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2.1 Solution Curves Without a Solution
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2.6 A Numerical Method

CHAPTER 2 IN REVIEW

The history of mathematics is rife with stories of people who devoted much of their

lives to solving equations—algebraic equations at first and then eventually

differential equations. In Sections 2.2–2.5 we will study some of the more

important analytical methods for solving first-order DEs. However, before we start

solving anything, you should be aware of two facts: It is possible for a differential

equation to have no solutions, and a differential equation can possess a solution yet

there might not exist any analytical method for finding it. In Sections 2.1 and 2.6

we do not solve any DEs but show how to glean information directly from the

equation itself. In Section 2.1 we see how the DE yields qualitative information

about graphs that enables us to sketch renditions of solutions curves. In Section 2.6

we use the differential equation to construct a numerical procedure for

approximating solutions.

FIRST-ORDER DIFFERENTIAL
EQUATIONS
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SOLUTION CURVES WITHOUT A SOLUTION

REVIEW MATERIAL
● The first derivative as slope of a tangent line
● The algebraic sign of the first derivative indicates increasing or decreasing

INTRODUCTION Let us imagine for the moment that we have in front of us a first-order differ-
ential equation dy�dx � f (x, y), and let us further imagine that we can neither find nor invent a
method for solving it analytically. This is not as bad a predicament as one might think, since the dif-
ferential equation itself can sometimes “tell” us specifics about how its solutions “behave.”

We begin our study of first-order differential equations with two ways of analyzing a DE qual-
itatively. Both these ways enable us to determine, in an approximate sense, what a solution curve
must look like without actually solving the equation.

2.1

2.1.1 DIRECTION FIELDS

SOME FUNDAMENTAL QUESTIONS We saw in Section 1.2 that whenever
f (x, y) and �f��y satisfy certain continuity conditions, qualitative questions about
existence and uniqueness of solutions can be answered. In this section we shall see
that other qualitative questions about properties of solutions—How does a solution
behave near a certain point? How does a solution behave as ?—can often be
answered when the function f depends solely on the variable y. We begin, however,
with a simple concept from calculus: 

A derivative dy�dx of a differentiable function y � y(x) gives slopes of tangent
lines at points on its graph.

SLOPE Because a solution y � y(x) of a first-order differential equation

(1)

is necessarily a differentiable function on its interval I of definition, it must also be con-
tinuous on I. Thus the corresponding solution curve on I must have no breaks and must
possess a tangent line at each point (x, y(x)). The function f in the normal form (1) is
called the slope function or rate function. The slope of the tangent line at (x, y(x)) on
a solution curve is the value of the first derivative dy�dx at this point, and we know
from (1) that this is the value of the slope function f (x, y(x)). Now suppose that (x, y)
represents any point in a region of the xy-plane over which the function f is defined. The
value f (x, y) that the function f assigns to the point represents the slope of a line or, as
we shall envision it, a line segment called a lineal element. For example, consider the
equation dy�dx � 0.2xy, where f (x, y) � 0.2xy. At, say, the point (2, 3) the slope of a
lineal element is f (2, 3) � 0.2(2)(3) � 1.2. Figure 2.1.1(a) shows a line segment with
slope 1.2 passing though (2, 3). As shown in Figure 2.1.1(b), if a solution curve also
passes through the point (2, 3), it does so tangent to this line segment; in other words,
the lineal element is a miniature tangent line at that point.

DIRECTION FIELD If we systematically evaluate f over a rectangular grid of
points in the xy-plane and draw a line element at each point (x, y) of the grid with
slope f (x, y), then the collection of all these line elements is called a direction field
or a slope field of the differential equation dy�dx � f (x, y). Visually, the direction
field suggests the appearance or shape of a family of solution curves of the
differential equation, and consequently, it may be possible to see at a glance certain
qualitative aspects of the solutions—regions in the plane, for example, in which a

dy

dx
� f (x, y)

x : 


solution
curve

(a) lineal element at a point

(b) lineal element is tangent to
solution curve that passes
through the point

slope = 1.2

(2, 3)

x

y

tangent

(2, 3)

x

y

FIGURE 2.1.1 A solution curve is
tangent to lineal element at (2, 3)
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solution exhibits an unusual behavior. A single solution curve that passes through a
direction field must follow the flow pattern of the field; it is tangent to a line element
when it intersects a point in the grid. Figure 2.1.2 shows a computer-generated direc-
tion field of the differential equation dy�dx � sin(x � y) over a region of the xy-plane.
Note how the three solution curves shown in color follow the flow of the field.

EXAMPLE 1 Direction Field

The direction field for the differential equation dy�dx � 0.2xy shown in Figure 2.1.3(a)
was obtained by using computer software in which a 5 � 5 grid of points (mh, nh),
m and n integers, was defined by letting �5 � m � 5, �5 � n � 5, and h � 1.
Notice in Figure 2.1.3(a) that at any point along the x-axis (y � 0) and the
y-axis (x � 0), the slopes are f (x, 0) � 0 and f (0, y) � 0, respectively, so the lineal
elements are horizontal. Moreover, observe in the first quadrant that for a fixed value
of x the values of f (x, y) � 0.2xy increase as y increases; similarly, for a fixed y the
values of f (x, y) � 0.2xy increase as x increases. This means that as both x and y
increase, the lineal elements almost become vertical and have positive slope ( f (x, y) �
0.2xy � 0 for x � 0, y � 0). In the second quadrant, � f (x, y)� increases as �x � and y
increase, so the lineal elements again become almost vertical but this time have
negative slope ( f (x, y) � 0.2xy � 0 for x � 0, y � 0). Reading from left to right,
imagine a solution curve that starts at a point in the second quadrant, moves steeply
downward, becomes flat as it passes through the y-axis, and then, as it enters the first
quadrant, moves steeply upward—in other words, its shape would be concave
upward and similar to a horseshoe. From this it could be surmised that y : 

as x : �
. Now in the third and fourth quadrants, since f (x, y) � 0.2xy � 0 and
f (x, y) � 0.2xy � 0, respectively, the situation is reversed: A solution curve increases
and then decreases as we move from left to right. We saw in (1) of Section 1.1 that

is an explicit solution of the differential equation dy�dx � 0.2xy; you
should verify that a one-parameter family of solutions of the same equation is given
by . For purposes of comparison with Figure 2.1.3(a) some representative
graphs of members of this family are shown in Figure 2.1.3(b).

EXAMPLE 2 Direction Field

Use a direction field to sketch an approximate solution curve for the initial-value
problem dy�dx � sin y, .

SOLUTION Before proceeding, recall that from the continuity of f (x, y) � sin y and
�f��y � cos y, Theorem 1.2.1 guarantees the existence of a unique solution curve
passing through any specified point (x0, y0) in the plane. Now we set our computer soft-
ware again for a 5 � 5 rectangular region and specify (because of the initial condition)
points in that region with vertical and horizontal separation of unit—that is, at
points (mh, nh), , m and n integers such that �10 � m � 10, �10 � n � 10.
The result is shown in Figure 2.1.4. Because the right-hand side of dy�dx � sin y is 0
at y � 0, and at y � ��, the lineal elements are horizontal at all points whose second
coordinates are y � 0 or y � ��. It makes sense then that a solution curve passing
through the initial point (0, has the shape shown in the figure.

INCREASING/DECREASING Interpretation of the derivative dy�dx as a function
that gives slope plays the key role in the construction of a direction field. Another
telling property of the first derivative will be used next, namely, if dy�dx � 0 (or
dy�dx � 0) for all x in an interval I, then a differentiable function y � y(x) is
increasing (or decreasing) on I.

�3
2)

h � 1
2

1
2

y(0) � �3
2

y � ce0.1x2

y � e0.1x2

c>0

c<0
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(b) some solution curves in the
family y � ce0.1x2

(a) direction field for
dy/dx � 0.2xy

FIGURE 2.1.3 Direction field and
solution curves

FIGURE 2.1.2 Solution curves
following flow of a direction field
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Example 2

REMARKS

Sketching a direction field by hand is straightforward but time consuming; it is
probably one of those tasks about which an argument can be made for doing it
once or twice in a lifetime, but it is overall most efficiently carried out by means
of computer software. Before calculators, PCs, and software the method of
isoclines was used to facilitate sketching a direction field by hand. For the DE
dy�dx � f (x, y), any member of the family of curves f (x, y) � c, c a constant,
is called an isocline. Lineal elements drawn through points on a specific iso-
cline, say, f (x, y) � c1 all have the same slope c1. In Problem 15 in Exercises 2.1
you have your two opportunities to sketch a direction field by hand.

2.1.2 AUTONOMOUS FIRST-ORDER DEs

AUTONOMOUS FIRST-ORDER DEs In Section 1.1 we divided the class of ordi-
nary differential equations into two types: linear and nonlinear. We now consider
briefly another kind of classification of ordinary differential equations, a classifica-
tion that is of particular importance in the qualitative investigation of differential
equations. An ordinary differential equation in which the independent variable does
not appear explicitly is said to be autonomous. If the symbol x denotes the indepen-
dent variable, then an autonomous first-order differential equation can be written as
f (y, y�) � 0 or in normal form as

. (2)

We shall assume throughout that the function f in (2) and its derivative f � are contin-
uous functions of y on some interval I. The first-order equations

f (y) f (x, y)
p p

are autonomous and nonautonomous, respectively.
Many differential equations encountered in applications or equations that are

models of physical laws that do not change over time are autonomous. As we have
already seen in Section 1.3, in an applied context, symbols other than y and x are rou-
tinely used to represent the dependent and independent variables. For example, if t
represents time then inspection of

,

where k, n, and Tm are constants, shows that each equation is time independent.
Indeed, all of the first-order differential equations introduced in Section 1.3 are time
independent and so are autonomous.

CRITICAL POINTS The zeros of the function f in (2) are of special importance.
We say that a real number c is a critical point of the autonomous differential
equation (2) if it is a zero of f—that is, f (c) � 0. A critical point is also called an
equilibrium point or stationary point. Now observe that if we substitute the constant
function y(x) � c into (2), then both sides of the equation are zero. This means:

If c is a critical point of (2), then y(x) � c is a constant solution of the
autonomous differential equation.

A constant solution y(x) � c of (2) is called an equilibrium solution; equilibria are
the only constant solutions of (2).

dA

dt
� kA,    

dx

dt
� kx(n � 1 � x),    

dT

dt
� k(T � Tm),    

dA

dt
� 6 �

1

100
A

dy

dx
� 1 � y2    and    

dy

dx
� 0.2xy

dy

dx
� f (y)
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As was already mentioned, we can tell when a nonconstant solution y � y(x) of
(2) is increasing or decreasing by determining the algebraic sign of the derivative
dy�dx; in the case of (2) we do this by identifying intervals on the y-axis over which
the function f (y) is positive or negative.

EXAMPLE 3 An Autonomous DE

The differential equation

where a and b are positive constants, has the normal form dP�dt � f(P), which is (2)
with t and P playing the parts of x and y, respectively, and hence is autonomous.
From f(P) � P(a � bP) � 0 we see that 0 and a�b are critical points of the equation,
so the equilibrium solutions are P(t) � 0 and P(t) � a�b. By putting the critical points
on a vertical line, we divide the line into three intervals defined by �
 � P � 0,
0 � P � a�b, a�b � P � 
. The arrows on the line shown in Figure 2.1.5 indicate
the algebraic sign of f(P) � P(a � bP) on these intervals and whether a nonconstant
solution P(t) is increasing or decreasing on an interval. The following table explains
the figure.

Interval Sign of f (P) P(t) Arrow

(�
, 0) minus decreasing points down
(0, a�b) plus increasing points up
(a�b, 
) minus decreasing points down

Figure 2.1.5 is called a one-dimensional phase portrait, or simply phase
portrait, of the differential equation dP�dt � P(a � bP). The vertical line is called a
phase line.

SOLUTION CURVES Without solving an autonomous differential equation, we
can usually say a great deal about its solution curves. Since the function f in (2) is
independent of the variable x, we may consider f defined for �
 � x � 
 or for 
0 � x � 
. Also, since f and its derivative f� are continuous functions of y on some
interval I of the y-axis, the fundamental results of Theorem 1.2.1 hold in some hori-
zontal strip or region R in the xy-plane corresponding to I, and so through any point
(x0, y0) in R there passes only one solution curve of (2). See Figure 2.1.6(a). For the
sake of discussion, let us suppose that (2) possesses exactly two critical points c1 and
c2 and that c1 � c2. The graphs of the equilibrium solutions y(x) � c1 and y(x) � c2

are horizontal lines, and these lines partition the region R into three subregions R1,
R2, and R3, as illustrated in Figure 2.1.6(b). Without proof here are some conclusions
that we can draw about a nonconstant solution y(x) of (2):

• If (x0, y0) is in a subregion Ri, i � 1, 2, 3, and y(x) is a solution whose graph
passes through this point, then y(x) remains in the subregion Ri for all x. As
illustrated in Figure 2.1.6(b), the solution y(x) in R2 is bounded below by c1

and above by c2, that is, c1 � y(x) � c2 for all x. The solution curve stays
within R2 for all x because the graph of a nonconstant solution of (2) cannot
cross the graph of either equilibrium solution y(x) � c1 or y(x) � c2. See
Problem 33 in Exercises 2.1.

• By continuity of f we must then have either f (y) � 0 or f (y) � 0 for all x in
a subregion Ri, i � 1, 2, 3. In other words, f (y) cannot change signs in a
subregion. See Problem 33 in Exercises 2.1.

dP

dt
� P(a � bP),

P-axis

a

0

b

FIGURE 2.1.5 Phase portrait of 
dP�dt � P(a � bP)

R

I

R1

R2
(x0, y0)

(x0, y0)

y(x) = c2

y(x) = c1

R3

y

y

x

x

(a) region R

(b) subregions R1, R2, and R3 of R

FIGURE 2.1.6 Lines y(x) � c1 and
y(x) � c2 partition R into three horizontal
subregions



• Since dy�dx � f (y(x)) is either positive or negative in a subregion Ri, i � 1,
2, 3, a solution y(x) is strictly monotonic—that is, y(x) is either increasing
or decreasing in the subregion Ri. Therefore y(x) cannot be oscillatory, nor
can it have a relative extremum (maximum or minimum). See Problem 33
in Exercises 2.1.

• If y(x) is bounded above by a critical point c1 (as in subregion R1 where
y(x) � c1 for all x), then the graph of y(x) must approach the graph of the
equilibrium solution y(x) � c1 either as x : 
 or as x : �
. If y(x) is
bounded—that is, bounded above and below by two consecutive critical
points (as in subregion R2 where c1 � y(x) � c2 for all x)—then the graph
of y(x) must approach the graphs of the equilibrium solutions y(x) � c1 and
y(x) � c2, one as x : 
 and the other as x : �
. If y(x) is bounded below
by a critical point (as in subregion R3 where c2 � y(x) for all x), then the
graph of y(x) must approach the graph of the equilibrium solution y(x) � c2

either as x : 
 or as x : �
. See Problem 34 in Exercises 2.1.

With the foregoing facts in mind, let us reexamine the differential equation in
Example 3.

EXAMPLE 4 Example 3 Revisited

The three intervals determined on the P-axis or phase line by the critical points 
P � 0 and P � a�b now correspond in the tP-plane to three subregions defined by:

R1: �
 � P � 0, R2: 0 � P � a�b, and R3: a�b � P � 
,

where �
 � t � 
. The phase portrait in Figure 2.1.7 tells us that P(t) is decreasing
in R1, increasing in R2, and decreasing in R3. If P(0) � P0 is an initial value, then in
R1, R2, and R3 we have, respectively, the following:

(i) For P0 � 0, P(t) is bounded above. Since P(t) is decreasing, P(t)
decreases without bound for increasing t, and so P(t) : 0 as t : �
.
This means that the negative t-axis, the graph of the equilibrium solution
P(t) � 0, is a horizontal asymptote for a solution curve.

(ii) For 0 � P0 � a�b, P(t) is bounded. Since P(t) is increasing, P(t) : a�b
as t : 
 and P(t) : 0 as t : �
. The graphs of the two equilibrium
solutions, P(t) � 0 and P(t) � a�b, are horizontal lines that are horizontal
asymptotes for any solution curve starting in this subregion.

(iii) For P0 � a�b, P(t) is bounded below. Since P(t) is decreasing, P(t) : a�b
as t : 
. The graph of the equilibrium solution P(t) � a�b is a horizontal
asymptote for a solution curve.

In Figure 2.1.7 the phase line is the P-axis in the tP-plane. For clarity the origi-
nal phase line from Figure 2.1.5 is reproduced to the left of the plane in which
the subregions R1, R2, and R3 are shaded. The graphs of the equilibrium solutions
P(t) � a�b and P(t) � 0 (the t-axis) are shown in the figure as blue dashed lines;
the solid graphs represent typical graphs of P(t) illustrating the three cases just
discussed.

In a subregion such as R1 in Example 4, where P(t) is decreasing and unbounded
below, we must necessarily have P(t) : �
. Do not interpret this last statement to
mean P(t) : �
 as t : 
; we could have P(t) : �
 as t : T, where T � 0 is a
finite number that depends on the initial condition P(t0) � P0. Thinking in dynamic
terms, P(t) could “blow up” in finite time; thinking graphically, P(t) could have a
vertical asymptote at t � T � 0. A similar remark holds for the subregion R3.

The differential equation dy�dx � sin y in Example 2 is autonomous and has an
infinite number of critical points, since sin y � 0 at y � n�, n an integer. Moreover,
we now know that because the solution y(x) that passes through is bounded(0, �3

2)

R1

R2
P0

P0

P0

PP

a
b

0
t

R3

phase line

decreasing

decreasing

increasing

tP-plane

FIGURE 2.1.7 Phase portrait and
solution curves in each of the three
subregions
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above and below by two consecutive critical points (�� � y(x) � 0) and is
decreasing (sin y � 0 for �� � y � 0), the graph of y(x) must approach the graphs
of the equilibrium solutions as horizontal asymptotes: y(x) : �� as x : 
 and
y(x) : 0 as x : �
.

EXAMPLE 5 Solution Curves of an Autonomous DE

The autonomous equation dy�dx � (y � 1)2 possesses the single critical point 1.
From the phase portrait in Figure 2.1.8(a) we conclude that a solution y(x) is an
increasing function in the subregions defined by �
 � y � 1 and 1 � y � 
, where
�
 � x � 
. For an initial condition y(0) � y0 � 1, a solution y(x) is increasing and
bounded above by 1, and so y(x) : 1 as x : 
; for y(0) � y0 � 1 a solution y(x) is
increasing and unbounded.

Now y(x) � 1 � 1�(x � c) is a one-parameter family of solutions of the differ-
ential equation. (See Problem 4 in Exercises 2.2) A given initial condition determines
a value for c. For the initial conditions, say, y(0) � �1 � 1 and y(0) � 2 � 1, we
find, in turn, that y(x) � 1 � 1�(x � , and y(x) � 1 � 1�(x � 1). As shown in
Figures 2.1.8(b) and 2.1.8(c), the graph of each of these rational functions possesses

1
2)

cccc

y0

(d)

y0

(c)

y0

(b)

y0

(a)

FIGURE 2.1.9 Critical point c is an
attractor in (a), a repeller in (b), and semi-
stable in (c) and (d).
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y(0) � 1
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FIGURE 2.1.8 Behavior of solutions near y � 1

a vertical asymptote. But bear in mind that the solutions of the IVPs

are defined on special intervals. They are, respectively,

The solution curves are the portions of the graphs in Figures 2.1.8(b) and
2.1.8(c) shown in blue. As predicted by the phase portrait, for the solution curve
in Figure 2.1.8(b), y(x) : 1 as x : 
; for the solution curve in Figure 2.1.8(c),
y(x) : 
 as x : 1 from the left.

ATTRACTORS AND REPELLERS Suppose that y(x) is a nonconstant solution of
the autonomous differential equation given in (1) and that c is a critical point of
the DE. There are basically three types of behavior that y(x) can exhibit near c. In
Figure 2.1.9 we have placed c on four vertical phase lines. When both arrowheads on
either side of the dot labeled c point toward c, as in Figure 2.1.9(a), all solutions y(x)
of (1) that start from an initial point (x0, y0) sufficiently near c exhibit the asymp-
totic behavior . For this reason the critical point c is said to belimx:
 y(x) � c

y(x) � 1 �
1

x � 1
2

,  �1
2 � x � 
   and   y(x) � 1 �

1

x � 1
,  �
 � x � 1.

dy

dx
� ( y � 1)2,  y(0) � �1    and    

dy

dx
� (y � 1)2,  y(0) � 2



asymptotically stable. Using a physical analogy, a solution that starts near c is like a
charged particle that, over time, is drawn to a particle of opposite charge, and so c is
also referred to as an attractor. When both arrowheads on either side of the dot
labeled c point away from c, as in Figure 2.1.9(b), all solutions y(x) of (1) that start
from an initial point (x0, y0) move away from c as x increases. In this case the critical
point c is said to be unstable. An unstable critical point is also called a repeller, for
obvious reasons. The critical point c illustrated in Figures 2.1.9(c) and 2.1.9(d) is
neither an attractor nor a repeller. But since c exhibits characteristics of both an
attractor and a repeller—that is, a solution starting from an initial point (x0, y0) suffi-
ciently near c is attracted to c from one side and repelled from the other side—we say
that the critical point c is semi-stable. In Example 3 the critical point a�b is
asymptotically stable (an attractor) and the critical point 0 is unstable (a repeller).
The critical point 1 in Example 5 is semi-stable.

AUTONOMOUS DEs AND DIRECTION FIELDS If a first-order differential equa-
tion is autonomous, then we see from the right-hand side of its normal form 
dy�dx � f (y) that slopes of lineal elements through points in the rectangular grid used
to construct a direction field for the DE depend solely on the y-coordinate of the points.
Put another way, lineal elements passing through points on any horizontal line must all
have the same slope; slopes of lineal elements along any vertical line will, of course,
vary. These facts are apparent from inspection of the horizontal gold strip and vertical
blue strip in Figure 2.1.10. The figure exhibits a direction field for the autonomous equa-
tion dy�dx � 2y � 2. With these facts in mind, reexamine Figure 2.1.4.

slopes of lineal
elements on a
vertical line varyslopes of lineal

elements on a horizontal
line are all the same

x

y

FIGURE 2.1.10 Direction field for an
autonomous DE
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FIGURE 2.1.11 Direction field for Problem 1
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_4
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8
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FIGURE 2.1.12 Direction field for Problem 2

EXERCISES 2.1 Answers to selected odd-numbered problems begin on page ANS-1.

2.1.1 DIRECTION FIELDS

In Problems 1–4 reproduce the given computer-generated
direction field. Then sketch, by hand, an approximate solu-
tion curve that passes through each of the indicated points.
Use different colored pencils for each solution curve.

1.

(a) y(�2) � 1 (b) y(3) � 0

(c) y(0) � 2 (d) y(0) � 0

dy

dx
� x2 � y2

3.

(a) y(0) � 0 (b) y(�1) � 0

(c) y(2) � 2 (d) y(0) � �4

dy

dx
� 1 � xy

2.

(a) y(�6) � 0 (b) y(0) � 1

(c) y(0) � �4 (d) y(8) � �4

dy

dx
� e�0.01xy2

2.1 SOLUTION CURVES WITHOUT A SOLUTION ● 41
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In Problems 13 and 14 the given figure represents the graph
of f (y) and f (x), respectively. By hand, sketch a direction
field over an appropriate grid for dy�dx � f (y) (Problem 13)
and then for dy�dx � f (x) (Problem 14).

13.

4.

(a) y(0) � 1 (b) y(1) � 0

(c) y(3) � 3 (d) y(0) � �5
2

dy

dx
� (sin x) cos y

In Problems 5–12 use computer software to obtain a direc-
tion field for the given differential equation. By hand, sketch
an approximate solution curve passing through each of the
given points.

5. y� � x 6. y� � x � y

(a) y(0) � 0 (a) y(�2) � 2

(b) y(0) � �3 (b) y(1) � �3

7. 8.

(a) y(1) � 1 (a) y(0) � 1

(b) y(0) � 4 (b) y(�2) � �1

9. 10.

(a) (a) y(0) � �2

(b) y(2) � �1 (b) y(1) � 2.5

11. 12.

(a) y(2) � 2 (a)

(b) y(�1) � 0 (b) y(3
2) � 0

y(�1
2) � 2

dy

dx
� 1 �

y

x
y� � y � cos

�

2
x

y(0) � 1
2

dy

dx
� xeydy

dx
� 0.2x2 � y

dy

dx
�

1

y
y

dy

dx
� �x

x

y
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FIGURE 2.1.13 Direction field for Problem 3
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FIGURE 2.1.14 Direction field for Problem 4

14.

15. In parts (a) and (b) sketch isoclines f (x, y) � c (see the
Remarks on page 37) for the given differential equation
using the indicated values of c. Construct a direction field
over a grid by carefully drawing lineal elements with the
appropriate slope at chosen points on each isocline. In
each case, use this rough direction field to sketch an ap-
proximate solution curve for the IVP consisting of the DE
and the initial condition y(0) � 1.

(a) dy�dx � x � y; c an integer satisfying �5 � c � 5

(b) dy�dx � x2 � y2;

Discussion Problems

16. (a) Consider the direction field of the differential equa-
tion dy�dx � x(y � 4)2 � 2, but do not use tech-
nology to obtain it. Describe the slopes of the lineal
elements on the lines x � 0, y � 3, y � 4, and y � 5.

(b) Consider the IVP dy�dx � x(y � 4)2 � 2, y(0) � y0,
where y0 � 4. Can a solution y(x) : 
 as x : 
?
Based on the information in part (a), discuss.

17. For a first-order DE dy�dx � f (x, y) a curve in the plane
defined by f (x, y) � 0 is called a nullcline of the equa-
tion, since a lineal element at a point on the curve has zero
slope. Use computer software to obtain a direction field
over a rectangular grid of points for dy�dx � x2 � 2y,

c � 1
4, c � 1, c � 9

4, c � 4



and then superimpose the graph of the nullcline 
over the direction field. Discuss the behavior of solution
curves in regions of the plane defined by and by

. Sketch some approximate solution curves. Try
to generalize your observations.

18. (a) Identify the nullclines (see Problem 17) in
Problems 1, 3, and 4. With a colored pencil, circle
any lineal elements in Figures 2.1.11, 2.1.13, and
2.1.14 that you think may be a lineal element at a
point on a nullcline.

(b) What are the nullclines of an autonomous first-order
DE?

2.1.2 AUTONOMOUS FIRST-ORDER DEs

19. Consider the autonomous first-order differential equa-
tion dy�dx � y � y3 and the initial condition y(0) � y0.
By hand, sketch the graph of a typical solution y(x)
when y0 has the given values.

(a) y0 � 1 (b) 0 � y0 � 1

(c) �1 � y0 � 0 (d) y0 � �1

20. Consider the autonomous first-order differential equation
dy�dx � y2 � y4 and the initial condition y(0) � y0. By
hand, sketch the graph of a typical solution y(x) when y0

has the given values.

(a) y0 � 1 (b) 0 � y0 � 1

(c) �1 � y0 � 0 (d) y0 � �1

In Problems 21–28 find the critical points and phase portrait
of the given autonomous first-order differential equation.
Classify each critical point as asymptotically stable, unstable,
or semi-stable. By hand, sketch typical solution curves in the
regions in the xy-plane determined by the graphs of the
equilibrium solutions.

21. 22.

23. 24.

25. 26.

27. 28.

In Problems 29 and 30 consider the autonomous differential
equation dy�dx � f(y), where the graph of f is given. Use the
graph to locate the critical points of each differential equa-
tion. Sketch a phase portrait of each differential equation.
By hand, sketch typical solution curves in the subregions in
the xy-plane determined by the graphs of the equilibrium
solutions.

dy

dx
�

yey � 9y

ey

dy

dx
� y ln(y � 2)

dy

dx
� y(2 � y)(4 � y)

dy

dx
� y2(4 � y2)

dy

dx
� 10 � 3y � y2dy

dx
� (y � 2)4

dy

dx
� y2 � y3dy

dx
� y2 � 3y

y � 1
2 x2

y � 1
2 x2

y � 1
2 x2 29. f

c y

FIGURE 2.1.17 Graph for Problem 29

30. f

y1

1

FIGURE 2.1.18 Graph for Problem 30

Discussion Problems

31. Consider the autonomous DE dy�dx � (2��)y � sin y.
Determine the critical points of the equation. Discuss
a way of obtaining a phase portrait of the equation.
Classify the critical points as asymptotically stable,
unstable, or semi-stable.

32. A critical point c of an autonomous first-order DE is
said to be isolated if there exists some open interval that
contains c but no other critical point. Can there exist an
autonomous DE of the form given in (1) for which every
critical point is nonisolated? Discuss; do not think pro-
found thoughts.

33. Suppose that y(x) is a nonconstant solution of the
autonomous equation dy�dx � f (y) and that c is a
critical point of the DE. Discuss. Why can’t the graph
of y(x) cross the graph of the equilibrium solution
y � c? Why can’t f (y) change signs in one of the
subregions discussed on page 38? Why can’t y(x) be
oscillatory or have a relative extremum (maximum or
minimum)?

34. Suppose that y(x) is a solution of the autonomous equa-
tion dy�dx � f (y) and is bounded above and below by
two consecutive critical points c1 � c2, as in subregion 
R2 of Figure 2.1.6(b). If f (y) � 0 in the region, then 
limx:
 y(x) � c2. Discuss why there cannot exist a num-
ber L � c2 such that limx:
 y(x) � L. As part of your
discussion, consider what happens to y�(x) as x : 
.

35. Using the autonomous equation (1), discuss how it is
possible to obtain information about the location of
points of inflection of a solution curve.

2.1 SOLUTION CURVES WITHOUT A SOLUTION ● 43
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36. Consider the autonomous DE dy�dx � y2 � y � 6. Use
your ideas from Problem 35 to find intervals on the
y-axis for which solution curves are concave up and
intervals for which solution curves are concave down.
Discuss why each solution curve of an initial-value
problem of the form dy�dx � y2 � y � 6, y(0) � y0,
where �2 � y0 � 3, has a point of inflection with the
same y-coordinate. What is that y-coordinate? Carefully
sketch the solution curve for which y(0) � �1. Repeat
for y(2) � 2.

37. Suppose the autonomous DE in (1) has no critical
points. Discuss the behavior of the solutions.

Mathematical Models

38. Population Model The differential equation in
Example 3 is a well-known population model. Suppose
the DE is changed to

,

where a and b are positive constants. Discuss what
happens to the population P as time t increases.

39. Population Model Another population model is
given by

,

where h and k are positive constants. For what initial
values P(0) � P0 does this model predict that the popu-
lation will go extinct?

40. Terminal Velocity In Section 1.3 we saw that the
autonomous differential equation

,m
dv

dt
� mg � kv

dP

dt
� kP � h

dP

dt
� P(aP � b)

where k is a positive constant and g is the acceleration
due to gravity, is a model for the velocity v of a body of
mass m that is falling under the influence of gravity.
Because the term �kv represents air resistance, the
velocity of a body falling from a great height does not in-
crease without bound as time t increases. Use a phase
portrait of the differential equation to find the limiting, or
terminal, velocity of the body. Explain your reasoning.

41. Suppose the model in Problem 40 is modified so 
that air resistance is proportional to v2, that is,

.

See Problem 17 in Exercises 1.3. Use a phase portrait
to find the terminal velocity of the body. Explain your
reasoning.

42. Chemical Reactions When certain kinds of chemicals
are combined, the rate at which the new compound is
formed is modeled by the autonomous differential
equation

where k � 0 is a constant of proportionality and
� � � � 0. Here X(t) denotes the number of grams of
the new compound formed in time t.

(a) Use a phase portrait of the differential equation to
predict the behavior of X(t) as t : 
.

(b) Consider the case when � � �. Use a phase portrait
of the differential equation to predict the behavior
of X(t) as t : 
 when X(0) � �. When X(0) � �.

(c) Verify that an explicit solution of the DE in the case
when k � 1 and � � � is X(t) � � � 1�(t � c).
Find a solution that satisfies X(0) � ��2. Then find
a solution that satisfies X(0) � 2�. Graph these
two solutions. Does the behavior of the solutions as
t : 
 agree with your answers to part (b)?

dX

dt
� k(� � X)(� � X),

m
dv

dt
� mg � kv2

2.2 SEPARABLE VARIABLES

REVIEW MATERIAL
● Basic integration formulas (See inside front cover)
● Techniques of integration: integration by parts and partial fraction decomposition
● See also the Student Resource and Solutions Manual.

INTRODUCTION We begin our study of how to solve differential equations with the simplest of
all differential equations: first-order equations with separable variables. Because the method in this
section and many techniques for solving differential equations involve integration, you are urged to
refresh your memory on important formulas (such as 	 du�u) and techniques (such as integration by
parts) by consulting a calculus text.



SOLUTION BY INTEGRATION Consider the first-order differential equation
dy�dx � f (x, y). When f does not depend on the variable y, that is, f (x, y) � g(x), the
differential equation

(1)

can be solved by integration. If g(x) is a continuous function, then integrating both
sides of (1) gives , where G(x) is an antiderivative (indefi-
nite integral) of g(x). For example, if dy�dx � 1 � e2x, then its solution is

or .

A DEFINITION Equation (1), as well as its method of solution, is just a special
case when the function f in the normal form dy�dx � f (x, y) can be factored into a
function of x times a function of y.

DEFINITION 2.2.1 Separable Equation

A first-order differential equation of the form

is said to be separable or to have separable variables.

For example, the equations

are separable and nonseparable, respectively. In the first equation we can factor
f (x, y) � y2xe3x�4y as

g(x) h(y)
p p

,

but in the second equation there is no way of expressing y � sin x as a product of a
function of x times a function of y.

Observe that by dividing by the function h(y), we can write a separable equation
dy�dx � g(x)h(y) as

, (2)

where, for convenience, we have denoted 1�h(y) by p(y). From this last form we can
see immediately that (2) reduces to (1) when h(y) � 1.

Now if y � �(x) represents a solution of (2), we must have p(� (x))��(x) � g(x),
and therefore

. (3)

But dy � ��(x) dx, and so (3) is the same as

, (4)

where H(y) and G(x) are antiderivatives of p(y) � 1�h(y) and g(x), respectively.

� p(y) dy � � g(x) dx    or    H(y) � G(x) � c

� p(� (x))��(x) dx � � g(x) dx

p(y)
dy

dx
� g(x)

f (x, y) � y2xe3x�4y �  (xe3x )( y2e4y)

dy

dx
� y2xe3x�4y    and    

dy

dx
� y � sin x

dy

dx
� g(x)h(y)

y � x � 1
2e2x � cy � 	(1 � e2x) dx

y � 	g(x) dx � G(x) � c

dy

dx
� g(x)
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METHOD OF SOLUTION Equation (4) indicates the procedure for solving
separable equations. A one-parameter family of solutions, usually given implicitly, is
obtained by integrating both sides of p(y) dy � g(x) dx.

NOTE There is no need to use two constants in the integration of a separable equa-
tion, because if we write H(y) � c1 � G(x) � c2, then the difference c2 � c1 can be
replaced by a single constant c, as in (4). In many instances throughout the chapters
that follow, we will relabel constants in a manner convenient to a given equation. For
example, multiples of constants or combinations of constants can sometimes be
replaced by a single constant.

EXAMPLE 1 Solving a Separable DE

Solve (1 � x) dy � y dx � 0.

SOLUTION Dividing by (1 � x)y, we can write dy�y � dx�(1 � x), from which it
follows that

; laws of exponents

Relabeling as c then gives y � c(1 � x).

ALTERNATIVE SOLUTION Because each integral results in a logarithm, a judicious
choice for the constant of integration is ln�c � rather than c. Rewriting the second
line of the solution as ln�y � � ln�1 � x � � ln�c � enables us to combine the terms on
the right-hand side by the properties of logarithms. From ln�y � � ln�c(1 � x) � we
immediately get y � c(1 � x). Even if the indefinite integrals are not all logarithms,
it may still be advantageous to use ln�c �. However, no firm rule can be given.

In Section 1.1 we saw that a solution curve may be only a segment or an arc of
the graph of an implicit solution G(x, y) � 0.

EXAMPLE 2 Solution Curve

Solve the initial-value problem .

SOLUTION Rewriting the equation as y dy � �x dx, we get

.

We can write the result of the integration as x2 � y2 � c2 by replacing the constant
2c1 by c2. This solution of the differential equation represents a family of concentric
circles centered at the origin.

Now when x � 4, y � �3, so 16 � 9 � 25 � c2. Thus the initial-value problem
determines the circle x2 � y2 � 25 with radius 5. Because of its simplicity we can
solve this implicit solution for an explicit solution that satisfies the initial condition.

� y dy � �� x dx    and    
y2

2
� �

x2

2
� c1

dy

dx
� �

x

y
,  y(4) � �3

�ec1

� �ec1(1 � x).

� � 1 � x � ec1

y � eln�1�x��c1 � eln�1�x� � ec1

 ln� y � � ln� 1 � x � � c1

� dy

y
� � dx

1 � x

;�� 1 � x � � 1 � x,

� 1 � x � � �(1 � x),  
x ��1

x <�1



We saw this solution as y � �2(x) or in Example 3 of
Section 1.1. A solution curve is the graph of a differentiable function. In this case the
solution curve is the lower semicircle, shown in dark blue in Figure 2.2.1 containing
the point (4, �3).

LOSING A SOLUTION Some care should be exercised in separating variables,
since the variable divisors could be zero at a point. Specifically, if r is a zero 
of the function h(y), then substituting y � r into dy�dx � g(x)h(y) makes both sides
zero; in other words, y � r is a constant solution of the differential equation.

But after variables are separated, the left-hand side of � g(x) dx is undefined at r.

As a consequence, y � r might not show up in the family of solutions that are obtained
after integration and simplification. Recall that such a solution is called a singular
solution.

EXAMPLE 3 Losing a Solution

Solve .

SOLUTION We put the equation in the form

. (5)

The second equation in (5) is the result of using partial fractions on the left-hand side
of the first equation. Integrating and using the laws of logarithms gives

.

Here we have replaced 4c1 by c2. Finally, after replacing by c and solving the
last equation for y, we get the one-parameter family of solutions

. (6)

Now if we factor the right-hand side of the differential equation as 
dy�dx � (y � 2)(y � 2), we know from the discussion of critical points in Section 2.1
that y � 2 and y � �2 are two constant (equilibrium) solutions. The solution y � 2 is a
member of the family of solutions defined by (6) corresponding to the value c � 0.
However, y � �2 is a singular solution; it cannot be obtained from (6) for any choice of
the parameter c. This latter solution was lost early on in the solution process. Inspection
of (5) clearly indicates that we must preclude y � �2 in these steps.

EXAMPLE 4 An Initial-Value Problem

Solve .(e2y � y) cos x
dy

dx
� ey sin 2x, y(0) � 0

y � 2
1 � ce4x

1 � ce4x

�ec2

 or    ln� y � 2

y � 2 � � 4x � c2    or    
y � 2

y � 2
� �e4x�c2

1

4
 ln� y � 2 � �

1

4
 ln� y � 2 � � x � c1

dy

y2 � 4
� dx    or    
 1

4

y � 2
�

1
4

y � 2 � dy � dx

dy

dx
� y2 � 4

dy

h(y)

y � �125 � x2, �5 � x � 5

FIGURE 2.2.1 Solution curve for the
IVP in Example 2

x

y

(4, −3)
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SOLUTION Dividing the equation by ey cos x gives

.

Before integrating, we use termwise division on the left-hand side and the trigono-
metric identity sin 2x � 2 sin x cos x on the right-hand side. Then

integration by parts :

yields ey � ye�y � e�y � �2 cos x � c. (7)

The initial condition y � 0 when x � 0 implies c � 4. Thus a solution of the initial-
value problem is

ey � ye�y � e�y � 4 � 2 cos x. (8)

USE OF COMPUTERS The Remarks at the end of Section 1.1 mentioned
that it may be difficult to use an implicit solution G(x, y) � 0 to find an explicit
solution y � � (x). Equation (8) shows that the task of solving for y in terms of x may
present more problems than just the drudgery of symbol pushing—sometimes it
simply cannot be done! Implicit solutions such as (8) are somewhat frustrating; nei-
ther the graph of the equation nor an interval over which a solution satisfying y(0) �
0 is defined is apparent. The problem of “seeing” what an implicit solution looks like
can be overcome in some cases by means of technology. One way* of proceeding is
to use the contour plot application of a computer algebra system (CAS). Recall from
multivariate calculus that for a function of two variables z � G(x, y) the two-
dimensional curves defined by G(x, y) � c, where c is constant, are called the level
curves of the function. With the aid of a CAS, some of the level curves of the func-
tion G(x, y) � ey � ye�y � e�y � 2 cos x have been reproduced in Figure 2.2.2. The
family of solutions defined by (7) is the level curves G(x, y) � c. Figure 2.2.3 illus-
trates the level curve G(x, y) � 4, which is the particular solution (8), in blue color.
The other curve in Figure 2.2.3 is the level curve G(x, y) � 2, which is the member
of the family G(x, y) � c that satisfies y(��2) � 0.

If an initial condition leads to a particular solution by yielding a specific value of
the parameter c in a family of solutions for a first-order differential equation, there is
a natural inclination for most students (and instructors) to relax and be content.
However, a solution of an initial-value problem might not be unique. We saw in
Example 4 of Section 1.2 that the initial-value problem

(9)

has at least two solutions, y � 0 and . We are now in a position to solve the
equation. Separating variables and integrating y�1/2 dy � x dx gives

.

When x � 0, then y � 0, so necessarily, c � 0. Therefore . The trivial solution
y � 0 was lost by dividing by y1/2. In addition, the initial-value problem (9) possesses
infinitely many more solutions, since for any choice of the parameter a � 0 the

y � 1
16 x

4

2y1/2 �
x2

2
� c1    or    y � �x2

4
� c�

2

y � 1
16 x

4

dy

dx
� xy1/2,  y(0) � 0

� (ey � ye�y) dy � 2 � sin x dx

e2y � y

ey dy �
sin 2x

cos x
dx

x

y

2_2
_2

_1

1

2

_1 1
FIGURE 2.2.2 Level curves 
G(x, y) � c, where 
G(x, y) � ey � ye�y � e�y � 2 cos x

FIGURE 2.2.3 Level curves 
c � 2 and c � 4

(0, 0) /2,0) (π 
x

y

2_2
_2

_1

1

2

_1 1

c=4

c=2

*In Section 2.6 we will discuss several other ways of proceeding that are based on the concept of a
numerical solver.



piecewise-defined function

satisfies both the differential equation and the initial condition. See Figure 2.2.4.

SOLUTIONS DEFINED BY INTEGRALS If g is a function continuous on an open
interval I containing a, then for every x in I,

You might recall that the foregoing result is one of the two forms of the fundamental
theorem of calculus. In other words, is an antiderivative of the function g.
There are times when this form is convenient in solving DEs. For example, if g is
continuous on an interval I containing x0 and x, then a solution of the simple initial-
value problem , that is defined on I is given by

You should verify that y(x) defined in this manner satisfies the initial condition. Since
an antiderivative of a continuous function g cannot always be expressed in terms of
elementary functions, this might be the best we can do in obtaining an explicit
solution of an IVP. The next example illustrates this idea.

EXAMPLE 5 An Initial-Value Problem

Solve 

SOLUTION The function is continuous on , but its antideriva-
tive is not an elementary function. Using t as dummy variable of integration, we can
write

Using the initial condition y(3) � 5, we obtain the solution

The procedure demonstrated in Example 5 works equally well on separable
equations where, say, f (y) possesses an elementary antiderivative
but g(x) does not possess an elementary antiderivative. See Problems 29 and 30 in
Exercises 2.2.

dy>dx � g(x) f (y)

y(x) � 5 � �x

3
e�t2

dt.

y(x) � y(3) � �x

3
e�t2

dt.

y(x) � y(3) � �x

3
e�t2

dt

y(t)]x

3
� �x

3
e�t2

dt

�x

3

dy

dt
dt � �x

3
e�t2

dt

(�
, 
)g(x) � e�x2

dy

dx
� e�x2

,  y(3) � 5.

y(x) � y0 � �x

x0

g(t) dt

dy>dx � g(x), y(x0) � y0

�x
a g(t) dt

d

dx
�x

a
g(t) dt � g(x).

y � �0,
1

16 (x
2 � a2)2,

x � a

x � a

a =   > 0 a 0

(0, 0) x

y

FIGURE 2.2.4 Piecewise-defined
solutions of (9)
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REMARKS

(i) As we have just seen in Example 5, some simple functions do not possess
an antiderivative that is an elementary function. Integrals of these kinds of
functions are called nonelementary. For example, and are
nonelementary integrals. We will run into this concept again in Section 2.3.

(ii) In some of the preceding examples we saw that the constant in the one-
parameter family of solutions for a first-order differential equation can be rela-
beled when convenient. Also, it can easily happen that two individuals solving the
same equation correctly arrive at dissimilar expressions for their answers. For
example, by separation of variables we can show that one-parameter families of
solutions for the DE (1 � y2) dx � (1 � x2) dy � 0 are

.

As you work your way through the next several sections, bear in mind that fami-
lies of solutions may be equivalent in the sense that one family may be obtained
from another by either relabeling the constant or applying algebra and trigonom-
etry. See Problems 27 and 28 in Exercises 2.2.

arctan x � arctan y � c    or    
x � y

1 � xy
� c

�sin x2 dx�x
3 e�t2

dt

EXERCISES 2.2 Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1–22 solve the given differential equation by
separation of variables.

1. 2.

3. dx � e3xdy � 0 4. dy � (y � 1)2dx � 0

5. 6.

7. 8.

9. 10.

11. csc y dx � sec2x dy � 0

12. sin 3x dx � 2y cos33x dy � 0

13. (ey � 1)2e�y dx � (ex � 1)3e�x dy � 0

14. x(1 � y2)1/2 dx � y(1 � x2)1/2 dy

15. 16.

17. 18.

19. 20.
dy

dx
�

xy � 2y � x � 2

xy � 3y � x � 3

dy

dx
�

xy � 3x � y � 3

xy � 2x � 4y � 8

dN

dt
� N � Ntet�2dP

dt
� P � P2

dQ

dt
� k(Q � 70)

dS

dr
� kS

dy

dx
� �2y � 3

4x � 5�
2

y ln x
dx

dy
� �y � 1

x �
2

exy
dy

dx
� e�y � e�2x�ydy

dx
� e3x�2y

dy

dx
� 2xy2 � 0x

dy

dx
� 4y

dy

dx
� (x � 1)2dy

dx
� sin 5x

21. 22.

In Problems 23–28 find an explicit solution of the given
initial-value problem.

23.

24.

25.

26.

27.

28. (1 � x4) dy � x(1 � 4y2) dx � 0, y(1) � 0

In Problems 29 and 30 proceed as in Example 5 and find an
explicit solution of the given initial-value problem.

29.

30.

31. (a) Find a solution of the initial-value problem consisting
of the differential equation in Example 3 and the ini-
tial conditions y(0) � 2, y(0) � �2, and .y (1

4) � 1

dy

dx
� y 2 sin x2,  y(�2) � 1

3

dy

dx
� ye�x2

,  y(4) � 1

11 � y2 dx � 11 � x2 dy � 0, y(0) �
13

2

dy

dt
� 2y � 1, y(0) � 5

2

x2 dy

dx
� y � xy, y(�1) � �1

dy

dx
�

y2 � 1

x2 � 1
, y(2) � 2

dx

dt
� 4(x2 � 1), x(�>4) � 1

(ex � e�x)
dy

dx
� y2dy

dx
� x11 � y2



(b) Find the solution of the differential equation in
Example 4 when ln c1 is used as the constant of
integration on the left-hand side in the solution and
4 ln c1 is replaced by ln c. Then solve the same
initial-value problems in part (a).

32. Find a solution of that passes through

the indicated points.

(a) (0, 1) (b) (0, 0) (c) (d)

33. Find a singular solution of Problem 21. Of Problem 22.

34. Show that an implicit solution of

is given by ln(x2 � 10) � csc y � c. Find the constant
solutions, if any, that were lost in the solution of the dif-
ferential equation.

Often a radical change in the form of the solution of a differen-
tial equation corresponds to a very small change in either the
initial condition or the equation itself. In Problems 35–38 find
an explicit solution of the given initial-value problem. Use a
graphing utility to plot the graph of each solution. Compare
each solution curve in a neighborhood of (0, 1).

35.

36.

37.

38.

39. Every autonomous first-order equation dy�dx � f (y)
is separable. Find explicit solutions y1(x), y2(x), y3(x),
and y4(x) of the differential equation dy�dx � y � y3

that satisfy, in turn, the initial conditions y1(0) � 2,
, , and y4(0) � �2. Use a graphing

utility to plot the graphs of each solution. Compare these
graphs with those predicted in Problem 19 of Exercises
2.1. Give the exact interval of definition for each solution.

40. (a) The autonomous first-order differential equation 
dy�dx � 1�(y � 3) has no critical points.
Nevertheless, place 3 on the phase line and obtain
a phase portrait of the equation. Compute d2y�dx2

to determine where solution curves are concave up
and where they are concave down (see Problems 35
and 36 in Exercises 2.1). Use the phase portrait
and concavity to sketch, by hand, some typical
solution curves.

(b) Find explicit solutions y1(x), y2(x), y3(x), and y4(x)
of the differential equation in part (a) that satisfy,
in turn, the initial conditions y1(0) � 4, y2(0) � 2,

y3(0) � �1
2y2(0) � 1

2

dy

dx
� (y � 1)2 � 0.01, y(0) � 1

dy

dx
� (y � 1)2 � 0.01, y(0) � 1

dy

dx
� (y � 1)2, y(0) � 1.01

dy

dx
� (y � 1)2, y(0) � 1

2x sin2 y dx � (x2 � 10) cos y dy � 0

(2, 1
4)(1

2,
1
2)

x
dy

dx
� y2 � y

y3(1) � 2, and y4(�1) � 4. Graph each solution
and compare with your sketches in part (a). Give
the exact interval of definition for each solution.

41. (a) Find an explicit solution of the initial-value problem

.

(b) Use a graphing utility to plot the graph of the solu-
tion in part (a). Use the graph to estimate the inter-
val I of definition of the solution.

(c) Determine the exact interval I of definition by ana-
lytical methods.

42. Repeat parts (a)– (c) of Problem 41 for the IVP consist-
ing of the differential equation in Problem 7 and the ini-
tial condition y(0) � 0.

Discussion Problems

43. (a) Explain why the interval of definition of the explicit
solution y � �2(x) of the initial-value problem in
Example 2 is the open interval (�5, 5).

(b) Can any solution of the differential equation cross
the x-axis? Do you think that x2 � y2 � 1 is an
implicit solution of the initial-value problem 
dy�dx � �x�y, y(1) � 0?

44. (a) If a � 0, discuss the differences, if any, between
the solutions of the initial-value problems consist-
ing of the differential equation dy�dx � x�y and
each of the initial conditions y(a) � a, y(a) � �a,
y(�a) � a, and y(�a) � �a.

(b) Does the initial-value problem dy�dx � x�y,
y(0) � 0 have a solution?

(c) Solve dy�dx � x�y, y(1) � 2 and give the exact
interval I of definition of its solution.

45. In Problems 39 and 40 we saw that every autonomous
first-order differential equation dy�dx � f (y) is
separable. Does this fact help in the solution of the

initial-value problem ?

Discuss. Sketch, by hand, a plausible solution curve of
the problem.

46. Without the use of technology, how would you solve

?

Carry out your ideas.

47. Find a function whose square plus the square of its
derivative is 1.

48. (a) The differential equation in Problem 27 is equiva-
lent to the normal form

dy

dx
� B

1 � y2

1 � x2

(1x � x) dy

dx
� 1y � y

dy

dx
� 11 � y2 sin2 y, y(0) � 1

2

dy

dx
�

2x � 1

2y
,  y(�2) � �1
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in the square region in the xy-plane defined by
�x � � 1, �y � � 1. But the quantity under the radical is
nonnegative also in the regions defined by �x � � 1,
�y � � 1. Sketch all regions in the xy-plane for
which this differential equation possesses real
solutions.

(b) Solve the DE in part (a) in the regions defined by
�x � � 1, �y � � 1. Then find an implicit and an
explicit solution of the differential equation subject
to y(2) � 2.

Mathematical Model

49. Suspension Bridge In (16) of Section 1.3 we saw that
a mathematical model for the shape of a flexible cable
strung between two vertical supports is

, (10)

where W denotes the portion of the total vertical load
between the points P1 and P2 shown in Figure 1.3.7. The
DE (10) is separable under the following conditions that
describe a suspension bridge.

Let us assume that the x- and y-axes are as shown in
Figure 2.2.5—that is, the x-axis runs along the horizon-
tal roadbed, and the y-axis passes through (0, a), which
is the lowest point on one cable over the span of the
bridge, coinciding with the interval [�L�2, L�2]. In the
case of a suspension bridge, the usual assumption is that
the vertical load in (10) is only a uniform roadbed dis-
tributed along the horizontal axis. In other words, it is
assumed that the weight of all cables is negligible in
comparison to the weight of the roadbed and that the
weight per unit length of the roadbed (say, pounds per
horizontal foot) is a constant �. Use this information to
set up and solve an appropriate initial-value problem
from which the shape (a curve with equation y � �(x))
of each of the two cables in a suspension bridge is
determined. Express your solution of the IVP in terms
of the sag h and span L. See Figure 2.2.5.

dy

dx
�

W

T1

family of solutions of the differential equation

. Experiment with different numbers

of level curves as well as various rectangular
regions defined by a � x � b, c � y � d.

(b) On separate coordinate axes plot the graphs of the
particular solutions corresponding to the initial
conditions: y(0) � �1; y(0) � 2; y(�1) � 4;
y(�1) � �3.

51. (a) Find an implicit solution of the IVP

(b) Use part (a) to find an explicit solution y � �(x) of
the IVP.

(c) Consider your answer to part (b) as a function only.
Use a graphing utility or a CAS to graph this func-
tion, and then use the graph to estimate its domain.

(d) With the aid of a root-finding application of a CAS,
determine the approximate largest interval I of defi-
nition of the solution y � �(x) in part (b). Use a
graphing utility or a CAS to graph the solution
curve for the IVP on this interval.

52. (a) Use a CAS and the concept of level curves to
plot representative graphs of members of the
family of solutions of the differential equation

. Experiment with different 

numbers of level curves as well as various rectan-
gular regions in the xy-plane until your result
resembles Figure 2.2.6.

(b) On separate coordinate axes, plot the graph of the
implicit solution corresponding to the initial condi-
tion . Use a colored pencil to mark off that
segment of the graph that corresponds to the solu-
tion curve of a solution � that satisfies the initial
condition. With the aid of a root-finding application
of a CAS, determine the approximate largest inter-
val I of definition of the solution �.  [Hint: First find
the points on the curve in part (a) where the tangent
is vertical.]

(c) Repeat part (b) for the initial condition y(0) � �2.

y(0) � 3
2

dy

dx
�

x(1 � x)

y(�2 � y)

(2y � 2) dy � (4x3 � 6x) dx �  0, y(0) � �3.

dy

dx
� �

8x � 5

3y2 � 1

FIGURE 2.2.5 Shape of a cable in Problem 49
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FIGURE 2.2.6 Level curves in Problem 52

Computer Lab Assignments

50. (a) Use a CAS and the concept of level curves to
plot representative graphs of members of the



2.3 LINEAR EQUATIONS

REVIEW MATERIAL
● Review the definition of linear DEs in (6) and (7) of Section 1.1

INTRODUCTION We continue our quest for solutions of first-order DEs by next examining lin-
ear equations. Linear differential equations are an especially “friendly” family of differential equa-
tions in that, given a linear equation, whether first order or a higher-order kin, there is always a good
possibility that we can find some sort of solution of the equation that we can examine.

A DEFINITION The form of a linear first-order DE was given in (7) of Section 1.1.
This form, the case when n � 1 in (6) of that section, is reproduced here for
convenience.

DEFINITION 2.3.1 Linear Equation

A first-order differential equation of the form

(1)

is said to be a linear equation in the dependent variable y.

When g(x) � 0, the linear equation (1) is said to be homogeneous; otherwise, it
is nonhomogeneous.

STANDARD FORM By dividing both sides of (1) by the lead coefficient a1(x), we
obtain a more useful form, the standard form, of a linear equation:

(2)

We seek a solution of (2) on an interval I for which both coefficient functions P and
f are continuous.

In the discussion that follows we illustrate a property and a procedure and end
up with a formula representing the form that every solution of (2) must have. But
more than the formula, the property and the procedure are important, because these
two concepts carry over to linear equations of higher order.

THE PROPERTY The differential equation (2) has the property that its solution is
the sum of the two solutions: y � yc � yp, where yc is a solution of the associated
homogeneous equation

(3)

and yp is a particular solution of the nonhomogeneous equation (2). To see this,
observe that

d
–––
dx

[yc � yp] � P(x)[yc � yp] � [ � P(x)yc] � [ � P(x)yp] � f (x).

f (x)0

dyc–––
dx

dyp–––
dx

dy

dx
� P(x)y � 0

dy

dx
� P(x)y � f(x).

a1(x)
dy

dx
� a0(x)y � g(x)
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Now the homogeneous equation (3) is also separable. This fact enables us to find yc

by writing (3) as

and integrating. Solving for y gives yc � ce�	P(x)dx. For convenience let us write
yc � cy1(x), where y1 � e�	P(x)dx. The fact that dy1�dx � P(x)y1 � 0 will be used
next to determine yp.

THE PROCEDURE We can now find a particular solution of equation (2) by a pro-
cedure known as variation of parameters. The basic idea here is to find a function
u so that yp � u(x)y1(x) � u(x)e�	P(x)dx is a solution of (2). In other words, our as-
sumption for yp is the same as yc � cy1(x) except that c is replaced by the “variable
parameter” u. Substituting yp � uy1 into (2) gives

so

Separating variables and integrating then gives

.

Since y1(x) � e�	P(x)dx, we see that 1�y1(x) � e	P(x)dx. Therefore

,

and (4)

Hence if (2) has a solution, it must be of form (4). Conversely, it is a straightforward
exercise in differentiation to verify that (4) constitutes a one-parameter family of
solutions of equation (2).

You should not memorize the formula given in (4). However, you should
remember the special term

(5)

because it is used in an equivalent but easier way of solving (2). If equation (4) is
multiplied by (5),

(6)

and then (6) is differentiated,

, (7)

we get . (8)

Dividing the last result by e	P(x)dx gives (2).

e	P(x)dx dy

dx
� P(x)e	P(x)dxy � e	P(x)dx f(x)

d

dx
[e	P(x)dxy] � e	P(x)dxf (x)

e	P(x)dxy � c � � e	P(x)dxf (x) dx,

e∫P(x)dx

y � ce�	P(x)dx � e�	P(x)dx� e	P (x)dxf (x) dx.

ypyc

yp � uy1 � �� f (x)

y1(x)
dx�e�	P(x)dx � e�	P(x)dx � e	P(x)dxf (x) dx

du �
f (x)

y1(x)
dx  and  u � � f (x)

y1(x)
dx

y1
du

dx
� f (x).

� y1 � P(x)uy1 � f (x) oru
dy1–––
dx

du
–––
dx

� f (x)u[ � P(x)y1] � y1
dy1–––
dx

du
–––
dx

Product Rule zero

dy

y
� P(x) dx � 0



METHOD OF SOLUTION The recommended method of solving (2) actually
consists of (6)–(8) worked in reverse order. In other words, if (2) is multiplied by
(5), we get (8). The left-hand side of (8) is recognized as the derivative of the prod-
uct of e	P(x)dx and y. This gets us to (7). We then integrate both sides of (7) to get the
solution (6). Because we can solve (2) by integration after multiplication by e	P(x)dx,
we call this function an integrating factor for the differential equation. For conve-
nience we summarize these results. We again emphasize that you should not mem-
orize formula (4) but work through the following procedure each time.

SOLVING A LINEAR FIRST-ORDER EQUATION

(i) Put a linear equation of form (1) into the standard form (2).

(ii) From the standard form identify P(x) and then find the integrating
factor e	P(x)dx.

(iii) Multiply the standard form of the equation by the integrating factor.
The left-hand side of the resulting equation is automatically the
derivative of the integrating factor and y:

(iv) Integrate both sides of this last equation.

EXAMPLE 1 Solving a Homogeneous Linear DE

Solve .

SOLUTION This linear equation can be solved by separation of variables.
Alternatively, since the equation is already in the standard form (2), we see that 
P(x) � �3, and so the integrating factor is e	(�3)dx � e�3x. We multiply the equation
by this factor and recognize that

Integrating both sides of the last equation gives e�3xy � c. Solving for y gives us the
explicit solution y � ce3x, �
 � x � 
.

EXAMPLE 2 Solving a Nonhomogeneous Linear DE

Solve .

SOLUTION The associated homogeneous equation for this DE was solved in
Example 1. Again the equation is already in the standard form (2), and the integrat-
ing factor is still e	(�3)dx � e�3x. This time multiplying the given equation by this
factor gives

Integrating both sides of the last equation gives e�3xy � �2e�3x � c or
y � �2 � ce3x, �
 � x � 
.

e�3x dy

dx
� 3e�3xy � 6e�3x,    which is the same as    

d

dx
 [e�3xy] � 6e�3x.

dy

dx
� 3y � 6

e�3x dy

dx
� 3e�3xy � 0    is the same as    

d

dx
 [e�3xy] � 0.

dy

dx
� 3y � 0

d

dx
[e	P(x)dxy] � e	P(x)dx f(x).
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FIGURE 2.3.1 Some solutions of 
y� � 3y � 6

1_1 2 3 4

_2
_1

1

_3

x

y

y =_2

The final solution in Example 2 is the sum of two solutions: y � yc � yp, where
yc � ce3x is the solution of the homogeneous equation in Example 1 and yp � �2 is
a particular solution of the nonhomogeneous equation y� � 3y � 6. You need not
be concerned about whether a linear first-order equation is homogeneous or nonho-
mogeneous; when you follow the solution procedure outlined above, a solution of a
nonhomogeneous equation necessarily turns out to be y � yc � yp. However, the
distinction between solving a homogeneous DE and solving a nonhomogeneous
DE becomes more important in Chapter 4, where we solve linear higher-order
equations.

When a1, a0, and g in (1) are constants, the differential equation is autonomous.
In Example 2 you can verify from the normal form dy�dx � 3(y � 2) that �2 is a
critical point and that it is unstable (a repeller). Thus a solution curve with an
initial point either above or below the graph of the equilibrium solution 
y � �2 pushes away from this horizontal line as x increases. Figure 2.3.1, obtained
with the aid of a graphing utility, shows the graph of y � �2 along with some addi-
tional solution curves.

CONSTANT OF INTEGRATION Notice that in the general discussion and in
Examples 1 and 2 we disregarded a constant of integration in the evaluation of the
indefinite integral in the exponent of e	P(x)dx. If you think about the laws of exponents
and the fact that the integrating factor multiplies both sides of the differential equa-
tion, you should be able to explain why writing 	P(x)dx � c is unnecessary. See
Problem 44 in Exercises 2.3.

GENERAL SOLUTION Suppose again that the functions P and f in (2) are con-
tinuous on a common interval I. In the steps leading to (4) we showed that if (2) has
a solution on I, then it must be of the form given in (4). Conversely, it is a straight-
forward exercise in differentiation to verify that any function of the form given in
(4) is a solution of the differential equation (2) on I. In other words, (4) is a one-
parameter family of solutions of equation (2) and every solution of (2) defined on I
is a member of this family. Therefore we call (4) the general solution of the
differential equation on the interval I. (See the Remarks at the end of Section 1.1.)
Now by writing (2) in the normal form y� � F (x, y), we can identify 
F (x, y) � �P(x)y � f (x) and �F��y � �P(x). From the continuity of P and f on the
interval I we see that F and �F��y are also continuous on I. With Theorem 1.2.1 as
our justification, we conclude that there exists one and only one solution of the
initial-value problem

(9)

defined on some interval I0 containing x0. But when x0 is in I, finding a solution of (9)
is just a matter of finding an appropriate value of c in (4)—that is, to each x0 in I there
corresponds a distinct c. In other words, the interval I0 of existence and uniqueness
in Theorem 1.2.1 for the initial-value problem (9) is the entire interval I.

EXAMPLE 3 General Solution

Solve .

SOLUTION Dividing by x, we get the standard form

. (10)
dy

dx
�

4

x
y � x5ex

x
dy

dx
� 4y � x 6ex

dy

dx
� P(x)y � f(x),  y(x0) � y0



From this form we identify P(x) � �4�x and f (x) � x5ex and further observe that P
and f are continuous on (0, 
). Hence the integrating factor is

Here we have used the basic identity . Now we multiply (10) by
x�4 and rewrite

It follows from integration by parts that the general solution defined on the interval
(0, 
) is x�4y � xex � ex � c or y � x5ex � x4ex � cx4.

Except in the case in which the lead coefficient is 1, the recasting of equation
(1) into the standard form (2) requires division by a1(x). Values of x for which
a1(x) � 0 are called singular points of the equation. Singular points are poten-
tially troublesome. Specifically, in (2), if P(x) (formed by dividing a0(x) by a1(x))
is discontinuous at a point, the discontinuity may carry over to solutions of the
differential equation.

EXAMPLE 4 General Solution

Find the general solution of .

SOLUTION We write the differential equation in standard form

(11)

and identify P(x) � x�(x2 � 9). Although P is continuous on (�
, �3), (�3, 3), and
(3, 
), we shall solve the equation on the first and third intervals. On these intervals
the integrating factor is

.

After multiplying the standard form (11) by this factor, we get

.

Integrating both sides of the last equation gives Thus for either

x � 3 or x � �3 the general solution of the equation is .

Notice in Example 4 that x � 3 and x � �3 are singular points of the equation
and that every function in the general solution is discontinuous at
these points. On the other hand, x � 0 is a singular point of the differential equation
in Example 3, but the general solution y � x5ex � x4ex � cx4 is noteworthy in that
every function in this one-parameter family is continuous at x � 0 and is defined
on the interval (�
, 
) and not just on (0, 
), as stated in the solution. However,
the family y � x5ex � x4ex � cx4 defined on (�
, 
) cannot be considered the gen-
eral solution of the DE, since the singular point x � 0 still causes a problem. See
Problem 39 in Exercises 2.3.

y � c�1x2 � 9

y �
c

1x2 � 9

1x2 � 9 y � c.

d

dx 
1x2 � 9 y� � 0

e	x dx/(x2�9) � e
1
2 	2x dx/(x2�9) � e

1
2 ln�x2�9� � 1x2 � 9

dy

dx
�

x

x2 � 9
y � 0

(x 2 � 9)
dy

dx
� xy � 0

x�4 dy

dx
� 4x�5y � xex    as    

d

dx
 [x�4y] � xex.

blogbN � N, N � 0

e�4	dx/x � e�4ln x � eln x�4
� x�4.

we can use ln x instead of ln �x� since x � 0
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EXAMPLE 5 An Initial-Value Problem

Solve .

SOLUTION The equation is in standard form, and P(x) � 1 and f (x) � x are contin-
uous on (�
, 
). The integrating factor is e	dx � ex, so integrating

gives exy � xex � ex � c. Solving this last equation for y yields the general solution
y � x � 1 � ce�x. But from the initial condition we know that y � 4 when x � 0.
Substituting these values into the general solution implies that c � 5. Hence the
solution of the problem is

y � x � 1 � 5e�x, �
 � x � 
. (12)

Figure 2.3.2, obtained with the aid of a graphing utility, shows the graph of (12)
in dark blue, along with the graphs of other representative solutions in the one-
parameter family y � x � 1 � ce�x. In this general solution we identify yc � ce�x

and yp � x � 1. It is interesting to observe that as x increases, the graphs of all mem-
bers of the family are close to the graph of the particular solution yp � x � 1, which
is shown in solid green in Figure 2.3.2. This is because the contribution of yc � ce�x

to the values of a solution becomes negligible for increasing values of x. We say that
yc � ce�x is a transient term, since yc : 0 as x : 
. While this behavior is not a
characteristic of all general solutions of linear equations (see Example 2), the notion
of a transient is often important in applied problems.

DISCONTINUOUS COEFFICIENTS In applications the coefficients P(x) and
f (x) in (2) may be piecewise continuous. In the next example f (x) is piecewise con-
tinuous on [0, 
) with a single discontinuity, namely, a (finite) jump discontinuity at
x � 1. We solve the problem in two parts corresponding to the two intervals over
which f is defined. It is then possible to piece together the two solutions at x � 1 so
that y(x) is continuous on [0, 
).

EXAMPLE 6 An Initial-Value Problem

Solve 

SOLUTION The graph of the discontinuous function f is shown in Figure 2.3.3. We
solve the DE for y(x) first on the interval [0, 1] and then on the interval (1, 
). For
0 � x � 1 we have

.

Integrating this last equation and solving for y gives y � 1 � c1e�x. Since y(0) � 0,
we must have c1 � �1, and therefore y � 1 � e�x, 0 � x � 1. Then for x � 1 the
equation

dy

dx
� y � 0

dy

dx
� y � 1  or, equivalently,   

d

dx
 [exy] � ex

dy

dx
� y � f (x), y(0) � 0 where f (x) � �1,

0,

0 � x � 1,

  x � 1.

d

dx
 [exy] � xex

dy

dx
� y � x, y(0) � 4

x

y

4_4
_4

_2

2

4

_2 2

c=0

c>0

c<0

FIGURE 2.3.2 Some solutions of 
y� � y � x

FIGURE 2.3.3 Discontinuous f(x)

x

y



leads to y � c2e�x. Hence we can write

By appealing to the definition of continuity at a point, it is possible to determine c2

so that the foregoing function is continuous at x � 1. The requirement that
implies that c2e�1 � 1 � e�1 or c2 � e � 1. As seen in

Figure 2.3.4, the function

(13)

is continuous on (0, 
).

It is worthwhile to think about (13) and Figure 2.3.4 a little bit; you are urged to
read and answer Problem 42 in Exercises 2.3.

FUNCTIONS DEFINED BY INTEGRALS At the end of Section 2.2 we dis-
cussed the fact that some simple continuous functions do not possess antiderivatives
that are elementary functions and that integrals of these kinds of functions are called
nonelementary. For example, you may have seen in calculus that and
	sin x2 dx are nonelementary integrals. In applied mathematics some important func-
tions are defined in terms of nonelementary integrals. Two such special functions are
the error function and complementary error function:

. (14)

From the known result * we can write 
Then from it is seen from (14) that the complementary error func-
tion erfc(x) is related to erf(x) by erf(x) � erfc(x) � 1. Because of its importance
in probability, statistics, and applied partial differential equations, the error func-
tion has been extensively tabulated. Note that erf(0) � 0 is one obvious function
value. Values of erf(x) can also be found by using a CAS. 

EXAMPLE 7 The Error Function

Solve the initial-value problem .

SOLUTION Since the equation is already in standard form, we see that the integrat-
ing factor is , so from

. (15)

Applying y(0) � 1 to the last expression then gives c � 1. Hence the solution of the
problem is

The graph of this solution on the interval (�
, 
), shown in dark blue in Figure 2.3.5
among other members of the family defined in (15), was obtained with the aid of a
computer algebra system.

y � 2ex2 �x

0

e�t2
dt � ex2

 or y � ex2
[1 � 1� erf(x)].

d

dx
 [e�x2

y] � 2e�x2    we get    y � 2ex2 �x

0

e�t2
dt � cex2

e�x2
dx

dy

dx
� 2xy � 2,  y(0) � 1

	

0 � 	x

0 � 	

x

(2�1�) 	

0 e�t2

dt � 1.	

0 e�t2

dt � 1��2

erf(x) �
2

1�
�x

0
e�t2

dt    and    erfc(x) �
2

1�
�


x
e�t2

dt

	e�x2
dx

y � �1 � e�x,

(e � 1)e�x,

0 � x � 1,

  x � 1

limx:1� y(x) � y(1)

y � �1 � e�x,

c2e�x,

0 � x � 1,

  x � 1.

1 x

y

FIGURE 2.3.4 Graph of function
in (13)

*This result is usually proved in the third semester of calculus.

FIGURE 2.3.5 Some solutions of 
y� � 2xy � 2

x

y
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USE OF COMPUTERS The computer algebra systems Mathematica and Maple
are capable of producing implicit or explicit solutions for some kinds of differential
equations using their dsolve commands.*

REMARKS

(i) In general, a linear DE of any order is said to be homogeneous when 
g(x) � 0 in (6) of Section 1.1. For example, the linear second-order DE 
y	 � 2y� � 6y � 0 is homogeneous. As can be seen in this example and in the
special case (3) of this section, the trivial solution y � 0 is always a solution of
a homogeneous linear DE.

(ii) Occasionally, a first-order differential equation is not linear in one variable
but is linear in the other variable. For example, the differential equation

is not linear in the variable y. But its reciprocal

is recognized as linear in the variable x. You should verify that the integrating
factor e	(�1)dy � e�y and integration by parts yield the explicit solution
x � �y2 � 2y � 2 � cey for the second equation. This expression is, then,
an implicit solution of the first equation.

(iii) Mathematicians have adopted as their own certain words from engineer-
ing, which they found appropriately descriptive. The word transient, used
earlier, is one of these terms. In future discussions the words input and output
will occasionally pop up. The function f in (2) is called the input or driving
function; a solution y(x) of the differential equation for a given input is called
the output or response.

(iv) The term special functions mentioned in conjunction with the error func-
tion also applies to the sine integral function and the Fresnel sine integral
introduced in Problems 49 and 50 in Exercises 2.3. “Special Functions” is
actually a well-defined branch of mathematics. More special functions are
studied in Section 6.3.

dx

dy
� x � y2    or    

dx

dy
� x � y2

dy

dx
�

1

x � y2

EXERCISES 2.3 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1–24 find the general solution of the given dif-
ferential equation. Give the largest interval I over which the
general solution is defined. Determine whether there are any
transient terms in the general solution.

1. 2.

3. 4. 3
dy

dx
� 12y � 4

dy

dx
� y � e3x

dy

dx
� 2y � 0

dy

dx
� 5y

5. y� � 3x2y � x2 6. y� � 2xy � x3

7. x2y� � xy � 1 8. y� � 2y � x2 � 5

9. 10.

11. 12.

13. x2y� � x(x � 2)y � ex

(1 � x)
dy

dx
� xy � x � x2x

dy

dx
� 4y � x3 � x

x
dy

dx
� 2y � 3x

dy

dx
� y � x2 sin x

*Certain commands have the same spelling, but in Mathematica commands begin with a capital letter
(Dsolve), whereas in Maple the same command begins with a lower case letter (dsolve). When
discussing such common syntax, we compromise and write, for example, dsolve. See the Student
Resource and Solutions Manual for the complete input commands used to solve a linear first-order DE.



14. xy� � (1 � x)y � e�x sin 2x

15. y dx � 4(x � y6) dy � 0

16. y dx � (yey � 2x) dy

17.

18.

19.

20.

21.

22.

23.

24.

In Problems 25–30 solve the given initial-value problem.
Give the largest interval I over which the solution is defined.

25. xy� � y � ex, y(1) � 2

26.

27.

L, R, E, and i0 constants

28.

k, Tm, and T0 constants

29.

30. y� � (tan x)y � cos2x, y(0) � �1

In Problems 31–34 proceed as in Example 6 to solve the
given initial-value problem. Use a graphing utility to graph
the continuous function y(x).

31. where

32. where

f (x) � �1,

�1, 
0 � x � 1

x � 1

dy

dx
� y � f (x), y(0) � 1,

f (x) � �1,

0,

0 � x � 3

x � 3

dy

dx
� 2y � f (x), y(0) � 0,

(x � 1)
dy

dx
� y � ln x, y(1) � 10

dT

dt
� k(T � Tm ); T(0) � T0,

L
di

dt
� Ri � E, i(0) � i0,

y
dx

dy
� x � 2y2,  y(1) � 5

(x2 � 1)
dy

dx
� 2y � (x � 1)2

x
dy

dx
� (3x � 1)y � e�3x

dP

dt
� 2tP � P � 4t � 2

dr

d�
� r sec � � cos �

(x � 2)2 dy

dx
� 5 � 8y � 4xy

(x � 1)
dy

dx
� (x � 2)y � 2xe�x

cos2x sin x
dy

dx
� (cos3x)y � 1

cos x
dy

dx
� (sin x)y � 1

33. where

34. where

35. Proceed in a manner analogous to Example 6 to solve the
initial-value problem y� � P(x)y � 4x, y(0) � 3, where

Use a graphing utility to graph the continuous function
y(x).

36. Consider the initial-value problem y� � exy � f (x),
y(0) � 1. Express the solution of the IVP for x � 0 as a
nonelementary integral when f (x) � 1. What is the so-
lution when f (x) � 0? When f (x) � ex?

37. Express the solution of the initial-value problem 
y� � 2xy � 1, y(1) � 1, in terms of erf(x).

Discussion Problems

38. Reread the discussion following Example 2. Construct a
linear first-order differential equation for which all
nonconstant solutions approach the horizontal asymp-
tote y � 4 as x : 
.

39. Reread Example 3 and then discuss, with reference
to Theorem 1.2.1, the existence and uniqueness of a
solution of the initial-value problem consisting of 
xy� � 4y � x6ex and the given initial condition.

(a) y(0) � 0 (b) y(0) � y0, y0 � 0

(c) y(x0) � y0, x0 � 0, y0 � 0

40. Reread Example 4 and then find the general solution of
the differential equation on the interval (�3, 3).

41. Reread the discussion following Example 5. Construct a
linear first-order differential equation for which all solu-
tions are asymptotic to the line y � 3x � 5 as x : 
.

42. Reread Example 6 and then discuss why it is technically
incorrect to say that the function in (13) is a “solution”
of the IVP on the interval [0, 
).

43. (a) Construct a linear first-order differential equation of
the form xy� � a0(x)y � g(x) for which yc � c�x3

and yp � x3. Give an interval on which 
y � x3 � c�x3 is the general solution of the DE.

(b) Give an initial condition y(x0) � y0 for the DE
found in part (a) so that the solution of the IVP 
is y � x3 � 1�x3. Repeat if the solution is 

P(x) � � 2,

�2>x,
 0 � x � 1,

x � 1.

f (x) � �x,

�x, 
0 � x � 1

x � 1

(1 � x2)
dy

dx
� 2xy � f (x), y(0) � 0,

f (x) � �x,

0, 
0 � x � 1

x � 1

dy

dx
� 2xy � f (x), y(0) � 2,
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y � x3 � 2�x3. Give an interval I of definition of
each of these solutions. Graph the solution curves. Is
there an initial-value problem whose solution is
defined on (�
, 
)?

(c) Is each IVP found in part (b) unique? That is, can
there be more than one IVP for which, say, 
y � x3 � 1�x3, x in some interval I, is the solution?

44. In determining the integrating factor (5), we did not use
a constant of integration in the evaluation of 	P(x) dx.
Explain why using 	P(x) dx � c has no effect on the
solution of (2).

45. Suppose P(x) is continuous on some interval I and a is a
number in I. What can be said about the solution of the
initial-value problem y� � P(x)y � 0, y(a) � 0?

Mathematical Models

46. Radioactive Decay Series The following system
of differential equations is encountered in the study of the
decay of a special type of radioactive series of elements:

where 	1 and 	2 are constants. Discuss how to solve this
system subject to x(0) � x0, y(0) � y0. Carry out your
ideas.

47. Heart Pacemaker A heart pacemaker consists of a
switch, a battery of constant voltage E0, a capacitor with
constant capacitance C, and the heart as a resistor with
constant resistance R. When the switch is closed, the
capacitor charges; when the switch is open, the capacitor
discharges, sending an electrical stimulus to the heart.
During the time the heart is being stimulated, the voltage

dy

dt
� �1x � �2y,

dx

dt
� ��1x

E across the heart satisfies the linear differential equation

Solve the DE subject to E(4) � E0.

Computer Lab Assignments

48. (a) Express the solution of the initial-value problem 
y� � 2xy � �1, , in terms of erfc(x).

(b) Use tables or a CAS to find the value of y(2). Use a
CAS to graph the solution curve for the IVP on
(�
, 
).

49. (a) The sine integral function is defined by
, where the integrand is 

defined to be 1 at t � 0. Express the solution y(x) of
the initial-value problem x3y� � 2x2y � 10sin x,
y(1) � 0 in terms of Si(x).

(b) Use a CAS to graph the solution curve for the IVP
for x � 0.

(c) Use a CAS to find the value of the absolute maxi-
mum of the solution y(x) for x � 0.

50. (a) The Fresnel sine integral is defined by
. Express the solution y(x)

of the initial-value problem y�� (sin x2)y � 0,
y(0) � 5, in terms of S(x).

(b) Use a CAS to graph the solution curve for the IVP
on (�
, 
).

(c) It is known that S(x) : as x : 
 and S(x) : �
as x : �
 . What does the solution y(x) approach
as x : 
? As x : �
?

(d) Use a CAS to find the values of the absolute
maximum and the absolute minimum of the
solution y(x).

1
2

1
2

S(x) � 	x
0 sin(pt2>2) dt

Si(x) � 	x
0 (sin t>t) dt

y(0) � 1� �2

dE

dt
� �

1

RC
E.

2.4 EXACT EQUATIONS

REVIEW MATERIAL
● Multivariate calculus
● Partial differentiation and partial integration
● Differential of a function of two variables

INTRODUCTION Although the simple first-order equation 

y dx � x dy � 0

is separable, we can solve the equation in an alternative manner by recognizing that the expression
on the left-hand side of the equality is the differential of the function f (x, y) � xy; that is, 

d(xy) � y dx � x dy.

In this section we examine first-order equations in differential form M(x, y) dx � N(x, y) dy � 0. By
applying a simple test to M and N, we can determine whether M(x, y) dx � N(x, y) dy is a differen-
tial of a function f (x, y). If the answer is yes, we can construct f by partial integration.



�y
�

�N

�x

d �1
3 x3 y3� � x2y3 dx � x3y2 dy

M(x, y) dx � N(x, y) dy � 0

(2x � 5y) dx � (�5x � 3y2) dy � 0

�f

�x
dx �

�f

�y
dy � 0

dz �
�f

�x
dx �

�f

�y
dy
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DIFFERENTIAL OF A FUNCTION OF TWO VARIABLES If z � f (x, y) is a
function of two variables with continuous first partial derivatives in a region R of the
xy-plane, then its differential is

. (1)

In the special case when f (x, y) � c, where c is a constant, then (1) implies

. (2)

In other words, given a one-parameter family of functions f (x, y) � c, we can generate
a first-order differential equation by computing the differential of both sides of the
equality. For example, if x2 � 5xy � y3 � c, then (2) gives the first-order DE

. (3)

A DEFINITION Of course, not every first-order DE written in differential form
M(x, y) dx � N(x, y) dy � 0 corresponds to a differential of f (x, y) � c. So for our
purposes it is more important to turn the foregoing example around; namely, if
we are given a first-order DE such as (3), is there some way we can recognize
that the differential expression (2x � 5y) dx � (�5x � 3y2) dy is the differential
d(x2 � 5xy � y3)? If there is, then an implicit solution of (3) is x2 � 5xy � y3 � c.
We answer this question after the next definition.

DEFINITION 2.4.1 Exact Equation

A differential expression M(x, y) dx � N(x, y) dy is an exact differential in a
region R of the xy-plane if it corresponds to the differential of some function
f (x, y) defined in R. A first-order differential equation of the form

is said to be an exact equation if the expression on the left-hand side is an
exact differential.

For example, x2y3 dx � x3y2 dy � 0 is an exact equation, because its left-hand
side is an exact differential:

.

Notice that if we make the identifications M(x, y) � x2y3 and N(x, y) � x3y2, then
�M��y � 3x2y2 � �N��x. Theorem 2.4.1, given next, shows that the equality of the
partial derivatives �M��y and �N��x is no coincidence.

THEOREM 2.4.1 Criterion for an Exact Differential

Let M(x, y) and N(x, y) be continuous and have continuous first partial
derivatives in a rectangular region R defined by a 
 x 
 b, c 
 y 
 d. Then a
necessary and sufficient condition that M(x, y) dx � N(x, y) dy be an exact
differential is

. (4)
�M
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PROOF OF THE NECESSITY For simplicity let us assume that M(x, y) and
N(x, y) have continuous first partial derivatives for all (x, y). Now if the expression
M(x, y) dx � N(x, y) dy is exact, there exists some function f such that for all x in R,

.

Therefore ,

and .

The equality of the mixed partials is a consequence of the continuity of the first par-
tial derivatives of M(x, y) and N(x, y).

The sufficiency part of Theorem 2.4.1 consists of showing that there exists a
function f for which �f ��x � M(x, y) and �f ��y � N(x, y) whenever (4) holds. The
construction of the function f actually reflects a basic procedure for solving exact
equations.

METHOD OF SOLUTION Given an equation in the differential form 
M(x, y) dx � N(x, y) dy � 0, determine whether the equality in (4) holds. If it does,
then there exists a function f for which

.

We can find f by integrating M(x, y) with respect to x while holding y constant:

, (5)

where the arbitrary function g(y) is the “constant” of integration. Now differentiate
(5) with respect to y and assume that �f ��y � N(x, y):

This gives . (6)

Finally, integrate (6) with respect to y and substitute the result in (5). The implicit
solution of the equation is f (x, y) � c.

Some observations are in order. First, it is important to realize that the expres-
sion N(x, y) � (���y) 	 M(x, y) dx in (6) is independent of x, because

.

Second, we could just as well start the foregoing procedure with the assumption that
�f ��y � N(x, y). After integrating N with respect to y and then differentiating that
result, we would find the analogues of (5) and (6) to be, respectively,

.

In either case none of these formulas should be memorized.

f (x, y) � �N(x, y) dy � h(x)    and    h�(x) � M(x, y) �
�

�x
� N(x, y) dy

�

�x 
N(x, y) �
�

�y
�M(x, y) dx � �

�N

�x
�

�

�y �
�

�x
�M(x, y) dx� �

�N

�x
�

�M

�y
� 0

g�(y) � N(x, y) �
�

�y
�M(x, y) dx

�f

�y
�

�

�y
� M(x, y) dx � g�(y) � N(x, y).

f (x, y) � �M(x, y) dx � g(y)

�f

�x
� M(x, y)

�M

�y
�

�

�y �
�f

�x� �
�2 f

�y �x
�

�

�x �
�f

�y� �
�N

�x

M(x, y) �
�f

�x
,    N(x, y) �

�f

�y

M(x, y) dx � N(x, y) dy �
�f

�x
dx �

�f

�y
dy



EXAMPLE 1 Solving an Exact DE

Solve 2xy dx � (x2 � 1) dy � 0.

SOLUTION With M(x, y) � 2xy and N(x, y) � x2 � 1 we have

.

Thus the equation is exact, and so by Theorem 2.4.1 there exists a function f (x, y)
such that

.

From the first of these equations we obtain, after integrating,

.

Taking the partial derivative of the last expression with respect to y and setting the
result equal to N(x, y) gives

. ; N(x, y)

It follows that g�(y) � �1 and g(y) � �y. Hence f (x, y) � x2y � y, so the solution
of the equation in implicit form is x2y � y � c. The explicit form of the solution is
easily seen to be y � c�(1 � x2) and is defined on any interval not containing either
x � 1 or x � �1.

NOTE The solution of the DE in Example 1 is not f (x, y) � x2y � y. Rather, it is
f (x, y) � c; if a constant is used in the integration of g�(y), we can then write the so-
lution as f (x, y) � 0. Note, too, that the equation could be solved by separation of
variables.

EXAMPLE 2 Solving an Exact DE

Solve (e2y � y cos xy) dx � (2xe2y � x cos xy � 2y) dy � 0.

SOLUTION The equation is exact because

.

Hence a function f (x, y) exists for which

.

Now for variety we shall start with the assumption that �f ��y � N(x, y); that is,

.f (x, y) � 2x � e2y dy � x � cos xy dy � 2 � y dy

�f

�y
� 2xe2y � x cos xy � 2y

M(x, y) �
�f

�x
    and   N(x, y) �

�f

�y

�M

�y
� 2e2y � xy sin xy � cos xy �

�N

�x

�f

�y
� x2 � g�(y) � x2 � 1

f (x, y) � x2y � g(y)

�f

�x
� 2xy    and    

�f

�y
� x2 � 1

�M

�y
� 2x �

�N

�x
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Remember, the reason x can come out in front of the symbol 	 is that in the integra-
tion with respect to y, x is treated as an ordinary constant. It follows that

, ;M(x, y)

and so h�(x) � 0 or h(x) � c. Hence a family of solutions is

xe2y � sin xy � y2 � c � 0.

EXAMPLE 3 An Initial-Value Problem

Solve  .

SOLUTION By writing the differential equation in the form

(cos x sin x � xy2) dx � y(1 � x2) dy � 0,

we recognize that the equation is exact because

.

Now

The last equation implies that h�(x) � cos x sin x. Integrating gives

.

Thus , (7)

where 2c1 has been replaced by c. The initial condition y � 2 when x � 0 demands
that 4(1) � cos2 (0) � c, and so c � 3. An implicit solution of the problem is then
y2(1 � x2) � cos2 x � 3.

The solution curve of the IVP is the curve drawn in dark blue in Figure 2.4.1;
it is part of an interesting family of curves. The graphs of the members of the one-
parameter family of solutions given in (7) can be obtained in several ways, two of
which are using software to graph level curves (as discussed in Section 2.2) and
using a graphing utility to carefully graph the explicit functions obtained for var-
ious values of c by solving y2 � (c � cos2 x)�(1 � x2) for y.

INTEGRATING FACTORS Recall from Section 2.3 that the left-hand side of
the linear equation y� � P(x)y � f (x) can be transformed into a derivative when
we multiply the equation by an integrating factor. The same basic idea sometimes
works for a nonexact differential equation M(x, y) dx � N(x, y) dy � 0. That is, it is

y2

2
 (1 � x2) �

1

2
 cos2 x � c1    or    y2(1 � x2) � cos2 x � c

h(x) � �� (cos x)(�sin x dx) � �
1

2
 cos2 x

�f

�x
� �xy2 � h�(x) � cos x sin x � xy2.

f(x, y) �
y2

2
 (1 � x2) � h(x)

�f

�y
� y(1 � x2)

�M

�y
� �2xy �

�N

�x

dy

dx
�

xy2 � cos x sin x

y(1 � x2)
, y(0) � 2

�f

�x
� e2y � y cos xy � h�(x) � e2y � y cos xy

f(x, y) � xe2y � sin xy � y2 � h(x)

x

y

FIGURE 2.4.1 Some graphs
of members of the family 
y2(1 � x2) � cos2x � c



sometimes possible to find an integrating factor 
(x, y) so that after multiplying, the
left-hand side of


(x, y)M(x, y) dx � 
(x, y)N(x, y) dy � 0 (8)

is an exact differential. In an attempt to find 
, we turn to the criterion (4) for exact-
ness. Equation (8) is exact if and only if (
M)y � (
N )x, where the subscripts
denote partial derivatives. By the Product Rule of differentiation the last equation is
the same as 
My � 
yM � 
Nx � 
xN or


xN � 
yM � (My � Nx)
. (9)

Although M, N, My, and Nx are known functions of x and y, the difficulty here in
determining the unknown 
(x, y) from (9) is that we must solve a partial differential
equation. Since we are not prepared to do that, we make a simplifying assumption.
Suppose 
 is a function of one variable; for example, say that 
 depends only on x. In
this case, 
x � d
�dx and 
y � 0, so (9) can be written as

. (10)

We are still at an impasse if the quotient (My � Nx)�N depends on both x and y.
However, if after all obvious algebraic simplifications are made, the quotient
(My � Nx)�N turns out to depend solely on the variable x, then (10) is a first-order
ordinary differential equation. We can finally determine 
 because (10) is separa-
ble as well as linear. It follows from either Section 2.2 or Section 2.3 that 

(x) � e	(( � )/N )dx. In like manner, it follows from (9) that if 
 depends only on
the variable y, then

. (11)

In this case, if (Nx � My)�M is a function of y only, then we can solve (11) for 
.
We summarize the results for the differential equation

M(x, y) dx � N(x, y) dy � 0. (12)

• If (My � Nx)�N is a function of x alone, then an integrating factor for (12) is

. (13)

• If (Nx � My)�M is a function of y alone, then an integrating factor for (12) is

. (14)

EXAMPLE 4 A Nonexact DE Made Exact

The nonlinear first-order differential equation

xy dx � (2x2 � 3y2 � 20) dy � 0

is not exact. With the identifications M � xy, N � 2x2 � 3y2 � 20, we find the partial
derivatives My � x and Nx � 4x. The first quotient from (13) gets us nowhere, since

depends on x and y. However, (14) yields a quotient that depends only on y:

.
Nx � My

M
�

4x � x

xy
�

3x

xy
�

3

y

My � Nx

N
�

x � 4x

2x2 � 3y2 � 20
�

�3x

2x2 � 3y2 � 20

�(y) � e
�Nx�My

M
dy

�(x) � e
�My�Nx

N
dx

d�

dy
�

Nx � My

M
�

NxMy

d�

dx
�

My � Nx

N
�
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The integrating factor is then e	3dy/y � e3lny � eln � y3. After we multiply the given
DE by 
(y) � y3, the resulting equation is

xy4 dx � (2x2y3 � 3y5 � 20y3) dy � 0.

You should verify that the last equation is now exact as well as show, using the
method of this section, that a family of solutions is .

REMARKS

(i) When testing an equation for exactness, make sure it is of the precise
form M(x, y) dx � N(x, y) dy � 0. Sometimes a differential equation 
is written G(x, y) dx � H(x, y) dy. In this case, first rewrite it as 
G(x, y) dx � H(x, y) dy � 0 and then identify M(x, y) � G(x, y) and 
N(x, y) � �H(x, y) before using (4).

(ii) In some texts on differential equations the study of exact equations
precedes that of linear DEs. Then the method for finding integrating factors
just discussed can be used to derive an integrating factor for 
y� � P(x)y � f (x). By rewriting the last equation in the differential form
(P(x)y � f (x)) dx � dy � 0, we see that

.

From (13) we arrive at the already familiar integrating factor e	P(x)dx, used in
Section 2.3.

My � Nx

N
� P(x)

1
2 x2y4 � 1

2 y6 � 5y4 � c

y3

EXERCISES 2.4 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1–20 determine whether the given differential
equation is exact. If it is exact, solve it.

1. (2x � 1) dx � (3y � 7) dy � 0

2. (2x � y) dx � (x � 6y) dy � 0

3. (5x � 4y) dx � (4x � 8y3) dy � 0

4. (sin y � y sin x) dx � (cos x � x cos y � y) dy � 0

5. (2xy2 � 3) dx � (2x2y � 4) dy � 0

6.

7. (x2 � y2) dx � (x2 � 2xy) dy � 0

8.

9. (x � y3 � y2 sin x) dx � (3xy2 � 2y cos x) dy

10. (x3 � y3) dx � 3xy2 dy � 0

11. (y ln y � e�xy) dx � �1

y
� x ln y� dy � 0

�1 � ln x �
y

x� dx � (1 � ln x) dy

�2y �
1

x
� cos 3x� dy

dx
�

y

x2 � 4x3 � 3y sin 3x � 0

12. (3x2y � ey) dx � (x3 � xey � 2y) dy � 0

13.

14.

15.

16. (5y � 2x)y� � 2y � 0

17. (tan x � sin x sin y) dx � cos x cos y dy � 0

18.

19. (4t3y � 15t2 � y) dt � (t4 � 3y2 � t) dy � 0

20. �1

t
�

1

t 2 �
y

t 2 � y2� dt � �yey �
t

t 2 � y2� dy � 0

� (x � sin2 x � 4xyexy2
) dy

(2y sin x cos x � y � 2y2exy2
) dx

�x2y3 �
1

1 � 9x2� dx

dy
� x3y2 � 0

�1 �
3

y
� x� dy

dx
� y �

3

x
� 1

x
dy

dx
� 2xex � y � 6x2



In Problems 21–26 solve the given initial-value problem.

21. (x � y)2 dx � (2xy � x2 � 1) dy � 0, y(1) � 1

22. (ex � y) dx � (2 � x � yey) dy � 0, y(0) � 1

23. (4y � 2t � 5) dt � (6y � 4t � 1) dy � 0, y(�1) � 2

24.

25. (y2 cos x � 3x2y � 2x) dx
� (2y sin x � x3 � ln y) dy � 0, y(0) � e

26. ,

In Problems 27 and 28 find the value of k so that the given
differential equation is exact.

27. (y3 � kxy4 � 2x) dx � (3xy2 � 20x2y3) dy � 0

28. (6xy3 � cos y) dx � (2kx2y2 � x sin y) dy � 0

In Problems 29 and 30 verify that the given differential equa-
tion is not exact. Multiply the given differential equation
by the indicated integrating factor 
(x, y) and verify that the
new equation is exact. Solve.

29. (�xy sin x � 2y cos x) dx � 2x cos x dy � 0;

(x, y) � xy

30. (x2 � 2xy � y2) dx � (y2 � 2xy � x2) dy � 0;

(x, y) � (x � y)�2

In Problems 31–36 solve the given differential equation by
finding, as in Example 4, an appropriate integrating factor.

31. (2y2 � 3x) dx � 2xy dy � 0

32. y(x � y � 1) dx � (x � 2y) dy � 0

33. 6xy dx � (4y � 9x2) dy � 0

34.

35. (10 � 6y � e�3x) dx � 2 dy � 0

36. (y2 � xy3) dx � (5y2 � xy � y3 sin y) dy � 0

In Problems 37 and 38 solve the given initial-value problem
by finding, as in Example 4, an appropriate integrating factor.

37. x dx � (x2y � 4y) dy � 0, y(4) � 0

38. (x2 � y2 � 5) dx � (y � xy) dy, y(0) � 1

39. (a) Show that a one-parameter family of solutions of
the equation

(4xy � 3x2) dx � (2y � 2x2) dy � 0

is x3 � 2x2y � y2 � c.

cos x dx � �1 �
2

y� sin x dy � 0

y(0) � 1� 1

1 � y2 � cos x � 2xy� dy

dx
� y(y � sin x)

�3y2 � t 2

y5 � dy

dt
�

t

2y4 � 0, y(1) � 1

(b) Show that the initial conditions y(0) � �2 and 
y(1) � 1 determine the same implicit solution.

(c) Find explicit solutions y1(x) and y2(x) of the dif-
ferential equation in part (a) such that y1(0) � �2
and y2(1) � 1. Use a graphing utility to graph y1(x)
and y2(x).

Discussion Problems

40. Consider the concept of an integrating factor used in
Problems 29–38. Are the two equations M dx � N dy � 0
and 
M dx � 
N dy � 0 necessarily equivalent in the
sense that a solution of one is also a solution of the other?
Discuss.

41. Reread Example 3 and then discuss why we can con-
clude that the interval of definition of the explicit
solution of the IVP (the blue curve in Figure 2.4.1) is
(�1, 1).

42. Discuss how the functions M(x, y) and N(x, y) can be
found so that each differential equation is exact. Carry
out your ideas.

(a)

(b)

43. Differential equations are sometimes solved by
having a clever idea. Here is a little exercise in
cleverness: Although the differential equation 
(x � ) dx � y dy � 0 is not exact, show how
the rearrangement (x dx � y dy) � dx and
the observation d(x2 � y2) � x dx � y dy can lead to
a solution.

44. True or False: Every separable first-order equation
dy�dx � g(x)h(y) is exact.

Mathematical Model

45. Falling Chain A portion of a uniform chain of length
8 ft is loosely coiled around a peg at the edge of a high
horizontal platform, and the remaining portion of the
chain hangs at rest over the edge of the platform. See
Figure 2.4.2. Suppose that the length of the overhang-
ing chain is 3 ft, that the chain weighs 2 lb/ft, and that
the positive direction is downward. Starting at t � 0
seconds, the weight of the overhanging portion causes
the chain on the table to uncoil smoothly and to fall to
the floor. If x(t) denotes the length of the chain over-
hanging the table at time t � 0, then v � dx�dt is its
velocity. When all resistive forces are ignored, it can
be shown that a mathematical model relating v to x is

1
2

�1x2 � y2
1x2 � y2

�x�1/2y1/2 �
x

x2 � y� dx � N(x, y) dy � 0

M(x, y) dx � �xexy � 2xy �
1

x� dy � 0
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given by

.

(a) Rewrite this model in differential form. Proceed as
in Problems 31–36 and solve the DE for v in terms
of x by finding an appropriate integrating factor.
Find an explicit solution v(x).

(b) Determine the velocity with which the chain leaves
the platform.

xv
dv

dx
� v2 � 32x

Computer Lab Assignments

46. Streamlines

(a) The solution of the differential equation

is a family of curves that can be interpreted as
streamlines of a fluid flow around a circular object
whose boundary is described by the equation
x2 � y2 � 1. Solve this DE and note the solution
f (x, y) � c for c � 0.

(b) Use a CAS to plot the streamlines for
c � 0, �0.2, �0.4, �0.6, and �0.8 in three
different ways. First, use the contourplot of a CAS.
Second, solve for x in terms of the variable y. Plot
the resulting two functions of y for the given values
of c, and then combine the graphs. Third, use the
CAS to solve a cubic equation for y in terms of x.

2xy

(x2 � y2)2 dx � 
1 �
y2 � x2

(x2 � y2)2 � dy � 0

SUBSTITUTIONS Often the first step in solving a differential equation consists
of transforming it into another differential equation by means of a substitution.
For example, suppose we wish to transform the first-order differential equation
dy�dx � f (x, y) by the substitution y � g(x, u), where u is regarded as a function of
the variable x. If g possesses first-partial derivatives, then the Chain Rule

.

If we replace dy�dx by the foregoing derivative and replace y in f (x, y) by g (x, u), then

the DE dy�dx � f (x, y) becomes gx(x, u) � gu(x, u) � f (x, g(x, u)), which, solved

for du�dx, has the form � F(x, u). If we can determine a solution u � �(x) of this 

last equation, then a solution of the original differential equation is y � g(x, �(x)).
In the discussion that follows we examine three different kinds of first-order

differential equations that are solvable by means of a substitution.

du

dx

du

dx

dy

dx
�

�g

�x

dx

dx
�

�g

�u

du

dx
    gives    

dy

dx
� gx(x, u) � gu(x, u)

du

dx

x(t)

platform edge

peg

FIGURE 2.4.2 Uncoiling chain in Problem 45

2.5 SOLUTIONS BY SUBSTITUTIONS

REVIEW MATERIAL
● Techniques of integration
● Separation of variables
● Solution of linear DEs

INTRODUCTION We usually solve a differential equation by recognizing it as a certain kind of
equation (say, separable, linear, or exact) and then carrying out a procedure, consisting of equation-
specific mathematical steps, that yields a solution of the equation. But it is not uncommon to be
stumped by a differential equation because it does not fall into one of the classes of equations that
we know how to solve. The procedures that are discussed in this section may be helpful in this
situation.



HOMOGENEOUS EQUATIONS If a function f possesses the property 
f (tx, ty) � t� f (x, y) for some real number �, then f is said to be a homogeneous
function of degree �. For example, f (x, y) � x3 � y3 is a homogeneous function of
degree 3, since

f (tx, ty) � (tx)3 � (ty)3 � t3(x3 � y3) � t3f (x, y),

whereas f (x, y) � x3 � y3 � 1 is not homogeneous. A first-order DE in differential
form

M(x, y) dx � N(x, y) dy � 0 (1)

is said to be homogeneous* if both coefficient functions M and N are homogeneous
equations of the same degree. In other words, (1) is homogeneous if

.

In addition, if M and N are homogeneous functions of degree �, we can also write

, (2)

and

. (3)

See Problem 31 in Exercises 2.5. Properties (2) and (3) suggest the substitutions that can
be used to solve a homogeneous differential equation. Specifically, either of the substi-
tutions y � ux or x � vy, where u and v are new dependent variables, will reduce a
homogeneous equation to a separable first-order differential equation. To show this, ob-
serve that as a consequence of (2) a homogeneous equation M(x, y) dx � N(x, y) dy � 0
can be rewritten as

,

where u � y�x or y � ux. By substituting the differential dy � u dx � x du into the
last equation and gathering terms, we obtain a separable DE in the variables u and x:

or .

At this point we offer the same advice as in the preceding sections: Do not memorize
anything here (especially the last formula); rather, work through the procedure each
time. The proof that the substitutions x � vy and dx � v dy � y dv also lead to a
separable equation follows in an analogous manner from (3).

EXAMPLE 1 Solving a Homogeneous DE

Solve (x2 � y2) dx � (x2 � xy) dy � 0.

SOLUTION Inspection of M(x, y) � x2 � y2 and N(x, y) � x2 � xy shows that
these coefficients are homogeneous functions of degree 2. If we let y � ux, then

dx

x
�

N(1, u) du

M(1, u) � uN(1, u)
� 0

 [M(1, u) � uN(1, u)] dx � xN(1, u) du � 0

M(1, u) dx � N(1, u)[u dx � x du] � 0

x�M(1, u) dx � x�N(1, u) dy � 0    or    M(1, u) dx � N(1, u) dy � 0

M(x, y) � y�M(v, 1)    and    N(x, y) � y�N(v, 1),  where v � x>y

M(x, y) � x�M(1, u)    and    N(x, y) � x�N(1, u),  where u � y>x

M(tx, ty) � t�M(x, y)    and    N(tx, ty) � t�N(x, y)

*Here the word homogeneous does not mean the same as it did in Section 2.3. Recall that a linear first-
order equation a1(x)y� � a0(x)y � g(x) is homogeneous when g(x) � 0.
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dy � u dx � x du, so after substituting, the given equation becomes

.

After integration the last line gives

.

Using the properties of logarithms, we can write the preceding solution as

.

Although either of the indicated substitutions can be used for every homoge-
neous differential equation, in practice we try x � vy whenever the function M(x, y)
is simpler than N(x, y). Also it could happen that after using one substitution, we may
encounter integrals that are difficult or impossible to evaluate in closed form; switch-
ing substitutions may result in an easier problem.

BERNOULLI’S EQUATION The differential equation

, (4)

where n is any real number, is called Bernoulli’s equation. Note that for n � 0 and
n � 1, equation (4) is linear. For n � 0 and n � 1 the substitution u � y1�n reduces
any equation of form (4) to a linear equation.

EXAMPLE 2 Solving a Bernoulli DE

Solve 

SOLUTION We first rewrite the equation as

by dividing by x. With n � 2 we have u � y�1 or y � u�1. We then substitute

into the given equation and simplify. The result is

.
du

dx
�

1

x
u � �x

dy

dx
�

dy

du

du

dx
� �u�2 du

dx

dy

dx
�

1

x
y � xy2

x
dy

dx
� y � x2y2.

dy

dx
� P(x)y � f (x)yn

ln� (x � y)2

cx � �
y

x
    or    (x � y)2 � cxey/x

�
y

x
� 2 ln� 1 �

y

x � � ln� x � � ln�c �

�u � 2 ln� 1 � u � � ln� x � � ln� c �


�1 �
2

1 � u� du �
dx

x
� 0

1 � u

1 � u
du �

dx

x
� 0

x2 (1 � u) dx � x3(1 � u) du � 0

 (x2 � u2x2) dx � (x2 � ux2)[u dx � x du] � 0

; long division

; resubstituting u � y�x

; Chain Rule



The integrating factor for this linear equation on, say, (0, 
) is

.

Integrating

gives x�1u � �x � c or u � �x2 � cx. Since u � y�1, we have y � 1�u, so a solu-
tion of the given equation is y � 1�(�x2 � cx).

Note that we have not obtained the general solution of the original nonlinear dif-
ferential equation in Example 2, since y � 0 is a singular solution of the equation.

REDUCTION TO SEPARATION OF VARIABLES A differential equation of the
form

(5)

can always be reduced to an equation with separable variables by means of the sub-
stitution u � Ax � By � C, B � 0. Example 3 illustrates the technique.

EXAMPLE 3 An Initial-Value Problem

Solve  

SOLUTION If we let u � �2x � y, then du�dx � �2 � dy�dx, so the differential
equation is transformed into

.

The last equation is separable. Using partial fractions

and then integrating yields

.

Solving the last equation for u and then resubstituting gives the solution

. (6)

Finally, applying the initial condition y(0) � 0 to the last equation in (6) gives 
c � �1. Figure 2.5.1, obtained with the aid of a graphing utility, shows the graph of

the particular solution in dark blue, along with the graphs of

some other members of the family of solutions (6).

y � 2x �
3(1 � e6x)

1 � e6x

u �
3(1 � ce6x)

1 � ce6x     or    y � 2x �
3(1 � ce6x)

1 � ce6x

1

6
 ln� u � 3

u � 3 � � x � c1    or    
u � 3

u � 3
� e6x�6c1 � ce6x

du

(u � 3)(u � 3)
� dx    or    

1

6 

1

u � 3
�

1

u � 3� du � dx

du

dx
� 2 � u2 � 7    or    

du

dx
� u2 � 9

dy

dx
� (�2x � y)2 � 7,  y(0) � 0.

dy

dx
� f(Ax � By � C)

d

dx
 [x�1u] � �1

e�	dx/x � e�ln x � eln x�1
� x�1

; replace by ce6c1

x

y

FIGURE 2.5.1 Some solutions of 
y� � (�2x � y)2 � 7
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EXERCISES 2.5 Answers to selected odd-numbered problems begin on page ANS-2.

Each DE in Problems 1–14 is homogeneous.

In Problems 1–10 solve the given differential equation by
using an appropriate substitution.

1. (x � y) dx � x dy � 0 2. (x � y) dx � x dy � 0

3. x dx � (y � 2x) dy � 0 4. y dx � 2(x � y) dy 

5. (y2 � yx) dx � x2 dy � 0

6. (y2 � yx) dx � x2 dy � 0

7.

8.

9.

10.

In Problems 11–14 solve the given initial-value problem.

11.

12.

13. (x � yey/x) dx � xey/x dy � 0, y(1) � 0

14. y dx � x(ln x � ln y � 1) dy � 0, y(1) � e

Each DE in Problems 15–22 is a Bernoulli equation.

In Problems 15–20 solve the given differential equation by
using an appropriate substitution.

15. 16.

17. 18.

19. 20.

In Problems 21 and 22 solve the given initial-value problem.

21.

22. y1/2 dy

dx
� y3/2 � 1, y(0) � 4

x2 dy

dx
� 2xy � 3y4, y(1) � 1

2

3(1 � t2)
dy

dt
� 2ty( y3 � 1)t2 dy

dt
� y2 � ty

x
dy

dx
� (1 � x)y � xy2dy

dx
� y(xy3 � 1)

dy

dx
� y � exy2x

dy

dx
� y �

1

y2

(x2 � 2y2)
dx

dy
� xy, y(�1) � 1

xy2 dy

dx
� y3 � x3, y(1) � 2

x
dy

dx
� y � 1x2 � y2, x � 0

�y dx � (x � 1xy ) dy � 0

dy

dx
�

x � 3y

3x � y

dy

dx
�

y � x

y � x

Each DE in Problems 23–30 is of the form given in (5).

In Problems 23–28 solve the given differential equation by
using an appropriate substitution.

23. 24.

25. 26.

27. 28.

In Problems 29 and 30 solve the given initial-value problem.

29.

30.

Discussion Problems

31. Explain why it is always possible to express any homoge-
neous differential equation M(x, y) dx � N(x, y) dy � 0 in
the form

.

You might start by proving that

.

32. Put the homogeneous differential equation

(5x2 � 2y2) dx � xy dy � 0

into the form given in Problem 31.

33. (a) Determine two singular solutions of the DE in
Problem 10.

(b) If the initial condition y(5) � 0 is as prescribed in
Problem 10, then what is the largest interval I over
which the solution is defined? Use a graphing util-
ity to graph the solution curve for the IVP.

34. In Example 3 the solution y(x) becomes unbounded as
x : �
. Nevertheless, y(x) is asymptotic to a curve as
x : �
 and to a different curve as x : 
. What are the
equations of these curves?

35. The differential equation dy�dx � P(x) � Q(x)y � R(x)y2

is known as Riccati’s equation.

(a) A Riccati equation can be solved by a succession
of two substitutions provided that we know a

M(x, y) � xaM(1, y>x)    and    N(x, y) � xaN(1, y>x)

dy

dx
� F �y

x�

dy

dx
�

3x � 2y

3x � 2y � 2
, y(�1) � �1

dy

dx
� cos(x � y), y(0) � �>4

dy

dx
� 1 � ey�x�5dy

dx
� 2 � 1y � 2x � 3

dy

dx
� sin(x � y)

dy

dx
� tan2(x � y)

dy

dx
�

1 � x � y

x � y

dy

dx
� (x � y � 1)2



particular solution y1 of the equation. Show that the
substitution y � y1 � u reduces Riccati’s equation
to a Bernoulli equation (4) with n � 2. The
Bernoulli equation can then be reduced to a linear
equation by the substitution w � u�1.

(b) Find a one-parameter family of solutions for the
differential equation

where y1 � 2�x is a known solution of the equation.

36. Determine an appropriate substitution to solve

xy� � y ln(xy).

Mathematical Models

37. Falling Chain In Problem 45 in Exercises 2.4 we saw
that a mathematical model for the velocity v of a chain

dy

dx
� �

4

x2 �
1

x
y � y2

slipping off the edge of a high horizontal platform is

.

In that problem you were asked to solve the DE by con-
verting it into an exact equation using an integrating fac-
tor. This time solve the DE using the fact that it is a
Bernoulli equation.

38. Population Growth In the study of population dy-
namics one of the most famous models for a growing
but bounded population is the logistic equation

,

where a and b are positive constants. Although we
will come back to this equation and solve it by an
alternative method in Section 3.2, solve the DE this first
time using the fact that it is a Bernoulli equation.

dP

dt
� P(a � bP)

xv
dv

dx
� v2 � 32x

2.6 A NUMERICAL METHOD

INTRODUCTION A first-order differential equation dy�dx � f (x, y) is a source of information.
We started this chapter by observing that we could garner qualitative information from a first-order
DE about its solutions even before we attempted to solve the equation. Then in Sections 2.2–2.5 we
examined first-order DEs analytically—that is, we developed some procedures for obtaining explicit
and implicit solutions. But a differential equation can a possess a solution yet we may not be able to
obtain it analytically. So to round out the picture of the different types of analyses of differential
equations, we conclude this chapter with a method by which we can “solve” the differential equa-
tion numerically—this means that the DE is used as the cornerstone of an algorithm for approximat-
ing the unknown solution.

In this section we are going to develop only the simplest of numerical methods—a method that
utilizes the idea that a tangent line can be used to approximate the values of a function in a small
neighborhood of the point of tangency. A more extensive treatment of numerical methods for ordi-
nary differential equations is given in Chapter 9.

USING THE TANGENT LINE Let us assume that the first-order initial-value
problem

(1)

possesses a solution. One way of approximating this solution is to use tangent lines.
For example, let y(x) denote the unknown solution of the first-order initial-value
problem The nonlinear differential equation in
this IVP cannot be solved directly by any of the methods considered in Sections 2.2,
2.4, and 2.5; nevertheless, we can still find approximate numerical values of the
unknown y(x). Specifically, suppose we wish to know the value of y(2.5). The IVP
has a solution, and as the flow of the direction field of the DE in Figure 2.6.1(a) sug-
gests, a solution curve must have a shape similar to the curve shown in blue.

The direction field in Figure 2.6.1(a) was generated with lineal elements passing
through points in a grid with integer coordinates. As the solution curve passes

y� � 0.11y � 0.4x2, y(2) � 4.

y� � f (x, y), y(x0) � y0

2.6 A NUMERICAL METHOD ● 75
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through the initial point (2, 4), the lineal element at this point is a tangent line with
slope given by As is apparent in Figure 2.6.1(a)
and the “zoom in” in Figure 2.6.1(b), when x is close to 2, the points on the solution
curve are close to the points on the tangent line (the lineal element). Using the point
(2, 4), the slope f (2, 4) � 1.8, and the point-slope form of a line, we find that an equa-
tion of the tangent line is y � L(x), where L(x) � 1.8x � 0.4. This last equation,
called a linearization of y(x) at x � 2, can be used to approximate values of y(x)
within a small neighborhood of x � 2. If y1 � L(x1) denotes the y-coordinate on the
tangent line and y(x1) is the y-coordinate on the solution curve corresponding to an
x-coordinate x1 that is close to x � 2, then y(x1)  y1. If we choose, say, x1 � 2.1,
then y1 � L(2.1) � 1.8(2.1) � 0.4 � 4.18, so y(2.1)  4.18.

f (2, 4) � 0.114 � 0.4(2)2 � 1.8.

2

(2, 4) slope 
m = 1.8

x

y

2

4

_2

(a) direction field for y � 0 (b) lineal element
at (2, 4)

e
solution
curv

FIGURE 2.6.1 Magnification of a neighborhood about the point (2, 4)

solution curv e

x

y

x1 = +x0 hx0

L(x)

(x0, y0)
(x1, y1)

h

(x1, y(x1))

slope = f(x0, y0)

error

FIGURE 2.6.2 Approximating y(x1)
using a tangent line

EULER’S METHOD To generalize the procedure just illustrated, we use the lin-
earization of the unknown solution y(x) of (1) at x � x0:

. (2)

The graph of this linearization is a straight line tangent to the graph of y � y(x) at
the point (x0, y0). We now let h be a positive increment of the x-axis, as shown in
Figure 2.6.2. Then by replacing x by x1 � x0 � h in (2), we get

,

where y1 � L(x1). The point (x1, y1) on the tangent line is an approximation to the
point (x1, y(x1)) on the solution curve. Of course, the accuracy of the approximation
L(x1)  y(x1) or y1  y(x1) depends heavily on the size of the increment h. Usually,
we must choose this step size to be “reasonably small.” We now repeat the process
using a second “tangent line” at (x1, y1).* By identifying the new starting point
as (x1, y1) with (x0, y0) in the above discussion, we obtain an approximation 
y2  y(x2) corresponding to two steps of length h from x0, that is, x2 � x1 � h �
x0 � 2h, and

.

Continuing in this manner, we see that y1, y2, y3, . . . , can be defined recursively by
the general formula

, (3)

where xn � x0 � nh, n � 0, 1, 2, . . . . This procedure of using successive “tangent
lines” is called Euler’s method.

yn�1 � yn � hf (xn, yn)

y(x2) � y(x0 � 2h) � y(x1 � h)  y2 � y1 � hf (x1, y1)

L(x1) � y0 � f (x0, y0)(x0 � h � x0)    or    y1 � y0 � hf(x1, y1)

L(x) � y0 � f (x0, y0)(x � x0)

*This is not an actual tangent line, since (x1, y1) lies on the first tangent and not on the solution curve.



EXAMPLE 1 Euler’s Method

Consider the initial-value problem Use Euler’s
method to obtain an approximation of y(2.5) using first h � 0.1 and then h � 0.05.

SOLUTION With the identification (3) becomes

.

Then for h � 0.1, x0 � 2, y0 � 4, and n � 0 we find

,

which, as we have already seen, is an estimate to the value of y(2.1). However, if we
use the smaller step size h � 0.05, it takes two steps to reach x � 2.1. From

we have y1  y(2.05) and y2  y(2.1). The remainder of the calculations were
carried out by using software. The results are summarized in Tables 2.1 and 2.2,
where each entry has been rounded to four decimal places. We see in Tables 2.1 and
2.2 that it takes five steps with h � 0.1 and 10 steps with h � 0.05, respectively, to
get to x � 2.5. Intuitively, we would expect that y10 � 5.0997 corresponding to
h � 0.05 is the better approximation of y(2.5) than the value y5 � 5.0768 corre-
sponding to h � 0.1.

In Example 2 we apply Euler’s method to a differential equation for which we
have already found a solution. We do this to compare the values of the approxima-
tions yn at each step with the true or actual values of the solution y(xn) of the initial-
value problem.

EXAMPLE 2 Comparison of Approximate and Actual Values

Consider the initial-value problem y� � 0.2xy, y(1) � 1. Use Euler’s method to
obtain an approximation of y(1.5) using first h � 0.1 and then h � 0.05.

SOLUTION With the identification f (x, y) � 0.2xy, (3) becomes

where x0 � 1 and y0 � 1. Again with the aid of computer software we obtain the
values in Tables 2.3 and 2.4.

yn�1 � yn � h(0.2xn yn)

y2 � 4.09 � 0.05(0.114.09 � 0.4(2.05)2) � 4.18416187

y1 � 4 � 0.05(0.114 � 0.4(2)2) � 4.09

y1 � y0 � h(0.11y0 � 0.4x0
2) � 4 � 0.1(0.114 � 0.4(2)2) � 4.18

yn�1 � yn � h(0.11yn � 0.4xn
2)

f (x, y) � 0.11y � 0.4x2,

y� � 0.11y � 0.4x2, y(2) � 4.

TABLE 2.1 h � 0.1

xn yn

2.00 4.0000
2.10 4.1800
2.20 4.3768
2.30 4.5914
2.40 4.8244
2.50 5.0768

TABLE 2.2 h � 0.05

xn yn

2.00 4.0000
2.05 4.0900
2.10 4.1842
2.15 4.2826
2.20 4.3854
2.25 4.4927
2.30 4.6045
2.35 4.7210
2.40 4.8423
2.45 4.9686
2.50 5.0997

TABLE 2.3 h � 0.1

xn yn Actual value Abs. error % Rel. error

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.0200 1.0212 0.0012 0.12
1.20 1.0424 1.0450 0.0025 0.24
1.30 1.0675 1.0714 0.0040 0.37
1.40 1.0952 1.1008 0.0055 0.50
1.50 1.1259 1.1331 0.0073 0.64

TABLE 2.4 h � 0.05

xn yn Actual value Abs. error % Rel. error

1.00 1.0000 1.0000 0.0000 0.00
1.05 1.0100 1.0103 0.0003 0.03
1.10 1.0206 1.0212 0.0006 0.06
1.15 1.0318 1.0328 0.0009 0.09
1.20 1.0437 1.0450 0.0013 0.12
1.25 1.0562 1.0579 0.0016 0.16
1.30 1.0694 1.0714 0.0020 0.19
1.35 1.0833 1.0857 0.0024 0.22
1.40 1.0980 1.1008 0.0028 0.25
1.45 1.1133 1.1166 0.0032 0.29
1.50 1.1295 1.1331 0.0037 0.32
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In Example 1 the true or actual values were calculated from the known solution
(Verify.) The absolute error is defined to be

.

The relative error and percentage relative error are, in turn,

.

It is apparent from Tables 2.3 and 2.4 that the accuracy of the approximations
improves as the step size h decreases. Also, we see that even though the percentage
relative error is growing with each step, it does not appear to be that bad. But you
should not be deceived by one example. If we simply change the coefficient of the
right side of the DE in Example 2 from 0.2 to 2, then at xn � 1.5 the percentage
relative errors increase dramatically. See Problem 4 in Exercises 2.6.

A CAVEAT Euler’s method is just one of many different ways in which a solution
of a differential equation can be approximated. Although attractive for its simplic-
ity, Euler’s method is seldom used in serious calculations. It was introduced here
simply to give you a first taste of numerical methods. We will go into greater detail
in discussing numerical methods that give significantly greater accuracy, notably
the fourth order Runge-Kutta method, referred to as the RK4 method, in
Chapter 9.

NUMERICAL SOLVERS Regardless of whether we can actually find an explicit
or implicit solution, if a solution of a differential equation exists, it represents a
smooth curve in the Cartesian plane. The basic idea behind any numerical method
for first-order ordinary differential equations is to somehow approximate the
y-values of a solution for preselected values of x. We start at a specified initial point
(x0, y0) on a solution curve and proceed to calculate in a step-by-step fashion a
sequence of points (x1, y1), (x2, y2), . . . , (xn, yn) whose y-coordinates yi approxi-
mate the y-coordinates y(xi) of points (x1, y(x1)), (x2, y(x2)), . . . , (xn, y(xn)) that lie
on the graph of the usually unknown solution y(x). By taking the x-coordinates
close together (that is, for small values of h) and by joining the points (x1, y1),
(x2, y2), . . . , (xn, yn) with short line segments, we obtain a polygonal curve whose
qualitative characteristics we hope are close to those of an actual solution curve.
Drawing curves is something that is well suited to a computer. A computer program
written to either implement a numerical method or render a visual representation of
an approximate solution curve fitting the numerical data produced by this method
is referred to as a numerical solver. Many different numerical solvers are commer-
cially available, either embedded in a larger software package, such as a computer
algebra system, or provided as a stand-alone package. Some software packages
simply plot the generated numerical approximations, whereas others generate hard
numerical data as well as the corresponding approximate or numerical solution
curves. By way of illustration of the connect-the-dots nature of the graphs produced
by a numerical solver, the two colored polygonal graphs in Figure 2.6.3 are the
numerical solution curves for the initial-value problem y� � 0.2xy, y(0) � 1 on
the interval [0, 4] obtained from Euler’s method and the RK4 method using the
step size h � 1. The blue smooth curve is the graph of the exact solution
of the IVP. Notice in Figure 2.6.3 that, even with the ridiculously large step size of
h � 1, the RK4 method produces the more believable “solution curve.” The numer-
ical solution curve obtained from the RK4 method is indistinguishable from the
actual solution curve on the interval [0, 4] when a more typical step size of h � 0.1
is used.

y � e0.1x2

absolute error

� actual value �
  and  

absolute error

� actual value �
� 100

� actual value � approximation �

y � e0.1(x2�1).

exact 
solution

(0,1) Euler’s
method

RK4
method

_1 1 2 3 4 5

y

x

4

5

3

2

1

_1

FIGURE 2.6.3 Comparison of the
Runge-Kutta (RK4) and Euler methods



USING A NUMERICAL SOLVER Knowledge of the various numerical methods
is not necessary in order to use a numerical solver. A solver usually requires that the
differential equation be expressed in normal form dy�dx � f (x, y). Numerical solvers
that generate only curves usually require that you supply f (x, y) and the initial data x0

and y0 and specify the desired numerical method. If the idea is to approximate the nu-
merical value of y(a), then a solver may additionally require that you state a value for
h or, equivalently, give the number of steps that you want to take to get from x � x0

to x � a. For example, if we wanted to approximate y(4) for the IVP illustrated in
Figure 2.6.3, then, starting at x � 0 it would take four steps to reach x � 4 with a step
size of h � 1; 40 steps is equivalent to a step size of h � 0.1. Although we will not
delve here into the many problems that one can encounter when attempting to ap-
proximate mathematical quantities, you should at least be aware of the fact that a nu-
merical solver may break down near certain points or give an incomplete or mislead-
ing picture when applied to some first-order differential equations in the normal
form. Figure 2.6.4 illustrates the graph obtained by applying Euler’s method to a cer-
tain first-order initial-value problem dy�dx � f (x, y), y(0) � 1. Equivalent results
were obtained using three different commercial numerical solvers, yet the graph is
hardly a plausible solution curve. (Why?) There are several avenues of recourse
when a numerical solver has difficulties; three of the more obvious are decrease the
step size, use another numerical method, and try a different numerical solver.

FIGURE 2.6.4 A not very helpful
numerical solution curve

x

y

1 2 3 4 5
_1

1
2
3
4
5
6

_2 _1

EXERCISES 2.6 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1 and 2 use Euler’s method to obtain a four-
decimal approximation of the indicated value. Carry out the
recursion of (3) by hand, first using h � 0.1 and then using
h � 0.05.

1. y� � 2x � 3y � 1, y(1) � 5; y(1.2)

2. y� � x � y2, y(0) � 0; y(0.2)

In Problems 3 and 4 use Euler’s method to obtain a four-
decimal approximation of the indicated value. First use 
h � 0.1 and then use h � 0.05. Find an explicit solution for
each initial-value problem and then construct tables similar to
Tables 2.3 and 2.4.

3. y� � y, y(0) � 1; y(1.0)

4. y� � 2xy, y(1) � 1; y(1.5)

In Problems 5–10 use a numerical solver and Euler’s
method to obtain a four-decimal approximation of the indi-
cated value. First use h � 0.1 and then use h � 0.05.

5. y� � e�y, y(0) � 0; y(0.5)

6. y� � x2 � y2, y(0) � 1; y(0.5)

7. y� � (x � y)2, y(0) � 0.5; y(0.5)

8.

9.

10. y� � y � y2, y(0) � 0.5; y(0.5)

y� � xy2 �
y

x
, y(1) � 1; y(1.5)

y� � xy � 1y, y(0) � 1; y(0.5)

In Problems 11 and 12 use a numerical solver to obtain a nu-
merical solution curve for the given initial-value problem.
First use Euler’s method and then the RK4 method. Use
h � 0.25 in each case. Superimpose both solution curves on
the same coordinate axes. If possible, use a different color
for each curve. Repeat, using h � 0.1 and h � 0.05.

11. y� � 2(cos x)y, y(0) � 1

12. y� � y(10 � 2y), y(0) � 1

Discussion Problems

13. Use a numerical solver and Euler’s method to
approximate y(1.0), where y(x) is the solution to
y� � 2xy2, y(0) � 1. First use h � 0.1 and then use 
h � 0.05. Repeat, using the RK4 method. Discuss
what might cause the approximations to y(1.0) to
differ so greatly.

Computer Lab Assignments

14. (a) Use a numerical solver and the RK4 method to
graph the solution of the initial-value problem
y� � �2xy � 1, y(0) � 0.

(b) Solve the initial-value problem by one of the
analytic procedures developed earlier in this
chapter.

(c) Use the analytic solution y(x) found in part (b)
and a CAS to find the coordinates of all relative
extrema.
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CHAPTER 2 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-3.

Answer Problems 1–4 without referring back to the text. Fill
in the blanks or answer true or false.

1. The linear DE, y� � ky � A, where k and A are constants,
is autonomous. The critical point of the equa-
tion is a(n) (attractor or repeller) for k � 0
and a(n) (attractor or repeller) for k � 0.

2. The initial-value problem x � 4y � 0, y(0) � k, has

an infinite number of solutions for k � and
no solution for k � .

3. The linear DE, y� � k1y � k2, where k1 and k2 are
nonzero constants, always possesses a constant 
solution.

4. The linear DE, a1(x)y� � a2(x)y � 0 is also separable.

In Problems 5 and 6 construct an autonomous first-order
differential equation dy�dx � f (y) whose phase portrait is
consistent with the given figure.

5.

dy

dx

1

3

y

FIGURE 2.R.1 Graph for Problem 5

6.

0

2

4

y

FIGURE 2.R.2 Graph for Problem 6

7. The number 0 is a critical point of the autonomous dif-
ferential equation dx�dt � xn, where n is a positive inte-
ger. For what values of n is 0 asymptotically stable?
Semi-stable? Unstable? Repeat for the differential equa-
tion dx�dt � �xn.

8. Consider the differential equation 

The function f (P) has one real zero, as shown in
Figure 2.R.3. Without attempting to solve the differen-
tial equation, estimate the value of limt:
 P(t).

f (P) � �0.5P 3 � 1.7P � 3.4.

dP>dt � f (P), where

FIGURE 2.R.4 Portion of a direction field for Problem 9

P1

1

f

FIGURE 2.R.3 Graph for Problem 8

9. Figure 2.R.4 is a portion of a direction field of a differ-
ential equation dy�dx � f (x, y). By hand, sketch two
different solution curves—one that is tangent to the lin-
eal element shown in black and one that is tangent to the
lineal element shown in color.

10. Classify each differential equation as separable, exact,
linear, homogeneous, or Bernoulli. Some equations may
be more than one kind. Do not solve.

(a) (b)

(c) (d)

(e) (f)

(g) y dx � (y � xy2) dy (h)

(i) xy y� � y2 � 2x ( j) 2xy y� � y2 � 2x2

(k) y dx � x dy � 0

(l)

(m) (n)
y

x2

dy

dx
� e2x3�y2

� 0
dy

dx
�

x

y
�

y

x
� 1

�x2 �
2y

x � dx � (3 � ln x2) dy

x
dy

dx
� yex/y � x

dy

dx
� 5y � y2dy

dx
�

y2 � y

x2 � x

dy

dx
�

1

x(x � y)
(x � 1)

dy

dx
� �y � 10

dy

dx
�

1

y � x

dy

dx
�

x � y

x



In Problems 11–18 solve the given differential equation.

11. (y2 � 1) dx � y sec2 x dy

12. y(ln x � ln y) dx � (x ln x � x ln y � y) dy

13.

14.

15.

16. (2x � y � 1)y� � 1

17. (x2 � 4) dy � (2x � 8xy) dx

18. (2r2 cos � sin � � r cos �) d�
� (4r � sin � � 2r cos2 �) dr � 0

In Problems 19 and 20 solve the given initial-value problem
and give the largest interval I on which the solution is defined.

19.

20.

21. (a) Without solving, explain why the initial-value
problem

has no solution for y0 � 0.
(b) Solve the initial-value problem in part (a) for 

y0 � 0 and find the largest interval I on which the
solution is defined.

22. (a) Find an implicit solution of the initial-value problem

.

(b) Find an explicit solution of the problem in part (a) and
give the largest interval I over which the solution is
defined. A graphing utility may be helpful here.

23. Graphs of some members of a family of solutions for a
first-order differential equation dy�dx � f (x, y) are
shown in Figure 2.R.5. The graphs of two implicit
solutions, one that passes through the point (1, �1) and
one that passes through (�1, 3), are shown in red.
Reproduce the figure on a piece of paper. With colored
pencils trace out the solution curves for the solutions
y � y1(x) and y � y2(x) defined by the implicit solu-
tions such that y1(1) � �1 and y2(�1) � 3, respectively.
Estimate the intervals on which the solutions y � y1(x)
and y � y2(x) are defined.

dy

dx
�

y2 � x2

xy
,  y(1) � �12

dy

dx
� 1y,  y(x0) � y0

dy

dt
� 2(t � 1)y2 � 0,  y(0) � �1

8

sin x
dy

dx
� (cos x)y � 0,  y �7�

6 � � �2

t
dQ

dt
� Q � t 4 ln t

dx

dy
� �

4y2 � 6xy

3y2 � 2x

(6x � 1)y2 dy

dx
� 3x2 � 2y3 � 0

x
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FIGURE 2.R.6 Portion of a direction field for Problem 25

x

y

FIGURE 2.R.5 Graph for Problem 23

24. Use Euler’s method with step size h � 0.1 to approxi-
mate y(1.2), where y(x) is a solution of the initial-value
problem , y(1) � 9.

In Problems 25 and 26 each figure represents a portion of a
direction field of an autonomous first-order differential equa-
tion dy�dx � f (y). Reproduce the figure on a separate piece
of paper and then complete the direction field over the grid.
The points of the grid are (mh, nh), where m and n
integers, �7 � m � 7, �7 � n � 7. In each direction field,
sketch by hand an approximate solution curve that passes
through each of the solid points shown in red. Discuss: Does
it appear that the DE possesses critical points in the interval
�3.5 � y � 3.5? If so, classify the critical points as asymp-
totically stable, unstable, or semi-stable.

25.

26.

h � 1
2,

y� � 1 � x1y

FIGURE 2.R.7 Portion of a direction field for Problem 26
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