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Chapter 1
Matrices and Gaussian Elimination

1.1 Introduction

This book begins with the central problem of linear algebra: solving linear equations.
The most important ease, and the simplest, is when the number of unknowns equals the
number of equations. We have n equations in n unknowns, starting with n = 2:

Two equations 1x + 2y = 3
Two unknowns 4x + 5y = 6.

(1)

The unknowns are x and y. I want to describe two ways, elimination and determinants,
to solve these equations. Certainly x and y are determined by the numbers 1, 2, 3, 4, 5,
6. The question is how to use those six numbers to solve the system.

1. Elimination Subtract 4 times the first equation from the second equation. This
eliminates x from the second equation. and it leaves one equation for y:

(equation 2)−4(equation 1) −3y =−6. (2)

Immediately we know y = 2. Then x comes from the first equation 1x+2y = 3:

Back-substitution 1x+2(2) = 3 gives x =−1. (3)

Proceeding carefully, we cheek that x and y also solve the second equation. This
should work and it does: 4 times (x =−1) plus 5 times (y = 2) equals 6.

2. Determinants The solution y = 2 depends completely on those six numbers in the
equations. There most be a formula for y (and also x) It is a “ratio of determinants”
and I hope you will allow me to write it down directly:

y =

∣∣∣∣∣
1 3
4 6

∣∣∣∣∣
∣∣∣∣∣
1 2
4 5

∣∣∣∣∣

=
1 ·6−3 ·4
1 ·5−2 ·4 =

−6
−3

= 2. (4)
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That could seem a little mysterious, unless you already know about 2 by 2 determi-
nants. They gave the same answer y = 2, coming from the same ratio of −6 to −3.
If we stay with determinants (which we don’t plan to do), there will be a similar
formula to compute the other unknown, x:

x =

∣∣∣∣∣
3 2
6 5

∣∣∣∣∣
∣∣∣∣∣
1 2
4 5

∣∣∣∣∣

=
3 ·5−2 ·6
1 ·5−2 ·4 =

3
−3

=−1. (5)

Let me compare those two approaches, looking ahead to real problems when n is
much larger (n = 1000 is a very moderate size in scientific computing). The truth is that
direct use of the determinant formula for 1000 equations would be a total disaster. It
would use the million numbers on the left sides correctly, but not efficiently. We will
find that formula (Cramer’s Rule) in Chapter 4, but we want a good method to solve
1000 equations in Chapter 1.

That good method is Gaussian Elimination. This is the algorithm that is constantly
used to solve large systems of equations. From the examples in a textbook (n = 3 is
close to the upper limit on the patience of the author and reader) too might not see much
difference. Equations (2) and (4) used essentially the same steps to find y = 2. Certainly
x came faster by the back-substitution in equation (3) than the ratio in (5). For larger
n there is absolutely no question. Elimination wins (and this is even the best way to
compute determinants).

The idea of elimination is deceptively simple—you will master it after a few exam-
ples. It will become the basis for half of this book, simplifying a matrix so that we can
understand it. Together with the mechanics of the algorithm, we want to explain four
deeper aspects in this chapter. They are:

1. Linear equations lead to geometry of planes. It is not easy to visualize a nine-
dimensional plane in ten-dimensional space. It is harder to see ten of those planes,
intersecting at the solution to ten equations—but somehow this is almost possible.
Our example has two lines in Figure 1.1, meeting at the point (x,y) = (−1,2).
Linear algebra moves that picture into ten dimensions, where the intuition has to
imagine the geometry (and gets it right)

2. We move to matrix notation, writing the n unknowns as a vector x and the n equa-
tions as Ax = b. We multiply A by “elimination matrices” to reach an upper trian-
gular matrix U . Those steps factor A into L times U , where L is lower triangular.
I will write down A and its factors for our example, and explain them at the right
time:

Factorization A =

[
1 2
4 5

]
=

[
1 0
4 1

][
1 2
0 −3

]
= L times U . (6)
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y

x

b

x + 2y = 3
x = −1
y = 2

4x + 5y = 6

One solution (x, y) = (−1, 2)

y

x

x + 2y = 3

4x + 8y = 6

Parallel: No solution

y

x

x + 2y = 3

4x + 8y = 12

Whole line of solutions

Figure 1.1: The example has one solution. Singular cases have none or too many.

First we have to introduce matrices and vectors and the rules for multiplication.
Every matrix has a transpose AT. This matrix has an inverse A−1.

3. In most cases elimination goes forward without difficulties. The matrix has an
inverse and the system Ax = b has one solution. In exceptional cases the method
will break down—either the equations were written in the wrong order, which is
easily fixed by exchanging them, or the equations don’t have a unique solution.

That singular case will appear if 8 replaces 5 in our example:

Singular case
Two parallel lines

1x + 2y = 3
4x + 8y = 6.

(7)

Elimination still innocently subtracts 4 times the first equation from the second. But
look at the result!

(equation 2)−4(equation 1) 0 =−6.

This singular case has no solution. Other singular cases have infinitely many solu-
tions. (Change 6 to 12 in the example, and elimination will lead to 0 = 0. Now y
can have any value,) When elimination breaks down, we want to find every possible
solution.

4. We need a rough count of the number of elimination steps required to solve a sys-
tem of size n. The computing cost often determines the accuracy in the model. A
hundred equations require a third of a million steps (multiplications and subtrac-
tions). The computer can do those quickly, but not many trillions. And already
after a million steps, roundoff error could be significant. (Some problems are sen-
sitive; others are not.) Without trying for full detail, we want to see large systems
that arise in practice, and how they are actually solved.

The final result of this chapter will be an elimination algorithm that is about as effi-
cient as possible. It is essentially the algorithm that is in constant use in a tremendous
variety of applications. And at the same time, understanding it in terms of matrices—the
coefficient matrix A, the matrices E for elimination and P for row exchanges, and the
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final factors L and U—is an essential foundation for the theory. I hope you will enjoy
this book and this course.

1.2 The Geometry of Linear Equations

The way to understand this subject is by example. We begin with two extremely humble
equations, recognizing that you could solve them without a course in linear algebra.
Nevertheless I hope you will give Gauss a chance:

2x − y = 1
x + y = 5.

We can look at that system by rows or by columns. We want to see them both.
The first approach concentrates on the separate equations (the rows). That is the

most familiar, and in two dimensions we can do it quickly. The equation 2x− y = 1 is
represented by a straight line in the x-y plane. The line goes through the points x = 1,
y = 1 and x = 1

2 , y = 0 (and also through (2,3) and all intermediate points). The second
equation x + y = 5 produces a second line (Figure 1.2a). Its slope is dy/dx =−1 and it
crosses the first line at the solution.

The point of intersection lies on both lines. It is the only solution to both equations.
That point x = 2 and y = 3 will soon be found by “elimination.”

b

b

(0, 5)

(0,−1) (1

2
, 0)

x + y = 5

2x − y = 1

x

y

(5, 0)

(x, y) = (2, 3)

(a) Lines meet at x = 2, y = 3

b b

b

b

b

(−3, 3)

(−1, 1) (2, 1) = column 1

(4, 2)

(1, 5) =
2 (column 1)

+3 (column 2)

(b) Columns combine with 2 and 3

Figure 1.2: Row picture (two lines) and column picture (combine columns).

The second approach looks at the columns of the linear system. The two separate
equations are really one vector equation:

Column form x

[
2
1

]
+ y

[
−1
1

]
=

[
1
5

]
.
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The problem is to find the combination of the column vectors on the left side that
produces the vector on the right side. Those vectors (2,1) and (−1,1) are represented
by the bold lines in Figure 1.2b. The unknowns are the numbers x and y that multiply
the column vectors. The whole idea can be seen in that figure, where 2 times column
1 is added to 3 times column 2. Geometrically this produces a famous parallelogram.
Algebraically it produces the correct vector (1,5), on the right side of our equations.
The column picture confirms that x = 2 and y = 3.

More time could be spent on that example, but I would rather move forward to n = 3.
Three equations are still manageable, and they have much more variety:

Three planes
2u + v + w = 5
4u − 6v = −2
−2u + 7v + 2w = 9.

(1)

Again we can study the rows or the columns, and we start with the rows. Each equation
describes a plane in three dimensions. The first plane is 2u+v+w = 5, and it is sketched
in Figure 1.3. It contains the points (5

2 ,0,0) and (0,5,0) and (0,0,5). It is determined
by any three of its points—provided they do not lie on a line.

w

u

v

b
(1, 1, 2) = point of intersection
with third plane = solution

4u − 6v = −2 (vertical plane)

line of intersection: first two planes

2u + v + w = 5 (sloping plane)

Figure 1.3: The row picture: three intersecting planes from three linear equations.

Changing 5 to 10, the plane 2u+v+w = 10 would be parallel to this one. It contains
(5,0,0) and (0,10,0) and (0,0,10), twice as far from the origin—which is the center
point u = 0, v = 0, w = 0. Changing the right side moves the plane parallel to itself, and
the plane 2u+ v+w = 0 goes through the origin.
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The second plane is 4u− 6v = −2. It is drawn vertically, because w can take any
value. The coefficient of w is zero, but this remains a plane in 3-space. (The equation
4u = 3, or even the extreme case u = 0, would still describe a plane.) The figure shows
the intersection of the second plane with the first. That intersection is a line. In three
dimensions a line requires two equations; in n dimensions it will require n−1.

Finally the third plane intersects this line in a point. The plane (not drawn) represents
the third equation−2u+7v+2w = 9, and it crosses the line at u = 1, v = 1, w = 2. That
triple intersection point (1,1,2) solves the linear system.

How does this row picture extend into n dimensions? The n equations will con-
tain n unknowns. The first equation still determines a “plane.” It is no longer a two-
dimensional plane in 3-space; somehow it has “dimension” n− 1. It must be flat and
extremely thin within n-dimensional space, although it would look solid to us.

If time is the fourth dimension, then the plane t = 0 cuts through four-dimensional
space and produces the three-dimensional universe we live in (or rather, the universe as
it was at t = 0). Another plane is z = 0, which is also three-dimensional; it is the ordinary
x-y plane taken over all time. Those three-dimensional planes will intersect! They share
the ordinary x-y plane at t = 0. We are down to two dimensions, and the next plane
leaves a line. Finally a fourth plane leaves a single point. It is the intersection point of 4
planes in 4 dimensions, and it solves the 4 underlying equations.

I will be in trouble if that example from relativity goes any further. The point is that
linear algebra can operate with any number of equations. The first equation produces an
(n−1)-dimensional plane in n dimensions, The second plane intersects it (we hope) in
a smaller set of “dimension n−2.” Assuming all goes well, every new plane (every new
equation) reduces the dimension by one. At the end, when all n planes are accounted
for, the intersection has dimension zero. It is a point, it lies on all the planes, and its
coordinates satisfy all n equations. It is the solution!

Column Vectors and Linear Combinations

We turn to the columns. This time the vector equation (the same equation as (1)) is

Column form u




2
4
−2


+ v




1
−6
7


+w




1
0
2


 =




5
−2
9


 = b. (2)

Those are three-dimensional column vectors. The vector b is identified with the point
whose coordinates are 5, −2, 9. Every point in three-dimensional space is matched to a
vector, and vice versa. That was the idea of Descartes, who turned geometry into algebra
by working with the coordinates of the point. We can write the vector in a column, or
we can list its components as b = (5,−2,9), or we can represent it geometrically by an
arrow from the origin. You can choose the arrow, or the point, or the three numbers. In
six dimensions it is probably easiest to choose the six numbers.
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We use parentheses and commas when the components are listed horizontally, and
square brackets (with no commas) when a column vector is printed vertically. What
really matters is addition of vectors and multiplication by a scalar (a number). In Figure
1.4a you see a vector addition, component by component:

Vector addition




5
0
0


+




0
−2
0


+




0
0
9


 =




5
−2
9


 .

In the right-hand figure there is a multiplication by 2 (and if it had been −2 the vector

b

b

b

b

[

0
−2

0

]

[

5
0
0

]

b =
[

5
−2

9

]

[

0
0
9

]

(a) Add vectors along axes

b

b b

[

2
0
4

]

= 2
[

1
0
2

]

2 (column 3)
[

2
4
−2

]

+
[

1
−6

7

]

=
[

3
−2

5

]

columns 1 + 2

[

5
−1

9

]

= linear combination equals b

(b) Add columns 1 + 2 + (3 + 3)

Figure 1.4: The column picture: linear combination of columns equals b.

would have gone in the reverse direction):

Multiplication by scalars 2




1
0
2


 =




2
0
4


 , −2




1
0
2


 =



−2
0
−4


 .

Also in the right-hand figure is one of the central ideas of linear algebra. It uses both
of the basic operations; vectors are multiplied by numbers and then added. The result is
called a linear combination, and this combination solves our equation:

Linear combination 1




2
4
−2


+1




1
−6
7


+2




1
0
2


 =




5
−2
9


 .

Equation (2) asked for multipliers u, v, w that produce the right side b. Those numbers
are u = 1, v = 1, w = 2. They give the correct combination of the columns. They also
gave the point (1,1,2) in the row picture (where the three planes intersect).
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Our true goal is to look beyond two or three dimensions into n dimensions. With n
equations in n unknowns, there are n planes in the row picture. There are n vectors in
the column picture, plus a vector b on the right side. The equations ask for a linear com-
bination of the n columns that equals b. For certain equations that will be impossible.
Paradoxically, the way to understand the good case is to study the bad one. Therefore
we look at the geometry exactly when it breaks down, in the singular case.

Row picture: Intersection of planes Column picture: Combination of columns

The Singular Case

Suppose we are again in three dimensions, and the three planes in the row picture do not
intersect. What can go wrong? One possibility is that two planes may be parallel. The
equations 2u + v + w = 5 and 4u + 2v + 2w = 11 are inconsistent—and parallel planes
give no solution (Figure 1.5a shows an end view). In two dimensions, parallel lines
are the only possibility for breakdown. But three planes in three dimensions can be in
trouble without being parallel.

two parallel planes

(a)

no intersection

(b)

line of intersection

(c)

all planes parallel

(d)

Figure 1.5: Singular cases: no solution for (a), (b), or (d), an infinity of solutions for (c).

The most common difficulty is shown in Figure 1.5b. From the end view the planes
form a triangle. Every pair of planes intersects in a line, and those lines are parallel. The
third plane is not parallel to the other planes, but it is parallel to their line of intersection.
This corresponds to a singular system with b = (2,5,6):

No solution, as in Figure 1.5b
u + v + w = 2

2u + 3w = 5
3u + v + 4w = 6.

(3)

The first two left sides add up to the third. On the right side that fails: 2+5 6= 6. Equation
1 plus equation 2 minus equation 3 is the impossible statement 0 = 1. Thus the equations
are inconsistent, as Gaussian elimination will systematically discover.
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Another singular system, close to this one, has an infinity of solutions. When the
6 in the last equation becomes 7, the three equations combine to give 0 = 0. Now the
third equation is the sum of the first two. In that case the three planes have a whole line
in common (Figure 1.5c). Changing the right sides will move the planes in Figure 1.5b
parallel to themselves, and for b = (2,5,7) the figure is suddenly different. The lowest
plane moved up to meet the others, and there is a line of solutions. Problem 1.5c is still
singular, but now it suffers from too many solutions instead of too few.

The extreme case is three parallel planes. For most right sides there is no solution
(Figure 1.5d). For special right sides (like b = (0,0,0)!) there is a whole plane of
solutions—because the three parallel planes move over to become the same.

What happens to the column picture when the system is singular? it has to go wrong;
the question is how, There are still three columns on the left side of the equations, and
we try to combine them to produce b. Stay with equation (3):

Singular case: Column picture
Three columns in the same plane
Solvable only for b in that plane

u




1
2
3


+ v




1
0
1


+w




1
3
4


 = b. (4)

For b = (2,5,7) this was possible; for b = (2,5,6) it was not. The reason is that those
three columns lie in a plane. Then every combination is also in the plane (which goes
through the origin). If the vector b is not in that plane, no solution is possible (Figure
1.6). That is by far the most likely event; a singular system generally has no solution.
But there is a chance that b does lie in the plane of the columns. In that case there are too
many solutions; the three columns can be combined in infinitely many ways to produce
b. That column picture in Figure 1.6b corresponds to the row picture in Figure 1.5c.

b

b

b not in place

3 columns
in a plane

(a) no solution

b

bb in place

3 columns
in a plane

(b) infinity of solutions

Figure 1.6: Singular cases: b outside or inside the plane with all three columns.

How do we know that the three columns lie in the same plane? One answer is to find a
combination of the columns that adds to zero. After some calculation, it is u = 3, v = 1,
w = −2. Three times column 1 equals column 2 plus twice column 3. Column 1 is in
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the plane of columns 2 and 3. Only two columns are independent.
The vector b = (2,5,7) is in that plane of the columns—it is column 1 plus column

3—so (1, 0, 1) is a solution. We can add an multiple of the combination (3,−1,−2) that
gives b = 0. So there is a whole line of solutions—as we know from the row picture.

The truth is that we knew the columns would combine to give zero, because the rows
did. That is a fact of mathematics, not of computation—and it remains true in dimension
n. If the n planes have no point in common, or infinitely many points, then the n
columns lie in the same plane.

If the row picture breaks down, so does the column picture. That brings out the
difference between Chapter 1 and Chapter 2. This chapter studies the most important
problem—the nonsingular case—where there is one solution and it has to be found.
Chapter 2 studies the general case, where there may be many solutions or none. In
both cases we cannot continue without a decent notation (matrix notation) and a decent
algorithm (elimination). After the exercises, we start with elimination.

Problem Set 1.2

1. For the equations x + y = 4, 2x− 2y = 4, draw the row picture (two intersecting
lines) and the column picture (combination of two columns equal to the column
vector (4,4) on the right side).

2. Solve to find a combination of the columns that equals b:

Triangular system
u − v − w = b1

v + w = b2

w = b3.

3. (Recommended) Describe the intersection of the three planes u + v + w + z = 6 and
u+w+ z = 4 and u+w = 2 (all in four-dimensional space). Is it a line or a point or
an empty set? What is the intersection if the fourth plane u =−1 is included? Find
a fourth equation that leaves us with no solution.

4. Sketch these three lines and decide if the equations are solvable:

3 by 2 system
x + 2y = 2
x − y = 2

y = 1.

What happens if all right-hand sides are zero? Is there any nonzero choice of right-
hand sides that allows the three lines to intersect at the same point?

5. Find two points on the line of intersection of the three planes t = 0 and z = 0 and
x+ y+ z+ t = 1 in four-dimensional space.
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6. When b = (2,5,7), find a solution (u,v,w) to equation (4) different from the solution
(1,0,1) mentioned in the text.

7. Give two more right-hand sides in addition to b = (2,5,7) for which equation (4)
can be solved. Give two more right-hand sides in addition to b = (2,5,6) for which
it cannot be solved.

8. Explain why the system

u + v + w = 2
u + 2v + 3w = 1

v + 2w = 0

is singular by finding a combination of the three equations that adds up to 0 = 1.
What value should replace the last zero on the right side to allow the equations to
have solutions—and what is one of the solutions?

9. The column picture for the previous exercise (singular system) is

u




1
1
0


+ v




1
2
1


+w




1
3
2


 = b.

Show that the three columns on the left lie in the same plane by expressing the third
column as a combination of the first two. What are all the solutions (u,v,w) if b is
the zero vector (0,0,0)?

10. (Recommended) Under what condition on y1, y2, y3 do the points (0,y1), (1,y2),
(2,y3) lie on a straight line?

11. These equations are certain to have the solution x = y = 0. For which values of a is
there a whole line of solutions?

ax + 2y = 0
2x + ay = 0

12. Starting with x+4y = 7, find the equation for the parallel line through x = 0, y = 0.
Find the equation of another line that meets the first at x = 3, y = 1.

Problems 13–15 are a review of the row and column pictures.

13. Draw the two pictures in two planes for the equations x−2y = 0, x+ y = 6.

14. For two linear equations in three unknowns x, y, z, the row picture will show (2 or 3)
(lines or planes) in (two or three)-dimensional space. The column picture is in (two
or three)-dimensional space. The solutions normally lie on a .
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15. For four linear equations in two unknowns x and y, the row picture shows four
. The column picture is in -dimensional space. The equations have no

solution unless the vector on the right-hand side is a combination of .

16. Find a point with z = 2 on the intersection line of the planes x + y + 3z = 6 and
x− y+ z = 4. Find the point with z = 0 and a third point halfway between.

17. The first of these equations plus the second equals the third:

x + y + z = 2
x + 2y + z = 3

2x + 3y + 2z = 5.

The first two planes meet along a line. The third plane contains that line, because
if x, y, z satisfy the first two equations then they also . The equations have
infinitely many solutions (the whole line L). Find three solutions.

18. Move the third plane in Problem 17 to a parallel plane 2x + 3y + 2z = 9. Now the
three equations have no solution—why not? The first two planes meet along the line
L, but the third plane doesn’t that line.

19. In Problem 17 the columns are (1,1,2) and (1,2,3) and (1,1,2). This is a “singular
case” because the third column is . Find two combinations of the columns
that give b = (2,3,5). This is only possible for b = (4,6,c) if c = .

20. Normally 4 “planes” in four-dimensional space meet at a . Normally 4 col-
umn vectors in four-dimensional space can combine to produce b. What combina-
tion of (1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1) produces b = (3,3,3,2)? What 4
equations for x, y, z, t are you solving?

21. When equation 1 is added to equation 2, which of these are changed: the planes in
the row picture, the column picture, the coefficient matrix, the solution?

22. If (a,b) is a multiple of (c,d) with abcd 6= 0, show that (a,c) is a multiple of (b,d).
This is surprisingly important: call it a challenge question. You could use numbers
first to see how a, b, c, and d are related. The question will lead to:

If A =
[

a b
c d

]
has dependent rows then it has dependent columns.

23. In these equations, the third column (multiplying w) is the same as the right side b.
The column form of the equations immediately gives what solution for (u,v,w)?

6u + 7v + 8w = 8
4u + 5v + 9w = 9
2u − 2v + 7w = 7.
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1.3 An Example of Gaussian Elimination

The way to understand elimination is by example. We begin in three dimensions:

Original system
2u + v + w = 5
4u − 6v = −2
−2u + 7v + 2w = 9.

(1)

The problem is to find the unknown values of u, v, and w, and we shall apply Gaussian
elimination. (Gauss is recognized as the greatest of all mathematicians, but certainly not
because of this invention, which probably took him ten minutes. Ironically, it is the most
frequently used of all the ideas that bear his name.) The method starts by subtracting
multiples of the first equation from the other equations. The goal is to eliminate u from
the last two equations. This requires that we

(a) subtract 2 times the first equation from the second

(b) subtract −1 times the first equation from the third.

Equivalent system
2u + v + w = 5

− 8v − 2w = −12
8v + 3w = 14.

(2)

The coefficient 2 is the first pivot. Elimination is constantly dividing the pivot into the
numbers underneath it, to find out the right multipliers.

The pivot for the second stage of elimination is−8. We now ignore the first equation.
A multiple of the second equation will be subtracted from the remaining equations (in
this case there is only the third one) so as to eliminate v. We add the second equation to
the third or, in other words, we

(c) subtract −1 times the second equation from the third.

The elimination process is now complete, at least in the “forward” direction:

Triangular system
2u + v + w = 5

− 8v − 2w = −12
1w = 2.

(3)

This system is solved backward, bottom to top. The last equation gives w = 2. Sub-
stituting into the second equation, we find v = 1. Then the first equation gives u = 1.
This process is called back-substitution.

To repeat: Forward elimination produced the pivots 2, −8, 1. It subtracted multiples
of each row from the rows beneath, It reached the “triangular” system (3), which is
solved in reverse order: Substitute each newly computed value into the equations that
are waiting.
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Remark. One good way to write down the forward elimination steps is to include the
right-hand side as an extra column. There is no need to copy u and v and w and = at
every step, so we are left with the bare minimum:




2 1 1 5
4 −6 0 −2
−2 7 2 9


−→




2 1 1 5
0 −8 −2 −12
0 8 3 14


−→




2 1 1 5
0 −8 −2 −12
0 0 1 2


 .

At the end is the triangular system, ready for back-substitution. You may prefer this
arrangement, which guarantees that operations on the left-hand side of the equations are
also done on the right-hand side—because both sides are there together.

In a larger problem, forward elimination takes most of the effort. We use multiples
of the first equation to produce zeros below the first pivot. Then the second column is
cleared out below the second pivot. The forward step is finished when the system is
triangular; equation n contains only the last unknown multiplied by the last pivot. Back-
substitution yields the complete solution in the opposite order—beginning with the last
unknown, then solving for the next to last, and eventually for the first.

By definition, pivots cannot be zero. We need to divide by them.

The Breakdown of Elimination

Under what circumstances could the process break down? Something must go wrong
in the singular case, and something might go wrong in the nonsingular case. This may
seem a little premature—after all, we have barely got the algorithm working. But the
possibility of breakdown sheds light on the method itself.

The answer is: With a full set of n pivots, there is only one solution. The system is
non singular, and it is solved by forward elimination and back-substitution. But if a zero
appears in a pivot position, elimination has to stop—either temporarily or permanently.
The system might or might not be singular.

If the first coefficient is zero, in the upper left corner, the elimination of u from the
other equations will be impossible. The same is true at every intermediate stage. Notice
that a zero can appear in a pivot position, even if the original coefficient in that place
was not zero. Roughly speaking, we do not know whether a zero will appear until we
try, by actually going through the elimination process.

In many cases this problem can be cured, and elimination can proceed. Such a system
still counts as nonsingular; it is only the algorithm that needs repair. In other cases a
breakdown is unavoidable. Those incurable systems are singular, they have no solution
or else infinitely many, and a full set of pivots cannot be found.
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Example 1. Nonsingular (cured by exchanging equations 2 and 3)

u + v + w =
2u + 2v + 5w =
4u + 6v + 8w =

→
u + v + w =

3w =
2v + 4w =

→
u + v + w =

2v + 4w =
3w =

The system is now triangular, and back-substitution will solve it.

Example 2. Singular (incurable)

u + v + w =
2u + 2v + 5w =
4u + 4v + 8w =

−→
u + v + w =

3w =
4w =

There is no exchange of equations that can avoid zero in the second pivot position. The
equations themselves may be solvable or unsolvable. If the last two equations are 3w = 6
and 4w = 7, there is no solution. If those two equations happen to be consistent—as in
3w = 6 and 4w = 8—then this singular case has an infinity of solutions. We know that
w = 2, but the first equation cannot decide both u and v.

Section 1.5 will discuss row exchanges when the system is not singular. Then the
exchanges produce a full set of pivots. Chapter 2 admits the singular case, and limps
forward with elimination. The 3w can still eliminate the 4w, and we will call 3 the
second pivot. (There won’t be a third pivot.) For the present we trust all n pivot entries
to be nonzero, without changing the order of the equations. That is the best case, with
which we continue.

The Cost of Elimination

Our other question is very practical. How many separate arithmetical operations does
elimination require, for n equations in n unknowns? If n is large, a computer is going to
take our place in carrying out the elimination. Since all the steps are known, we should
be able to predict the number of operations.

For the moment, ignore the right-hand sides of the equations, and count only the
operations on the left. These operations are of two kinds. We divide by the pivot to
find out what multiple (say `) of the pivot equation is to be subtracted. When we do
this subtraction, we continually meet a “multiply-subtract” combination; the terms in
the pivot equation are multiplied by `, and then subtracted from another equation.

Suppose we call each division, and each multiplication-subtraction, one operation. In
column 1, it takes n operations for every zero we achieve—one to find the multiple `,
and the other to find the new entries along the row. There are n−1 rows underneath the
first one, so the first stage of elimination needs n(n− 1) = n2− n operations. (Another
approach to n2− n is this: All n2 entries need to be changed, except the n in the first
row.) Later stages are faster because the equations are shorter.
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When the elimination is down to k equations, only k2− k operations are needed to
clear out the column below the pivot—by the same reasoning that applied to the first
stage, when k equaled n. Altogether, the total number of operations is the sum of k2− k
over all values of k from 1 to n:

Left side (12 + · · ·+n2)− (1+ · · ·+n) =
n(n+1)(2n+1)

6
− n(n+1)

2

=
n3−n

3
.

Those are standard formulas for the sums of the first n numbers and the first n squares.
Substituting n = 1 and n = 2 and n = 100 into the formula 1

3(n
3−n), forward elimination

can take no steps or two steps or about a third of a million steps:

If n is at all large, a good estimate for the number of operations is 1
3n3.

If the size is doubled, and few of the coefficients are zero, the cost is multiplied by 8.
Back-substitution is considerably faster. The last unknown is found in only one oper-

ation (a division by the last pivot). The second to last unknown requires two operations,
and so on. Then the total for back-substitution is 1+2+ · · ·+n.

Forward elimination also acts on the right-hand side (subtracting the same multiples
as on the left to maintain correct equations). This starts with n− 1 subtractions of the
first equation. Altogether the right-hand side is responsible for n2 operations—much
less than the n3/3 on the left. The total for forward and back is

Right side [(n−1)+(n−2)+ · · ·+1]+ [1+2+ · · ·+n] = n2.

Thirty years ago, almost every mathematician would have guessed that a general sys-
tem of order n could not be solved with much fewer than n3/3 multiplications. (There
were even theorems to demonstrate it, but they did not allow for all possible methods.)
Astonishingly, that guess has been proved wrong. There now exists a method that re-
quires only Cnlog2 7 multiplications! It depends on a simple fact: Two combinations of
two vectors in two-dimensional space would seem to take 8 multiplications, but they can
be done in 7. That lowered the exponent from log2 8, which is 3, to log2 7 ≈ 2.8. This
discovery produced tremendous activity to find the smallest possible power of n. The
exponent finally fell (at IBM) below 2.376. Fortunately for elimination, the constant C
is so large and the coding is so awkward that the new method is largely (or entirely) of
theoretical interest. The newest problem is the cost with many processors in parallel.

Problem Set 1.3

Problems 1–9 are about elimination on 2 by 2 systems.
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1. What multiple ` of equation 1 should be subtracted from equation 2?

2x + 3y = 1
10x + 9y = 11.

After this elimination step, write down the upper triangular system and circle the two
pivots. The numbers 1 and 11 have no influence on those pivots.

2. Solve the triangular system of Problem 1 by back-substitution, y before x. Verify
that x times (2,10) plus y times (3,9) equals (1,11). If the right-hand side changes
to (4,44), what is the new solution?

3. What multiple of equation 2 should be subtracted from equation 3?

2x − 4y = 6
−x + 5y = 0.

After this elimination step, solve the triangular system. If the right-hand side changes
to (−6,0), what is the new solution?

4. What multiple ` of equation 1 should be subtracted from equation 2?

ax + by = f
cx + dy = g.

The first pivot is a (assumed nonzero). Elimination produces what formula for the
second pivot? What is y? The second pivot is missing when ad = bc.

5. Choose a right-hand side which gives no solution and another right-hand side which
gives infinitely many solutions. What are two of those solutions?

3x + 2y = 10
6x + 4y = .

6. Choose a coefficient b that makes this system singular. Then choose a right-hand
side g that makes it solvable. Find two solutions in that singular case.

2x + by = 16
4x + 8y = g.

7. For which numbers a does elimination break down (a) permanently, and (b) tem-
porarily?

ax + 3y = −3
4x + 6y = 6.

Solve for x and y after fixing the second breakdown by a row exchange.
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8. For which three numbers k does elimination break down? Which is fixed by a row
exchange? In each case, is the number of solutions 0 or 1 or ∞?

kx + 3y = 6
3x + ky = −6.

9. What test on b1 and b2 decides whether these two equations allow a solution? How
many solutions will they have? Draw the column picture.

3x − 2y = b1

6x − 4y = b2.

Problems 10–19 study elimination on 3 by 3 systems (and possible failure).

10. Reduce this system to upper triangular form by two row operations:

2x + 3y + z = 8
4x + 7y + 5z = 20

− 2y + 2z = 0.

Circle the pivots. Solve by back-substitution for z, y, x.

11. Apply elimination (circle the pivots) and back-substitution to solve

2x − 3y = 3
4x − 5y + z = 7
2x − y − 3z = 5.

List the three row operations: Subtract times row from row .

12. Which number d forces a row exchange, and what is the triangular system (not sin-
gular) for that d? Which d makes this system singular (no third pivot)?

2x + 5y + z = 0
4x + dy + z = 2

y − z = 3.

13. Which number b leads later to a row exchange? Which b leads to a missing pivot?
In that singular case find a nonzero solution x, y, z.

x + by = 0
x − 2y − z = 0

y + z = 0.

14. (a) Construct a 3 by 3 system that needs two row exchanges to reach a triangular
form and a solution.

(b) Construct a 3 by 3 system that needs a row exchange to keep going, but breaks
down later.
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15. If rows 1 and 2 are the same, how far can you get with elimination (allowing row
exchange)? If columns 1 and 2 are the same, which pivot is missing?

2x− y+ z = 0

2x− y+ z = 0

4x+ y+ z = 2

2x+2y+ z = 0

4x+4y+ z = 0

6x+6y+ z = 2.

16. Construct a 3 by 3 example that has 9 different coefficients on the left-hand side, but
rows 2 and 3 become zero in elimination. How many solutions to your system with
b = (1,10,100) and how many with b = (0,0,0)?

17. Which number q makes this system singular and which right-hand side t gives it
infinitely many solutions? Find the solution that has z = 1.

x + 4y − 2z = 1
x + 7y − 6z = 6

3y + qz = t.

18. (Recommended) It is impossible for a system of linear equations to have exactly two
solutions. Explain why.

(a) If (x,y,z) and (X ,Y,Z) are two solutions, what is another one?

(b) If 25 planes meet at two points, where else do they meet?

19. Three planes can fail to have an intersection point, when no two planes are parallel.
The system is singular if row 3 of A is a of the first two rows. Find a third
equation that can’t be solved if x+ y+ z = 0 and x−2y− z = 1.

Problems 20–22 move up to 4 by 4 and n by n.

20. Find the pivots and the solution for these four equations:

2x + y = 0
x + 2y + z = 0

y + 2z + t = 0
z + 2t = 5.

21. If you extend Problem 20 following the 1, 2, 1 pattern or the−1, 2, −1 pattern, what
is the fifth pivot? What is the nth pivot?

22. Apply elimination and back-substitution to solve

2u + 3v = 0
4u + 5v + w = 3
2u − v − 3w = 5.

What are the pivots? List the three operations in which a multiple of one row is
subtracted from another.
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23. For the system
u + v + w = 2
u + 3v + 3w = 0
u + 3v + 5w = 2,

what is the triangular system after forward elimination, and what is the solution?

24. Solve the system and find the pivots when

2u − v = 0
−u + 2v − w = 0

− v + 2w − z = 0
− w + 2z = 5.

You may carry the right-hand side as a fifth column (and omit writing u, v, w, z until
the solution at the end).

25. Apply elimination to the system

u + v + w = −2
3u + 3v − w = 6
u − v + w = −1.

When a zero arises in the pivot position, exchange that equation for the one below it
and proceed. What coefficient of v in the third equation, in place of the present −1,
would make it impossible to proceed—and force elimination to break down?

26. Solve by elimination the system of two equations

x − y = 0
3x + 6y = 18.

Draw a graph representing each equation as a straight line in the x-y plane; the lines
intersect at the solution. Also, add one more line—the graph of the new second
equation which arises after elimination.

27. Find three values of a for which elimination breaks down, temporarily or perma-
nently, in

au + u = 1
4u + av = 2.

Breakdown at the first step can be fixed by exchanging rows—but not breakdown at
the last step.

28. True or false:

(a) If the third equation starts with a zero coefficient (it begins with 0u) then no
multiple of equation 1 will be subtracted from equation 3.
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(b) If the third equation has zero as its second coefficient (it contains 0v) then no
multiple of equation 2 will be subtracted from equation 3.

(c) If the third equation contains 0u and 0v, then no multiple of equation 1 or equa-
tion 2 will be subtracted from equation 3.

29. (Very optional) Normally the multiplication of two complex numbers

(a+ ib)(c+ id) = (ac−bd)+ i(bc+ad)

involves the four separate multiplications ac, bd, be, ad. Ignoring i, can you compute
ac−bd and bc+ad with only three multiplications? (You may do additions, such as
forming a+b before multiplying, without any penalty.)

30. Use elimination to solve

u + v + w = 6
u + 2v + 2w = 11

2u + 3v − 4w = 3
and

u + v + w = 7
u + 2v + 2w = 10

2u + 3v − 4w = 3.

31. For which three numbers a will elimination fail to give three pivots?

ax+2y+3z = b1

ax+ay+4z = b2

ax+ay+az = b3.

32. Find experimentally the average size (absolute value) of the first and second and third
pivots for MATLAB’s lu(rand(3,3)). The average of the first pivot from abs(A(1,1))
should be 0.5.

1.4 Matrix Notation and Matrix Multiplication

With our 3 by 3 example, we are able to write out all the equations in full. We can list
the elimination steps, which subtract a multiple of one equation from another and reach
a triangular matrix. For a large system, this way of keeping track of elimination would
be hopeless; a much more concise record is needed.

We now introduce matrix notation to describe the original system, and matrix mul-
tiplication to describe the operations that make it simpler. Notice that three different
types of quantities appear in our example:

Nine coefficients
Three unknowns
Three right-hand sides

2u + v + w = 5
4u − 6v = −2
−2u + 7v + 2w = 9

(1)
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On the right-hand side is the column vector b. On the left-hand side are the unknowns u,
v, w. Also on the left-hand side are nine coefficients (one of which happens to be zero).
It is natural to represent the three unknowns by a vector:

The unknown is x =




u
v
w


 The solution is x =




1
1
2


 .

The nine coefficients fall into three rows and three columns, producing a 3 by 3 matrix:

Coefficient matrix A =




2 1 1
4 −6 0
−2 7 2


 .

A is a square matrix, because the number of equations equals the number of unknowns.
If there are n equations in n unknowns, we have a square n by n matrix. More generally,
we might have m equations and n unknowns. Then A is rectangular, with m rows and n
columns. It will be an “m by n matrix.”

Matrices are added to each other, or multiplied by numerical constants, exactly as
vectors are—one entry at a time. In fact we may regard vectors as special cases of
matrices; they are matrices with only one column. As with vectors, two matrices can be
added only if they have the same shape:

Addition A+B
Multiplication 2A




2 1
3 0
0 4


+




1 2
−3 1
1 2


 =




3 3
0 1
1 6


 2




2 1
3 0
0 4


 =




4 2
6 0
0 8


 .

Multiplication of a Matrix and a Vector

We want to rewrite the three equations with three unknowns u, v, w in the simplified
matrix form Ax = b. Written out in full, matrix times vector equals vector:

Matrix form Ax = b




2 1 1
4 −6 0
−2 7 2







u
v
w


 =




5
−2
9


 . (2)

The right-hand side b is the column vector of “inhomogeneous terms.” The left-hand
side is A times x. This multiplication will be defined exactly so as to reproduce the
original system. The first component of Ax comes from “multiplying” the first row of A
into the column vector x:

Row times column
[
2 1 1

]



u
v
w


 =

[
2u+ v+w

]
=

[
5
]
. (3)
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The second component of the product Ax is 4u−6v+0w, from the second row of A. The
matrix equation Ax = b is equivalent to the three simultaneous equations in equation (1).

Row times column is fundamental to all matrix multiplications. From two vectors it
produces a single number. This number is called the inner product of the two vectors.
In other words, the product of a 1 by n matrix (a row vector) and an n by 1 matrix (a
column vector) is a 1 by 1 matrix:

Inner product
[
2 1 1

]



1
1
2


 =

[
2 ·1+1 ·1+1 ·2

]
=

[
5
]
.

This confirms that the proposed solution x = (1,1,2) does satisfy the first equation.
There are two ways to multiply a matrix A and a vector x. One way is a row at a

time, Each row of A combines with x to give a component of Ax. There are three inner
products when A has three rows:

Ax by rows




1 1 6
3 0 1
1 1 4







2
5
0


 =




1 ·2+1 ·5+6 ·0
3 ·2+0 ·5+3 ·0
1 ·2+1 ·5+4 ·0


 =




7
6
7


 . (4)

That is how Ax is usually explained, but the second way is equally important. In fact it is
more important! It does the multiplication a column at a time. The product Ax is found
all at once, as a combination of the three columns of A:

Ax by columns 2




1
3
1


+5




1
0
1


+0




6
3
4


 =




7
6
7


 . (5)

The answer is twice column 1 plus 5 times column 2. It corresponds to the “column
picture” of linear equations. If the right-hand side b has components 7, 6, 7, then the
solution has components 2, 5, 0. Of course the row picture agrees with that (and we
eventually have to do the same multiplications).

The column rule will be used over and over, and we repeat it for emphasis:

1A Every product Ax can be found using whole columns as in equation (5).
Therefore Ax is a combination of the columns of A. The coefficients are the
components of x.

To multiply A times x in n dimensions, we need a notation for the individual entries in
A. The entry in the ith row and jth column is always denoted by ai j. The first subscript
gives the row number, and the second subscript indicates the column. (In equation (4),
a21 is 3 and a13 is 6.) If A is an m by n matrix, then the index i goes from 1 to m—there
are m rows—and the index j goes from 1 to n. Altogether the matrix has mn entries, and
amn is in the lower right corner.
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One subscript is enough for a vector. The jth component of x is denoted by x j. (The
multiplication above had x1 = 2, x2 = 5, x3 = 0.) Normally x is written as a column
vector—like an n by 1 matrix. But sometimes it is printed on a line, as in x = (2,5,0).
The parentheses and commas emphasize that it is not a 1 by 3 matrix. It is a column
vector, and it is just temporarily lying down.

To describe the product Ax, we use the “sigma” symbol Σ for summation:

Sigma notation The ith component of Ax is
n

∑
j=1

ai jx j.

This sum takes us along the ith row of A. The column index j takes each value from 1
to n and we add up the results—the sum is ai1x1 +ai2x2 + · · ·+ainxn.

We see again that the length of the rows (the number of columns in A) must match
the length of x. An m by n matrix multiplies an n-dimensional vector (and produces
an m-dimensional vector). Summations are simpler than writing everything out in full,
but matrix notation is better. (Einstein used “tensor notation,” in which a repeated index
automatically means summation. He wrote ai jx j or even a j

i x j, without the Σ. Not being
Einstein, we keep the Σ.)

The Matrix Form of One Elimination Step

So far we have a convenient shorthand Ax = b for the original system of equations.
What about the operations that are carried out during elimination? In our example, the
first step subtracted 2 times the first equation from the second. On the right-hand side,
2 times the first component of b was subtracted from the second component. The same
result is achieved if we multiply b by this elementary matrix (or elimination matrix):

Elementary matrix E =




1 0 0
−2 1 0
0 0 1


 .

This is verified just by obeying the rule for multiplying a matrix and a vector:

Eb =




1 0 0
−2 1 0
0 0 1







5
−2
9


 =




5
−12

9


 .

The components 5 and 9 stay the same (because of the 1, 0, 0 and 0, 0, 1 in the rows of
E). The new second component −12 appeared after the first elimination step.

It is easy to describe the matrices like E, which carry out the separate elimination
steps. We also notice the “identity matrix,” which does nothing at all.

1B The identity matrix I, with 1s on the diagonal and 0s everywhere else,
leaves every vector unchanged. The elementary matrix Ei j subtracts ` times
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row j from row i. This Ei j includes −` in row i, column j.

I =




1 0 0
0 1 0
0 0 1


 has Ib = b E31 =




1 0 0
0 1 0
−` 0 1


 has E31b =




b1

b2

b3− `b1


 .

Ib = b is the matrix analogue of multiplying by 1. A typical elimination step
multiplies by E31. The important question is: What happens to A on the left-
hand side?

To maintain equality, we must apply the same operation to both sides of Ax = b. In
other words, we must also multiply the vector Ax by the matrix E. Our original matrix
E subtracts 2 times the first component from the second, After this step the new and
simpler system (equivalent to the old) is just E(Ax) = Eb. It is simpler because of the
zero that was created below the first pivot. It is equivalent because we can recover the
original system (by adding 2 times the first equation back to the second). So the two
systems have exactly the same solution x.

Matrix Multiplication

Now we come to the most important question: How do we multiply two matrices? There
is a partial clue from Gaussian elimination: We know the original coefficient matrix A,
we know the elimination matrix E, and we know the result EA after the elimination step.
We hope and expect that

E =




1 0 0
−2 1 0
0 0 1


 times A =




2 1 1
4 −6 0
−2 7 2


 gives EA =




2 1 1
0 −8 −2
−2 7 2


 .

Twice the first row of A has been subtracted from the second row. Matrix multiplication
is consistent with the row operations of elimination. We can write the result either as
E(Ax) = Eb, applying E to both sides of our equation, or as (EA)x = Eb. The matrix
EA is constructed exactly so that these equations agree, and we don’t need parentheses:

Matrix multiplication (EA times x) equals (E times Ax). We just write EAx.

This is the whole point of an “associative law” like 2× (3× 4) = (2× 3)× 4. The law
seems so obvious that it is hard to imagine it could be false. But the same could be said
of the “commutative law” 2×3 = 3×2—and for matrices EA is not AE.

There is another requirement on matrix multiplication. We know how to multiply Ax,
a matrix and a vector. The new definition should be consistent with that one. When
a matrix B contains only a single column x, the matrix-matrix product AB should be
identical with the matrix-vector product Ax. More than that: When B contains several
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columns b1, b2, b3, the columns of AB should be Ab1, Ab2, Ab3!

Multiplication by columns AB = A




b1

b2

b3


 =




Ab1

Ab2

Ab3


 .

Our first requirement had to do with rows, and this one is concerned with columns. A
third approach is to describe each individual entry in AB and hope for the best. In fact,
there is only one possible rule, and I am not sure who discovered it. It makes everything
work. It does not allow us to multiply every pair of matrices. If they are square, they
must have the same size. If they are rectangular, they must not have the same shape;
the number of columns in A has to equal the number of rows in B. Then A can be
multiplied into each column of B.

If A is m by n, and B is n by p, then multiplication is possible. The product AB will
be m by p. We now find the entry in row i and column j of AB.

1C The i, j entry of AB is the inner product of the ith row of A and the jth
column of B. In Figure 1.7, the 3, 2 entry of AB comes from row 3 and column
2:

(AB)32 = a31b12 +a32b22 +a33b32 +a34b42. (6)

Figure 1.7: A 3 by 4 matrix A times a 4 by 2 matrix B is a 3 by 2 matrix AB.

Note. We write AB when the matrices have nothing special to do with elimination. Our
earlier example was EA, because of the elementary matrix E. Later we have PA, or LU ,
or even LDU . The rule for matrix multiplication stays the same.

Example 1.

AB =

[
2 3
4 0

][
1 2 0
5 −1 0

]
=

[
17 1 0
4 8 0

]
.

The entry 17 is (2)(1)+ (3)(5), the inner product of the first row of A and first column
of B. The entry 8 is (4)(2)+(0)(−1), from the second row and second column.

The third column is zero in B, so it is zero in AB. B consists of three columns side by
side, and A multiplies each column separately. Every column of AB is a combination
of the columns of A. Just as in a matrix-vector multiplication, the columns of A are
multiplied by the entries in B.
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Example 2.

Row exchange matrix

[
0 1
1 0

][
2 3
7 8

]
=

[
7 8
2 3

]
.

Example 3. The 1s in the identity matrix I leave every matrix unchanged:

Identity matrix IA = A and BI = B.

Important: The multiplication AB can also be done a row at a time. In Example 1, the
first row of AB uses the numbers 2 and 3 from the first row of A. Those numbers give
2[row 1] + 3[row 2] = [17 1 0]. Exactly as in elimination, where all this started, each
row of AB is a combination of the rows of B.

We summarize these three different ways to look at matrix multiplication.

1D

(i) Each entry of AB is the product of a row and a column:

(AB)i j = (row i of A) times (column j of B)

(ii) Each column of AB is the product of a matrix and a column:

column j of AB = A times (column j of B)

(iii) Each row of AB is the product of a row and a matrix:

row i of AB = (row i of A) times B.

This leads hack to a key property of matrix multiplication. Suppose the shapes of
three matrices A, B, C (possibly rectangular) permit them to be multiplied. The rows in
A and B multiply the columns in B and C. Then the key property is this:

1E Matrix multiplication is associative: (AB)C = A(BC). Just write ABC.

AB times C equals A times BC. If C happens to be just a vector (a matrix with only one
column) this is the requirement (EA)x = E(Ax) mentioned earlier. It is the whole basis
for the laws of matrix multiplication. And if C has several columns, we have only to
think of them placed side by side, and apply the same rule several times. Parentheses
are not needed when we multiply several matrices.

There are two more properties to mention—one property that matrix multiplication
has, and another which it does not have. The property that it does possess is:

1F Matrix operations are distributive:

A(B+C) = AB+AC and (B+C)D = BD+CD.
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Of course the shapes of these matrices must match properly—B and C have the same
shape, so they can be added, and A and D are the right size for premultiplication and
postmultiplication. The proof of this law is too boring for words.

The property that fails to hold is a little more interesting:

1G Matrix multiplication is not commutative: Usually FE 6= EF .

Example 4. Suppose E subtracts twice the first equation from the second. Suppose F
is the matrix for the next step, to add row 1 to row 3:

E =




1 0 0
−2 1 0
0 0 1


 and F =




1 0 0
0 1 0
1 0 1


 .

These two matrices do commute and the product does both steps at once:

EF =




1 0 0
−2 1 0
1 0 1


 = FE.

In either order, EF or FE, this changes rows 2 and 3 using row 1.

Example 5. Suppose E is the same but G adds row 2 to row 3. Now the order makes a
difference. When we apply E and then G, the second row is altered before it affects the
third. If E comes after G, then the third equation feels no effect from the first. You will
see a zero in the (3,1) entry of EG, where there is a −2 in GE:

GE =




1 0 0
0 1 0
0 1 1







1 0 0
−2 1 0
0 0 1


 =




1 0 0
−2 1 0
−2 1 1


 but EG =




1 0 0
−2 1 0
0 1 1


 .

Thus EG 6= GE. A random example would show the same thing—most matrices don’t
commute. Here the matrices have meaning. There was a reason for EF = FE, and a
reason for EG 6= GE. It is worth taking one more step, to see what happens with all
three elimination matrices at once:

GFE =




1 0 0
−2 1 0
−1 1 1


 and EFG =




1 0 0
−2 1 0
−1 1 1


 .

The product GFE is the true order of elimination. It is the matrix that takes the original
A to the upper triangular U . We will see it again in the next section.

The other matrix EFG is nicer. In that order, the numbers −2 from E and 1 from F
and G were not disturbed. They went straight into the product. It is the wrong order for
elimination. But fortunately it is the right order for reversing the elimination steps—
which also comes in the next section.

Notice that the product of lower triangular matrices is again lower triangular.
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Problem Set 1.4

1. Compute the products



4 0 1
0 1 0
4 0 1







3
4
5


 and




1 0 0
0 1 0
0 0 1







5
−2
3


 and

[
2 0
1 3

][
1
1

]
.

For the third one, draw the column vectors (2,1) and (0,3). Multiplying by (1,1)
just adds the vectors (do it graphically).

2. Working a column at a time, compute the products



4 1
5 1
6 1




[
1
3

]
and




1 2 3
4 5 6
7 8 9







0
1
0


 and




4 3
6 6
8 9




[
1
2
1
3

]
.

3. Find two inner products and a matrix product:

[
1 −2 7

]



1
−2
7


 and

[
1 −2 7

]



3
5
1


 and




1
−2
7




[
3 5 1

]
.

The first gives the length of the vector (squared).

4. If an m by n matrix A multiplies an n-dimensional vector x, how many separate
multiplications are involved? What if A multiplies an n by p matrix B?

5. Multiply Ax to find a solution vector x to the system Ax = zero vector. Can you find
more solutions to Ax = 0?

Ax =




3 −6 0
0 2 −2
1 −1 −1







2
1
1


 .

6. Write down the 2 by 2 matrices A and B that have entries ai j = i+ j and bi j =(−1)i+ j.
Multiply them to find AB and BA.

7. Give 3 by 3 examples (not just the zero matrix) of

(a) a diagonal matrix: ai j = 0 if i 6= j.

(b) a symmetric matrix: ai j = a ji for all i and j.

(c) an upper triangular matrix: ai j = 0 if i > j.

(d) a skew-symmetric matrix: ai j =−a ji for all i and j.

8. Do these subroutines multiply Ax by rows or columns? Start with B(I) = 0:
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DO 10 I = 1, N DO 10 J = 1, N
DO 10 J = 1, N DO 10 I = 1, N

10 B(I) = B(I) + A(I,J) * X(J) 10 B(I) = B(I) + A(I,J) * X(J)

The outputs Bx = Ax are the same. The second code is slightly more efficient in
FORTRAN and much more efficient on a vector machine (the first changes single
entries B(I), the second can update whole vectors).

9. If the entries of A are ai j, use subscript notation to write

(a) the first pivot.

(b) the multiplier `i1 of row 1 to be subtracted from row i.

(c) the new entry that replaces ai j after that subtraction.

(d) the second pivot.

10. True or false? Give a specific counterexample when false.

(a) If columns 1 and 3 of B are the same, so are columns 1 and 3 of AB.

(b) If rows 1 and 3 of B are the same, so are rows 1 and 3 of AB.

(c) If rows 1 and 3 of A are the same, so are rows 1 and 3 of AB.

(d) (AB)2 = A2B2.

11. The first row of AB is a linear combination of all the rows of B. What are the coeffi-
cients in this combination, and what is the first row of AB, if

A =

[
2 1 4
0 −1 1

]
and B =




1 1
0 1
1 0


?

12. The product of two lower triangular matrices is again lower triangular (all its entries
above the main diagonal are zero). Confirm this with a 3 by 3 example, and then
explain how it follows from the laws of matrix multiplication.

13. By trial and error find examples of 2 by 2 matrices such that

(a) A2 =−I, A having only real entries.

(b) B2 = 0, although B 6= 0.

(c) CD =−DC, not allowing the case CD = 0.

(d) EF = 0, although no entries of E or F are zero.

14. Describe the rows of EA and the columns of AE if

E =

[
1 7
0 1

]
.
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15. Suppose A commutes with every 2 by 2 matrix (AB = BA), and in particular

A =

[
a b
c d

]
commutes with B1 =

[
1 0
0 0

]
and B2 =

[
0 1
0 0

]
.

Show that a = d and b = c = 0. If AB = BA for all matrices B, then A is a multiple
of the identity.

16. Let x be the column vector (1,0, . . . ,0). Show that the rule (AB)x = A(Bx) forces the
first column of AB to equal A times the first column of B.

17. Which of the following matrices are guaranteed to equal (A+B)2?

A2 +2AB+B2, A(A+B)+B(A+B), (A+B)(B+A), A2 +AB+BA+B2.

18. If A and B are n by n matrices with all entries equal to 1, find (AB)i j. Summation
notation turns the product AB, and the law (AB)C = A(BC), into

(AB)i j = ∑
k

aikbk j ∑
j

(
∑
k

aikbk j

)
c jl = ∑

k
aik

(
∑

j
bk jc jl

)
.

Compute both sides if C is also n by n, with every c jl = 2.

19. A fourth way to multiply matrices is columns of A times rows of B:

AB = (column 1)(row 1)+ · · ·+(column n)(row n) = sum of simple matrices.

Give a 2 by 2 example of this important rule for matrix multiplication.

20. The matrix that rotates the x-y plane by an angle θ is

A(θ) =

[
cosθ −sinθ
sinθ cosθ

]
.

Verify that A(θ1)A(θ2) = A(θ1 +θ2) from the identities for cos(θ1 +θ2) and sin(θ1 +
θ2). What is A(θ) times A(−θ)?

21. Find the powers A2, A3 (A2 times A), and B2, B3, C2, C3. What are Ak, Bk, and Ck?

A =

[
1
2

1
2

1
2

1
2

]
and B =

[
1 0
0 −1

]
and C = AB =

[
1
2 −1

2
1
2 −1

2

]

Problems 22–31 are about elimination matrices.

22. Write down the 3 by 3 matrices that produce these elimination steps:

(a) E21 subtracts 5 times row 1 from row 2.

(b) E32 subtracts −7 times row 2 from row 3.
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(c) P exchanges rows 1 and 2, then rows 2 and 3.

23. In Problem 22, applying E21 and then E32 to the column b = (1,0,0) gives E32E21b =
. Applying E32 before E21 gives E21E32b = . When E32 comes first, row
feels no effect from row .

24. Which three matrices E21, E31, E32 put A into triangular form U?

A =




1 1 0
4 6 1
−2 2 0


 and E32E31E21A = U.

Multiply those E’s to get one matrix M that does elimination: MA = U .

25. Suppose a33 = 7 and the third pivot is 5. If you change a33 to 11, the third pivot is
. If you change a33 to , there is zero in the pivot position.

26. If every column of A is a multiple of (1,1,1), then Ax is always a multiple of (1,1,1).
Do a 3 by 3 example. How many pivots are produced by elimination?

27. What matrix E31 subtracts 7 times row 1 from row 3? To reverse that step, R31 should
7 times row to row . Multiply E31 by R31.

28. (a) E21 subtracts row 1 from row 2 and then P23 exchanges rows 2 and 3. What
matrix M = P23E21 does both steps at once?

(b) P23 exchanges rows 2 and 3 and then E31 subtracts row I from row 3. What
matrix M = E31P23 does both steps at once? Explain why the M’s are the same
but the E’s are different.

29. (a) What 3 by 3 matrix E13 will add row 3 to row 1?

(b) What matrix adds row 1 to row 3 and at the same time adds row 3 to row 1?

(c) What matrix adds row 1 to row 3 and then adds row 3 to row 1?

30. Multiply these matrices:



0 0 1
0 1 0
1 0 0







1 2 3
4 5 6
7 8 9







0 0 1
0 1 0
1 0 0


 and




1 0 0
−1 1 0
−1 0 1







1 2 3
1 3 1
1 4 0


 .

31. This 4 by 4 matrix needs which elimination matrices E21 and E32 and E43?

A =




2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2


 .

Problems 32–44 are about creating and multiplying matrices
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32. Write these ancient problems in a 2 by 2 matrix form Ax = b and solve them:

(a) X is twice as old as Y and their ages add to 39,

(b) (x,y) = (2,5) and (3,7) lie on the line y = mx+ c. Find m and c.

33. The parabola y = a + bx + cx2 goes through the points (x,y) = (1,4) and (2,8) and
(3,14). Find and solve a matrix equation for the unknowns (a,b,c).

34. Multiply these matrices in the orders EF and FE and E2:

E =




1 0 0
a 1 0
b 0 1


 F =




1 0 0
0 1 0
0 c 1


 .

35. (a) Suppose all columns of B are the same. Then all columns of EB are the same,
because each one is E times .

(b) Suppose all rows of B are [1 2 4]. Show by example that all rows of EB are not
[1 2 4]. It is true that those rows are .

36. If E adds row 1 to row 2 and F adds row 2 to row 1, does EF equal FE?

37. The first component of Ax is ∑a1 jx j = a11x1 + · · ·+ a1nxn. Write formulas for the
third component of Ax and the (1,1) entry of A2.

38. If AB = I and BC = I, use the associative law to prove A = C.

39. A is 3 by 5, B is 5 by 3, C is 5 by 1, and D is 3 by 1. All entries are 1. Which of these
matrix operations are allowed, and what are the results?

BA AB ABD DBA A(B+C).

40. What rows or columns or matrices do you multiply to find

(a) the third column of AB?

(b) the first row of AB?

(c) the entry in row 3, column 4 of AB?

(d) the entry in row 1, column 1 of CDE?

41. (3 by 3 matrices) Choose the only B so that for every matrix A,

(a) BA = 4A.

(b) BA = 4B.

(c) BA has rows 1 and 3 of A reversed and row 2 unchanged.

(d) All rows of BA are the same as row 1 of A.

42. True or false?
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(a) If A2 is defined then A is necessarily square.

(b) If AB and BA are defined then A and B are square.

(c) If AB and BA are defined then AB and BA are square.

(d) If AB = B then A = I.

43. If A is m by n, how many separate multiplications are involved when

(a) A multiplies a vector x with n components?

(b) A multiplies an n by p matrix B? Then AB is m by p.

(c) A multiplies itself to produce A2? Here m = n.

44. To prove that (AB)C = A(BC), use the column vectors b1, . . . ,bn of B. First suppose
that C has only one column c with entries c1, . . . ,cn:

AB has columns Ab1, . . . ,Abn, and Bc has one column c1b1 + · · ·+ cnbn.

Then (AB)c = c1Ab1 + · · ·+ cnAbn, equals A(c1b1 + · · ·+ cnbn) = A(Bc).

Linearity gives equality of those two sums, and (AB)c = A(Bc). The same is true for
all other of C. Therefore (AB)C = A(BC).

Problems 45–49 use column-row multiplication and block multiplication.

45. Multiply AB using columns times rows:

AB =




1 0
2 4
2 1




[
3 3 0
1 2 1

]
=




1
2
2




[
3 3 0

]
+ = .

46. Block multiplication separates matrices into blocks (submatrices). If their shapes
make block multiplication possible, then it is allowed. Replace these x’s by numbers
and confirm that block multiplication succeeds.

[
A B

][
C
D

]
=

[
AC +BD

]
and




x x x
x x x
x x x







x x x
x x x
x x x


 .

47. Draw the cuts in A and B and AB to show how each of the four multiplication rules
is really a block multiplication to find AB:

(a) Matrix A times columns of B.

(b) Rows of A times matrix B.

(c) Rows of A times columns of B.

(d) Columns of A times rows of B.
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48. Block multiplication says that elimination on column 1 produces

EA =

[
1 0

−c/a I

][
a b

c D

]
=

[
a b

0

]
.

49. Elimination for a 2 by 2 block matrix: When A−1A = I, multiply the first block row
by CA−1 and subtract from the second row, to find the “Schur complement” S:

[
I 0

−CA−1 I

][
A B
C D

]
=

[
A B
0 S

]
.

50. With i2 = −1, the product (A + iB)(x + iy) is Ax + iBx + iAy−By. Use blocks to
separate the real part from the imaginary part that multiplies i:

[
A −B
? ?

][
x
y

]
=

[
Ax−By

?

]
real part
imaginary part

51. Suppose you solve Ax = b for three special right-hand sides b:

Ax1 =




1
0
0


 and Ax2 =




0
1
0


 and Ax3 =




0
0
1


 .

If the solutions x1, x2, x3 are the columns of a matrix X , what is AX?

52. If the three solutions in Question 51 are x1 = (1,1,1) and x2 = (0,1,1) and x3 =
(0,0,1), solve Ax = b when b = (3,5,8). Challenge problem: What is A?

53. Find all matrices

A =

[
a b
c d

]
that satisfy A

[
1 1
1 1

]
=

[
1 1
1 1

]
A.

54. If you multiply a northwest matrix A and a southeast matrix B, what type of matri-
ces are AB and BA? “Northwest” and “southeast” mean zeros below and above the
antidiagonal going from (1,n) to (n,1).

55. Write 2x +3y+ z+5t = 8 as a matrix A (how many rows?) multiplying the column
vector (x,y,z, t) to produce b. The solutions fill a plane in four-dimensional space.
The plane is three-dimensional with no 4D volume.

56. What 2 by 2 matrix P1 projects the vector (x,y) onto the x axis to produce (x,0)?
What matrix P2 projects onto the y axis to produce (0,y)? If you multiply (5,7) by
P1 and then multiply by P2, you get ( ) and ( ).

57. Write the inner product of (1,4,5) and (x,y,z) as a matrix multiplication Ax. A has
one row. The solutions to Ax = 0 lie on a perpendicular to the vector . The
columns of A are only in -dimensional space.
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58. In MATLAB notation, write the commands that define the matrix A and the column
vectors x and b. What command would test whether or not Ax = b?

A =

[
1 2
3 4

]
x =

[
5
−2

]
b =

[
1
7

]

59. The MATLAB commands A = eye(3) and v = [3:5]’ produce the 3 by 3 identity
matrix and the column vector (3,4,5). What are the outputs from A ∗ v and v’ ∗ v?
(Computer not needed!) If you ask for v ∗ A, what happens?

60. If you multiply the 4 by 4 all-ones matrix A = ones(4,4) and the column v =
ones(4,1), what is A ∗ v? (Computer not needed.) If you multiply B = eye(4)
+ ones(4,4) times w = zeros(4,1) + 2 ∗ ones(4,1), what is B ∗ w?

61. Invent a 3 by 3 magic matrix M with entries 1,2, . . . ,9. All rows and columns and
diagonals add to 15. The first row could be 8, 3, 4. What is M times (1,1,1)? What
is the row vector

[
1 1 1

]
times M?

1.5 Triangular Factors and Row Exchanges

We want to look again at elimination, to see what it means in terms of matrices. The
starting point was the model system Ax = b:

Ax =




2 1 1
4 −6 0
−2 7 2







u
v
w


 =




5
−2
9


 = b. (1)

Then there were three elimination steps, with multipliers 2, −1, −1:

Step 1. Subtract 2 times the first equation from the second;

Step 2. Subtract −1 times the first equation from the third;

Step 3. Subtract −1 times the second equation from the third.

The result was an equivalent system Ux = c, with a new coefficient matrix U :

Upper triangular Ux =




2 1 1
0 −8 −2
0 0 1







u
v
w


 =




5
−12

2


 = c. (2)

This matrix U is upper triangular—all entries below the diagonal are zero.
The new right side c was derived from the original vector b by the same steps that

took A into U . Forward elimination amounted to three row operations:
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Start with A and b;

Apply steps 1, 2, 3 in that order;

End with U and c.

Ux = c is solved by back-substitution. Here we concentrate on connecting A to U .
The matrices E for step 1, F for step 2, and G for step 3 were introduced in the

previous section. They are called elementary matrices, and it is easy to see how they
work. To subtract a multiple ` of equation j from equation i, put the number −` into
the (i, j) position. Otherwise keep the identity matrix, with 1s on the diagonal and 0s
elsewhere. Then matrix multiplication executes the row operation.

The result of all three steps is GFEA = U . Note that E is the first to multiply A,
then F , then G. We could multiply GFE together to find the single matrix that takes A
to U (and also takes b to c). It is lower triangular (zeros are omitted):

From A to U GFE =




1
1
1 1







1
1

1 1







1
−2 1

1


 =




1
−2 1
−1 1 1


 . (3)

This is good, but the most important question is exactly the opposite: How would we
get from U back to A? How can we undo the steps of Gaussian elimination?

To undo step 1 is not hard. Instead of subtracting, we add twice the first row to the
second. (Not twice the second row to the first!) The result of doing both the subtraction
and the addition is to bring back the identity matrix:

Inverse of
subtraction
is addition




1 0 0
2 1 0
0 0 1







1 0 0
−2 1 0
0 0 1


 =




1 0 0
0 1 0
0 0 1


 . (4)

One operation cancels the other. In matrix terms, one matrix is the inverse of the other.
If the elementary matrix E has the number −` in the (i, j) position, then its inverse E−1

has +` in that position. Thus E−1E = I, which is equation (4).
We can invert each step of elimination, by using E−1 and F−1 and G−1. I think it’s

not bad to see these inverses now, before the next section. The final problem is to undo
the whole process at once, and see what matrix takes U back to A.

Since step 3 was last in going from A to U , its matrix G must be the first to be
inverted in the reverse direction. Inverses come in the opposite order! The second
reverse step is F−1 and the last is E−1:

From U back to A E−1F−1G−1U = A is LU = A. (5)

You can substitute GFEA for U , to see how the inverses knock out the original steps.
Now we recognize the matrix L that takes U back to A. It is called L, because it is

lower triangular. And it has a special property that can be seen only by multiplying the
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three inverse matrices in the right order:

E−1F−1G−1 =




1
2 1

1







1
1

−1 1







1
1
−1 1


 =




1
2 1
−1 −1 1


 = L. (6)

The special thing is that the entries below the diagonal are the multipliers ` = 2, −1,
and −1. When matrices are multiplied, there is usually no direct way to read off the
answer. Here the matrices come in just the right order so that their product can be
written down immediately. If the computer stores each multiplier `i j—the number that
multiplies the pivot row j when it is subtracted from row i, and produces a zero in the i,
j position—then these multipliers give a complete record of elimination.

The numbers `i j fit right into the matrix L that takes U back to A.

1H Triangular factorization A = LU with no exchanges of rows. L is lower
triangular, with 1s on the diagonal. The multipliers `i j (taken from elimination)
are below the diagonal. U is the upper triangular matrix which appears after
forward elimination, The diagonal entries of U are the pivots.

Example 1.

A =

[
1 2
3 8

]
goes to U =

[
1 2
0 2

]
with L =

[
1 0
3 1

]
. Then LU = A.

Example 2. (which needs a row exchange)

A =

[
0 2
3 4

]
cannot be factored into A = LU.

Example 3. (with all pivots and multipliers equal to 1)

A =




1 1 1
1 2 2
1 2 3


 =




1 0 0
1 1 0
1 1 1







1 1 1
0 1 1
0 0 1


 = LU.

From A to U there are subtractions of rows. From U to A there are additions of rows.

Example 4. (when U is the identity and L is the same as A)

Lower triangular case A =




1 0 0
`21 1 0
`31 `32 1


 .

The elimination steps on this A are easy: (i) E subtracts `21 times row 1 from row 2, (ii)
F subtracts `31 times row 1 from row 3, and (iii) G subtracts `32 times row 2 from row 3.
The result is the identity matrix U = I. The inverses of E, F , and G will bring back A:
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E−1 applied to F−1 applied to G−1 applied to I produces A.




1
`21 1

1


 times




1
1

`31 1


 times




1
1

`32 1


 equals




1 0 0
`21 1 0
`31 `32 1


 .

The order is right for the `’s to fall into position. This always happens! Note that
parentheses in E−1F−1G−1 were not necessary because of the associative law.

A = LU: The n by n case

The factorization A = LU is so important that we must say more. It used to be missing
in linear algebra courses when they concentrated on the abstract side. Or maybe it was
thought to be too hard—but you have got it. If the last Example 4 allows any U instead
of the particular U = I, we can see how the rule works in general. The matrix L, applied
to U , brings back A:

A = LU




1 0 0
`21 1 0
`31 `32 1







row 1 of U
row 2 of U
row 3 of U


 = original A. (7)

The proof is to apply the steps of elimination. On the right-hand side they take A to U .
On the left-hand side they reduce L to I, as in Example 4. (The first step subtracts `21

times (1,0,0) from the second row, which removes `21.) Both sides of (7) end up equal
to the same matrix U , and the steps to get there are all reversible. Therefore (7) is correct
and A = LU .

A = LU is so crucial, and so beautiful, that Problem 8 at the end of this section
suggests a second approach. We are writing down 3 by 3 matrices, but you can see how
the arguments apply to larger matrices. Here we give one more example, and then put
A = LU to use.

Example 5. (A = LU , with zeros in the empty spaces)

A =




1 −1
−1 2 −1

−1 2 −1
−1 2


 =




1
−1 1

−1 1
−1 1







1 −1
1 −1

1 −1
1


 .

That shows how a matrix A with three diagonals has factors L and U with two diagonals.
This example comes from an important problem in differential equations (Section 1.7).
The second difference in A is a backward difference L times a forward difference U .
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One Linear System = Two Triangular Systems

There is a serious practical point about A = LU . It is more than just a record of elimi-
nation steps; L and U are the right matrices to solve Ax = b. In fact A could be thrown
away! We go from b to c by forward elimination (this uses L) and we go from c to x by
back-substitution (that uses U). We can and should do it without A:

Splitting of Ax = b First Lc = b and then Ux = c. (8)

Multiply the second equation by L to give LUx = Lc, which is Ax = b. Each triangular
system is quickly solved. That is exactly what a good elimination code will do:

1. Factor (from A find its factors L and U).

2. Solve (from L and U and b find the solution x).

The separation into Factor and Solve means that a series of b’s can be processed. The
Solve subroutine obeys equation (8): two triangular systems in n2/2 steps each. The
solution for any new right-hand side b can be found in only n2 operations. That is
far below the n3/3 steps needed to factor A on the left-hand side.

Example 6. This is the previous matrix A with a right-hand side b = (1,1,1,1).

Ax = b

x1 − x2 = 1
−x1 + 2x2 − x3 = 1

− x2 + 2x3 − x4 = 1
− x3 + 2x4 = 1

splits into Lc = b and Ux = c.

Lc = b

c1 = 1
−c1 + c2 = 1

− c2 + c3 = 1
− c3 + c4 = 1

gives c =




1
2
3
4


 .

Ux = c

x1 − x2 = 1
x2 − x3 = 2

x3 − x4 = 3
x4 = 4

gives x =




10
9
7
4


 .

For these special “tridiagonal matrices,” the operation count drops from n2 to 2n. You
see how Lc = b is solved forward (c1 comes before c2). This is precisely what happens
during forward elimination. Then Ux = c is solved backward (x4 before x3).

Remark 1. The LU form is “unsymmetric” on the diagonal: L has 1s where U has the
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pivots. This is easy to correct. Divide out of U a diagonal pivot matrix D:

Factor out D U =




d1

d2
. . .

dn







1 u12/d1 u13/d1
...

1 u23/d2
...

. . . ...
1




. (9)

In the last example all pivots were di = 1. In that case D = I. But that was very excep-
tional, and normally LU is different from LDU (also written LDV ).

The triangular factorization can be written A = LDU , where L and U have 1s on
the diagonal and D is the diagonal matrix of pivots.

Whenever you see LDU or LDV , it is understood that U or V has is on the diagonal—
each row was divided by the pivot in D. Then L and U are treated evenly. An example
of LU splitting into LDU is

A =

[
1 2
3 4

]
=

[
1
3 1

][
1 2
−2

]
=

[
1
3 1

][
1
−2

][
1 2

1

]
= LDU.

That has the 1s on the diagonals of L and U , and the pivots 1 and −2 in D.

Remark 2. We may have given the impression in describing each elimination step, that
the calculations must be done in that order. This is wrong. There is some freedom, and
there is a “Crout algorithm” that arranges the calculations in a slightly different way.
There is no freedom in the final L, D, and U . That is our main point:

1I If A = L1D1U1 and also A = L2D2U2, where the L’s are lower triangular
with unit diagonal, the U’s are upper triangular with unit diagonal, and the
D’s are diagonal matrices with no zeros on the diagonal, then L1 = L2, D1 =
D2, U1 = U2. The LDU factorization and the LU factorization are uniquely
determined by A.

The proof is a good exercise with inverse matrices in the next section.

Row Exchanges and Permutation Matrices

We now have to face a problem that has so far been avoided: The number we expect to
use as a pivot might be zero. This could occur in the middle of a calculation. It will
happen at the very beginning if a11 = 0. A simple example is

Zero in the pivot position

[
0 2
3 4

][
u
v

]
=

[
b1

b2

]
.

The difficulty is clear; no multiple of the first equation will remove the coefficient 3.
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The remedy is equally clear. Exchange the two equations, moving the entry 3 up
into the pivot. In this example the matrix would become upper triangular:

Exchange rows
3u+4v = b2

2v = b1

To express this in matrix terms, we need the permutation matrix P that produces the
row exchange. It comes from exchanging the rows of I:

Permutation P =

[
0 1
1 0

]
and PA =

[
0 1
1 0

][
0 2
3 4

]
=

[
3 4
0 2

]
.

P has the same effect on b, exchanging b1 and b2. The new system is PAx = Pb. The
unknowns u and v are not reversed in a row exchange.

A permutation matrix P has the same rows as the identity (in some order). There is
a single “1” in every row and column. The most common permutation matrix is P = I (it
exchanges nothing). The product of two permutation matrices is another permutation—
the rows of I get reordered twice.

After P = I, the simplest permutations exchange two rows. Other permutations ex-
change more rows. There are n! = (n)(n−1) · · ·(1) permutations of size n. Row 1 has
n choices, then row 2 has n−1 choices, and finally the last row has only one choice. We
can display all 3 by 3 permutations (there are 3! = (3)(2)(1) = 6 matrices):

I =




1
1

1


 P21 =




1
1

1


 P32P21 =




1
1

1




P31 =




1
1

1


 P32 =




1
1

1


 P21P32 =




1
1

1


 .

There will be 24 permutation matrices of order n = 4. There are only two permutation
matrices of order 2, namely [

1 0
0 1

]
and

[
0 1
1 0

]
.

When we know about inverses and transposes (the next section defines A−1 and AT),
we discover an important fact: P−1 is always the same as PT.

A zero in the pivot location raises two possibilities: The trouble may be easy to fix,
or it may be serious. This is decided by looking below the zero. If there is a nonzero
entry lower down in the same column, then a row exchange is carried out. The nonzero
entry becomes the needed pivot, and elimination can get going again:

A =




0 a b
0 0 c
d e f




d = 0 =⇒ no first pivot
a = 0 =⇒ no second pivot
c = 0 =⇒ no third pivot.
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If d = 0, the problem is incurable and this matrix is singular. There is no hope for a
unique solution to Ax = b. If d is not zero, an exchange P13 of rows 1 and 3 will move
d into the pivot. However the next pivot position also contains a zero. The number a is
now below it (the e above it is useless). If a is not zero then another row exchange P23 is
called for:

P13 =




0 0 1
0 1 0
1 0 0


 and P23 =




1 0 0
0 0 1
0 1 0


 and P23P13A =




d e f
0 a b
0 0 c




One more point: The permutation P23P13 will do both row exchanges at once:

P13 acts first P23P13 =




1 0 0
0 0 1
0 1 0







0 0 1
0 1 0
1 0 0


 =




0 0 1
1 0 0
0 1 0


 = P.

If we had known, we could have multiplied A by P in the first place. With the rows in
the right order PA, any nonsingular matrix is ready for elimination.

Elimination in a Nutshell: PA = LU

The main point is this: If elimination can be completed with the help of row exchanges,
then we can imagine that those exchanges are done first (by P). The matrix PA will not
need row exchanges. In other words, PA allows the standard factorization into L times
U . The theory of Gaussian elimination can be summarized in a few lines:

1J In the nonsingular case, there is a permutation matrix P that reorders
the rows of A to avoid zeros in the pivot positions. Then Ax = b has a unique
solution:

With the rows reordered in advance, PA can be factored into LU .

In the singular case, no P can produce a full set of pivots: elimination fails.

In practice, we also consider a row exchange when the original pivot is near zero—
even if it is not exactly zero. Choosing a larger pivot reduces the roundoff error.

You have to be careful with L. Suppose elimination subtracts row 1 from row 2,
creating `21 = 1. Then suppose it exchanges rows 2 and 3. If that exchange is done in
advance, the multiplier will change to `31 = 1 in PA = LU .

Example 7.

A =




1 1 1
1 1 3
2 5 8


→




1 1 1
0 0 2
0 3 6


→




1 1 1
0 3 6
0 0 2


 = U. (10)
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That row exchange recovers LU—but now `31 = 1 and `21 = 2:

P =




1 0 0
0 0 1
0 1 0


 and L =




1 0 0
2 1 0
1 0 1


 and PA = LU. (11)

In MATLAB, A([r k] :) exchanges row k with row r below it (where the kth pivot has
been found). We update the matrices L and P the same way. At the start, P = I and sign
= +1:

A([r k], :) = A([k r], :);
L([r k], 1:k-1) = L([k r], 1:k-1);
P([r k], :) = P([k r], :);
sign = -sign

The “sign” of P tells whether the number of row exchanges is even (sign = +1) or odd
(sign =−1). A row exchange reverses sign. The final value of sign is the determinant
of P and it does not depend on the order of the row exchanges.

To summarize: A good elimination code saves L and U and P. Those matrices carry
the information that originally came in A—and they carry it in a more usable form. Ax =
b reduces to two triangular systems. This is the practical equivalent of the calculation
we do next—to find the inverse matrix A−1 and the solution x = A−1b.

Problem Set 1.5

1. When is an upper triangular matrix nonsingular (a full set of pivots)?

2. What multiple `32 of row 2 of A will elimination subtract from row 3 of A? Use the
factored form

A =




1 0 0
2 1 0
1 4 1







5 7 8
0 2 3
0 0 6


 .

What will be the pivots? Will a row exchange be required?

3. Multiply the matrix L = E−1F−1G−1 in equation (6) by GFE in equation (3):



1 0 0
2 1 0
−1 −1 1


 times




1 0 0
−2 1 0
−1 1 1


 .

Multiply also in the opposite order. Why are the answers what they are?
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4. Apply elimination to produce the factors L and U for

A =

[
2 1
8 7

]
and A =




3 1 1
1 3 1
1 1 3


 and A =




1 1 1
1 4 4
1 4 8


 .

5. Factor A into LU , and write down the upper triangular system Ux = c which appears
after elimination, for

Ax =




2 3 3
0 5 7
6 9 8







u
v
w


 =




2
2
5


 .

6. Find E2 and E8 and E−1 if

E =

[
1 0
6 1

]
.

7. Find the products FGH and HGF if (with upper triangular zeros omitted)

F =




1
2 1
0 0 1
0 0 0 1


 G =




1
0 1
0 2 1
0 0 0 1


 H =




1
0 1
0 0 1
0 0 2 1


 .

8. (Second proof of A = LU) The third row of U comes from the third row of A by
subtracting multiples of rows 1 and 2 (of U!):

row 3 of U = row 3 of A− `31(row 1 of U)− `32(row 2 of U).

(a) Why are rows of U subtracted off and not rows of A? Answer: Because by the
time a pivot row is used, .

(b) The equation above is the same as

row 3 of A = `31(row 1 of U)+ `32(row 2 of U)+1(row 3 of U).

Which rule for matrix multiplication makes this row 3 of L times U?

The other rows of LU agree similarly with the rows of A.

9. (a) Under what conditions is the following product nonsingular?

A =




1 0 0
−1 1 0
0 −1 1







d1

d2

d3







1 −1 0
0 1 −1
0 0 1


 .

(b) Solve the system Ax = b starting with Lc = b:


1 0 0
−1 1 0
0 −1 1







c1

c2

c3


 =




0
0
1


 = b.
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10. (a) Why does it take approximately n2/2 multiplication-subtraction steps to solve
each of Lc = b and Ux = c?

(b) How many steps does elimination use in solving 10 systems with the same 60 by
60 coefficient matrix A?

11. Solve as two triangular systems, without multiplying LU to find A:

LUx =




1 0 0
1 1 0
1 0 1







2 4 4
0 1 2
0 0 1







u
v
w


 =




2
0
2


 .

12. How could you factor A into a product UL, upper triangular times lower triangular?
Would they be the same factors as in A = LU?

13. Solve by elimination, exchanging rows when necessary:

u + 4v + 2w = −2
−2u − 8v + 3w = 32

v + w = 1
and

v + w = 0
u + v = 0
u + v + w = 1.

Which permutation matrices are required?

14. Write down all six of the 3 by 3 permutation matrices, including P = I. Identify their
inverses, which are also permutation matrices. The inverses satisfy PP−1 = I and are
on the same list.

15. Find the PA = LDU factorizations (and check them) for

A =




0 1 1
1 0 1
2 3 4


 and A =




1 2 1
2 4 2
1 1 1


 .

16. Find a 4 by 4 permutation matrix that requires three row exchanges to reach the end
of elimination (which is U = I).

17. The less familiar form A = LPU exchanges rows only at the end:

A =




1 1 1
1 1 3
2 5 8


→ L−1A =




1 1 1
0 0 2
0 3 6


 = PU =




1 0 0
0 0 1
0 1 0







1 1 1
0 3 6
0 0 2


 .

What is L is this case? Comparing with PA = LU in Box 1J, the multipliers now stay
in place (`21 is 1 and `31 is 2 when A = LPU).

18. Decide whether the following systems are singular or nonsingular, and whether they
have no solution, one solution, or infinitely many solutions:

v − w = 2
u − v = 2
u − w = 2

and
v − w = 0

u − v = 0
u − w = 0

and
v + w = 1

u + v = 1
u + w = 1.
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19. Which numbers a, b, c lead to row exchanges? Which make the matrix singular?

A =




1 2 0
a 8 3
0 b 5


 and A =

[
c 2
6 4

]
.

Problems 20–31 compute the factorization A = LU (and also A = LDU).

20. Forward elimination changes
[

1 1
1 2

]
x = b to a triangular

[
1 1
0 1

]
x = c:

x + y = 5
x + 2y = 7

→ x + y = 5
y = 2

[
1 1 5
1 2 7

]
→

[
1 1 5
0 1 2

]
.

That step subtracted `21 = times row 1 from row 2. The reverse step adds `21

times row 1 to row 2. The matrix for that reverse step is L = . Multiply this L
times the triangular system

[
1 1
0 1

]
x =

[
5
2

]
to get = . In letters, L multiplies

Ux = c to give .

21. (Move to 3 by 3) Forward elimination changes Ax = b to a triangular Ux = c:
x+ y+ z = 5

x+2y+3z = 7

x+3y+6z = 11

x+ y+ z = 5

y+2z = 2

2y+5z = 6

x+ y+ z = 5

y+2z = 2

z = 2.

The equation z = 2 in Ux = c comes from the original x+3y+6z = 11 in Ax = b by
subtracting `31 = times equation 1 and `32 = times the final equation 2.
Reverse that to recover [1 3 6 11] in [A b] from the final [1 1 1 5] and [0 1 2 2]
and [0 0 1 2] in [U c]:

Row 3 of
[
A b

]
= (`31 Row 1 + `32 Row 2+1 Row 3) of

[
U c

]
.

In matrix notation this is multiplication by L. So A = LU and b = Lc.

22. What are the 3 by 3 triangular systems Lc = b and Ux = c from Problem 21? Check
that c = (5,2,2) solves the first one. Which x solves the second one?

23. What two elimination matrices E21 and E32 put A into upper triangular form E32E21A =
U? Multiply by E−1

31 and E−1
21 to factor A into LU = E−1

21 E−1
32 U :

A =




1 1 1
2 4 5
0 4 0


 .

24. What three elimination matrices E21, E31, E32 put A into upper triangular form
E32E31E21A = U? Multiply by E−1

32 , E−1
31 and E−1

21 to factor A into LU where L =
E−1

21 E−1
31 E−1

32 . Find L and U :

A =




1 0 1
2 2 2
3 4 5


 .
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25. When zero appears in a pivot position, A = LU is not possible! (We need nonzero
pivots d, f , i in U .) Show directly why these are both impossible:

[
0 1
2 3

]
=

[
1 0
` 1

][
d e
0 f

] 


1 1 0
1 1 2
1 2 1


 =




1
` 1
m n 1







d e g
f h

i


 .

26. Which number c leads to zero in the second pivot position? A row exchange is
needed and A = LU is not possible. Which c produces zero in the third pivot position?
Then a row exchange can’t help and elimination fails:

A =




1 c 0
2 4 1
3 5 1


 .

27. What are L and D for this matrix A? What is U in A = LU and what is the new U in
A = LDU?

A =




2 4 8
0 3 9
0 0 7


 .

28. A and B are symmetric across the diagonal (because 4 = 4). Find their triple factor-
izations LDU and say how U is related to L for these symmetric matrices:

A =

[
2 4
4 11

]
and B =




1 4 0
4 12 4
0 4 0


 .

29. (Recommended) Compute L and U for the symmetric matrix

A =




a a a a
a b b b
a b c c
a b c d


 .

Find four conditions on a, b, c, d to get A = LU with four pivots.

30. Find L and U for the nonsymmetric matrix

A =




a r r r
a b s s
a b c t
a b c d


 .

Find the four conditions on a, b, c, d, r, s, t to get A = LU with four pivots.
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31. Tridiagonal matrices have zero entries except on the main diagonal and the two
adjacent diagonals. Factor these into A = LU and A = LDV :

A =




1 1 0
1 2 1
0 1 2


 and A =




a a 0
a a+b b
0 b b+ c


 .

32. Solve the triangular system Lc = b to find c. Then solve Ux = c to find x:

L =

[
1 0
4 1

]
and U =

[
2 4
0 1

]
and b =

[
2

11

]
.

For safety find A = LU and solve Ax = b as usual. Circle c when you see it.

33. Solve Lc = b to find c. Then solve Ux = c to find x. What was A?

L =




1 0 0
1 1 0
1 1 1


 and U =




1 1 1
0 1 1
0 0 1


 and b =




4
5
6


 .

34. If A and B have nonzeros in the positions marked by x, which zeros are still zero in
their factors L and U?

A =




x x x x
x x x 0
0 x x x
0 0 x x


 and B =




x x x 0
x x 0 x
x 0 x x
0 x x x


 .

35. (Important) If A has pivots 2, 7, 6 with no row exchanges, what are the pivots for the
upper left 2 by 2 submatrix B (without row 3 and column 3)? Explain why.

36. Starting from a 3 by 3 matrix A with pivots 2, 7, 6, add a fourth row and column to
produce M. What are the first three pivots for M, and why? What fourth row and
column are sure to produce 9 as the fourth pivot?

37. Use chol(pascal(5)) to find the triangular factors of MATLAB’s pascal(5). Row
exchanges in [L, U] = lu(pascal(5)) spoil Pascal’s pattern!

38. (Review) For which numbers c is A = LU impossible—with three pivots?

A =




1 2 0
3 c 1
0 1 1


 .

39. Estimate the time difference for each new right-hand side b when n = 800. Create A
= rand(800) and b = rand(800,1) and B = rand(800,9). Compare the times from
tic; A\b; toc and tic; A\B; toc (which solves for 9 right sides).

Problems 40–48 are about permutation matrices.
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40. There are 12 “even” permutations of (1,2,3,4), with an even number of exchanges.
Two of them are (1,2,3,4) with no exchanges and (4,3,2,1) with two exchanges.
List the other ten. Instead of writing each 4 by 4 matrix, use the numbers 4, 3, 2, 1
to give the position of the 1 in each row.

41. How many exchanges will permute (5,4,3,2,1) back to (1,2,3,4,5)? How many
exchanges to change (6,5,4,3,2,1) to (1,2,3,4,5,6)? One is even and the other is
odd. For (n, . . . ,1) to (1, . . . ,n), show that n = 100 and 101 are even, n = 102 and
103 are odd.

42. If P1 and P2 are permutation matrices, so is P1P2. This still has the rows of I in some
order. Give examples with P1P2 6= P2P1 and P3P4 = P4P3.

43. (Try this question.) Which permutation makes PA upper triangular? Which permu-
tations make P1AP2 lower triangular? Multiplying A on the right by P2 exchanges
the of A.

A =




0 0 6
1 2 3
0 4 5




44. Find a 3 by 3 permutation matrix with P3 = I (but not P = I). Find a 4 by 4 permu-
tation P̂ with P̂4 6= I.

45. If you take powers of a permutation, why is some Pk eventually equal to I? Find a 5
by 5 permutation P so that the smallest power to equal I is P6. (This is a challenge
question. Combine a 2 by 2 block with a 3 by 3 block.)

46. The matrix P that multiplies (x,y,z) to give (z,x,y) is also a rotation matrix. Find P
and P3. The rotation axis a = (1,1,1) doesn’t move, it equals Pa. What is the angle
of rotation from v = (2,3,−5) to Pv = (−5,2,3)?

47. If P is any permutation matrix, find a nonzero vector x so that (I−P)x = 0. (This
will mean that I−P has no inverse, and has determinant zero.)

48. If P has 1s on the antidiagonal from (1,n) to (n,1), describe PAP.

1.6 Inverses and Transposes

The inverse of an n by n matrix is another n by n matrix. The inverse of A is written A−1

(and pronounced “A inverse”). The fundamental property is simple: If you multiply by A
and then multiply by A−1, you are back where you started:

Inverse matrix If b = Ax then A−1b = x.
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Thus A−1Ax = x. The matrix A−1 times A is the identity matrix. Not all matrices have
inverses. An inverse is impossible when Ax is zero and x is nonzero. Then A−1 would
have to get back from Ax = 0 to x. No matrix can multiply that zero vector Ax and
produce a nonzero vector x.

Our goals are to define the inverse matrix and compute it and use it, when A−1

exists—and then to understand which matrices don’t have inverses.

1K The inverse of A is a matrix B such that BA = I and AB = I. There is at
most one such B, and it is denoted by A−1:

A−1A = I and AA−1 = I. (1)

Note 1. The inverse exists if and only if elimination produces n pivots (row exchanges
allowed). Elimination solves Ax = b without explicitly finding A−1.

Note 2. The matrix A cannot have two different inverses, Suppose BA = I and also
AC = I. Then B = C, according to this “proof by parentheses”:

B(AC) = (BA)C gives BI = IC which is B = C. (2)

This shows that a left-inverse B (multiplying from the left) and a right-inverse C (multi-
plying A from the right to give AC = I) must be the same matrix.

Note 3. If A is invertible, the one and only solution to Ax = b is x = A−1b:

Multiply Ax = b by A−1. Then x = A−1Ax = A−1b.

Note 4. (Important) Suppose there is a nonzero vector x such that Ax = 0. Then A
cannot have an inverse. To repeat: No matrix can bring 0 back to x.

If A is invertible, then Ax = 0 can only have the zero solution x = 0.

Note 5. A 2 by 2 matrix is invertible if and only if ad−bc is not zero:

2 by 2 inverse

[
a b
c d

]−1

=
1

ad−bc

[
d −b
−c a

]
. (3)

This number ad− bc is the determinant of A. A matrix is invertible if its determinant
is not zero (Chapter 4). In MATLAB, the invertibility test is to find n nonzero pivots.
Elimination produces those pivots before the determinant appears.

Note 6. A diagonal matrix has an inverse provided no diagonal entries are zero:

If A =




d1
. . .

dn


 then A−1 =




1/d1
. . .

1/dn


 and AA−1 = I.

When two matrices are involved, not much can be done about the inverse of A + B.
The sum might or might not be invertible. Instead, it is the inverse of their product



52 Chapter 1 Matrices and Gaussian Elimination

AB which is the key formula in matrix computations. Ordinary numbers are the same:
(a+b)−1 is hard to simplify, while 1/ab splits into 1/a times 1/b. But for matrices the
order of multiplication must be correct—if ABx = y then Bx = A−1y and x = B−1A−1y.
The inverses come in reverse order.

1L A product AB of invertible matrices is inverted by B−1A−1:

Inverse of AB (AB)−1 = B−1A−1. (4)

Proof. To show that B−1A−1 is the inverse of AB, we multiply them and use the associa-
tive law to remove parentheses. Notice how B sits next to B−1:

(AB)(B−1A−1) = ABB−1A−1 = AIA−1 = AA−1 = I

(B−1A−1)(AB) = B−1A−1AB = B−1IB = B−1B = I.

A similar rule holds with three or more matrices:

Inverse of ABC (ABC)−1 = C−1B−1A−1.

We saw this change of order when the elimination matrices E, F , G were inverted to
come back from U to A. In the forward direction, GFEA was U . In the backward
direction, L = E−1F−1G−1 was the product of the inverses. Since G came last, G−1

comes first. Please check that A−1 would be U−1GFE.

The Calculation of A−1: The Gauss-Jordan Method

Consider the equation AA−1 = I. If it is taken a column at a time, that equation de-
termines each column of A−1. The first column of A−1 is multiplied by A, to yield the
first column of the identity: Ax1 = e1. Similarly Ax2 = e2 and Ax3 = e3 the e’s are the
columns of I. In a 3 by 3 example, A times A−1 is I:

Axi = ei




2 1 1
4 −6 0
−2 7 2




[
x1 x2 x3

]
=

[
e1 e2 e3

]
=




1 0 0
0 1 0
0 0 1


 . (5)

Thus we have three systems of equations (or n systems). They all have the same coeffi-
cient matrix A. The right-hand sides e1, e2, e3 are different, but elimination is possible
on all systems simultaneously. This is the Gauss-Jordan method. Instead of stopping
at U and switching to back-substitution, it continues by subtracting multiples of a row
from the rows above. This produces zeros above the diagonal as well as below. When it
reaches the identity matrix we have found A−1.

The example keeps all three columns e1, e2, e3, and operates on rows of length six:
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Example 1. Using the Gauss-Jordan Method to Find A−1

[
A e1 e2 e3

]
=




2 1 1 1 0 0
4 −6 0 0 1 0
−2 7 2 0 0 1




pivot = 2→




2 1 1 1 0 0
0 −8 −2 −2 1 0
0 8 3 1 0 1




pivot =−8→




2 1 1 1 0 0
0 −8 −2 −2 1 0
0 0 1 −1 1 1


 =

[
U L−1

]
.

This completes the first half—forward elimination. The upper triangular U appears in
the first three columns. The other three columns are the same as L−1. (This is the effect
of applying the elementary operations GFE to the identity matrix.) Now the second half
will go from U to I (multiplying by U−1). That takes L−1 to U−1L−1 which is A−1.
Creating zeros above the pivots, we reach A−1:

Second half
[
U L−1

]
→




2 1 0 2 −1 −1
0 −8 0 −4 3 2
0 0 1 −1 1 1




zeros above pivots→




2 0 0 12
8 −5

8 −6
8

0 −8 0 −4 3 2
0 0 1 −1 1 1




divide by pivots→




1 0 0 12
16 − 5

16 − 6
16

0 1 0 4
8 −3

8 −2
8

0 0 1 −1 1 1


 =

[
I A−1

]
.

At the last step, we divided the rows by their pivots 2 and −8 and 1. The coefficient
matrix in the left-hand half became the identity. Since A went to I, the same operations
on the right-hand half must have carried I into A−1. Therefore we have computed the
inverse.

A note for the future: You can see the determinant−16 appearing in the denominators
of A−1. The determinant is the product of the pivots (2)(−8)(1). It enters at the end
when the rows are divided by the pivots.

Remark 1. In spite of this brilliant success in computing A−1, I don’t recommend it, I
admit that A−1 solves Ax = b in one step. Two triangular steps are better:

x = A−1b separates into Lc = b and Ux = c.

We could write c = L−1b and then x = U−1c = U−1L−1b. But note that we did not
explicitly form, and in actual computation should not form, these matrices L−1 and U−1.
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It would be a waste of time, since we only need back-substitution for x (and forward
substitution produced c).

A similar remark applies to A−1; the multiplication A−1b would still take n2 steps. It
is the solution that we want, and not all the entries in the inverse.
Remark 2. Purely out of curiosity, we might count the number of operations required
to find A−1. The normal count for each new right-hand side is n2, half in the forward
direction and half in back-substitution. With n right-hand sides e1, . . . ,en this makes n3.
After including the n3/3 operations on A itself, the total seems to be 4n3/3.

This result is a little too high because of the zeros in the e j. Forward elimination
changes only the zeros below the 1. This part has only n− j components, so the count
for e j is effectively changed to (n− j)2/2. Summing over all j, the total for forward
elimination is n3/6. This is to be combined with the usual n3/3 operations that are
applied to A, and the n(n2/2) back-substitution steps that finally produce the columns x j

of A−1. The final count of multiplications for computing A−1 is n3:

Operation count
n3

6
+

n3

3
+n

(
n2

2

)
= n3.

This count is remarkably low. Since matrix multiplication already takes n3 steps, it
requires as many operations to compute A2 as it does to compute A−1! That fact seems
almost unbelievable (and computing A3 requires twice as many, as far as we can see).
Nevertheless, if A−1 is not needed, it should not be computed.
Remark 3. In the Gauss-Jordan calculation we went all the way forward to U , before
starting backward to produce zeros above the pivots. That is like Gaussian elimination,
but other orders are possible. We could have used the second pivot when we were there
earlier, to create a zero above it as well as below it. This is not smart. At that time
the second row is virtually full, whereas near the end it has zeros from the upward row
operations that have already taken place.

Invertible = Nonsingular (n pivots)

Ultimately we want to know which matrices are invertible and which are not. This
question is so important that it has many answers. See the last page of the book!

Each of the first five chapters will give a different (but equivalent) test for invertibility.
Sometimes the tests extend to rectangular matrices and one-sided inverses: Chapter 2
looks for independent rows and independent columns, Chapter 3 inverts AAT or ATA.
The other chapters look for nonzero determinants or nonzero eigenvalues or nonzero
pivots. This last test is the one we meet through Gaussian elimination. We want to show
(in a few theoretical paragraphs) that the pivot test succeeds.

Suppose A has a full set of n pivots. AA−1 = I gives n separate systems Axi = ei

for the columns of A−1. They can be solved by elimination or by Gauss-Jordan. Row
exchanges may be needed, but the columns of A−1 are determined.
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Strictly speaking, we have to show that the matrix A−1 with those columns is also
a left-inverse. Solving AA−1 = I has at the same time solved A−1A = I, but why? A
1-sided inverse of a square matrix is automatically a 2-sided inverse. To see why,
notice that every Gauss-Jordan step is a multiplication on the left by an elementary
matrix. We are allowing three types of elementary matrices:

1. Ei j to subtract a multiple ` of row j from row i

2. Pi j to exchange rows i and j

3. D (or D−1) to divide all rows by their pivots.

The Gauss-Jordan process is really a giant sequence of matrix multiplications:

(D−1 · · ·E · · ·P · · ·E)A = I. (6)

That matrix in parentheses, to the left of A, is evidently a left-inverse! It exists, it equals
the right-inverse by Note 2, so every nonsingular matrix is invertible.

The converse is also true: If A is invertible, it has n pivots. In an extreme case that
is clear: A cannot have a whole column of zeros. The inverse could never multiply a
column of zeros to produce a column of I. In a less extreme case, suppose elimination
starts on an invertible matrix A but breaks down at column 3:

Breakdown
No pivot in column 3

A′ =




d1 x x x
0 d2 x x
0 0 0 x
0 0 0 x


 .

This matrix cannot have an inverse, no matter what the x’s are. One proof is to use
column operations (for the first time?) to make the whole third column zero. By sub-
tracting multiples of column 2 and then of column 1, we reach a matrix that is certainly
not invertible. Therefore the original A was not invertible. Elimination gives a complete
test: An n by n matrix is invertible if and only if it has n pivots.

The Transpose Matrix

We need one more matrix, and fortunately it is much simpler than the inverse. The
transpose of A is denoted by AT. Its columns are taken directly from the rows of A—the
ith row of A becomes the ith column of AT:

Transpose If A =

[
2 1 4
0 0 3

]
then AT =




2 0
1 0
4 3


 .

At the same time the columns of A become the rows of AT, If A is an m by n matrix, then
AT is n by m. The final effect is to flip the matrix across its main diagonal, and the entry
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in row i, column j of AT comes from row j, column i of A:

Entries of AT (AT)i j = A ji. (7)

The transpose of a lower triangular matrix is upper triangular. The transpose of AT brings
us back to A.

If we add two matrices and then transpose, the result is the same as first transposing
and then adding: (A+B)T is the same as AT +BT. But what is the transpose of a product
AB or an inverse A−1? Those are the essential formulas of this section:

1M

(i) The transpose of AB is (AB)T = BTAT,

(ii) The transpose of A−1 is (A−1)T = (AT)−1.

Notice how the formula for (AB)T resembles the one for (AB)−1. In both cases we
reverse the order, giving BTAT and B−1A−1. The proof for the inverse was easy, but this
one requires an unnatural patience with matrix multiplication. The first row of (AB)T is
the first column of AB. So the columns of A are weighted by the first column of B. This
amounts to the rows of AT weighted by the first row of BT. That is exactly the first row
of BTAT. The other rows of (AB)T and BTAT also agree.

Start from AB =

[
1 0
1 1

][
3 3 3
2 2 2

]
=

[
3 3 3
5 5 5

]

Transpose to BTAT =




3 2
3 2
3 2




[
1 1
0 1

]
=




3 5
3 5
3 5


 .

To establish the formula for (A−1)T, start from AA−1 = I and A−1A = I and take trans-
poses. On one side, IT = I. On the other side, we know from part (i) the transpose of a
product. You see how (A−1)T is the inverse of AT, proving (ii):

Inverse of AT = Transpose of A−1 (A−1)TAT = I. (8)

Symmetric Matrices

With these rules established, we can introduce a special class of matrices, probably
the most important class of all. A symmetric matrix is a matrix that equals its own
transpose: AT = A. The matrix is necessarily square. Each entry on one side of the
diagonal equals its “mirror image” on the other side: ai j = a ji. Two simple examples are
A and D (and also A−1):

Symmetric matrices A =

[
1 2
2 8

]
and D =

[
1 0
0 4

]
and A−1 =

1
4

[
8 −2
−2 1

]
.
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A symmetric matrix need not be invertible; it could even be a matrix of zeros. But if
A−1 exists it is also symmetric. From formula (ii) above, the transpose of A−1 always
equals (AT)−1; for a symmetric matrix this is just A−1. A−1 equals its own transpose; it
is symmetric whenever A is. Now we show that multiplying any matrix R by RT gives a
symmetric matrix.

Symmetric Products RTR, RRT, and LDLT

Choose any matrix R, probably rectangular. Multiply RT times R. Then the product RTR
is automatically a square symmetric matrix:

The transpose of RTR is RT(RT)T, which is RTR. (9)

That is a quick proof of symmetry for RTR. Its i, j entry is the inner product of row i
of RT (column i of R) with column j of R. The ( j, i) entry is the same inner product,
column j with column i. So RTR is symmetric.

RRT is also symmetric, but it is different from RTR. In my experience, most scientific
problems that start with a rectangular matrix R end up with RTR or RRT or both.

Example 2. R = [1 2] and RT = [1
2 ] produce RTR =

[
1 2
2 4

]
and RRT = [5].

The product RTR is n by n. In the opposite order, RRT is m by m. Even if m = n, it is not
very likely that RTR = RRT. Equality can happen, but it’s not normal.

Symmetric matrices appear in every subject whose laws are fair. “Each action has an
equal and opposite reaction.” The entry ai j that gives the action of i onto j is matched
by a ji. We will see this symmetry in the next section, for differential equations. Here,
LU misses the symmetry but LDLT captures it perfectly.

1N Suppose A = AT can be factored into A = LDU without row exchanges.
Then U is the transpose of L. The symmetric factorization becomes A = LDLT.

The transpose of A = LDU gives AT = UTDTLT. Since A = AT, we now have two
factorizations of A into lower triangular times diagonal times upper triangular. (LT is
upper triangular with ones on the diagonal, exactly like U .) Since the factorization is
unique (see Problem 17), LT must be identical to U .

LT = U and A = LDLT

[
1 2
2 8

]
=

[
1 0
2 1

][
1 0
0 4

][
1 2
0 1

]
= LDLT.

When elimination is applied to a symmetric matrix, AT = A is an advantage. The smaller
matrices stay symmetric as elimination proceeds, and we can work with half the matrix!
The lower right-hand corner remains symmetric:


a b c
b d e
c e f


→




a b c
0 d− b2

a e− bc
a

0 e− bc
a f − c2

a


 .
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The work of elimination is reduced from n3/3 to n3/6. There is no need to store entries
from both sides of the diagonal, or to store both L and U .

Problem Set 1.6

1. Find the inverses (no special system required) of

A1 =

[
0 2
3 0

]
, A2 =

[
2 0
4 2

]
, A3 =

[
cosθ −sinθ
sinθ cosθ

]
.

2. (a) Find the inverses of the permutation matrices

P =




0 0 1
0 1 0
1 0 0


 and P =




0 0 1
1 0 0
0 1 0


 .

(b) Explain for permutations why P−1 is always the same as PT. Show that the 1s
are in the right places to give PPT = I.

3. From AB = C find a formula for A−1. Also find A−1 from PA = LU .

4. (a) If A is invertible and AB = AC, prove quickly that B = C.

(b) If A = [1 0
0 0 ], find an example with AB = AC but B 6= C.

5. If the inverse of A2 is B, show that the inverse of A is AB. (Thus A is invertible
whenever A2 is invertible.)

6. Use the Gauss-Jordan method to invert

A1 =




1 0 0
1 1 1
0 0 1


 , A2 =




2 −1 0
−1 2 −1
0 −1 2


 , A3 =




0 0 1
0 1 1
1 1 1


 .

7. Find three 2 by 2 matrices, other than A = I and A =−I, that are their own inverses:
A2 = I.

8. Show that A = [1 1
3 3 ] has no inverse by solving Ax = 0, and by failing to solve

[
1 1
3 3

][
a b
c d

]
=

[
1 0
0 1

]
.

9. Suppose elimination fails because there is no pivot in column 3:

Missing pivot A =




2 1 4 6
0 3 8 5
0 0 0 7
0 0 0 9


 .
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Show that A cannot be invertible. The third row of A−1, multiplying A, should give
the third row [0 0 1 0] of A−1A = I. Why is this impossible?

10. Find the inverses (in any legal way) of

A1 =




0 0 0 1
0 0 2 0
0 3 0 0
4 0 0 0


 , A2 =




1 0 0 0
−1

2 1 0 0
0 −2

3 1 0
0 0 −3

4 1


 , A3 =




a b 0 0
c d 0 0
0 0 a b
0 0 c d


 .

11. Give examples of A and B such that

(a) A+B is not invertible although A and B are invertible.

(b) A+B is invertible although A and B are not invertible.

(c) all of A, B, and A+B are invertible.

(d) In the last case use A−1(A+B)B−1 = B−1 +A−1 to show that C = B−1 +A−1 is
also invertible—and find a formula for C−1.

12. If A is invertible, which properties of A remain true for A−1?
(a) A is triangular. (b) A is symmetric. (c) A is tridiagonal. (d) All entries are whole
numbers. (e) All entries are fractions (including numbers like 3

1).

13. If A = [3
1 ] and B = [2

2 ], compute ATB, BTA, ABT, and BAT.

14. If B is square, show that A = B+BT is always symmetric and K = B−BT is always
skew-symmetric—which means that KT = −K. Find these matrices A and K when
B = [1 3

1 1 ], and write B as the sum of a symmetric matrix and a skew-symmetric
matrix.

15. (a) How many entries can be chosen independently in a symmetric matrix of order
n?

(b) How many entries can be chosen independently in a skew-symmetric matrix
(KT =−K) of order n? The diagonal of K is zero!

16. (a) If A = LDU , with 1s on the diagonals of L and U , what is the corresponding
factorization of AT? Note that A and AT (square matrices with no row exchanges)
share the same pivots.

(b) What triangular systems will give the solution to ATy = b?

17. If A = L1D1U1 and A = L2D2U2, prove that L1 = L2, D1 = D2, and U1 = U2. If A is
invertible, the factorization is unique.

(a) Derive the equation L−1
1 L2D2 = D1U1U−1

2 , and explain why one side is lower
triangular and the other side is upper triangular.

(b) Compare the main diagonals and then compare the off-diagonals.
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18. Under what conditions on their entries are A and B invertible?

A =




a b c
d e 0
f 0 0


 B =




a b 0
c d 0
0 0 e


 .

19. Compute the symmetric LDLT factorization of

A =




1 3 5
3 12 18
5 18 30


 and A =

[
a b
b d

]
.

20. Find the inverse of

A =




1 0 0 0
1
4 1 0 0
1
3

1
3 1 0

1
2

1
2

1
2 1


 .

21. (Remarkable) If A and B are square matrices, show that I−BA is invertible if I−AB
is invertible. Start from B(I−AB) = (1−BA)B.

22. Find the inverses (directly or from the 2 by 2 formula) of A, B, C:

A =

[
0 3
4 6

]
and B =

[
a b
b 0

]
and C =

[
3 4
5 7

]
.

23. Solve for the columns of A−1 =

[
x t
y z

]
:

[
10 20
20 50

][
x
y

]
=

[
1
0

]
and

[
10 20
20 50

][
t
z

]
=

[
0
1

]
.

24. Show that [1 2
3 6 ] has no inverse by trying to solve for the column (x,y):

[
1 2
3 6

][
x t
y z

]
=

[
1 0
0 1

]
must include

[
1 2
3 6

][
x
y

]
=

[
1
0

]
.

25. (Important) If A has row 1 + row 2 = row 3, show that A is not invertible:

(a) Explain why Ax = (1,0,0) cannot have a solution.

(b) Which right-hand sides (b1,b2,b3) might allow a solution to Ax = b?

(c) What happens to row 3 in elimination?

26. If A has column 1 + column 2 = column 3, show that A is not invertible:
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(a) Find a nonzero solution x to Ax = 0. The matrix is 3 by 3.

(b) Elimination keeps column 1 + column 2 = column 3. Explain why there is no
third pivot.

27. Suppose A is invertible and you exchange its first two rows to reach B. Is the new
matrix B invertible? How would you find B−1 from A−1?

28. If the product M = ABC of three square matrices is invertible, then A, B, C are
invertible. Find a formula for B−1 that involves M−1 and A and C.

29. Prove that a matrix with a column of zeros cannot have an inverse.

30. Multiply [a b
c d ] times [ d −b−c a ]. What is the inverse of each matrix if ad 6= bc?

31. (a) What matrix E has the same effect as these three steps? Subtract row 1 from row
2, subtract row 1 from row 3, then subtract row 2 from row 3.

(b) What single matrix L has the same effect as these three reverse steps? Add row
2 to row 3, add row 1 to row 3, then add row 1 to row 2.

32. Find the numbers a and b that give the inverse of 5 ∗ eye(4) − ones(4,4):



4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4




−1

=




a b b b
b a b b
b b a b
b b b a


 .

What are a and b in the inverse of 6 ∗ eye(5) − ones(5,5)?

33. Show that A = 4 ∗ eye(4) − ones(4,4) is not invertible: Multiply A ∗ ones(4,1).

34. There are sixteen 2 by 2 matrices whose entries are 1s and 0s. How many of them
are invertible?

Problems 35–39 are about the Gauss-Jordan method for calculating A−1.

35. Change I into A−1 as you reduce A to I (by row operations):

[
A I

]
=

[
1 3 1 0
2 7 0 1

]
and

[
A I

]
=

[
1 4 1 0
3 9 0 1

]
.

36. Follow the 3 by 3 text example but with plus signs in A. Eliminate above and below
the pivots to reduce [A I] to [I A−1]:

[
A I

]
=




2 1 0 1 0 0
1 2 1 0 1 0
0 1 2 0 0 1


 .
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37. Use Gauss-Jordan elimination on [A I] to solve AA−1 = I:



1 a b
0 1 c
0 0 1




[
x1 x2 x3

]
=




1 0 0
0 1 0
0 0 1


 .

38. Invert these matrices A by the Gauss-Jordan method starting with [A I]:

A =




1 0 0
2 1 3
0 0 1


 and A =




1 1 1
1 2 2
1 2 3


 .

39. Exchange rows and continue with Gauss-Jordan to find A−1:

[
A I

]
=

[
0 2 1 0
2 2 0 1

]
.

40. True or false (with a counterexample if false and a reason if true):

(a) A 4 by 4 matrix with a row of zeros is not invertible.

(b) A matrix with Is down the main diagonal is invertible.

(c) If A is invertible then A−1 is invertible.

(d) If AT is invertible then A is invertible.

41. For which three numbers c is this matrix not invertible, and why not?

A =




2 c c
c c c
8 7 c


 .

42. Prove that A is invertible if a 6= 0 and a 6= b (find the pivots and A−1):

A =




a b b
a a b
a a a


 .

43. This matrix has a remarkable inverse. Find A−1 by elimination on [A I]. Extend to a
5 by 5 “alternating matrix” and guess its inverse:

A =




1 −1 1 −1
0 1 −1 1
0 0 1 −1
0 0 0 1


 .
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44. If B has the columns of A in reverse order, solve (A−B)x = 0 to show that A−B is
not invertible. An example will lead you to x.

45. Find and check the inverses (assuming they exist) of these block matrices:
[

I 0
C I

] [
A 0
C D

] [
0 I
I D

]
.

46. Use inv(S) to invert MATLAB’s 4 by 4 symmetric matrix S = pascal(4). Create
Pascal’s lower triangular A = abs(pascal(4,1)) and test inv(S) = inv(A’) ∗ inv(A).

47. If A = ones(4,4) and b = rand(4,1), how does MATLAB tell you that Ax = b has
no solution? If b = ones(4,1), which solution to Ax = b is found by A\b?

48. M−1 shows the change in A−1 (useful to know) when a matrix is subtracted from A.
Check part 3 by carefully multiplying MM−1 to get I:

1. M = I−uvT and M−1 = I +uvT/(1− vTu).
2. M = A−uvT and M−1 = A−1 +A−1uvTA−1/(1− vTA−1u).
3. M = I−UV and M−1 = In +U(Im−VU)−1V .
4. M = A−UW−1V and M−1 = A−1 +A−1U(W −VA−1U)−1VA−1.

The four identities come from the 1, 1 block when inverting these matrices:
[

I u
vT 1

] [
A u
vT 1

] [
In U
V Im

] [
A U
V W

]
.

Problems 49–55 are about the rules for transpose matrices.

49. Find AT and A−1 and (A−1)T and (AT)−1 for

A =

[
1 0
9 3

]
and also A =

[
1 c
c 0

]
.

50. Verify that (AB)T equals BTAT but those are different from ATBT:

A =

[
1 0
2 1

]
B =

[
1 3
0 1

]
AB =

[
1 3
2 7

]
.

In case AB = BA (not generally true!), how do you prove that BTAT = ATBT?

51. (a) The matrix
(
(AB)−1

)T comes from (A−1)T and (B−1)T. In what order?

(b) If U is upper triangular then (U−1)T is triangular.

52. Show that A2 = 0 is possible but ATA = 0 is not possible (unless A = zero matrix).
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53. (a) The row vector xT times A times the column y produces what number?

xTAy =
[
0 1

][
1 2 3
4 5 6

]


0
1
0


 = .

(b) This is the row xTA = times the column y = (0,1,0).

(c) This is the row xT = [0 1] times the column Ay = .

54. When you transpose a block matrix M = [A B
C D ] the result is MT = . Test it.

Under what conditions on A, B, C, D is the block matrix symmetric?

55. Explain why the inner product of x and y equals the inner product of Px and Py.
Then (Px)T(Py) = xTy says that PTP = I for any permutation. With x = (1,2,3) and
y = (1,4,2), choose P to show that (Px)Ty is not always equal to xT(PTy).

Problems 56–60 are about symmetric matrices and their factorizations.

56. If A = AT and B = BT, which of these matrices are certainly symmetric?
(a) A2−B2 (b) (A+B)(A−B) (c) ABA (d) ABAB.

57. If A = AT needs a row exchange, then it also needs a column exchange to stay sym-
metric. In matrix language, PA loses the symmetry of A but recovers the sym-
metry.

58. (a) How many entries of A can be chosen independently, if A = AT is 5 by 5?

(b) How do L and D (5 by 5) give the same number of choices in LDLT?

59. Suppose R is rectangular (m by n) and A is symmetric (m by m).

(a) Transpose RTAR to show its symmetry. What shape is this matrix?

(b) Show why RTR has no negative numbers on its diagonal.

60. Factor these symmetric matrices into A = LDLT. The matrix D is diagonal:

A =

[
1 3
3 2

]
and A =

[
1 b
b c

]
and A =




2 −1 0
−1 2 −1
0 −1 2


 .

The next three problems are about applications of (Ax)Ty = xT(ATy).

61. Wires go between Boston, Chicago, and Seattle. Those cities are at voltages xB, xC,
xS. With unit resistances between cities, the three currents are in y:

y = Ax is




yBC

yCS

yBS


 =




1 −1 0
0 1 −1
1 0 −1







xB

xC

xS


 .
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(a) Find the total currents ATy out of the three cities.
(b) Verify that (Ax)Ty agrees with xT(ATy)—six terms in both.

62. Producing x1 trucks and x2 planes requires x1 + 50x2 tons of steel, 40x1 + 1000x2

pounds of rubber, and 2x1 +50x2 months of labor. If the unit costs y1, y2, y3 are $700
per ton, $3 per pound, and $3000 per month, what are the values of one truck and
one plane? Those are the components of ATy.

63. Ax gives the amounts of steel, rubber, and labor to produce x in Problem 62. Find A.
Then (Ax)Ty is the of inputs while xT(ATy) is the value of .

64. Here is a new factorization of A into triangular times symmetric:

Start from A = LDU . Then A equals L(UT)−1 times UTDU .

Why is L(UT)−1 triangular? Its diagonal is all 1s. Why is UTDU symmetric?

65. A group of matrices includes AB and A−1 if it includes A and B. “Products and
inverses stay in the group.” Which of these sets are groups? Lower triangularmatri-
ces L with is on the diagonal, symmetric matrices S, positive matrices M, diagonal
invertible matrices D, permutation matrices P. Invent two more matrix groups.

66. If every row of a 4 by 4 matrix contains the numbers 0, 1, 2, 3 in some order, can the
matrix be symmetric? Can it be invertible?

67. Prove that no reordering of rows and reordering of columns can transpose a typical
matrix.

68. A square northwest matrix B is zero in the southeast corner, below the antidiagonal
that connects (1,n) to (n,1). Will BT and B2 be northwest matrices? Will B−1 be
northwest or southeast? What is the shape of BC = northwest times southeast?
You are allowed to combine permutations with the usual L and U (southwest and
northeast).

69. Compare tic; inv(A); toc for A = rand(500) and A = rand(1000). The n3 count
says that computing time (measured by tic; toc) should multiply by 8 when n is
doubled. Do you expect these random A to be invertible?

70. I = eye(1000); A = rand(1000); B = triu(A); produces a random triangular matrix
B. Compare the times for inv(B) and B\I. Backslash is engineered to use the zeros
in B, while inv uses the zeros in I when reducing [B I] by Gauss-Jordan. (Compare
also with inv(A) and A\I for the full matrix A.)

71. Show that L−1 has entries j/i for i≤ j (the −1, 2, −1 matrix has this L):

L =




1 0 0 0
−1

2 1 0 0
0 −2

3 1 0
0 0 −3

4 1


 and L−1 =




1 0 0 0
1
2 1 0 0
1
3

2
3 1 0

1
4

2
4

3
4 1


 .
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Test this pattern for L = eye(5) − diag(1:5)\diag(1:4,−1) and inv(L).

1.7 Special Matrices and Applications

This section has two goals. The first is to explain one way in which large linear systems
Ax = b can arise in practice. The truth is that a large and completely realistic problem in
engineering or economics would lead us far afield. But there is one natural and important
application that does not require a lot of preparation.

The other goal is to illustrate, by this same application, the special properties that co-
efficient matrices frequently have. Large matrices almost always have a clear pattern—
frequently a pattern of symmetry, and very many zero entries. Since a sparse matrix
contains far fewer than n2 pieces of information, the computations ought to be fast. We
look at band matrices, to see how concentration near the diagonal speeds up elimination.
In fact we look at one special tridiagonal matrix.

The matrix itself can be seen in equation (6). It comes from changing a differential
equation to a matrix equation. The continuous problem asks for u(x) at every x, and a
computer cannot solve it exactly. It has to be approximated by a discrete problem—the
more unknowns we keep, the better will be the accuracy and the greater the expense.
As a simple but still very typical continuous problem, our choice falls on the differential
equation

−d2u
dx2 = f (x), 0≤ x≤ 1. (1)

This is a linear equation for the unknown function u(x). Any combination C + Dx
could be added to any solution, since the second derivative of C+Dx contributes nothing.
The uncertainty left by these two arbitrary constants C and D is removed by a “boundary
condition” at each end of the interval:

u(0) = 0, u(1) = 0. (2)

The result is a two-point boundary-value problem, describing not a transient but a steady-
state phenomenon—the temperature distribution in a rod, for example, with ends fixed
at 0℃ and with a heat source f (x).

Remember that our goal is to produce a discrete problem—in other words, a problem
in linear algebra. For that reason we can only accept a finite amount of information about
f (x), say its values at n equally spaced points x = h,x = 2h, . . . ,x = nh. We compute
approximate values u1, . . . ,un for the true solution u at these same points. At the ends
x = 0 and x = 1 = (n+1)h, the boundary values are u0 = 0 and un+1 = 0.

The first question is: How do we replace the derivative d2u/dx2? The first derivative
can be approximated by stopping ∆u/∆x at a finite stepsize, and not permitting h (or ∆x)
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to approach zero. The difference ∆u can be forward, backward, or centered:

∆u

∆x
=

u(x+h)−u(x)
h

or
u(x)−u(x−h)

h
or

u(x+h)−u(x−h)
2h

. (3)

The last is symmetric about x and it is the most accurate. For the second derivative there
is just one combination that uses only the values at x and x±h:

Second difference
d2u
dx2 ≈

∆2u

∆x2 =
u(x+h)−2u(x)+u(x−h)

h2 . (4)

This also has the merit of being symmetric about x. To repeat, the right-hand side ap-
proaches the true value of d2u/dx2 as h→ 0, but we have to stop at a positive h.

At each meshpoint x = jh, the equation −d2u/dx2 = f (x) is replaced by its discrete
analogue (5). We multiplied through by h2 to reach n equations Au = b:

Difference equation −u j+1 +2u j−u j−1 = h2 f ( jh) for j = 1, . . . ,n. (5)

The first and last equations ( j = 1 and j = n) include u0 = 0 and un+1 = 0, which are
known from the boundary conditions. These values would be shifted to the right-hand
side of the equation if they were not zero. The structure of these n equations (5) can be
better visualized in matrix form. We choose h = 1

6 , to get a 5 by 5 matrix A:

Matrix equation




2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2







u1

u2

u3

u4

u5




= h2




f (h)
f (2h)
f (3h)
f (4h)
f (5h)




. (6)

From now on, we will work with equation (6). It has a very regular coefficient matrix,
whose order n can be very large. The matrix A possesses many special properties, and
three of those properties are fundamental:

1. The matrix A is tridiagonal. All nonzero entries lie on the main diagonal and the
two adjacent diagonals. Outside this band all entries are ai j = 0. These zeros will
bring a tremendous simplification to Gaussian elimination.

2. The matrix is symmetric. Each entry ai j equals its mirror image a ji, so that AT = A.
The upper triangular U will be the transpose of the lower triangular L, and A =
LDLT. This symmetry of A reflects the symmetry of d2u/dx2. An odd derivative
like du/dx or d3u/dx3 would destroy the symmetry.

3. The matrix is positive definite. This extra property says that the pivots are positive.
Row exchanges are unnecessary in theory and in practice. This is in contrast to the
matrix B at the end of this section, which is not positive definite. Without a row
exchange it is totally vulnerable to roundoff.

Positive definiteness brings this whole course together (in Chapter 6)!
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We return to the fact that A is tridiagonal. What effect does this have on elimination?
The first stage of the elimination process produces zeros below the first pivot:

Elimination
on A: Step 1




2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2



→




2 −1
0 3

2 −1
−1 2 −1

−1 2 −1
−1 2




.

Compared with a general 5 by 5 matrix, that step displays two major simplifications:

1. There was only one nonzero entry below the pivot.

2. The pivot row was very short.

The multiplier `21 = −1
2 came from one division. The new pivot 3

2 came from a single
multiplication-subtraction. Furthermore, the tridiagonal pattern is preserved: Every
stage of elimination admits the simplifications (a) and (b).

The final result is the LDU = LDLT factorization of A. Notice the pivots!

A =




1
−1

2 1
−2

3 1
−3

4 1
−4

5 1







2
1

3
2

4
3

5
4

6
5







1 −1
2

1 −2
3

1 −3
4

1 −4
5

1




.

The L and U factors of a tridiagonal matrix are bidiagonal. The three factors together
have the same band structure of three essential diagonals (3n−2 parameters) as A. Note
too that L and U are transposes of one another, as expected from the symmetry. The
pivots 2/1, 3/2, 4/3, 5/4, 6/5 are all positive. Their product is the determinant of A:
detA = 6. The pivots are obviously converging to 1, as n gets large. Such matrices make
a computer very happy.

These sparse factors L and U completely change the usual operation count. Elimina-
tion on each column needs only two operations, as above, and there are n columns. In
place of n3/3 operations we need only 2n. Tridiagonal systems Ax = b can be solved
almost instantly. The cost of solving a tridiagonal system is proportional to n.

A band matrix has ai j = 0 except in the band |i− j| < w (Figure 1.8). The “half
bandwidth” is w = 1 for a diagonal matrix, w = 2 for a tridiagonal matrix, and w = n
for a full matrix. For each column, elimination requires w(w− 1) operations: a row
of length w acts on w− 1 rows below. Elimination on the n columns of a band matrix
requires about w2n operations.

As w approaches n, the matrix becomes full, and the count is roughly n3. For an exact
count, the lower right-hand corner has no room for bandwidth w. The precise number of
divisions and multiplication-subtractions that produce L, D, and U (without assuming a
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ww
A = = w

w

= LU

Figure 1.8: A band matrix A and its factors L and U .

symmetric A) is P = 1
3w(w−1)(3n−2w+1). For a full matrix with w = n, we recover

P = 1
3n(n−1)(n+1). This is a whole number, since n−1, n, and n+1 are consecutive

integers, and one of them is divisible by 3.
That is our last operation count, and we emphasize the main point. A finite-difference

matrix like A has a full inverse. In solving Ax = b, we are actually much worse off
knowing A−1 than knowing L and U . Multiplying A−1 by b takes n2 steps, whereas 4n
are sufficient for the forward elimination and back-substitution that produce x =U−1c =
U−1L−1b = A−1b.

We hope this example reinforced the reader’s understanding of elimination (which
we now assume to be perfectly understood!). It is a genuine example of the large linear
systems that are actually met in practice. The next chapter turns to the existence and the
uniqueness of x, for m equations in n unknowns.

Roundoff Error

In theory the nonsingular case is completed. There is a full set of pivots (with row ex-
changes). In practice, more row exchanges may be equally necessary—or the computed
solution can easily become worthless. We will devote two pages (entirely optional in
class) to making elimination more stable—why it is needed and how it is done.

For a system of moderate size, say 100 by 100, elimination involves a third of a mil-
lion operations (1

3n3). With each operation we must expect a roundoff error. Normally,
we keep a fixed number of significant digits (say three, for an extremely weak computer).
Then adding two numbers of different sizes gives an error:

Roundoff Error .456+ .00123→ .457 loses the digits 2 and 3.

How do all these individual errors contribute to the final error in Ax = b?
This is not an easy problem. It was attacked by John von Neumann, who was the

leading mathematician at the time when computers suddenly made a million operations
possible. In fact the combination of Gauss and von Neumann gives the simple elimina-
tion algorithm a remarkably distinguished history, although even von Neumann overes-
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timated the final roundoff error. It was Wilkinson who found the right way to answer the
question, and his books are now classics.

Two simple examples will illustrate three important points about roundoff error. The
examples are

Ill-conditioned A =

[
1. 1.

1. 1.0001

]
Well-conditioned B =

[
.0001 1.

1. 1.

]
.

A is nearly singular whereas B is far from singular. If we slightly change the last entry
of A to a22 = 1, it is singular. Consider two very close right-hand sides b:

u + v = 2
u + 1.0001v = 2

and
u + v = 2
u + 1.0001v = 2.0001

The solution to the first is u = 2, v = 0. The solution to the second is u = v = 1. A
change in the fifth digit of b was amplified to a change in the first digit of the solution. No
numerical method can avoid this sensitivity to small perturbations. The ill-conditioning
can be shifted from one place to another, but it cannot be removed. The true solution is
very sensitive, and the computed solution cannot be less so.

The second point is as follows.

1O Even a well-conditioned matrix like B can be ruined by a poor algorithm.

We regret to say that for the matrix B, direct Gaussian elimination is a poor algorithm.
Suppose .0001 is accepted as the first pivot. Then 10,000 times the first row is subtracted
from the second. The lower right entry becomes −9999, but roundoff to three places
would give −10,000. Every trace of the entry 1 would disappear:

Elimination on B
with small pivot

.0001u+ v = 1
u+ v = 2

−→ .0001u+ v = 1
−9999v = −9998.

Roundoff will produce −10,000v =−10,000, or v = 1. This is correct to three decimal
places. Back-substitution with the right v = .9999 would leave u = 1:

Correct result .0001u+ .9999 = 1, or u = 1.

Instead, accepting v = 1, which is wrong only in the fourth place, we obtain u = 0:

Wrong result .0001u+1 = 1, or u = 0.

The computed u is completely mistaken. B is well-conditioned but elimination is vio-
lently unstable. L, D, and U are completely out of scale with B:

B =

[
1 0

10,000 1

][
.0001 0

0 −9999

][
1 10,000
0 1

]
.

The small pivot .0001 brought instability, and the remedy is clear—exchange rows.



1.7 Special Matrices and Applications 71

1P A small pivot forces a practical change in elimination. Normally we
compare each pivot with all possible pivots in the same column. Exchanging
rows to obtain the largest possible pivot is called partial pivoting.

For B, the pivot .0001 would be compared with the possible pivot I below it. A row
exchange would take place immediately. In matrix terms, this is multiplication by a
permutation matrix P = [0 1

1 0 ]. The new matrix C = PB has good factors:

C =

[
1 1

.0001 1

]
=

[
1 0

.0001 1

][
1 0
0 .9999

][
1 1
0 1

]

The pivots for C are 1 and .9999, much better than .0001 and −9999 for B.
The strategy of complete pivoting looks also in all later columns for the largest pos-

sible pivot. Not only a row but also a column exchange may be needed. (This is
postmultiplication by a permutation matrix.) The difficulty with being so conservative
is the expense, and partial pivoting is quite adequate.

We have finally arrived at the fundamental algorithm of numerical linear algebra:
elimination with partial pivoting. Some further refinements, such as watching to see
whether a whole row or column needs to be resealed, are still possible. But essentially
the reader now knows what a computer does with a system of linear equations. Com-
pared with the “theoretical” description—find A−1, and multiply A−1b—our description
has consumed a lot of the reader’s time (and patience). I wish there were an easier way
to explain how x is actually found, but I do not think there is.

Problem Set 1.7

1. Write out the LDU = LDLT factors of A in equation (6) when n = 4. Find the deter-
minant as the product of the pivots in D.

2. Modify a11 in equation (6) from a11 = 2 to a11 = 1, and find the LDU factors of this
new tridiagonal matrix.

3. Find the 5 by 5 matrix A0 (h = 1
6) that approximates

−d2u
dx2 = f (x),

du
dx

(0) =
du
dx

(1) = 0,

replacing these boundary conditions by u0 = u1 and u6 = u5. Check that your A0

times the constant vector (C,C,C,C,C), yields zero; A0 is singular. Analogously, if
u(x) is a solution of the continuous problem, then so is u(x)+C.

4. Write down the 3 by 3 finite-difference matrix equation (h = 1
4) for

−d2u
dx2 +u = x, u(0) = u(1) = 0.
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5. With h = 1
4 and f (x) = 4π2 sin2πx, the difference equation (5) is




2 −1 0
−1 2 −1
0 −1 2







u1

u2

u3


 =

π2

4




1
0
−1


 .

Solve for u1, u2, u3 and find their error in comparison with the true solution u =
sin2πx at x = 1

4 , x = 1
2 , and x = 3

4 .

6. What 5 by 5 system replaces (6) if the boundary conditions are changed to u(0) = 1,
u(1) = 0?

Problems 7–11 are about roundoff error and row exchanges.

7. Compute H−1 in two ways for the 3 by 3 Hilbert matrix

H =




1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5


 ,

first by exact computation and second by rounding off each number to three figures.
This matrix H is ill-conditioned and row exchanges don’t help.

8. For the same matrix H, compare the right-hand sides of Hx = b when the solutions
are x = (1,1,1) and x = (0,6,−3.6).

9. Solve Hx = b = (1,0, . . . ,0) for the 10 by 10 Hilbert matrix with hi j = 1/(i+ j−1),
using any computer code for linear equations. Then change an entry of b by .0001
and compare the solutions.

10. Compare the pivots in direct elimination to those with partial pivoting for

A =

[
.001 0

1 1000

]
.

(This is actually an example that needs rescaling before elimination.)

11. Explain why partial pivoting produces multipliers `i j in L that satisfy |`i j| ≤ 1. Can
you construct a 3 by 3 example with all |ai j| ≤ 1 whose last pivot is 4? This is the
worst possible, since each entry is at most doubled when |`i j| ≤ 1.

Review Exercises

1.1 (a) Write down the 3 by 3 matrices with entries

ai j = i− j and bi j =
i
j
.
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(b) Compute the products AB and BA and A2.

1.2 For the matrices

A =

[
1 0
2 1

]
and B =

[
1 2
0 1

]
,

compute AB and BA and A−1 and B−1 and (AB)−1.

1.3 Find examp1es of 2 by 2 matrices with a12 = 1
2 for which (a) A2 = I. (b)

A−1 = AT. (c) A2 = A.

1.4 Solve by elimination and back-substitution:

u + w = 4
u + v = 3
u + v + w = 6

and
v + w = 0

u + w = 0
u + v = 6.

1.5 Factor the preceding matrices into A = LU or PA = LU .

1.6 (a) There are sixteen 2 by 2 matrices whose entries are 1s and 0s. How many are
invertible?

(b) (Much harder!) If you put 1s and 0s at random into the entries of a 10 by 10
matrix, is it more likely to be invertible or singular?

1.7 There are sixteen 2 by 2 matrices whose entries are 1s and −1s. How many are
invertible?

1.8 How are the rows of EA related to the rows of A in the following cases?

E =




1 0 0
0 2 0
4 0 1


 or E =

[
1 1 1
0 0 0

]
or E =




0 0 1
0 1 0
1 0 0


 .

1.9 Write down a 2 by 2 system with infinitely many solutions.

1.10 Find inverses if they exist, by inspection or by Gauss-Jordan:

A =




1 0 1
1 1 0
0 1 1


 and A =




2 1 0
1 2 1
0 1 2


 and A =




1 1 −2
1 −2 1
−2 1 1




1.11 If E is 2 by 2 and it adds the first equation to the second, what are E2 and E8 and
8E?

1.12 True or false, with reason if true or counterexample if false:

(1) If A is invertible and its rows are in reverse order in B, then B is invertible.
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(2) If A and B are symmetric then AB is symmetric.

(3) If A and B are invertible then BA is invertible.

(4) Every nonsingular matrix can be factored into the product A = LU of a lower
triangular L and an upper triangular U .

1.13 Solve Ax = b by solving the triangular systems Lc = b and Ux = c:

A = LU =




1 0 0
4 1 0
1 0 1







2 2 4
0 1 3
0 0 1


 , b =




0
0
1


 .

What part of A−1 have you found, with this particular b?

1.14 If possible, find 3 by 3 matrices B such that

(1) BA = 2A for every A.

(2) BA = 2B for every A.

(3) BA has the first and last rows of A reversed.

(4) BA has the first and last columns of A reversed.

1.15 Find the value for c in the following n by n inverse:

if A =




n −1 · −1
−1 n · −1
· · · −1
−1 −1 −1 n


 then A−1 =

1
n+1




c 1 · 1
1 c · 1
· · · 1
1 1 1 c


 .

1.16 For which values of k does

kx + y = 1
x + ky = 1

have no solution, one solution, or infinitely many solutions?

1.17 Find the symmetric factorization A = LDLT of

A =




1 2 0
2 6 4
0 4 11


 and A =

[
a b
b c

]
.

1.18 Suppose A is the 4 by 4 identity matrix except for a vector v in column 2:

A =




1 v1 0 0
0 v2 0 0
0 v3 1 0
0 v4 0 1


 .
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(a) Factor A into LU , assuming v2 6= 0.

(b) Find A−1, which has the same form as A.

1.19 Solve by elimination, or show that there is no solution:

u + v + w = 0
u + 2v + 3w = 0

3u + 5v + 7w = 1
and

u + v + w = 0
u + u + 3w = 0

3u + 5v + 7w = 1.

1.20 The n by n permutation matrices are an important example of a “group.” If you
multiply them you stay inside the group; they have inverses in the group; the identity
is in the group; and the law P1(P2P3) = (P1P2)P3 is true—because it is true for all
matrices.

(a) How many members belong to the groups of 4 by 4 and n by n permutation
matrices?

(b) Find a power k so that all 3 by 3 permutation matrices satisfy Pk = I.

1.21 Describe the rows of DA and the columns of AD if D = [2 0
0 5 ].

1.22 (a) If A is invertible what is the inverse of AT?

(b) If A is also symmetric what is the transpose of A−1?

(c) Illustrate both formulas when A = [2 1
1 1 ].

1.23 By experiment with n = 2 and n = 3, find
[

2 3
0 0

]n

,

[
2 3
0 1

]n

,

[
2 3
0 1

]−1

.

1.24 Starting with a first plane u+2v−w = 6, find the equation for

(a) the parallel plane through the origin.

(b) a second plane that also contains the points (6,0,0) and (2,2,0).

(c) a third plane that meets the first and second in the point (4,1,0).

1.25 What multiple of row 2 is subtracted from row 3 in forward elimination of A?

A =




1 0 0
2 1 0
0 5 1







1 2 0
0 1 5
0 0 1


 .

How do you know (without multiplying those factors) that A is invertible, symmet-
ric, and tridiagonal? What are its pivots?

1.26 (a) What vector x will make Ax = column 1 of A + 2(column 3), for a 3 by 3 matrix
A?
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(b) Construct a matrix that has column 1 + 2(column 3) = 0. Check that A is
singular (fewer than 3 pivots) and explain why that must be the case.

1.27 True or false, with reason if true and counterexample if false:

(1) If L1U1 = L2U2 (upper triangular U’s with nonzero diagonal, lower triangular
L’s with unit diagonal), then L1 = L2 and U1 = U2. The LU factorization is
unique.

(2) If A2 +A = I then A−1 = A+ I.

(3) If all diagonal entries of A are zero, then A is singular.

1.28 By experiment or the Gauss-Jordan method compute



1 0 0
` 1 0
m 0 1




n

,




1 0 0
` 1 0
m 0 1




−1

,




1 0 0
` 1 0
0 m 1




−1

.

1.29 Write down the 2 by 2 matrices that

(a) reverse the direction of every vector.

(b) project every vector onto the x2 axis.

(c) turn every vector counterclockwise through 90°.

(d) reflect every vector through the 45° line x1 = x2.


