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4 HIGHER-ORDER DIFFERENTIAL
EQUATIONS

4.1 Preliminary Theory—Linear Equations

4.1.1 Initial-Value and Boundary-Value Problems

4.1.2 Homogeneous Equations

4.1.3 Nonhomogeneous Equations

4.2 Reduction of Order

4.3 Homogeneous Linear Equations with Constant Coefficients

4.4 Undetermined Coefficients—Superposition Approach

4.5 Undetermined Coefficients—Annihilator Approach

4.6 Variation of Parameters

4.7 Cauchy-Euler Equation

4.8 Solving Systems of Linear DEs by Elimination

4.9 Nonlinear Differential Equations

CHAPTER 4 IN REVIEW

We turn now to the solution of ordinary differential equations of order two or

higher. In the first seven sections of this chapter we examine the underlying theory

and solution methods for certain kinds of linear equations. The elimination method

for solving systems of linear equations is introduced in Section 4.8 because this

method simply uncouples a system into individual linear equations in each

dependent variable. The chapter concludes with a brief examinations of nonlinear

higher-order equations. 



PRELIMINARY THEORY—LINEAR EQUATIONS

REVIEW MATERIAL
● Reread the Remarks at the end of Section 1.1
● Section 2.3 (especially pages 54–58)

INTRODUCTION In Chapter 2 we saw that we could solve a few first-order differential equations
by recognizing them as separable, linear, exact, homogeneous, or perhaps Bernoulli equations. Even
though the solutions of these equations were in the form of a one-parameter family, this family,
with one exception, did not represent the general solution of the differential equation. Only in the
case of linear first-order differential equations were we able to obtain general solutions, by paying
attention to certain continuity conditions imposed on the coefficients. Recall that a general solution
is a family of solutions defined on some interval I that contains all solutions of the DE that are
defined on I. Because our primary goal in this chapter is to find general solutions of linear higher-order
DEs, we first need to examine some of the theory of linear equations.
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4.1

4.1.1 INITIAL-VALUE AND BOUNDARY-VALUE
PROBLEMS

INITIAL-VALUE PROBLEM In Section 1.2 we defined an initial-value problem
for a general nth-order differential equation. For a linear differential equation an
nth-order initial-value problem is

Solve:

Subject to: .

(1)

Recall that for a problem such as this one we seek a function defined on some interval
I, containing x0, that satisfies the differential equation and the n initial conditions
specified at x0: y(x0) � y0, y�(x0) � y1, . . . , y(n�1)(x0) � yn�1. We have already seen
that in the case of a second-order initial-value problem a solution curve must pass
through the point (x0, y0) and have slope y1 at this point.

EXISTENCE AND UNIQUENESS In Section 1.2 we stated a theorem that gave
conditions under which the existence and uniqueness of a solution of a first-order
initial-value problem were guaranteed. The theorem that follows gives sufficient
conditions for the existence of a unique solution of the problem in (1).

THEOREM 4.1.1 Existence of a Unique Solution

Let an(x), an�1(x), . . . , a1(x), a0(x) and g(x) be continuous on an interval I
and let an(x) � 0 for every x in this interval. If x � x0 is any point in this
interval, then a solution y(x) of the initial-value problem (1) exists on the
interval and is unique.

EXAMPLE 1 Unique Solution of an IVP

The initial-value problem

3y� � 5y	 � y� � 7y � 0, y(1) � 0, y�(1) � 0, y	(1) � 0

y(x0) � y0, y�(x0) � y1 , . . . ,  y(n�1)(x0) � yn�1

an(x)
dny

dxn � an�1(x)
dn�1y

dxn�1 �    � a1(x)
dy

dx
� a0(x)y � g(x)



possesses the trivial solution y � 0. Because the third-order equation is linear with
constant coefficients, it follows that all the conditions of Theorem 4.1.1 are fulfilled.
Hence y � 0 is the only solution on any interval containing x � 1.

EXAMPLE 2 Unique Solution of an IVP

You should verify that the function y � 3e2x � e�2x � 3x is a solution of the initial-
value problem

Now the differential equation is linear, the coefficients as well as g(x) � 12x are
continuous, and a2(x) � 1 � 0 on any interval I containing x � 0. We conclude from
Theorem 4.1.1 that the given function is the unique solution on I.

The requirements in Theorem 4.1.1 that ai(x), i � 0, 1, 2, . . . , n be continuous
and an(x) � 0 for every x in I are both important. Specifically, if an(x) � 0 for some x
in the interval, then the solution of a linear initial-value problem may not be unique
or even exist. For example, you should verify that the function y � cx2 � x � 3 is a
solution of the initial-value problem

on the interval (�
, 
) for any choice of the parameter c. In other words, there is no
unique solution of the problem. Although most of the conditions of Theorem 4.1.1
are satisfied, the obvious difficulties are that a2(x) � x2 is zero at x � 0 and that the
initial conditions are also imposed at x � 0.

BOUNDARY-VALUE PROBLEM Another type of problem consists of solving a
linear differential equation of order two or greater in which the dependent variable y
or its derivatives are specified at different points. A problem such as

Solve:

Subject to:

is called a boundary-value problem (BVP). The prescribed values y(a) � y0 and
y(b) � y1 are called boundary conditions. A solution of the foregoing problem is a
function satisfying the differential equation on some interval I, containing a and b,
whose graph passes through the two points (a, y0) and (b, y1). See Figure 4.1.1.

For a second-order differential equation other pairs of boundary conditions
could be

where y0 and y1 denote arbitrary constants. These three pairs of conditions are just
special cases of the general boundary conditions

The next example shows that even when the conditions of Theorem 4.1.1 are
fulfilled, a boundary-value problem may have several solutions (as suggested in
Figure 4.1.1), a unique solution, or no solution at all.

�2y(b) � �2y�(b) � �2.

�1y(a) � �1y�(a) � �1

y�(a) � y0,    y�(b) � y1,

y(a) � y0,    y�(b) � y1

y�(a) � y0,    y(b) � y1

y(a) � y0,  y(b) � y1

a2(x)
d 2y

dx2 � a1(x)
dy

dx
� a0(x)y � g(x)

x2y	 � 2xy� � 2y � 6,  y(0) � 3,  y�(0) � 1

y	 � 4y � 12x,  y(0) � 4,  y�(0) � 1.
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FIGURE 4.1.1 Solution curves of a
BVP that pass through two points

I

solutions of the DE

(b, y1)

(a, y0)
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EXAMPLE 3 A BVP Can Have Many, One, or No Solutions

In Example 4 of Section 1.1 we saw that the two-parameter family of solutions of the
differential equation x	 � 16x � 0 is

(2)

(a) Suppose we now wish to determine the solution of the equation that further
satisfies the boundary conditions x(0) � 0, x(p�2) � 0. Observe that the first
condition 0 � c1 cos 0 � c2 sin 0 implies that c1 � 0, so x � c2 sin 4t. But when
t � p�2, 0 � c2 sin 2p is satisfied for any choice of c2, since sin 2p � 0. Hence
the boundary-value problem

(3)

has infinitely many solutions. Figure 4.1.2 shows the graphs of some of the
members of the one-parameter family x � c2 sin 4t that pass through the two
points (0, 0) and (p�2, 0).

(b) If the boundary-value problem in (3) is changed to

, (4)

then x(0) � 0 still requires c1 � 0 in the solution (2). But applying x(p�8) � 0 to 
x � c2 sin 4t demands that 0 � c2 sin(p�2) � c2 �1. Hence x � 0 is a solution of
this new boundary-value problem. Indeed, it can be proved that x � 0 is the only
solution of (4).

(c) Finally, if we change the problem to

, (5)

we find again from x(0) � 0 that c1 � 0, but applying x(p�2) � 1 to 
x � c2 sin 4t leads to the contradiction 1 � c2 sin 2p � c2 � 0 � 0. Hence 
the boundary-value problem (5) has no solution.

4.1.2 HOMOGENEOUS EQUATIONS

A linear nth-order differential equation of the form

(6)

is said to be homogeneous, whereas an equation

(7)

with g(x) not identically zero, is said to be nonhomogeneous. For example, 
2y	 � 3y� � 5y � 0 is a homogeneous linear second-order differential equation,
whereas x3y� � 6y� � 10y � ex is a nonhomogeneous linear third-order differen-
tial equation. The word homogeneous in this context does not refer to coefficients
that are homogeneous functions, as in Section 2.5.

We shall see that to solve a nonhomogeneous linear equation (7), we must first
be able to solve the associated homogeneous equation (6).

To avoid needless repetition throughout the remainder of this text, we
shall, as a matter of course, make the following important assumptions when

an(x)
dny

dxn � an�1(x)
dn�1y

dxn�1 �    � a1(x)
dy

dx
� a0(x)y � g(x),

an(x)
dny

dxn � an�1(x)
dn�1y

dxn�1 �    � a1(x)
dy

dx
� a0(x)y � 0

x	 � 16x � 0,  x(0) � 0,  x ��

2� � 1

x	 � 16x � 0,  x(0) � 0,  x ��

8� � 0

x	 � 16x � 0,  x(0) � 0,  x ��

2� � 0

x � c1 cos 4t � c2 sin 4t.
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FIGURE 4.1.2 Some solution curves
of (3)
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stating definitions and theorems about linear equations (1). On some common
interval I,

• the coefficient functions ai(x), i � 0, 1, 2, . . . , n and g(x) are continuous;
• an(x) � 0 for every x in the interval.

DIFFERENTIAL OPERATORS In calculus differentiation is often denoted by
the capital letter D—that is, dy�dx � Dy. The symbol D is called a differential
operator because it transforms a differentiable function into another function. For
example, D(cos 4x) � �4 sin 4x and D(5x3 � 6x2) � 15x2 � 12x. Higher-order
derivatives can be expressed in terms of D in a natural manner:

where y represents a sufficiently differentiable function. Polynomial expressions
involving D, such as D � 3, D2 � 3D � 4, and 5x3D3 � 6x2D2 � 4xD � 9, are
also differential operators. In general, we define an nth-order differential opera-
tor or polynomial operator to be

L � an(x)Dn � an�1(x)Dn�1 �    � a1(x)D � a0(x). (8)

As a consequence of two basic properties of differentiation, D(cf (x)) � cDf (x), c is a
constant, and D{ f (x) � g(x)} � Df (x) � Dg(x), the differential operator L possesses
a linearity property; that is, L operating on a linear combination of two differentiable
functions is the same as the linear combination of L operating on the individual func-
tions. In symbols this means that

L{a f (x) � bg(x)} � aL( f (x)) � bL(g(x)), (9)

where a and b are constants. Because of (9) we say that the nth-order differential
operator L is a linear operator.

DIFFERENTIAL EQUATIONS Any linear differential equation can be expressed in
terms of the D notation. For example, the differential equation y	 � 5y� � 6y � 5x � 3
can be written as D2y � 5Dy � 6y � 5x � 3 or (D2 � 5D � 6)y � 5x � 3. Using (8),
we can write the linear nth-order differential equations (6) and (7) compactly as

respectively.

SUPERPOSITION PRINCIPLE In the next theorem we see that the sum, or
superposition, of two or more solutions of a homogeneous linear differential equa-
tion is also a solution.

THEOREM 4.1.2 Superposition Principle—Homogeneous Equations

Let y1, y2, . . . , yk be solutions of the homogeneous nth-order differential
equation (6) on an interval I. Then the linear combination

where the ci, i � 1, 2, . . . , k are arbitrary constants, is also a solution on the
interval.

PROOF We prove the case k � 2. Let L be the differential operator defined in
(8), and let y1(x) and y2(x) be solutions of the homogeneous equation L( y) � 0. If
we define y � c1y1(x) � c2y2(x), then by linearity of L we have

L( y) � L{c1y1(x) � c2y2(x)} � c1 L(y1) � c2 L(y2) � c1 � 0 � c2 � 0 � 0.

y � c1y1(x) � c2y2(x) �    � ckyk(x),

L(y) � 0    and    L(y) � g(x),

d

dx �
dy

dx� �
d 2y

dx2 � D(Dy) � D2y    and, in general,    
dny

dxn � Dny,
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■ Please remember
these two
assumptions.



COROLLARIES TO THEOREM 4.1.2

(A) A constant multiple y � c1y1(x) of a solution y1(x) of a homogeneous
linear differential equation is also a solution.

(B) A homogeneous linear differential equation always possesses the trivial
solution y � 0.

EXAMPLE 4 Superposition—Homogeneous DE

The functions y1 � x2 and y2 � x2 ln x are both solutions of the homogeneous linear
equation x3y� � 2xy� � 4y � 0 on the interval (0, 
). By the superposition principle
the linear combination

is also a solution of the equation on the interval.

The function y � e7x is a solution of y	 � 9y� � 14y � 0. Because the differen-
tial equation is linear and homogeneous, the constant multiple y � ce7x is also a
solution. For various values of c we see that y � 9e7x, y � 0, , . . . are all
solutions of the equation.

LINEAR DEPENDENCE AND LINEAR INDEPENDENCE The next two con-
cepts are basic to the study of linear differential equations.

DEFINITION 4.1.1 Linear Dependence/Independence

A set of functions f1(x), f2(x), . . . , fn(x) is said to be linearly dependent on an
interval I if there exist constants c1, c2, . . . , cn, not all zero, such that

for every x in the interval. If the set of functions is not linearly dependent on
the interval, it is said to be linearly independent.

In other words, a set of functions is linearly independent on an interval I if the only
constants for which

for every x in the interval are .
It is easy to understand these definitions for a set consisting of two functions 

f1(x) and f2(x). If the set of functions is linearly dependent on an interval, then
there exist constants c1 and c2 that are not both zero such that for every x in the
interval, c1 f1(x) � c2 f2(x) � 0. Therefore if we assume that c1 � 0, it follows that
f1(x) � (�c2�c1) f2(x); that is, if a set of two functions is linearly dependent, then one
function is simply a constant multiple of the other. Conversely, if f1(x) � c2 f2(x)
for some constant c2, then (�1) � f1(x) � c2 f2(x) � 0 for every x in the interval.
Hence the set of functions is linearly dependent because at least one of the constants
(namely, c1 � �1) is not zero. We conclude that a set of two functions f1(x) and f2(x)
is linearly independent when neither function is a constant multiple of the other on
the interval. For example, the set of functions f1(x) � sin 2x, f2(x) � sin x cos x is
linearly dependent on (�
, 
) because f1(x) is a constant multiple of f2(x). Recall
from the double-angle formula for the sine that sin 2x � 2 sin x cos x. On the other
hand, the set of functions f1(x) � x, f2(x) � �x � is linearly independent on (�
, 
).
Inspection of Figure 4.1.3 should convince you that neither function is a constant
multiple of the other on the interval.

c1 � c2 �    � cn � 0

c1 f1(x) � c2 f2(x) �    � cn fn(x) � 0

c1 f1(x) � c2 f2(x) �    � cn fn(x) � 0

y � �15e7x

y � c1x
2 � c2x2 ln x
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FIGURE 4.1.3 Set consisting of f1 and
f2 is linearly independent on (�
, 
)

f1 = x

x
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f2 = |x |
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It follows from the preceding discussion that the quotient f2(x)�f1(x) is not a con-
stant on an interval on which the set f1(x), f2(x) is linearly independent. This little fact
will be used in the next section.

EXAMPLE 5 Linearly Dependent Set of Functions

The set of functions f1(x) � cos2x, f2(x) � sin2x, f3(x) � sec2x, f4(x) � tan2x is
linearly dependent on the interval (�p�2, p�2) because

when c1 � c2 � 1, c3 � �1, c4 � 1. We used here cos2x � sin2x � 1 and
1 � tan2x � sec2x.

A set of functions f1(x), f2(x), . . . , fn(x) is linearly dependent on an interval if
at least one function can be expressed as a linear combination of the remaining
functions.

EXAMPLE 6 Linearly Dependent Set of Functions

The set of functions , f3(x) � x � 1, f4(x) � x2 is
linearly dependent on the interval (0, 
) because f2 can be written as a linear combi-
nation of f1, f3, and f4. Observe that

for every x in the interval (0, 
).

SOLUTIONS OF DIFFERENTIAL EQUATIONS We are primarily interested in
linearly independent functions or, more to the point, linearly independent solutions
of a linear differential equation. Although we could always appeal directly to
Definition 4.1.1, it turns out that the question of whether the set of n solutions
y1, y2, . . . , yn of a homogeneous linear nth-order differential equation (6) is linearly
independent can be settled somewhat mechanically by using a determinant.

DEFINITION 4.1.2 Wronskian

Suppose each of the functions f1(x), f2(x), . . . , fn(x) possesses at least n � 1
derivatives. The determinant

where the primes denote derivatives, is called the Wronskian of the
functions.

THEOREM 4.1.3 Criterion for Linearly Independent Solutions

Let y1, y2, . . . , yn be n solutions of the homogeneous linear nth-order
differential equation (6) on an interval I. Then the set of solutions is linearly
independent on I if and only if W(y1, y2, . . . , yn ) � 0 for every x in the
interval.

W( f1, f2, . . . , fn ) � �
f1

f 1�





f1

(n�1)

f2

f 2�





f2

(n�1)

  

  

  

fn

f n�





fn

(n�1)
�,

f2(x) � 1 � f1(x) � 5 � f3(x) � 0 � f4(x)

f1(x) � 1x � 5, f2(x) � 1x � 5x

c1 cos2x � c2 sin2x � c3 sec2x � c4 tan2x � 0
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It follows from Theorem 4.1.3 that when y1, y2, . . . , yn are n solutions of (6) on
an interval I, the Wronskian W( y1, y2, . . . , yn) is either identically zero or never zero
on the interval.

A set of n linearly independent solutions of a homogeneous linear nth-order
differential equation is given a special name.

DEFINITION 4.1.3 Fundamental Set of Solutions

Any set y1, y2, . . . , yn of n linearly independent solutions of the homoge-
neous linear nth-order differential equation (6) on an interval I is said to be a
fundamental set of solutions on the interval.

The basic question of whether a fundamental set of solutions exists for a linear
equation is answered in the next theorem.

THEOREM 4.1.4 Existence of a Fundamental Set

There exists a fundamental set of solutions for the homogeneous linear nth-order
differential equation (6) on an interval I.

Analogous to the fact that any vector in three dimensions can be expressed as a
linear combination of the linearly independent vectors i, j, k, any solution of an nth-
order homogeneous linear differential equation on an interval I can be expressed as a
linear combination of n linearly independent solutions on I. In other words, n linearly
independent solutions y1, y2, . . . , yn are the basic building blocks for the general
solution of the equation.

THEOREM 4.1.5 General Solution—Homogeneous Equations

Let y1, y2, . . . , yn be a fundamental set of solutions of the homogeneous linear
nth-order differential equation (6) on an interval I. Then the general solution of
the equation on the interval is

where ci, i � 1, 2, . . . , n are arbitrary constants.

Theorem 4.1.5 states that if Y(x) is any solution of (6) on the interval, then con-
stants C1, C2, . . . , Cn can always be found so that

We will prove the case when n � 2.

PROOF Let Y be a solution and let y1 and y2 be linearly independent solutions of
a2y	 � a1y� � a0y � 0 on an interval I. Suppose that x � t is a point in I for which
W(y1(t), y2(t)) � 0. Suppose also that Y(t) � k1 and Y�(t) � k2. If we now examine
the equations

it follows that we can determine C1 and C2 uniquely, provided that the determinant of
the coefficients satisfies

�y1(t)

y1�(t)

y2(t)

y2�(t)
� � 0.

C1y�1(t) � C2y�2(t) � k2,

C1y1(t) � C2y2(t) � k1

Y(x) � C1y1(x) � C2y2(x) �    � Cnyn(x).

y � c1y1(x) � c2y2(x) �    � cnyn(x),
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But this determinant is simply the Wronskian evaluated at x � t, and by assumption,
W � 0. If we define G(x) � C1y1(x) � C2y2(x), we observe that G(x) satisfies the
differential equation since it is a superposition of two known solutions; G(x) satisfies
the initial conditions

and Y(x) satisfies the same linear equation and the same initial conditions.
Because the solution of this linear initial-value problem is unique (Theorem 4.1.1),
we have Y(x) � G(x) or Y(x) � C1y1(x) � C2y2(x).

EXAMPLE 7 General Solution of a Homogeneous DE

The functions y1 � e3x and y2 � e�3x are both solutions of the homogeneous linear
equation y	 � 9y � 0 on the interval (�
, 
). By inspection the solutions are lin-
early independent on the x-axis. This fact can be corroborated by observing that the
Wronskian

for every x. We conclude that y1 and y2 form a fundamental set of solutions, and
consequently, y � c1e3x � c2e�3x is the general solution of the equation on the
interval.

EXAMPLE 8 A Solution Obtained from a General Solution

The function y � 4sinh 3x � 5e3x is a solution of the differential equation in
Example 7. (Verify this.) In view of Theorem 4.1.5 we must be able to obtain this
solution from the general solution y � c1e3x � c2e�3x. Observe that if we choose 
c1 � 2 and c2 � �7, then y � 2e3x � 7e�3x can be rewritten as

The last expression is recognized as y � 4 sinh 3x � 5e�3x.

EXAMPLE 9 General Solution of a Homogeneous DE

The functions y1 � ex, y2 � e2x, and y3 � e3x satisfy the third-order equation
y� � 6y	 � 11y� � 6y � 0. Since

for every real value of x, the functions y1, y2, and y3 form a fundamental set of solu-
tions on (�
, 
). We conclude that y � c1ex � c2e2x � c3e3x is the general solution
of the differential equation on the interval.

4.1.3 NONHOMOGENEOUS EQUATIONS

Any function yp, free of arbitrary parameters, that satisfies (7) is said to be a particular
solution or particular integral of the equation. For example, it is a straightforward
task to show that the constant function yp � 3 is a particular solution of the
nonhomogeneous equation y	 � 9y � 27.

W(ex, e2x, e3x) � p ex

ex

ex

e2x

2e2x

4e2x

e3x

3e3x

9e3x
p � 2e6x � 0

y � 2e3x � 2e�3x � 5e�3x � 4�e3x � e�3x

2 � � 5e�3x.

W(e3x, e�3x) � � e3x

3e3x

e�3x

�3e�3x � � �6 � 0

G(t) � C1y1(t) � C2y2(t) � k1    and    G�(t) � C1y�1(t) � C2y�2(t) � k2;
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Now if y1, y2, . . . , yk are solutions of (6) on an interval I and yp is any particular
solution of (7) on I, then the linear combination

(10)

is also a solution of the nonhomogeneous equation (7). If you think about it, this makes
sense, because the linear combination c1y1(x) � c2y2(x) �  � ckyk(x) is trans-
formed into 0 by the operator L � anDn � an�1Dn�1 �    � a1D � a0, whereas yp

is transformed into g(x). If we use k � n linearly independent solutions of the nth-order
equation (6), then the expression in (10) becomes the general solution of (7).

THEOREM 4.1.6 General Solution—Nonhomogeneous Equations

Let yp be any particular solution of the nonhomogeneous linear nth-order differ-
ential equation (7) on an interval I, and let y1, y2, . . . , yn be a fundamental set of
solutions of the associated homogeneous differential equation (6) on I. Then the
general solution of the equation on the interval is

where the ci, i � 1, 2, . . . , n are arbitrary constants.

PROOF Let L be the differential operator defined in (8) and let Y(x) and yp(x)
be particular solutions of the nonhomogeneous equation L(y) � g(x). If we define
u(x) � Y(x) � yp(x), then by linearity of L we have

L(u) � L{Y(x) � yp(x)} � L(Y(x)) � L(yp(x)) � g(x) � g(x) � 0.

This shows that u(x) is a solution of the homogeneous equation L(y) � 0. Hence
by Theorem 4.1.5, , and so

or

COMPLEMENTARY FUNCTION We see in Theorem 4.1.6 that the general solu-
tion of a nonhomogeneous linear equation consists of the sum of two functions:

The linear combination , which is the
general solution of (6), is called the complementary function for equation (7). In
other words, to solve a nonhomogeneous linear differential equation, we first solve
the associated homogeneous equation and then find any particular solution of the
nonhomogeneous equation. The general solution of the nonhomogeneous equation
is then

y � complementary function � any particular solution
� yc � yp.

EXAMPLE 10 General Solution of a Nonhomogeneous DE

By substitution the function is readily shown to be a particular solu-
tion of the nonhomogeneous equation

(11)y� � 6y	 � 11y� � 6y � 3x.

yp � �11
12 � 1

2 x

yc(x) � c1y1(x) � c2y2(x) �    � cnyn(x)

y � c1y1(x) � c2y2(x) �    � cnyn(x) � yp(x) � yc(x) � yp(x).

Y(x) � c1y1(x) � c2y2(x) �    � cnyn(x) � yp(x).

Y(x) � yp(x) � c1y1(x) � c2y2(x) �    � cnyn(x)

u(x) � c1y1(x) � c2y2(x) �    � cnyn(x)

y � c1y1(x) � c2y2(x) �    � cn yn(x) � yp ,

y � c1y1(x) � c2y2(x) �    � ckyk(x) � yp
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To write the general solution of (11), we must also be able to solve the associated
homogeneous equation

But in Example 9 we saw that the general solution of this latter equation on the in-
terval (�
, 
) was yc � c1ex � c2e2x � c3e3x. Hence the general solution of (11)
on the interval is

ANOTHER SUPERPOSITION PRINCIPLE The last theorem of this discussion
will be useful in Section 4.4 when we consider a method for finding particular solu-
tions of nonhomogeneous equations.

THEOREM 4.1.7 Superposition Principle—Nonhomogeneous 

Equations

Let , , . . . , be k particular solutions of the nonhomogeneous linear
nth-order differential equation (7) on an interval I corresponding, in turn, to k
distinct functions g1, g2, . . . , gk. That is, suppose denotes a particular solu-
tion of the corresponding differential equation

(12)

where i � 1, 2, . . . , k. Then

(13)

is a particular solution of

(14)

PROOF We prove the case k � 2. Let L be the differential operator defined in (8)
and let and be particular solutions of the nonhomogeneous equations
L( y) � g1(x) and L( y) � g2(x), respectively. If we define , we
want to show that yp is a particular solution of L( y) � g1(x) � g2(x). The result
follows again by the linearity of the operator L:

EXAMPLE 11 Superposition—Nonhomogeneous DE

You should verify that

It follows from (13) of Theorem 4.1.7 that the superposition of , and ,

is a solution of

y 	 � 3y� � 4y � �16x2 � 24x � 8 � 2e2x � 2xex � ex.

g1(x) g3(x)g2(x)

y � yp1
� yp2

� yp3
� �4x2 � e2x � xex,

yp3
yp1

, yp2

yp3
� xex  is a particular solution of  y	 � 3y� � 4y � 2xex � ex.

yp2
� e2x  is a particular solution of  y	 � 3y� � 4y � 2e2x,

yp1
� �4x2  is a particular solution of  y	 � 3y� � 4y � �16x2 � 24x � 8,

L(yp) � L{yp1
(x) � yp2

(x)} � L( yp1
(x)) � L( yp2

(x)) � g1(x) � g2(x).

yp � yp1
(x) � yp2

(x)
yp2

(x)yp1
(x)

� g1(x) � g2(x) �    � gk(x).

an(x)y(n) � an�1(x)y(n�1) �    � a1(x)y� � a0(x)y

yp � yp1
(x) � yp2

(x) �    � ypk
(x)

an(x)y(n) � an�1(x)y(n�1) �    � a1(x)y� � a0(x)y � gi(x),

ypi

ypk
yp2

yp1

y � yc � yp � c1e
x � c2e

2x � c3e
3x �

11

12
�

1

2
x.

y� � 6y	 � 11y� � 6y � 0.
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NOTE If the are particular solutions of (12) for i � 1, 2, . . . , k, then the linear
combination

where the ci are constants, is also a particular solution of (14) when the right-hand
member of the equation is the linear combination

Before we actually start solving homogeneous and nonhomogeneous linear
differential equations, we need one additional bit of theory, which is presented in the
next section.

REMARKS

This remark is a continuation of the brief discussion of dynamical systems
given at the end of Section 1.3.

A dynamical system whose rule or mathematical model is a linear nth-order
differential equation

is said to be an nth-order linear system. The n time-dependent functions y(t),
y�(t), . . . , y(n�1)(t) are the state variables of the system. Recall that their val-
ues at some time t give the state of the system. The function g is variously
called the input function, forcing function, or excitation function. A solu-
tion y(t) of the differential equation is said to be the output or response of the
system. Under the conditions stated in Theorem 4.1.1, the output or response
y(t) is uniquely determined by the input and the state of the system prescribed
at a time t0 —that is, by the initial conditions y(t0), y�(t0), . . . , y(n�1)(t0).

For a dynamical system to be a linear system, it is necessary that the super-
position principle (Theorem 4.1.7) holds in the system; that is, the response of
the system to a superposition of inputs is a superposition of outputs. We have
already examined some simple linear systems in Section 3.1 (linear first-order
equations); in Section 5.1 we examine linear systems in which the mathe-
matical models are second-order differential equations.

an(t)y(n) � an�1(t)y(n�1) �    � a1(t)y� � a0(t)y � g(t)

c1g1(x) � c2g2(x) �    � ckgk(x).

yp � c1yp1
� c2yp2

�    � ckypk
,

ypi
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EXERCISES 4.1 Answers to selected odd-numbered problems begin on page ANS-4.

4.1.1 INITIAL-VALUE AND BOUNDARY-VALUE
PROBLEMS

In Problems 1–4 the given family of functions is the general
solution of the differential equation on the indicated interval.
Find a member of the family that is a solution of the initial-
value problem.

1. y � c1ex � c2e�x, (�
, 
);
y	 � y � 0, y(0) � 0, y�(0) � 1

2. y � c1e4x � c2e�x, (�
, 
);
y	 � 3y� � 4y � 0, y(0) � 1, y�(0) � 2

3. y � c1x � c2x ln x, (0, 
);
x2y	 � xy� � y � 0, y(1) � 3, y�(1) � �1

4. y � c1 � c2 cos x � c3 sin x, (�
, 
);
y� � y� � 0, y(p) � 0, y�(p) � 2, y	(p) � �1

5. Given that y � c1 � c2x2 is a two-parameter family of
solutions of xy	 � y� � 0 on the interval (�
, 
),
show that constants c1 and c2 cannot be found so that a
member of the family satisfies the initial conditions
y(0) � 0, y�(0) � 1. Explain why this does not violate
Theorem 4.1.1.

6. Find two members of the family of solutions in
Problem 5 that satisfy the initial conditions y(0) � 0,
y�(0) � 0.

7. Given that x(t) � c1 cos vt � c2 sin vt is the general
solution of x	 � v2x � 0 on the interval (�
, 
),
show that a solution satisfying the initial conditions
x(0) � x0, x�(0) � x1 is given by

x(t) � x0 cos �t �
x1

�
 sin �t.



8. Use the general solution of x	 � v2x � 0 given in
Problem 7 to show that a solution satisfying the initial
conditions x(t0) � x0, x�(t0) � x1 is the solution given in
Problem 7 shifted by an amount t0:

In Problems 9 and 10 find an interval centered about x � 0 for
which the given initial-value problem has a unique solution.

9. (x � 2)y	 � 3y � x, y(0) � 0, y�(0) � 1

10. y	 � (tan x)y � ex, y(0) � 1, y�(0) � 0

11. (a) Use the family in Problem 1 to find a solution of
y	 � y � 0 that satisfies the boundary conditions
y(0) � 0, y(1) � 1.

(b) The DE in part (a) has the alternative general solu-
tion y � c3 cosh x � c4 sinh x on (�
, 
). Use this
family to find a solution that satisfies the boundary
conditions in part (a).

(c) Show that the solutions in parts (a) and (b) are
equivalent

12. Use the family in Problem 5 to find a solution of
xy	 � y� � 0 that satisfies the boundary conditions
y(0) � 1, y�(1) � 6.

In Problems 13 and 14 the given two-parameter family is a
solution of the indicated differential equation on the interval
(�
, 
). Determine whether a member of the family can be
found that satisfies the boundary conditions.

13. y � c1ex cos x � c2ex sin x; y	 � 2y� � 2y � 0

(a) y(0) � 1, y�(p) � 0 (b) y(0) � 1, y(p) � �1

(c) y(0) � 1, (d) y(0) � 0, y(p) � 0.

14. y � c1x2 � c2x4 � 3; x2y	 � 5xy� � 8y � 24

(a) y(�1) � 0, y(1) � 4 (b) y(0) � 1, y(1) � 2
(c) y(0) � 3, y(1) � 0 (d) y(1) � 3, y(2) � 15

4.1.2 HOMOGENEOUS EQUATIONS

In Problems 15–22 determine whether the given set of func-
tions is linearly independent on the interval (�
, 
).

15. f1(x) � x, f2(x) � x2, f3(x) � 4x � 3x2

16. f1(x) � 0, f2(x) � x, f3(x) � ex

17. f1(x) � 5, f2(x) � cos2x, f3(x) � sin2x

18. f1(x) � cos 2x, f2(x) � 1, f3(x) � cos2x

19. f1(x) � x, f2(x) � x � 1, f3(x) � x � 3

20. f1(x) � 2 � x, f2(x) � 2 � �x �

y��

2� � 1

x(t) � x0 cos �(t � t0 ) �
x1

�
 sin �(t � t0 ).
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21. f1(x) � 1 � x, f2(x) � x, f3(x) � x2

22. f1(x) � ex, f2(x) � e�x, f3(x) � sinh x

In Problems 23–30 verify that the given functions form a
fundamental set of solutions of the differential equation on
the indicated interval. Form the general solution.

23. y	 � y� � 12y � 0; e�3x, e4x, (�
, 
)

24. y	 � 4y � 0; cosh 2x, sinh 2x, (�
, 
)

25. y	 � 2y� � 5y � 0; ex cos 2x, ex sin 2x, (�
, 
)

26. 4y	 � 4y� � y � 0; ex/2, xex/2, (�
, 
)

27. x2y	 � 6xy� � 12y � 0; x3, x4, (0, 
)

28. x2y	 � xy� � y � 0; cos(ln x), sin(ln x), (0, 
)

29. x3y� � 6x2y	 � 4xy� � 4y � 0; x, x�2, x�2 ln x, (0, 
)

30. y(4) � y	 � 0; 1, x, cos x, sin x, (�
, 
)

4.1.3 NONHOMOGENEOUS EQUATIONS

In Problems 31–34 verify that the given two-parameter fam-
ily of functions is the general solution of the nonhomoge-
neous differential equation on the indicated interval.

31. y	 � 7y� � 10y � 24ex;
y � c1e2x � c2e5x � 6ex, (�
, 
)

32. y	 � y � sec x;
y � c1 cos x � c2 sin x � x sin x � (cos x) ln(cos x),
(�p�2, p�2)

33. y	 � 4y� � 4y � 2e2x � 4x � 12;
y � c1e2x � c2xe2x � x2e2x � x � 2, (�
, 
)

34. 2x2y	 � 5xy� � y � x2 � x;

35. (a) Verify that and are, respec-
tively, particular solutions of

and

(b) Use part (a) to find particular solutions of

and

36. (a) By inspection find a particular solution of 

y	 � 2y � 10.

(b) By inspection find a particular solution of 

y	 � 2y � �4x.

(c) Find a particular solution of y	 � 2y � �4x � 10.
(d) Find a particular solution of y	 � 2y � 8x � 5.

y	 � 6y� � 5y � �10x2 � 6x � 32 � e2x.

y	 � 6y� � 5y � 5x2 � 3x � 16 � 9e2x

y	 � 6y� � 5y � 5x2 � 3x � 16.

y	 � 6y� � 5y � �9e2x

yp2
� x2 � 3xyp1

� 3e2x

y � c1x�1/2 � c2x�1 � 1
15 x2 � 1

6 x, (0, 
)



Discussion Problems

37. Let n � 1, 2, 3, . . . . Discuss how the observations
Dnxn�1 � 0 and Dnxn � n! can be used to find the gen-
eral solutions of the given differential equations.

(a) y	 � 0 (b) y� � 0 (c) y(4) � 0

(d) y	 � 2 (e) y� � 6 (f) y(4) � 24

38. Suppose that y1 � ex and y2 � e�x are two solutions of
a homogeneous linear differential equation. Explain
why y3 � cosh x and y4 � sinh x are also solutions of
the equation.

39. (a) Verify that y1 � x3 and y2 � �x �3 are linearly
independent solutions of the differential equation
x2y	 � 4xy� � 6y � 0 on the interval (�
, 
).

(b) Show that W( y1, y2) � 0 for every real number x.
Does this result violate Theorem 4.1.3? Explain.

(c) Verify that Y1 � x3 and Y2 � x2 are also linearly
independent solutions of the differential equation
in part (a) on the interval (�
, 
).

(d) Find a solution of the differential equation satisfy-
ing y(0) � 0, y�(0) � 0.
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(e) By the superposition principle, Theorem 4.1.2,
both linear combinations y � c1y1 � c2y2 and
Y � c1Y1 � c2Y2 are solutions of the differential
equation. Discuss whether one, both, or neither of
the linear combinations is a general solution of the
differential equation on the interval (�
, 
).

40. Is the set of functions f1(x) � ex�2, f2(x) � ex�3 lin-
early dependent or linearly independent on (�
, 
)?
Discuss.

41. Suppose y1, y2, . . . , yk are k linearly independent solu-
tions on (�
, 
) of a homogeneous linear nth-order
differential equation with constant coefficients. By
Theorem 4.1.2 it follows that yk�1 � 0 is also a solution
of the differential equation. Is the set of solutions
y1, y2, . . . , yk, yk�1 linearly dependent or linearly inde-
pendent on (�
, 
)? Discuss.

42. Suppose that y1, y2, . . . , yk are k nontrivial solutions of
a homogeneous linear nth-order differential equation
with constant coefficients and that k � n � 1. Is the set
of solutions y1, y2, . . . , yk linearly dependent or linearly
independent on (�
, 
)? Discuss.

REDUCTION OF ORDER

REVIEW MATERIAL
● Section 2.5 (using a substitution)
● Section 4.1

INTRODUCTION In the preceding section we saw that the general solution of a homogeneous
linear second-order differential equation

(1)

is a linear combination y � c1y1 � c2y2, where y1 and y2 are solutions that constitute a linearly inde-
pendent set on some interval I. Beginning in the next section, we examine a method for determining
these solutions when the coefficients of the differential equation in (1) are constants. This method,
which is a straightforward exercise in algebra, breaks down in a few cases and yields only a single
solution y1 of the DE. It turns out that we can construct a second solution y2 of a homogeneous equa-
tion (1) (even when the coefficients in (1) are variable) provided that we know a nontrivial solution
y1 of the DE. The basic idea described in this section is that equation (1) can be reduced to a linear
first-order DE by means of a substitution involving the known solution y1. A second solution y2 of
(1) is apparent after this first-order differential equation is solved.

a2(x)y	 � a1(x)y� � a0(x)y � 0

4.2

REDUCTION OF ORDER Suppose that y1 denotes a nontrivial solution of (1) and
that y1 is defined on an interval I. We seek a second solution y2 so that the set consist-
ing of y1 and y2 is linearly independent on I. Recall from Section 4.1 that if y1 and
y2 are linearly independent, then their quotient y2�y1 is nonconstant on I—that is,
y2(x)�y1(x) � u(x) or y2(x) � u(x)y1(x). The function u(x) can be found by substituting
y2(x) � u(x)y1(x) into the given differential equation. This method is called reduction
of order because we must solve a linear first-order differential equation to find u.



EXAMPLE 1 A Second Solution by Reduction of Order

Given that y1 � ex is a solution of y	 � y � 0 on the interval (�
, 
), use reduction
of order to find a second solution y2.

SOLUTION If y � u(x)y1(x) � u(x)ex, then the Product Rule gives

and so

Since ex � 0, the last equation requires u	 � 2u� � 0. If we make the substitution
w � u�, this linear second-order equation in u becomes w� � 2w � 0, which is a
linear first-order equation in w. Using the integrating factor e2x, we can write

. After integrating, we get w � c1e�2x or u� � c1e�2x. Integrating

again then yields Thus

. (2)

By picking c2 � 0 and c1 � �2, we obtain the desired second solution, y2 � e�x.
Because W(ex, e�x) � 0 for every x, the solutions are linearly independent on
(�
, 
).

Since we have shown that y1 � ex and y2 � e�x are linearly independent solu-
tions of a linear second-order equation, the expression in (2) is actually the general
solution of y	 � y � 0 on (�
, 
).

GENERAL CASE Suppose we divide by a2(x) to put equation (1) in the standard
form

(3)

where P(x) and Q(x) are continuous on some interval I. Let us suppose further that
y1(x) is a known solution of (3) on I and that y1(x) � 0 for every x in the interval. If
we define y � u(x)y1(x), it follows that

This implies that we must have

(4)

where we have let w � u�. Observe that the last equation in (4) is both linear and
separable. Separating variables and integrating, we obtain

.

We solve the last equation for w, use w � u�, and integrate again:

.u � c1 � e�	P dx

y1
2 dx � c2

ln� wy1
2 � � �� P dx � c    or    wy1

2 � c1e�	P dx

dw

w
� 2

y�1
y1

dx � P dx � 0

y1u 	 � (2y�1 � Py1)u� � 0    or    y1w� � (2y�1 � Py1)w � 0,

y 	 � Py� � Qy � u[y1 � Py1 � Qy1] � y1u	 � (2y1 � Py1)u� � 0.	 � �

zero

y� � uy�1 � y1u�, y	 � uy	1 � 2y�1u� � y1u 	

y	 � P(x)y� � Q(x)y � 0,

y � u(x)ex � �
c1

2
e�x � c2ex

u � �1
2 c1e�2x � c2.

d

dx
 [e2xw] � 0

y	 � y � ex(u 	 � 2u�) � 0.

y� � uex � exu�, y	 � uex � 2exu� � exu 	,
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By choosing c1 � 1 and c2 � 0, we find from y � u(x)y1(x) that a second solution of
equation (3) is

(5)

It makes a good review of differentiation to verify that the function y2(x) defined in
(5) satisfies equation (3) and that y1 and y2 are linearly independent on any interval
on which y1(x) is not zero.

EXAMPLE 2 A Second Solution by Formula (5)

The function y1 � x2 is a solution of x2y	 � 3xy� � 4y � 0. Find the general solu-
tion of the differential equation on the interval (0, 
).

SOLUTION From the standard form of the equation,

we find from (5)

.

The general solution on the interval (0, 
) is given by y � c1y1 � c2y2; that is,
y � c1x2 � c2x2 ln x.

REMARKS

(i) The derivation and use of formula (5) have been illustrated here because this
formula appears again in the next section and in Sections 4.7 and 6.2. We use (5)
simply to save time in obtaining a desired result. Your instructor will tell you
whether you should memorize (5) or whether you should know the first princi-
ples of reduction of order.

(ii) Reduction of order can be used to find the general solution of a nonhomo-
geneous equation a2(x)y	 � a1(x)y� � a0(x)y � g(x) whenever a solution y1 of
the associated homogeneous equation is known. See Problems 17–20 in
Exercises 4.2.

� x2 � dx

x
� x2 ln x

; e3	d x /x � eln x3
� x3y2 � x2 � e3	dx /x

x4 dx

y	 �
3

x
y� �

4

x2 y � 0,

y2 � y1(x) � e�	P(x) dx

y1
2(x)

dx.
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EXERCISES 4.2 Answers to selected odd-numbered problems begin on page ANS-4.

In Problems 1–16 the indicated function y1(x) is a solution
of the given differential equation. Use reduction of order or
formula (5), as instructed, to find a second solution y2(x).

1. y	 � 4y� � 4y � 0; y1 � e2x

2. y	 � 2y� � y � 0; y1 � xe�x

3. y	 � 16y � 0; y1 � cos 4x

4. y	 � 9y � 0; y1 � sin 3x

5. y	 � y � 0; y1 � cosh x

6. y	 � 25y � 0; y1 � e5x

7. 9y	 � 12y� � 4y � 0; y1 � e2x/3

8. 6y	 � y� � y � 0; y1 � ex/3

9. x2y	 � 7xy� � 16y � 0; y1 � x4

10. x2y	 � 2xy� � 6y � 0; y1 � x2

11. xy	 � y� � 0; y1 � ln x

12. 4x2y	 � y � 0; y1 � x1/2 ln x

13. x2y	 � xy� � 2y � 0; y1 � x sin(ln x)

14. x2y	 � 3xy� � 5y � 0; y1 � x2 cos(ln x)



15. (1 � 2x � x2)y	 � 2(1 � x)y� � 2y � 0; y1 � x � 1

16. (1 � x2)y	 � 2xy� � 0; y1 � 1

In Problems 17–20 the indicated function y1(x) is a solution
of the associated homogeneous equation. Use the method
of reduction of order to find a second solution y2(x) of the
homogeneous equation and a particular solution of the given
nonhomogeneous equation.

17. y	 � 4y � 2; y1 � e�2x

18. y	 � y� � 1; y1 � 1

19. y	 � 3y� � 2y � 5e3x; y1 � ex

20. y	 � 4y� � 3y � x; y1 � ex

Discussion Problems

21. (a) Give a convincing demonstration that the second-
order equation ay	 � by� � cy � 0, a, b, and c con-
stants, always possesses at least one solution of the
form , m1 a constant.

(b) Explain why the differential equation in part (a)
must then have a second solution either of the form

y1 � em1x
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or of the form , m1 and m2

constants.

(c) Reexamine Problems 1–8. Can you explain why the
statements in parts (a) and (b) above are not
contradicted by the answers to Problems 3–5?

22. Verify that y1(x) � x is a solution of xy	 � xy� � y � 0.
Use reduction of order to find a second solution y2(x) in
the form of an infinite series. Conjecture an interval of
definition for y2(x).

Computer Lab Assignments

23. (a) Verify that y1(x) � ex is a solution of 

xy	 � (x � 10)y� � 10y � 0.

(b) Use (5) to find a second solution y2(x). Use a CAS to
carry out the required integration.

(c) Explain, using Corollary (A) of Theorem 4.1.2, why
the second solution can be written compactly as

.y2(x) � �
10

n�0

1

n!
xn

y2 � xem1xy2 � em2 x

HOMOGENEOUS LINEAR EQUATIONS

WITH CONSTANT COEFFICIENTS

REVIEW MATERIAL
● Review Problem 27 in Exercises 1.1 and Theorem 4.1.5
● Review the algebra of solving polynomial equations (see the Student Resource 

and Solutions Manual)

INTRODUCTION As a means of motivating the discussion in this section, let us return to first-
order differential equations—more specifically, to homogeneous linear equations ay� � by � 0,
where the coefficients a � 0 and b are constants. This type of equation can be solved either by
separation of variables or with the aid of an integrating factor, but there is another solution method,
one that uses only algebra. Before illustrating this alternative method, we make one observation:
Solving ay� � by � 0 for y� yields y� � ky, where k is a constant. This observation reveals the
nature of the unknown solution y; the only nontrivial elementary function whose derivative is a
constant multiple of itself is an exponential function emx. Now the new solution method: If we substi-
tute y � emx and y� � memx into ay� � by � 0, we get

Since emx is never zero for real values of x, the last equation is satisfied only when m is a solution or
root of the first-degree polynomial equation am � b � 0. For this single value of m, y � emx is a
solution of the DE. To illustrate, consider the constant-coefficient equation 2y� � 5y � 0. It is not
necessary to go through the differentiation and substitution of y � emx into the DE; we merely have
to form the equation 2m � 5 � 0 and solve it for m. From we conclude that is a
solution of 2y� � 5y � 0, and its general solution on the interval (�
, 
) is 

In this section we will see that the foregoing procedure can produce exponential solutions for
homogeneous linear higher-order DEs,

(1)

where the coefficients ai, i � 0, 1, . . . , n are real constants and an � 0.

any(n) � an�1y(n�1) �    � a2y	 � a1y� � a0y � 0,

y � c1e�5x/2.
y � e�5x/2m � �5

2

amemx � bemx � 0    or    emx (am � b) � 0.

4.3



AUXILIARY EQUATION We begin by considering the special case of the second-
order equation

(2)

where a, b, and c are constants. If we try to find a solution of the form y � emx, then
after substitution of y� � memx and y	 � m2emx, equation (2) becomes

As in the introduction we argue that because emx � 0 for all x, it is apparent that the
only way y � emx can satisfy the differential equation (2) is when m is chosen as a
root of the quadratic equation

(3)

This last equation is called the auxiliary equation of the differential equa-
tion (2). Since the two roots of (3) are and

there will be three forms of the general solution of
(2) corresponding to the three cases:

• m1 and m2 real and distinct (b2 � 4ac � 0),
• m1 and m2 real and equal (b2 � 4ac � 0), and
• m1 and m2 conjugate complex numbers (b2 � 4ac � 0).

We discuss each of these cases in turn.

CASE I: DISTINCT REAL ROOTS Under the assumption that the auxiliary equa-
tion (3) has two unequal real roots m1 and m2, we find two solutions, and

We see that these functions are linearly independent on (�
, 
) and hence
form a fundamental set. It follows that the general solution of (2) on this interval is

(4)

CASE II: REPEATED REAL ROOTS When m1 � m2, we necessarily obtain only
one exponential solution, . From the quadratic formula we find that
m1 � �b�2a since the only way to have m1 � m2 is to have b2 � 4ac � 0. It follows
from (5) in Section 4.2 that a second solution of the equation is

(5)

In (5) we have used the fact that �b�a � 2m1. The general solution is then

(6)

CASE III: CONJUGATE COMPLEX ROOTS If m1 and m2 are complex, then we
can write m1 � a� ib and m2 � a� ib, where a and b� 0 are real and i2 � �1.
Formally, there is no difference between this case and Case I, and hence

However, in practice we prefer to work with real functions instead of complex
exponentials. To this end we use Euler’s formula:

where u is any real number.* It follows from this formula that

(7)ei�x � cos �x � i sin �x    and    e�i�x � cos �x � i sin �x,

ei� � cos � � i sin �,

y � C1e
(a�i�)x � C2e

(a�i�)x.

y � c1e
m1x � c2xem1x.

y2 � em1x � e2m1x

e2m1x
dx � em1x � dx � xem1x.

y1 � em1x

y � c1e
m1x � c2e

m2x.

y2 � em2x.
y1 � em1x

m2 � (�b � 1b2 � 4ac)�2a,
m1 � (�b � 1b2 � 4ac)�2a

am2 � bm � c � 0.

am2emx � bmemx � cemx � 0    or    emx(am2 � bm � c) � 0.

ay	 � by� � cy � 0,
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*A formal derivation of Euler’s formula can be obtained from the Maclaurin series by

substituting x � iu, using i2 � �1, i3 � �i, . . . , and then separating the series into real and imaginary
parts. The plausibility thus established, we can adopt cos u � i sin u as the definition of eiu.

ex � �



n�0

xn

n!



where we have used cos(�bx) � cos bx and sin(�bx) � �sin bx. Note that by first
adding and then subtracting the two equations in (7), we obtain, respectively,

Since y � C1e(a�ib)x � C2e(a�ib)x is a solution of (2) for any choice of the constants C1

and C2, the choices C1 � C2 � 1 and C1 � 1, C2 � �1 give, in turn, two solutions:

But

and

Hence from Corollary (A) of Theorem 4.1.2 the last two results show that eax cos bx
and eax sin bx are real solutions of (2). Moreover, these solutions form a fundamen-
tal set on (�
, 
). Consequently, the general solution is

(8)

EXAMPLE 1 Second-Order DEs

Solve the following differential equations.

(a) 2y	 � 5y� � 3y � 0 (b) y	 � 10y� � 25y � 0 (c) y	 � 4y� � 7y � 0

SOLUTION We give the auxiliary equations, the roots, and the corresponding gen-
eral solutions.

(a) 2m2 � 5m � 3 � (2m � 1)(m � 3) � 0, , m2 � 3

From (4), y � c1e�x/2 � c2e3x.

(b) m2 � 10m � 25 � (m � 5)2 � 0, m1 � m2 � 5

From (6), y � c1e5x � c2xe5x.

(c)

From (8) with 

EXAMPLE 2 An Initial-Value Problem

Solve 4y	 � 4y� � 17y � 0, y(0) � �1, y�(0) � 2.

SOLUTION By the quadratic formula we find that the roots of the auxiliary
equation 4m2 � 4m � 17 � 0 are . Thus from
(8) we have y � e�x/2(c1 cos 2x � c2 sin 2x). Applying the condition y(0) � �1,
we see from e0(c1 cos 0 � c2 sin 0) � �1 that c1 � �1. Differentiating
y � e�x/2(�cos 2x � c2 sin 2x) and then using y�(0) � 2 gives 2c2 � � 2 or c2 � .
Hence the solution of the IVP is y � e�x/2(�cos 2x � sin 2x). In Figure 4.3.1 we
see that the solution is oscillatory, but y : 0 as x : 
 and �y � : 
 as x : �
.

TWO EQUATIONS WORTH KNOWING The two differential equations

,y	 � k2y � 0    and    y	 � k2y � 0

3
4

3
4

1
2

m1 � �1
2 � 2i and m2 � �1

2 � 2i

� � �2, � � 23, y � e�2x (c1 cos 23x � c2 sin 23x).
m2 � 4m � 7 � 0, m1 � �2 � 23i,  m2 � �2 � 23i

m1 � �1
2

y � c1eax cos �x � c2eax sin �x � eax(c1 cos �x � c2 sin �x).

y2 � eax(ei�x � e�i�x) � 2ieax sin �x.

y1 � eax(ei�x � e�i�x) � 2eax cos �x

y1 � e(a�i�)x � e(a�i�)x    and    y2 � e(a�i�)x � e(a�i�)x.

ei�x � e�i�x � 2 cos �x    and    ei�x � e�i�x � 2i sin �x.
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FIGURE 4.3.1 Solution curve of IVP
in Example 2
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where k is real, are important in applied mathematics. For y	 � k2y � 0 the auxiliary
equation m2 � k2 � 0 has imaginary roots m1 � ki and m2 � �ki. With a� 0 and
b� k in (8) the general solution of the DE is seen to be

(9)

On the other hand, the auxiliary equation m2 � k2 � 0 for y	 � k2y � 0 has distinct
real roots m1 � k and m2 � �k, and so by (4) the general solution of the DE is

(10)

Notice that if we choose in (10), we get the particu-
lar solutions . Since
cosh kx and sinh kx are linearly independent on any interval of the x-axis, an alternative
form for the general solution of y	 � k2y � 0 is

(11)

See Problems 41 and 42 in Exercises 4.3.

HIGHER-ORDER EQUATIONS In general, to solve an nth-order differential
equation (1), where the ai, i � 0, 1, . . . , n are real constants, we must solve an nth-
degree polynomial equation

(12)

If all the roots of (12) are real and distinct, then the general solution of (1) is

It is somewhat harder to summarize the analogues of Cases II and III because the
roots of an auxiliary equation of degree greater than two can occur in many combi-
nations. For example, a fifth-degree equation could have five distinct real roots, or
three distinct real and two complex roots, or one real and four complex roots, or five
real but equal roots, or five real roots but two of them equal, and so on. When m1 is a
root of multiplicity k of an nth-degree auxiliary equation (that is, k roots are equal
to m1), it can be shown that the linearly independent solutions are

and the general solution must contain the linear combination

Finally, it should be remembered that when the coefficients are real, complex
roots of an auxiliary equation always appear in conjugate pairs. Thus, for example,
a cubic polynomial equation can have at most two complex roots.

EXAMPLE 3 Third-Order DE

Solve y� � 3y	 � 4y � 0.

SOLUTION It should be apparent from inspection of m3 � 3m2 � 4 � 0 that one
root is m1 � 1, so m � 1 is a factor of m3 � 3m2 � 4. By division we find

so the other roots are m2 � m3 � �2. Thus the general solution of the DE is
y � c1ex � c2e�2x � c3xe�2x.

m3 � 3m2 � 4 � (m � 1)(m2 � 4m � 4) � (m � 1)(m � 2)2,

c1e
m1x � c2xem1x � c3x2em1x �    � ckxk�1em1x.

em1x,  xem1x,  x2em1x, . . . ,  xk�1em1x

y � c1em1x � c2em2x �    � cnemnx.

anmn � an�1mn�1 �    � a2m2 � a1m � a0 � 0.

y � c1 cosh kx � c2 sinh kx.

y � 1
2 (ekx � e�kx) � cosh kx and y � 1

2 (ekx � e�kx) � sinh kx
c1 � c2 � 1

2 and c1 � 1
2, c2 � �1

2

y � c1ekx � c2e�kx.

y � c1 cos kx � c2 sin kx.

136 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS



EXAMPLE 4 Fourth-Order DE

Solve 

SOLUTION The auxiliary equation m4 � 2m2 � 1 � (m2 � 1)2 � 0 has roots
m1 � m3 � i and m2 � m4 � �i. Thus from Case II the solution is

By Euler’s formula the grouping C1eix � C2e�ix can be rewritten as

after a relabeling of constants. Similarly, x(C3eix � C4e�ix) can be expressed as
x(c3 cos x � c4 sin x). Hence the general solution is

Example 4 illustrates a special case when the auxiliary equation has repeated
complex roots. In general, if m1 � a � ib, b � 0 is a complex root of multiplicity k
of an auxiliary equation with real coefficients, then its conjugate m2 � a � ib is also
a root of multiplicity k. From the 2k complex-valued solutions

we conclude, with the aid of Euler’s formula, that the general solution of the corre-
sponding differential equation must then contain a linear combination of the 2k real
linearly independent solutions

In Example 4 we identify k � 2, a � 0, and b � 1.
Of course the most difficult aspect of solving constant-coefficient differential equa-

tions is finding roots of auxiliary equations of degree greater than two. For example, to
solve 3y� � 5y	 � 10y� � 4y � 0, we must solve 3m3 � 5m2 � 10m � 4 � 0.
Something we can try is to test the auxiliary equation for rational roots. Recall that
if m1 � p�q is a rational root (expressed in lowest terms) of an auxiliary equation

with integer coefficients, then p is a factor of a0 and q is
a factor of an. For our specific cubic auxiliary equation, all the factors of a0 � �4 and
an � 3 are p: �1, �2, �4 and q: �1, �3, so the possible rational roots are

. Each of these numbers can then be tested—say, by
synthetic division. In this way we discover both the root and the factorization

The quadratic formula then yields the remaining roots m2 � �1 � i and
m3 � �1 � i. Therefore the general solution of 3y� � 5y	 � 10y� � 4y � 0 is
y � c1ex/3 � e�x(c2 cos x � c3 sin x).

USE OF COMPUTERS Finding roots or approximation of roots of auxiliary equa-
tions is a routine problem with an appropriate calculator or computer software.
Polynomial equations (in one variable) of degree less than five can be solved by means
of algebraic formulas using the solve commands in Mathematica and Maple. For aux-
iliary equations of degree five or greater it might be necessary to resort to numerical
commands such as NSolve and FindRoot in Mathematica. Because of their capability
of solving polynomial equations, it is not surprising that these computer algebra

2323
23

23

3m3 � 5m2 � 10m � 4 � (m � 1
3)(3m2 � 6m � 12).

m1 � 1
3

p>q: �1, �2, �4, �1
3, �2

3, �4
3

anmn �    � a1m � a0 � 0

eax sin �x, xeax sin �x, x2eax sin �x,   . . . , xk�1eax sin �x.

eax cos �x, xeax cos �x, x2eax cos �x,  . . . , xk�1eax cos �x,

e(a�i�)x, xe(a�i�)x, x2e(a�i�)x,  . . . , xk�1e(a�i�)x,

e(a�i�)x, xe(a�i�)x, x2e(a�i�)x,  . . . , xk�1e(a�i�)x,

y � c1 cos x � c2 sin x � c3x cos x � c4x sin x.

c1 cos x � c2 sin x

y � C1eix � C2e�ix � C3xeix � C4xe�ix.

d 4y

dx4 � 2
d 2y

dx2 � y � 0.
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■ There is more on
this in the SRSM.



systems are also able, by means of their dsolve commands, to provide explicit solu-
tions of homogeneous linear constant-coefficient differential equations.

In the classic text Differential Equations by Ralph Palmer Agnew* (used by the
author as a student) the following statement is made:

It is not reasonable to expect students in this course to have computing skill and
equipment necessary for efficient solving of equations such as

(13)

Although it is debatable whether computing skills have improved in the intervening
years, it is a certainty that technology has. If one has access to a computer algebra sys-
tem, equation (13) could now be considered reasonable. After simplification and some
relabeling of output, Mathematica yields the (approximate) general solution

Finally, if we are faced with an initial-value problem consisting of, say, a
fourth-order equation, then to fit the general solution of the DE to the four initial
conditions, we must solve four linear equations in four unknowns (the c1, c2, c3, c4

in the general solution). Using a CAS to solve the system can save lots of time. See
Problems 59 and 60 in Exercises 4.3 and Problem 35 in Chapter 4 in Review.

� c3e0.476478x cos(0.759081x) � c4e0.476478x sin(0.759081x).

y � c1e
�0.728852x cos(0.618605x) � c2e

�0.728852x sin(0.618605x)

4.317
d 4y

dx4 � 2.179
d 3y

dx3 � 1.416
d 2y

dx2 � 1.295
dy

dx
� 3.169y � 0.
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*McGraw-Hill, New York, 1960.

EXERCISES 4.3 Answers to selected odd-numbered problems begin on page ANS-4.

In Problems 1–14 find the general solution of the given
second-order differential equation.

1. 4y	 � y� � 0 2. y	 � 36y � 0

3. y	 � y� � 6y � 0 4. y	 � 3y� � 2y � 0

5. y	 � 8y� � 16y � 0 6. y	 � 10y� � 25y � 0

7. 12y	 � 5y� � 2y � 0 8. y	 � 4y� � y � 0

9. y	 � 9y � 0 10. 3y	 � y � 0

11. y	 � 4y� � 5y � 0 12. 2y	 � 2y� � y � 0

13. 3y	 � 2y� � y � 0 14. 2y	 � 3y� � 4y � 0

In Problems 15–28 find the general solution of the given
higher-order differential equation.

15. y� � 4y	 � 5y� � 0

16. y� � y � 0

17. y� � 5y	 � 3y� � 9y � 0

18. y� � 3y	 � 4y� � 12y � 0

19.
d 3u

dt3 �
d 2u

dt2 � 2u � 0

20.

21. y� � 3y	 � 3y� � y � 0

22. y� � 6y	 � 12y� � 8y � 0

23. y(4) � y� � y	 � 0

24. y(4) � 2y	 � y � 0

25.

26.

27.

28.

In Problems 29–36 solve the given initial-value problem.

29. y	 � 16y � 0, y(0) � 2, y�(0) � �2

30.
d 2y

d�2 � y � 0, y��

3� � 0, y���

3� � 2

2
d 5x

ds5 � 7
d 4x

ds4 � 12
d 3x

ds3 � 8
d 2x

ds2 � 0

d 5u

dr5 � 5
d 4u

dr4 � 2
d 3u

dr3 � 10
d 2u

dr2 �
du

dr
� 5u � 0

d 4y

dx4 � 7
d 2y

dx2 � 18y � 0

16
d 4y

dx4 � 24
d 2y

dx2 � 9y � 0

d 3x

dt3 �
d 2x

dt2 � 4x � 0



31.

32. 4y	 � 4y� � 3y � 0, y(0) � 1, y�(0) � 5

33. y	 � y� � 2y � 0, y(0) � y�(0) � 0

34. y	 � 2y� � y � 0, y(0) � 5, y�(0) � 10

35. y� � 12y	 � 36y� � 0, y(0) � 0, y�(0) � 1, y	(0) � �7

36. y� � 2y	 � 5y� � 6y � 0, y(0) � y�(0) � 0, y	(0) � 1

In Problems 37–40 solve the given boundary-value problem.

37. y	 � 10y� � 25y � 0, y(0) � 1, y(1) � 0

38. y	 � 4y � 0, y(0) � 0, y(p) � 0

39.

40. y	 � 2y� � 2y � 0, y(0) � 1, y(p) � 1

In Problems 41 and 42 solve the given problem first using
the form of the general solution given in (10). Solve again,
this time using the form given in (11).

41. y	 � 3y � 0, y(0) � 1, y�(0) � 5

42. y	 � y � 0, y(0) � 1, y�(1) � 0

In Problems 43–48 each figure represents the graph of a
particular solution of one of the following differential
equations:

(a) y	 � 3y� � 4y � 0 (b) y	 � 4y � 0

(c) y	 � 2y� � y � 0 (d) y	 � y � 0

(e) y	 � 2y� � 2y � 0 (f) y 	 � 3y� � 2y � 0

Match a solution curve with one of the differential equa-
tions. Explain your reasoning.

y	 � y � 0, y�(0) � 0, y���

2� � 0

d 2y

dt2 � 4
dy

dt
� 5y � 0, y(1) � 0, y�(1) � 2
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Discussion Problems

49. The roots of a cubic auxiliary equation are m1 � 4 and
m2 � m3 � �5. What is the corresponding homogeneous
linear differential equation? Discuss: Is your answer
unique?

50. Two roots of a cubic auxiliary equation with real coef-
ficients are and m2 � 3 � i. What is the corre-
sponding homogeneous linear differential equation?

m1 � �1
2

x

y

x

y

FIGURE 4.3.2 Graph for Problem 43

FIGURE 4.3.3 Graph for Problem 44

43.

44.

x

y

FIGURE 4.3.4 Graph for Problem 45

45.

x

y

FIGURE 4.3.5 Graph for Problem 46

46.

π x

y

π x

y

FIGURE 4.3.6 Graph for Problem 47

FIGURE 4.3.7 Graph for Problem 48

47.

48.



51. Find the general solution of y� � 6y	 � y� � 34y � 0
if it is known that y1 � e�4x cos x is one solution.

52. To solve y(4) � y � 0, we must find the roots of
m4 � 1 � 0. This is a trivial problem using a CAS
but can also be done by hand working with complex
numbers. Observe that m4 � 1 � (m2 � 1)2 � 2m2.
How does this help? Solve the differential equation.

53. Verify that is a particular
solution of y(4) � y � 0. Reconcile this particular solu-
tion with the general solution of the DE.

54. Consider the boundary-value problem y	 � ly � 0,
y(0) � 0, y(p�2) � 0. Discuss: Is it possible to
determine values of l so that the problem possesses
(a) trivial solutions? (b) nontrivial solutions?

Computer Lab Assignments

In Problems 55–58 use a computer either as an aid in
solving the auxiliary equation or as a means of directly
obtaining the general solution of the given differential

y � sinh x � 2 cos (x � p>6)
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equation. If you use a CAS to obtain the general solution,
simplify the output and, if necessary, write the solution in
terms of real functions.

55. y� � 6y	 � 2y� � y � 0

56. 6.11y� � 8.59y	 � 7.93y� � 0.778y � 0

57. 3.15y(4) � 5.34y	 � 6.33y� � 2.03y � 0

58. y(4) � 2y	 � y� � 2y � 0

In Problems 59 and 60 use a CAS as an aid in solving
the auxiliary equation. Form the general solution of the dif-
ferential equation. Then use a CAS as an aid in solving the
system of equations for the coefficients ci, i � 1, 2, 3, 4 that
results when the initial conditions are applied to the general
solution.

59. 2y(4) � 3y� � 16y	 � 15y� � 4y � 0,
y(0) � �2, y�(0) � 6, y	(0) � 3, y�(0) �

60. y(4) � 3y� � 3y	 � y� � 0,
y(0) � y�(0) � 0, y	(0) � y�(0) � 1

1
2

UNDETERMINED COEFFICIENTS—SUPERPOSITION

APPROACH*

REVIEW MATERIAL
● Review Theorems 4.1.6 and 4.1.7 (Section 4.1)

INTRODUCTION To solve a nonhomogeneous linear differential equation

(1)

we must do two things: 

• find the complementary function yc and
• find any particular solution yp of the nonhomogeneous equation (1). 

Then, as was discussed in Section 4.1, the general solution of (1) is y � yc � yp. The complemen-
tary function yc is the general solution of the associated homogeneous DE of (1), that is,

.

In Section 4.3 we saw how to solve these kinds of equations when the coefficients were constants.
Our goal in the present section is to develop a method for obtaining particular solutions.

an y(n) � an�1 y(n�1) �    � a1 y� � a0 y � 0

an y (n) � an�1 y (n�1) �    � a1 y� � a0y � g(x),

4.4

*Note to the Instructor: In this section the method of undetermined coefficients is developed from the
viewpoint of the superposition principle for nonhomogeneous equations (Theorem 4.7.1). In Section 4.5
an entirely different approach will be presented, one utilizing the concept of differential annihilator
operators. Take your pick.



METHOD OF UNDETERMINED COEFFICIENTS The first of two ways we
shall consider for obtaining a particular solution yp for a nonhomogeneous linear DE
is called the method of undetermined coefficients. The underlying idea behind
this method is a conjecture about the form of yp, an educated guess really, that is
motivated by the kinds of functions that make up the input function g(x). The general
method is limited to linear DEs such as (1) where

• the coefficients ai, i � 0, 1, . . . , n are constants and
• g(x) is a constant k, a polynomial function, an exponential function eax,

a sine or cosine function sin bx or cos bx, or finite sums and products
of these functions.

NOTE Strictly speaking, g(x) � k (constant) is a polynomial function. Since a con-
stant function is probably not the first thing that comes to mind when you think of
polynomial functions, for emphasis we shall continue to use the redundancy
“constant functions, polynomials, . . . . ”

The following functions are some examples of the types of inputs g(x) that are
appropriate for this discussion:

That is, g(x) is a linear combination of functions of the type

g(x) � sin 3x � 5x cos 2x, g(x) � xex sin x � (3x2 � 1)e�4x.

g(x) � 10, g(x) � x2 � 5x,    g(x) � 15x � 6 � 8e�x,
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P(x) � an xn � an�1 xn�1 �    � a1x � a0,    P(x) eax,  P(x) eax sin �x,  and  P(x) eax cos �x,

where n is a nonnegative integer and a and b are real numbers. The method of
undetermined coefficients is not applicable to equations of form (1) when

and so on. Differential equations in which the input g(x) is a function of this last kind
will be considered in Section 4.6.

The set of functions that consists of constants, polynomials, exponentials
eax, sines, and cosines has the remarkable property that derivatives of their sums
and products are again sums and products of constants, polynomials, exponen-
tials eax, sines, and cosines. Because the linear combination of derivatives 

must be identical to g(x), it seems
reasonable to assume that yp has the same form as g(x).

The next two examples illustrate the basic method.

EXAMPLE 1 General Solution Using Undetermined Coefficients

Solve (2)

SOLUTION Step 1. We first solve the associated homogeneous equation
y	 � 4y� � 2y � 0. From the quadratic formula we find that the roots of the auxil-
iary equation m2 � 4m � 2 � 0 are and . Hence
the complementary function is

Step 2. Now, because the function g(x) is a quadratic polynomial, let us assume a
particular solution that is also in the form of a quadratic polynomial:

yp � Ax2 � Bx � C.

yc � c1e�(2�16)x � c2e(�2�16)x.

m2 � �2 � 16m1 � �2 � 16

y	 � 4y� � 2y � 2x2 � 3x � 6.

an y(n)
p � an�1 yp

(n�1) �    � a1 yp� � a0 yp

g(x) � ln x, g(x) �
1

x
, g(x) � tan x, g(x) � sin�1x,



We seek to determine specific coefficients A, B, and C for which yp is a solution
of (2). Substituting yp and the derivatives

into the given differential equation (2), we get

Because the last equation is supposed to be an identity, the coefficients of like powers
of x must be equal:

That is,

Solving this system of equations leads to the values A � �1, , and C � �9.
Thus a particular solution is

Step 3. The general solution of the given equation is

EXAMPLE 2 Particular Solution Using Undetermined Coefficients

Find a particular solution of y	 � y� � y � 2 sin 3x.

SOLUTION A natural first guess for a particular solution would be A sin 3x. But
because successive differentiations of sin 3x produce sin 3x and cos 3x, we are
prompted instead to assume a particular solution that includes both of these terms:

Differentiating yp and substituting the results into the differential equation gives,
after regrouping,

or

From the resulting system of equations,

we get  and . A particular solution of the equation is

As we mentioned, the form that we assume for the particular solution yp is an
educated guess; it is not a blind guess. This educated guess must take into consider-
ation not only the types of functions that make up g(x) but also, as we shall see in
Example 4, the functions that make up the complementary function yc.

yp �
6

73
 cos 3x �

16

73
 sin 3x.

B � �16
73A � 6

73

�8A � 3B � 0,    3A � 8B � 2,

equal

�8A � 3B cos 3x � 3A � 8B sin 3x � 0 cos 3x � 2 sin 3x.

y 	p � y�p � yp � (�8A � 3B) cos 3x � (3A � 8B) sin 3x � 2 sin 3x

yp � A cos 3x � B sin 3x.

y � yc � yp � c1e�(2�16)x � c1e(�2�16)x � x2 �
5

2
x � 9.

yp � �x2 �
5

2
x � 9.

B � �5
2

�2A � 2,    8A � 2B � �3,    2A � 4B � 2C � 6.

equal

�2A x2 � 8A � 2B x � 2A � 4B � 2C � 2x2 � 3x � 6

y	p � 4y�p � 2yp � 2A � 8Ax � 4B � 2Ax2 � 2Bx � 2C � 2x2 � 3x � 6.

y�p � 2Ax � B    and    y	p � 2A
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EXAMPLE 3 Forming yp by Superposition

Solve (3)

SOLUTION Step 1. First, the solution of the associated homogeneous equation 
y	 � 2y� � 3y � 0 is found to be yc � c1e�x � c2e3x.

Step 2. Next, the presence of 4x � 5 in g(x) suggests that the particular solution
includes a linear polynomial. Furthermore, because the derivative of the product xe2x

produces 2xe2x and e2x, we also assume that the particular solution includes both
xe2x and e2x. In other words, g is the sum of two basic kinds of functions:

Correspondingly, the superposition principle for nonhomogeneous equations
(Theorem 4.1.7) suggests that we seek a particular solution

where . Substituting

into the given equation (3) and grouping like terms gives

yp � Ax � B � Cxe2x � Ee2x

yp1
� Ax � B and yp2

� Cxe2x � Ee2x

yp � yp1
� yp2

,

g(x) � g1(x) � g2(x) � polynomial � exponentials.

y	 � 2y� � 3y � 4x � 5 � 6xe2x.
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(4)y	p � 2y�p � 3yp � �3Ax � 2A � 3B � 3Cxe2x � (2C � 3E )e2x � 4x � 5 � 6xe2x.

From this identity we obtain the four equations

The last equation in this system results from the interpretation that the coefficient of
e2x in the right member of (4) is zero. Solving, we find , , C � �2, and

. Consequently,

Step 3. The general solution of the equation is

In light of the superposition principle (Theorem 4.1.7) we can also approach
Example 3 from the viewpoint of solving two simpler problems. You should verify
that substituting

and

yields, in turn, . A particular solution of (3)
is then .

The next example illustrates that sometimes the “obvious” assumption for the
form of yp is not a correct assumption.

EXAMPLE 4 A Glitch in the Method

Find a particular solution of y	 � 5y� � 4y � 8ex.

SOLUTION Differentiation of ex produces no new functions. Therefore proceeding
as we did in the earlier examples, we can reasonably assume a particular solution of
the form yp � Aex. But substitution of this expression into the differential equation

yp � yp1
� yp2

yp1
� �4

3 x � 23
9  and yp2

� ��2x � 4
3�e2x

yp2
� Cxe2x � Ee2x     into    y	 � 2y� � 3y � 6xe2x

yp1
� Ax � B  into y	 � 2y� � 3y � 4x � 5

y � c1e�x � c2e3x �
4

3
x �

23

9
� �2x �

4

3� e2x.

yp � �
4

3
x �

23

9
� 2xe2x �

4

3
e2x.

E � �4
3

B � 23
9A � �4

3

�3A � 4,    �2A � 3B � �5,    �3C � 6,    2C � 3E � 0.



yields the contradictory statement 0 � 8ex, so we have clearly made the wrong guess
for yp.

The difficulty here is apparent on examining the complementary function
yc � c1ex � c2e4x. Observe that our assumption Aex is already present in yc. This
means that ex is a solution of the associated homogeneous differential equation, and
a constant multiple Aex when substituted into the differential equation necessarily
produces zero.

What then should be the form of yp? Inspired by Case II of Section 4.3, let’s see
whether we can find a particular solution of the form

Substituting and into the differential equation
and simplifying gives

From the last equality we see that the value of A is now determined as A � � .
Therefore a particular solution of the given equation is 

The difference in the procedures used in Examples 1 – 3 and in Example 4
suggests that we consider two cases. The first case reflects the situation in
Examples 1 – 3.

CASE I No function in the assumed particular solution is a solution of the asso-
ciated homogeneous differential equation.

In Table 4.1 we illustrate some specific examples of g(x) in (1) along with the
corresponding form of the particular solution. We are, of course, taking for granted
that no function in the assumed particular solution yp is duplicated by a function in
the complementary function yc.

yp � �8
3 xex.

8
3

y	p � 5y�p � 4yp � �3Aex � 8ex.

y	p � Axex � 2Aexy�p � Axex � Aex

yp � Axex.
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TABLE 4.1 Trial Particular Solutions

g(x) Form of yp

1. 1 (any constant) A
2. 5x � 7 Ax � B
3. 3x2 � 2 Ax2 � Bx � C
4. x3 � x � 1 Ax3 � Bx2 � Cx � E
5. sin 4x A cos 4x � B sin 4x
6. cos 4x A cos 4x � B sin 4x
7. e5x Ae5x

8. (9x � 2)e5x (Ax � B)e5x

9. x2e5x (Ax2 � Bx � C)e5x

10. e3x sin 4x Ae3x cos 4x � Be3x sin 4x
11. 5x2 sin 4x (Ax2 � Bx � C) cos 4x � (Ex2 � Fx � G) sin 4x
12. xe3x cos 4x (Ax � B)e3x cos 4x � (Cx � E)e3x sin 4x

EXAMPLE 5 Forms of Particular Solutions—Case I

Determine the form of a particular solution of

(a) y	 � 8y� � 25y � 5x3e�x � 7e�x (b) y	 � 4y � x cos x

SOLUTION (a) We can write g(x) � (5x3 � 7)e�x. Using entry 9 in Table 4.1 as
a model, we assume a particular solution of the form

Note that there is no duplication between the terms in yp and the terms in the comple-
mentary function yc � e4x(c1 cos 3x � c2 sin 3x).

yp � (Ax3 � Bx2 � Cx � E)e�x.



(b) The function g(x) � x cos x is similar to entry 11 in Table 4.1 except, of course,
that we use a linear rather than a quadratic polynomial and cos x and sin x instead of
cos 4x and sin 4x in the form of yp:

Again observe that there is no duplication of terms between yp and
yc � c1 cos 2x � c2 sin 2x.

If g(x) consists of a sum of, say, m terms of the kind listed in the table, then (as in
Example 3) the assumption for a particular solution yp consists of the sum of the trial
forms corresponding to these terms:

The foregoing sentence can be put another way.

Form Rule for Case I The form of yp is a linear combination of all linearly
independent functions that are generated by repeated differentiations of g(x).

EXAMPLE 6 Forming yp by Superposition—Case I

Determine the form of a particular solution of

SOLUTION

Corresponding to 3x2 we assume

Corresponding to � 5 sin 2x we assume

Corresponding to 7xe6x we assume

The assumption for the particular solution is then

No term in this assumption duplicates a term in yc � c1e2x � c2e7x.

CASE II A function in the assumed particular solution is also a solution of the
associated homogeneous differential equation.

The next example is similar to Example 4.

EXAMPLE 7 Particular Solution—Case II

Find a particular solution of y	 � 2y� � y � ex.

SOLUTION The complementary function is yc � c1ex � c2xex. As in Example 4,
the assumption yp � Aex will fail, since it is apparent from yc that ex is a solution of
the associated homogeneous equation y	 � 2y� � y � 0. Moreover, we will not be
able to find a particular solution of the form yp � Axex, since the term xex is also
duplicated in yc. We next try

Substituting into the given differential equation yields 2Aex � ex, so Thus a
particular solution is yp � 1

2 x2ex.
A � 1

2.

yp � Ax2ex.

yp � yp1
� yp2

� yp3
� Ax2 � Bx � C � E cos 2x � F sin 2x � (Gx � H)e6x.

yp3
� (Gx � H)e6x.

yp2
� E cos 2x � F sin 2x.

yp1
� Ax2 � Bx � C.

y	 � 9y� � 14y � 3x2 � 5 sin 2x � 7xe6x.

yp � yp1
� yp2

�    � ypm
.

yp1
, yp2

, . . . , ypm

yp � (Ax � B) cos x � (Cx � E) sin x.
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Suppose again that g(x) consists of m terms of the kind given in Table 4.1, and
suppose further that the usual assumption for a particular solution is

where the are the trial particular solution forms corresponding to
these terms. Under the circumstances described in Case II, we can make up the
following general rule.

Multiplication Rule for Case II If any contains terms that duplicate terms in
yc, then that must be multiplied by xn, where n is the smallest positive integer
that eliminates that duplication.

EXAMPLE 8 An Initial-Value Problem

Solve y	 � y � 4x � 10 sin x, y(p) � 0, y�(p) � 2.

SOLUTION The solution of the associated homogeneous equation y	 � y � 0
is yc � c1 cos x � c2 sin x. Because g(x) � 4x � 10 sin x is the sum of a linear
polynomial and a sine function, our normal assumption for yp, from entries 2 and 5
of Table 4.1, would be the sum of and :

(5)

But there is an obvious duplication of the terms cos x and sin x in this assumed form
and two terms in the complementary function. This duplication can be eliminated by
simply multiplying by x. Instead of (5) we now use

(6)

Differentiating this expression and substituting the results into the differential
equation gives

and so A � 4, B � 0, �2C � 10, and 2E � 0. The solutions of the system are
immediate: A � 4, B � 0, C � �5, and E � 0. Therefore from (6) we obtain
yp � 4x � 5x cos x. The general solution of the given equation is

We now apply the prescribed initial conditions to the general solution of the
equation. First, y(p) � c1 cos p � c2 sin p � 4p � 5p cos p � 0 yields c1 � 9p,
since cos p � �1 and sin p� 0. Next, from the derivative

and

we find c2 � 7. The solution of the initial-value is then

EXAMPLE 9 Using the Multiplication Rule

Solve y	 � 6y� � 9y � 6x2 � 2 � 12e3x.

SOLUTION The complementary function is yc � c1e3x � c2xe3x. And so, based on
entries 3 and 7 of Table 4.1, the usual assumption for a particular solution would be

yp � Ax2 � Bx � C � Ee3x.

yp1
yp2

y � 9� cos x � 7 sin x � 4x � 5x cos x.

y�(�) � �9� sin � � c2 cos � � 4 � 5� sin � � 5 cos � � 2

y� � �9� sin x � c2 cos x � 4 � 5x sin x � 5 cos x

y � yc � yp � c1 cos x � c2 sin x � 4x � 5x cos x.

y	p � yp � Ax � B � 2C sin x � 2E cos x � 4x � 10 sin x,

yp � Ax � B � Cx cos x � Ex sin x.

yp2

yp � Ax � B � C cos x � E sin x.

yp2
� C cos x � E sin xyp1

� Ax � B

ypi

ypi

ypi
, i � 1, 2, . . . , m

yp � yp1
� yp2

�    � ypm
,
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Inspection of these functions shows that the one term in is duplicated in yc. If
we multiply by x, we note that the term xe3x is still part of yc. But multiplying

by x2 eliminates all duplications. Thus the operative form of a particular
solution is

Differentiating this last form, substituting into the differential equation, and collecting
like terms gives

yp � Ax2 � Bx � C � Ex2e3x.

yp2

yp2

yp2
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y	p � 6y�p � 9yp � 9Ax2 � (�12A � 9B)x � 2A � 6B � 9C � 2Ee3x � 6x2 � 2 � 12e3x.

It follows from this identity that A � , B � , C � , and E � �6. Hence the general

solution y � yc � yp is y � c1e3x � c2xe3x � x2 � x � � 6x2e3x.

EXAMPLE 10 Third-Order DE—Case I

Solve y� � y	 � ex cos x.

SOLUTION From the characteristic equation m3 � m2 � 0 we find m1 � m2 � 0
and m3 � �1. Hence the complementary function of the equation is 
yc � c1 � c2x � c3e�x. With g(x) � ex cos x, we see from entry 10 of Table 4.1 that
we should assume that

Because there are no functions in yp that duplicate functions in the complementary
solution, we proceed in the usual manner. From

we get �2A � 4B � 1 and �4A � 2B � 0. This system gives and ,
so a particular solution is . The general solution of the
equation is

EXAMPLE 11 Fourth-Order DE—Case II

Determine the form of a particular solution of y(4) � y� � 1 � x2e�x.

SOLUTION Comparing yc � c1 � c2x � c3x2 � c4e�x with our normal assumption
for a particular solution

we see that the duplications between yc and yp are eliminated when is multiplied
by x3 and is multiplied by x. Thus the correct assumption for a particular solution
is yp � Ax3 � Bx3e�x � Cx2e�x � Exe�x.

yp2

yp1

yp � A � Bx2e�x � Cxe�x � Ee�x,

yp1
yp2

y � yc � yp � c1 � c2x � c3e�x �
1

10
ex cos x �

1

5
ex sin x.

yp � � 1
10 e

x cos x � 1
5 ex sin x

B � 1
5A � � 1

10

y	�p � y	p � (�2A � 4B)ex cos x � (�4A � 2B)ex sin x � ex cos x

yp � Aex cos x � Bex sin x.

2
3

8
9

2
3

2
3

8
9

2
3



REMARKS

(i) In Problems 27–36 in Exercises 4.4 you are asked to solve initial-value
problems, and in Problems 37–40 you are asked to solve boundary-value
problems. As illustrated in Example 8, be sure to apply the initial conditions or
the boundary conditions to the general solution y � yc � yp. Students often
make the mistake of applying these conditions only to the complementary
function yc because it is that part of the solution that contains the constants
c1, c2, . . . , cn.

(ii) From the “Form Rule for Case I” on page 145 of this section you see why
the method of undetermined coefficients is not well suited to nonhomogeneous
linear DEs when the input function g(x) is something other than one of the four
basic types highlighted in color on page 141. For example, if P(x) is a polyno-
mial, then continued differentiation of P(x)eax sin bx will generate an indepen-
dent set containing only a finite number of functions—all of the same type,
namely, a polynomial times eax sin bx or a polynomial times eax cos bx. On
the other hand, repeated differentiation of input functions such as g(x) � ln x
or g(x) � tan�1x generates an independent set containing an infinite number of
functions:

derivatives of  tan�1x:  1

1 � x2
, �2x

(1 � x2)2
, �2 � 6x2

(1 � x2)3
, . . . .

derivatives of  ln x:  1

x
, �1

x2
, 2

x3
, . . . ,
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EXERCISES 4.4 Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–26 solve the given differential equation by
undetermined coefficients.

1. y	 � 3y� � 2y � 6

2. 4y	 � 9y � 15

3. y	 � 10y� � 25y � 30x � 3

4. y	 � y� � 6y � 2x

5. y	 � y� � y � x2 � 2x

6. y	 � 8y� � 20y � 100x2 � 26xex

7. y	 � 3y � �48x2e3x

8. 4y	 � 4y� � 3y � cos 2x

9. y	 � y� � �3

10. y	 � 2y� � 2x � 5 � e�2x

11.

12. y	 � 16y � 2e4x

13. y	 � 4y � 3 sin 2x

14. y	 � 4y � (x2 � 3) sin 2x

15. y	 � y � 2x sin x

y	 � y� �
1

4
y � 3 � ex/2

1

4

16. y	 � 5y� � 2x3 � 4x2 � x � 6

17. y	 � 2y� � 5y � ex cos 2x

18. y	 � 2y� � 2y � e2x(cos x � 3 sin x)

19. y	 � 2y� � y � sin x � 3 cos 2x

20. y	 � 2y� � 24y � 16 � (x � 2)e4x

21. y� � 6y	 � 3 � cos x

22. y� � 2y	 � 4y� � 8y � 6xe2x

23. y� � 3y	 � 3y� � y � x � 4ex

24. y� � y	 � 4y� � 4y � 5 � ex � e2x

25. y(4) � 2y	 � y � (x � 1)2

26. y(4) � y	 � 4x � 2xe�x

In Problems 27–36 solve the given initial-value problem.

27. y	 � 4y � �2,

28. 2y	 � 3y� � 2y � 14x2 � 4x � 11, y(0) � 0, y�(0) � 0

29. 5y	 � y� � �6x, y(0) � 0, y�(0) � �10

30. y	 � 4y� � 4y � (3 � x)e�2x, y(0) � 2, y�(0) � 5

31. y	 � 4y� � 5y � 35e�4x, y(0) � �3, y�(0) � 1

y��

8� �
1

2
, y���

8� � 2



32. y	 � y � cosh x, y(0) � 2, y�(0) � 12

33. , x(0) � 0, x�(0) � 0

34. , x(0) � 0, x�(0) � 0

35. y� � 2y	 � y� � 2 � 24ex � 40e5x,

36. y� � 8y � 2x � 5 � 8e�2x, y(0) � �5, y�(0) � 3,
y	(0) � �4

In Problems 37–40 solve the given boundary-value problem.

37. y	 � y � x2 � 1, y(0) � 5, y(1) � 0

38. y	 � 2y� � 2y � 2x � 2, y(0) � 0, y(p) � p

39. y	 � 3y � 6x, y(0) � 0, y(1) � y�(1) � 0

40. y	 � 3y � 6x, y(0) � y�(0) � 0, y(1) � 0

In Problems 41 and 42 solve the given initial-value problem
in which the input function g(x) is discontinuous. [Hint:
Solve each problem on two intervals, and then find a solution
so that y and y� are continuous at x � p�2 (Problem 41) and
at x � p (Problem 42).]

41. y	 � 4y � g(x), y(0) � 1, y�(0) � 2, where

42. y	 � 2y� � 10y � g(x), y(0) � 0, y�(0) � 0, where

Discussion Problems

43. Consider the differential equation ay	 � by� � cy � ekx,
where a, b, c, and k are constants. The auxiliary
equation of the associated homogeneous equation is
am2 � bm � c � 0.

(a) If k is not a root of the auxiliary equation, show
that we can find a particular solution of the form
yp � Aekx, where A � 1�(ak2 � bk � c).

(b) If k is a root of the auxiliary equation of multiplicity
one, show that we can find a particular solution of
the form yp � Axekx, where A � 1�(2ak � b).
Explain how we know that k � �b�(2a).

(c) If k is a root of the auxiliary equation of multiplicity
two, show that we can find a particular solution of the
form y � Ax2ekx, where A � 1�(2a).

44. Discuss how the method of this section can be used
to find a particular solution of y	 � y � sin x cos 2x.
Carry out your idea.

g(x) � �20, 0 � x � �

0, x � �

g(x) � �sin x, 0 � x � �>2
0,  x � �>2

y	(0) � �9
2y�(0) � 5

2,
y(0) � 1

2,

d 2x

dt 2 � �2x � F0 cos �t

d 2x

dt2 � �2x � F0 sin �t
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45. Without solving, match a solution curve of y	 � y � f (x)
shown in the figure with one of the following functions:

(i) f (x) � 1, (ii) f (x) � e�x,
(iii) f (x) � ex, (iv) f (x) � sin 2x,
(v) f (x) � ex sin x, (vi) f (x) � sin x.

Briefly discuss your reasoning.

x

y

FIGURE 4.4.1 Solution curve

FIGURE 4.4.3 Solution curve

FIGURE 4.4.4 Solution curve

FIGURE 4.4.2 Solution curve

x

y

x

y

x

y

(a)

(b)

(c)

(d)

Computer Lab Assignments

In Problems 46 and 47 find a particular solution of the given
differential equation. Use a CAS as an aid in carrying out
differentiations, simplifications, and algebra.

46. y	 � 4y� � 8y � (2x2 � 3x)e2x cos 2x
� (10x2 � x � 1)e2x sin 2x

47. y(4) � 2y	 � y � 2 cos x � 3x sin x



FACTORING OPERATORS When the coefficients ai, i � 0, 1, . . . , n are real
constants, a linear differential operator (1) can be factored whenever the characteris-
tic polynomial anmn � an�1mn�1 �    � a1m � a0 factors. In other words, if r1 is
a root of the auxiliary equation

then L � (D � r1) P(D), where the polynomial expression P(D) is a linear differential
operator of order n � 1. For example, if we treat D as an algebraic quantity, then the
operator D2 � 5D � 6 can be factored as (D � 2)(D � 3) or as (D � 3)(D � 2). Thus
if a function y � f (x) possesses a second derivative, then

This illustrates a general property:

Factors of a linear differential operator with constant coefficients commute.

A differential equation such as y	 � 4y� � 4y � 0 can be written as

(D2 � 4D � 4)y � 0 or (D � 2)(D � 2)y � 0 or (D � 2)2y � 0.

ANNIHILATOR OPERATOR If L is a linear differential operator with constant
coefficients and f is a sufficiently differentiable function such that

then L is said to be an annihilator of the function. For example, a constant function
y � k is annihilated by D, since Dk � 0. The function y � x is annihilated by the
differential operator D2 since the first and second derivatives of x are 1 and 0,
respectively. Similarly, D3x2 � 0, and so on.

The differential operator Dn annihilates each of the functions

1, x, x2, . . . , xn�1. (3)

L( f (x)) � 0,

(D2 � 5D � 6)y � (D � 2)(D � 3)y � (D � 3)(D � 2)y.

anmn � an�1mn�1 �    � a1m � a0 � 0,
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UNDETERMINED COEFFICIENTS—ANNIHILATOR APPROACH

REVIEW MATERIAL
● Review Theorems 4.1.6 and 4.1.7 (Section 4.1)

INTRODUCTION We saw in Section 4.1 that an nth-order differential equation can be written

(1)

where Dky � dky�dxk, k � 0, 1, . . . , n. When it suits our purpose, (1) is also written as L(y) � g(x),
where L denotes the linear nth-order differential, or polynomial, operator

(2)

Not only is the operator notation a helpful shorthand, but also on a very practical level the
application of differential operators enables us to justify the somewhat mind-numbing rules for
determining the form of particular solution yp that were presented in the preceding section. In this
section there are no special rules; the form of yp follows almost automatically once we have found
an appropriate linear differential operator that annihilates g(x) in (1). Before investigating how this
is done, we need to examine two concepts.

anDn � an�1D
n�1 �    � a1D � a0.

anDny � an�1Dn�1y �    � a1Dy � a0y � g(x),

4.5



As an immediate consequence of (3) and the fact that differentiation can be done
term by term, a polynomial

(4)

can be annihilated by finding an operator that annihilates the highest power of x.
The functions that are annihilated by a linear nth-order differential operator L

are simply those functions that can be obtained from the general solution of the
homogeneous differential equation L(y) � 0.

The differential operator (D � a)n annihilates each of the functions

eax, xeax, x2eax, . . . , xn�1eax. (5)

To see this, note that the auxiliary equation of the homogeneous equation
(D � a)ny � 0 is (m � a)n � 0. Since a is a root of multiplicity n, the general
solution is

(6)

EXAMPLE 1 Annihilator Operators

Find a differential operator that annihilates the given function.

(a) 1 � 5x2 � 8x3 (b) e�3x (c) 4e2x � 10xe2x

SOLUTION (a) From (3) we know that D4x3 � 0, so it follows from (4) that

(b) From (5), with a� �3 and n � 1, we see that

(c) From (5) and (6), with a� 2 and n � 2, we have

When a and b, b � 0 are real numbers, the quadratic formula reveals that
[m2 � 2am � (a2 � b2)]n � 0 has complex roots a � ib, a � ib, both of multi-
plicity n. From the discussion at the end of Section 4.3 we have the next result.

The differential operator [D2 � 2aD � (a2 � b2)]n annihilates each of the
functions

(7)

EXAMPLE 2 Annihilator Operator

Find a differential operator that annihilates 5e�x cos 2x � 9e�x sin 2x.

SOLUTION Inspection of the functions e�x cos 2x and e�x sin 2x shows that
a � �1 and b � 2. Hence from (7) we conclude that D2 � 2D � 5 will annihilate
each function. Since D2 � 2D � 5 is a linear operator, it will annihilate any linear
combination of these functions such as 5e�x cos 2x � 9e�x sin 2x.

e�x cos �x, xe�x cos �x, x2e�x cos �x, . . . , xn�1e�x cos �x,

e�x sin �x, xe�x sin �x, x2e�x sin �x, . . . , xn�1e�x sin �x.

(D � 2)2(4e2x � 10xe2x) � 0.

(D � 3)e�3x � 0.

D4(1 � 5x2 � 8x3) � 0.

y � c1e
ax � c2xeax �    � cnxn�1eax.

c0 � c1x � c2x2 �    � cn�1x
n�1
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When a � 0 and n � 1, a special case of (7) is

(8)

For example, D2 � 16 will annihilate any linear combination of sin 4x and cos 4x.
We are often interested in annihilating the sum of two or more functions. As we

have just seen in Examples 1 and 2, if L is a linear differential operator such
that L(y1) � 0 and L(y2) � 0, then L will annihilate the linear combination
c1y1(x) � c2y2(x). This is a direct consequence of Theorem 4.1.2. Let us now suppose
that L1 and L2 are linear differential operators with constant coefficients such that L1

annihilates y1(x) and L2 annihilates y2(x), but L1(y2) � 0 and L2(y1) � 0. Then the
product of differential operators L1L2 annihilates the sum c1y1(x) � c2y2(x). We can
easily demonstrate this, using linearity and the fact that L1L2 � L2L1:

For example, we know from (3) that D2 annihilates 7 � x and from (8) that 
D2 � 16 annihilates sin 4x. Therefore the product of operators D2(D2 � 16) will
annihilate the linear combination 7 � x � 6 sin 4x.

NOTE The differential operator that annihilates a function is not unique. We saw
in part (b) of Example 1 that D � 3 will annihilate e�3x, but so will differential
operators of higher order as long as D � 3 is one of the factors of the operator. For
example, (D � 3)(D � 1), (D � 3)2, and D3(D � 3) all annihilate e�3x. (Verify this.)
As a matter of course, when we seek a differential annihilator for a function y � f (x),
we want the operator of lowest possible order that does the job.

UNDETERMINED COEFFICIENTS This brings us to the point of the preceding
discussion. Suppose that L(y) � g(x) is a linear differential equation with constant
coefficients and that the input g(x) consists of finite sums and products of the func-
tions listed in (3), (5), and (7)—that is, g(x) is a linear combination of functions of
the form

where m is a nonnegative integer and a and b are real numbers. We now know
that such a function g(x) can be annihilated by a differential operator L1 of
lowest order, consisting of a product of the operators Dn, (D � a)n, and 
(D2 � 2aD � a2 � b2)n. Applying L1 to both sides of the equation L(y) � g(x)
yields L1L(y) � L1(g(x)) � 0. By solving the homogeneous higher-order equation
L1L(y) � 0, we can discover the form of a particular solution yp for the original
nonhomogeneous equation L( y) � g(x). We then substitute this assumed form into
L(y) � g(x) to find an explicit particular solution. This procedure for determining
yp, called the method of undetermined coefficients, is illustrated in the next
several examples.

Before proceeding, recall that the general solution of a nonhomogeneous
linear differential equation L(y) � g(x) is y � yc � yp, where yc is the comple-
mentary function —that is, the general solution of the associated homogeneous
equation L(y) � 0. The general solution of each equation L(y) � g(x) is defined
on the interval (�
, 
).

k (constant), xm, xme�x, xme�x cos �x, and xme�x sin �x,

L1L2(y1 � y2) � L1L2(y1) � L1L2(y2)

� L2L1(y1) � L1L2(y2)

� L2[L1(y1)] � L1[L2(y2)] � 0.

zero zero

(D2 � �2) �cos �x

sin �x
� 0.
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EXAMPLE 3 General Solution Using Undetermined Coefficients

Solve (9)

SOLUTION Step 1. First, we solve the homogeneous equation y	 � 3y� � 2y � 0.
Then, from the auxiliary equation m2 � 3m � 2 � (m � 1)(m � 2) � 0 we find
m1 � �1 and m2 � �2, and so the complementary function is

yc � c1e�x � c2e�2x.

Step 2. Now, since 4x2 is annihilated by the differential operator D3, we see that
D3(D2 � 3D � 2)y � 4D3x2 is the same as

D3(D2 � 3D � 2)y � 0. (10)

The auxiliary equation of the fifth-order equation in (10),

m3(m2 � 3m � 2) � 0 or m3(m � 1)(m � 2) � 0,

has roots m1 � m2 � m3 � 0, m4 � �1, and m5 � �2. Thus its general solution
must be

y � c1 � c2x � c3x2 � . (11)

The terms in the shaded box in (11) constitute the complementary function of the
original equation (9). We can then argue that a particular solution yp of (9) should
also satisfy equation (10). This means that the terms remaining in (11) must be the
basic form of yp:

(12)

where, for convenience, we have replaced c1, c2, and c3 by A, B, and C, respectively.
For (12) to be a particular solution of (9), it is necessary to find specific coefficients
A, B, and C. Differentiating (12), we have

and substitution into (9) then gives

Because the last equation is supposed to be an identity, the coefficients of like powers
of x must be equal:

That is (13)

Solving the equations in (13) gives A � 7, B � �6, and C � 2. Thus
yp � 7 � 6x � 2x2.

Step 3. The general solution of the equation in (9) is y � yc � yp or

y � c1e
�x � c2e

�2x � 7 � 6x � 2x2.

2C � 4,    2B � 6C � 0,    2A � 3B � 2C � 0.

equal

2C x2 � 2B � 6C x � 2A � 3B � 2C � 4x2 � 0x � 0.

y	p � 3y�p � 2yp � 2C � 3B � 6Cx � 2A � 2Bx � 2Cx2 � 4x2.

y�p � B � 2Cx,    y	p � 2C,

yp � A � Bx � Cx2,

c4e�x � c5e�2x

y	 � 3y� � 2y � 4x2.
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EXAMPLE 4 General Solution Using Undetermined Coefficients

Solve (14)

SOLUTION Step 1. The auxiliary equation for the associated homogeneous equa-
tion y	 � 3y� � 0 is m2 � 3m � m(m � 3) � 0, so yc � c1 � c2e3x.

Step 2. Now, since (D � 3)e3x � 0 and (D2 � 1) sin x � 0, we apply the differen-
tial operator (D � 3)(D2 � 1) to both sides of (14):

(15)

The auxiliary equation of (15) is

Thus y �

After excluding the linear combination of terms in the box that corresponds to yc, we
arrive at the form of yp:

Substituting yp in (14) and simplifying yield

Equating coefficients gives 3A � 8, �B � 3C � 0, and 3B � C � 4. We find ,
, and , and consequently,

Step 3. The general solution of (14) is then

EXAMPLE 5 General Solution Using Undetermined Coefficients

Solve (16)

SOLUTION The complementary function is yc � c1 cos x � c2 sin x. Now by com-
paring cos x and x cos x with the functions in the first row of (7), we see that a � 0
and n � 1, and so (D2 � 1)2 is an annihilator for the right-hand member of the equa-
tion in (16). Applying this operator to the differential equation gives

Since i and �i are both complex roots of multiplicity 3 of the auxiliary equation of
the last differential equation, we conclude that

y �

We substitute

into (16) and simplify:

� x cos x � cos x.

y	p � yp � 4 Ex cos x � 4 Cx sin x � (2B � 2C ) cos x � (�2A � 2E) sin x

yp � Ax cos x � Bx sin x � Cx2 cos x � Ex2 sin x

� c3x cos x � c4x sin x � c5x2 cos x � c6x2 sin x.c1 cos x � c2 sin x

(D2 � 1)2 (D2 � 1)y � 0    or    (D2 � 1)3y � 0.

y	 � y � x cos x � cos x.

y � c1 � c2e3x �
8

3
xe3x �

6

5
 cos x �

2

5
 sin x.

yp �
8

3
xe3x �

6

5
 cos x �

2

5
 sin x.

C � �2
5B � 6

5

A � 8
3

y	p � 3y�p � 3Ae3x � (�B � 3C) cos x � (3B � C ) sin x � 8e3x � 4 sin x.

yp � Axe3x � B cos x � C sin x.

� c3xe3x � c4 cos x � c5 sin x.c1 � c2e
3x

(m � 3)(m2 � 1)(m2 � 3m) � 0    or    m(m � 3)2(m2 � 1) � 0.

(D � 3)(D2 � 1)(D2 � 3D)y � 0.

y	 � 3y� � 8e3x � 4 sin x.
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Equating coefficients gives the equations 4E � 1, �4C � 0, 2B � 2C � �1, and
�2A � 2E � 0, from which we find , C � 0, and . Hence the
general solution of (16) is

.

EXAMPLE 6 Form of a Particular Solution

Determine the form of a particular solution for

(17)

SOLUTION The complementary function for the given equation is
yc � c1ex � c2xex.

Now from (7), with a � �2, b � 1, and n � 1, we know that

Applying the operator D2 � 4D � 5 to (17) gives

(18)

Since the roots of the auxiliary equation of (18) are �2 � i, �2 � i, 1, and 1, we
see from

y �

that a particular solution of (17) can be found with the form

EXAMPLE 7 Form of a Particular Solution

Determine the form of a particular solution for

(19)

SOLUTION Observe that

Therefore D3(D � 2)3(D � 5) applied to (19) gives

or

The roots of the auxiliary equation for the last differential equation are easily seen to
be 0, 0, 0, 0, 2, 2, 2, 2, 2, and 5. Hence

D4(D � 2)5(D � 5)y � 0.

D3(D � 2)3(D � 5)(D3 � 4D2 � 4D)y � 0

D3(5x2 � 6x) � 0,    (D � 2)3x2e2x � 0,    and    (D � 5)e5x � 0.

y	� � 4y	 � 4y� � 5x2 � 6x � 4x2e2x � 3e5x.

yp � Ae�2x cos x � Be�2x sin x.

� c3e
�2x cos x � c4e

�2x sin xc1e
x � c2xex

(D2 � 4D � 5)(D2 � 2D � 1)y � 0.

(D2 � 4D � 5)e�2x cos x � 0.

y	 � 2y� � y � 10e�2x cos x.

y � c1 cos x � c2 sin x �
1

4
x cos x �

1

2
x sin x �

1

4
x2 sin x

E � 1
4A � 1

4, B � �1
2
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y � c1 � c2x � c3x2 � c4x3 �  c5e2x � c6xe2x � c7x2e2x � c8x3e2x � c9x4e2x � c10e5x. (20)

Because the linear combination corresponds to the complemen-
tary function of (19), the remaining terms in (20) give the form of a particular solu-
tion of the differential equation:

SUMMARY OF THE METHOD For your convenience the method of undeter-
mined coefficients is summarized as follows.

yp � Ax � Bx2 � Cx3 � Ex2e2x � Fx3e2x � Gx4e2x � He5x.

c1 � c5e2x � c6xe2x



UNDETERMINED COEFFICIENTS—ANNIHILATOR APPROACH

The differential equation L(y) � g(x) has constant coefficients, and the
function g(x) consists of finite sums and products of constants, polynomials,
exponential functions eax, sines, and cosines.

(i) Find the complementary solution yc for the homogeneous equation
L(y) � 0.

(ii) Operate on both sides of the nonhomogeneous equation L(y) � g(x)
with a differential operator L1 that annihilates the function g(x).

(iii) Find the general solution of the higher-order homogeneous differential
equation L1L(y) � 0.

(iv) Delete from the solution in step (iii) all those terms that are duplicated
in the complementary solution yc found in step (i). Form a linear
combination yp of the terms that remain. This is the form of a
particular solution of L(y) � g(x).

(v) Substitute yp found in step (iv) into L(y) � g(x). Match coefficients
of the various functions on each side of the equality, and solve the
resulting system of equations for the unknown coefficients in yp.

(vi) With the particular solution found in step (v), form the general
solution y � yc � yp of the given differential equation.

REMARKS

The method of undetermined coefficients is not applicable to linear differential
equations with variable coefficients nor is it applicable to linear equations with
constant coefficients when g(x) is a function such as

and so on. Differential equations in which the input g(x) is a function of this
last kind will be considered in the next section.

g(x) � ln x,    g(x) �
1

x
,    g(x) � tan x,    g(x) � sin�1 x,
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EXERCISES 4.5 Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–10 write the given differential equation in the
form L(y) � g(x), where L is a linear differential operator
with constant coefficients. If possible, factor L.

1. 9y	 � 4y � sin x 2. y 	 � 5y � x2 � 2x

3. y	 � 4y� � 12y � x � 6 4. 2y	 � 3y� � 2y � 1

5. y� � 10y	 � 25y� � ex 6. y� � 4y� � ex cos 2x

7. y� � 2y	 � 13y� � 10y � xe�x

8. y� � 4y	 � 3y� � x2 cos x � 3x

9. y(4) � 8y� � 4

10. y(4) � 8y	 � 16y � (x3 � 2x)e4x

In Problems 11–14 verify that the given differential operator
annihilates the indicated functions.

11. D4; y � 10x3 � 2x 12. 2D � 1; y � 4ex /2

13. (D � 2)(D � 5); y � e2x � 3e�5x

14. D2 � 64; y � 2 cos 8x � 5 sin 8x

In Problems 15–26 find a linear differential operator that
annihilates the given function.

15. 1 � 6x � 2x3 16. x3(1 � 5x)

17. 1 � 7e2x 18. x � 3xe6x

19. cos 2x 20. 1 � sin x

21. 13x � 9x2 � sin 4x 22. 8x � sin x � 10 cos 5x

23. e�x � 2xex � x2ex 24. (2 � ex)2

25. 3 � ex cos 2x 26. e�x sin x � e2x cos x



In Problems 27–34 find linearly independent functions that
are annihilated by the given differential operator.

27. D5 28. D2 � 4D

29. (D � 6)(2D � 3) 30. D2 � 9D � 36

31. D2 � 5 32. D2 � 6D � 10

33. D3 � 10D2 � 25D 34. D2(D � 5)(D � 7)

In Problems 35–64 solve the given differential equation by
undetermined coefficients.

35. y	 � 9y � 54 36. 2y	 � 7y� � 5y � �29

37. y	 � y� � 3 38. y� � 2y	 � y� � 10

39. y	 � 4y� � 4y � 2x � 6

40. y	 � 3y� � 4x � 5

41. y� � y	 � 8x2 42. y 	 � 2y� � y � x3 � 4x

43. y	 � y� � 12y � e4x 44. y	 � 2y� � 2y � 5e6x

45. y	 � 2y� � 3y � 4ex � 9

46. y	 � 6y� � 8y � 3e�2x � 2x

47. y	 � 25y � 6 sin x

48. y	 � 4y � 4 cos x � 3 sin x � 8

49. y	 � 6y� � 9y � �xe4x

50. y	 � 3y� � 10y � x(ex � 1)

51. y	 � y � x2ex � 5

52. y	 � 2y� � y � x2e�x

53. y	 � 2y� � 5y � ex sin x

54. y	 � y� �
1

4
y � ex(sin 3x � cos 3x)
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55. y	 � 25y � 20 sin 5x 56. y	 � y � 4 cos x � sin x

57. y	 � y� � y � x sin x 58. y	 � 4y � cos2x

59. y� � 8y	 � �6x2 � 9x � 2

60. y� � y	 � y� � y � xex � e�x � 7

61. y� � 3y	 � 3y� � y � ex � x � 16

62. 2y� � 3y	 � 3y� � 2y � (ex � e�x)2

63. y(4) � 2y� � y	 � ex � 1

64. y(4) � 4y	 � 5x2 � e2x

In Problems 65–72 solve the given initial-value problem.

65. y	 � 64y � 16, y(0) � 1, y�(0) � 0

66. y	 � y� � x, y(0) � 1, y�(0) � 0

67. y	 � 5y� � x � 2, y(0) � 0, y�(0) � 2

68. y	 � 5y� � 6y � 10e2x, y(0) � 1, y�(0) � 1

69. y	 � y � 8 cos 2x � 4 sin x,

70. y� � 2y	 � y� � xex � 5, y(0) � 2, y�(0) � 2,
y	(0) � �1

71. y	 � 4y� � 8y � x3, y(0) � 2, y�(0) � 4

72. y(4) � y� � x � ex, y(0) � 0, y�(0) � 0, y	(0) � 0,
y�(0) � 0

Discussion Problems

73. Suppose L is a linear differential operator that factors
but has variable coefficients. Do the factors of L com-
mute? Defend your answer.

y��

2�� �1, y���

2�� 0

VARIATION OF PARAMETERS

REVIEW MATERIAL
● Variation of parameters was first introduced in Section 2.3 and used again in Section 4.2.

A review of those sections is recommended. 

INTRODUCTION The procedure that we used to find a particular solution yp of a linear first-order
differential equation on an interval is applicable to linear higher-order DEs as well. To adapt the
method of variation of parameters to a linear second-order differential equation

(1)

we begin by putting the equation into the standard form

(2)

by dividing through by the lead coefficient a2(x). Equation (2) is the second-order analogue of the
standard form of a linear first-order equation: dy�dx � P(x)y � f (x). In (2) we suppose that P(x),
Q(x), and f (x) are continuous on some common interval I. As we have already seen in Section 4.3,
there is no difficulty in obtaining the complementary function yc, the general solution of the asso-
ciated homogeneous equation of (2), when the coefficients are constant.

y	 � P(x)y� � Q(x)y � f (x)

a2(x)y	 � a1(x)y� � a0(x)y � g(x),

4.6



ASSUMPTIONS Corresponding to the assumption yp � u1(x)y1(x) that we used in
Section 2.3 to find a particular solution yp of dy�dx � P(x)y � f (x), for the linear
second-order equation (2) we seek a solution of the form

(3)

where y1 and y2 form a fundamental set of solutions on I of the associated homoge-
neous form of (1). Using the Product Rule to differentiate yp twice, we get

Substituting (3) and the foregoing derivatives into (2) and grouping terms yields

zero zero

y	p � u1y	1 � y�1u�1 � y1u 	1 � u�1y�1 � u2y	2 � y�2u�2 � y2u 	2 � u�2y�2.

y�p � u1y�1 � y1u�1 � u2y�2 � y2u�2

yp � u1(x)y1(x) � u2(x)y2(x),
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(4)�
d

dx
 [y1u�1 � y2u�2] � P[y1u�1 � y2u�2] � y�1u�1 � y�2u�2 � f (x).

�
d

dx
 [y1u�1] �

d

dx
 [y2u�2] � P[y1u�1 � y2u�2] � y�1u�1 � y�2u�2

� y2u 	2 � u�2y�2 � P[y1u�1 � y2u�2] � y�1u�1 � y�2u�2

y	p � P(x)y�p � Q(x)yp � u1[y	1 � Py�1 � Qy1] � u2[y	2 � Py�2 � Qy2] � y1u 	1 � u�1y�1

Because we seek to determine two unknown functions u1 and u2, reason dictates that
we need two equations. We can obtain these equations by making the further assump-
tion that the functions u1 and u2 satisfy This assumption does not
come out of the blue but is prompted by the first two terms in (4), since if we demand
that , then (4) reduces to . We now have our
desired two equations, albeit two equations for determining the derivatives and

By Cramer’s Rule, the solution of the system

can be expressed in terms of determinants:

, (5)

where . (6)

The functions u1 and u2 are found by integrating the results in (5). The determinant
W is recognized as the Wronskian of y1 and y2. By linear independence of y1 and y2

on I, we know that W(y1(x), y2(x)) � 0 for every x in the interval.

SUMMARY OF THE METHOD Usually, it is not a good idea to memorize for-
mulas in lieu of understanding a procedure. However, the foregoing procedure is
too long and complicated to use each time we wish to solve a differential equation.
In this case it is more efficient to simply use the formulas in (5). Thus to solve
a2y	 � a1y� � a0y � g(x), first find the complementary function yc � c1y1 � c2y2

and then compute the Wronskian W( y1(x), y2(x)). By dividing by a2, we put the
equation into the standard form y	 � Py� � Qy � f (x) to determine f (x). We find
u1 and u2 by integrating and , where W1 and W2 are defined
as in (6). A particular solution is yp � u1y1 � u2y2. The general solution of the
equation is then y � yc � yp.

u�2 � W2>Wu�1 � W1>W

W � �y1

y�1

y2

y�2�,    W1 � � 0

f (x)

y2

y�2�,    W2 � �y1

y�1

0

f (x)�

u�1 �
W1

W
� �

y2 f (x)

W
    and    u�2 �

W2

W
�

y1 f (x)

W

y�1u�1 � y�2u�2 � f (x)

y1u�1 � y2u�2 � 0

u�2.
u�1

y�1u�1 � y�2u�2 � f (x)y1u�1 � y2u�2 � 0

y1u�1 � y2u�2 � 0.



EXAMPLE 1 General Solution Using Variation of Parameters

Solve y	 � 4y� � 4y � (x � 1)e2x.

SOLUTION From the auxiliary equation m2 � 4m � 4 � (m � 2)2 � 0 we have
yc � c1e2x � c2xe2x. With the identifications y1 � e2x and y2 � xe2x, we next com-
pute the Wronskian:

Since the given differential equation is already in form (2) (that is, the coefficient of
y	 is 1), we identify f (x) � (x � 1)e2x. From (6) we obtain

W(e2x, xe2x) � � e2x

2e2x

xe2x

2xe2x � e2x� � e4x.
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W1 � �         0(x � 1)e2x

xe2x

2xe2x � e2x � � �(x � 1)xe4x,    W2 � � e2x

2e2x

  0

(x � 1)e2x � � (x � 1)e4x,

and so from (5)

It follows that and . Hence

and

EXAMPLE 2 General Solution Using Variation of Parameters

Solve 4y	 � 36y � csc 3x.

SOLUTION We first put the equation in the standard form (2) by dividing by 4:

Because the roots of the auxiliary equation m2 � 9 � 0 are m1 � 3i and m2 � �3i, the
complementary function is yc � c1 cos 3x � c2 sin 3x. Using y1 � cos 3x, y2 � sin 3x,
and , we obtain

Integrating

gives ln�sin 3x �. Thus a particular solution is

The general solution of the equation is

yp � �
1

12
x cos 3x �

1

36
 (sin 3x) ln� sin 3x �.

u1 � � 1
12 x and u2 � 1

36

u�1 �
W1

W
� �

1

12
    and    u�2 �

W2

W
�

1

12

cos 3x

sin 3x

W1 � � 0
1
4 csc 3x

   sin 3x

3 cos 3x� � �
1

4
,    W2 � �      cos 3x

�3 sin 3x

0
1
4 csc 3x� �

1

4

cos 3x

sin 3x
.

W(cos 3x, sin 3x) � � cos 3x

�3 sin 3x

sin 3x

3 cos 3x� � 3,

f (x) � 1
4 csc 3x

y	 � 9y �
1

4
 csc 3x.

y � yc � yp � c1e
2x � c2xe2x �

1

6
x3e2x �

1

2
x2e2x.

yp � ��
1

3
x3 �

1

2
x2�e2x � �1

2
x2 � x�xe2x �

1

6
x3e2x �

1

2
x2e2x

u2 � 1
2 x2 � xu1 � �1

3 x3 � 1
2 x2

u�1 � �
(x � 1)xe4x

e4x � �x2 � x,    u�2 �
(x � 1)e4x

e4x � x � 1.

(7)y � yc � yp � c1 cos 3x � c2 sin 3x �
1

12
x cos 3x �

1

36
 (sin 3x) ln� sin 3x �.



Equation (7) represents the general solution of the differential equation on, say,
the interval (0, p�6).

CONSTANTS OF INTEGRATION When computing the indefinite integrals of 
and , we need not introduce any constants. This is because

EXAMPLE 3 General Solution Using Variation of Parameters

Solve 

SOLUTION The auxiliary equation m2 � 1 � 0 yields m1 � �1 and m2 � 1.
Therefore yc � c1ex � c2e�x. Now W(ex, e�x) � �2, and

Since the foregoing integrals are nonelementary, we are forced to write

and so (8)

In Example 3 we can integrate on any interval [x0, x] that does not contain the
origin.

HIGHER-ORDER EQUATIONS The method that we have just examined for
nonhomogeneous second-order differential equations can be generalized to linear
nth-order equations that have been put into the standard form

(9)

If yc � c1y1 � c2y2 �    � cnyn is the complementary function for (9), then a
particular solution is

where the , k � 1, 2, . . . , n are determined by the n equations

(10)

y1
(n�1)u�1 � y2

(n�1)u�2 �    � yn
(n�1)u�n � f (x).










y�1u�1 � y�2u�2 �    � y�nu�n � 0

y1u�1 � y2u�2 �    � ynu�n � 0

u�k

yp � u1(x)y1(x) � u2(x)y2(x) �    � un(x)yn(x),

y(n) � Pn�1(x)y(n�1) �    � P1(x)y� � P0(x)y � f (x).

y � yc � yp � c1ex � c2e�x �
1

2
ex �x

x0

e�t

t
dt �

1

2
e�x �x

x0

et

t
dt.

yp �
1

2
ex �x

x0

e�t

t
dt �

1

2
e�x �x

x0

et

t
dt,

u�2 �
ex(1>x)

�2
, u2 � �

1

2
�x

x0

et

t
dt.

u�1 � �
e�x(1>x)

�2
,    u1 �

1

2
�x

x0

e�t

t
dt,

y	 � y �
1

x
.

� C1y1 � C2y2 � u1y1 � u2y2.

� (c1 � a1)y1 � (c2 � b1)y2 � u1y1 � u2y2

y � yc � yp � c1y1 � c2y2 � (u1 � a1)y1 � (u2 � b1)y2

u�2

u�1
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The first n � 1 equations in this system, like in (4), are assumptions
that are made to simplify the resulting equation after yp � u1(x)y1(x) �    �
un(x)yn(x) is substituted in (9). In this case Cramer’s rule gives

where W is the Wronskian of y1, y2, . . . , yn and Wk is the determinant obtained by
replacing the kth column of the Wronskian by the column consisting of the right-
hand side of (10) —that is, the column consisting of (0, 0, . . . , f (x)). When n � 2,
we get (5). When n � 3, the particular solution is yp � u1y1 � u2y2 � u3y3, where
y1, y2, and y3 constitute a linearly independent set of solutions of the associated
homogeneous DE and u1, u2, u3 are determined from

(11)u�1 �
W1

W
,    u�2 �

W2

W
,    u�3 �

W3

W
,

u�k �
Wk

W
, k � 1, 2, . . . , n,

y1u�1 � y2u�2 � 0
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W1 � p 0

0

f (x)

y2

y�2
y	2

y3

y�3
y	3

p ,  W2 � p y1

y�1
y	1

0

0

f (x)

y3

y�3
y	3

p ,  W3 � p y1

y�1
y	1

y2

y�2
y	2

0

0

f (x)
p ,  and  W � p y1

y�1
y	1

y2

y�2
y	2

y3

y�3
y	3

p .
See Problems 25 and 26 in Exercises 4.6.

REMARKS

(i) Variation of parameters has a distinct advantage over the method of
undetermined coefficients in that it will always yield a particular solution yp

provided that the associated homogeneous equation can be solved. The pre-
sent method is not limited to a function f (x) that is a combination of the four
types listed on page 141. As we shall see in the next section, variation of
parameters, unlike undetermined coefficients, is applicable to linear DEs
with variable coefficients.

(ii) In the problems that follow, do not hesitate to simplify the form of yp.
Depending on how the antiderivatives of and are found, you might not
obtain the same yp as given in the answer section. For example, in Problem 3
in Exercises 4.6 both yp � sin x � x cos x and yp � sin x � x cos x
are valid answers. In either case the general solution y � yc � yp simplifies to
y � c1 cos x � c2 sin x � x cos x. Why?1

2

1
2

1
4

1
2

1
2

u�2u�1

EXERCISES 4.6 Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–18 solve each differential equation by varia-
tion of parameters.

1. y	 � y � sec x 2. y	 � y � tan x

3. y	 � y � sin x 4. y	 � y � sec u tan u

5. y	 � y � cos2x 6. y	 � y � sec2x

7. y	 � y � cosh x 8. y	 � y � sinh 2x

9. 10. y	 � 9y �
9x

e3xy	 � 4y �
e2x

x

11.

12.

13. y	 � 3y� � 2y � sin ex

14. y	 � 2y� � y � et arctan t

15. y	 � 2y� � y � e�t ln t 16.

17. 3y	 � 6y� � 6y � ex sec x

18. 4y	 � 4y� � y � ex/211 � x2

2y	 � 2y� � y � 41x

y	 � 2y� � y �
ex

1 � x2

y	 � 3y� � 2y �
1

1 � ex



In Problems 19–22 solve each differential equation by
variation of parameters, subject to the initial conditions
y(0) � 1, y�(0) � 0.

19. 4y	 � y � xex/2

20. 2y	 � y� � y � x � 1

21. y	 � 2y� � 8y � 2e�2x � e�x

22. y	 � 4y� � 4y � (12x2 � 6x)e2x

In Problems 23 and 24 the indicated functions are known lin-
early independent solutions of the associated homogeneous
differential equation on (0, 
). Find the general solution of
the given nonhomogeneous equation.

23. ;

y1 � x�1/2 cos x, y2 � x�1/2 sin x

24. x2y	 � xy� � y � sec(ln x);

y1 � cos(ln x), y2 � sin(ln x)

In Problems 25 and 26 solve the given third-order differen-
tial equation by variation of parameters.

25. y� � y� � tan x 26. y� � 4y� � sec 2x

Discussion Problems

In Problems 27 and 28 discuss how the methods of unde-
termined coefficients and variation of parameters can be
combined to solve the given differential equation. Carry out
your ideas.

27. 3y	 � 6y� � 30y � 15 sin x � ex tan 3x

28. y	 � 2y� � y � 4x2 � 3 � x�1ex

29. What are the intervals of definition of the general solu-
tions in Problems 1, 7, 9, and 18? Discuss why the inter-
val of definition of the general solution in Problem 24 is
not (0, 
).

x2y	 � xy� � (x2 � 1
4)y � x3/2
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30. Find the general solution of x4y	 � x3y� � 4x2y � 1
given that y1 � x2 is a solution of the associated homo-
geneous equation.

31. Suppose yp(x) � u1(x)y1(x) � u2(x)y2(x), where u1 and
u2 are defined by (5) is a particular solution of (2) on an
interval I for which P, Q, and f are continuous. Show
that yp can be written as

(12)

where x and x0 are in I,

(13)

and W(t) � W(y1(t), y2(t)) is the Wronskian. The func-
tion G(x, t) in (13) is called the Green’s function for the
differential equation (2).

32. Use (13) to construct the Green’s function for the differ-
ential equation in Example 3. Express the general solu-
tion given in (8) in terms of the particular solution (12).

33. Verify that (12) is a solution of the initial-value problem

on the interval I. [Hint: Look up Leibniz’s Rule for
differentiation under an integral sign.]

34. Use the results of Problems 31 and 33 and the Green’s
function found in Problem 32 to find a solution of the
initial-value problem

using (12). Evaluate the integral.

y	 � y � e2x,  y(0) � 0,  y�(0) � 0

d 2y

dx2 � P
dy

dx
� Qy � f(x),  y(x0) � 0,  y�(x0) � 0.

G(x, t) �
y1(t)y2(x) � y1(x)y2(t)

W(t)
,

yp(x) � �x

x0

G(x, t) f(t) dt,

CAUCHY-EULER EQUATION

REVIEW MATERIAL
● Review the concept of the auxiliary equation in Section 4.3.

INTRODUCTION The same relative ease with which we were able to find explicit solutions of
higher-order linear differential equations with constant coefficients in the preceding sections does
not, in general, carry over to linear equations with variable coefficients. We shall see in Chapter 6
that when a linear DE has variable coefficients, the best that we can usually expect is to find a
solution in the form of an infinite series. However, the type of differential equation that we consider
in this section is an exception to this rule; it is a linear equation with variable coefficients whose
general solution can always be expressed in terms of powers of x, sines, cosines, and logarithmic
functions. Moreover, its method of solution is quite similar to that for constant-coefficient equations
in that an auxiliary equation must be solved.

4.7



CAUCHY-EULER EQUATION A linear differential equation of the form

where the coefficients an, an�1, . . . , a0 are constants, is known as a Cauchy-Euler
equation. The observable characteristic of this type of equation is that the degree
k � n, n � 1, . . . , 1, 0 of the monomial coefficients xk matches the order k of
differentiation dky�dxk:

As in Section 4.3, we start the discussion with a detailed examination of the
forms of the general solutions of the homogeneous second-order equation

.

The solution of higher-order equations follows analogously. Also, we can solve the
nonhomogeneous equation ax2y	 � bxy� � cy � g(x) by variation of parameters,
once we have determined the complementary function yc.

NOTE The coefficient ax2 of y	 is zero at x � 0. Hence to guarantee that the
fundamental results of Theorem 4.1.1 are applicable to the Cauchy-Euler equation,
we confine our attention to finding the general solutions defined on the interval
(0, 
). Solutions on the interval (�
, 0) can be obtained by substituting t � �x into
the differential equation. See Problems 37 and 38 in Exercises 4.7.

METHOD OF SOLUTION We try a solution of the form y � xm, where m is to be
determined. Analogous to what happened when we substituted emx into a linear equa-
tion with constant coefficients, when we substitute xm, each term of a Cauchy-Euler
equation becomes a polynomial in m times xm, since

ax2 d 2y

dx2 � bx
dy

dx
� cy � 0

anxn � an�1xn�1 � . . . .
dny
––––
dxn

dn�1y
––––––
dxn�1

same same

anxn dny

dxn � an�1xn�1 dn�1y

dxn�1 �    � a1x
dy

dx
� a0y � g(x),
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akxk dky

dxk � akxkm(m � 1)(m � 2)    (m � k � 1)xm�k � akm(m � 1)(m � 2)    (m � k � 1)xm.

For example, when we substitute y � xm, the second-order equation becomes

ax2 d 2y

dx2 � bx
dy

dx
� cy � am(m � 1)xm � bmxm � cxm � (am(m � 1) � bm � c)xm.

Thus y � xm is a solution of the differential equation whenever m is a solution of the
auxiliary equation

(1)

There are three different cases to be considered, depending on whether the roots of
this quadratic equation are real and distinct, real and equal, or complex. In the last
case the roots appear as a conjugate pair.

CASE I: DISTINCT REAL ROOTS Let m1 and m2 denote the real roots of (1) such
that m1 � m2. Then and form a fundamental set of solutions. Hence
the general solution is

(2)y � c1xm1 � c2xm2.

y2 � xm2y1 � xm1

am(m � 1) � bm � c � 0    or    am2 � (b � a)m � c � 0.



EXAMPLE 1 Distinct Roots

Solve 

SOLUTION Rather than just memorizing equation (1), it is preferable to assume
y � xm as the solution a few times to understand the origin and the difference
between this new form of the auxiliary equation and that obtained in Section 4.3.
Differentiate twice,

and substitute back into the differential equation:

if m2 � 3m � 4 � 0. Now (m � 1)(m � 4) � 0 implies m1 � �1, m2 � 4, so
y � c1x�1 � c2x4.

CASE II: REPEATED REAL ROOTS If the roots of (1) are repeated (that is,
m1 � m2), then we obtain only one solution—namely, When the roots of the
quadratic equation am2 � (b � a)m � c � 0 are equal, the discriminant of the coef-
ficients is necessarily zero. It follows from the quadratic formula that the root must
be m1 � �(b � a)�2a.

Now we can construct a second solution y2, using (5) of Section 4.2. We first
write the Cauchy-Euler equation in the standard form

and make the identifications P(x) � b�ax and Thus

The general solution is then

(3)

EXAMPLE 2 Repeated Roots

Solve 

SOLUTION The  substitution y � xm yields

4x2 d 2y

dx2 � 8x
dy

dx
� y � xm(4m(m � 1) � 8m � 1) � xm(4m2 � 4m � 1) � 0

4x2 d 2y

dx2 � 8x
dy

dx
� y � 0.

y � c1xm1 � c2xm1 ln x.

� xm1� dx

x
� xm1 ln x.

; �2m1 � (b � a)/a� xm1� x�b /a � x(b�a)/adx

; e�(b / a)ln x � eln x�b / a
� x�b / a� xm1� x�b /a � x�2m1 dx

y2 � xm1� e�(b /a)ln x

x2m1
dx

�(b>ax) dx � (b>a) ln x.

d 2y

dx2 �
b

ax

dy

dx
�

c

ax2 y � 0

y � xm1.

� xm(m(m � 1) � 2m � 4) � xm(m2 � 3m � 4) � 0

x2 d 2y

dx2 � 2x
dy

dx
� 4y � x2 � m(m � 1)xm�2 � 2x � mxm�1 � 4xm

dy

dx
� mxm�1,    

d 2y

dx2 � m(m � 1)xm�2,

x2 d 2y

dx2 � 2x
dy

dx
� 4y � 0.
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when 4m2 � 4m � 1 � 0 or (2m � 1)2 � 0. Since , the general solution is
y � c1x�1/2 � c2x�1/2 ln x.

For higher-order equations, if m1 is a root of multiplicity k, then it can be shown
that

are k linearly independent solutions. Correspondingly, the general solution of the dif-
ferential equation must then contain a linear combination of these k solutions.

CASE III: CONJUGATE COMPLEX ROOTS If the roots of (1) are the conjugate
pair m1 � a � ib, m2 � a � ib, where a and b � 0 are real, then a solution is

But when the roots of the auxiliary equation are complex, as in the case of equations
with constant coefficients, we wish to write the solution in terms of real functions
only. We note the identity

which, by Euler’s formula, is the same as

xib � cos(b ln x) � i sin(b ln x).

Similarly, x�ib � cos(b ln x) � i sin(b ln x).

Adding and subtracting the last two results yields

xib � x�ib � 2 cos(b ln x) and xib � x�ib � 2i sin(b ln x),

respectively. From the fact that y � C1xa�ib � C2xa�ib is a solution for any values of
the constants, we see, in turn, for C1 � C2 � 1 and C1 � 1, C2 � �1 that

or

are also solutions. Since W(xa cos(b ln x), xa sin(b ln x)) � bx2a�1 � 0, b� 0 on
the interval (0, 
), we conclude that

constitute a fundamental set of real solutions of the differential equation. Hence the
general solution is

(4)

EXAMPLE 3 An Initial-Value Problem

Solve 

SOLUTION The y� term is missing in the given Cauchy-Euler equation; neverthe-
less, the substitution y � xm yields

when 4m2 � 4m � 17 � 0. From the quadratic formula we find that the roots are
and . With the identifications and b � 2 we see from

(4) that the general solution of the differential equation is

By applying the initial conditions to the foregoing solution
and using ln 1 � 0, we then find, in turn, that c1 � �1 and c2 � 0. Hence the solution

y(1) � �1, y�(1) � �1
2

y � x1/2[c1 cos(2 ln x) � c2 sin(2 ln x)].

� � 1
2m2 � 1

2 � 2im1 � 1
2 � 2i

4x2y	 � 17y � xm(4m(m � 1) � 17) � xm(4m2 � 4m � 17) � 0

4x2y 	 � 17y � 0, y(1) � �1, y�(1) � �1
2.

y � x�[c1 cos(� ln x) � c2 sin(� ln x)].

y1 � x� cos(� ln x)    and    y2 � x� sin(� ln x)

y1 � 2x� cos(� ln x)    and    y2 � 2ix� sin(� ln x)

y1 � x�(xi� � x�i�)    and    y2 � x�(xi� � x�i�)

xi� � (eln x)i� � ei� ln x,

y � C1x
��i� � C2x��i�.

xm1,  xm1 ln x,  xm1(ln x)2, . . . ,  xm1(ln x)k�1

m1 � �1
2
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of the initial-value problem is y � �x1/2 cos(2 ln x). The graph of this function,
obtained with the aid of computer software, is given in Figure 4.7.1. The particular
solution is seen to be oscillatory and unbounded as .

The next example illustrates the solution of a third-order Cauchy-Euler equation.

EXAMPLE 4 Third-Order Equation

Solve 

SOLUTION The first three derivatives of y � xm are

so the given differential equation becomes

dy

dx
� mxm�1,    

d 2y

dx2 � m(m � 1)xm�2,    
d 3y

dx3 � m(m � 1)(m � 2)xm�3,

x3 d 3y

dx3 � 5x2 d 2y

dx2 � 7x
dy

dx
� 8y � 0.

x : 
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� xm(m3 � 2m2 � 4m � 8) � xm(m � 2)(m2 � 4) � 0.

� xm(m(m � 1)(m � 2) � 5m(m � 1) � 7m � 8)

x3 d 3y

dx3 � 5x2 d 2y

dx2 � 7x
dy

dx
� 8y � x3m(m � 1)(m � 2)xm�3 � 5x2m(m � 1)xm�2 � 7xmxm�1 � 8xm

In this case we see that y � xm will be a solution of the differential equation
for m1 � �2, m2 � 2i, and m3 � �2i. Hence the general solution is 
y � c1x�2 � c2 cos(2 ln x) � c3 sin(2 ln x).

The method of undetermined coefficients described in Sections 4.5 and 4.6
does not carry over, in general, to linear differential equations with variable coeffi-
cients. Consequently, in our next example the method of variation of parameters is
employed.

EXAMPLE 5 Variation of Parameters

Solve x2y	 � 3xy� � 3y � 2x4ex.

SOLUTION Since the equation is nonhomogeneous, we first solve the associated
homogeneous equation. From the auxiliary equation (m � 1)(m � 3) � 0 we
find yc � c1x � c2x3. Now before using variation of parameters to find a particular
solution yp � u1y1 � u2y2, recall that the formulas and ,
where W1, W2, and W are the determinants defined on page 158, were derived
under the assumption that the differential equation has been put into the standard
form y	 � P(x)y� � Q(x)y � f (x). Therefore we divide the given equation by x2,
and from

we make the identification f (x) � 2x2ex. Now with y1 � x, y2 � x3, and

y	 �
3

x
y� �

3

x2 y � 2x2ex

u�2 � W2>Wu�1 � W1>W

W � �x1 x3

3x2� � 2x3,  W1 � � 0

2x2ex

x3

3x2� � �2x5ex,  W2 � �x1 0

2x2ex� � 2x3ex,

we find u�1 � �
2x5ex

2x3 � �x2ex    and    u�2 �
2x3ex

2x3 � ex.



The integral of the last function is immediate, but in the case of we integrate
by parts twice. The results are u1 � �x2ex � 2xex � 2ex and u2 � ex. Hence
yp � u1y1 � u2y2 is

Finally,

REDUCTION TO CONSTANT COEFFICIENTS The similarities between the
forms of solutions of Cauchy-Euler equations and solutions of linear equations with
constant coefficients are not just a coincidence. For example, when the roots of the
auxiliary equations for ay	 � by� � cy � 0 and ax2y	 � bxy� � cy � 0 are distinct
and real, the respective general solutions are

(5)

In view of the identity eln x � x, x � 0, the second solution given in (5) can be
expressed in the same form as the first solution:

where t � ln x. This last result illustrates the fact that any Cauchy-Euler equation can
always be rewritten as a linear differential equation with constant coefficients by
means of the substitution x � et. The idea is to solve the new differential equation
in terms of the variable t, using the methods of the previous sections, and, once the
general solution is obtained, resubstitute t � ln x. This method, illustrated in the last
example, requires the use of the Chain Rule of differentiation.

EXAMPLE 6 Changing to Constant Coefficients

Solve x2y	 � xy� � y � ln x.

SOLUTION With the substitution x � et or t � ln x, it follows that

Substituting in the given differential equation and simplifying yields

Since this last equation has constant coefficients, its auxiliary equation is
m2 � 2m � 1 � 0, or (m � 1)2 � 0. Thus we obtain yc � c1et � c2 tet.

By undetermined coefficients we try a particular solution of the form yp � A � Bt.
This assumption leads to �2B � A � Bt � t, so A � 2 and B � 1. Using y � yc � yp,
we get

so the general solution of the original differential equation on the interval (0, 
) is
y � c1x � c2x ln x � 2 � ln x.

y � c1et � c2 tet � 2 � t,

d 2y

dt2 � 2
dy

dt
� y � t.

�
1

x �
d 2y

dt2

1

x� �
dy

dt ��
1

x2� �
1

x2 �d 2y

dt2 �
dy

dt�.

; Product Rule and Chain Rule
d 2y

dx2 �
1

x

d

dx �
dy

dt� �
dy

dt ��
1

x2�

; Chain Rule
dy

dx
�

dy

dt

dt

dx
�

1

x

dy

dt

y � c1em1 ln x � c2em2 ln x � c1em1t � c2em2 t,

y � c1em1 x � c2em2 x    and    y � c1xm1 � c2xm2, x � 0.

y � yc � yp � c1x � c2x3 � 2x2ex � 2xex.

yp � (�x2ex � 2xex � 2ex)x � exx3 � 2x2ex � 2xex.

u�1
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EXERCISES 4.7 Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–18 solve the given differential equation.

1. x2y	 � 2y � 0 2. 4x2y	 � y � 0

3. xy	 � y� � 0 4. xy	 � 3y� � 0

5. x2y	 � xy� � 4y � 0 6. x2y	 � 5xy� � 3y � 0

7. x2y	 � 3xy� � 2y � 0 8. x2y	 � 3xy� � 4y � 0

9. 25x2y	 � 25xy� � y � 0 10. 4x2y	 � 4xy� � y � 0

11. x2y	 � 5xy� � 4y � 0 12. x2y	 � 8xy� � 6y � 0

13. 3x2y	 � 6xy� � y � 0 14. x2y	 � 7xy� � 41y � 0

15. x3y� � 6y � 0 16. x3y� � xy� � y � 0

17. xy(4) � 6y� � 0

18. x4y(4) � 6x3y� � 9x2y	 � 3xy� � y � 0

In Problems 19–24 solve the given differential equation by
variation of parameters.

19. xy	 � 4y� � x4

20. 2x2y	 � 5xy� � y � x2 � x

21. x2y	 � xy� � y � 2x 22. x2y	 � 2xy� � 2y � x4ex

23. x2y	 � xy� � y � ln x 24.

In Problems 25–30 solve the given initial-value problem.
Use a graphing utility to graph the solution curve.

25. x2y	 � 3xy� � 0, y(1) � 0, y�(1) � 4

26. x2y	 � 5xy� � 8y � 0, y(2) � 32, y�(2) � 0

27. x2y	 � xy� � y � 0, y(1) � 1, y�(1) � 2

28. x2y	 � 3xy� � 4y � 0, y(1) � 5, y�(1) � 3

29.

30.

In Problems 31–36 use the substitution x � et to transform
the given Cauchy-Euler equation to a differential equation
with constant coefficients. Solve the original equation by
solving the new equation using the procedures in
Sections 4.3–4.5.

31. x2y	 � 9xy� � 20y � 0

32. x2y	 � 9xy� � 25y � 0

33. x2y	 � 10xy� � 8y � x2

34. x2y	 � 4xy� � 6y � ln x2

x2y	 � 5xy� � 8y � 8x6, y�1
2 � � 0, y��1

2 � � 0

xy	 � y� � x, y(1) � 1, y�(1) � �1
2

x2y	 � xy� � y �
1

x � 1

35. x2y	 � 3xy� � 13y � 4 � 3x

36. x3y� � 3x2y	 � 6xy� � 6y � 3 � ln x3

In Problems 37 and 38 solve the given initial-value problem
on the interval (�
, 0).

37. 4x2y	 � y � 0, y(�1) � 2, y�(�1) � 4

38. x2y	 � 4xy� � 6y � 0, y(�2) � 8, y�(�2) � 0

Discussion Problems

39. How would you use the method of this section to solve

Carry out your ideas. State an interval over which the
solution is defined.

40. Can a Cauchy-Euler differential equation of lowest
order with real coefficients be found if it is known that
2 and 1 � i are roots of its auxiliary equation? Carry
out your ideas.

41. The initial-conditions y(0) � y0, y�(0) � y1 apply to
each of the following differential equations:

x2y	 � 0,

x2y	 � 2xy� � 2y � 0,

x2y	 � 4xy� � 6y � 0.

For what values of y0 and y1 does each initial-value
problem have a solution?

42. What are the x-intercepts of the solution curve shown
in Figure 4.7.1? How many x-intercepts are there for

?

Computer Lab Assignments

In Problems 43–46 solve the given differential equation by
using a CAS to find the (approximate) roots of the auxiliary
equation.

43. 2x3y� � 10.98x2y	 � 8.5xy� � 1.3y � 0

44. x3y� � 4x2y	 � 5xy� � 9y � 0

45. x4y(4) � 6x3y� � 3x2y	 � 3xy� � 4y � 0

46. x4y(4) � 6x3y� � 33x2y	 � 105xy� � 169y � 0

47. Solve x3y� � x2y	 � 2xy� � 6y � x2 by variation of
parameters. Use a CAS as an aid in computing roots of
the auxiliary equation and the determinants given in
(10) of Section 4.6.

0 � x � 1
2

(x � 2)2y	 � (x � 2)y� � y � 0?



SYSTEMATIC ELIMINATION The elimination of an unknown in a system of
linear differential equations is expedited by rewriting each equation in the system in
differential operator notation. Recall from Section 4.1 that a single linear equation

where the ai, i � 0, 1, . . . , n are constants, can be written as

If the nth-order differential operator factors
into differential operators of lower order, then the factors commute. Now, for exam-
ple, to rewrite the system

in terms of the operator D, we first bring all terms involving the dependent variables
to one side and group the same variables:

x� � y� � �4x � 2y � e�t

x	 � 2x� � y	 � x � 3y � sin t

anDn � an�1D
(n�1) �    � a1D � a0

(anDn � an�1D(n�1) �    � a1D � a0)y � g(t).

any(n) � an�1y
(n�1) �    � a1y� � a0y � g(t),
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SOLVING SYSTEMS OF LINEAR DEs BY ELIMINATION

REVIEW MATERIAL
● Because the method of systematic elimination uncouples a system into distinct linear ODEs in

each dependent variable, this section gives you an opportunity to practice what you learned in
Sections 4.3, 4.4 (or 4.5), and 4.6.

INTRODUCTION Simultaneous ordinary differential equations involve two or more equations that
contain derivatives of two or more dependent variables—the unknown functions—with respect to a
single independent variable. The method of systematic elimination for solving systems of differential
equations with constant coefficients is based on the algebraic principle of elimination of variables. We
shall see that the analogue of multiplying an algebraic equation by a constant is operating on an ODE
with some combination of derivatives.

4.8

x	 � 2x� � x � y	 � 3y � sin t

  x� � 4x � y� � 2y � e�t     is the same as    
(D2 � 2D � 1)x � (D2 � 3)y � sin t

    (D � 4)x � (D � 2)y � e�t.

SOLUTION OF A SYSTEM A solution of a system of differential equations is a
set of sufficiently differentiable functions x � f1(t), y � f2(t), z � f3(t), and so on
that satisfies each equation in the system on some common interval I.

METHOD OF SOLUTION Consider the simple system of linear first-order
equations

(1)

Operating on the first equation in (1) by D while multiplying the second by �3 and
then adding eliminates y from the system and gives D2x � 6x � 0. Since the roots of
the auxiliary equation of the last DE are and , we obtain

(2)x(t) � c1e�16t � c2e16t.

m2 � �16m1 � 16

dx

dt
� 3y

dy

dt
� 2x

    or, equivalently,    
Dx � 3y � 0

2x � Dy � 0.



Multiplying the first equation in (1) by 2 while operating on the second by D and
then subtracting gives the differential equation for y, D2y � 6y � 0. It follows
immediately that

(3)

Now (2) and (3) do not satisfy the system (1) for every choice of c1, c2, c3, and
c4 because the system itself puts a constraint on the number of parameters in a solu-
tion that can be chosen arbitrarily. To see this, observe that substituting x(t) and y(t)
into the first equation of the original system (1) gives, after simplification,

Since the latter expression is to be zero for all values of t, we must have
and These two equations enable us to write

c3 as a multiple of c1 and c4 as a multiple of c2 :

. (4)

Hence we conclude that a solution of the system must be

You are urged to substitute (2) and (3) into the second equation of (1) and verify
that the same relationship (4) holds between the constants.

EXAMPLE 1 Solution by Elimination

Solve

(5)

SOLUTION Operating on the first equation by D � 3 and on the second by D and
then subtracting eliminates x from the system. It follows that the differential equation
for y is

Since the characteristic equation of this last differential equation is
m2 � m � 6 � (m � 2)(m � 3) � 0, we obtain the solution

(6)

Eliminating y in a similar manner yields (D2 � D � 6)x � 0, from which we find

(7)

As we noted in the foregoing discussion, a solution of (5) does not contain four in-
dependent constants. Substituting (6) and (7) into the first equation of (5) gives

From 4c1 � 2c3 � 0 and �c2 � 3c4 � 0 we get c3 � �2c1 and .
Accordingly, a solution of the system is

Because we could just as easily solve for c3 and c4 in terms of c1 and c2, the
solution in Example 1 can be written in the alternative form

x(t) � c3e2t � c4e�3t,    y(t) � �
1

2
c3e2t � 3c4e�3t.

x(t) � �2c1e2t �
1

3
c2e�3t,    y(t) � c1e

2t � c2e�3t.

c4 � �1
3 c2

(4c1 � 2c3)e2t � (�c2 � 3c4)e�3t � 0.

x(t) � c3e2t � c4e�3t.

y(t) � c1e2t � c2e�3 t.

[(D � 3)(D � 2) � 2D]y � 0    or    (D2 � D � 6)y � 0.

 (D � 3)x �   2y � 0.

Dx �  (D � 2 )y � 0

x(t) � c1e
�16t � c2e16 t,    y(t) � �

16

3
c1e�16 t �

16

3
c2e16 t.

c3 � �
16

3
c1    and    c4 �

16

3
c2

16c2 � 3c4 � 0.�16c1 � 3c3 � 0

��16c1 � 3c3�e�16 t � �16c2 � 3c4�e16 t � 0.

y(t) � c3e�16t � c4e16t.
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It sometimes pays to keep one’s eyes open when solving systems. Had we solved
for x first in Example 1, then y could be found, along with the relationship between the
constants, using the last equation in the system (5). You should verify that substituting
x(t) into yields Also note in the initial dis-
cussion that the relationship given in (4) and the solution y(t) of (1) could also have
been obtained by using x(t) in (2) and the first equation of (1) in the form

EXAMPLE 2 Solution by Elimination

Solve (8)

SOLUTION First we write the system in differential operator notation:

(9)

Then, by eliminating x, we obtain

or

Since the roots of the auxiliary equation m(m2 � 4) � 0 are m1 � 0, m2 � 2i, and
m3 � �2i, the complementary function is yc � c1 � c2 cos 2t � c3 sin 2t. To deter-
mine the particular solution yp, we use undetermined coefficients by assuming that
yp � At3 � Bt2 � Ct. Therefore

The last equality implies that 12A � 1, 8B � 2, and 6A � 4C � 0; hence
, and . Thus

(10)

Eliminating y from the system (9) leads to

It should be obvious that xc � c4 cos 2t � c5 sin 2t and that undetermined coeffi-
cients can be applied to obtain a particular solution of the form xp � At2 � Bt � C.
In this case the usual differentiations and algebra yield and so

(11)

Now c4 and c5 can be expressed in terms of c2 and c3 by substituting (10)
and (11) into either equation of (8). By using the second equation, we find, after com-
bining terms,

so c5 � 2c4 � 2c2 � 0 and 2c5 � c4 � 2c3 � 0. Solving for c4 and c5 in terms of c2

and c3 gives c4 � � (4c2 � 2c3) and c5 � (2c2 � 4c3). Finally, a solution of (8)
is found to be

y(t) � c1 � c2 cos 2t � c3 sin 2t �
1

12
t3 �

1

4
t2 �

1

8
t.

x(t) � �
1

5
 (4c2 � 2c3) cos 2t �

1

5
 (2c2 � 4c3) sin 2t �

1

4
t2 �

1

8
,

1
5

1
5

(c5 � 2c4 � 2c2) sin 2t � (2c5 � c4 � 2c3) cos 2t � 0,

x � xc � xp � c4 cos 2t � c5 sin 2t �
1

4
t2 �

1

8
.

xp � �1
4 t2 � 1

8,

[(D � 4) � D(D � 1)]x � t2    or    (D2 � 4)x � �t2.

y � yc � yp � c1 � c2 cos 2t � c3 sin 2t �
1

12
t3 �

1

4
t2 �

1

8
t.

C � �1
8A � 1

12, B � 1
4

y�p � 4y�p � 12At2 � 8Bt � 6A � 4C � t2 � 2t.

y�p � 3At2 � 2Bt � C, y	p � 6At � 2B, y	�p � 6A,

 (D3 � 4D)y � t2 � 2t.

 [(D � 1)D2 � (D � 4)D]y � (D � 1)t2 � (D � 4)0

  (D � 1)x � Dy � 0.
 (D � 4)x � D2y � t2

x� � x � y� � 0.
x� � 4x � y	 � t2

y � 1
3 Dx � �1

3 26c1e�16t � 1
3 26c2e16t.

y � �1
2 c3e2t � 3c4e�3t.y � 1

2 (Dx � 3x)
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you some time.



EXAMPLE 3 A Mixture Problem Revisited

In (3) of Section 3.3 we saw that the system of linear first-order differential equations

is a model for the number of pounds of salt x1(t) and x2(t) in brine mixtures in tanks
A and B, respectively, shown in Figure 3.3.1. At that time we were not able to solve
the system. But now, in terms of differential operators, the foregoing system can be
written as

Operating on the first equation by multiplying the second equation by 
adding, and then simplifying gives (625D2 � 100D � 3)x1 � 0. From the auxiliary
equation

we see immediately that x1(t) � c1e�t/ 25 � c2e�3t/ 25. We can now obtain x2(t) by
using the first DE of the system in the form In this manner we
find the solution of the system to be

In the original discussion on page 107 we assumed that the initial conditions were
x1(0) � 25 and x2(0) � 0. Applying these conditions to the solution yields 
c1 � c2 � 25 and 2c1 � 2c2 � 0. Solving these equations simultaneously gives

Finally, a solution of the initial-value problem is

The graphs of both of these equations are given in Figure 4.8.1. Consistent with the
fact that pure water is being pumped into tank A we see in the figure that x1(t) : 0
and x2(t) : 0 as t : 
.

x1(t) �
25

2
e�t / 25 �

25

2
e�3t / 25,    x2(t) � 25e�t / 25 � 25e�3t / 25.

c1 � c2 � 25
2 .

x1(t) � c1e
�t / 25 � c2e�3t / 25,    x2(t) � 2c1e�t / 25 � 2c2e�3t / 25.

x2 � 50(D � 2
25)x1.

625m2 � 100m � 3 � (25m � 1)(25m � 3) � 0

1
50,D � 2

25,

�
2

25
x1 � �D �

2

25�x2 � 0.

�D �
2

25�x1 �   1

50
x2 � 0

dx2

dt
�

2

25
x1 �

2

25
x2

dx1

dt
� �

2

25
x1 �

1

50
x2
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FIGURE 4.8.1 Pounds of salt in tanks
A and B
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EXERCISES 4.8 Answers to selected odd-numbered problems begin on page ANS-6.

In Problems 1–20 solve the given system of differential
equations by systematic elimination.

1. 2.

3. 4.

dy

dt
� x � 2

dy

dt
� x � t

dx

dt
� 4y � 1

dx

dt
� �y � t

dy

dt
� x � 2y

dy

dt
� x

dx

dt
� 4x � 7y

dx

dt
� 2x � y

5. (D2 � 5)x � 2y � 0
�2x � (D2 � 2)y � 0

6. (D � 1)x � (D � 1)y � 2
3x � (D � 2)y � �1

7. 8.

9. Dx � D2y � e3t

(D � 1)x � (D � 1)y � 4e3t

dx

dt
�

dy

dt
� �x � 4y

d 2y

dt2 � 4x � et

d 2x

dt2 �
dy

dt
� �5x

d 2x

dt2 � 4y � et



10. D2x � Dy � t
(D � 3)x � (D � 3)y � 2

11. (D2 � 1)x � y � 0
(D � 1)x � Dy � 0

12. (2D2 � D � 1)x � (2D � 1)y � 1
(D � 1)x � Dy � �1

13.

14.

15. (D � 1)x � (D2 � 1)y � 1
(D2 � 1)x � (D � 1)y � 2

16. D2x � 2(D2 � D)y � sin t
x � Dy � 0

17. Dx � y 18. Dx � z � et

Dy � z (D � 1)x � Dy � Dz � 0
Dz � x x � 2y � Dz � et

19. 20.

In Problems 21 and 22 solve the given initial-value problem.

21. 22.

x(1) � 0, y(1) � 1 x(0) � 0, y(0) � 0

Mathematical Models

23. Projectile Motion A projectile shot from a gun has
weight w � mg and velocity v tangent to its path of
motion. Ignoring air resistance and all other forces acting
on the projectile except its weight, determine a system of
differential equations that describes its path of motion.
See Figure 4.8.2. Solve the system. [Hint: Use Newton’s
second law of motion in the x and y directions.]

dy

dt
� �3x � 2y

dy

dt
� 4x � y

dx

dt
� y � 1

dx

dt
� �5x � y

dz

dt
� �x � y

dz

dt
� x � y

dy

dt
� �y � z

dy

dt
� x � z

dx

dt
� �x � z

dx

dt
� 6y

�
d2x

dt2 �
dx

dt
� x � y � 0

dx

dt
�

dy

dt
� et

dx

dt
� x �

dy

dt
� 5et

 2 
dx

dt
� 5x �

dy

dt
� et
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FIGURE 4.8.2 Path of projectile in Problem 23

y

x

mg

v

FIGURE 4.8.3 Forces in Problem 24

k

v

θ

24. Projectile Motion with Air Resistance Determine a
system of differential equations that describes the path
of motion in Problem 23 if air resistance is a retarding
force k (of magnitude k) acting tangent to the path of the
projectile but opposite to its motion. See Figure 4.8.3.
Solve the system. [Hint: k is a multiple of velocity,
say, cv.]

Discussion Problems

25. Examine and discuss the following system:

Computer Lab Assignments

26. Reexamine Figure 4.8.1 in Example 3. Then use a root-
finding application to determine when tank B contains
more salt than tank A.

27. (a) Reread Problem 8 of Exercises 3.3. In that problem
you were asked to show that the system of differen-
tial equations

is a model for the amounts of salt in the connected
mixing tanks A, B, and C shown in Figure 3.3.7.
Solve the system subject to x1(0) � 15, x2(t) � 10,
x3(t) � 5.

(b) Use a CAS to graph x1(t), x2(t), and x3(t) in the
same coordinate plane (as in Figure 4.8.1) on the
interval [0, 200].

(c) Because only pure water is pumped into Tank A, it
stands to reason that the salt will eventually be
flushed out of all three tanks. Use a root-finding
application of a CAS to determine the time when
the amount of salt in each tank is less than or equal
to 0.5 pound. When will the amounts of salt x1(t),
x2(t), and x3(t) be simultaneously less than or equal
to 0.5 pound?

dx3

dt
�

2

75
x2 �

1

25
x3

dx2

dt
�

1

50
x1 �

2

75
x2

dx1

dt
� �

1

50
x1

 (D � 1)x � 2(D � 1)y � 1.
Dx � 2Dy � t2



SOME DIFFERENCES There are several significant differences between linear
and nonlinear differential equations. We saw in Section 4.1 that homogeneous lin-
ear equations of order two or higher have the property that a linear combination of
solutions is also a solution (Theorem 4.1.2). Nonlinear equations do not possess
this property of superposability. See Problems 1 and 18 in Exercises 4.9. We can
find general solutions of linear first-order DEs and higher-order equations with con-
stant coefficients. Even when we can solve a nonlinear first-order differential equa-
tion in the form of a one-parameter family, this family does not, as a rule, represent
a general solution. Stated another way, nonlinear first-order DEs can possess singu-
lar solutions, whereas linear equations cannot. But the major difference between
linear and nonlinear equations of order two or higher lies in the realm of solvability.
Given a linear equation, there is a chance that we can find some form of a solution
that we can look at—an explicit solution or perhaps a solution in the form of an
infinite series (see Chapter 6). On the other hand, nonlinear higher-order differen-
tial equations virtually defy solution by analytical methods. Although this might
sound disheartening, there are still things that can be done. As was pointed out at
the end of Section 1.3, we can always analyze a nonlinear DE qualitatively and
numerically.

Let us make it clear at the outset that nonlinear higher-order differential equations
are important—dare we say even more important than linear equations?—because as
we fine-tune the mathematical model of, say, a physical system, we also increase the
likelihood that this higher-resolution model will be nonlinear.

We begin by illustrating an analytical method that occasionally enables us to
find explicit/implicit solutions of special kinds of nonlinear second-order differential
equations.

REDUCTION OF ORDER Nonlinear second-order differential equations
F(x, y�, y	) � 0, where the dependent variable y is missing, and F(y, y�, y	) � 0,
where the independent variable x is missing, can sometimes be solved by using first-
order methods. Each equation can be reduced to a first-order equation by means of
the substitution u � y�.

The next example illustrates the substitution technique for an equation of the form
F(x, y�, y	) � 0. If u � y�, then the differential equation becomes F(x, u, u�) � 0. If we
can solve this last equation for u, we can find y by integration. Note that since we are
solving a second-order equation, its solution will contain two arbitrary constants.

EXAMPLE 1 Dependent Variable y Is Missing

Solve y	 � 2x(y�)2.
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NONLINEAR DIFFERENTIAL EQUATIONS

REVIEW MATERIAL
● Sections 2.2 and 2.5
● Section 4.2
● A review of Taylor series from calculus is also recommended.

INTRODUCTION The difficulties that surround higher-order nonlinear differential equations
and the few methods that yield analytic solutions are examined next. Two of the solution methods
considered in this section employ a change of variable to reduce a second-order DE to a first-order
DE. In that sense these methods are analogous to the material in Section 4.2.

4.9



SOLUTION If we let u � y�, then du�dx � y	. After substituting, the second-order
equation reduces to a first-order equation with separable variables; the independent
variable is x and the dependent variable is u:

The constant of integration is written as for convenience. The reason should be
obvious in the next few steps. Because u�1 � 1�y�, it follows that

and so

Next we show how to solve an equation that has the form F( y, y�, y	) � 0. Once
more we let u � y�, but because the independent variable x is missing, we use this
substitution to transform the differential equation into one in which the independent
variable is y and the dependent variable is u. To this end we use the Chain Rule to
compute the second derivative of y:

In this case the first-order equation that we must now solve is

EXAMPLE 2 Independent Variable x Is Missing

Solve yy	 � ( y�)2.

SOLUTION With the aid of u � y�, the Chain Rule shown above, and separation of
variables, the given differential equation becomes

Integrating the last equation then yields ln�u � � ln�y � � c1, which, in turn, gives u � c2y,
where the constant has been relabeled as c2. We now resubstitute u � dy�dx, sepa-
rate variables once again, integrate, and relabel constants a second time:

USE OF TAYLOR SERIES In some instances a solution of a nonlinear initial-value
problem, in which the initial conditions are specified at x0, can be approximated by a
Taylor series centered at x0.

� dy

y
� c2 � dx    or    ln� y � � c2x � c3    or    y � c4ec2x.

�ec1

y�u
du

dy� � u2    or    
du

u
�

dy

y
.

F�y, u, u
du

dy� � 0.

y	 �
du

dx
�

du

dy
 dy

dx
� u

du

dy
.

y � �� dx

x2 � c1
2    or    y � �

1

c1
 tan�1 x

c1
� c2.

dy

dx
� �

1

x2 � c1
2
,

c1
2

�u�1 � x2 � c1
2.

� u�2 du � � 2x dx

du

dx
� 2xu2    or    

du

u2 � 2x dx
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EXAMPLE 3 Taylor Series Solution of an IVP

Let us assume that a solution of the initial-value problem

(1)

exists. If we further assume that the solution y(x) of the problem is analytic at 0, then
y(x) possesses a Taylor series expansion centered at 0:

(2)

Note that the values of the first and second terms in the series (2) are known
since those values are the specified initial conditions y(0) � �1, y�(0) � 1.
Moreover, the differential equation itself defines the value of the second derivative
at 0: y	(0) � 0 � y(0) � y(0)2 � 0 � (�1) � (�1)2 � �2. We can then find
expressions for the higher derivatives y�, y(4), . . . by calculating the successive
derivatives of the differential equation:

(3)

(4)

(5)

and so on. Now using y(0) � �1 and y�(0) � 1, we find from (3) that y�(0) � 4. From
the values y(0) � �1, y�(0) � 1, and y	(0) � �2 we find y(4)(0) � �8 from (4). With
the additional information that y�(0) � 4, we then see from (5) that y(5)(0) � 24.
Hence from (2) the first six terms of a series solution of the initial-value problem (1) are

USE OF A NUMERICAL SOLVER Numerical methods, such as Euler’s method or
the Runge-Kutta method, are developed solely for first-order differential equations and
then are extended to systems of first-order equations. To analyze an nth-order initial-
value problem numerically, we express the nth-order ODE as a system of n first-order
equations. In brief, here is how it is done for a second-order initial-value problem: First,
solve for y	—that is, put the DE into normal form y	 � f (x, y, y�)—and then let y� � u.
For example, if we substitute y� � u in

(6)

then y	 � u� and y�(x0) � u(x0), so the initial-value problem (6) becomes

However, it should be noted that a commercial numerical solver might not require*

that you supply the system.

Subject to:  y(x0) � y0, u(x0) � u0.

Solve:    �y� � u

u� � f(x, y, u)

d 2y

dx2 � f (x, y, y�),  y(x0 ) � y0,  y�(x0 ) � u0,

y(x) � �1 � x � x2 �
2

3
x3 �

1

3
x4 �

1

5
x5 �    .

y(5)(x) �
d

dx
 (y	 � 2yy	 � 2(y�)2) � y� � 2yy� � 6y�y	,

y(4)(x) �
d

dx
 (1 � y� � 2yy�) � y	 � 2yy	 � 2(y�)2

y�(x) �
d

dx
 (x � y � y2) � 1 � y� � 2yy�

y(x) � y(0) �
y�(0)

1!
x �

y	(0)

2!
x2 �

y�(0)

3!
x3 �

y(4)(0)

4!
x4 �

y(5)(0)

5!
x5 �    .

y	 � x � y � y2,  y(0) � �1,  y�(0) � 1
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*Some numerical solvers require only that a second-order differential equation be expressed in normal
form y	 � f (x, y, y�). The translation of the single equation into a system of two equations is then built
into the computer program, since the first equation of the system is always y� � u and the second
equation is u� � f (x, y, u).



EXAMPLE 4 Graphical Analysis of Example 3

Following the foregoing procedure, we find that the second-order initial-value prob-
lem in Example 3 is equivalent to

with initial conditions y(0) � �1, u(0) � 1. With the aid of a numerical solver we get
the solution curve shown in blue in Figure 4.9.1. For comparison the graph of the fifth-
degree Taylor polynomial is shown in red.
Although we do not know the interval of convergence of the Taylor series obtained in
Example 3, the closeness of the two curves in a neighborhood of the origin suggests
that the power series may converge on the interval (�1, 1).

QUALITATIVE QUESTIONS The blue graph in Figure 4.9.1 raises some questions
of a qualitative nature: Is the solution of the original initial-value problem oscillatory
as ? The graph generated by a numerical solver on the larger interval shown in
Figure 4.9.2 would seem to suggest that the answer is yes. But this single example—
or even an assortment of examples—does not answer the basic question as to whether
all solutions of the differential equation y	 � x � y � y2 are oscillatory in nature.
Also, what is happening to the solution curve in Figure 4.9.2 when x is near �1? What
is the behavior of solutions of the differential equation as ? Are solutions
bounded as ? Questions such as these are not easily answered, in general, for
nonlinear second-order differential equations. But certain kinds of second-order
equations lend themselves to a systematic qualitative analysis, and these, like their
first-order relatives encountered in Section 2.1, are the kind that have no explicit
dependence on the independent variable. Second-order ODEs of the form

equations free of the independent variable x, are called autonomous. The differen-
tial equation in Example 2 is autonomous, and because of the presence of the x term
on its right-hand side, the equation in Example 3 is nonautonomous. For an in-depth
treatment of the topic of stability of autonomous second-order differential equations
and autonomous systems of differential equations, refer to Chapter 10 in Differential
Equations with Boundary-Value Problems.

F(y, y�, y	) � 0    or    
d 2y

dx2 � f (y, y�),

x : 

x : �


x : 


T5(x) � �1 � x � x2 � 2
3 x3 � 1

3 x4 � 1
5 x5

du

dx
� x � y � y2

dy

dx
� u
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EXERCISES 4.9 Answers to selected odd-numbered problems begin on page ANS-6.

In Problems 1 and 2 verify that y1 and y2 are solutions of the
given differential equation but that y � c1y1 � c2y2 is, in
general, not a solution.

1. (y	)2 � y2; y1 � ex, y2 � cos x

2.

In Problems 3–8 solve the given differential equation by
using the substitution u � y�.

3. y	 � ( y�)2 � 1 � 0 4. y	 � 1 � ( y�)2

yy 	 �
1

2
 ( y�)2; y1 � 1, y2 � x2

5. x2y	 � ( y�)2 � 0 6. (y � 1)y	 � ( y�)2

7. y	 � 2y( y�)3 � 0 8. y2y	 � y�

9. Consider the initial-value problem

y	 � yy� � 0, y(0) � 1, y�(0) � �1.

(a) Use the DE and a numerical solver to graph the
solution curve.

(b) Find an explicit solution of the IVP. Use a graphing
utility to graph this solution.

(c) Find an interval of definition for the solution in
part (b).

FIGURE 4.9.2 Numerical solution
curve for the IVP in (1)

y
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x

FIGURE 4.9.1 Comparison of two
approximate solutions
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solution curve 
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10. Find two solutions of the initial-value problem

Use a numerical solver to graph the solution curves.

In Problems 11 and 12 show that the substitution u � y� leads
to a Bernoulli equation. Solve this equation (see Section 2.5).

11. xy	 � y� � ( y�)3 12. xy	 � y� � x( y�)2

In Problems 13–16 proceed as in Example 3 and obtain the
first six nonzero terms of a Taylor series solution, centered
at 0, of the given initial-value problem. Use a numerical
solver and a graphing utility to compare the solution curve
with the graph of the Taylor polynomial.

13. y	 � x � y2, y(0) � 1, y�(0) � 1

14. y	 � y2 � 1, y(0) � 2, y�(0) � 3

15. y	 � x2 � y2 � 2y�, y(0) � 1, y�(0) � 1

16. y	 � ey, y(0) � 0, y�(0) � �1

17. In calculus the curvature of a curve that is defined by a
function y � f (x) is defined as

Find y � f (x) for which k� 1. [Hint: For simplicity,
ignore constants of integration.]

Discussion Problems

18. In Problem 1 we saw that cos x and ex were solutions of
the nonlinear equation ( y	)2 � y2 � 0. Verify that sin x
and e�x are also solutions. Without attempting to solve the
differential equation, discuss how these explicit solutions
can be found by using knowledge about linear equations.
Without attempting to verify, discuss why the linear
combinations y � c1ex � c2e�x � c3 cos x � c4 sin x and
y � c2e�x � c4 sin x are not, in general, solutions, but

� �
y	

[1 � ( y�)2]3 /2.

( y	)2 � ( y�)2 � 1,  y��

2� �
1

2
, y���

2� �
13

2
.
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the two special linear combinations y � c1ex � c2e�x

and y � c3 cos x � c4 sin x must satisfy the differential
equation.

19. Discuss how the method of reduction of order con-
sidered in this section can be applied to the third-order
differential equation . Carry out your
ideas and solve the equation.

20. Discuss how to find an alternative two-parameter fam-
ily of solutions for the nonlinear differential equation
y	 � 2x( y�)2 in Example 1. [Hint: Suppose that is
used as the constant of integration instead of .]

Mathematical Models

21. Motion in a Force Field A mathematical model for
the position x(t) of a body moving rectilinearly on the
x-axis in an inverse-square force field is given by

Suppose that at t � 0 the body starts from rest from the
position x � x0, x0 � 0. Show that the velocity of
the body at time t is given by v2 � 2k2(1�x � 1�x0).
Use the last expression and a CAS to carry out the inte-
gration to express time t in terms of x.

22. A mathematical model for the position x(t) of a moving
object is

.

Use a numerical solver to graphically investigate the so-
lutions of the equation subject to x(0) � 0, x�(0) � x1,
x1 � 0. Discuss the motion of the object for t � 0 and
for various choices of x1. Investigate the equation

in the same manner. Give a possible physical interpreta-
tion of the dx�dt term.

d 2x

dt2 �
dx

dt
� sin x � 0

d 2x

dt2 � sin x � 0

d 2x

dt2 � �
k2

x2.

�c1
2

�c1
2

y� � 11 � (y	)2

CHAPTER 4 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-6.

Answer Problems 1–4 without referring back to the text. Fill
in the blank or answer true or false.

1. The only solution of the initial-value problem 
y	 � x2y � 0, y(0) � 0, y�(0) � 0 is __________.

2. For the method of undetermined coefficients, the
assumed form of the particular solution yp for
y	 � y � 1 � ex is __________.

3. A constant multiple of a solution of a linear differential
equation is also a solution. __________

4. If the set consisting of two functions f1 and f2 is linearly
independent on an interval I, then the Wronskian 
W( f1, f2) � 0 for all x in I. __________

5. Give an interval over which the set of two functions
f1(x) � x2 and f2(x) � x �x � is linearly independent.



Then give an interval over which the set consisting of
f1 and f2 is linearly dependent.

6. Without the aid of the Wronskian, determine whether
the given set of functions is linearly independent or
linearly dependent on the indicated interval.

(a) f1(x) � ln x, f2(x) � ln x2, (0, 
)

(b) f1(x) � xn, f2(x) � xn�1, n � 1, 2, . . . , (�
, 
)

(c) f1(x) � x, f2(x) � x � 1, (�
, 
)

(d)

(e) f1(x) � 0, f2(x) � x, (�5, 5)

(f) f1(x) � 2, f2(x) � 2x, (�
, 
)

(g) f1(x) � x2, f2(x) � 1 � x2, f3(x) � 2 � x2, (�
, 
)

(h) f1(x) � xex�1, f2(x) � (4x � 5)ex,
f3(x) � xex, (�
, 
)

7. Suppose m1 � 3, m2 � �5, and m3 � 1 are roots of
multiplicity one, two, and three, respectively, of an aux-
iliary equation. Write down the general solution of the
corresponding homogeneous linear DE if it is

(a) an equation with constant coefficients,

(b) a Cauchy-Euler equation.

8. Consider the differential equation ay	 � by� � cy � g(x),
where a, b, and c are constants. Choose the input func-
tions g(x) for which the method of undetermined coeffi-
cients is applicable and the input functions for which the
method of variation of parameters is applicable.

(a) g(x) � ex ln x (b) g(x) � x3 cos x

(c) (d) g(x) � 2x�2ex

(e) g(x) � sin2x (f )

In Problems 9–24 use the procedures developed in this
chapter to find the general solution of each differential
equation.

9. y	 � 2y� � 2y � 0

10. 2y	 � 2y� � 3y � 0

11. y� � 10y	 � 25y� � 0

12. 2y� � 9y	 � 12y� � 5y � 0

13. 3y� � 10y	 � 15y� � 4y � 0

14. 2y(4) � 3y� � 2y	 � 6y� � 4y � 0

15. y	 � 3y� � 5y � 4x3 � 2x

16. y	 � 2y� � y � x2ex

17. y� � 5y	 � 6y� � 8 � 2 sin x

g(x) �
ex

sin x

g(x) �
sin x

ex

f1(x) � cos�x �
�

2�, f2(x) � sin x, (�
, 
)
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18. y� � y	 � 6

19. y	 � 2y� � 2y � ex tan x

20.

21. 6x2y	 � 5xy� � y � 0

22. 2x3y� � 19x2y	 � 39xy� � 9y � 0

23. x2y	 � 4xy� � 6y � 2x4 � x2

24. x2y	 � xy� � y � x3

25. Write down the form of the general solution y � yc � yp

of the given differential equation in the two cases v� a
and v� a. Do not determine the coefficients in yp.

(a) y	 � v2y � sin ax (b) y	 � v2y � eax

26. (a) Given that y � sin x is a solution of

y(4) � 2y� � 11y	 � 2y� � 10y � 0,

find the general solution of the DE without the aid of a
calculator or a computer.

(b) Find a linear second-order differential equation
with constant coefficients for which y1 � 1 and
y2 � e�x are solutions of the associated homoge-
neous equation and is a particular
solution of the nonhomogeneous equation.

27. (a) Write the general solution of the fourth-order DE
y(4) � 2y	 � y � 0 entirely in terms of hyperbolic
functions.

(b) Write down the form of a particular solution of
y(4) � 2y	 � y � sinh x.

28. Consider the differential equation 

x2y	 � (x2 � 2x)y� � (x � 2)y � x3.

Verify that y1 � x is one solution of the associated
homogeneous equation. Then show that the method of
reduction of order discussed in Section 4.2 leads to a
second solution y2 of the homogeneous equation as well
as a particular solution yp of the nonhomogeneous equa-
tion. Form the general solution of the DE on the interval
(0, 
).

In Problems 29–34 solve the given differential equation
subject to the indicated conditions.

29.

30. y	 � 2y� � y � 0, y(�1) � 0, y�(0) � 0

31. y	 � y � x � sin x, y(0) � 2, y�(0) � 3

32. y	 � y � sec3x, y(0) � 1, y�(0) �
1

2

y	 � 2y� � 2y � 0, y��

2� � 0, y(�) � �1

yp � 1
2 x2 � x

y	 � y �
2ex

ex � e�x



33. y�y	 � 4x, y(1) � 5, y�(1) � 2

34. 2y	 � 3y2, y(0) � 1, y�(0) � 1

35. (a) Use a CAS as an aid in finding the roots of the aux-
iliary equation for

12y(4) � 64y� � 59y	 � 23y� � 12y � 0.

Give the general solution of the equation.

(b) Solve the DE in part (a) subject to the initial condi-
tions y(0) � �1, y�(0) � 2, y	(0) � 5, y�(0) � 0.
Use a CAS as an aid in solving the resulting
systems of four equations in four unknowns.

36. Find a member of the family of solutions of
whose graph is tangent to the

x-axis at x � 1. Use a graphing utility to graph the
solution curve.

xy	 � y� � 1x � 0
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In Problems 37–40 use systematic elimination to solve the
given system.

37.

38.

39.

40.

 5x � (D � 3)y � cos 2t

(D � 2 )x � (D � 1)y � sin 2t

�3x � (D � 4 )  y � �7et

 (D �  2)x �y � �et

dy

dt
� 3x � 4y � 4t

dx

dt
� 2x � y � t � 2

dx

dt
� 2

dy

dt
� y � 3

dx

dt
�

dy

dt
� 2x � 2y � 1


