ 10. Suppose that a certain population has a growth rate that
varies with time and that this population satisfies the differential
equation

d
d—f =05+ sint)?
a. If y(0) = 1, find (or estimate) the time 7 at which the

population has doubled. Choose other initial conditions and
determine whether the doubling time 7 depends on the initial
population.

b. Suppose that the growth rate is replaced by its average value
1/10. Determine the doubling time 7 in this case.

c. Suppose that the term sinz in the differential equation is
replaced by sin 27 ¢; that is, the variation in the growth rate has a
substantially higher frequency. What effect does this have on the
doubling time 7?

d. Plot the solutions obtained in parts a, b, and ¢ on a single set
of axes.

3willard F. Libby (1908-1980) was born in rural Colorado and received his
education at the University of California at Berkeley. He developed the method
of radiocarbon dating beginning in 1947 while he was at the University of
Chicago. For this work he was awarded the Nobel Prize in Chemistry in 1960.

*McGraw-Hill Encyclopedia of Science and Technology (8th ed.) (New York:
McGraw-Hill, 1997), Vol. 5, p. 48.
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problem

Suppose that a certain population satisfies the initial value

dy/dt =r(t)y —k, y(0) =y,

where the growth rate r(t) is given by r(#) = (1 + sinz)/5, and k
represents the rate of predation.
@ a. Suppose that k = 1/5. Plot y versus ¢ for several values
of y between 1/2 and 1.
b. Estimate the critical initial population y. below which the
population will become extinct.
c. Choose other values of k and find the corresponding y. for
each one.
@ d. Use the data you have found in parts b and ¢ to plot y,
versus k.

12. Newton’s law of cooling states that the temperature of an object
changes at a rate proportional to the difference between its temperature
and that of its surroundings. Suppose that the temperature of a cup of
coffee obeys Newton’s law of cooling. If the coffee has a temperature
of 200°F when freshly poured, and 1 min later has cooled to 190°F in
a room at 70°F, determine when the coffee reaches a temperature of
150°F.

13. Heat transfer from a body to its surroundings by radiation,
based on the Stefan—Boltzmann® law, is described by the differential
equation
du
dt
where u(t) is the absolute temperature of the body at time ¢, T is
the absolute temperature of the surroundings, and « is a constant
depending on the physical parameters of the body. However, if u
is much larger than 7', then solutions of equation (35) are well
approximated by solutions of the simpler equation
du 4
yin au”. (36)
Suppose that a body with initial temperature 2000 K is surrounded by
a medium with temperature 300 K and that o = 2.0 x 10712 K=3s.
a. Determine the temperature of the body at any time by solving
equation (36).
@ b. Plot the graph of u versus 7.
m c. Find the time 7 at which u(7) = 600—that is, twice
the ambient temperature. Up to this time the error in using
equation (36) to approximate the solutions of equation (35) is
no more than 1%.

=—au*-T%, (35)

0 14. Consider an insulated box (a building, perhaps) with
internal temperature u(t). According to Newton’s law of cooling, u
satisfies the differential equation

du

— = —k(u —T(1)), 37

. (u—=T(1)) (37
where T'(¢) is the ambient (external) temperature. Suppose that
T (1) varies sinusoidally; for example, assume that
T(t) =Ty+ Ty cos(wt).

3Jozef Stefan (1835-1893), professor of physics at Vienna, stated the radiation
law on empirical grounds in 1879. His student Ludwig Boltzmann (1844-1906)
derived it theoretically from the principles of thermodynamics in 1884.
Boltzmann is best known for his pioneering work in statistical mechanics.




a. Solve equation (37) and express u(¢) in terms of ¢, k, Ty, T},
and w. Observe that part of your solution approaches zero as ¢
becomes large; this is called the transient part. The remainder of
the solution is called the steady state; denote it by S(7).

@ b. Suppose that ¢ is measured in hours and that w = 7/12,
corresponding to a period of 24 h for 7(t). Further, let
Ty = 60°F, T} = 15°F, and k = 0.2/h. Draw graphs of S(t#)
and T'(t) versus ¢ on the same axes. From your graph estimate
the amplitude R of the oscillatory part of S(#). Also estimate
the time lag 7 between corresponding maxima of 7'(¢) and S(#).
c. Letk, Ty, T;, and w now be unspecified. Write the oscillatory
part of S(¢) in the form R cos(w (t — 7)). Use trigonometric
identities to find expressions for R and 7. Let 7} and w have
the values given in part b, and plot graphs of R and 7 versus k.

15. Consider a lake of constant volume V containing at time ¢
an amount Q(¢) of pollutant, evenly distributed throughout the lake
with a concentration c¢(¢), where ¢(t) = Q(t)/V. Assume that
water containing a concentration k of pollutant enters the lake at a
rate r, and that water leaves the lake at the same rate. Suppose that
pollutants are also added directly to the lake at a constant rate P.
Note that the given assumptions neglect a number of factors that may,
in some cases, be important—for example, the water added or lost
by precipitation, absorption, and evaporation; the stratifying effect of
temperature differences in a deep lake; the tendency of irregularities
in the coastline to produce sheltered bays; and the fact that pollutants
are deposited unevenly throughout the lake but (usually) at isolated
points around its periphery. The results below must be interpreted in
light of the neglect of such factors as these.
a. If at time r = O the concentration of pollutant is ¢, find an
expression for the concentration c¢(7) at any time. What is the
limiting concentration as t — 00?
b. If the addition of pollutants to the lake is terminated (k = 0
and P = O for t > 0), determine the time interval 7' that must
elapse before the concentration of pollutants is reduced to 50%
of its original value; to 10% of its original value.
c. Table 2.3.2 contains data® for several of the Great Lakes.
Using these data, determine from part b the time 7" that is needed
to reduce the contamination of each of these lakes to 10% of the
original value.

TABLE 2.3.2 Volume and Flow Data for the Great

Lakes
Lake 10® x V (km?3) r (km? /year)
Superior 12.2 65.2
Michigan 4.9 158
Erie 0.46 175
Ontario 1.6 209

0O 16. A ball with mass 0.15 kg is thrown upward with initial
velocity 20 m/s from the roof of a building 30 m high. Neglect air
resistance.
a. Find the maximum height above the ground that the ball
reaches.
b. Assuming that the ball misses the building on the way down,
find the time that it hits the ground.
@ c. Plot the graphs of velocity and position versus time.

© This problem is based on R. H. Rainey, “Natural Displacement of Pollution
from the Great Lakes,” Science 155 (1967), pp. 1242-1243; the information in
the table was taken from that source.
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@ 17. Assume that the conditions are as in Problem 16 except
that there is a force due to air resistance of magnitude |v|/30 directed
opposite to the velocity, where the velocity v is measured in m/s.
a. Find the maximum height above the ground that the ball
reaches.
b. Find the time that the ball hits the ground.
@ c. Plot the graphs of velocity and position versus time.
Compare these graphs with the corresponding ones in Problem
16.

 18. Assume that the conditions are as in Problem 16 except that
there is a force due to air resistance of magnitude v2/1325 directed
opposite to the velocity, where the velocity v is measured in m/s.
a. Find the maximum height above the ground that the ball
reaches.
b. Find the time that the ball hits the ground.
@ c. Plot the graphs of velocity and position versus time.
Compare these graphs with the corresponding ones in Problems
16 and 17.

19. A body of constant mass m is projected vertically upward with
an initial velocity v, in a medium offering a resistance k|v|, where k
is a constant. Neglect changes in the gravitational force.

a. Find the maximum height x,, attained by the body and the
time 7, at which this maximum height is reached.

b. Show that if kvy/mg < 1, then t,, and x,, can be expressed

as
v 1 kv 1/ kv’
LN PO R | _0) )
g 2 mg 3\ mg
2
o [ 2k Lk
" 2g 3 mg 2\ mg

c. Show that the quantity kv,/mg is dimensionless.

20. A body of mass m is projected vertically upward with an
initial velocity vy in a medium offering a resistance k|v|, where k
is a constant. Assume that the gravitational attraction of the earth is
constant.

a. Find the velocity v(¢) of the body at any time.

b. Use the result of part a to calculate the limit of v(r) as
k — O—that is, as the resistance approaches zero. Does this
result agree with the velocity of a mass m projected upward with
an initial velocity v in a vacuum?

c. Use the result of part a to calculate the limit of v(f) as
m — O—that is, as the mass approaches zero.

21. A body falling in a relatively dense fluid, oil for example, is
acted on by three forces (see Figure 2.3.5): a resistive force R, a
buoyant force B, and its weight w due to gravity. The buoyant force
is equal to the weight of the fluid displaced by the object. For a slowly
moving spherical body of radius a, the resistive force is given by
Stokes’s law, R = 67 pa|v|, where v is the velocity of the body, and
u is the coefficient of viscosity of the surrounding fluid.”

7Sir George Gabriel Stokes (1819-1903) was born in Ireland but spent most of
his life at Cambridge University, first as a student and later as a professor.
Stokes was one of the foremost applied mathematicians of the nineteenth
century, best known for his work in fluid dynamics and the wave theory of
light. The basic equations of fluid mechanics (the Navier—Stokes equations)
are named partly in his honor, and one of the fundamental theorems of vector
calculus bears his name. He was also one of the pioneers in the use of divergent
(asymptotic) series.
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a. Find the limiting velocity of a solid sphere of radius a and
density p falling freely in a medium of density p and coefficient
of viscosity .

b. In 1910 R. A. Millikan® studied the motion of tiny droplets of
oil falling in an electric field. A field of strength E exerts a force
Ee on a droplet with charge e. Assume that £ has been adjusted
so the droplet is held stationary (v = 0) and that w and B are
as given above. Find an expression for e. Millikan repeated this
experiment many times, and from the data that he gathered he
was able to deduce the charge on an electron.

RAAB

>

.

A body falling in a dense fluid (see
Problem 21).

22. Letv(t) and w(t) be the horizontal and vertical components,
respectively, of the velocity of a batted (or thrown) baseball. In the
absence of air resistance, v and w satisfy the equations

dv _0 dw _
a7 4 T E
a. Show that
v=ucosA, w=—gt+usinA,

where u is the initial speed of the ball and A is its initial angle of
elevation.

b. Let x(¢) and y(t) be the horizontal and vertical coordinates,
respectively, of the ball at time ¢. If x(0) = 0 and y(0) = h, find
x(t) and y(z) at any time 7.

@ c. Let g = 32 ft/s?, u = 125 ft/s, and h = 3 ft. Plot the
trajectory of the ball for several values of the angle A; that is,
plot x(#) and y(r) parametrically.

d. Suppose the outfield wall is at a distance L and has height H.
Find a relation between u and A that must be satisfied if the ball
is to clear the wall.

e. Suppose that L = 350 ft and H = 10 ft. Using the relation
in part (d), find (or estimate from a plot) the range of values of A
that correspond to an initial velocity of u = 110 ft/s.

f. For L =350 and H = 10, find the minimum initial velocity
u and the corresponding optimal angle A for which the ball will
clear the wall.

0 23. A more realistic model (than that in Problem 22) of a
baseball in flight includes the effect of air resistance. In this case the
equations of motion are

dv dw

=y, 22

dt dt
where r is the coefficient of resistance.

=—g—rw,

8Robert A. Millikan (1868-1953) was educated at Oberlin College and
Columbia University. Later he was a professor at the University of Chicago
and California Institute of Technology. His determination of the charge on an
electron was published in 1910. For this work, and for other studies of the
photoelectric effect, he was awarded the Nobel Prize for Physics in 1923.

a. Determine v(¢) and w(7) in terms of initial speed u and initial
angle of elevation A.

b. Find x(¢) and y(¢) if x(0) = 0 and y(0) = h.

@O c. Plotthe trajectory of the ball forr = 1/5,u = 125, h = 3,
and for several values of A. How do the trajectories differ from
those in Problem 22 with r = 0?

d. Assuming that » = 1/5 and & = 3, find the minimum initial
velocity u and the optimal angle A for which the ball will clear a
wall that is 350 ft distant and 10 ft high. Compare this result with
that in Problem 22f.

24. Brachistochrone Problem. One of the famous problems in
the history of mathematics is the brachistochrone® problem: to find
the curve along which a particle will slide without friction in the
minimum time from one given point P to another Q, the second
point being lower than the first but not directly beneath it (see Figure
2.3.6). This problem was posed by Johann Bernoulli in 1696 as a
challenge problem to the mathematicians of his day. Correct solutions
were found by Johann Bernoulli and his brother Jakob Bernoulli and
by Isaac Newton, Gottfried Leibniz, and the Marquis de L’Hopital.
The brachistochrone problem is important in the development of
mathematics as one of the forerunners of the calculus of variations.
In solving this problem, it is convenient to take the origin as the
upper point P and to orient the axes as shown in Figure 2.3.6. The
lower point Q has coordinates (xg, yg). It is then possible to show
that the curve of minimum time is given by a function y = ¢ (x) that
satisfies the differential equation
(1+yHy =4, (38)
where k? is a certain positive constant to be determined later.
a. Solve equation (38) for y’. Why is it necessary to choose the
positive square root?
b. Introduce the new variable 7 by the relation

y = k?sin’t. (39)
Show that the equation found in part a then takes the form
2% sin’ 1 dt = dx. (40)

c. Letting & = 2¢, show that the solution of equation (40) for
which x = 0 when y = 0 is given by

x=k*0 —sin0)/2, y=k*(1—cosf)/2. (41

Equations (41) are parametric equations of the solution of
equation (38) that passes through (0, 0). The graph of equations
(41) is called a cycloid.
d. If we make a proper choice of the constant k, then the cycloid
also passes through the point (x(, yg) and is the solution of the
brachistochrone problem. Find & if xy = 1 and yy = 2.

P x

Qlxy, yo)

The brachistochrone
(see Problem 24).

9The word “brachistochrone” comes from the Greek words brachistos,
meaning shortest, and chronos, meaning time.
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24 Differences Between Linear and
Nonlinear Differential Equations

Up to now, we have been primarily concerned with showing that first-order differential
equations can be used to investigate many different kinds of problems in the natural sciences,
and with presenting methods of solving such equations if they are either linear or separable.
Now it is time to turn our attention to some more general questions about differential equations
and to explore in more detail some important ways in which nonlinear equations differ from
linear ones.

Existence and Uniqueness of Solutions. So far, we have discussed a number of initial
value problems, each of which had a solution and apparently only one solution. That raises the
question of whether this is true of all initial value problems for first-order equations. In other
words, does every initial value problem have exactly one solution? This may be an important
question even for nonmathematicians. If you encounter an initial value problem in the course
of investigating some physical problem, you might want to know that it has a solution before
spending very much time and effort in trying to find it. Further, if you are successful in
finding one solution, you might be interested in knowing whether you should continue a
search for other possible solutions or whether you can be sure that there are no other solutions.
For linear equations, the answers to these questions are given by the following fundamental
theorem.

Theorem 2.4.1 | Existence and Uniqueness Theorem for

First-Order Linear Equations

If the functions p and g are continuous on an open interval /: o < ¢t < [ containing the point r = f,,
then there exists a unique function y = ¢ (#) that satisfies the differential equation

Y+ p()y = g(1) (1
for each 7 in 7, and that also satisfies the initial condition
y(to) = yo, 2

where y is an arbitrary prescribed initial value.

Observe that Theorem 2.4.1 states that the given initial value problem has a solution and
also that the problem has only one solution. In other words, the theorem asserts both the
existence and the uniqueness of the solution of the initial value problem (1). In addition, it
states that the solution exists throughout any interval / containing the initial point #; in which
the coefficients p and g are continuous. That is, the solution can be discontinuous or fail to
exist only at points where at least one of p and g is discontinuous. Such points can often be
identified at a glance.

The proof of this theorem is partly contained in the discussion in Section 2.1 leading to
the formula (see equation (32) in Section 2.1)

u(t)y=/u(t)g(t) dt +c, 3)

where [equation (30) in Section 2.1]
p (1) =6Xp/p(t) dr. “)

The derivation in Section 2.1 shows that if equation (1) has a solution, then it must be given by
equation (3). By looking slightly more closely at that derivation, we can also conclude that the
differential equation (1) must indeed have a solution. Since p is continuous for o < t < 3,
it follows that on the interval @ < ¢ < (3, p is defined, is a differentiable function, and is



52 CHAPTER?2 First-Order Differential Equations

nonzero. Upon multiplying equation (1) by 1 (), we obtain
(n(Dy) = p(1)g(1). ®)

Since both 11 and g are continuous, the function g is integrable, and equation (3) follows from
equation (5). Further, the integral of 11 g is differentiable, so y as given by equation (3) exists
and is differentiable throughout the interval o« < ¢ < (3. By substituting the expression for y
from equation (3) into either equation (1) or equation (5), you can verify that this expression
satisfies the differential equation throughout the interval o < ¢ < (. Finally, the initial
condition (2) determines the constant ¢ uniquely, so there is only one solution of the initial
value problem; this completes the proof.

Equation (4) determines the integrating factor p(#) only up to a multiplicative factor that
depends on the lower limit of integration. If we choose this lower limit to be 7, then

p(r) = CXP/ p(s)ds, (©6)
)

and it follows that 1 (#y) = 1. Using the integrating factor given by equation (6), and choosing
the lower limit of integration in equation (3) also to be 7y, we obtain the general solution of
equation (1) in the form

1 t
y=— / p(s)gls)ds+c . @)
(1) fo
To satisfy the initial condition (2), we must choose ¢ = yy. Thus the solution of the initial
value problem (1) is
1 1
y=— / p(s)g(s)ds+yo |, ®)
(1) N

where p (1) is given by equation (6).
Turning now to nonlinear differential equations, we must replace Theorem 2.4.1 by a
more general theorem, such as the one that follows.

Theorem 2.4.2 | Existence and Uniqueness Theorem for

First-Order Nonlinear Equations

Let the functions f and 9 f/ 0y be continuous in some rectangle « < t < 3, < y < ¢ containing
the point (#y, yo). Then, in some interval fy —h < t < ty + h contained in « < t < f3, there is a
unique solution y = ¢ (¢) of the initial value problem

Y = f(t,y), y(t) =y Q)

Observe that the hypotheses in Theorem 2.4.2 reduce to those in Theorem 2.4.1 if the
differential equation is linear. In this case
af(t,y)

f(t,y) =—p(t)y+g(t) and 5 = —p(1),
y

%)
so the continuity of f and a—f is equivalent to the continuity of p and g.

The proof of Theorem 2.4.1 was comparatively simple because it could be based on the
expression (3) that gives the solution of an arbitrary linear equation. There is no corresponding
expression for the solution of the differential equation (9), so the proof of Theorem 2.4.2 is
much more difficult. It is discussed to some extent in Section 2.8 and in greater depth in more
advanced books on differential equations.

We note that the conditions stated in Theorem 2.4.2 are sufficient to guarantee the
existence of a unique solution of the initial value problem (6) in some interval (fy — h, fty + h),
but they are not necessary. That is, the conclusion remains true under slightly weaker
hypotheses about the function f. In fact, the existence of a solution (but not its uniqueness)
can be established on the basis of the continuity of f alone.

An important geometrical consequence of the uniqueness parts of Theorems 2.4.1 and
2.4.2 is that the graphs of two solutions cannot intersect each other. Otherwise, there would
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be two solutions that satisfy the initial condition corresponding to the point of intersection, in
contradiction to Theorem 2.4.1 or 2.4.2.
We now consider some examples.

EXAMPLE 1

Use Theorem 2.4.1 to find an interval in which the initial value problem
1y + 2y = 41, (10)
y() =2 an

has a unique solution. Then do the same when the initial condition is changed to y(—1) = 2.

Solution:

Rewriting equation (10) in the standard form (1), we have
Y+ 2/0y =4,

so p(t) =2/t and g(r) = 4t. Thus, for this equation, g is continuous for all 7, while p is continuous
only for # < 0 or for ¢+ > 0. The interval + > 0 contains the initial point; consequently, Theorem
2.4.1 guarantees that the problem (7), (8) has a unique solution on the interval 0 < ¢ < oo. In
Example 4 of Section 2.1 we found the solution of this initial value problem to be

1
y=t*4+—=, t>0. (12)
t
Now suppose that the initial condition (11) is changed to y(—1) = 2. Then Theorem 2.4.1

asserts the existence of a unique solution for # < 0. As you can readily verify, the solution is again
given by equation (12), but now on the interval ¢t < 0.

EXAMPLE 2

Apply Theorem 2.4.2 to the initial value problem

dy 3x*+4x+2

- oD y(0) = —1. (13)

Repeat this analysis when the initial condition is changed to y(0) = 1.

Solution:
Note that Theorem 2.4.1 is not applicable to this problem since the differential equation is nonlinear.
To apply Theorem 2.4.2, observe that

£ )_3x2+4x+2 af( ) = 3x% +4x 42
e Loy U T TG e

20y -1

Thus each of these functions is continuous everywhere except on the line y = 1. Consequently, a
rectangle can be drawn about the initial point (0, —1) in which both f and 9f/dy are continuous.
Therefore, Theorem 2.4.2 guarantees that the initial value problem has a unique solution in some
interval about x = 0. However, even though the rectangle can be stretched infinitely far in both the
positive and the negative x directions, this does not necessarily mean that the solution exists for all x.
Indeed, the initial value problem (9) was solved in Example 2 of Section 2.2, and the solution exists
only for x > —2.

Now suppose we change the initial condition to y(0) = 1. The initial point now lies on the
line y = 1, so no rectangle can be drawn about it within which f and 9f/Jy are continuous.
Consequently, Theorem 2.4.2 says nothing about possible solutions of this modified problem.
However, if we separate the variables and integrate, as in Section 2.2, we find that

y:—2y=x3+2x>+2x +c.
Further, if x = 0 and y = 1, then ¢ = —1. Finally, by solving for y, we obtain

y=1%+x3+2x2 + 2x. (14)
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\ 4

Equation (14) provides two functions that satisfy the given differential equation for x > 0 and also
satisfy the initial condition y(0) = 1. The fact that there are two solutions to this initial value problem
reinforces the conclusion that Theorem 2.4.2 does not apply to this initial value problem.

EXAMPLE 3

Consider the initial value problem
Y=y w0 =0 (15)
for t > 0. Apply Theorem 2.4.2 to this initial value problem and then solve the problem.

Solution:

0 1
The function f(z,y) = y'/3 is continuous everywhere, but 6—f = —y~2/3 does not exist when
y
y = 0, and hence it is not continuous there. Thus Theorem 2.4.2 does not apply to this problem, and
no conclusion can be drawn from it. However, by the remark following Theorem 2.4.2, the continuity
of f does ensure the existence of solutions, though not their uniqueness.
To understand the situation more clearly, we must actually solve the problem, which is easy to

do since the differential equation is separable. Thus we have

y_l/3dy =dt,
SO

3 03

— =t

27 te
and

’ 3/2
y= <§(t —I—c)) .

The initial condition is satisfied if ¢ = 0, so

2 \3?
y=01(1) = <§t> , t=>0 (16)
satisfies both of equations (15). On the other hand, the function
3/2
2
y = ¢a(1) =—<§t> , 120 a7
is also a solution of the initial value problem. Moreover, the function
y=¢(@) =0, t=0 (18)

is yet another solution. Indeed, for an arbitrary positive #,, the functions

0. if0 <1< 1,
) 3/2
:l:(g(t—to)) it

are continuous, are differentiable (in particular at# = #;), and are solutions of the initial value problem
(11). Hence this problem has an infinite family of solutions; see Figure 2.4.1, where a few of these
solutions are shown.

y

y=x() = (19)

Several solutions of the initial value problem
Y =y y(0) =0.
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As already noted, the nonuniqueness of the solutions of the problem (11) does not contradict the
existence and uniqueness theorem, since Theorem 2.4.2 is not applicable if the initial point lies on
the z-axis. If (79, yo) is any point not on the z-axis, however, then the theorem guarantees that there
is a unique solution of the differential equation y’ = y'/3 passing through (7, yo).

Interval of Existence. According to Theorem 2.4.1, the solution of a linear equation (1)
Y+ p()y = g(1),

subject to the initial condition y(f#)) = Yo, exists throughout any interval about ¢t = £, in
which the functions p and g are continuous. Thus vertical asymptotes or other discontinuities
in the solution can occur only at points of discontinuity of p or g. For instance, the solutions
in Example 1 (with one exception) are asymptotic to the y-axis, corresponding to the
discontinuity at # = 0 in the coefficient p(f) = 2/t, but none of the solutions has any other
point where it fails to exist and to be differentiable. The one exceptional solution shows that
solutions may sometimes remain continuous even at points of discontinuity of the coefficients.

On the other hand, for a nonlinear initial value problem satisfying the hypotheses of
Theorem 2.4.2, the interval in which a solution exists may be difficult to determine. The
solution y = ¢ (¢) is certain to exist as long as the point (¢, ¢ (¢)) remains within a region in
which the hypotheses of Theorem 2.4.2 are satisfied. This is what determines the value of &
in that theorem. However, since ¢ () is usually not known, it may be impossible to locate the
point (¢, ¢ (t)) with respect to this region. In any case, the interval in which a solution exists
may have no simple relationship to the function f in the differential equation y" = f(t, y).
This is illustrated by the following example.

EXAMPLE 4

Solve the initial value problem
Y=y w0 =1, (20)

and determine the interval in which the solution exists.

Solution:

of

Theorem 2.4.2 guarantees that this problem has a unique solution since f(t, y) = y? and oy = 2y
y

are continuous everywhere. To find the solution, we separate the variables and integrate with the
result that

y2dy =dt 1)
and
—yl=t+c
Then, solving for y, we have
= ! (22)
r= t+c’
To satisfy the initial condition, we must choose ¢ = —1, so
_ ! (23)
A

is the solution of the given initial value problem. Clearly, the solution becomes unbounded as r — 1;
therefore, the solution exists only in the interval —oo < t < 1. There is no indication from the
differential equation itself, however, that the point # = 1 is in any way remarkable. Moreover, if the
initial condition is replaced by

y(0) = Yo, (24
then the constant ¢ in equation (22) must be chosen to be ¢ = —1/yy (yo # 0), and it follows that
Yo
= 25
A 25)

55
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is the solution of the initial value problem with the initial condition (24). Observe that the solution
(25) becomes unbounded as# — 1/ yy, so the interval of existence of the solutionis —oo < ¢ < 1/yq
if yo > 0,and is 1/yy < t < oo if yy < 0. This example illustrates another feature of initial value
problems for nonlinear equations: the singularities of the solution may depend in an essential way
on the initial conditions as well as on the differential equation.

General Solution. Another way in which linear and nonlinear equations differ concerns
the concept of a general solution. For a first-order linear differential equation it is possible to
obtain a solution containing one arbitrary constant, from which all possible solutions follow
by specifying values for this constant. For nonlinear equations this may not be the case; even
though a solution containing an arbitrary constant may be found, there may be other solutions
that cannot be obtained by giving values to this constant. For instance, for the differential
equation y’ = y? in Example 4, the expression in equation (22) contains an arbitrary constant
but does not include all solutions of the differential equation. To show this, observe that the
function y = 0 for all ¢ is certainly a solution of the differential equation, but it cannot be
obtained from equation (22) by assigning a value to c. In this example we might anticipate
that something of this sort might happen, because to rewrite the original differential equation
in the form (21), we must require that y is not zero. However, the existence of “additional”
solutions is not uncommon for nonlinear equations; a less obvious example is given in Problem
18. Thus we will use the term “general solution” only when discussing linear equations.

Implicit Solutions. Recall again that for an initial value problem for a first-order linear
differential equation, equation (8) provides an explicit formula for the solution y = ¢ (7). As
long as the necessary antiderivatives can be found, the value of the solution at any point can be
determined merely by substituting the appropriate value of ¢ into the equation. The situation
for nonlinear equations is much less satisfactory. Usually, the best that we can hope for is to
find an equation

F(r,y) =0 (26)

involving ¢ and y that is satisfied by the solution y = ¢ (7). Even this can be done only for
differential equations of certain particular types, of which separable equations are the most
important. The equation (26) is called an integral, or first integral, of the differential equation,
and (as we have already noted) its graph is an integral curve, or perhaps a family of integral
curves. Equation (26), assuming it can be found, defines the solution implicitly; that is, for each
value of # we must solve equation (26) to find the corresponding value of y. If equation (26)
is simple enough, it may be possible to solve it for y by analytical means and thereby obtain
an explicit formula for the solution. However, more frequently this will not be possible, and
you will have to resort to a numerical calculation to determine (approximately) the value of
y for a given value of ¢. Once several pairs of values of # and y have been calculated, it is
often helpful to plot them and then to sketch the integral curve that passes through them. You
should take advantage of the wide range of computational and graphical utilities available to
carry out these calculations and to create the graph of one or more integral curves.

Examples 2, 3, and 4 involve nonlinear problems in which it is easy to solve for an explicit
formula for the solution y = ¢ (¢). On the other hand, Examples 1 and 3 in Section 2.2 are
cases in which it is better to leave the solution in implicit form and to use numerical means to
evaluate it for particular values of the independent variable. The latter situation is more typical;
unless the implicit relation is quadratic in y or has some other particularly simple form, it is
unlikely that it can be solved exactly by analytical methods. Indeed, more often than not, it
is impossible even to find an implicit expression for the solution of a first-order nonlinear
equation.

Graphical or Numerical Construction of Integral Curves. Because of the difficulty in
obtaining exact analytical solutions of nonlinear differential equations, methods that yield
approximate solutions or other qualitative information about solutions are of correspondingly
greater importance. We have already described, in Section 1.1, how the direction field of a
differential equation can be constructed. The direction field can often show the qualitative
form of solutions and can also be helpful in identifying regions of the ¢y-plane where solutions
exhibit interesting features that merit more detailed analytical or numerical investigation.
Graphical methods for first-order differential equations are discussed further in Section 2.5.
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An introduction to numerical methods for first-order equations is given in Section 2.7, and a
systematic discussion of numerical methods appears in Chapter 8. However, it is not necessary
to study the numerical algorithms themselves in order to use effectively one of the many
software packages that generate and plot numerical approximations to solutions of initial value
problems.

Summary. The linear equation y' 4+ p(¢)y = g(t) has several nice properties that can be
summarized in the following statements:

1. Assuming that the coefficients are continuous, there is a general solution, containing an
arbitrary constant, that includes all solutions of the differential equation. A particular
solution that satisfies a given initial condition can be picked out by choosing the proper
value for the arbitrary constant.

2. There is an expression for the solution, namely, equation (7) or equation (8). Moreover,
although it involves two integrations, the expression is an explicit one for the solution
y = ¢ (t) rather than an equation that defines ¢ implicitly.

3. The possible points of discontinuity, or singularities, of the solution can be identified
(without solving the problem) merely by finding the points of discontinuity of the
coefficients. Thus, if the coefficients are continuous for all 7, then the solution also exists
and is differentiable for all 7.

None of these statements are true, in general, of nonlinear equations. Although a nonlinear
equation may well have a solution involving an arbitrary constant, there may also be other
solutions. There is no general formula for solutions of nonlinear equations. If you are able
to integrate a nonlinear equation, you are likely to obtain an equation defining solutions
implicitly rather than explicitly. Finally, the singularities of solutions of nonlinear equations
can usually be found only by solving the equation and examining the solution. It is likely that
the singularities will depend on the initial condition as well as on the differential equation.

Problems

57

In each of Problems 1 through 4, determine (without solving the
problem) an interval in which the solution of the given initial value
problem is certain to exist.

1. (+=3)y +nt)y=2t, y(1)=2
2. y +(tant)y =sint, y(w) =0

3. 4=ty +2y=32, y(-3) =1
4. (Int)y'+y=cott, y(2)=3

In each of Problems 5 through 8, state where in the ty-plane the
hypotheses of Theorem 2.4.2 are satisfied.

5. y/:(l_tz_yZ)l/Z

In|zy|
6. yV=——"—
y 1_t2+y2
7. y/:(t2+y2)3/2
1+1¢2
8. y= +
3y —y?

In each of Problems 9 through 12, solve the given initial value problem
and determine how the interval in which the solution exists depends
on the initial value yj.

9. Y =—4t/y, y(0) =y
10. y' =2y2, y(0) =y,
1.y +y*=0, y(0) =y

2

t
12 yy=———, 0) =
Y=o y(0) = yo

In each of Problems 13 through 16, draw a direction field and plot (or
sketch) several solutions of the given differential equation. Describe
how solutions appear to behave as ¢ increases and how their behavior
depends on the initial value y, when t = 0.

O 13. y=0y3-y

Q@ 14 y=y3-1y)

Q15 y=—y3-1w

G 16. y=1r—-1-—)

17. Consider the initial value problem y’ = y'/3, y(0) = 0 from

Example 3 in the text.
a. Is there a solution that passes through the point (1, 1) ? If so,
find it.
b. Is there a solution that passes through the point (2, 1) ? If so,
find it.
c. Consider all possible solutions of the given initial value
problem. Determine the set of values that these solutions have

att = 2.
18. a. Verify that both y,(f) = 1 — ¢ and y,(r) = —t>/4 are
solutions of the initial value problem
—t++/12+4y
=y =1

Where are these solutions valid?
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b. Explain why the existence of two solutions of the
given problem does not contradict the uniqueness part of
Theorem 2.4.2.

c. Show that y = ct + c?, where ¢ is an arbitrary constant,
satisfies the differential equation in partaforr > —2¢.If ¢ = —1,
the initial condition is also satisfied, and the solution y = y;(7) is
obtained. Show that there is no choice of ¢ that gives the second
solution y = y,(7).

19. a. Show that ¢ () = e is a solution of y' — 2y = 0 and that

y = c¢ (1) is also a solution of this equation for any value of the
constant c.
b. Show that ¢ (#) = 1/ is a solution of y +y? = 0 for¢ > 0,
but that y = c¢ (¢) is not a solution of this equation unless ¢ = 0
or ¢ = 1. Note that the equation of part b is nonlinear, while that
of part a is linear.

20. Show that if y = ¢(r) is a solution of y' + p(t)y = 0, then
y = c¢ (1) is also a solution for any value of the constant c.

21. Lety = y;(¢) be a solution of

Yy +p()y =0, 27
and let y = y,(#) be a solution of
Y+ p)y =g(). (28)

Show that y = y(#) + y,(#) is also a solution of equation (28).

22. a. Show that the solution (7) of the general linear equation (1)
can be written in the form

y =cyi(1) + (1), (29)

where c is an arbitrary constant.
b. Show that y; is a solution of the differential equation

Y +p()y =0, (30

corresponding to g(z) = 0.

c. Show that y, is a solution of the full linear equation (1). We
see later (for example, in Section 3.5) that solutions of higher-
order linear equations have a pattern similar to equation (29).

Bernoulli Equations. Sometimes it is possible to solve a nonlinear
equation by making a change of the dependent variable that converts
it into a linear equation. The most important such equation has the
form

Y +p(D)y=q()y",

and is called a Bernoulli equation after Jakob Bernoulli. Problems 23
and 25 deal with equations of this type.

23. a. Solve Bernoulli’s equation when n = 0; whenn = 1.
b. Show thatif 0, 1, then the substitution v = y'~” reduces
Bernoulli’s equation to a linear equation. This method of solution
was formulated by Leibniz in 1696.

In each of Problems 24 through 25, the given equation is a Bernoulli
equation. In each case solve it by using the substitution mentioned in
Problem 23b.

24. y =ry—ky? r > 0and k > 0. This equation is important in
population dynamics and is discussed in detail in Section 2.5.

25. ¥y =ey—o0y? e > 0and o > 0. This equation occurs in the
study of the stability of fluid flow.

Discontinuous Coefficients. Linear differential equations sometimes
occur in which one or both of the functions p and g have jump
discontinuities. If #; is such a point of discontinuity, then it is necessary
to solve the equation separately for t < 7y and t > #y. Afterward,
the two solutions are matched so that y is continuous at f; this
is accomplished by a proper choice of the arbitrary constants. The
following two problems illustrate this situation. Note in each case that
it is impossible also to make y” continuous at 7.

26. Solve the initial value problem

Y +2y=g®, y(0) =0,
where
I, 0<t<l,
8(1) = {0, t> 1.
27. Solve the initial value problem
Y+ py=0, y0) =1,

where

25 Autonomous Differential Equations

and Population Dynamics

An important class of first-order equations consists of those in which the independent variable
does not appear explicitly. Such equations are called autonomous and have the form

dy/dt = f(y). (1

We will discuss these equations in the context of the growth or decline of the population
of a given species, an important issue in fields ranging from medicine to ecology to global
economics. A number of other applications are mentioned in some of the problems. Recall that
in Sections 1.1 and 1.2 we considered the special case of equation (1) in which f(y) = ay+b.

Equation (1) is separable, so the discussion in Section 2.2 is applicable to it, but the main
purpose of this section is to show how geometric methods can be used to obtain important
qualitative information directly from the differential equation without solving the equation. Of
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fundamental importance in this effort are the concepts of stability and instability of solutions
of differential equations. These ideas were introduced informally in Chapter 1, but without
using this terminology. They are discussed further here and will be examined in greater depth
and in a more general setting in Chapter 9.

Exponential Growth. Let y = ¢ (7) be the population of the given species at time 7. The
simplest hypothesis concerning the variation of population is that the rate of change of y is
proportional' to the current value of y; that is,

dy

it A 2
2 (@)

where the constant of proportionality r is called the rate of growth or decline, depending on
whether r is positive or negative. Here, we assume that the population is growing, so r > 0.
Solving equation (2) subject to the initial condition'!

¥(0) = yo, (3)
we obtain

y = yoe'". @

Thus the mathematical model consisting of the initial value problem (1), (2) with r > 0
predicts that the population will grow exponentially for all time, as shown in Figure 2.5.1 for
several values of yy. Under ideal conditions, equation (4) has been observed to be reasonably
accurate for many populations, at least for limited periods of time. However, it is clear that such
ideal conditions cannot continue indefinitely; eventually, limitations on space, food supply, or
other resources will reduce the growth rate and bring an end to uninhibited exponential growth.

y
10—

| | |
1/r 2/r 3/r 4frt

Exponential growth: y versus ¢ for
dy/dt =ry (r > 0).

Logistic Growth. To take account of the fact that the growth rate actually depends on the
population, we replace the constant » in equation (2) by a function /(y) and thereby obtain
the modified equation

dy

—=h . 5

27 = o)y ©)
We now want to choose #(y) so that A(y) = r > 0 when y is small, 4(y) decreases

as y grows larger, and 2(y) < 0 when y is sufficiently large. The simplest function that has

these properties is #(y) = r — ay, where a is also a positive constant. Using this function in

equation (5), we obtain

v _ ) ©)
— =(r—ay)y.
di y)y

101t was apparently the British economist Thomas Malthus (1766-1834) who first observed that many biological
populations increase at a rate proportional to the population. His first paper on populations appeared in 1798.

n this section, because the unknown function is a population, we assume y, > 0.

59



60 CHAPTER?2 First-Order Differential Equations

Equation (6) is known as the Verhulst'? equation or the logistic equation. It is often convenient
to write the logistic equation in the equivalent form

dy y
a =0 g
where K = r/a. In this form, the constant r is called the intrinsic growth rate—that is, the
growth rate in the absence of any limiting factors. The interpretation of K will become clear
shortly.

We will investigate the solutions of equation (7) in some detail later in this section. Before
doing that, however, we will show how you can easily draw a qualitatively correct sketch of
the solutions. The same methods also apply to the more general equation (1).

We first seek solutions of equation (7) of the simplest possible type—that is, constant
functions. For such a solution dy/dr = 0 for all #, so any constant solution of equation (7)
must satisfy the algebraic equation

Y
r (1 X ) y =0.

Thus the constant solutionsare y = ¢ () = 0and y = ¢,(¢) = K. These solutions are called
equilibrium solutions of equation (7) because they correspond to no change or variation in
the value of y as ¢ increases. In the same way, any equilibrium solutions of the more general
equation (1) can be found by locating the roots of f(y) = 0. The zeros of f(y) are also called
critical points.

To visualize other solutions of equation (7) and to sketch their graphs quickly, we start
by drawing the graph of f(y) versus y. In the case of equation (7), f(y) =r(1 —y/K)y,
so the graph is the parabola shown in Figure 2.5.2. The intercepts are (0, 0) and (K, 0),
corresponding to the critical points of equation (7), and the vertex of the parabola is
(K/2,rK/4). Observe that dy/dt > 0 for 0 < y < K. Therefore, y is an increasing
function of  when y is in this interval; this is indicated by the rightward-pointing arrows near
the y-axis in Figure 2.5.2. Similarly, if y > K, then dy/dr < 0; hence y is decreasing, as
indicated by the leftward-pointing arrow in Figure 2.5.2.

()
rK/4 —

(K/2, rK/4)

K/2 K y

m f(y) versusyfordy/dt =r(1—y/K)y.

In this context the y-axis is often called the phase line, and it is reproduced in its more
customary vertical orientation in Figure 2.5.3a. The dots at y = 0 and y = K are the critical
points, or equilibrium solutions. The arrows again indicate that y is increasing whenever
0 < y < K and that y is decreasing whenever y > K.

12pjerre F. Verhulst (1804-1849) was a Belgian mathematician who introduced equation (6) as a model for human
population growth in 1838. He referred to it as logistic growth, so equation (6) is often called the logistic equation.
He was unable to test the accuracy of his model because of inadequate census data, and it did not receive much
attention until many years later. Reasonable agreement with experimental data was demonstrated by R. Pearl (1930)
for Drosophila melanogaster (fruit fly) populations and by G. F. Gause (1935) for Paramecium and Tribolium (flour
beetle) populations.



2.5 Autonomous Differential Equations and Population Dynamics

Further, from Figure 2.5.2, note that if y is near zero or K, then the slope f(y) is near
zero, so the solution curves are relatively flat. They become steeper as the value of y leaves
the neighborhood of zero or K.

To sketch the graphs of solutions of equation (7) in the ty-plane, we start with the
equilibrium solutions y = ¢(t) = 0and y = ¢,(t) = K; then we draw other curves that
are increasing when 0 < y < K, decreasing when y > K, and flatten out as y approaches
either of the values O or K. Thus the graphs of solutions of equation (7) must have the general
shape shown in Figure 2.5.3b, regardless of the values of » and K.

Figure 2.5.3b may seem to show that other solutions intersect the equilibrium solution
y = K, but s this really possible? No, the uniqueness part of Theorem 2.4.2, the fundamental
existence and uniqueness theorem, states that only one solution can pass through a given point
in the ¢y-plane. Thus, although other solutions may be asymptotic to the equilibrium solution
as t — 0o, they cannot intersect it at any finite time. Consequently, a solution that starts in
the interval 0 < y < K remains in this interval for all time, and similarly for a solution that
starts in K < y < o0.

y= ¢2(t) =K

Ki2

0e

(@) (d)
m Logistic growth: dy/dt = r(1—y/K)y. (a) The phase line. (b) Plots

of y versus .

To carry the investigation one step further, we can determine the concavity of the solution
curves and the location of inflection points by finding dy/d?. From the differential equation
(1), we obtain (using the chain rule)

d*y ddy d aody
= =1 =rmr). ®

d?  dt dt
The graph of y versus ¢ is concave up when y” > O—that is, when f and f’ have the same
sign. Similarly, it is concave down when y” < 0, which occurs when f and f’ have opposite
signs. The signs of f and f’ can be easily identified from the graph of f(y) versus y. Inflection
points may occur when f'(y) = 0.

In the case of equation (7), solutions are concave up for 0 < y < K/2 where f is
positive and increasing (see Figure 2.5.2), so that both f and f’ are positive. Solutions are
also concave up for y > K where f is negative and decreasing (both f and f’ are negative).
For K/2 < y < K, solutions are concave down since here f is positive and decreasing, so
f is positive but f is negative. There is an inflection point whenever the graph of y versus ¢
crosses the line y = K /2. The graphs in Figure 2.5.3b exhibit these properties.

Finally, observe that K is the upper bound that is approached, but not exceeded, by
growing populations starting below this value. Thus it is natural to refer to K as the saturation
level, or the environmental carrying capacity, for the given species.

A comparison of Figures 2.5.1 and 2.5.3b reveals that solutions of the nonlinear equation
(7) are strikingly different from those of the linear equation (1), at least for large values
of t. Regardless of the value of K —that is, no matter how small the nonlinear term in
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equation (7)—solutions of that equation approach a finite value as + — 0o, whereas solutions
of equation (1) grow (exponentially) without bound as ¢ — oo. Thus even a tiny nonlinear
term in the differential equation (7) has a decisive effect on the solution for large ¢.

In many situations it is sufficient to have the qualitative information about a solution
y = ¢(t) of equation (7) that is shown in Figure 2.5.3b. This information was obtained
entirely from the graph of f(y) versus y and without solving the differential equation (7).
However, if we wish to have a more detailed description of logistic growth—for example, if
we wish to know the value of the population at some particular time—then we must solve
equation (7) subject to the initial condition (3). Provided that y # 0 and y # K, we can write
equation (7) in the form

oy
(1-y/K)y

Using a partial fraction expansion on the left-hand side, we have

<1+1/K )d dt
— y =rdt.
y 1-y/K

Then, by integrating both sides, we obtain

=rdt.

y
In —mh-u—‘= t+oe. 9
[yl e rt+c )

where ¢ is an arbitrary constant of integration to be determined from the initial condition
y(0) = yo. We have already noted that if 0 < yy < K, then y remains in this interval for all
time. Thus in this case we can remove the absolute value bars in equation (9), and by taking
the exponential of both sides, we find that

y rt
— =Ce"’, (10)
1—(y/K)
where C = ¢°. In order to satisfy the initial condition y(0) = 1y, we must choose

C = yo/(1—=(yo/K)). Using this value for C in equation (10) and solving for y (see Problem
10), we obtain

_ YoK
Yo+ (K —yp)e™"

y (11

We have derived the solution (11) under the assumption that 0 < yy < K. If yy > K, then
the details of dealing with equation (9) are only slightly different, and we leave it to you to
show that equation (11) is also valid in this case. Finally, note that equation (11) also contains
the equilibrium solutions y = ¢ () = 0 and y = ¢,(¢t) = K corresponding to the initial
conditions y, = 0 and yy, = K, respectively.

All the qualitative conclusions that we reached earlier by geometrical reasoning can be
confirmed by examining the solution (11). In particular, if y, = 0, then equation (11) requires
that y(#) = Ofor all z. If yy > 0, and if we let 1 — o0 in equation (11), then we obtain

K
lim y(r) = 222 — k.

t—o0 Yo

Thus, for each y, > 0, the solution approaches the equilibrium solution y = ¢,(¢) = K
asymptotically as t — oo. Therefore, we say that the constant solution ¢,(¢) = K is an
asymptotically stable solution of equation (7) or that the point y = K is an asymptotically
stable equilibrium or critical point. After a long time, the population is close to the saturation
level K regardless of the initial population size, as long as it is positive. Other solutions
approach the equilibrium solution more rapidly as r increases.

On the other hand, the situation for the equilibrium solution y = ¢(¢) = 0 is quite
different. Even solutions that start very near zero grow as ¢ increases and, as we have seen,
approach K ast — 0o. We say that ¢ {(¢) = 0 is an unstable equilibrium solution or that
y = 0is an unstable equilibrium or critical point. This means that the only way to guarantee
that the solution remains near zero is to make sure its initial value is exactly equal to zero.
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EXAMPLE 1

The logistic model has been applied to the natural growth of the halibut population in certain areas
of the Pacific Ocean.'? Let v, measured in kilograms, be the biomass, that is, the total mass, of the
halibut population, at time ¢. The parameters in the logistic equation are estimated to have the values
r = 0.71/year and K = 80.5 x 10° kg. If the initial biomass is y, = 0.25K, find the biomass 2
years later. Also find the time 7 for which y(7) = 0.75K.

Solution:

It is convenient to scale the solution (11) to the carrying capacity K; thus we write equation (11) in
the form

K
Y _ Yo/ . (12)
K (yo/K)+(1—=y/K)e™
Using the data given in the problem, we find that
2 0.25
2 = =~(.5797.
K 0.25 + 0.75¢1-42
Consequently, y(2) = 46.7 x 10° kg.
To find 7, the time when yo/ K = 0.75 we first solve equation (12) for ¢, obtaining
e O/ K)Y(A—y/K)
(y/K)(1=yo/K) "
hence
1 K)(1-y/K
s L[ G/ YA —y/K) (13)
r o\ /K (1= 0/ K)

Using the given values of r and yy/ K and setting y/ K = 0.75, we find that

1 0.25)(0.25 1
T=——-1In M = ——In9 = 3.095 years.
0.71  (0.75)(0.75)  0.71

The graphs of y/ K versus 7 for the given parameter values and for several initial conditions are
shown in Figure 2.5.4. The green curve corresponds to the initial condition yy = 0.25K.

y/K
1.75

1.50
1.25
1.00
0.75
0.50
0.25

m v/ K versus ¢ for population model of halibut in

the Pacific Ocean. The green curve satisfies the initial condition
¥(0)/K = 0.25. The solution with y(0) = 0.25 reaches 75% of
the carrying capacity at time t = 73.095 years.

13A good source of information on the population dynamics and economics involved in making efficient use of
a renewable resource, with particular emphasis on fisheries, is the book by Clark listed in the references at the
end of this chapter. The parameter values used here are given on page 53 of this book and were obtained from a
study by H. S. Mohring.
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A Critical Threshold. We now turn to a consideration of the equation

where r and T are given positive constants. Observe that (except for replacing the parameter
K by T) this equation differs from the logistic equation (7) only in the presence of the minus
sign on the right-hand side. However, as we will see, the solutions of equation (14) behave
very differently from those of equation (7).

For equation (14) the graph of f(y) versus y is the parabola shown in Figure 2.5.5.
The intercepts on the y-axis are the critical points y = 0 and y = T, corresponding to the
equilibrium solutions y = ¢ (1) = 0and y = ¢,(¢t) = T.If0 < y < T, thendy/dt < 0,
and y is positive and decreases as t increases. Thus ¢ ;(¢#) = 0 is an asymptotically stable
equilibrium solution. On the other hand, if y > T, then dy/dt > 0, so that y is positive and
increasing as ¢ increases; thus ¢,(¢) = T is an unstable equilibrium solution.

Furthermore, the concavity of solutions can be determined by looking at the sign of
v" = f'(y) f(y); see equation (8). Figure 2.5.5 clearly shows that f’(y) is negative for
0 < y < T/2 and positive for T/2 < y < T, so the graph of y versus ¢ is concave up
and concave down, respectively, in these intervals. Also, f'(y) and f(y) are both positive for
y > T, so the graph of y versus ¢ is also concave up there.

fly)

-— | -—

T2 T y

-rT/4 |~
(T2, -rT/4)

m f(y) versus y fordy/dt = —r(1 —y/T)y.

Figure 2.5.6(a) shows the phase line (the y-axis) for equation (14). The dots at y = 0 and
y = T are the critical points, or equilibrium solutions, and the arrows indicate where solutions
are either increasing or decreasing.

Solution curves of equation (14) can now be sketched quickly, as follows. First draw the
equilibrium solutions y = ¢ ;(¢) = 0and y = ¢,(t) = T. Then sketch curves in the strip
0 < y < T that are decreasing as ¢ increases and change concavity as they cross the line
y = T/2. Next draw some curves above y = T that increase more and more steeply as ¢
and y increase. Make sure that all curves become flatter as y approaches either zero or 7. The
result is Figure 2.5.6(b), which is a qualitatively accurate sketch of solutions of equation (14)
for any r and T'. From this figure it appears that as time increases, y either approaches zero or
grows without bound, depending on whether the initial value yj is less than or greater than 7.
Thus T is a threshold level, below which growth does not occur.

We can confirm the conclusions that we have reached through geometrical reasoning
by solving the differential equation (14). This can be done by separating the variables and
integrating, just as we did for equation (7). However, if we note that equation (14) can be
obtained from equation (7) by replacing K by T and r by —r, then we can make the same
substitutions in the solution (11) and thereby obtain

_ Yol
Yo+ (T —yp)er’
which is the solution of equation (14) subject to the initial condition y(0) = y,.

If0 < yg < T, then it follows from equation (15) that y — 0 as + — oo. This agrees
with our qualitative geometric analysis. If yo > T, then the denominator on the right-hand

y (15)
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y= ¢2(t) =T

T/2

(@) (b)

Growth with a threshold: dy/dt = —r(1 —y/T)y, y = T is an
asymptotically unstable equilibrium, while y = 0 is asymptotically stable. (a) The
phase line. (b) Plots of y versus ¢.

side of equation (15) is zero for a certain finite value of . We denote this value by ¢* and
calculate it from

Yo— (o —T)e" =0,
which gives (see Problem 12)

potp (16)
r yo—T
Thus, if the initial population y is above the threshold 7', the threshold model predicts that the
graph of y versus 7 has a vertical asymptote at t = ¢*; in other words, the population becomes
unbounded in a finite time, whose value depends on yy, T, and r. The existence and location
of this asymptote were not apparent from the geometric analysis, so in this case the explicit
solution yields additional important qualitative, as well as quantitative, information.

The populations of some species exhibit the threshold phenomenon. If too few are present,
then the species cannot propagate itself successfully and the population becomes extinct.
However, if the population is larger than the threshold level, then further growth occurs.
Of course, the population cannot become unbounded, so eventually equation (14) must be
modified to take this into account.

Critical thresholds also occur in other circumstances. For example, in fluid mechanics,
equations of the form (7) or (14) often govern the evolution of a small disturbance y in
a laminar (or smooth) fluid flow. For instance, if equation (14) holds and y < T, then
the disturbance is damped out and the laminar flow persists. However, if y > T, then the
disturbance grows larger and the laminar flow breaks up into a turbulent one. In this case T is
referred to as the critical amplitude. Experimenters speak of keeping the disturbance level in
a wind tunnel low enough so that they can study laminar flow over an airfoil, for example.

Logistic Growth with a Threshold. As we mentioned in the last subsection, the threshold
model (14) may need to be modified so that unbounded growth does not occur when y is above
the threshold 7. The simplest way to do this is to introduce another factor that will have the
effect of making dy/dr negative when y is large. Thus we consider

-0 1)

wherer > 0and 0 < 7 < K.

The graph of f(y) versus y is shown in Figure 2.5.7. In this problem there are three
critical points, y = 0, y = T, and y = K, corresponding to the equilibrium solutions
y=0¢1(t) =0, y =¢(t) =T,and y = ¢3(t) = K, respectively. From Figure 2.5.7
we observe that dy/dt > Ofor T < y < K, and consequently y is increasing there. Further,
dy/dt < Ofory < T and for y > K, so y is decreasing in these intervals. Consequently,
the equilibrium solutions y = ¢1(#) = 0 and y = ¢3(¢) = K are asymptotically stable, and
the solution y = ¢,(¢) = T is unstable.
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f(y) versus y fordy/dt = —r(1 —y/T)(1 —y/K)y.

The phase line for equation (17) is shown in Figure 2.5.8a, and the graphs of some
solutions are sketched in Figure 2.5.8b. You should make sure that you understand the relation
between these two figures, as well as the relation between Figures 2.5.7 and 2.5.8a. From
Figure 2.5.8b we see that if y starts below the threshold 7', then y declines to ultimate
extinction. On the other hand, if y starts above T, then y eventually approaches the carrying
capacity K. The inflection points on the graphs of y versus ¢ in Figure 2.5.8b correspond
to the maximum and minimum points, y; and y,, respectively, on the graph of f(y) versus
y in Figure 2.5.7. These values can be obtained by differentiating the right-hand side of
equation (17) with respect to y, setting the result equal to zero, and solving for y. We obtain

yi2o=(K+T+VK2>—KT +T?))/3, (18)

where the plus sign yields y; and the minus sign y,.

(@) (b)

Logistic growth with a threshold: dy/dt = —r(1 — y/T)(1 — y/K)y;
y=¢(t) =0andy = ¢3(t) = K are asymptotically stable equilibriaand y = ¢,(t) =T
is an asymptotically unstable equilibrium. (a) The phase line. (b) Plots of y versus z.

A model of this general sort apparently describes the population of the passenger pigeon,'*
which was present in the United States in vast numbers until the late nineteenth century. It was
heavily hunted for food and for sport, and consequently its numbers were drastically reduced
by the 1880s. Unfortunately, the passenger pigeon could apparently breed successfully only
when present in a large concentration, corresponding to a relatively high threshold 7. Although
a reasonably large number of individual birds remained alive in the late 1880s, there were not
enough in any one place to permit successful breeding, and the population rapidly declined to
extinction. The last passenger pigeon died in 1914. The precipitous decline in the passenger
pigeon population from huge numbers to extinction in a few decades was one of the early
factors contributing to a concern for conservation in this country.

l4gee, for example, Oliver L. Austin, Jr., Birds of the World (New York: Golden Press, 1983), pp. 143-145.



Problems

Problems 1 through 4 involve equations of the form dy/dt = f(y).In
each problem sketch the graph of f(y) versus y, determine the critical
(equilibrium) points, and classify each one as asymptotically stable or
unstable. Draw the phase line, and sketch several graphs of solutions
in the ty-plane.

O 1 ay +by*>, a>0, b>0 —00< y)< 00
O 2. dy/di=y(y—1(y-2),
O 3. dy/dt =¢’ —1,
O 4. dy/dt

5. Semistable Equilibrium Solutions. Sometimes a constant
equilibrium solution has the property that solutions lying on one side
of the equilibrium solution tend to approach it, whereas solutions lying
on the other side depart from it (see Figure 2.5.9). In this case the
equilibrium solution is said to be semistable.

SY
=
~

Q
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I

yo=>0

—00 < yy < &0

=e vV —1, -0 < yg < o0

a. Consider the equation
dy/dt = k(1 —y)?, (19)

where k is a positive constant. Show that y = 1 is the only critical
point, with the corresponding equilibrium solution ¢ () = 1.
@ b. Sketch f(y) versus y. Show that y is increasing as a
function of # for y < 1 and also for y > 1. The phase line
has upward-pointing arrows both below and above y = 1. Thus
solutions below the equilibrium solution approach it, and those
above it grow farther away. Therefore, ¢ () = 1 is semistable.
c. Solve equation (19) subject to the initial condition y(0) = y,
and confirm the conclusions reached in part b.

y y

/

)

<
=
I
_

(@) t ) t

In both cases the equilibrium solution ¢ (¢) = k
is semistable. (a) dy/dt < 0; (b) dy/dt > 0.

Problems 6 through 9 involve equations of the form dy/dt = f(y).
In each problem sketch the graph of f(y) versus y, determine the
critical (equilibrium) points, and classify each one as asymptotically
stable, unstable, or semistable (see Problem 5). Draw the phase line,
and sketch several graphs of solutions in the 7y-plane.

@ 6. dy/dt=y*(y*—1), —c0< yyg< o0
O 7. dy/dt=y(1-3?), —oco0< yy< 00
@ 8. dy/dt=3y*(4—-y?), —00< y< 00
@O 9. dy/dt=y*(1-y)? —0c0< yy< 00
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10. Complete the derivation of the explicit formula for the solution
(11) of the logistic model by solving equation (10) for y.

11. 1In Example 1, complete the manipulations needed to arrive at
equation (13). That is, solve the solution (11) for 7.

12. Complete the derivation of the location of the vertical asymptote
in the solution (15) when yy > T. That is, derive formula (16) by
finding the value of + when the denominator of the right-hand side of
equation (15) is zero.

13. Complete the derivation of formula (18) for the locations of the
inflection points of the solution of the logistic growth model with a
threshold (17). Hint: Follow the steps outlined on p. 66.

14. Consider the equation dy/dt = f(y) and suppose that y; is a
critical point—that is, f(y;) = 0. Show that the constant equilibrium
solution ¢ (¢) = y; is asymptotically stable if f’(y;) < 0 and unstable
it f'(y1) > 0.
15. Suppose that a certain population obeys the logistic equation
dy/dt =ry(1 —(y/K)).
a. If yo = K/3, find the time 7 at which the initial population
has doubled. Find the value of 7 corresponding to r = 0.025 per
year.
b. If yo/K = «, find the time T at which y(T)/K = j3,
where 0 < «, f < 1. Observe that T — oo as &« — 0 or
as 3 — 1. Find the value of T for r = 0.025 per year, « = 0.1,
and # = 0.9.

@ 16. Another equation that has been used to model population
growth is the Gompertz'> equation

where r and K are positive constants.

a. Sketch the graph of f(y) versus y, find the critical points,
and determine whether each is asymptotically stable or unstable.
b. For0 < y < K, determine where the graph of y versus 7 is
concave up and where it is concave down.

c. Foreach yin0 < y < K, show that dy/dt as given by
the Gompertz equation is never less than dy/dt as given by the
logistic equation.

17. a. Solve the Gompertz equation

i =(3)
— =ryln| — |,
dt y

subject to the initial condition y(0) = yj.

Hint: You may wish to letu = In(y/K).

b. For the data given in Example 1 in the text (- = 0.71 per
year, K = 80.5 x 10° kg, yo/K = 0.25), use the Gompertz
model to find the predicted value of y(2).

¢. For the same data as in part b, use the Gompertz model to find
the time 7 at which y(7) = 0.75K.

15Benjamin Gompertz (1779-1865) was an English actuary. He developed his
model for population growth, published in 1825, in the course of constructing
mortality tables for his insurance company.
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18. A pond forms as water collects in a conical depression of radius
a and depth /. Suppose that water flows in at a constant rate k and is
lost through evaporation at a rate proportional to the surface area.
a. Show that the volume V(#) of water in the pond at time ¢
satisfies the differential equation

Ay an(3a/mh)¥3v?3,

dt

where « is the coefficient of evaporation.

b. Find the equilibrium depth of water in the pond. Is the
equilibrium asymptotically stable?

c. Find a condition that must be satisfied if the pond is not to
overflow.

Harvesting a Renewable Resource. Suppose that the population y of
a certain species of fish (for example, tuna or halibut) in a given area
of the ocean is described by the logistic equation

d_yzr(l_z)y
dt K/

Although it is desirable to utilize this source of food, it is intuitively
clear that if too many fish are caught, then the fish population may be
reduced below a useful level and possibly even driven to extinction.
Problems 19 and 20 explore some of the questions involved in
formulating a rational strategy for managing the fishery.!'

19. Ata given level of effort, it is reasonable to assume that the rate
at which fish are caught depends on the population y: the more fish
there are, the easier it is to catch them. Thus we assume that the rate at
which fish are caught is given by E'y, where E is a positive constant,
with units of 1/time, that measures the total effort made to harvest the
given species of fish. To include this effect, the logistic equation is
replaced by

dy y)
Z=r(1-=<)y—Ey. 20
i r( %) y (20)

This equation is known as the Schaefer model after the biologist
M. B. Schaefer, who applied it to fish populations.
a. Show that if E < r, then there are two equilibrium points,
yy=0andy, = K(1—E/r) > 0.
b. Show that y = y; is unstable and y = y, is asymptotically
stable.
c. A sustainable yield Y of the fishery is a rate at which fish can
be caught indefinitely. It is the product of the effort £ and the
asymptotically stable population y,. Find Y as a function of the
effort E; the graph of this function is known as the yield—effort
curve.
d. Determine E so as to maximize Y and thereby find the
maximum sustainable yield Y,,,.

20. In this problem we assume that fish are caught at a constant rate
h independent of the size of the fish population. Then y satisfies

dy y
dt_r<1 K)y h. 21
The assumption of a constant catch rate 4 may be reasonable when y
is large but becomes less so when y is small.

a. If h < rK/4, show that equation (21) has two equilibrium

points y; and y, with y; < y,; determine these points.

b. Show that y; is unstable and y, is asymptotically stable.

c¢. From a plot of f(y) versus y, show that if the initial

population yy > yj, then y — y, ast — oo, but that if

16 An excellent treatment of this kind of problem, which goes far beyond what
is outlined here, may be found in the book by Clark mentioned previously,
especially in the first two chapters. Numerous additional references are given
there.

Yo < 1, then y decreases as  increases. Note that y = 0 is not an
equilibrium point, so if yy < y;, then extinction will be reached
in a finite time.

d. If » > rK/4, show that y decreases to zero as ¢ increases,
regardless of the value of .

e. If h = rK/4, show that there is a single equilibrium point
y = K /2 and that this point is semistable (see Problem 5). Thus
the maximum sustainable yield is /,, = rK /4, corresponding
to the equilibrium value y = K /2. Observe that &, has the
same value as Y, in Problem 19d. The fishery is considered to
be overexploited if y is reduced to a level below K /2.

Epidemics. The use of mathematical methods to study the spread of
contagious diseases goes back at least to some work by Daniel
Bernoulli in 1760 on smallpox. In more recent years many
mathematical models have been proposed and studied for many
different diseases.!” Problems 21 through 23 deal with a few of the
simpler models and the conclusions that can be drawn from them.
Similar models have also been used to describe the spread of rumors
and of consumer products.

21. Suppose that a given population can be divided into two parts:
those who have a given disease and can infect others, and those
who do not have it but are susceptible. Let x be the proportion of
susceptible individuals and y the proportion of infectious individuals;
then x + y = 1. Assume that the disease spreads by contact between
sick and well members of the population and that the rate of spread
dy/dt is proportional to the number of such contacts. Further, assume
that members of both groups move about freely among each other, so
the number of contacts is proportional to the product of x and y. Since
x = 1 — y, we obtain the initial value problem
dy
77 — =y,

where « is a positive proportionality factor, and y, is the initial
proportion of infectious individuals.

a. Find the equilibrium points for the differential equation (22)

and determine whether each is asymptotically stable, semistable,

or unstable.

b. Solve the initial value problem 22 and verify that the

conclusions you reached in part a are correct. Show that y(¢) —

1 as t+ — oo, which means that ultimately the disease spreads

through the entire population.

y(0) = yo, (22)

22. Some diseases (such as typhoid fever) are spread largely by
carriers, individuals who can transmit the disease but who exhibit no
overt symptoms. Let x and y denote the proportions of susceptibles
and carriers, respectively, in the population. Suppose that carriers are
identified and removed from the population at a rate /3, so

dy

dr
Suppose also that the disease spreads at a rate proportional to the
product of x and y; thus

—By. (23)

dx
dt
a. Determine y at any time ¢ by solving equation (23) subject to
the initial condition y(0) = yy.
b. Use the result of part a to find x at any time ¢ by solving
equation (24) subject to the initial condition x(0) = x.
¢. Find the proportion of the population that escapes the
epidemic by finding the limiting value of x as r — oo.

= —axy. (24)

17 A standard source is the book by Bailey listed in the references. The models
in Problems 21, 22, and 23 are discussed by Bailey in Chapters 5, 10, and 20,
respectively.



23. Daniel Bernoulli’s work in 1760 had the goal of appraising the
effectiveness of a controversial inoculation program against smallpox,
which at that time was a major threat to public health. His model
applies equally well to any other disease that, once contracted and
survived, confers a lifetime immunity.

Consider the cohort of individuals born in a given year (¢ = 0),
and let n(7) be the number of these individuals surviving ¢ years later.
Let x(¢) be the number of members of this cohort who have not had
smallpox by year ¢ and who are therefore still susceptible. Let 3 be
the rate at which susceptibles contract smallpox, and let v be the rate
at which people who contract smallpox die from the disease. Finally,
let 11(7) be the death rate from all causes other than smallpox. Then
dx/dt, the rate at which the number of susceptibles declines, is given
by

dx

77 = (B +p)x. (25)

The first term on the right-hand side of equation (25) is the rate at
which susceptibles contract smallpox, and the second term is the rate
at which they die from all other causes. Also

D Bx - 1) (26)

— = —vfx — n,

i K
where dn/dt is the death rate of the entire cohort, and the two terms
on the right-hand side are the death rates due to smallpox and to all
other causes, respectively.

a. Let z = x/n, and show that z satisfies the initial value
problem
dz
— =—pz(1-vz), z(0)=1 27
dt
Observe that the initial value problem (27) does not depend on
w(t).
b. Find z(1) by solving equation (27).
c. Bernoulli estimated that v = (3 = 1/8. Using these
values, determine the proportion of 20-year-olds who have not
had smallpox.

Note: On the basis of the model just described and the best mortality
data available at the time, Bernoulli calculated that if deaths due to
smallpox could be eliminated (v =0), then approximately 3 years
could be added to the average life expectancy (in 1760) of 26 years, 7
months. He therefore supported the inoculation program.

Bifurcation Points. For an equation of the form

4y 28

i fla,y), (28)
where a is a real parameter, the critical points (equilibrium solutions)
usually depend on the value of a. As a steadily increases or decreases,
it often happens that at a certain value of a, called a bifurcation point,
critical points come together, or separate, and equilibrium solutions
may be either lost or gained. Bifurcation points are of great interest in
many applications, because near them the nature of the solution of the
underlying differential equation is undergoing an abrupt change. For
example, in fluid mechanics a smooth (laminar) flow may break up and
become turbulent. Or an axially loaded column may suddenly buckle
and exhibit a large lateral displacement. Or, as the amount of one of
the chemicals in a certain mixture is increased, spiral wave patterns of
varying color may suddenly emerge in an originally quiescent fluid.
Problems 24 through 26 describe three types of bifurcations that can
occur in simple equations of the form (28).

24. Consider the equation

dy 2 2
— =a—Yy°. 9
It Yy 29

2.5 Autonomous Differential Equations and Population Dynamics 69

a. Find all of the critical points for equation (29). Observe that
there are no critical points if a < 0, one critical point if a = 0,
and two critical points if a > 0.

e b. Draw the phase line in each case and determine whether
each critical point is asymptotically stable, semistable, or
unstable.

@ c. In each case sketch several solutions of equation (29) in
the ty-plane.

Note: If we plot the location of the critical points as a function of @ in
the ay-plane, we obtain Figure 2.5.10. This is called the bifurcation
diagram for equation (29). The bifurcation at ¢ = 0 is called a
saddle - node bifurcation. This name is more natural in the context
of second-order systems, which are discussed in Chapter 9.

Asymptotically stable

-2 -1 1 2 3 4 a
\
N
N
1 AN - Unstable
~ -~ - /
2 T~

m Bifurcation diagram for y' = a — y?.

25. Consider the equation

D gy~ 3 = y(a— ). (30)
dt

0O a. Again consider the casesa < 0,a = 0,anda > 0.Ineach

case find the critical points, draw the phase line, and determine

whether each critical point is asymptotically stable, semistable,

or unstable.

@ b. In each case sketch several solutions of equation (30) in
the ¢y-plane.
@ c. Draw the bifurcation diagram for equation (30)—that is,
plot the location of the critical points versus a.
Note: For equation (30) the bifurcation point at a = 0 is called a
pitchfork bifurcation. Your diagram may suggest why this name is
appropriate.

26. Consider the equation

dy 2
2wy =y(a—y). (€29)
a. Again consider the cases a < 0,a = 0, and @ > 0. In each
case find the critical points, draw the phase line, and determine
whether each critical point is asymptotically stable, semistable,
or unstable.
b. 1In each case sketch several solutions of equation (31) in the
ty-plane.
c. Draw the bifurcation diagram for equation (31).
Note: Observe that for equation (31) there are the same number of
critical points fora < Oanda > 0 but that their stability has changed.
For a < 0 the equilibrium solution y = 0 is asymptotically stable
and y = a is unstable, while for @ > 0 the situation is reversed.
Thus there has been an exchange of stability as a passes through
the bifurcation point @ = 0. This type of bifurcation is called a
transcritical bifurcation.



70 CHAPTER2 First-Order Differential Equations

27. Chemical Reactions. A second-order chemical reaction
involves the interaction (collision) of one molecule of a substance
P with one molecule of a substance Q to produce one molecule of
a new substance X this is denoted by P + Q — X. Suppose that
p and g, where p # ¢, are the initial concentrations of P and Q,
respectively, and let x(¢) be the concentration of X at time 7. Then
p — x(t) and g — x(7) are the concentrations of P and Q at time ¢,
and the rate at which the reaction occurs is given by the equation

dx
E=a(17—x)(q—x)s (32)

where « is a positive constant.

a. If x(0) = 0, determine the limiting value of x(¢) ast — oo
without solving the differential equation. Then solve the initial
value problem and find x(¢) for any 7.
b. If the substances P and Q are the same, then p = ¢ and
equation (32) is replaced by

dx 2
— = —x)°. 33
7 = ep—x (33)
If x(0) = 0, determine the limiting value of x(¢) as t — 00
without solving the differential equation. Then solve the initial
value problem and determine x(#) for any ¢.

26 Exact Differential Equations and

Integrating Factors

For first-order differential equations there are a number of integration methods that are
applicable to various classes of problems. The most important of these are linear equations
and separable equations, which we have discussed previously. Here, we consider a class of
equations known as exact differential equations for which there is also a well-defined method
of solution. Keep in mind, however, that the first-order differential equations that can be solved
by elementary integration methods are rather special; most first-order equations cannot be

solved in this way.

EXAMPLE 1

Solution:

Solve the differential equation

2x 4+ y? +2xyy' = 0. )

The equation is neither linear nor separable, so the methods suitable for those types of equations are
not applicable here. However, observe that the function 7 (x, y) = x> + xy? has the property that

Therefore, the differential equation can be written as

0 0
2x+y2=8—1ﬁ, 2xy=a—1ﬁ. Q)
oy v dy
ax T aydx )

Assuming that y is a function of x, we can use the chain rule to write the left-hand side of equation (3)
as di(x, y) /dx. Then equation (3) has the form

Wy = L2 pay)) =
Ty = (7 0h) =0, @

Integrating equation (4) we obtain

Y(x,y) =x"+xy’ =c, Q)

where ¢ is an arbitrary constant. The level curves of ¢ (x, y) are the integral curves of equation (1).
Solutions of equation (1) are defined implicitly by equation (5).

In solving equation (1) the key step was the recognition that there is a function ¢/ that
satisfies equations (2). More generally, let the differential equation

M(x,y) +N(x,y)y =0 (6)
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be given. Suppose that we can identify a function ¥ (x, y) such that

0 0
761/} (x,y) = M(x,y), o (x,y) = N(x,y), @)
X dy

and such that v (x, y) = c defines y = ¢ (x) implicitly as a differentiable function of x.'®
When there is a function v (x, y) such that ¢, = M and ), = N, we can write

0 oY d d
M(x,y) + N(x,y)y = % + a—f % = Ew(x, ¢ (x))

and the differential equation (6) becomes
d
d—wu, ¢ (x)) =0. ®)
X

In this case equation (6) is said to be an exact differential equation because it can be expressed
exactly as the derivative of a specific function. Solutions of equation (6), or the equivalent
equation (8), are given implicitly by

P(x,y) =c, )

where c is an arbitrary constant.

In Example 1 it was relatively easy to see that the differential equation was exact and,
in fact, easy to find its solution, at least implicitly, by recognizing the required function .
For more complicated equations it may not be possible to do this so easily. How can we tell
whether a given equation is exact, and if it is, how can we find the function % (x, y)? The
following theorem answers the first question, and its proof provides a way of answering the
second.

Theorem 2.6.1

Let the functions M, N, M,, and N, where subscripts denote partial derivatives, be continuous in
the rectangular!® region R: v < x < 3,7 < y < §. Then equation (6)

M(x,y) +N(x,y)y' =0
is an exact differential equation in R if and only if
My (x,y) = Ne(x,y) (10)
at each point of R. That is, there exists a function ¢ satisfying equations (7),
Va(x,y) = M(x, ), ¥y(x,y) =N(x,y),

if and only if M and N satisfy equation (10).

The proof of this theorem has two parts. First, we show that if there is a function ) such
that equations (7) are true, then it follows that equation (10) is satisfied. Computing M,, and
N, from equations (7), we obtain

My(x’ y) way(an), Ni(x,y) Zwyx(x? y). (11)

Since M, and N, are continuous, it follows that v, and v, are also continuous. This
guarantees their equality, and equation (10) is valid.

We now show that if M and N satisfy equation (10), then equation (6) is exact. The proof
involves the construction of a function v satisfying equations (7)

Yolx,y) = M(x,y), vy(x,y) =N(x,y).

1$While a complete discussion of when 1 (x, y) = ¢ defines y = ¢ (x) implicitly as a differentiable function of x is
beyond the scope and focus of this course, in general terms this condition is satisfied, locally, at points (x, y), where
01 /dy(x,y) # 0. More details can be found in most books on advanced calculus.

191t is not essential that the region be rectangular, only that it be simply connected. In two dimensions this means that
the region has no holes in its interior. Thus, for example, rectangular or circular regions are simply connected, but an
annular region is not. More details can be found in most books on advanced calculus.
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We begin by integrating the first of equations (7) with respect to x, holding y constant. We
obtain

Y (x,y) = Q(x,y) +h(y), (12)

where Q(x,y) is any differentiable function such that O, = M. For example, we might
choose

O(x,y) =/ M(s, y)ds, 13)

where x is some specified constant with « < x, < (3. The function % in equation (12) is an
arbitrary differentiable function of y, playing the role of the arbitrary constant (with respect
to x). Now we must show that it is always possible to choose A(y) so that the second of
equations (7) is satisfied—that is, ¢, = N. By differentiating equation (12) with respect to y
and setting the result equal to N(x, y), we obtain

0
y(x,y) = a—f(x, ¥ () = N(x. ).
Then, solving for 4'(y), we have
0
W) = NGy = 220y, (14)
y

In order for us to determine /( y) from equation (14), the right-hand side of equation (14),
despite its appearance, must be a function of y only. One way to show that this is true is to
show that its derivative with respect to x is zero. Thus we differentiate the right-hand side of
equation (14) with respect to x, obtaining the expression

ON g 00
- - = . 1
ox (x,y) x Oy (x,y) 15)

By interchanging the order of differentiation in the second term of equation (15), we have

a_N( )_QG_Q( )
ox Y y Ox Y

or, since Q, = M,

ON

ON ey =My
Ox Yy dy )

which is zero on account of equation (10). Hence, despite its apparent form, the right-hand side
of equation (14) does not, in fact, depend on x. Then we find /(y) by integrating equation (14)
and, upon substituting this function in equation (12), we obtain the required function ¢ (x, y).
This completes the proof of Theorem 2.6.1.

Itis possible to obtain an explicit expression for ¢ (x, y) in terms of integrals (see Problem
13), but in solving specific exact equations, it is usually simpler and easier just to repeat the
procedure used in the preceding proof. That is, after showing that M, = N,, integrate ), = M
with respect to x, including an arbitrary function of 4(y) instead of an arbitrary constant, and
then differentiate the result with respect to y and set it equal to N. Finally, use this last equation
to solve for /2(y). The next example illustrates this procedure.

EXAMPLE 2

Solve the differential equation

(ycosx 4+ 2xe”) + (sinx +x2¢” — 1)y’ = 0. (16)
Solution:
By calculating M, and N,, we find that

My(x,y) =cosx +2xe’ = Ni(x, y),
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Y so the given equation is exact. Thus there is a ¢/ (x, y) such that
Yx(x,y) = ycosx + 2xe”,
Py(x,y) = sinx +x%e’ — 1.
Integrating the first of these equations with respect to x, we obtain
¥ (x,y) = ysinx + x2e” +h(y). amn
Next, computing ¢, from equation (17) and setting ¢), = N gives
Py(x,y) =sinx +x%e¥ + W' (y) =sinx +x% — 1.

Thus A'(y) = —1 and h(y) = —y. The constant of integration can be omitted since any solution
of the preceding differential equation is satisfactory; we do not require the most general one.
Substituting for 2(y) in equation (17) gives

(x,y) = ysinx + x%e¢’ — y.
P(x,y) =y y

Hence solutions of equation (16) are given implicitly by

ysinx +x%e’ —y =c. (18)
EXAMPLE 3
Solve the differential equation
(Bxy +5%) + (2 +xy)y = 0. (19)
Solution:
We have

My(x,y) =3x+2y, Ny(x,y)=2x+y;

since My, # N, the given equation is not exact. To see that it cannot be solved by the procedure
described above, let us seek a function ) such that

Yo(x,y) =3xy + 3%, hy(x,y) = x> +xy. (20)

Integrating the first of equations (20) with respect to x gives
3 2
w(x,y)=§x y+xy” +h(y), 2D

where h is an arbitrary function of y only. To try to satisty the second of equations (20), we compute
1), from equation (21) and set it equal to N, obtaining

3
§x2+2xy+h/(y) =x24xy
or
’ 1 2
h'(y) = —Ex —Xy. (22)

Since the right-hand side of equation (22) depends on x as well as y, it is impossible to solve equation
(22) for h(y). Thus there is no ¥ (x, y) satisfying both of equations (20).

Integrating Factors. It is sometimes possible to convert a differential equation that is not
exact into an exact differential equation by multiplying the equation by a suitable integrating
factor. Recall that this is the procedure that we used in solving linear differential equations
in Section 2.1. To investigate the possibility of implementing this idea more generally, let us
multiply the equation

M(x,y) + N(x,y)y' =0 23)
by a function p and then try to choose p so that the resulting equation
p(x, )M(x, y) + p(x, Y)NCx, y)y' =0 24)

is exact. By Theorem 2.6.1, equation (24) is exact if and only if

(/‘M)y:(,u'N)x- (25)

73
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Since M and N are given functions, equation (25) states that the integrating factor x must
satisfy the first-order partial differential equation

M/’Ly_N//"x"i_(M)_Nx)//':O (26)

If a function 4 satisfying equation (26) can be found, then equation (24) will be exact. The
solution of equation (24) can then be obtained by the method described in the first part of this
section. The solution found in this way also satisfies equation (23), since the integrating factor
1 can be canceled out of equation (24).

A partial differential equation of the form (26) may have more than one solution; if this is
the case, any such solution may be used as an integrating factor of equation (23). This possible
nonuniqueness of the integrating factor is illustrated in Example 4.

Unfortunately, equation (26), which determines the integrating factor i, is ordinarily at
least as hard to solve as the original equation (23). Therefore, although in principle integrating
factors are powerful tools for solving differential equations, in practice they can be found only
in special cases. The most important situations in which simple integrating factors can be found
occur when  is a function of only one of the variables x or y, instead of both.

Let us determine conditions on M and N so that equation (23) has an integrating factor p
that depends on x only. If we assume that p is a function of x only, then the partial derivative
i reduces to the ordinary derivative dy/dx and p, = 0. Making these substitutions in
equation (26), we find that

dp My, — N,
dx N
If (My — N,)/N is afunction of x only, then there is an integrating factor . that also depends
only on x; further, ;(x) can be found by solving differential equation (27), which is both
linear and separable.

A similar procedure can be used to determine a condition under which equation (23) has

an integrating factor depending only on y; see Problem 17.

@7

EXAMPLE 4

Find an integrating factor for the equation

(Bxy +37) + (% + 1)y =0 (19)
and then solve the equation.

Solution:

In Example 3 we showed that this equation is not exact. Let us determine whether it has an integrating
factor that depends on x only. On computing the quantity (M, — Ny) /N, we find that

My(x,y) = Ne(x,y) _ 3x4+2y—(2x+y) 1

N(x,y) x2 +xy x (28)
Thus there is an integrating factor p that is a function of x only, and it satisfies the differential
equation
d
ﬁ = % . (29)
Hence (see Problem 7 in Section 2.2)
nw(x) =x. (30)
Multiplying equation (19) by this integrating factor, we obtain
(3x%y +xyH) + (¥ +x2y)y = 0. 31)
Equation (31) is exact, since
%(3x2y +xy?) =3x2 4 2xy = a%(x3 +x2y).
Thus there is a function ¢ such that
Ua(x,y) =32y + 2y y(x,y) =7 4%y (32)




Y Integrating the first of equations (32) with respect to x, we obtain

2 aly +h(y) =20 + 2%y,
are given implicitly by

1
B3y + Exzyz —c

1

R p T

is used (see Problem 22).

1
PY(x,y) =27y + Exzyz +h(y).
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Substituting this expression for ¥ (x, y) in the second of equations (32), we find that

so /'(y) = 0and h(y) is a constant. Thus the solutions of equation (31), and hence of equation (19),

(33)

Solutions may also be found in explicit form since equation (33) is quadratic in y.
You may also verify that a second integrating factor for equation (19) is

and that the same solution is obtained, though with much greater difficulty, if this integrating factor

Problems

Determine whether each of the equations in Problems 1 through 8 is
exact. If it is exact, find the solution.

1. 2x+3)+Q2y—2)y' =0
2. (2x+4y)+(2x—2y)y'=0
3. B =2y +2) + (6P —x24+3)y' =0
4 d_y _ + by
dx bx +cy
5. d_y __ax— by
dx bx —cy
6. (ye™ cos(2x) —2e™ sin(2x) +2x) +(xe™ cos(2x) —3)y' =0
7. (y/x+6x) +(Inx—2)y' =0, x>0
X y dy
(x2 1 y2)3/2 + (x2 1 y3)3/2 dx =
In each of Problems 9 and 10, solve the given initial value problem
and determine at least approximately where the solution is valid.

9. 2=y +Q2y—-x)y =0, y(1)=3
10 (9x*+y—1) —(4y—x)y =0, y(1)=0

In each of Problems 11 and 12, find the value of b for which the given
equation is exact, and then solve it using that value of b.

11, (xy? +bx%y) + (x +y)x%y =0
12. (e +x) + bxe?¥y =0

13. Assume that equation (6) meets the requirements of Theorem
2.6.1 in a rectangle R and is therefore exact. Show that a possible
function v (x, y) is

X y
P(x,y) =/ M(s,yo)ds+/ N(x,1)dt,
0 Yo

where (xg, yp) is a point in R.

14. Show that any separable equation
M(x) +N(»)y =0

is also exact.

In each of Problems 15 and 16, show that the given equation is not
exact but becomes exact when multiplied by the given integrating
factor. Then solve the equation.

15, 22 +x(1+)D)y =0, p(x,y) =1/(x?)

16. (x+2)siny+(xcosy)y =0, pu(x,y) =xe*
17. Show thatif (N, — My)/M = Q, where Q is a function of y
only, then the differential equation

M+ Ny =0

has an integrating factor of the form
p(y) = eXp/ O(y)dy.

In each of Problems 18 through 21, find an integrating factor and solve
the given equation.

18. (3x?y+2xy+y) +(x2+yH)y =0
19. y=e>+y-—1
20. 14+ (x/y—siny)y' =0
21. y+(2xy —e )y =0
22. Solve the differential equation
(Bxy +3) + (% + )y =0

using the integrating factor p(x, y) = (xy(2x + y))~!. Verify that
the solution is the same as that obtained in Example 4 with a different
integrating factor.
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27 Numerical Approximations:
Euler’s Method

Recall two important facts about the first-order initial value problem

dy
i f ), y(to) = yo- )

d
First, if f and 0 f/0y are continuous, then the initial value problem (1) has a unique solution
y = ¢(t) in some interval surrounding the initial point ¢+ = #,. Second, it is usually not
possible to find the solution ¢ by symbolic manipulations of the differential equation. Up to
now we have considered the main exceptions to the latter statement: differential equations that
are linear, separable, or exact, or that can be transformed into one of these types. Nevertheless,
it remains true that solutions of the vast majority of first-order initial value problems cannot
be found by analytical means, such as those considered in the first part of this chapter.
Therefore, it is important to be able to approach the problem in other ways. As we
have already seen, one of these ways is to draw a direction field for the differential
equation (which does not involve solving the equation) and then to visualize the behavior of
solutions from the direction field. This has the advantage of being a relatively simple process,
even for complicated differential equations. However, it does not lend itself to quantitative
computations or comparisons, and this is often a critical shortcoming.
For example, Figure 2.7.1 shows a direction field for the differential equation
D3 205 2
T t —0.5y. 2)
From the direction field you can visualize the behavior of solutions on the rectangle shown
in the figure. On this rectangle a solution starting at a point on the y-axis initially increases
with ¢, but it soon reaches a maximum value and then begins to decrease as ¢ increases further.
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A direction field for equation (2): dy/dt =3 — 2t — 0.5y.

You may also observe that in Figure 2.7.1 many tangent line segments at successive values
of t almost touch each other. It takes only a bit of imagination to consider starting at a point on
the y-axis and linking line segments for successive values of ¢ in the grid, thereby producing
a piecewise linear graph. Such a graph would apparently be an approximation to a solution of
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the differential equation. To convert this idea into a useful method for generating approximate
solutions, we must answer several questions, including the following:

1. Can we carry out the linking of tangent lines in a systematic and straightforward
manner?

2. If so, does the resulting piecewise linear function provide an approximation to an actual
solution of the differential equation?

3. If so, can we assess the accuracy of the approximation? That is, can we estimate how far
the approximation deviates from the solution itself?

It turns out that the answer to each of these questions is affirmative. The resulting method
was originated by Euler about 1768 and is referred to as the tangent line method or the Euler
method. We will deal with the first two questions in this section, but will defer a systematic
discussion of the third question until Chapter 8.

To see how the Euler method works, let us consider how the tangent lines might be used
to approximate the solution y = ¢ (¢) of initial value problem (1) near t = #;,. We know that
the solution passes through the initial point (#,, y,), and from the differential equation, we also
know that its slope at this point is f(#y, yo). Thus we can write down an equation for the line
tangent to the solution curve at (ty, yg), namely,

y =yo+ f(t, yo)(t — 1p). 3)

The tangent line is a good approximation to the actual solution curve on an interval short
enough so that the slope of the solution does not change appreciably from its value at the
initial point; see Figure 2.7.2. Thus, if #; is close enough to #y, we can approximate ¢ (z;) by
the value y; determined by substituting ¢ = #; into the tangent line approximation at ¢ = ty;
thus

y1 = Yo+ f(t0, yo) (11 — 1p). )
y
Tangent line
Lo ¥ =0+ [ty 5o @t —t)
S g \,’ Solution
,,,,,,,, ‘. utl

¢(t1) P y=0(t)

Yob--

A tangent line approximation of
y' = f(t.y) at(to, y)-

To proceed further, we can try to repeat the process. Unfortunately, we do not know the
value ¢ (1) of the solution at #,. The best we can do is to use the approximate value y; instead.
Thus we construct the line through (7, y;) with the slope f(#;, y1),

y=yi+ f(t;,yD)(t —1t). 5)

To approximate the value of ¢ (¢) at a nearby point #,, we use equation (5) instead of equation
(3), obtaining

2 =y1+ f(t, y)(t —t). (6)

Continuing in this manner, we use the value of y calculated at each step to determine
the slope of the approximation for the next step. The general expression for the tangent line
starting at (#,, y,) is

yzyn‘l'f(tn,yn)(t_tn); (@)

hence the approximate value y,,; at #,, in terms of ¢, #,,1, and y, is

yVH-l =yn+f(tn»yn)(tn+l _tn)s n=0’1s2s e (8)
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If we introduce the notation f, = f(#,, y,), then we can rewrite equation (8) as
yn+1:yn+fn'(tn+1_tn), n:0,1,2, e 9

Finally, if we assume that there is a uniform step size & between the points fy, t, >, ... , then
t,41 = t, + h for each n, and we obtain Euler’s formula in the form

Yn+1 :yn+fnh7 n=0,1,2,.... (10)

To use Euler’s method, you repeatedly evaluate equation (9) or equation (10), depending
on whether or not the step size is constant, using the result of each step to execute the next
step. In this way you generate a sequence of values y;, y;, y3, ... that approximate the values
of the solution ¢ () at the points #, 1, t3, ... . If, instead of a sequence of points, you need
a function to approximate the solution ¢ (#), then you can use the piecewise linear function
constructed from the collection of tangent line segments. That is, let y be given in [fy, #;] by
equation (7) with n = 0, in [#{, £,] by equation (7) with n = 1, and so on.

EXAMPLE 1

Consider the initial value problem

dy
S =3-2-05y, yO0 =1 an

Use Euler’s method with step size & = 0.2 to find approximate values of the solution of initial value
problem (9) at + = 0.2, 0.4, 0.6, 0.8, and 1. Compare them with the corresponding values of the
actual solution of the initial value problem.

Solution:

Note that the differential equation in the given initial value problem is the same as in equation (2); its
direction field is shown in Figure 2.7.1. Before applying Euler’s method, observe that this differential
equation is linear, so it can be solved as in Section 2.1, using the integrating factor e'/2. The resulting
solution of the initial value problem (9) is

y=o¢(t) =14 —4r — 13¢71/2. (12)

We will use this information to assess how the approximate solution obtained by Euler’s method
compares with the exact solution.

To approximate this solution by Euler’s method, note that f (¢, y) =3 — 2t — 0.5y. Using the
initial values #y) = 0 and y, = 1, we find that

Jfo= f(t0,y0) = f(0,1) =3-0-05=2.5
and then, from equation (3), the tangent line approximation near t = 0 is
y=14+25(—-0) =1+2.5¢t. (13)
Setting t = 0.2 in equation (13), we find the approximate value y; of the solution at# = 0.2, namely,
y1 =14(2.5)(0.2) =1.5.
At the next step we have
fi=f(t,y1) = f(0.2,1.5) =3 -2(0.2) —(0.5)(1.5) =3 —-0.4—-0.75 = 1.85.
Then the tangent line approximation near t = 0.2 is
y=154+1.85—-0.2) =1.13 4+ 1.85¢. 14)

Evaluating the expression in equation (14) for t = 0.4, we obtain

v, =1.1341.85(0.4) = 1.87.

Repeating this computational procedure three more times, we obtain the results shown in Table 2.7.1.
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Y Results of Euler’s Method with 2 = 0.2 for
TABLE 2.7.1 Y =3— 2 — 0.5y, y(0) =1

n ty Yn Jo = f(tnyyn) Tangent Line Exact y(¢,)
0 0.0 1.00000 25 y=1+2.5(—-0) 1.00000
1 02 150000 1.85 y=1.5+1.85r—-0.2) 1.43711
2 04 1.87000 1.265 y =1.87 +1.265(t — 0.4) 1.75650
3 0.6 212300 0.7385 y =2.123 +0.7385(1 — 0.6) 1.96936
4 08 227070 0.26465 y = 2.2707 + 0.26465(¢ — 0.8) 2.08584
5 1.0 232363 2.11510

The second column contains the 7-values separated by the step size &7 = 0.2. The third column
shows the corresponding y-values computed from Euler’s formula (10). Column four contains the
slopes f,, of the tangent line at the current point, (7,, y,). In the fifth column are the tangent line
approximations found from equation (7). The sixth column contains values of the solution (12) of
the initial value problem (9), correct to five decimal places. The solution (12) and the tangent line
approximation are also plotted in Figure 2.7.3.

BT )
-
e

Tangent line approximation //

\ \ \ \ \
0.2 0.4 0.6 0.8 1 ¢

Plots of the solution and a tangent line
approximation with 7 = 0.2 for the initial value problem (9):

dy/dt =3 —2t —0.5y, y(0) = 1.

From Table 2.7.1 and Figure 2.7.3 we see that the approximations given by Euler’s method for
this problem are greater than the corresponding values of the actual solution. This is because the
graph of the solution is concave down and therefore the tangent line approximations lie above the
graph.

The accuracy of the approximations in this example is not good enough to be satisfactory in a
typical scientific or engineering application. For example, at # = 1 the error in the approximation
is 2.32363 — 2.11510 = 0.20853, which is a percentage error of about 9.86% relative to the exact
solution. One way to achieve more accurate results is to use a smaller step size, with a corresponding
increase in the number of computational steps. We explore this possibility in the next example.

Of course, computations such as those in Example 1 and in the other examples in this
section are usually done on a computer. Some software packages include code for the Euler
method, while others do not. In any case, it is straightforward to write a computer program
that will carry out the calculations required to produce results such as those in Table 2.7.1.
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Basically, what is required is a loop that will evaluate equation (10) repetitively, along
with suitable instructions for input and output. The output can be a list of numbers, as in
Table 2.7.1, or a plot, as in Figure 2.7.3. The specific instructions can be written in any high-
level programming language with which you are familiar.

EXAMPLE 2

Consider again the initial value problem (9)
dy
— =3-2r—-0.5 0)=1.
o v, (0

Use Euler’s method with various step sizes to calculate approximate values of the solution for
0 <t < 5. Compare the calculated results with the corresponding values of the exact solution (12)

y=14—4r — 13¢7"/2.

Solution:

We used step sizes h = 0.1, 0.05, 0.025, and 0.01, corresponding to 50, 100, 200, and 500 steps,
respectively, to go from # = 0 to ¢ = 5. The results of these calculations, along with the values of
the exact solution, are summarized in Table 2.7.2. All computed entries are rounded to four decimal
places, although more digits were retained in the intermediate calculations.

Comparison of the Exact Solution with Euler’s Method for
Several Step Sizes h for y’ =3 — 2t — 0.5y, y(0) =1

TABLE 2.7.2

0.0 1.0000 1.0000 1.0000 1.0000 1.0000
1.0 2.2164 2.1651 2.1399 2.1250 2.1151
2.0 1.3397 1.2780 1.2476 1.2295 1.2176
3.0 —0.7903 —0.8459 —0.8734 —0.8898 —0.9007
4.0 —3.6707 —3.7152 —3.7373 —3.7506 —3.7594
5.0 —7.0003 —7.0337 —7.0504 —7.0604 —7.0671

What conclusions can we draw from the data in Table 2.7.2? The most important observation
is that, for a fixed value of #, the computed approximate values become more accurate as the step
size h decreases. You can see this by reading across a particular row in the table from left to right.
This is what we would expect, of course, but it is encouraging that the data confirm our expectations.
For example, for 1 = 2 the approximate value with # = 0.1 is too large by 0.1221 (about 10%),
whereas the value with 7 = 0.01 is too large by only 0.0119 (about 1%). In this case, reducing the
step size by a factor of 10 (and performing 10 times as many computations) also reduces the error
by a factor of about 10. Comparing the errors for other pairs of values in the table confirms that this
relation between step size and error holds for them also: reducing the step size by a given factor also
reduces the error by approximately the same factor. Does this mean that for the Euler method the
error is approximately proportional to the step size? Of course, one example does not establish such
a general result, but it is at least an interesting conjecture.?"

A second observation from Table 2.7.2 is that, for a fixed step size &, the approximations become
more accurate as f increases, at least for # > 2. For instance, for # = 0.1 the error for r = 5 is only
0.0668, which is a little more than one-half of the error at t = 2. We will return to this matter later
in this section.

All in all, Euler’s method seems to work rather well for this problem. Reasonably good results
are obtained even for a moderately large step size 7 = 0.1, and the approximation can be improved
by decreasing h.

20 A more detailed discussion of the errors in using the Euler method appears in Chapter 8.
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Let us now look at another example.

EXAMPLE 3

Consider the initial value problem
d
_df —4—1+2y, y0) =1. (15)

The general solution of this differential equation was found in Example 2 of Section 2.1, and the
solution of the initial value problem (11) is

(16)

Use Euler’s method with several step sizes to find approximate values of the solution on the interval
0 <t < 5. Compare the results with the corresponding values of the solution (16).

Solution:

Using the same range of step sizes as in Example 2, we obtain the results presented in Table 2.7.3.

Comparison of the Exact Solution with Euler’s Method for
Several Step Sizes h fory’ =4 —¢t + 2y, y(0) =1

TABLE 2.7.3

h =0.025 h =0.01
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
1.0 15.77728 17.25062 18.10997 18.67278 19.06990
2.0 104.6784 123.7130 135.5440 143.5835 149.3949
3.0 652.5349 837.0745 959.2580 1045.395 1109.179
4.0 4042.122 5633.351 6755.175 7575.577 8197.884
5.0 25026.95 37897.43 47555.35 54881.32 60573.53

The data in Table 2.7.3 again confirm our expectation that, for a given value of ¢, accuracy
improves as the step size 4 is reduced. For example, for = 1 the percentage error diminishes from
17.3% when h = 0.1 to 2.1% when h = 0.01. However, the error increases fairly rapidly as ¢
increases for a fixed 4. Even for 1 = 0.01, the error at r = 5 is 9.4%, and it is much greater for larger
step sizes. Of course, the accuracy that is needed depends on the purpose for which the results are
intended, but the errors in Table 2.7.3 are too large for most scientific or engineering applications.
To improve the situation, we might either try even smaller step sizes or else restrict the computations
to a rather short interval away from the initial point. Nevertheless, it is clear that Euler’s method is
much less effective in this example than in Example 2.

To understand better what is happening in these examples, let us look again at Euler’s
method for the general initial value problem (1)
dy
27 = Sy, y(to) = o,
whose exact solution we denote by ¢ (7). Recall that a first-order differential equation has an
infinite family of solutions, indexed by an arbitrary constant ¢, and that the initial condition
picks out one member of this infinite family by determining the value of c. Thus in the infinite
family of solutions, ¢ (#) is the one solution that satisfies the initial condition ¢ () = yo.
At the first step Euler’s method uses the tangent line approximation to the graph of
y = ¢ (t) passing through the initial point (7, yy), and this produces the approximate value
yp at t;. Usually, y; # ¢(#1), so at the second step Euler’s method uses the tangent line
approximation not to y = ¢(¢), but to a nearby solution y = ¢(¢) that passes through
the point (1, y;). So it is at each subsequent step. Euler’s method uses a succession of
tangent line approximations to a sequence of different solutions ¢ (), ¢1(2), ¢(t), ... of the
differential equation. At each step the tangent line is constructed to the solution passing through
the point determined by the result of the preceding step, as shown in Figure 2.7.4. The quality
of the approximation after many steps depends strongly on the behavior of the set of solutions
that pass through the points (#,, y,) forn =1,2,3, ... .
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Problems

CHAPTER 2 First-Order Differential Equations

The Euler method.

In Example 2 the general solution of the differential equation is
y =14 — 4t + ce™'/? a7

and the solution of the initial value problem (9) corresponds to ¢ = —13. The family
of solutions (17) is a converging family since the term involving the arbitrary constant ¢
approaches zero as t — co. It does not matter very much which solutions we are approximating
by tangent lines in the implementation of Euler’s method, since all the solutions are getting
closer and closer to each other as ¢ increases.

On the other hand, in Example 3 the general solution of the differential equation is

I L e (18)

Y=T475 ,

and, because the term involving the arbitrary constant ¢ grows without bound as t — o0, this
is a diverging family. Note that solutions corresponding to two nearby values of ¢ become
arbitrarily far apart as ¢ increases. In Example 3 we are trying approximate the solution for
¢ = 11/4, but in the use of Euler’s method we are actually at each step following another
solution that separates from the desired one faster and faster as ¢ increases. This explains why
the errors in Example 3 are so much larger than those in Example 2.

In using a numerical procedure such as the Euler method, you must always keep in mind
the question of whether the results are accurate enough to be useful. In the preceding examples,
the accuracy of the numerical results could be determined directly by a comparison with the
solution obtained analytically. Of course, usually the analytical solution is not available if a
numerical procedure is to be employed, so what we usually need are bounds for, or at least
estimates of, the error that do not require a knowledge of the exact solution. You should also
keep in mind that the best that we can expect, or hope for, from a numerical approximation
is that it reflects the behavior of the actual solution. Thus a member of a diverging family of
solutions will always be harder to approximate than a member of a converging family.

If you wish to read more about numerical approximations to solutions of initial value
problems, you may go directly to Chapter 8 at this point. There, we present some information
on the analysis of errors and also discuss several algorithms that are computationally much
more efficient than the Euler method.

Note about Variations of Computed Results. Most of the problems of the book are recorded to six digits in most cases, although more
in this section call for fairly extensive numerical computations. To  digits were retained in the intermediate calculations.
handle these problems you need suitable computing hardware and [ each of Problems 1 through 4:

software. Keep in mind that numerical results may vary somewhat,
depending on how your program is constructed and on how your

@ a. Find approximate values of the solution of the given initial
value problem at + = 0.1, 0.2, 0.3, and 0.4 using the Euler

computer executes arithmetic steps, rounds off, and so forth. Minor method with 1 = 0.1.
variations in the last decimal place may be due to such causes and do @ b. Repeat part (a) with 7 = 0.05. Compare the results with

not necessarily indicate that something is amiss. Answers in the back

those found in a.



O c. Repeat part a with & = 0.025. Compare the results with
those found in a and b.

@ d. Find the solution y = ¢(r) of the given problem and
evaluate ¢ (7) att = 0.1, 0.2, 0.3, and 0.4. Compare these values
with the results of a, b, and c.

1. y=34+t—y, y0) =1
2. y=2y—1, y(0) =1

3. yY=05—-1r+2y, y0) =1
4. y =3cost—2y, y(0)=0

In each of Problems 5 through 8, draw a direction field for the given
differential equation and state whether you think that the solutions are
converging or diverging.

G 5 y=5-3,
O 6 y=y3-1y
@ 7. y=—-1y+0.1y>
@ 8 y=:+)

In each of Problems 9 and 10, use Euler’s method to find approximate
values of the solution of the given initial value problem at = 0.5,
1, 1.5,2,2.5, and 3: (a) With 2 = 0.1, (b) With 2 = 0.05, (c) With
h = 0.025, (d) With 2 = 0.01.

0O 9 y=5-3/5 »0)=2

0O 10. y=y3-1y). y0) =05

11. Consider the initial value problem

3
T 3y2—4

’

y . y() =0.

O a. Use Euler’s method with 2 = 0.1 to obtain approximate
values of the solutionat¢t = 1.2, 1.4, 1.6, and 1.8.

@ b. Repeat part a with 4 = 0.05.

¢. Compare the results of parts a and b. Note that they are
reasonably close for t = 1.2, 1.4, and 1.6 but are quite different
for t = 1.8. Also note (from the differential equation) that
the line tangent to the solution is parallel to the y-axis when
y = £2/ \/3 = =1.155. Explain how this might cause such
a difference in the calculated values.

0 12. Consider the initial value problem
y(0) = 1.

Use Euler’s method with 4 = 0.1, 0.05, 0.025, and 0.01 to explore the
solution of this problem for 0 < r < 1. What is your best estimate
of the value of the solution at + = 0.8? At = 1? Are your results
consistent with the direction field in Problem 8?

y/=t2+y2,

13. Consider the initial value problem
Y ==ty +0.1y%  y(0) =a,

where o is a given number.

2.8 The Existence and Uniqueness Theorem 83

@ a. Draw a direction field for the differential equation (or
reexamine the one from Problem 7). Observe that there is a
critical value of « in the interval 2 < « < 3 that separates
converging solutions from diverging ones. Call this critical
value «y.

@ b. Use Euler’s method with 2 = 0.01 to estimate a. Do this
by restricting ac( to an interval [a, b], where b — a = 0.01.

14. Consider the initial value problem

y=y"—1% 0 =a,

where « is a given number.
@ a. Draw a direction field for the differential equation. Note
that there is a critical value of « in the interval 0 < a < 1
that separates converging solutions from diverging ones. Call this
critical value av.
@ b. Use Euler’s method with # = 0.01 to estimate . Do this
by restricting «( to an interval [a, b], where b — a = 0.01.

15. Convergence of Euler’s Method. It can be shown that
under suitable conditions on f, the numerical approximation
generated by the Euler method for the initial value problem
v = f(t,y), y(ty) = yo converges to the exact solution as the step
size h decreases. This is illustrated by the following example. Consider
the initial value problem

y=1—-t+y, y(t) =y

a. Show that the exact solutionis y = ¢ (1) = (yg—to)e' O +t.
Ohb. Using the Euler formula, show that

vi=(+hy1+h—hty_y, k=172,....

¢. Noting that y; = (1 + h)(yg — ty) + t;, show by induction
that

= (1+h)"(yg —to) + 1, (19)

for each positive integer n.

d. Consider a fixed point ¢+ > %, and for a given n choose

h = (t —ty) /n. Then 1, = ¢ for every n. Note also that h — 0

as n — 00. By substituting for 4 in equation (19) and letting

n — 0o, show that y, — ¢ (¢) asn — oo.

Hint: lim (1 +a/n)" = €.

n—0o0

In each of Problems 16 and 17, use the technique discussed in Problem
15 to show that the approximation obtained by the Euler method
converges to the exact solution at any fixed point as 7 — 0.

16. y'=y, y(0) =1

17. y=2y—1, y(0) =1 Hint:y;=(1+2h)/2+1/2

28 The Existence and Uniqueness Theorem

In this section we discuss the proof of Theorem 2.4.2, the fundamental existence and
uniqueness theorem for first-order initial value problems. Recall that this theorem states that

under certain conditions on f (¢, y), the initial value problem
Y = f(t,y),

has a unique solution in some interval containing the point ;.

y(fo) = Yo

¢y
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In some cases (for example, if the differential equation is linear), the existence of a
solution of the initial value problem (1) can be established directly by actually solving the
problem and exhibiting a formula for the solution. However, in general, this approach is not
feasible because there is no method of solving the differential equation that applies in all cases.
Therefore, for the general case, it is necessary to adopt an indirect approach that demonstrates
the existence of a solution of initial value problem (1) but usually does not provide a practical
means of finding it. The heart of this method is the construction of a sequence of functions that
converges to a limit function satisfying the initial value problem, although the members of the
sequence individually do not. As a rule, it is impossible to compute explicitly more than a few
members of the sequence; therefore, the limit function can be determined only in rare cases.
Nevertheless, under the restrictions on f(¢, y) stated in Theorem 2.4.2, it is possible to show
that the sequence in question converges and that the limit function has the desired properties.
The argument is fairly intricate and depends, in part, on techniques and results that are usually
encountered for the first time in a course on advanced calculus. Consequently, we do not go
into all the details of the proof here; we do, however, indicate its main features and point out
some of the difficulties that must be overcome.

First of all, we note that it is sufficient to consider the problem in which the initial point
(o, Yo) 1s the origin; that is, we consider the problem

y = f(t,y), y(0) =0. ()

If some other initial point is given, then we can always make a preliminary change of variables,
corresponding to a translation of the coordinate axes, that will take the given point (7, yo) into
the origin. The existence and uniqueness theorem can now be stated in the following way.

Theorem 2.8.1 | Existence and Uniqueness of Solutions of

y' =f(t,y),y(0)=0

If f and Of/dy are continuous in a rectangle R:|t| < a, |y| < b, then there is some interval
|t] < h < a in which there exists a unique solution y = ¢ () of the initial value problem (2).

For the method of proof discussed here it is necessary to transform initial value problem
(2) into a more convenient form. If we suppose temporarily that there is a differentiable
function y = ¢ (¢) that satisfies the initial value problem, then f (¢, ¢(¢)) is a continuous
function of ¢ only. Hence we can integrate y' = f(, y) from the initial point 7 = 0 to an
arbitrary value of 7, obtaining

6(1) =/0 F(s, (s)) ds, 3

where we have made use of the initial condition ¢ (0) = 0. We also denote the dummy variable
of integration by s.

Since equation (3) contains an integral of the unknown function ¢, it is called an integral
equation. This integral equation is not a formula for the solution of the initial value problem,
but it does provide another relation satisfied by any solution of equations (2). Conversely,
suppose that there is a continuous function y = ¢ (¢) that satisfies the integral equation (3);
then this function also satisfies the initial value problem (2). To show this, we first substitute
zero for ¢ in equation (3), which shows that the initial condition is satisfied. Further, since the
integrand in equation (3) is continuous, it follows from the fundamental theorem of calculus
that ¢ is differentiable and that ¢'(¢) = f(¢, ¢ (¢)). Therefore, the initial value problem and
the integral equation are equivalent in the sense that any solution of one is also a solution of
the other. It is more convenient to show that there is a unique solution of the integral equation
in a certain interval || < h. The same conclusion also holds for the initial value problem (2).

One method of showing that the integral equation (3) has a unique solution is known as the
method of successive approximations or Picard’s?! iteration method. In using this method,

2l Charles-Emile Picard (1856-1914) was appointed professor at the Sorbonne before the age of 30. Except for Henri
Poincaré, he is perhaps the most distinguished French mathematician of his generation. He is known for important
theorems in complex variables and algebraic geometry as well as differential equations. A special case of the method
of successive approximations was first published by Liouville in 1838. However, the method is usually credited to
Picard, who established it in a general and widely applicable form in a series of papers beginning in 1890.
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we start by choosing an initial function ¢, either arbitrarily or to approximate in some way
the solution of the initial value problem. The simplest choice is

Po(1) =0; (C))

then ¢ at least satisfies the initial condition in equations (2), although presumably not the
differential equation. The next approximation ¢ is obtained by substituting ¢ y(s) for ¢ (s)
in the right-hand side of equation (3) and calling the result of this operation ¢ (¢). Thus

010 = [ F(s.60) s 0
Similarly, ¢, is obtained from ¢ :

020 = [ £(5.61)) s ©®
and, in general,

bua) = [ (5,000 ds. %
In this manner we generate the sequence of functions {¢,} = {Gg, G 1, Bas - » Py - ).

Each member of the sequence satisfies the initial condition, but in general none
satisfies the differential equation. However, if at some stage, say, for n = k, we find that
Ori1(1) = @i(1), then it follows that ¢ is a solution of the integral equation (3). Hence ¢
is also a solution of the initial value problem (2), and the sequence is terminated at this point.
In general, this does not occur, and it is necessary to consider the entire infinite sequence.

To establish Theorem 2.8.1, we must answer four principal questions:

1. Do all members of the sequence {¢,} exist, or may the process break down at some stage?
2. Does the sequence converge?

3. What are the properties of the limit function? In particular, does it satisfy the integral
equation (3) and hence the initial value problem (2)?

4. Is this the only solution, or may there be others?

We first show how these questions can be answered in a specific and relatively simple example
and then comment on some of the difficulties that may be encountered in the general case.

EXAMPLE 1

Solve the initial value problem
y'=2t(1+y), y(0)=0 ®)

by the method of successive approximations.

Solution:

Note first that if y = ¢ (#), then the corresponding integral equation is

t
0 =/ 25(1+ ¢ (s)) ds. ©)
0
If the initial approximation is ¢o(#) = 0, it follows that
t t
$1(1) =/ 2s(1+¢0(s))ds=/ 2sds =17 (10)
0 0
Similarly,
t t t4
(1) =/ 23(1+¢1(s))ds=/ 2s(1+52)ds=r2+E (11)
0 0

85
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\ 4

and
1 ' ¢4 4 £6
(1) =/ 25(1 + ¢o(s))ds =/ 25( 145>+ = |lds=>+ — + —. (12)
0 0 2 2 2.3
Equations (10), (11), and (12) suggest that
. t4 l‘6 th 3
¢n(t)—f+a+§+'“+m (13)

for each n > 1, and this result can be established by mathematical induction, as follows. Equation
(13) is certainly true for n = 1; see equation (10). We must show that if it is true for n = k, then it
also holds for n = k 4+ 1. We have

Pr1(1) =/ 25(1+ ¢i(s)) ds
0

t s4 s2k
= [ 2s(14+s2+=4+- 4+ )ds
o 2! k!

2s2k+l

! 253
0 !
4 6 2%+2
LI S L i
21 31 (k+1)!

and the inductive proof is complete.

A plot of the first four iterates, ¢ (), @2(2), ¢3(1), and ¢ 4(1), is shown in Figure 2.8.1. As k
increases, the iterates seem to remain close over a gradually increasing interval, suggesting eventual
convergence to a limit function.

| | | | | |
-15 -1 -0.5 0.5 1 15t

Plots of the first four Picard iterates

y=01(t), ...,y = ¢4(t) for Example 1:
dy/dt = 2t(1+ y), y(0) = 0.

It follows from equation (13) that ¢, (¢) is the n'™ partial sum of the infinite series

=S
l‘2k

Do (15

k=1

hence lim ¢,(#) exists if and only if the series (15) converges. Applying the ratio test, we see that,
n—0o0

for eacht,

2

Tkt

t2k+2 k!
— 0 as k — oo. (16)

(k+ 1! 12

Thus the interval of convergence for series (15) is the entire 7-axis. This means its sum ¢ (7) is the

limit of the sequence {¢,(¢)} for every value of . Further, since the series (15) is a Taylor series,

it can be differentiated or integrated term-by-term for all values of ¢. Therefore, we can verify by
o0

direct computation that ¢ (1) = > 1% / k! is a solution of the integral equation (9). Alternatively,
k=1
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by substituting ¢ (¢) for y in equations (8), we can verify that this function satisfies the initial value
problem (6). In this example it is also possible, from the series (15), to identify the solution ¢ ()
in terms of elementary functions, namely, ¢ (1) = e’2 — 1. (See Problem 13.) However, this is not
necessary for the discussion of existence and uniqueness.

Explicit knowledge of ¢ (¢) does make it possible to visualize the convergence of the sequence
of iterates more clearly by plotting the difference ex(#) = ¢ () — ¢(t) for various values of k.
Figure 2.8.2 shows this difference for k = 1, 2, 3, 4. This figure clearly illustrates the gradually
increasing interval over which successive iterates provide a good approximation to the solution of
the initial value problem.

1
081
061
041
021
5 1

\
-1 - -0.5 0.5 1 15 ¢

Plots of y = ex(t) = ¢ (1) — ¢« (t) for Example 1
fork=1, ...,4.

Finally, to deal with the question of uniqueness, let us suppose that the initial value problem has
two different solutions ¢ and v. The assumption that ¢ and v are different means there is at least
one value of t for which ¢ (1) —1 (1) # 0. Also, since ¢ and ¢ both satisfy the integral equation (9),
we have by subtraction (and the linearity of integration) that

P (1) = (1) =/ 25(p(s) —9(s))ds.
0

Taking absolute values of both sides, we have, if > 0,

() —v(n)] =

/ZS(¢(S)—¢(S))dS 5/ 2519 (s) — 1 (s)lds.
0 0

If we restrict 7 to lie in the interval 0 < ¢ < A/2, where A is arbitrary, then 27 < A and

t
|<¢>(t)—1/1(t)|§A/ [¢(s) —(s)|ds for 0 <t < A/2. 17
0
It is now convenient to introduce the function U defined by
t
U(n) =/ o (s) —p(s)lds. (18)
0
Then it follows at once that
U(0) =0, (19)
U(t) =0, for t > 0. (20)

Further, U is differentiable, and U'(t) = |¢ () — 1 (¢)|. Hence, by equation (17),
U'(t) —AU(t) <0 for 0 <t < A/2. 21
Multiplying equation (21) by the positive quantity e~4! gives

(e U(1) <0 for 0<1<A/2. (22)
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Y Then, upon integrating equation (22) from zero to ¢ and using equation (19), we obtain
e MU(r) <0 for 0 <t < A/2.

Hence U(7) < 0for0 <7 < A/2. However, since A is arbitrary, we conclude that U(#) < 0 for all
nonnegative 7. This result and equation (20) are compatible only if U(f) = 0 for each ¢ > 0. Thus
U’'(t) = 0 and therefore ¢ (1) = ¢ (t) for all ¢ > 0. This contradicts the hypothesis that ¢ and )
are two different solutions. Consequently, there cannot be two different solutions of the initial value
problem for # > 0. A slight modification of this argument leads to the same conclusion for r < 0.

Returning now to the general problem of solving the integral equation (3), let us consider
briefly each of the questions raised earlier:

1. Do all members of the sequence {¢,} exist?

In the example, f and Jf/0y were continuous in the whole ¢y-plane, and each
member of the sequence could be explicitly calculated. In contrast, in the general case, f
and Jf/0y are assumed to be continuous only in the rectangle R: |t| < a, |y| < b (see
Figure 2.8.3). Furthermore, the members of the sequence cannot as a rule be explicitly
determined. The danger is that at some stage, say, for n = k, the graph of y = ¢4(7)
may contain points that lie outside the rectangle R. More precisely, in the computation of
¢ r+1(1) it would be necessary to evaluate f(#, y) at points where it is not known to be
continuous or even to exist. Thus the calculation of ¢, (#) might be impossible.

To avoid this danger, it may be necessary to restrict ¢ to a smaller interval than |¢| < a.
To find such an interval, we make use of the fact that a continuous function on a closed
bounded region is bounded. Hence f is bounded on R; thus there exists a positive number
M such that

[f(e, =M, (t,y)inR. (23)

We have mentioned before that
»2(0) =0

for each n. Since f(t, ¢(?)) is equal to ¢;{+1(t), the maximum absolute slope of the
graph of the equation y = ¢, () is M. Since this graph contains the point (0, 0), it
must lie in a bow tie-shaped shaded region as shown in Figure 2.8.4. Hence the point
(t, @r41()) remains in R at least as long as R contains the bow tie-shaped region, which
is for || < b/ M. We hereafter consider only the rectangle D: |¢t| < h, |y| < b, where h
is equal either to a or to b/ M, whichever is smaller. With this restriction, all members of
the sequence {¢,()} exist. Note that whenever b/ M < a, you can try to obtain a larger
value of 4 by finding a better (that is, smaller) bound M for | f(¢, y)|, if this is possible.

y
(-a, b) (a, b)
R
t
(~a, -b) (a, -b)
Region of

definition for Theorem 2.8.1.

y=0.0) y=0.t)
,,y:b 77y=b
\\\ \
¢ ¢
[ [ --y=-b \ --y=-b
| | | | | |
t=—a t=-y t=- | t=-a t=a
t=a (b)

AL SRS Bow-tie regions in which successive iterates lie.
(a)ifb/M < athenh =b/M; (b)ifb/M > athenh = a.
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2. Does the sequence {¢,(t)} converge?

We can identify ¢, (1) = ¢1(2) + (¢2(1) — ¢1(1)) + -+ (¢u(t) — Pn1(1)) as
the n'" partial sum of the series

G1(1) + Y (Grar(t) — Pi(D)). 24)

k=1

The convergence of the sequence {¢,(¢)} is established by showing that the series (24)
converges. To do this, it is necessary to estimate the magnitude |, 1(#) — ¢, (¢)] of the
general term. The argument by which this is done is indicated in Problems 14 through 17
and will be omitted here. Assuming that the sequence converges, denote the limit function
by ¢, and so

¢ (1) = lim ¢,(r). (25)
n— 00
3. What are the properties of the limit function ¢ ?
In the first place, we would like to know that ¢ is continuous. This is not, however,
a necessary consequence of the convergence of the sequence {¢,(f)}, even though
each member of the sequence is itself continuous. Sometimes a sequence of continuous
functions converges to a limit function that is discontinuous. A simple example of this
phenomenon is given in Problem 11. One way to show that ¢ is continuous is to show
not only that the sequence {¢,} converges, but also that it converges in a certain manner,
known as uniform convergence. We do not take up this matter here, but note only that the
argument referred to in the discussion of question 2 is sufficient to establish the uniform
convergence of the sequence {¢,} and, hence, the continuity of the limit function ¢ in the
interval |f| < h.
Now let us return to equation (7)

t
Pn1 (1) = / f (s, @n(s)) ds.
0
Allowing n to approach oo on both sides, we obtain

o) = lim [ f(s,Pn(s))ds. (26)

n—o0 J0

We would like to interchange the operations of integrating and taking the limit on the
right-hand side of equation (26) so as to obtain

(1) = / lim f(s, 6(s)) ds. @n
0

n—00o

In general, such an interchange is not permissible (see Problem 12, for example), but once
again, the fact that the sequence {¢,(t)} converges uniformly is sufficient to allow us to
take the limiting operation inside the integral sign. Next, we wish to take the limit inside
the function f, which would give

o(t) = /tf<s, lim gb,,(s)) ds (28)
0 n—oo
and hence
o (1) :/o f(s, 9 (s))ds. (29)

The statement that

lim f(s, ¢,(s)) = f(s, lim ¢n(3)>

n—oo n—00
is equivalent to the statement that f is continuous in its second variable, which is known
by hypothesis. Hence equation (29) is valid, and the function ¢ satisfies the integral
equation (3). Thus y = ¢ (¢) is also a solution of the initial value problem (2).
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4. Are there other solutions of the integral equation (3) besides y = ¢ (t) ?
To show the uniqueness of the solution y = ¢ (#), we can proceed much as in the
example. First, assume the existence of another solution y = (). It is then possible to
show (see Problem 18) that the difference ¢ (#) — v (t) satisfies the inequality

16() —p(0)] sA/0 16(s) —(s)|ds (30)

for 0 <t < h and a suitable positive number A. From this point the argument is identical
to that given in the example, and we conclude that there is no solution of the initial value
problem (2) other than the one generated by the method of successive approximations.

Problems

In each of Problems 1 and 2, transform the given initial value problem
into an equivalent problem with the initial point at the origin.
1. dy/dt=t*+y% y(1) =2
2. dy/dt=1-y3 y(-1)=3
In each of Problems 3 through 4, let ¢ o(#) = 0 and define {¢,(?)} by
the method of successive approximations.
a. Determine ¢ ,(t) for an arbitrary value of n.
@ b. Plot¢,(¢r) forn =1, ... , 4. Observe whether the iterates
appear to be converging.
c. Express lim ¢,(t) = ¢(¢) in terms of elementary

n—o0
functions; that is, solve the given initial value problem.
@ d. Plot |6(1) — ¢u(1)| for n = 1, ...,4. For each of
O1(1), ..., P4(t), estimate the interval in which it is a
reasonably good approximation to the actual solution.
0O 3 y=20+0D, y0) =0
0O 4. y=—-y/241, y0) =0
In each of Problems 5 and 6, let ¢((#) = 0 and use the method of
successive approximations to solve the given initial value problem.
a. Determine ¢ ,(#) for an arbitrary value of n.
Gh. Plot ¢, () forn =1, ..., 4. Observe whether the iterates
appear to be converging.
c. Show that the sequence {¢,(7)} converges.
5. y=ty+1, y0)=0
6. y=r2y—1, y(0)=0
In each of Problems 7 and 8, let ¢((#) = 0 and use the method of
successive approximations to approximate the solution of the given
initial value problem.
a. Calculate ¢ (1), ..., ¢3(1).
@ b. Plot ¢ (1), ..., $s(t). Observe whether the iterates
appear to be converging.
7.y = +y% y(0)=0
8. y=1-y, »0) =0
In each of Problems 9 and 10, let ¢((#) = 0 and use the method of
successive approximations to approximate the solution of the given
initial value problem.
a. Calculate ¢ (1), ..., ¢4(t), or (if necessary) Taylor
approximations to these iterates. Keep terms up to order six.
@ b. Plot the functions you found in part a and observe whether
they appear to be converging.

9. yy=—siny+1, y0)=0
312 4+ 4t +2

10. y/zi, y(0) =0
20y -1

11. Let¢,(x) = x" for 0 < x < I and show that
{0, 0<x<1,

lim é,(x) =
mon(®) =1 x=1.

n—oo
This example shows that a sequence of continuous functions may
converge to a limit function that is discontinuous.

12. Consider the sequence ¢, (x) = 2nxe ™, 0<x < 1.
a. Show that lim ¢,(x) =0 for0 < x < 1; hence

n—oo
1
/ lim ¢,(x)dx = 0.
0 n—>oo
! 2
b. Show that/ 2nxe ™ dx =1 — e "; hence
0

1
1irn/ dn(x)dx = 1.
0

n—0o0

Thus, in this example,

b b
lim/ dn(x)dx # lim ¢,(x)dx,

n—00 a n—oo

even though lim ¢,(x) exists and is continuous.
n—oQ

. 2%k
t
13. a. Verify that ¢ (1) = E o is a solution of the integral

k=1
equation (9).

b. Verify that ¢ (1) is also a solution of the initial value problem

(6).

o0
k
t .
c. Use the fact that E a0 e' to evaluate ¢ (t) in terms of

k=0
elementary functions.

d. Solve initial value problem (6) as a separable equation.
e. Solve initial value problem (6) as a first order linear equation.

In Problems 14 through 17, we indicate how to prove that the sequence
{¢#, (1)}, defined by equations (4) through (7), converges.

X 2%k
t
a. Verify that ¢ (1) = E m is a solution of the integral

k=1
equation (9).

b. Verify that ¢ (1) is also a solution of the initial value problem

(6).

o0
k
t .
c. Use the fact that E 0 e' to evaluate ¢ (1) in terms of

k=0
elementary functions.

d. Solve initial value problem (6) as a separable equation.
e. Solve initial value problem (6) as a first order linear equation.



14. 1If 9f/0y is continuous in the rectangle D, show that there is a
positive constant K such that

[f(2,y1) — (£, y2)| = Kl|y1 — »l, 3D

where (¢, y;) and (z, y,) are any two points in D having the same ¢
coordinate. This inequality is known as a Lipschitz*?> condition.
Hint: Hold t fixed and use the mean value theorem on f as a function
of y only. Choose K to be the maximum value of |0 f/dy| in D.

15. If¢,_1(¢) and ¢,(1) are members of the sequence {¢, ()}, use
the result of Problem 14 to show that

| £t (1)) = £ (1 Suar (D) | < K|du(t) = duei(D)]-

16. a. Show thatif |z| < h, then
lp1(D)| = Mz,

where M is chosen so that | f(z, y)| < M for (¢, y) in D.
b. Use the results of Problem 15 and part a of Problem 16 to
show that

MK|t|)?

[@2(8) —P1(1)| < >

¢. Show, by mathematical induction, that

MKn71|[|n _ Manlhn
n! - n! ’

[Pn(t) — dp_1(D)] <

17. Note that
Gu(1) = G1(0) + (62(1) = P1(D) + -+ + (Galt) = dur()).

22The German mathematician Rudolf Lipschitz (1832-1903), professor at the
University of Bonn for many years, worked in several areas of mathematics.
The inequality (i) can replace the hypothesis that Jf/0y is continuous in
Theorem 2.8.1; this results in a slightly stronger theorem.
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a. Show that

[@n(D)] < P 1(D]+10208) =1 (D |+ -+ |Du(t) —Pp_1(D)].
b. Use the results of Problem 16 to show that

M (Kh)? (Kh)"
|¢n(t)|§K<Kh+ TR - >

¢. Show that the sum in part b converges as n — 00 and, hence,
the sum in part a also converges as n — oo. Conclude therefore
that the sequence {¢,(7)} converges since it is the sequence of
partial sums of a convergent infinite series.

18. In this problem we deal with the question of uniqueness of the
solution of the integral equation (3)

¢ (1) =/ f(s. 0(5))ds.
0

a. Suppose that ¢ and ¥ are two solutions of equation (3). Show
that, for t > 0,

o) —¥(1) = /Ot(f(s, ® () — f(s,1(s))) ds.
b. Show that
(1) — ()] < /Ot(f(s,gb(S)) — f(s,¢(5))) ds.
c. Use the result of Problem 14 to show that
[¢(1) =y (D] = K/Ot [@(s) —¢(s)lds,

where K is an upper bound for |0f/dy| in D. This is the same
as equation (30), and the rest of the proof may be constructed as
indicated in the text.

29 First-Order Difference Equations

Although a continuous model leading to a differential equation is reasonable and attractive
for many problems, there are some cases in which a discrete model may be more natural.
For instance, the continuous model of compound interest used in Section 2.3 is only an
approximation to the actual discrete process. Similarly, sometimes population growth may
be described more accurately by a discrete model than by a continuous model. This is true, for
example, of species whose generations do not overlap and that propagate at regular intervals,
such as at particular times of the calendar year. Then the population y, . of the species in the
year n + 1 is some function of n and the population y, in the preceding year; that is,

Vg1 = f(n, 9,

n=0,1,2, ...

(¢

Equation (1) is called a first-order difference equation. It is first-order because the value
of y,+1 depends on the value of y, but not on earlier values y,_;, y,_, and so forth. As
for differential equations, the difference equation (1) is linear if f is a linear function of y,;
otherwise, it is nonlinear. A solution of the difference equation (1) is a sequence of numbers

Yos Y1, Y2,
there may also be an initial condition

Yo =«

that prescribes the value of the first term of the solution sequence.

... that satisfy the equation for each n. In addition to the difference equation itself,

(@)

We now assume temporarily that the function f in equation (1) depends only on y,, but

not on 7. In this case

Yny1 = SCyn),

n=0,1,2,....

(€)
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If y is given, then successive terms of the solution can be found from equation (3). Thus

yi= f(y),

and

y2 = fy) = f(f(o))-

The quantity f( f(yp)) is called the second iterate of the difference equation and is sometimes
denoted by f2(p). Similarly, the third iterate y; is given by

y3=f(») = f(f(fO0)) = £ (o).
and so on. In general, the n™ iterate YV 1S
o= f(yu=1) = (o).

This procedure is referred to as iterating the difference equation. It is often of primary interest
to determine the behavior of y, as n — o0. In particular, does y, approach a limit, and if so,
what is it?

Solutions for which y, has the same value for all n are called equilibrium solutions.
They are frequently of special importance, just as in the study of differential equations. If
equilibrium solutions exist, you can find them by setting y,; equal to y, in equation (3) and
solving the resulting equation

Yn = f(yn) 4)
for y,.

Linear Equations. Suppose that the population of a certain species in a given region in year
n + 1, denoted by y, .1, is a positive multiple p, of the population y, in year n; that is,

Yn+1 = PnYn> n=07 1727 LI (5)
Note that the reproduction rate p,, may differ from year to year. The difference equation (5) is
linear and can easily be solved by iteration. We obtain

Y1 = PoYos
Y2 = P1Y1 = P1P0Yos

and, in general,

Yn = Pn—1"""P0Yo» n:1323"" (6)

Thus, if the initial population y, is given, then the population of each succeeding generation
is determined by equation (6). Although for a population problem p,, is intrinsically positive,
the solution (6) is also valid if p,, is negative for some or all values of n. Note, however, that
if p, is zero for some n, then y,; and all succeeding values of y are zero; in other words, the
species has become extinct.

If the reproduction rate p, has the same value p for each n, then the difference equation
(5) becomes

Ynt1 = PYn D

and its solution is

Yo =p"Yo- ®)

Equation (7) also has an equilibrium solution, namely, y, = O for all n, corresponding to the
initial value y, = 0. The limiting behavior of y, is easy to determine from equation (8). In
fact,
0, if [p| < I
lim y, = ¢ Yo, ifp=1 ©)
n—00

does not exist, otherwise.

In other words, the equilibrium solution y, = 0 is asymptotically stable for |p| < 1 and
unstable for |p| > 1.



Now we will modify the population model represented by equation (5) to include the
effect of immigration or emigration. If b, is the net increase in population in year n due to
immigration, then the population in year n + 1 is the sum of the part of the population resulting
from natural reproduction and the part due to immigration. Thus

Yn+1 = PYn +bn, n=20,12,..., (10)

where we are now assuming that the reproduction rate p is constant. We can solve equation (10)
by iteration in the same manner as before. We have
Y1 = pYo + bo,
y2 = p(pyo + bo) + by = p°yo + pbo + by,
s = p(p*yo + pbo+b1) +by = p’yo + p°bo + pb1 + by,

and so forth. In general, we obtain
n—1
Yo =p"yo+ p" b+ A+ pbua+ by =p"yo+ Y p"b;. (11
j=0
Note that the first term on the right-hand side of equation (11) represents the descendants of
the original population, while the other terms represent the population in year n resulting from

immigration in all preceding years.
In the special case where b, = b 5 0 for all n, the difference equation is

Ynt+1 = PYn + b7 (12)
and from equation (11) its solution is
Yo =p"yo+(1+p+p>+---+p" b (13)
If p # 1, we can write this solution in the more compact form
n 1 - pn
Yo = p Yo+ b, (14)
I—p

where again the two terms on the right-hand side are the effects of the original population and
of immigration, respectively. Rewriting equation (14) as

" b b
Yn=p |\ Yo— 57— |+ +—— 15)
1—p 1—p

makes the long-time behavior of y, more evident. It follows from equation (15) that
yo = b/(1=p)if|p| < 1.If|p| > lorif p = —1 then y, hasno limitunless yo = b/(1—p).
The quantity b/ (1 — p), for p # 1, is an equilibrium solution of equation (12), as can readily
be seen directly from that equation. Of course, equation (14) is not valid for p = 1. To deal
with that case, we must return to equation (13) and let p = 1 there. It follows that

Yn = Yo +nb, (16)

so in this case y, becomes unbounded as n — oo.

The same model also provides a framework for solving many problems of a financial
character. For such problems, y, is the account balance in the nth time period, p, = 1 + r,,
where r, is the interest rate for that period, and b,, is the amount deposited or withdrawn. The
following example is typical.

EXAMPLE 1

A recent college graduate takes out a $10,000 loan to purchase a car. If the interest rate is 12%, what
monthly payment is required to pay off the loan in 4 years?
Solution:

The relevant difference equation is equation (12), where y, is the loan balance outstanding in the n™"
month, p = 1+ r, where r is the interest rate per month, and b is the effect of the monthly payment.

2.9 First-Order Difference Equations
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Y Note that p = 1.01, corresponding to a monthly interest rate of 1%. Since payments reduce the loan
balance, b must be negative; the actual payment is |b|.

The solution of the difference equation (12) with this value for p and the initial condition
yo = 10,000 is given by equation (15); that is,

ya = (1.01)*(10,000 + 1006) — 100b. amn
The value of b needed to pay off the loan in 4 years is found by setting y43 = 0 and solving for b.
This gives
1.01)*8
b= —100¥ = —263.34. (18)
(L.0D)* —1

The total amount paid on the loan is 48 times |b|, or $12,640.32. Of this amount, $10,000 is repayment
of the principal and the remaining $2640.32 is interest.

Nonlinear Equations. Nonlinear difference equations are much more complicated and have
much more varied solutions than linear equations. We will restrict our attention to a single
equation, the logistic difference equation

Y

Ynt1 = pyn(l - ;") (19)
which is analogous to the logistic differential equation
dy y

(1 - _) 20

dt Y ( K 0

that was discussed in Section 2.5. Note that if the derivative dy/dt in equation (20) is replaced
by the difference quotient (y,41 — y,)/ &, then equation (20) reduces to equation (19) with
p =14hrandk = (14 hr)K/hr. To simplify equation (19) a little more, we can scale the
variable y, by introducing the new variable u, = y,/ k. Then equation (19) becomes

Upt1 = P”n(l - un)a 21)

where p is a positive parameter.

We begin our investigation of equation (21) by seeking the equilibrium, or constant,
solutions. These can be found by setting u,,, | equal to u, in equation (21), which corresponds
to setting dy/dt equal to zero in equation (20). The resulting equation is

Uy = plly — plly, (22
so it follows that the equilibrium solutions of equation (21) are

u, =0, unzp—l. (23)
p

The next question is whether the equilibrium solutions are asymptotically stable or
unstable. That is, for an initial condition near one of the equilibrium solutions, does the
resulting solution sequence approach or depart from the equilibrium solution?

One way to examine this question is by approximating equation (21) by a linear equation
in the neighborhood of an equilibrium solution. For example, near the equilibrium solution
u, = 0, the quantity up is small compared to u, itself, so we assume that we can neglect the
quadratic term in equation (21) in comparison with the linear terms. This leaves us with the
linear difference equation

Upy1 = PUn, 24

which is presumably a good approximation to equation (21) for u, sufficiently near zero.
However, equation (24) is the same as equation (7), and we have already concluded, in
equation (9), that u, — 0 asn — oo if and only if |p| < 1, or (since p must be positive)
for 0 < p < 1. Thus the equilibrium solution u#,, = 0 is asymptotically stable for the linear
approximation (24) for this set of p values, so we conclude that it is also asymptotically stable
for the full nonlinear equation (21).

The previous conclusion is correct, although our argument is not complete. What is
lacking is a theorem stating that the solutions of the nonlinear equation (21) resemble those of



the linear equation (24) near the equilibrium solution u,, = 0. We will not take time to discuss
this issue here; the same question is treated for differential equations in Section 9.3.
Now consider the other equilibrium solution u, = (p — 1) /p. To study solutions in the
neighborhood of this point, we write
-1
un=""" v, (25)
p
where we assume that v, is small. By substituting from equation (25) in equation (21) and
simplifying the resulting equation, we eventually obtain

Va1 = (2= p)va — pv;- (26)
Since v,, is small, we again neglect the quadratic term in comparison with the linear terms and
thereby obtain the linear equation

Vi1 = (2= p)va. 27)

Referring to equation (9) once more, we find that v, — Oasn — oo for |2 — p| < 1, orin
other words for 1 < p < 3. Therefore, we conclude that for this range of values of p, the
equilibrium solution u, = (p — 1)/ p is asymptotically stable.

Figure 2.9.1 contains the graphs of solutions of equation (21) for p = 0.8, p = 1.5,
and p = 2.8, respectively. Observe that the solution converges to zero for p = 0.8 and to
the nonzero equilibrium solution for p = 1.5 and p = 2.8. The convergence is (eventually)
monotone for p = 0.8 and for p = 1.5 and is oscillatory for p = 2.8. The graphs shown are
for particular initial conditions, but the graphs for other initial conditions are similar.

2.9 First-Order Difference Equations

m Solutions of 1,41 = piun(1 — uy): (@) p = 0.8; (b) p = 1.5:(c) p = 2.8.

Another way of displaying the solution of a difference equation is shown in Figure 2.9.2.
In each part of this figure, the graphs of the parabola y = px(1 — x) and of the straight line
y = x are shown. The equilibrium solutions correspond to the points of intersection of these
two curves. The piecewise linear graph consisting of successive vertical and horizontal line
segments, sometimes called a stairstep or cobweb diagram, represents the solution sequence.
The sequence starts at the point u, on the x-axis. The vertical line segment drawn upward
to the parabola at u corresponds to the calculation of pug(1 — 1) = u;. This value is then
transferred from the y-axis to the x-axis; this step is represented by the horizontal line segment
from the parabola to the line y = x. Then the process is repeated over and over again. Clearly,
the sequence converges to the origin in Figure 2.9.2a and to the nonzero equilibrium solution
in the other two cases.

To summarize our results so far: the difference equation (21) has two equilibrium
solutions, u, = 0 and u, = (p — 1)/ p; the former is asymptotically stable for 0 < p < 1,
and the latter is asymptotically stable for 1 < p < 3. When p = 1, the two equilibrium
solutions coincide at # = O0; this solution can be shown to be asymptotically stable. In
Figure 2.9.3 the parameter p is plotted on the horizontal axis and u on the vertical axis. The
equilibrium solutions u = 0 and u = (p — 1)/ p are shown. The intervals in which each one
is asymptotically stable are indicated by the solid portions of the curves. There is an exchange
of stability from one equilibrium solution to the other at p = 1.
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For p > 3, neither of the equilibrium solutions is stable, and the solutions of equation (21)
exhibit increasing complexity as p increases. For p somewhat greater than 3, the sequence u,,
rapidly approaches a steady oscillation of period 2; that is, u,, oscillates back and forth between
two distinct values. For p = 3.2, a solution is shown in Figure 2.9.4. For n greater than about
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(a) u, versus n; (b) the cobweb diagram shows the iterates are in a two-cycle.

20, the solution alternates between the values 0.5130 and 0.7995. The graph is drawn for the
particular initial condition u, = 0.3, but it is similar for all other initial values between O and 1.
Figure 2.9.4b also shows the same steady oscillation as a rectangular path that is traversed
repeatedly in the clockwise direction.

At about p = 3.449, each state in the oscillation of period 2 separates into two distinct
states, and the solution becomes periodic with period 4; see Figure 2.9.5, which shows a
solution of period 4 for p = 3.5. As p increases further, periodic solutions of period 8,
16, ... appear. The transition from solutions with one period to solutions with a new period
that occurs at a certain parameter value is called a bifurcation; the value of the parameter
where the bifurcation occurs is called a bifurcation value of the parameter.

The values of p at which the successive period doublings occur approach a limit that is
approximately 3.57. For p > 3.57, the solutions possess some regularity but no discernible
detailed pattern for most values of p. For example, a solution for p = 3.65 is shown in Figure
2.9.6. It oscillates between approximately 0.3 and 0.9, but its fine structure is unpredictable.
The term chaotic is used to describe this situation. One of the features of chaotic solutions
is extreme sensitivity to the initial conditions. This is illustrated in Figure 2.9.7, where
two solutions of equation (21) for p =3.65 are shown. One solution is the same as that in
Figure 2.9.6 and has the initial value uy = 0.3, while the other solution has the initial value
uo = 0.305. For about 15 iterations the two solutions remain close and are hard to distinguish
from each other in the figure. After that, although they continue to wander about in
approximately the same set of values, their graphs are quite dissimilar. It would certainly not
be possible to use one of these solutions to estimate the value of the other for values of n larger
than about 15.

2.9 First-Order Difference Equations
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It is only comparatively recently that chaotic solutions of difference and differential
equations have become widely known. Equation (20) was one of the first instances of
mathematical chaos to be found and studied in detail, by Robert May?* in 1974. On the basis

23Robert M. May (1936-) was born in Sydney, Australia, and received his education at the University of Sydney with
a doctorate in theoretical physics in 1959. His interests soon turned to population dynamics and theoretical ecology;
the work cited in the text is described in two papers listed in the References at the end of this chapter. He has held
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professorships at Sydney, at Princeton, at Imperial College (London), and (since 1988) at Oxford.



Un

091 ¢ 2 g

0.7 H

0.6

0.5t

03~ § + 4
\

Problems 99

1

10 20 30 40 50

\
60 n

GRSV RS Two solutions of u,, = pu,(1 —u,) for
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of his analysis of this equation as a model of the population of certain insect species, May
suggested that if the growth rate p is too large, then it will be impossible to make effective
long-range predictions about these insect populations. The occurrence of chaotic solutions
in seemingly simple problems has stimulated an enormous amount of research, but many
questions remain unanswered. It is increasingly clear, however, that chaotic solutions are much
more common than was suspected at first and that they may be a part of the investigation of a

wide range of phenomena.

Problems

In each of Problems 1 through 4, solve the given difference equation
in terms of the initial value y,. Describe the behavior of the solution
asn — 00.

1. Yar1 = —0.9y,

n+3
Ynt+1 = n—HYn

Ynp1 = (=1)"Hy,
Yat1 =0.5y, +6

5. An investor deposits $1000 in an account paying interest at a
rate of 8%, compounded monthly, and also makes additional deposits
of $25 per month. Find the balance in the account after 3 years.

El

6. A certain college graduate borrows $8000 to buy a car. The
lender charges interest at an annual rate of 10%. What monthly
payment rate is required to pay off the loan in 3 years? Compare your
result with that of Problem 7 in Section 2.3.

7. A homebuyer takes out a mortgage of $100,000 with an interest
rate of 9%. What monthly payment is required to pay off the loan in
30 years? In 20 years? What is the total amount paid during the term
of the loan in each of these cases?

8. If the interest rate on a 20-year mortgage is fixed at 10% and
if a monthly payment of $1000 is the maximum that the buyer can
afford, what is the maximum mortgage loan that can be made under
these conditions?

9. A homebuyer wishes to finance the purchase with a $95,000
mortgage with a 20-year term. What is the maximum interest rate the
buyer can afford if the monthly payment is not to exceed $900?

The Logistic Difference Equation. Problems 10 through 15 deal with
the difference equation (21), u, 11 = pun(1 — uy).

10. Carry out the details in the linear stability analysis of the
equilibrium solution u, = (p — 1)/p. That is, derive the difference
equation (26) in the text for the perturbation v,,.

11. @ a. For p = 3.2, plot or calculate the solution of the logistic
equation (21) for several initial conditions, say, uy = 0.2, 0.4,
0.6, and 0.8. Observe that in each case the solution approaches a
steady oscillation between the same two values. This illustrates
that the long-term behavior of the solution is independent of the
initial conditions.
@ b. Make similar calculations and verify that the nature of the
solution for large n is independent of the initial condition for
other values of p, such as 2.6, 2.8, and 3.4.

12. Assume that p > 1 in equation (21).
@ a. Draw a qualitatively correct stairstep diagram and thereby
show that if uy < 0, then u,, - —o0 as n — oo.

@ b. In a similar way, determine what happens as n — oo if
ug > 1.
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13. The solutions of equation (21) change from convergent
sequences to periodic oscillations of period 2 as the parameter p passes
through the value 3. To see more clearly how this happens, carry out
the following calculations.
@ a. Plot or calculate the solution for p = 2.9, 2.95, and
2.99, respectively, using an initial value u of your choice in the
interval (0, 1). In each case estimate how many iterations are
required for the solution to get “very close” to the limiting value.
Use any convenient interpretation of what “very close” means in
the preceding sentence.
@ b. Plot or calculate the solution for p = 3.01, 3.05, and
3.1, respectively, using the same initial condition as in part a.
In each case estimate how many iterations are needed to reach a
steady-state oscillation. Also find or estimate the two values in
the steady-state oscillation.

@ 14. By calculating or plotting the solution of equation (21) for
different values of p, estimate the value of p at which the solution
changes from an oscillation of period 2 to one of period 4. In the same
way, estimate the value of p at which the solution changes from period
4 to period 8.

0 15. Let p; be the value of p at which the solution of
equation (21) changes from period 2~ to period 2*. Thus, as noted
in the text, p; = 3, py = 3.449, and p3 = 3.544.
a. Using these values of p, p,, and p3, or those you found in
Problem 14, calculate (p, — p1)/(p3 — p2).

Chapter Review Problems

Miscellaneous Problems. One of the difficulties in solving first-
order differential equations is that there are several methods of
solution, each of which can be used on a certain type of equation.
It may take some time to become proficient in matching solution
methods with equations. The first 24 of the following problems are
presented to give you some practice in identifying the method or
methods applicable to a given equation. The remaining problems
involve certain types of equations that can be solved by specialized
methods.

In each of Problems 1 through 24, solve the given differential equation.
If an initial condition is given, also find the solution that satisfies it.

1 dy x3—2y
Codx X
2 dy 14cosx
" dx  2—siny
dy 2x+y
3. —=——, 0)=0
dx  3+43y?—x ()
d
4. L o3 6x+y—2xy
dx
5 dy 2xy +y2 +1
Codx x2 4+ 2xy
d
6. x—y—i—xy:l—y, y(1) =0
dx
d .
7.0 x40y MY gy
dx X
8 dy  2xy+1

dx  x2+42y

d
9. (y+xy =) + @y =2 2 =0

b. Let6, = (pn — pn_1)/(Pus1 — pn). It can be shown that 6,
approaches a limit 6 as n — oo, where § = 4.6692 is known as
the Feigenbaum?* number. Determine the percentage difference
between the limiting value § and 65, as calculated in part a.

c. Assume that 63 = ¢ and use this relation to estimate py4, the
value of p at which solutions of period 16 appear.

@ d. By plotting or calculating solutions near the value of p4
found in part c, try to detect the appearance of a period 16
solution.

e. Observe that

pn=p1+(p2—p1) +(p3—p2) +-+(pn — pn-1)-
Assuming that
ps—p3=(p3—p)d ", ps—ps=(p3—p))é 2

and so forth, express p, as a geometric sum. Then find the limit
pn as n — oo. This is an estimate of the value of p at which the
onset of chaos occurs in the solution of the logistic equation (21).

24This result for the logistic difference equation was discovered in August
1975 by Mitchell Feigenbaum (1944-), while he was working at the Los
Alamos National Laboratory. Within a few weeks he had established that the
same limiting value also appears in a large class of period-doubling difference
equations. Feigenbaum, who has a doctorate in physics from M.LT., is now at
Rockefeller University.

10. (x2+y)+(x+ey)d—y=o
dx

d
1. (x+) +(x+2y)£ =0, y2) =3
d
12. (e"—i—l)—y =y —ye*
dx
13 dy e ¥ cosy — e? cosx
" dx T —e*siny +2¢2sinx
d
14. & _ +3y
dx
d
15. 2 yoy—e2 y0) =3
dx
2_2 3
16, Y _¥ -2y

dx ~  2x+ 3xy?
17. y =™
dy 2y% 4 6xy — 4 _

18. = -7 =
dx = 3x2+44xy + 3y?

19. td—y+(t+1)y=ez’

dt
20. xy =y+xe*
d
21. ot Hint: Let u = x2.
dx  x2y+y3
2, &y _xty
dx x-—y

d
23. (3y2 +2xy) — (2xy +x2)dl =0
X

24, xy'+y—y2¥ =0, y(l)=2



25. Riccati Equations. The equation
dy _ 2
2 — 0O+ @)y +a)y
is known as a Riccati®® equation. Suppose that some particular solution

v, of this equation is known. A more general solution containing one
arbitrary constant can be obtained through the substitution

1
=yi(t) + —.
y=y(0) + )
Show that v(¢) satisfies the first-order linear equation
dv
— = 2 —q3.
o (g2 +2q3y1)v — q3

Note that v(r) will contain a single arbitrary constant.

26. Verify that the given function is a particular solution of the given
Riccati equation. Then use the method of Problem 25 to solve the
following Riccati equations:

a y=14+12-2y+y% (1) =t
1 y 1
b. y=—=—=+y% H=-
y 2 Y () =<
dy 2cos’t —sin’ 7 + y? .
- = ;o yi(t) =sint
dt 2cost

27. The propagation of a single action in a large population (for
example, drivers turning on headlights at sunset) often depends
partly on external circumstances (gathering darkness) and partly on
a tendency to imitate others who have already performed the action
in question. In this case the proportion y(#) of people who have
performed the action can be described?® by the equation

dy/dt = (1= y)(x(1) + by), (28)

where x(t) measures the external stimulus and b is the imitation
coefficient.
a. Observe that equation (28) is a Riccati equation and that
y1(t) = 1is one solution. Use the transformation suggested in
Problem 25, and find the linear equation satisfied by v(z).
b. Find v(7) in the case that x(f) = at, where a is a constant.
Leave your answer in the form of an integral.

BRiccati equations are named for Jacopo Francesco Riccati (1676-1754), a
Venetian nobleman, who declined university appointments in Italy, Austria,
and Russia to pursue his mathematical studies privately at home. Riccati
studied these equations extensively; however, it was Euler (in 1760) who
discovered the result stated in this problem.

26See Anatol Rapoport, “Contribution to the Mathematical Theory of Mass
Behavior: 1. The Propagation of Single Acts,” Bulletin of Mathematical
Biophysics 14 (1952), pp. 159-169, and John Z. Hearon, “Note on the Theory
of Mass Behavior,” Bulletin of Mathematical Biophysics 17 (1955), pp. 7-13.
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Some Special Second-Order Differential Equations. Second-order
differential equations involve the second derivative of the unknown
function and have the general form y” = f(r,y,y’). Usually,
such equations cannot be solved by methods designed for first-order
equations. However, there are two types of second-order equations
that can be transformed into first-order equations by a suitable change
of variable. The resulting equation can sometimes be solved by the
methods presented in this chapter. Problems 28 through 37 deal with
these types of equations.

Equations with the Dependent Variable Missing. For a second-
order differential equation of the form y” = f(t, y'), the substitution
v = ¥y, v/ = y” leads to a first-order differential equation of the
form v/ = f (¢, v). If this equation can be solved for v, then y can be
obtained by integrating dy/dr = v. Note that one arbitrary constant
is obtained in solving the first-order equation for v, and a second is
introduced in the integration for y. In each of Problems 28 through
31, use this substitution to solve the given equation.

28. 2y" 42ty —=1=0, t>0
29. 1y +y =1, t>0

30. Yy +1t(y)?=0

3. 22y +(y)3=2ty, t>0

Equations with the Independent Variable Missing. Consider
second-order differential equations of the form y” = f(y,y’), in
which the independent variable ¢ does not appear explicitly. If
we let v=1y’, then we obtain dv/dt= f(y,v). Since the right-
hand side of this equation depends on y and v, rather than on
t and v, this equation contains too many variables. However, if
we think of y as the independent variable, then by the chain
rule, dv/dt=(dv/dy)(dy/dt) =v(dv/dy). Hence the original
differential equation can be written as v(dv/dy) = f(y, v). Provided
that this first-order equation can be solved, we obtain v as a function
of y. A relation between y and ¢ results from solving dy/dt =v(y),
which is a separable equation. Again, there are two arbitrary constants
in the final result. In each of Problems 32 through 35, use this method
to solve the given differential equation.

32, '+ =0

33. yY'4+y=0

M.y -0 =0

35, Y+ (y)E=2e

Hint: In Problem 35 the transformed equation is a Bernoulli equation.
See Problem 23 in Section 2.4.

In each of Problems 36 through 37, solve the given initial value
problem using the methods of Problems 28 through 35.

36. yy'=2, y0) =1, y(0)=2

37. (14+2)y" +2ty +3t72=0, y(1)=2, y(l)=-1
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