
Introduction

What's the goal of this book?

This book aims to build up enough knowledge about metaprogramming in Lean 4 so you
can be comfortable enough to:

Start building your own meta helpers (defining new Lean notation such as ∑ , building
new Lean commands such as #check , writing tactics such as use , etc.)
Read and discuss metaprogramming APIs like the ones in Lean 4 core and Mathlib4

We by no means intend to provide an exhaustive exploration/explanation of the entire Lean
4 metaprogramming API. We also don't cover the topic of monadic programming in Lean 4.
However, we hope that the examples provided will be simple enough for the reader to
follow and comprehend without a super deep understanding of monadic programming. The
book Functional Programming in Lean is a highly recommended source on that subject.

Book structure

The book is organized in a way to build up enough context for the chapters that cover DSLs
and tactics. Backtracking the pre-requisites for each chapter, the dependency structure is as
follows:

"Tactics" builds on top of "Macros" and "Elaboration"
"DSLs" builds on top of "Elaboration"
"Macros" builds on top of " Syntax "
"Elaboration" builds on top of " Syntax " and " MetaM "
" MetaM " builds on top of "Expressions"

After the chapter on tactics, you find a cheat sheet containing a wrap-up of key concepts and
functions. And after that, there are some chapters with extra content, showing other
applications of metaprogramming in Lean 4. Most chapters contain exercises at the end of
the chapter - and at the end of the book you will have full solutions to those exercises.

The rest of this chapter is a gentle introduction to what metaprogramming is, offering some
small examples to serve as appetizers for what the book shall cover.

Note: the code snippets aren't self-contained. They are supposed to be run/read
incrementally, starting from the beginning of each chapter.
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What does it mean to be in meta?

When we write code in most programming languages such as Python, C, Java or Scala, we
usually have to stick to a pre-defined syntax otherwise the compiler or the interpreter won't
be able to figure out what we're trying to say. In Lean, that would be defining an inductive
type, implementing a function, proving a theorem, etc. The compiler, then, has to parse the
code, build an AST (abstract syntax tree) and elaborate its syntax nodes into terms that can
be processed by the language kernel. We say that such activities performed by the compiler
are done in the meta-level, which will be studied throughout the book. And we also say that
the common usage of the language syntax is done in the object-level.

In most systems, the meta-level activities are done in a different language to the one that we
use to write code. In Isabelle, the meta-level language is ML and Scala. In Coq, it's OCaml. In
Agda, it's Haskell. In Lean 4, the meta code is mostly written in Lean itself, with a few
components written in C++.

One cool thing about Lean, though, is that it allows us to define custom syntax nodes and
implement meta-level routines to elaborate them in the very same development
environment that we use to perform object-level activities. So for example, one can write
notation to instantiate a term of a certain type and use it right away, in the same file! This
concept is generally called reflection. We can say that, in Lean, the meta-level is reflected to
the object-level.

If you have done some metaprogramming in languages such as Ruby, Python or Javascript, it
probably took the form of making use of predefined metaprogramming methods to define
something on the fly. For example, in Ruby you can use Class.new  and define_method  to
define a new class and its new method (with new code inside!) on the fly, as your program is
executing.

We don't usually need to define new commands or tactics "on the fly" in Lean, but spiritually
similar feats are possible with Lean metaprogramming and are equally straightforward, e.g.
you can define a new Lean command using a simple one-liner elab "#help" : command => 
do ...normal Lean code... .

In Lean, however, we will frequently want to directly manipulate Lean's CST (Concrete Syntax
Tree, Lean's Syntax  type) and Lean's AST (Abstract Syntax Tree, Lean's Expr  type) instead
of using "normal Lean code", especially when we're writing tactics. So Lean
metaprogramming is more challenging to master - a large chunk of this book is contributed
to studying these types and how we can manipulate them.

Metaprogramming examples

Next, we introduce several examples of Lean metaprogramming, so that you start getting a
taste for what metaprogramming in Lean is, and what it will enable you to achieve. These
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examples are meant as mere illustrations - do not worry if you don't understand the details
for now.

Introducing notation (defining new syntax)

Often one wants to introduce new notation, for example one more suitable for (a branch of)
mathematics. For instance, in mathematics one would write the function adding 2  to a
natural number as x : Nat ↦ x + 2  or simply x ↦ x + 2  if the domain can be inferred to
be the natural numbers. The corresponding lean definitions fun x : Nat => x + 2  and
fun x => x + 2  use =>  which in mathematics means implication, so may be confusing to

some.

We can introduce notation using a macro  which transforms our syntax to Lean's syntax (or
syntax we previously defined). Here we introduce the ↦  notation for functions.

Building a command

Suppose we want to build a helper command #assertType  which tells whether a given term
is of a certain type. The usage will be:

#assertType <term> : <type>

Let's see the code:

import Lean

macro x:ident ":" t:term " ↦ " y:term : term => do
  `(fun $x : $t => $y)

#eval (x : Nat ↦ x + 2) 2 -- 4

macro x:ident " ↦ " y:term : term => do
  `(fun $x  => $y)

#eval (x ↦  x + 2) 2 -- 4
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We started by using elab  to define a command  syntax. When parsed by the compiler, it will
trigger the incoming computation.

At this point, the code should be running in the CommandElabM  monad. We then use
liftTermElabM  to access the TermElabM  monad, which allows us to use elabType  and
elabTermEnsuringType  to build expressions out of the syntax nodes typeStx  and
termStx .

First, we elaborate the expected type tp : Expr , then we use it to elaborate the term
expression. The term should have the type tp  otherwise an error will be thrown. We then
discard the resulting term expression, since it doesn't matter to us here - we're calling
elabTermEnsuringType  as a sanity check.

We also add synthesizeSyntheticMVarsNoPostponing , which forces Lean to elaborate
metavariables right away. Without that line, #assertType [] : ?_  would result in success .

If no error is thrown until now then the elaboration succeeded and we can use logInfo  to
output "success". If, instead, some error is caught, then we use throwError  with the
appropriate message.

Building a DSL and a syntax for it

Let's parse a classic grammar, the grammar of arithmetic expressions with addition,
multiplication, naturals, and variables. We'll define an AST (Abstract Syntax Tree) to encode
the data of our expressions, and use operators +  and *  to denote building an arithmetic
AST. Here's the AST that we will be parsing:

elab "#assertType " termStx:term " : " typeStx:term : command =>
  open Lean Lean.Elab Command Term in
  liftTermElabM
    try
      let tp ← elabType typeStx
      discard $ elabTermEnsuringType termStx tp
      synthesizeSyntheticMVarsNoPostponing
      logInfo "success"
    catch | _ => throwError "failure"

/-- info: success -/
#assertType 5  : Nat

/-- error: failure -/
#assertType [] : Nat

inductive Arith : Type where
  | add : Arith → Arith → Arith -- e + f
  | mul : Arith → Arith → Arith -- e * f
  | nat : Nat → Arith           -- constant
  | var : String → Arith        -- variable
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Now we declare a syntax category to describe the grammar that we will be parsing. Notice
that we control the precedence of +  and *  by giving a lower precedence weight to the +
syntax than to the *  syntax indicating that multiplication binds tighter than addition (the
higher the number, the tighter the binding). This allows us to declare precedence when
defining new syntax.

Writing our own tactic

Let's create a tactic that adds a new hypothesis to the context with a given name and
postpones the need for its proof to the very end. It's similar to the suffices  tactic from
Lean 3, except that we want to make sure that the new goal goes to the bottom of the goal
list.

It's going to be called suppose  and is used like this:

declare_syntax_cat arith
syntax num                        : arith -- nat for Arith.nat
syntax str                        : arith -- strings for Arith.var
syntax:50 arith:50 " + " arith:51 : arith -- Arith.add
syntax:60 arith:60 " * " arith:61 : arith -- Arith.mul
syntax " ( " arith " ) "          : arith -- bracketed expressions

-- Auxiliary notation for translating `arith` into `term`
syntax " ⟪ " arith " ⟫ " : term

-- Our macro rules perform the "obvious" translation:
macro_rules
  | `(⟪ $s:str ⟫)              => `(Arith.var $s)
  | `(⟪ $num:num ⟫)            => `(Arith.nat $num)
  | `(⟪ $x:arith + $y:arith ⟫) => `(Arith.add ⟪ $x ⟫ ⟪ $y ⟫)
  | `(⟪ $x:arith * $y:arith ⟫) => `(Arith.mul ⟪ $x ⟫ ⟪ $y ⟫)
  | `(⟪ ( $x ) ⟫)              => `( ⟪ $x ⟫ )

#check ⟪ "x" * "y" ⟫
-- Arith.mul (Arith.var "x") (Arith.var "y") : Arith

#check ⟪ "x" + "y" ⟫
-- Arith.add (Arith.var "x") (Arith.var "y") : Arith

#check ⟪ "x" + 20 ⟫
-- Arith.add (Arith.var "x") (Arith.nat 20) : Arith

#check ⟪ "x" + "y" * "z" ⟫ -- precedence
-- Arith.add (Arith.var "x") (Arith.mul (Arith.var "y") (Arith.var "z")) : 
Arith

#check ⟪ "x" * "y" + "z" ⟫ -- precedence
-- Arith.add (Arith.mul (Arith.var "x") (Arith.var "y")) (Arith.var "z") : 
Arith

#check ⟪ ("x" + "y") * "z" ⟫ -- brackets
-- Arith.mul (Arith.add (Arith.var "x") (Arith.var "y")) (Arith.var "z")
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suppose <name> : <type>

So let's see the code:

We start by storing the main goal in mvarId  and using it as a parameter of
withMVarContext  to make sure that our elaborations will work with types that depend on

other variables in the context.

This time we're using mkFreshExprMVar  to create a metavariable expression for the proof of
t , which we can introduce to the context using intro1P  and assert .

To require the proof of the new hypothesis as a goal, we call replaceMainGoal  passing a list
with p.mvarId!  in the head. And then we can use the rotate_left  tactic to move the
recently added top goal to the bottom.

open Lean Meta Elab Tactic Term in
elab "suppose " n:ident " : " t:term : tactic => do
  let n : Name := n.getId
  let mvarId ← getMainGoal
  mvarId.withContext do
    let t ← elabType t
    let p ← mkFreshExprMVar t MetavarKind.syntheticOpaque n
    let (_, mvarIdNew) ← MVarId.intro1P $ ← mvarId.assert n t p
    replaceMainGoal [p.mvarId!, mvarIdNew]
  evalTactic $ ← `(tactic|rotate_left)

example : 0 + a = a := by
  suppose add_comm : 0 + a = a + 0
  rw [add_comm]; rfl     -- closes the initial main goal
  rw [Nat.zero_add]; rfl -- proves `add_comm`
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Overview
In this chapter, we will provide an overview of the primary steps involved in the Lean
compilation process, including parsing, elaboration, and evaluation. As alluded to in the
introduction, metaprogramming in Lean involves plunging into the heart of this process. We
will explore the fundamental objects involved, Expr  and Syntax , learn what they signify,
and discover how one can be turned into another (and back!).

In the next chapters, you will learn the particulars. As you read on, you might want to return
to this chapter occasionally to remind yourself of how it all fits together.

Connection to compilers

Metaprogramming in Lean is deeply connected to the compilation steps - parsing, syntactic
analysis, transformation, and code generation.

Lean 4 is a reimplementation of the Lean theorem prover in Lean itself. The new
compiler produces C code, and users can now implement efficient proof automation in
Lean, compile it into efficient C code, and load it as a plugin. In Lean 4, users can access
all internal data structures used to implement Lean by merely importing the Lean
package.

Leonardo de Moura, Sebastian Ullrich (The Lean 4 Theorem Prover and Programming
Language)

The Lean compilation process can be summed up in the following diagram:

First, we will start with Lean code as a string. Then we'll see it become a Syntax  object, and
then an Expr  object. Then finally we can execute it.

So, the compiler sees a string of Lean code, say "let a := 2" , and the following process
unfolds:

1. apply a relevant syntax rule ( "let a := 2"  ➤ Syntax )
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During the parsing step, Lean tries to match a string of Lean code to one of the
declared syntax rules in order to turn that string into a Syntax  object. Syntax rules
are basically glorified regular expressions - when you write a Lean string that matches
a certain syntax rule's regex, that rule will be used to handle subsequent steps.

2. apply all macros in a loop ( Syntax  ➤ Syntax )

During the elaboration step, each macro simply turns the existing Syntax  object into
some new Syntax  object. Then, the new Syntax  is processed similarly (repeating
steps 1 and 2), until there are no more macros to apply.

3. apply a single elab ( Syntax  ➤ Expr )

Finally, it's time to infuse your syntax with meaning - Lean finds an elab that's matched
to the appropriate syntax rule by the name  argument (syntax rules, macros and
elabs all have this argument, and they must match). The newfound elab returns a
particular Expr  object. This completes the elaboration step.

The expression ( Expr ) is then converted into executable code during the evaluation step -
we don't have to specify that in any way, the Lean compiler will handle doing so for us.

Elaboration and delaboration

Elaboration is an overloaded term in Lean. For example, you might encounter the following
usage of the word "elaboration", wherein the intention is "taking a partially-specified
expression and inferring what is left implicit":

When you enter an expression like λ x y z, f (x + y) z  for Lean to process, you
are leaving information implicit. For example, the types of x , y , and z  have to be
inferred from the context, the notation +  may be overloaded, and there may be
implicit arguments to f  that need to be filled in as well.

The process of taking a partially-specified expression and inferring what is left implicit is
known as elaboration. Lean's elaboration algorithm is powerful, but at the same
time, subtle and complex. Working in a system of dependent type theory requires
knowing what sorts of information the elaborator can reliably infer, as well as knowing
how to respond to error messages that are raised when the elaborator fails. To that
end, it is helpful to have a general idea of how Lean's elaborator works.

When Lean is parsing an expression, it first enters a preprocessing phase. First, Lean
inserts "holes" for implicit arguments. If term t has type Π {x : A}, P x , then t is
replaced by @t _  everywhere. Then, the holes — either the ones inserted in the
previous step or the ones explicitly written by the user — in a term are instantiated by
metavariables ?M1 , ?M2 , ?M3 , .... Each overloaded notation is associated with a list of
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choices, that is, the possible interpretations. Similarly, Lean tries to detect the points
where a coercion may need to be inserted in an application s t , to make the inferred
type of t match the argument type of s . These become choice points too. If one
possible outcome of the elaboration procedure is that no coercion is needed, then one
of the choices on the list is the identity.

(Theorem Proving in Lean 2)

We, on the other hand, just defined elaboration as the process of turning Syntax  objects
into Expr  objects.

These definitions are not mutually exclusive - elaboration is, indeed, the transformation of
Syntax  into Expr s - it's just so that for this transformation to happen we need a lot of

trickery - we need to infer implicit arguments, instantiate metavariables, perform unification,
resolve identifiers, etc. etc. - and these actions can be referred to as "elaboration" on their
own; similarly to how "checking if you turned off the lights in your apartment" (metavariable
instantiation) can be referred to as "going to school" (elaboration).

There also exists a process opposite to elaboration in Lean - it's called, appropriately
enough, delaboration. During delaboration, an Expr  is turned into a Syntax  object; and
then the formatter turns it into a Format  object, which can be displayed in Lean's infoview.
Every time you log something to the screen, or see some output upon hovering over
#check , it's the work of the delaborator.

Throughout this book you will see references to the elaborator; and in the "Extra: Pretty
Printing" chapter you can read about delaborators.

3 essential commands and their syntax sugars

Now, when you're reading Lean source code, you will see 11(+?) commands specifying the
parsing/elaboration/evaluation process:
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In the image above, you see notation , prefix , infix , and postfix  - all of these are
combinations of syntax  and @[macro xxx] def ourMacro , just like macro . These
commands differ from macro  in that you can only define syntax of a particular form with
them.

All of these commands are used in Lean and Mathlib source code extensively, so it's well
worth memorizing them. Most of them are syntax sugars, however, and you can understand
their behaviour by studying the behaviour of the following 3 low-level commands: syntax  (a
syntax rule), @[macro xxx] def ourMacro  (a macro), and @[command_elab xxx] def 
ourElab  (an elab).

To give a more concrete example, imagine we're implementing a #help  command, that can
also be written as #h . Then we can write our syntax rule, macro, and elab as follows:
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This image is not supposed to be read row by row - it's perfectly fine to use macro_rules
together with elab . Suppose, however, that we used the 3 low-level commands to specify
our #help  command (the first row). After we've done this, we can write #help "#explode"
or #h "#explode" , both of which will output a rather parsimonious documentation for the
#explode  command - "Displays proof in a Fitch table".

If we write #h "#explode" , Lean will travel the syntax (name := shortcut_h)  ➤ @[macro 
shortcut_h] def helpMacro  ➤ syntax (name := default_h)  ➤ @[command_elab 
default_h] def helpElab  route.
If we write #help "#explode" , Lean will travel the syntax (name := default_h)  ➤
@[command_elab default_h] def helpElab  route.

Note how the matching between syntax rules, macros, and elabs is done via the name
argument. If we used macro_rules  or other syntax sugars, Lean would figure out the
appropriate name  arguments on its own.

If we were defining something other than a command, instead of : command  we could write
: term , or : tactic , or any other syntax category.

The elab function can also be of different types - the CommandElab  we used to implement
#help  - but also TermElab  and Tactic :

TermElab  stands for Syntax → Option Expr → TermElabM Expr, so the elab function
is expected to return the Expr object.
CommandElab  stands for Syntax → CommandElabM Unit, so it shouldn't return

anything.
Tactic  stands for Syntax → TacticM Unit, so it shouldn't return anything either.

This corresponds to our intuitive understanding of terms, commands and tactics in Lean -
terms return a particular value upon execution, commands modify the environment or print
something out, and tactics modify the proof state.
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Order of execution: syntax rule, macro, elab

We have hinted at the flow of execution of these three essential commands here and there,
however let's lay it out explicitly. The order of execution follows the following pseudocodey
template: syntax (macro; syntax)* elab .

Consider the following example.

The process is as follows:

match appropriate syntax  rule (happens to have name := xxx ) ➤
apply @[macro xxx]  ➤

match appropriate syntax  rule (happens to have name := yyy ) ➤
apply @[macro yyy]  ➤

match appropriate syntax  rule (happens to have name := zzz ) ➤
can't find any macros with name zzz  to apply,
so apply @[command_elab zzz] . 🎉.

The behaviour of syntax sugars ( elab , macro , etc.) can be understood from these first
principles.

import Lean
open Lean Elab Command

syntax (name := xxx) "red" : command
syntax (name := yyy) "green" : command
syntax (name := zzz) "blue" : command

@[macro xxx] def redMacro : Macro := λ stx =>
  match stx with
  | _ => `(green)

@[macro yyy] def greenMacro : Macro := λ stx =>
  match stx with
  | _ => `(blue)

@[command_elab zzz] def blueElab : CommandElab := λ stx =>
  Lean.logInfo "finally, blue!"

red -- finally, blue!
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Manual conversions between Syntax/Expr/executable-
code

Lean will execute the aforementioned parsing/elaboration/evaluation steps for you
automatically if you use syntax , macro  and elab  commands, however, when you're
writing your tactics, you will also frequently need to perform these transitions manually. You
can use the following functions for that:

Note how all functions that let us turn Syntax  into Expr  start with "elab", short for
"elaboration"; and all functions that let us turn Expr  (or Syntax ) into actual code  start
with "eval", short for "evaluation".

Assigning meaning: macro VS elaboration?

In principle, you can do with a macro  (almost?) anything you can do with the elab  function.
Just write what you would have in the body of your elab  as a syntax within macro .
However, the rule of thumb here is to only use macro s when the conversion is simple and
truly feels elementary to the point of aliasing. As Henrik Böving puts it: "as soon as types or
control flow is involved a macro is probably not reasonable anymore" (Zulip thread).

So - use macro s for creating syntax sugars, notations, and shortcuts, and prefer elab s for
writing out code with some programming logic, even if it's potentially implementable in a
macro .

Additional comments

Finally - some notes that should clarify a few things as you read the coming chapters.
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Printing Messages

In the #assertType  example, we used logInfo  to make our command print something. If,
instead, we just want to perform a quick debug, we can use dbg_trace .

They behave a bit differently though, as we can see below:

Type correctness

Since the objects defined in the meta-level are not the ones we're most interested in proving
theorems about, it can sometimes be overly tedious to prove that they are type correct. For
example, we don't care about proving that a recursive function to traverse an expression is
well-founded. Thus, we can use the partial  keyword if we're convinced that our function
terminates. In the worst-case scenario, our function gets stuck in a loop, causing the Lean
server to crash in VSCode, but the soundness of the underlying type theory implemented in
the kernel isn't affected.

elab "traces" : tactic => do
  let array := List.replicate 2 (List.range 3)
  Lean.logInfo m!"logInfo: {array}"
  dbg_trace f!"dbg_trace: {array}"

example : True := by -- `example` is underlined in blue, outputting:
                     -- dbg_trace: [[0, 1, 2], [0, 1, 2]]
  traces -- now `traces` is underlined in blue, outputting
         -- logInfo: [[0, 1, 2], [0, 1, 2]]
  trivial
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Expressions
Expressions (terms of type Expr ) are an abstract syntax tree for Lean programs. This means
that each term which can be written in Lean has a corresponding Expr . For example, the
application f e  is represented by the expression Expr.app ⟦f⟧ ⟦e⟧ , where ⟦f⟧  is a
representation of f  and ⟦e⟧  a representation of e . Similarly, the term Nat  is represented
by the expression Expr.const `Nat [] . (The backtick and empty list are discussed below.)

The ultimate purpose of a Lean tactic block is to generate a term which serves as a proof of
the theorem we want to prove. Thus, the purpose of a tactic is to produce (part of) an Expr
of the right type. Much metaprogramming therefore comes down to manipulating
expressions: constructing new ones and taking apart existing ones.

Once a tactic block is finished, the Expr  is sent to the kernel, which checks whether it is
well-typed and whether it really has the type claimed by the theorem. As a result, tactic bugs
are not fatal: if you make a mistake, the kernel will ultimately catch it. However, many
internal Lean functions also assume that expressions are well-typed, so you may crash Lean
before the expression ever reaches the kernel. To avoid this, Lean provides many functions
which help with the manipulation of expressions. This chapter and the next survey the most
important ones.

Let's get concrete and look at the Expr  type:

What is each of these constructors doing?

bvar  is a bound variable. For example, the x  in fun x => x + 2  or ∑ x, x² . This is
any occurrence of a variable in an expression where there is a binder above it. Why is

import Lean

namespace Playground

inductive Expr where
  | bvar    : Nat → Expr                              -- bound variables
  | fvar    : FVarId → Expr                           -- free variables
  | mvar    : MVarId → Expr                           -- meta variables
  | sort    : Level → Expr                            -- Sort
  | const   : Name → List Level → Expr                -- constants
  | app     : Expr → Expr → Expr                      -- application
  | lam     : Name → Expr → Expr → BinderInfo → Expr  -- lambda abstraction
  | forallE : Name → Expr → Expr → BinderInfo → Expr  -- (dependent) arrow
  | letE    : Name → Expr → Expr → Expr → Bool → Expr -- let expressions
  -- less essential constructors:
  | lit     : Literal → Expr                          -- literals
  | mdata   : MData → Expr → Expr                     -- metadata
  | proj    : Name → Nat → Expr → Expr                -- projection

end Playground
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the argument a Nat ? This is called a de Bruijn index and will be explained later. You
can figure out the type of a bound variable by looking at its binder, since the binder
always has the type information for it.
fvar  is a free variable. These are variables which are not bound by a binder. An

example is x  in x + 2 . Note that you can't just look at a free variable x  and tell what
its type is, there needs to be a context which contains a declaration for x  and its type.
A free variable has an ID that tells you where to look for it in a LocalContext . In Lean
3, free variables were called "local constants" or "locals".
mvar  is a metavariable. There will be much more on these later, but you can think of

it as a placeholder or a 'hole' in an expression that needs to be filled at a later point.
sort  is used for Type u , Prop  etc.
const  is a constant that has been defined earlier in the Lean document.
app  is a function application. Multiple arguments are done using partial application: f 
x y ↝ app (app f x) y .
lam n t b  is a lambda expression ( fun ($n : $t) => $b ). The b  argument is called

the body. Note that you have to give the type of the variable you are binding.
forallE n t b  is a dependent arrow expression ( ($n : $t) → $b ). This is also

sometimes called a Π-type or Π-expression and is often written ∀ $n : $t, $b . Note
that the non-dependent arrow α → β  is a special case of (a : α) → β  where β
doesn't depend on a . The E  on the end of forallE  is to distinguish it from the
forall  keyword.
letE n t v b  is a let binder ( let ($n : $t) := $v in $b ).
lit  is a literal, this is a number or string literal like 4  or "hello world" . Literals help

with performance: we don't want to represent the expression (10000 : Nat)  as
Nat.succ $ ... $ Nat.succ Nat.zero .
mdata  is just a way of storing extra information on expressions that might be useful,

without changing the nature of the expression.
proj  is for projection. Suppose you have a structure such as p : α × β , rather than

storing the projection π₁ p  as app π₁ p , it is expressed as proj Prod 0 p . This is for
efficiency reasons ([todo] find link to docstring explaining this).

You've probably noticed that you can write many Lean programs which do not have an
obvious corresponding Expr . For example, what about match  statements, do  blocks or by
blocks? These constructs, and many more, must indeed first be translated into expressions.
The part of Lean which performs this (substantial) task is called the elaborator and is
discussed in its own chapter. The benefit of this setup is that once the translation to Expr  is
done, we have a relatively simple structure to work with. (The downside is that going back
from Expr  to a high-level Lean program can be challenging.)

The elaborator also fills in any implicit or typeclass instance arguments which you may have
omitted from your Lean program. Thus, at the Expr  level, constants are always applied to
all their arguments, implicit or not. This is both a blessing (because you get a lot of
information which is not obvious from the source code) and a curse (because when you
build an Expr , you must supply any implicit or instance arguments yourself).
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De Bruijn Indexes

Consider the following lambda expression (λ f x => f x x) (λ x y => x + y) 5 , we
have to be very careful when we reduce this, because we get a clash in the variable x .

To avoid variable name-clash carnage, Expr s use a nifty trick called de Bruijn indexes. In
de Bruijn indexing, each variable bound by a lam  or a forallE  is converted into a number
#n . The number says how many binders up the Expr  tree we should look to find the binder

which binds this variable. So our above example would become (putting wildcards _  in the
type arguments for now for brevity): app (app (lam `f _ (lam `x _ (app (app #1 #0) 
#0))) (lam `x _ (lam `y _ (app (app plus #1) #0)))) five  Now we don't need to
rename variables when we perform β-reduction. We also really easily check if two Expr s
containing bound expressions are equal. This is why the signature of the bvar  case is Nat → 
Expr  and not Name → Expr .

If a de Bruijn index is too large for the number of binders preceding it, we say it is a loose
bvar ; otherwise we say it is bound. For example, in the expression lam `x _ (app #0 #1)

the bvar  #0  is bound by the preceding binder and #1  is loose. The fact that Lean calls all
de Bruijn indexes bvar s ("bound variables") points to an important invariant: outside of
some very low-level functions, Lean expects that expressions do not contain any loose
bvar s. Instead, whenever we would be tempted to introduce a loose bvar , we immediately

convert it into an fvar  ("free variable"). Precisely how that works is discussed in the next
chapter.

If there are no loose bvar s in an expression, we say that the expression is closed. The
process of replacing all instances of a loose bvar  with an Expr  is called instantiation.
Going the other way is called abstraction.

If you are familiar with the standard terminology around variables, Lean's terminology may
be confusing, so here's a map: Lean's "bvars" are usually called just "variables"; Lean's
"loose" is usually called "free"; and Lean's "fvars" might be called "local hypotheses".

Universe Levels

Some expressions involve universe levels, represented by the Lean.Level  type. A universe
level is a natural number, a universe parameter (introduced with a universe  declaration), a
universe metavariable or the maximum of two universes. They are relevant for two kinds of
expressions.

First, sorts are represented by Expr.sort u , where u  is a Level . Prop  is sort 
Level.zero ; Type  is sort (Level.succ Level.zero) .
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Second, universe-polymorphic constants have universe arguments. A universe-polymorphic
constant is one whose type contains universe parameters. For example, the List.map
function is universe-polymorphic, as the pp.universes  pretty-printing option shows:

The .{u_1,u_2}  suffix after List.map  means that List.map  has two universe arguments,
u_1  and u_2 . The .{u_1}  suffix after List  (which is itself a universe-polymorphic

constant) means that List  is applied to the universe argument u_1 , and similar for .
{u_2} .

In fact, whenever you use a universe-polymorphic constant, you must apply it to the correct
universe arguments. This application is represented by the List Level  argument of
Expr.const . When we write regular Lean code, Lean infers the universes automatically, so

we do not need think about them much. But when we construct Expr s, we must be careful
to apply each universe-polymorphic constant to the right universe arguments.

Constructing Expressions

The simplest expressions we can construct are constants. We use the const  constructor
and give it a name and a list of universe levels. Most of our examples only involve non-
universe-polymorphic constants, in which case the list is empty.

We also show a second form where we write the name with double backticks. This checks
that the name in fact refers to a defined constant, which is useful to avoid typos.

The double-backtick variant also resolves the given name, making it fully-qualified. To
illustrate this mechanism, here are two further examples. The first expression, z₁ , is
unsafe: if we use it in a context where the Nat  namespace is not open, Lean will complain
that there is no constant called zero  in the environment. In contrast, the second
expression, z₂ , contains the fully-qualified name Nat.zero  and does not have this
problem.

set_option pp.universes true in
#check @List.map

open Lean

def z' := Expr.const `Nat.zero []
#eval z' -- Lean.Expr.const `Nat.zero []

def z := Expr.const ``Nat.zero []
#eval z -- Lean.Expr.const `Nat.zero []
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The next class of expressions we consider are function applications. These can be built using
the app  constructor, with the first argument being an expression for the function and the
second being an expression for the argument.

Here are two examples. The first is simply a constant applied to another. The second is a
recursive definition giving an expression as a function of a natural number.

Next we use the variant mkAppN  which allows application with multiple arguments.

As you may have noticed, we didn't show #eval  outputs for the two last functions. That's
because the resulting expressions can grow so large that it's hard to make sense of them.

We next use the constructor lam  to construct a simple function which takes any natural
number x  and returns Nat.zero . The argument BinderInfo.default  says that x  is an
explicit argument (rather than an implicit or typeclass argument).

As a more elaborate example which also involves universe levels, here is the Expr  that
represents List.map (λ x => Nat.add x 1) []  (broken up into several definitions to make
it somewhat readable):

open Nat

def z₁ := Expr.const `zero []
#eval z₁ -- Lean.Expr.const `zero []

def z₂ := Expr.const ``zero []
#eval z₂ -- Lean.Expr.const `Nat.zero []

def one := Expr.app (.const ``Nat.succ []) z
#eval one
-- Lean.Expr.app (Lean.Expr.const `Nat.succ []) (Lean.Expr.const `Nat.zero [])

def natExpr: Nat → Expr 
| 0     => z
| n + 1 => .app (.const ``Nat.succ []) (natExpr n)

def sumExpr : Nat → Nat → Expr 
| n, m => mkAppN (.const ``Nat.add []) #[natExpr n, natExpr m]

def constZero : Expr := 
  .lam `x (.const ``Nat []) (.const ``Nat.zero []) BinderInfo.default

#eval constZero
-- Lean.Expr.lam `x (Lean.Expr.const `Nat []) (Lean.Expr.const `Nat.zero [])
--   (Lean.BinderInfo.default)
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With a little trick (more about which in the Elaboration chapter), we can turn our Expr  into a
Lean term, which allows us to inspect it more easily.

In the next chapter we explore the MetaM  monad, which, among many other things, allows
us to more conveniently construct and destruct larger expressions.

Exercises

1. Create expression 1 + 2  with Expr.app .
2. Create expression 1 + 2  with Lean.mkAppN .
3. Create expression fun x => 1 + x .
4. [De Bruijn Indexes] Create expression fun a, fun b, fun c, (b * a) + c .
5. Create expression fun x y => x + y .
6. Create expression fun x, String.append "hello, " x .
7. Create expression ∀ x : Prop, x ∧ x .
8. Create expression Nat → String .
9. Create expression fun (p : Prop) => (λ hP : p => hP) .

10. [Universe levels] Create expression Type 6 .

def nat : Expr := .const ``Nat []

def addOne : Expr :=
  .lam `x nat
    (mkAppN (.const ``Nat.add []) #[.bvar 0, mkNatLit 1])
    BinderInfo.default

def mapAddOneNil : Expr :=
  mkAppN (.const ``List.map [levelOne, levelOne])
    #[nat, nat, addOne, .app (.const ``List.nil [levelOne]) nat]

elab "mapAddOneNil" : term => return mapAddOneNil

#check mapAddOneNil
-- List.map (fun x => Nat.add x 1) [] : List Nat

set_option pp.universes true in
set_option pp.explicit true in
#check mapAddOneNil
-- @List.map.{1, 1} Nat Nat (fun x => Nat.add x 1) (@List.nil.{1} Nat) : List.
{1} Nat

#reduce mapAddOneNil
-- []
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MetaM
The Lean 4 metaprogramming API is organised around a small zoo of monads. The four
main ones are:

CoreM  gives access to the environment, i.e. the set of things that have been declared or
imported at the current point in the program.
MetaM  gives access to the metavariable context, i.e. the set of metavariables that are

currently declared and the values assigned to them (if any).
TermElabM  gives access to various information used during elaboration.
TacticM  gives access to the list of current goals.

These monads extend each other, so a MetaM  operation also has access to the environment
and a TermElabM  computation can use metavariables. There are also other monads which
do not neatly fit into this hierarchy, e.g. CommandElabM  extends MetaM  but neither extends
nor is extended by TermElabM .

This chapter demonstrates a number of useful operations in the MetaM  monad. MetaM  is of
particular importance because it allows us to give meaning to every expression: the
environment (from CoreM ) gives meaning to constants like Nat.zero  or List.map  and the
metavariable context gives meaning to both metavariables and local hypotheses.

Metavariables

Overview

The 'Meta' in MetaM  refers to metavariables, so we should talk about these first. Lean users
do not usually interact much with metavariables -- at least not consciously -- but they are
used all over the place in metaprograms. There are two ways to view them: as holes in an
expression or as goals.

Take the goal perspective first. When we prove things in Lean, we always operate on goals,
such as

import Lean

open Lean Lean.Expr Lean.Meta

n m : Nat
⊢ n + m = m + n
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These goals are internally represented by metavariables. Accordingly, each metavariable has
a local context containing hypotheses (here [n : Nat, m : Nat] ) and a target type (here n + 
m = m + n ). Metavariables also have a unique name, say m , and we usually render them as
?m .

To close a goal, we must give an expression e  of the target type. The expression may
contain fvars from the metavariable's local context, but no others. Internally, closing a goal
in this way corresponds to assigning the metavariable; we write ?m := e  for this
assignment.

The second, complementary view of metavariables is that they represent holes in an
expression. For instance, an application of Eq.trans  may generate two goals which look like
this:

Here ?x  is another metavariable -- a hole in the target types of both goals, to be filled in
later during the proof. The type of ?x  is Nat  and its local context is [n : Nat, m : Nat] .
Now, if we solve the first goal by reflexivity, then ?x  must be n , so we assign ?x := n .
Crucially, this also affects the second goal: it is "updated" (not really, as we will see) to have
target n = m . The metavariable ?x  represents the same expression everywhere it occurs.

Tactic Communication via Metavariables

Tactics use metavariables to communicate the current goals. To see how, consider this
simple (and slightly artificial) proof:

After we enter tactic mode, our ultimate goal is to generate an expression of type f (f a) = 
a  which may involve the hypotheses α , a , f  and h . So Lean generates a metavariable ?
m1  with target f (f a) = a  and a local context containing these hypotheses. This
metavariable is passed to the first apply  tactic as the current goal.

The apply  tactic then tries to apply Eq.trans  and succeeds, generating three new
metavariables:

n m : Nat
⊢ n = ?x

n m : Nat
⊢ ?x = m

example {α} (a : α) (f : α → α) (h : ∀ a, f a = a) : f (f a) = a := by
  apply Eq.trans
  apply h
  apply h
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Call these metavariables ?m2 , ?m3  and ?b . The last one, ?b , stands for the intermediate
element of the transitivity proof and occurs in ?m2  and ?m3 . The local contexts of all
metavariables in this proof are the same, so we omit them.

Having created these metavariables, apply  assigns

and reports that ?m2 , ?m3  and ?b  are now the current goals.

At this point the second apply  tactic takes over. It receives ?m2  as the current goal and
applies h  to it. This succeeds and the tactic assigns ?m2 := h (f a) . This assignment
implies that ?b  must be f a , so the tactic also assigns ?b := f a . Assigned metavariables
are not considered open goals, so the only goal that remains is ?m3 .

Now the third apply  comes in. Since ?b  has been assigned, the target of ?m3  is now f a = 
a . Again, the application of h  succeeds and the tactic assigns ?m3 := h a .

At this point, all metavariables are assigned as follows:

Exiting the by  block, Lean constructs the final proof term by taking the assignment of ?m1
and replacing each metavariable with its assignment. This yields

The example also shows how the two views of metavariables -- as holes in an expression or
as goals -- are related: the goals we get are holes in the final proof term.

Basic Operations

Let us make these concepts concrete. When we operate in the MetaM  monad, we have read-
write access to a MetavarContext  structure containing information about the currently

...
⊢ f (f a) = ?b

...
⊢ ?b = a

...
⊢ α

?m1 := @Eq.trans α (f (f a)) ?b a ?m2 ?m3

?m1 := @Eq.trans α (f (f a)) ?b a ?m2 ?m3
?m2 := h (f a)
?m3 := h a
?b  := f a

@Eq.trans α (f (f a)) (f a) a (h (f a)) (h a)
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declared metavariables. Each metavariable is identified by an MVarId  (a unique Name ). To
create a new metavariable, we use Lean.Meta.mkFreshExprMVar  with type

Its arguments are:

type? : the target type of the new metavariable. If none , the target type is Sort ?u ,
where ?u  is a universe level metavariable. (This is a special class of metavariables for
universe levels, distinct from the expression metavariables which we have been calling
simply "metavariables".)
kind : the metavariable kind. See the Metavariable Kinds section (but the default is

usually correct).
userName : the new metavariable's user-facing name. This is what gets printed when

the metavariable appears in a goal. Unlike the MVarId , this name does not need to be
unique.

The returned Expr  is always a metavariable. We can use Lean.Expr.mvarId!  to extract the
MVarId , which is guaranteed to be unique. (Arguably mkFreshExprMVar  should just return

the MVarId .)

The local context of the new metavariable is inherited from the current local context, more
about which in the next section. If you want to give a different local context, use
Lean.Meta.mkFreshExprMVarAt .

Metavariables are initially unassigned. To assign them, use Lean.MVarId.assign  with type

This updates the MetavarContext  with the assignment ?mvarId := val . You must make
sure that mvarId  is not assigned yet (or that the old assignment is definitionally equal to the
new assignment). You must also make sure that the assigned value, val , has the right type.
This means (a) that val  must have the target type of mvarId  and (b) that val  must only
contain fvars from the local context of mvarId .

If you #check Lean.MVarId.assign , you will see that its real type is more general than the
one we showed above: it works in any monad that has access to a MetavarContext . But
MetaM  is by far the most important such monad, so in this chapter, we specialise the types

of assign  and similar functions.

To get information about a declared metavariable, use Lean.MVarId.getDecl . Given an
MVarId , this returns a MetavarDecl  structure. (If no metavariable with the given MVarId  is

declared, the function throws an exception.) The MetavarDecl  contains information about
the metavariable, e.g. its type, local context and user-facing name. This function has some
convenient variants, such as Lean.MVarId.getType .

mkFreshExprMVar (type? : Option Expr) (kind := MetavarKind.natural)
    (userName := Name.anonymous) : MetaM Expr

assign (mvarId : MVarId) (val : Expr) : MetaM Unit
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To get the current assignment of a metavariable (if any), use
Lean.getExprMVarAssignment? . To check whether a metavariable is assigned, use
Lean.MVarId.isAssigned . However, these functions are relatively rarely used in tactic code

because we usually prefer a more powerful operation: Lean.Meta.instantiateMVars  with
type

Given an expression e , instantiateMVars  replaces any assigned metavariable ?m  in e
with its assigned value. Unassigned metavariables remain as they are.

This operation should be used liberally. When we assign a metavariable, existing
expressions containing this metavariable are not immediately updated. This is a problem
when, for example, we match on an expression to check whether it is an equation. Without
instantiateMVars , we might miss the fact that the expression ?m , where ?m  happens to

be assigned to 0 = n , represents an equation. In other words, instantiateMVars  brings
our expressions up to date with the current metavariable state.

Instantiating metavariables requires a full traversal of the input expression, so it can be
somewhat expensive. But if the input expression does not contain any metavariables,
instantiateMVars  is essentially free. Since this is the common case, liberal use of
instantiateMVars  is fine in most situations.

Before we go on, here is a synthetic example demonstrating how the basic metavariable
operations are used. More natural examples appear in the following sections.

instantiateMVars : Expr → MetaM Expr
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Local Contexts

Consider the expression e  which refers to the free variable with unique name h :

#eval show MetaM Unit from do
  -- Create two fresh metavariables of type `Nat`.
  let mvar1 ← mkFreshExprMVar (Expr.const ``Nat []) (userName := `mvar1)
  let mvar2 ← mkFreshExprMVar (Expr.const ``Nat []) (userName := `mvar2)
  -- Create a fresh metavariable of type `Nat → Nat`. The `mkArrow` function
  -- creates a function type.
  let mvar3 ← mkFreshExprMVar (← mkArrow (.const ``Nat []) (.const ``Nat []))
    (userName := `mvar3)

  -- Define a helper function that prints each metavariable.
  let printMVars : MetaM Unit := do
    IO.println s!"  meta1: {← instantiateMVars mvar1}"
    IO.println s!"  meta2: {← instantiateMVars mvar2}"
    IO.println s!"  meta3: {← instantiateMVars mvar3}"

  IO.println "Initially, all metavariables are unassigned:"
  printMVars

  -- Assign `mvar1 : Nat := ?mvar3 ?mvar2`.
  mvar1.mvarId!.assign (.app mvar3 mvar2)
  IO.println "After assigning mvar1:"
  printMVars

  -- Assign `mvar2 : Nat := 0`.
  mvar2.mvarId!.assign (.const ``Nat.zero [])
  IO.println "After assigning mvar2:"
  printMVars

  -- Assign `mvar3 : Nat → Nat := Nat.succ`.
  mvar3.mvarId!.assign (.const ``Nat.succ [])
  IO.println "After assigning mvar3:"
  printMVars
-- Initially, all metavariables are unassigned:
--   meta1: ?_uniq.1
--   meta2: ?_uniq.2
--   meta3: ?_uniq.3
-- After assigning mvar1:
--   meta1: ?_uniq.3 ?_uniq.2
--   meta2: ?_uniq.2
--   meta3: ?_uniq.3
-- After assigning mvar2:
--   meta1: ?_uniq.3 Nat.zero
--   meta2: Nat.zero
--   meta3: ?_uniq.3
-- After assigning mvar3:
--   meta1: Nat.succ Nat.zero
--   meta2: Nat.zero
--   meta3: Nat.succ
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What is the type of this expression? The answer depends on the local context in which e  is
interpreted. One local context may declare that h  is a local hypothesis of type Nat ; another
local context may declare that h  is a local definition with value List.map .

Thus, expressions are only meaningful if they are interpreted in the local context for which
they were intended. And as we saw, each metavariable has its own local context. So in
principle, functions which manipulate expressions should have an additional MVarId
argument specifying the goal in which the expression should be interpreted.

That would be cumbersome, so Lean goes a slightly different route. In MetaM , we always
have access to an ambient LocalContext , obtained with Lean.getLCtx  of type

All operations involving fvars use this ambient local context.

The downside of this setup is that we always need to update the ambient local context to
match the goal we are currently working on. To do this, we use Lean.MVarId.withContext
of type

This function takes a metavariable mvarId  and a MetaM  computation c  and executes c
with the ambient context set to the local context of mvarId . A typical use case looks like
this:

The tactic receives the current goal as the metavariable mvarId  and immediately sets the
current local context. Any operations within the do  block then use the local context of
mvarId .

Once we have the local context properly set, we can manipulate fvars. Like metavariables,
fvars are identified by an FVarId  (a unique Name ). Basic operations include:

Lean.FVarId.getDecl : FVarId → MetaM LocalDecl  retrieves the declaration of a
local hypothesis. As with metavariables, a LocalDecl  contains all information
pertaining to the local hypothesis, e.g. its type and its user-facing name.
Lean.Meta.getLocalDeclFromUserName : Name → MetaM LocalDecl  retrieves the

declaration of the local hypothesis with the given user-facing name. If there are
multiple such hypotheses, the bottommost one is returned. If there is none, an
exception is thrown.

e := .fvar (FVarId.mk `h)

getLCtx : MetaM LocalContext

withContext (mvarId : MVarId) (c : MetaM α) : MetaM α

def someTactic (mvarId : MVarId) ... : ... :=
  mvarId.withContext do
    ...
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We can also iterate over all hypotheses in the local context, using the ForIn  instance of
LocalContext . A typical pattern is this:

The loop iterates over every LocalDecl  in the context. The isImplementationDetail  check
skips local hypotheses which are 'implementation details', meaning they are introduced by
Lean or by tactics for bookkeeping purposes. They are not shown to users and tactics are
expected to ignore them.

At this point, we can build the MetaM  part of an assumption  tactic:

The myAssumption  tactic contains three functions we have not seen before:

Lean.MVarId.checkNotAssigned  checks that a metavariable is not already assigned.
The 'myAssumption' argument is the name of the current tactic. It is used to generate a
nicer error message.
Lean.Meta.isDefEq  checks whether two definitions are definitionally equal. See the

Definitional Equality section.
Lean.LocalDecl.toExpr  is a helper function which constructs the fvar  expression

corresponding to a local hypothesis.

for ldecl in ← getLCtx do
  if ldecl.isImplementationDetail then
    continue
  -- do something with the ldecl

def myAssumption (mvarId : MVarId) : MetaM Bool := do
  -- Check that `mvarId` is not already assigned.
  mvarId.checkNotAssigned `myAssumption
  -- Use the local context of `mvarId`.
  mvarId.withContext do
    -- The target is the type of `mvarId`.
    let target ← mvarId.getType
    -- For each hypothesis in the local context:
    for ldecl in ← getLCtx do
      -- If the hypothesis is an implementation detail, skip it.
      if ldecl.isImplementationDetail then
        continue
      -- If the type of the hypothesis is definitionally equal to the target
      -- type:
      if ← isDefEq ldecl.type target then
        -- Use the local hypothesis to prove the goal.
        mvarId.assign ldecl.toExpr
        -- Stop and return true.
        return true
    -- If we have not found any suitable local hypothesis, return false.
    return false
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Delayed Assignments

The above discussion of metavariable assignment contains a lie by omission: there are
actually two ways to assign a metavariable. We have seen the regular way; the other way is
called a delayed assignment.

We do not discuss delayed assignments in any detail here since they are rarely useful for
tactic writing. If you want to learn more about them, see the comments in
MetavarContext.lean  in the Lean standard library. But they create two complications which

you should be aware of.

First, delayed assignments make Lean.MVarId.isAssigned  and getExprMVarAssignment?
medium-calibre footguns. These functions only check for regular assignments, so you may
need to use Lean.MVarId.isDelayedAssigned  and Lean.Meta.getDelayedMVarAssignment?
as well.

Second, delayed assignments break an intuitive invariant. You may have assumed that any
metavariable which remains in the output of instantiateMVars  is unassigned, since the
assigned metavariables have been substituted. But delayed metavariables can only be
substituted once their assigned value contains no unassigned metavariables. So delayed-
assigned metavariables can appear in an expression even after instantiateMVars .

Metavariable Depth

Metavariable depth is also a niche feature, but one that is occasionally useful. Any
metavariable has a depth (a natural number), and a MetavarContext  has a corresponding
depth as well. Lean only assigns a metavariable if its depth is equal to the depth of the
current MetavarContext . Newly created metavariables inherit the MetavarContext 's depth,
so by default every metavariable is assignable.

This setup can be used when a tactic needs some temporary metavariables and also needs
to make sure that other, non-temporary metavariables will not be assigned. To ensure this,
the tactic proceeds as follows:

1. Save the current MetavarContext .
2. Increase the depth of the MetavarContext .
3. Perform whatever computation is necessary, possibly creating and assigning

metavariables. Newly created metavariables are at the current depth of the
MetavarContext  and so can be assigned. Old metavariables are at a lower depth, so

cannot be assigned.
4. Restore the saved MetavarContext , thereby erasing all the temporary metavariables

and resetting the MetavarContext  depth.

This pattern is encapsulated in Lean.Meta.withNewMCtxDepth .
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Computation

Computation is a core concept of dependent type theory. The terms 2 , Nat.succ 1  and 1 
+ 1  are all "the same" in the sense that they compute the same value. We call them
definitionally equal. The problem with this, from a metaprogramming perspective, is that
definitionally equal terms may be represented by entirely different expressions, but our
users would usually expect that a tactic which works for 2  also works for 1 + 1 . So when
we write our tactics, we must do additional work to ensure that definitionally equal terms
are treated similarly.

Full Normalisation

The simplest thing we can do with computation is to bring a term into normal form. With
some exceptions for numeric types, the normal form of a term t  of type T  is a sequence of
applications of T 's constructors. E.g. the normal form of a list is a sequence of applications
of List.cons  and List.nil .

The function that normalises a term (i.e. brings it into normal form) is Lean.Meta.reduce
with type signature

We can use it like this:

Incidentally, this shows that the normal form of a term of type Nat  is not always an
application of the constructors of Nat ; it can also be a literal. Also note that #eval  can be
used not only to evaluate a term, but also to execute a MetaM  program.

The optional arguments of reduce  allow us to skip certain parts of an expression. E.g.
reduce e (explicitOnly := true)  does not normalise any implicit arguments in the

expression e . This yields better performance: since normal forms can be very big, it may be
a good idea to skip parts of an expression that the user is not going to see anyway.

The #reduce  command is essentially an application of reduce :

reduce (e : Expr) (explicitOnly skipTypes skipProofs := true) : MetaM Expr

def someNumber : Nat := (· + 2) $ 3

#eval Expr.const ``someNumber []
-- Lean.Expr.const `someNumber []

#eval reduce (Expr.const ``someNumber [])
-- Lean.Expr.lit (Lean.Literal.natVal 5)

#reduce someNumber
-- 5
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Transparency

An ugly but important detail of Lean 4 metaprogramming is that any given expression does
not have a single normal form. Rather, it has a normal form up to a given transparency.

A transparency is a value of Lean.Meta.TransparencyMode , an enumeration with four
values: reducible , instances , default  and all . Any MetaM  computation has access to
an ambient TransparencyMode  which can be obtained with Lean.Meta.getTransparency .

The current transparency determines which constants get unfolded during normalisation,
e.g. by reduce . (To unfold a constant means to replace it with its definition.) The four
settings unfold progressively more constants:

reducible : unfold only constants tagged with the @[reducible]  attribute. Note that
abbrev  is a shorthand for @[reducible] def .
instances : unfold reducible constants and constants tagged with the @[instance]

attribute. Again, the instance  command is a shorthand for @[instance] def .
default : unfold all constants except those tagged as @[irreducible] .
all : unfold all constants, even those tagged as @[irreducible] .

The ambient transparency is usually default . To execute an operation with a specific
transparency, use Lean.Meta.withTransparency . There are also shorthands for specific
transparencies, e.g. Lean.Meta.withReducible .

Putting everything together for an example (where we use Lean.Meta.ppExpr  to pretty-
print an expression):

We start with reducible  transparency, which only unfolds reducibleDef :

If we repeat the above command but let Lean print implicit arguments as well, we can see
that the +  notation amounts to an application of the hAdd  function, which is a member of
the HAdd  typeclass:

def traceConstWithTransparency (md : TransparencyMode) (c : Name) :
    MetaM Format := do
  ppExpr (← withTransparency md $ reduce (.const c []))

@[irreducible] def irreducibleDef : Nat      := 1
def                defaultDef     : Nat      := irreducibleDef + 1
abbrev             reducibleDef   : Nat      := defaultDef + 1

#eval traceConstWithTransparency .reducible ``reducibleDef
-- defaultDef + 1

set_option pp.explicit true
#eval traceConstWithTransparency .reducible ``reducibleDef
-- @HAdd.hAdd Nat Nat Nat (@instHAdd Nat instAddNat) defaultDef 1
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When we reduce with instances  transparency, this applications is unfolded and replaced
by Nat.add :

With default  transparency, Nat.add  is unfolded as well:

And with TransparencyMode.all , we're finally able to unfold irreducibleDef :

The #eval  commands illustrate that the same term, reducibleDef , can have a different
normal form for each transparency.

Why all this ceremony? Essentially for performance: if we allowed normalisation to always
unfold every constant, operations such as type class search would become prohibitively
expensive. The tradeoff is that we must choose the appropriate transparency for each
operation that involves normalisation.

Weak Head Normalisation

Transparency addresses some of the performance issues with normalisation. But even more
important is to recognise that for many purposes, we don't need to fully normalise terms at
all. Suppose we are building a tactic that automatically splits hypotheses of the type P ∧ Q .
We might want this tactic to recognise a hypothesis h : X  if X  reduces to P ∧ Q . But if P
additionally reduces to Y ∨ Z , the specific Y  and Z  do not concern us. Reducing P  would
be unnecessary work.

This situation is so common that the fully normalising reduce  is in fact rarely used. Instead,
the normalisation workhorse of Lean is whnf , which reduces an expression to weak head
normal form (WHNF).

Roughly speaking, an expression e  is in weak-head normal form when it has the form

and f  cannot be reduced (at the current transparency). To conveniently check the WHNF of
an expression, we define a function whnf' , using some functions that will be discussed in
the Elaboration chapter.

#eval traceConstWithTransparency .instances ``reducibleDef
-- Nat.add defaultDef 1

#eval traceConstWithTransparency .default ``reducibleDef
-- Nat.succ (Nat.succ irreducibleDef)

#eval traceConstWithTransparency .all ``reducibleDef
-- 3

e = f x₁ ... xₙ   (n ≥ 0)
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Now, here are some examples of expressions in WHNF.

Constructor applications are in WHNF (with some exceptions for numeric types):

The arguments of an application in WHNF may or may not be in WHNF themselves:

Applications of constants are in WHNF if the current transparency does not allow us to
unfold the constants:

Lambdas are in WHNF:

Foralls are in WHNF:

Sorts are in WHNF:

Literals are in WHNF:

Here are some more expressions in WHNF which are a bit tricky to test:

open Lean.Elab.Term in
def whnf' (e : TermElabM Syntax) : TermElabM Format := do
  let e ← elabTermAndSynthesize (← e) none
  ppExpr (← whnf e)

#eval whnf' `(List.cons 1 [])
-- [1]

#eval whnf' `(List.cons (1 + 1) [])
-- [1 + 1]

#eval withTransparency .reducible $ whnf' `(List.append [1] [2])
-- List.append [1] [2]

#eval whnf' `(λ x : Nat => x)
-- fun x => x

#eval whnf' `(∀ x, x > 0)
-- ∀ (x : Nat), x > 0

#eval whnf' `(Type 3)
-- Type 3

#eval whnf' `((15 : Nat))
-- 15

?x 0 1  -- Assuming the metavariable `?x` is unassigned, it is in WHNF.
h 0 1   -- Assuming `h` is a local hypothesis, it is in WHNF.
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On the flipside, here are some expressions that are not in WHNF.

Applications of constants are not in WHNF if the current transparency allows us to unfold
the constants:

Applications of lambdas are not in WHNF:

let  bindings are not in WHNF:

And again some tricky examples:

Returning to the tactic that motivated this section, let us write a function that matches a type
of the form P ∧ Q , avoiding extra computation. WHNF makes it easy:

By using whnf , we ensure that if e  evaluates to something of the form P ∧ Q , we'll notice.
But at the same time, we don't perform any unnecessary computation in P  or Q .

However, our 'no unnecessary computation' mantra also means that if we want to perform
deeper matching on an expression, we need to use whnf  multiple times. Suppose we want
to match a type of the form P ∧ Q ∧ R . The correct way to do this uses whnf  twice:

#eval whnf' `(List.append [1])
-- fun x => 1 :: List.append [] x

#eval whnf' `((λ x y : Nat => x + y) 1)
-- `fun y => 1 + y`

#eval whnf' `(let x : Nat := 1; x)
-- 1

?x 0 1 -- Assuming `?x` is assigned (e.g. to `Nat.add`), its application is not
          in WHNF.
h 0 1  -- Assuming `h` is a local definition (e.g. with value `Nat.add`), its
          application is not in WHNF.

def matchAndReducing (e : Expr) : MetaM (Option (Expr × Expr)) := do
  match ← whnf e with
  | (.app (.app (.const ``And _) P) Q) => return some (P, Q)
  | _ => return none

def matchAndReducing₂ (e : Expr) : MetaM (Option (Expr × Expr × Expr)) := do
  match ← whnf e with
  | (.app (.app (.const ``And _) P) e') =>
    match ← whnf e' with
    | (.app (.app (.const ``And _) Q) R) => return some (P, Q, R)
    | _ => return none
  | _ => return none
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This sort of deep matching up to computation could be automated. But until someone
builds this automation, we have to figure out the necessary whnf s ourselves.

Definitional Equality

As mentioned, definitional equality is equality up to computation. Two expressions t  and s
are definitionally equal or defeq (at the current transparency) if their normal forms (at the
current transparency) are equal.

To check whether two expressions are defeq, use Lean.Meta.isDefEq  with type signature

Even though definitional equality is defined in terms of normal forms, isDefEq  does not
actually compute the normal forms of its arguments, which would be very expensive.
Instead, it tries to "match up" t  and s  using as few reductions as possible. This is a
necessarily heuristic endeavour and when the heuristics misfire, isDefEq  can become very
expensive. In the worst case, it may have to reduce s  and t  so often that they end up in
normal form anyway. But usually the heuristics are good and isDefEq  is reasonably fast.

If expressions t  and u  contain assignable metavariables, isDefEq  may assign these
metavariables to make t  defeq to u . We also say that isDefEq  unifies t  and u ; such
unification queries are sometimes written t =?= u . For instance, the unification List ?m 
=?= List Nat  succeeds and assigns ?m := Nat . The unification Nat.succ ?m =?= n + 1
succeeds and assigns ?m := n . The unification ?m₁ + ?m₂ + ?m₃ =?= m + n - k  fails and
no metavariables are assigned (even though there is a 'partial match' between the
expressions).

Whether isDefEq  considers a metavariable assignable is determined by two factors:

1. The metavariable's depth must be equal to the current MetavarContext  depth. See the
Metavariable Depth section.

2. Each metavariable has a kind (a value of type MetavarKind ) whose sole purpose is to
modify the behaviour of isDefEq . Possible kinds are:

Natural: isDefEq  may freely assign the metavariable. This is the default.
Synthetic: isDefEq  may assign the metavariable, but avoids doing so if possible.
For example, suppose ?n  is a natural metavariable and ?s  is a synthetic
metavariable. When faced with the unification problem ?s =?= ?n , isDefEq
assigns ?n  rather than ?s .
Synthetic opaque: isDefEq  never assigns the metavariable.

isDefEq : Expr → Expr → MetaM Bool
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Constructing Expressions

In the previous chapter, we saw some primitive functions for building expressions:
Expr.app , Expr.const , mkAppN  and so on. There is nothing wrong with these functions,

but the additional facilities of MetaM  often provide more convenient ways.

Applications

When we write regular Lean code, Lean helpfully infers many implicit arguments and
universe levels. If it did not, our code would look rather ugly:

The .{u_1}  suffixes are universe levels, which must be given for every polymorphic
constant. And of course the type α  is passed around everywhere.

Exactly the same problem occurs during metaprogramming when we construct expressions.
A hand-made expression representing the right-hand side of the above definition looks like
this:

Having to specify the implicit arguments and universe levels is annoying and error-prone. So
MetaM  provides a helper function which allows us to omit implicit information:
Lean.Meta.mkAppM  of type

Like mkAppN , mkAppM  constructs an application. But while mkAppN  requires us to give all
universe levels and implicit arguments ourselves, mkAppM  infers them. This means we only
need to provide the explicit arguments, which makes for a much shorter example:

def appendAppend (xs ys : List α) := (xs.append ys).append xs

set_option pp.all true in
set_option pp.explicit true in
#print appendAppend
-- def appendAppend.{u_1} : {α : Type u_1} → List.{u_1} α → List.{u_1} α → 
List.{u_1} α :=
-- fun {α : Type u_1} (xs ys : List.{u_1} α) => @List.append.{u_1} α 
(@List.append.{u_1} α xs ys) xs

def appendAppendRHSExpr₁ (u : Level) (α xs ys : Expr) : Expr :=
  mkAppN (.const ``List.append [u])
    #[α, mkAppN (.const ``List.append [u]) #[α, xs, ys], xs]

mkAppM : Name → Array Expr → MetaM Expr

def appendAppendRHSExpr₂ (xs ys : Expr) : MetaM Expr := do
  mkAppM ``List.append #[← mkAppM ``List.append #[xs, ys], xs]
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Note the absence of any α s and u s. There is also a variant of mkAppM , mkAppM' , which
takes an Expr  instead of a Name  as the first argument, allowing us to construct applications
of expressions which are not constants.

However, mkAppM  is not magic: if you write mkAppM ``List.append #[] , you will get an
error at runtime. This is because mkAppM  tries to determine what the type α  is, but with no
arguments given to append , α  could be anything, so mkAppM  fails.

Another occasionally useful variant of mkAppM  is Lean.Meta.mkAppOptM  of type

Whereas mkAppM  always infers implicit and instance arguments and always requires us to
give explicit arguments, mkAppOptM  lets us choose freely which arguments to provide and
which to infer. With this, we can, for example, give instances explicitly, which we use in the
following example to give a non-standard Ord  instance.

Like mkAppM , mkAppOptM  has a primed variant Lean.Meta.mkAppOptM'  which takes an Expr
instead of a Name  as the first argument. The file which contains mkAppM  also contains
various other helper functions, e.g. for making list literals or sorry s.

Lambdas and Foralls

Another common task is to construct expressions involving λ  or ∀  binders. Suppose we
want to create the expression λ (x : Nat), Nat.add x x . One way is to write out the
lambda directly:

This works, but the use of bvar  is highly unidiomatic. Lean uses a so-called locally closed
variable representation. This means that all but the lowest-level functions in the Lean API

mkAppOptM : Name → Array (Option Expr) → MetaM Expr

def revOrd : Ord Nat where
  compare x y := compare y x

def ordExpr : MetaM Expr := do
  mkAppOptM ``compare #[none, Expr.const ``revOrd [], mkNatLit 0, mkNatLit 1]

#eval format <$> ordExpr
-- Ord.compare.{0} Nat revOrd
--   (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))
--   (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))

def doubleExpr₁ : Expr :=
  .lam `x (.const ``Nat []) (mkAppN (.const ``Nat.add []) #[.bvar 0, .bvar 0])
    BinderInfo.default

#eval ppExpr doubleExpr₁
-- fun x => Nat.add x x
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expect expressions not to contain 'loose bvar s', where a bvar  is loose if it is not bound by
a binder in the same expression. (Outside of Lean, such variables are usually called 'free'.
The name bvar  -- 'bound variable' -- already indicates that bvar s are never supposed to be
free.)

As a result, if in the above example we replace mkAppN  with the slightly higher-level mkAppM ,
we get a runtime error. Adhering to the locally closed convention, mkAppM  expects any
expressions given to it to have no loose bound variables, and .bvar 0  is precisely that.

So instead of using bvar s directly, the Lean way is to construct expressions with bound
variables in two steps:

1. Construct the body of the expression (in our example: the body of the lambda), using
temporary local hypotheses ( fvar s) to stand in for the bound variables.

2. Replace these fvar s with bvar s and, at the same time, add the corresponding
lambda binders.

This process ensures that we do not need to handle expressions with loose bvar s at any
point (except during step 2, which is performed 'atomically' by a bespoke function). Applying
the process to our example:

There are two new functions. First, Lean.Meta.withLocalDecl  has type

Given a variable name, binder info and type, withLocalDecl  constructs a new fvar  and
passes it to the computation k . The fvar  is available in the local context during the
execution of k  but is deleted again afterwards.

The second new function is Lean.Meta.mkLambdaFVars  with type (ignoring some optional
arguments)

This function takes an array of fvar s and an expression e . It then adds one lambda binder
for each fvar  x  and replaces every occurrence of x  in e  with a bound variable
corresponding to the new lambda binder. The returned expression does not contain the

def doubleExpr₂ : MetaM Expr :=
  withLocalDecl `x BinderInfo.default (.const ``Nat []) λ x => do
    let body ← mkAppM ``Nat.add #[x, x]
    mkLambdaFVars #[x] body

#eval show MetaM _ from do
  ppExpr (← doubleExpr₂)
-- fun x => Nat.add x x

withLocalDecl (name : Name) (bi : BinderInfo) (type : Expr) (k : Expr → MetaM 
α) : MetaM α

mkLambdaFVars : Array Expr → Expr → MetaM Expr
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fvar s any more, which is good since they disappear after we leave the withLocalDecl
context. (Instead of fvar s, we can also give mvar s to mkLambdaFVars , despite its name.)

Some variants of the above functions may be useful:

withLocalDecls  declares multiple temporary fvar s.
mkForallFVars  creates ∀  binders instead of λ  binders. mkLetFVars  creates let

binders.
mkArrow  is the non-dependent version of mkForallFVars  which construcs a function

type X → Y . Since the type is non-dependent, there is no need for temporary fvar s.

Using all these functions, we can construct larger expressions such as this one:

The next line registers someProp  as a name for the expression we've just constructed,
allowing us to play with it more easily. The mechanisms behind this are discussed in the
Elaboration chapter.

Deconstructing Expressions

Just like we can construct expressions more easily in MetaM , we can also deconstruct them
more easily. Particularly useful is a family of functions for deconstructing expressions which
start with λ  and ∀  binders.

When we are given a type of the form ∀ (x₁ : T₁) ... (xₙ : Tₙ), U , we are often
interested in doing something with the conclusion U . For instance, the apply  tactic, when
given an expression e : ∀ ..., U , compares U  with the current target to determine
whether e  can be applied.

λ (f : Nat → Nat), ∀ (n : Nat), f n = f (n + 1)

def somePropExpr : MetaM Expr := do
  let funcType ← mkArrow (.const ``Nat []) (.const ``Nat [])
  withLocalDecl `f BinderInfo.default funcType fun f => do
    let feqn ← withLocalDecl `n BinderInfo.default (.const ``Nat []) fun n => 
do
      let lhs := .app f n
      let rhs := .app f (← mkAppM ``Nat.succ #[n])
      let eqn ← mkEq lhs rhs
      mkForallFVars #[n] eqn
    mkLambdaFVars #[f] feqn

elab "someProp" : term => somePropExpr

#check someProp
-- fun f => ∀ (n : Nat), f n = f (Nat.succ n) : (Nat → Nat) → Prop
#reduce someProp Nat.succ
-- ∀ (n : Nat), Nat.succ n = Nat.succ (Nat.succ n)
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To do this, we could repeatedly match on the type expression, removing ∀  binders until we
get to U . But this would leave us with an U  containing unbound bvar s, which, as we saw, is
bad. Instead, we use Lean.Meta.forallTelescope  of type

Given type = ∀ (x₁ : T₁) ... (xₙ : Tₙ), U x₁ ... xₙ , this function creates one fvar fᵢ
for each ∀ -bound variable xᵢ  and replaces each xᵢ  with fᵢ  in the conclusion U . It then
calls the computation k , passing it the fᵢ  and the conclusion U f₁ ... fₙ . Within this
computation, the fᵢ  are registered in the local context; afterwards, they are deleted again
(similar to withLocalDecl ).

There are many useful variants of forallTelescope :

forallTelescopeReducing : like forallTelescope  but matching is performed up to
computation. This means that if you have an expression X  which is different from but
defeq to ∀ x, P x , forallTelescopeReducing X  will deconstruct X  into x  and P x .
The non-reducing forallTelescope  would not recognise X  as a quantified
expression. The matching is performed by essentially calling whnf  repeatedly, using
the ambient transparency.
forallBoundedTelescope : like forallTelescopeReducing  (even though there is no

"reducing" in the name) but stops after a specified number of ∀  binders.
forallMetaTelescope , forallMetaTelescopeReducing ,
forallMetaBoundedTelescope : like the corresponding non- meta  functions, but the

bound variables are replaced by new mvar s instead of fvar s. Unlike the non- meta
functions, the meta  functions do not delete the new metavariables after performing
some computation, so the metavariables remain in the environment indefinitely.
lambdaTelescope , lambdaTelescopeReducing , lambdaBoundedTelescope ,
lambdaMetaTelescope : like the corresponding forall  functions, but for λ  binders

instead of ∀ .

Using one of the telescope functions, we can implement our own apply  tactic:

forallTelescope (type : Expr) (k : Array Expr → Expr → MetaM α) : MetaM α
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The real apply  does some additional pre- and postprocessing, but the core logic is what we
show here. To test our tactic, we need an elaboration incantation, more about which in the
Elaboration chapter.

Backtracking

Many tactics naturally require backtracking: the ability to go back to a previous state, as if
the tactic had never been executed. A few examples:

first | t | u  first executes t . If t  fails, it backtracks and executes u .

def myApply (goal : MVarId) (e : Expr) : MetaM (List MVarId) := do
  -- Check that the goal is not yet assigned.
  goal.checkNotAssigned `myApply
  -- Operate in the local context of the goal.
  goal.withContext do
    -- Get the goal's target type.
    let target ← goal.getType
    -- Get the type of the given expression.
    let type ← inferType e
    -- If `type` has the form `∀ (x₁ : T₁) ... (xₙ : Tₙ), U`, introduce new
    -- metavariables for the `xᵢ` and obtain the conclusion `U`. (If `type` 
does
    -- not have this form, `args` is empty and `conclusion = type`.)
    let (args, _, conclusion) ← forallMetaTelescopeReducing type
    -- If the conclusion unifies with the target:
    if ← isDefEq target conclusion then
      -- Assign the goal to `e x₁ ... xₙ`, where the `xᵢ` are the fresh
      -- metavariables in `args`.
      goal.assign (mkAppN e args)
      -- `isDefEq` may have assigned some of the `args`. Report the rest as new
      -- goals.
      let newGoals ← args.filterMapM λ mvar => do
        let mvarId := mvar.mvarId!
        if ! (← mvarId.isAssigned) && ! (← mvarId.isDelayedAssigned) then
          return some mvarId
        else
          return none
      return newGoals.toList
    -- If the conclusion does not unify with the target, throw an error.
    else
      throwTacticEx `myApply goal m!"{e} is not applicable to goal with target 
{target}"

elab "myApply" e:term : tactic => do
  let e ← Elab.Term.elabTerm e none
  Elab.Tactic.liftMetaTactic (myApply · e)

example (h : α → β) (a : α) : β := by
  myApply h
  myApply a
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try t  executes t . If t  fails, it backtracks to the initial state, erasing any changes
made by t .
trivial  attempts to solve the goal using a number of simple tactics (e.g. rfl  or
contradiction ). After each unsuccessful application of such a tactic, trivial

backtracks.

Good thing, then, that Lean's core data structures are designed to enable easy and efficient
backtracking. The corresponding API is provided by the Lean.MonadBacktrack  class. MetaM ,
TermElabM  and TacticM  are all instances of this class. ( CoreM  is not but could be.)

MonadBacktrack  provides two fundamental operations:

Lean.saveState : m s  returns a representation of the current state, where m  is the
monad we are in and s  is the state type. E.g. for MetaM , saveState  returns a
Lean.Meta.SavedState  containing the current environment, the current
MetavarContext  and various other pieces of information.
Lean.restoreState : s → m Unit  takes a previously saved state and restores it. This

effectively resets the compiler state to the previous point.

With this, we can roll our own MetaM  version of the try  tactic:

We first save the state, then execute x . If x  fails, we backtrack the state.

The standard library defines many combinators like tryM . Here are the most useful ones:

Lean.withoutModifyingState (x : m α) : m α  executes the action x , then resets
the state and returns x 's result. You can use this, for example, to check for definitional
equality without assigning metavariables:

If isDefEq  succeeds, it may assign metavariables in x  and y . Using
withoutModifyingState , we can make sure this does not happen.
Lean.observing? (x : m α) : m (Option α)  executes the action x . If x  succeeds,
observing?  returns its result. If x  fails (throws an exception), observing?  backtracks

the state and returns none . This is a more informative version of our tryM
combinator.
Lean.commitIfNoEx (x : α) : m α  executes x . If x  succeeds, commitIfNoEx  returns

its result. If x  throws an exception, commitIfNoEx  backtracks the state and rethrows

def tryM (x : MetaM Unit) : MetaM Unit := do
  let s ← saveState
  try
    x
  catch _ =>
    restoreState s

withoutModifyingState $ isDefEq x y
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the exception.

Note that the builtin try ... catch ... finally  does not perform any backtracking. So
code which looks like this is probably wrong:

The catch  branch, doSomethingElse , is executed in a state containing whatever
modifications doSomething  made before it failed. Since we probably want to erase these
modifications, we should write instead:

Another MonadBacktrack  gotcha is that restoreState  does not backtrack the entire state.
Caches, trace messages and the global name generator, among other things, are not
backtracked, so changes made to these parts of the state are not reset by restoreState .
This is usually what we want: if a tactic executed by observing?  produces some trace
messages, we want to see them even if the tactic fails. See Lean.Meta.SavedState.restore
and Lean.Core.restore  for details on what is and is not backtracked.

In the next chapter, we move towards the topic of elaboration, of which you've already seen
several glimpses in this chapter. We start by discussing Lean's syntax system, which allows
you to add custom syntactic constructs to the Lean parser.

Exercises

1. [Metavariables] Create a metavariable with type Nat , and assign to it value 3 . Notice
that changing the type of the metavariable from Nat  to, for example, String , doesn't
raise any errors - that's why, as was mentioned, we must make sure "(a) that val  must
have the target type of mvarId  and (b) that val  must only contain fvars  from the local
context of mvarId ".

2. [Metavariables] What would instantiateMVars (Lean.mkAppN (Expr.const 'Nat.add 
[]) #[mkNatLit 1, mkNatLit 2])  output?

3. [Metavariables] Fill in the missing lines in the following code.

try
  doSomething
catch e =>
  doSomethingElse

try
  commitIfNoEx doSomething
catch e =>
  doSomethingElse
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4. [Metavariables] Consider the theorem red , and tactic explore  below. a) What would
be the type  and userName  of metavariable mvarId ? b) What would be the type s and
userName s of all local declarations in this metavariable's local context? Print them all

out.

5. [Metavariables] Write a tactic solve  that proves the theorem red .

#eval show MetaM Unit from do
  let oneExpr := Expr.app (Expr.const `Nat.succ []) (Expr.const ``Nat.zero 
[])

  let twoExpr := Expr.app (Expr.const `Nat.succ []) oneExpr

  -- Create `mvar1` with type `Nat`
  -- let mvar1 ← ...
  -- Create `mvar2` with type `Nat`

  -- let mvar2 ← ...
  -- Create `mvar3` with type `Nat`
  -- let mvar3 ← ...

  -- Assign `mvar1` to `2 + ?mvar2 + ?mvar3`
  -- ...

  -- Assign `mvar3` to `1`
  -- ...

  -- Instantiate `mvar1`, which should result in expression `2 + ?mvar2 + 

1`
  ...

elab "explore" : tactic => do
  let mvarId : MVarId ← Lean.Elab.Tactic.getMainGoal
  let metavarDecl : MetavarDecl ← mvarId.getDecl

  IO.println "Our metavariable"

  -- ...

  IO.println "All of its local declarations"
  -- ...

theorem red (hA : 1 = 1) (hB : 2 = 2) : 2 = 2 := by
  explore
  sorry
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6. [Computation] What is the normal form of the following expressions: a) fun x => x
of type Bool → Bool  b) (fun x => x) ((true && false) || true)  of type Bool  c)
800 + 2  of type Nat

7. [Computation] Show that 1  created with Expr.lit (Lean.Literal.natVal 1)  is
definitionally equal to an expression created with Expr.app (Expr.const ``Nat.succ 
[]) (Expr.const ``Nat.zero []) .

8. [Computation] Determine whether the following expressions are definitionally equal.
If Lean.Meta.isDefEq  succeeds, and it leads to metavariable assignment, write down
the assignments. a) 5 =?= (fun x => 5) ((fun y : Nat → Nat => y) (fun z : Nat 
=> z))  b) 2 + 1 =?= 1 + 2  c) ?a =?= 2 , where ?a  has a type String  d) ?a + Int 
=?= "hi" + ?b , where ?a  and ?b  don't have a type e) 2 + ?a =?= 3  f) 2 + ?a =?= 
2 + 1

9. [Computation] Write down what you expect the following code to output.

10/06/2024, 16:09 Metaprogramming in Lean 4

https://leanprover-community.github.io/lean4-metaprogramming-book/print.html 45/134



10. [Constructing Expressions] Create expression fun x, 1 + x  in two ways: a) not
idiomatically, with loose bound variables b) idiomatically. In what version can you use
Lean.mkAppN ? In what version can you use Lean.Meta.mkAppM ?

11. [Constructing Expressions] Create expression ∀ (yellow: Nat), yellow .

12. [Constructing Expressions] Create expression ∀ (n : Nat), n = n + 1  in two ways:
a) not idiomatically, with loose bound variables b) idiomatically. In what version can
you use Lean.mkApp3 ? In what version can you use Lean.Meta.mkEq ?

13. [Constructing Expressions] Create expression fun (f : Nat → Nat), ∀ (n : Nat), 
f n = f (n + 1)  idiomatically.

14. [Constructing Expressions] What would you expect the output of the following code
to be?

@[reducible] def reducibleDef     : Nat := 1 -- same as `abbrev`
@[instance] def instanceDef       : Nat := 2 -- same as `instance`
def defaultDef                    : Nat := 3

@[irreducible] def irreducibleDef : Nat := 4

@[reducible] def sum := [reducibleDef, instanceDef, defaultDef, 
irreducibleDef]

#eval show MetaM Unit from do
  let constantExpr := Expr.const `sum []

  Meta.withTransparency Meta.TransparencyMode.reducible do
    let reducedExpr ← Meta.reduce constantExpr
    dbg_trace (← ppExpr reducedExpr) -- ...

  Meta.withTransparency Meta.TransparencyMode.instances do
    let reducedExpr ← Meta.reduce constantExpr
    dbg_trace (← ppExpr reducedExpr) -- ...

  Meta.withTransparency Meta.TransparencyMode.default do
    let reducedExpr ← Meta.reduce constantExpr
    dbg_trace (← ppExpr reducedExpr) -- ...

  Meta.withTransparency Meta.TransparencyMode.all do

    let reducedExpr ← Meta.reduce constantExpr
    dbg_trace (← ppExpr reducedExpr) -- ...

  let reducedExpr ← Meta.reduce constantExpr
  dbg_trace (← ppExpr reducedExpr) -- ...
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15. [Backtracking] Check that the expressions ?a + Int  and "hi" + ?b  are
definitionally equal with isDefEq  (make sure to use the proper types or Option.none
for the types of your metavariables!). Use saveState  and restoreState  to revert
metavariable assignments.

#eval show Lean.Elab.Term.TermElabM _ from do
  let stx : Syntax ← `(∀ (a : Prop) (b : Prop), a ∨ b → b → a ∧ a)
  let expr ← Elab.Term.elabTermAndSynthesize stx none

  let (_, _, conclusion) ← forallMetaTelescope expr
  dbg_trace conclusion -- ...

  let (_, _, conclusion) ← forallMetaBoundedTelescope expr 2

  dbg_trace conclusion -- ...

  let (_, _, conclusion) ← lambdaMetaTelescope expr
  dbg_trace conclusion -- ...
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Syntax
This chapter is concerned with the means to declare and operate on syntax in Lean. Since
there are a multitude of ways to operate on it, we will not go into great detail about this yet
and postpone quite a bit of this to later chapters.

Declaring Syntax

Declaration helpers

Some readers might be familiar with the infix  or even the notation  commands, for those
that are not here is a brief recap:

As we can see the infixl  command allows us to declare a notation for a binary operation
that is infix, meaning that the operator is in between the operands (as opposed to e.g.
before which would be done using the prefix  command). The l  at the end of infixl
means that the notation is left associative so a ⊕ b ⊕ c  gets parsed as (a ⊕ b) ⊕ c  as
opposed to a ⊕ (b ⊕ c)  (which would be achieved by infixr ). On the right hand side, it
expects a function that operates on these two parameters and returns some value. The
notation  command, on the other hand, allows us some more freedom: we can just

"mention" the parameters right in the syntax definition and operate on them on the right
hand side. It gets even better though, we can in theory create syntax with 0 up to as many
parameters as we wish using the notation  command, it is hence also often referred to as
"mixfix" notation.

The two unintuitive parts about these two are:

import Lean

-- XOR, denoted \oplus
infixl:60 " ⊕ " => fun l r => (!l && r) || (l && !r)

#eval true ⊕ true -- false
#eval true ⊕ false -- true
#eval false ⊕ true -- true
#eval false ⊕ false -- false

-- with `notation`, "left XOR"
notation:10 l:10 " LXOR " r:11 => (!l && r)

#eval true LXOR true -- false
#eval true LXOR false -- false
#eval false LXOR true -- true
#eval false LXOR false -- false
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The fact that we are leaving spaces around our operators: " ⊕ ", " LXOR ". This is so
that, when Lean pretty prints our syntax later on, it also uses spaces around the
operators, otherwise the syntax would just be presented as l⊕r  as opposed to l ⊕ r .
The 60  and 10  right after the respective commands -- these denote the operator
precedence, meaning how strong they bind to their arguments, let's see this in action:

As we can see, the Lean interpreter analyzed the first term without parentheses like the
second instead of the third one. This is because the ⊕  notation has higher precedence than
LXOR  ( 60 > 10  after all) and is thus evaluated before it. This is also how you might

implement rules like *  being evaluated before + .

Lastly at the notation  example there are also these :precedence  bindings at the
arguments: l:10  and r:11 . This conveys that the left argument must have precedence at
least 10 or greater, and the right argument must have precedence at 11 or greater. The way
the arguments are assigned their respective precedence is by looking at the precedence of
the rule that was used to parse them. Consider for example a LXOR b LXOR c . Theoretically
speaking this could be parsed in two ways:

1. (a LXOR b) LXOR c
2. a LXOR (b LXOR c)

Since the arguments in parentheses are parsed by the LXOR  rule with precedence 10 they
will appear as arguments with precedence 10 to the outer LXOR  rule:

1. (a LXOR b):10 LXOR c
2. a LXOR (b LXOR c):10

However if we check the definition of LXOR : notation:10 l:10 " LXOR " r:11  we can see
that the right hand side argument requires a precedence of at least 11 or greater, thus the
second parse is invalid and we remain with: (a LXOR b) LXOR c  assuming that:

a  has precedence 10 or higher
b  has precedence 11 or higher
c  has precedence 11 or higher

Thus LXOR  is a left associative notation. Can you make it right associative?

NOTE: If parameters of a notation are not explicitly given a precedence they will implicitly be
tagged with precedence 0.

As a last remark for this section: Lean will always attempt to obtain the longest matching
parse possible, this has three important implications. First a very intuitive one, if we have a
right associative operator ^  and Lean sees something like a ^ b ^ c , it will first parse the

#eval true ⊕ false LXOR false -- false
#eval (true ⊕ false) LXOR false -- false
#eval true ⊕ (false LXOR false) -- true
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a ^ b  and then attempt to keep parsing (as long as precedence allows it) until it cannot
continue anymore. Hence Lean will parse this expression as a ^ (b ^ c)  (as we would
expect it to).

Secondly, if we have a notation where precedence does not allow to figure out how the
expression should be parenthesized, for example:

An expression like a ~ b ~ c  will be parsed as a ~ (b ~ c)  because Lean attempts to find
the longest parse possible. As a general rule of thumb: If precedence is ambiguous Lean will
default to right associativity.

Lastly, if we define overlapping notation such as:

Lean will prefer this notation over parsing a ~ b  as defined above and then erroring
because it doesn't know what to do with mod  and the relation argument:

This is again because it is looking for the longest possible parser which in this case involves
also consuming mod  and the relation argument.

Free form syntax declarations

With the above infix  and notation  commands, you can get quite far with declaring
ordinary mathematical syntax already. Lean does however allow you to introduce arbitrarily
complex syntax as well. This is done using two main commands syntax  and
declare_syntax_cat . A syntax  command allows you add a new syntax rule to an already

existing so-called "syntax category". The most common syntax categories are:

term , this category will be discussed in detail in the elaboration chapter, for now you
can think of it as "the syntax of everything that has a value"
command , this is the category for top-level commands like #check , def  etc.

TODO: ...

Let's see this in action:

notation:65 lhs:65 " ~ " rhs:65 => (lhs - rhs)

#eval 5 ~ 3 ~ 3 -- 5 because this is parsed as 5 - (3 - 3)

-- define `a ~ b mod rel` to mean that a and b are equivalent with respect to 
some equivalence relation rel
notation:65 a:65 " ~ " b:65 " mod " rel:65 => rel a b

#check 0 ~ 0 mod Eq -- 0 = 0 : Prop
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We can now write MyTerm  in place of things like 1 + 1  and it will be syntactically valid, this
does not mean the code will compile yet, it just means that the Lean parser can understand
it:

Note: #check_failure  command allows incorrectly typed terms to be indicated without
error.

Implementing this so-called "elaboration function", which will actually give meaning to this
syntax in terms of Lean's fundamental Expr  type, is topic of the elaboration chapter.

The notation  and infix  commands are utilities that conveniently bundle syntax
declaration with macro definition (for more on macros, see the macro chapter), where the
contents left of the =>  declare the syntax. All the previously mentioned principles from
notation  and infix  regarding precedence fully apply to syntax  as well.

We can, of course, also involve other syntax into our own declarations in order to build up
syntax trees. For example, we could try to build our own little boolean expression language:

While this does work, it allows arbitrary terms to the left and right of our AND  and OR
operation. If we want to write a mini language that only accepts our boolean language on a
syntax level we will have to declare our own syntax category on top. This is done using the
declare_syntax_cat  command:

syntax "MyTerm" : term

#check_failure MyTerm
-- elaboration function for 'termMyTerm' has not been implemented
--   MyTerm

namespace Playground2

-- The scoped modifier makes sure the syntax declarations remain in this 
`namespace`
-- because we will keep modifying this along the chapter
scoped syntax "⊥" : term -- ⊥ for false
scoped syntax "⊤" : term -- ⊤ for true
scoped syntax:40 term " OR " term : term
scoped syntax:50 term " AND " term : term
#check_failure ⊥ OR (⊤ AND ⊥) -- elaboration function hasn't been implemented 
but parsing passes

end Playground2

declare_syntax_cat boolean_expr
syntax "⊥" : boolean_expr -- ⊥ for false
syntax "⊤" : boolean_expr -- ⊤ for true
syntax:40 boolean_expr " OR " boolean_expr : boolean_expr
syntax:50 boolean_expr " AND " boolean_expr : boolean_expr
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Now that we are working in our own syntax category, we are completely disconnected from
the rest of the system. And these cannot be used in place of terms anymore:

In order to integrate our syntax category into the rest of the system we will have to extend
an already existing one with new syntax, in this case we will re-embed it into the term
category:

Syntax combinators

In order to declare more complex syntax, it is often very desirable to have some basic
operations on syntax already built-in, these include:

helper parsers without syntax categories (i.e. not extendable)
alternatives
repetitive parts
optional parts

While all of these do have an encoding based on syntax categories, this can make things
quite ugly at times, so Lean provides an easier way to do all of these.

In order to see all of these in action, we will briefly define a simple binary expression syntax.
First things first, declaring named parsers that don't belong to a syntax category is quite
similar to ordinary def s:

These named parsers can be used in the same positions as syntax categories from above,
their only difference to them is, that they are not extensible. That is, they are directly
expanded within syntax declarations, and we cannot define new patterns for them as we
would with proper syntax categories. There does also exist a number of built-in named
parsers that are generally useful, most notably:

str  for string literals
num  for number literals
ident  for identifiers

... TODO: better list or link to compiler docs

#check ⊥ AND ⊤ -- expected term

syntax "[Bool|" boolean_expr "]" : term
#check_failure [Bool| ⊥ AND ⊤] -- elaboration function hasn't been implemented 
but parsing passes

syntax binOne := "O"
syntax binZero := "Z"
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Next up we want to declare a parser that understands digits, a binary digit is either 0 or 1 so
we can write:

Where the <|>  operator implements the "accept the left or the right" behaviour. We can
also chain them to achieve parsers that accept arbitrarily many, arbitrarily complex other
ones. Now we will define the concept of a binary number, usually this would be written as
digits directly after each other but we will instead use comma separated ones to showcase
the repetition feature:

Since we can just use named parsers in place of syntax categories, we can now easily add
this to the term  category:

Note that nothing is limiting us to only using one syntax combinator per parser, we could
also have written all of this inline:

As a final feature, let's add an optional string comment that explains the binary literal being
declared:

syntax binDigit := binZero <|> binOne

-- the "+" denotes "one or many", in order to achieve "zero or many" use "*" 
instead
-- the "," denotes the separator between the `binDigit`s, if left out the 
default separator is a space
syntax binNumber := binDigit,+

syntax "bin(" binNumber ")" : term
#check bin(Z, O, Z, Z, O) -- elaboration function hasn't been implemented but 
parsing passes
#check bin() -- fails to parse because `binNumber` is "one or many": expected 
'O' or 'Z'

syntax binNumber' := binDigit,* -- note the *
syntax "emptyBin(" binNumber' ")" : term
#check_failure emptyBin() -- elaboration function hasn't been implemented but 
parsing passes

syntax "binCompact(" ("Z" <|> "O"),+ ")" : term
#check_failure binCompact(Z, O, Z, Z, O) -- elaboration function hasn't been 
implemented but parsing passes

-- The (...)? syntax means that the part in parentheses is optional
syntax "binDoc(" (str ";")? binNumber ")" : term
#check_failure binDoc(Z, O, Z, Z, O) -- elaboration function hasn't been 
implemented but parsing passes
#check_failure binDoc("mycomment"; Z, O, Z, Z, O) -- elaboration function 
hasn't been implemented but parsing passes
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Operating on Syntax

As explained above, we will not go into detail in this chapter on how to teach Lean about the
meaning you want to give your syntax. We will, however, take a look at how to write
functions that operate on it. Like all things in Lean, syntax is represented by the inductive
type Lean.Syntax , on which we can operate. It does contain quite some information, but
most of what we are interested in, we can condense in the following simplified view:

Lets go through the definition one constructor at a time:

missing  is used when there is something the Lean compiler cannot parse, it is what
allows Lean to have a syntax error in one part of the file but recover from it and try to
understand the rest of it. This also means we pretty much don't care about this
constructor.
node  is, as the name suggests, a node in the syntax tree. It has a so called kind : 
SyntaxNodeKind  where SyntaxNodeKind  is just a Lean.Name . Basically, each of our
syntax  declarations receives an automatically generated SyntaxNodeKind  (we can

also explicitly specify the name with syntax (name := foo) ... : cat ) so we can tell
Lean "this function is responsible for processing this specific syntax construct".
Furthermore, like all nodes in a tree, it has children, in this case in the form of an
Array Syntax .
atom  represents (with the exception of one) every syntax object that is at the bottom

of the hierarchy. For example, our operators ⊕  and LXOR  from above will be
represented as atoms.
ident  is the mentioned exception to this rule. The difference between ident  and
atom  is also quite obvious: an identifier has a Lean.Name  instead of a String  that

represents it. Why a Lean.Name  is not just a String  is related to a concept called
macro hygiene that will be discussed in detail in the macro chapter. For now, you can
consider them basically equivalent.

Constructing new Syntax

Now that we know how syntax is represented in Lean, we could of course write programs
that generate all of these inductive trees by hand, which would be incredibly tedious and is

namespace Playground2

inductive Syntax where
  | missing : Syntax
  | node (kind : Lean.SyntaxNodeKind) (args : Array Syntax) : Syntax
  | atom : String -> Syntax
  | ident : Lean.Name -> Syntax

end Playground2
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something we most definitely want to avoid. Luckily for us there is quite an extensive API
hidden inside the Lean.Syntax  namespace we can explore:

The interesting functions for creating Syntax  are the Syntax.mk*  ones that allow us to
create both very basic Syntax  objects like ident s but also more complex ones like
Syntax.mkApp  which we can use to create the Syntax  object that would amount to

applying the function from the first argument to the argument list (all given as Syntax ) in
the second one. Let's see a few examples:

If you don't like this way of creating Syntax  at all you are not alone. However, there are a
few things involved with the machinery of doing this in a pretty and correct (the machinery is
mostly about the correct part) way which will be explained in the macro chapter.

Matching on Syntax

Just like constructing Syntax  is an important topic, especially with macros, matching on
syntax is equally (or in fact even more) interesting. Luckily we don't have to match on the
inductive type itself either: we can instead use so-called "syntax patterns". They are quite
simple, their syntax is just `(the syntax I want to match on) . Let's see one in action:

The next level with matches is to capture variables from the input instead of just matching
on literals, this is done with a slightly fancier-looking syntax:

open Lean
#check Syntax -- Syntax. autocomplete

-- Name literals are written with this little ` in front of the name
#eval Syntax.mkApp (mkIdent `Nat.add) #[Syntax.mkNumLit "1", Syntax.mkNumLit 
"1"] -- is the syntax of `Nat.add 1 1`
#eval mkNode `«term_+_» #[Syntax.mkNumLit "1", mkAtom "+", Syntax.mkNumLit "1"] 
-- is the syntax for `1 + 1`

-- note that the `«term_+_» is the auto-generated SyntaxNodeKind for the + 
syntax

def isAdd11 : Syntax → Bool
  | `(Nat.add 1 1) => true
  | _ => false

#eval isAdd11 (Syntax.mkApp (mkIdent `Nat.add) #[Syntax.mkNumLit "1", 
Syntax.mkNumLit "1"]) -- true
#eval isAdd11 (Syntax.mkApp (mkIdent `Nat.add) #[mkIdent `foo, Syntax.mkNumLit 
"1"]) -- false
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Typed Syntax

Note that x  and y  in this example are of type TSyntax `term , not Syntax . Even though
we are pattern matching on Syntax  which, as we can see in the constructors, is purely
composed of types that are not TSyntax , so what is going on? Basically the `()  Syntax is
smart enough to figure out the most general syntax category the syntax we are matching
might be coming from (in this case term ). It will then use the typed syntax type TSyntax
which is parameterized by the Name  of the syntax category it came from. This is not only
more convenient for the programmer to see what is going on, it also has other benefits. For
Example if we limit the syntax category to just num  in the next example Lean will allow us to
call getNat  on the resulting TSyntax `num  directly without pattern matching or the option
to panic:

If you want to access the Syntax  behind a TSyntax  you can do this using TSyntax.raw
although the coercion machinery should just work most of the time. We will see some
further benefits of the TSyntax  system in the macro chapter.

One last important note about the matching on syntax: In this basic form it only works on
syntax from the term  category. If you want to use it to match on your own syntax categories
you will have to use  `(category| ...) .

Mini Project

As a final mini project for this chapter we will declare the syntax of a mini arithmetic
expression language and a function of type Syntax → Nat  to evaluate it. We will see more
about some of the concepts presented below in future chapters.

def isAdd : Syntax → Option (Syntax × Syntax)
  | `(Nat.add $x $y) => some (x, y)
  | _ => none

#eval isAdd (Syntax.mkApp (mkIdent `Nat.add) #[Syntax.mkNumLit "1", 
Syntax.mkNumLit "1"]) -- some ...
#eval isAdd (Syntax.mkApp (mkIdent `Nat.add) #[mkIdent `foo, Syntax.mkNumLit 
"1"]) -- some ...
#eval isAdd (Syntax.mkApp (mkIdent `Nat.add) #[mkIdent `foo]) -- none

-- Now we are also explicitly marking the function to operate on term syntax
def isLitAdd : TSyntax `term → Option Nat
  | `(Nat.add $x:num $y:num) => some (x.getNat + y.getNat)
  | _ => none

#eval isLitAdd (Syntax.mkApp (mkIdent `Nat.add) #[Syntax.mkNumLit "1", 
Syntax.mkNumLit "1"]) -- some 2
#eval isLitAdd (Syntax.mkApp (mkIdent `Nat.add) #[mkIdent `foo, Syntax.mkNumLit 
"1"]) -- none
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Feel free to play around with this example and extend it in whatever way you want to. The
next chapters will mostly be about functions that operate on Syntax  in some way.

More elaborate examples

Using type classes for notations

We can use type classes in order to add notation that is extensible via the type instead of the
syntax system, this is for example how +  using the typeclasses HAdd  and Add  and other
common operators in Lean are generically defined.

For example, we might want to have a generic notation for subset notation. The first thing
we have to do is define a type class that captures the function we want to build notation for.

The second step is to define the notation, what we can do here is simply turn every instance
of a ⊆  appearing in the code to a call to Subset.subset  because the type class resolution
should be able to figure out which Subset  instance is referred to. Thus the notation will be
a simple:

declare_syntax_cat arith

syntax num : arith
syntax arith "-" arith : arith
syntax arith "+" arith : arith
syntax "(" arith ")" : arith

partial def denoteArith : TSyntax `arith → Nat
  | `(arith| $x:num) => x.getNat
  | `(arith| $x:arith + $y:arith) => denoteArith x + denoteArith y
  | `(arith| $x:arith - $y:arith) => denoteArith x - denoteArith y
  | `(arith| ($x:arith)) => denoteArith x
  | _ => 0

-- You can ignore Elab.TermElabM, what is important for us is that it allows
-- us to use the ``(arith| (12 + 3) - 4)` notation to construct `Syntax`
-- instead of only being able to match on it like this.
def test : Elab.TermElabM Nat := do
  let stx ← `(arith| (12 + 3) - 4)
  pure (denoteArith stx)

#eval test -- 11

class Subset (α : Type u) where
  subset : α → α → Prop
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Let's define a simple theory of sets to test it:

Binders

Because declaring syntax that uses variable binders used to be a rather unintuitive thing to
do in Lean 3, we'll take a brief look at how naturally this can be done in Lean 4.

For this example we will define the well-known notation for the set that contains all
elements x  such that some property holds: {x ∈ ℕ | x < 10}  for example.

First things first we need to extend the theory of sets from above slightly:

Equipped with this function, we can now attempt to intuitively define a basic version of our
notation:

-- precedence is arbitrary for this example
infix:50 " ⊆ " => Subset.subset

-- a `Set` is defined by the elements it contains
-- -> a simple predicate on the type of its elements
def Set (α : Type u) := α → Prop

def Set.mem (x : α) (X : Set α) : Prop := X x

-- Integrate into the already existing typeclass for membership notation
instance : Membership α (Set α) where
  mem := Set.mem

def Set.empty : Set α := λ _ => False

instance : Subset (Set α) where
  subset X Y := ∀ (x : α), x ∈ X → x ∈ Y

example : ∀ (X : Set α), Set.empty ⊆ X := by
  intro X x
  -- ⊢ x ∈ Set.empty → x ∈ X
  intro h
  exact False.elim h -- empty set has no members

-- the basic "all elements such that" function for the notation
def setOf {α : Type} (p : α → Prop) : Set α := p

notation "{ " x " | " p " }" => setOf (fun x => p)

#check { (x : Nat) | x ≤ 1 } -- { x | x ≤ 1 } : Set Nat

example : 1 ∈ { (y : Nat) | y ≤ 1 } := by simp[Membership.mem, Set.mem, setOf]
example : 2 ∈ { (y : Nat) | y ≤ 3 ∧ 1 ≤ y } := by simp[Membership.mem, Set.mem, 
setOf]
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This intuitive notation will indeed deal with what we could throw at it in the way we would
expect it.

As to how one might extend this notation to allow more set-theoretic things such as {x ∈ X 
| p x}  and leave out the parentheses around the bound variables, we refer the reader to
the macro chapter.

Exercises

1. Create an "urgent minus 💀" notation such that 5 * 8 💀 4  returns 20 , and 8 💀 6 

💀 1  returns 3 .

a) Using notation  command. b) Using infix  command. c) Using syntax  command.

Hint: multiplication in Lean 4 is defined as infixl:70 " * " => HMul.hMul .

2. Consider the following syntax categories: term , command , tactic ; and 3 syntax rules
given below. Make use of each of these newly defined syntaxes.

3. Create a syntax  rule that would accept the following commands:

red red red 4

blue 7

blue blue blue blue blue 18

(So, either all red s followed by a number; or all blue s followed by a number; red 
blue blue 5  - shouldn't work.)

Use the following code template:

4. Mathlib has a #help option  command that displays all options available in the current
environment, and their descriptions. #help option pp.r  will display all options
starting with a "pp.r" substring.

Create a syntax  rule that would accept the following commands:

  syntax "good morning" : term
  syntax "hello" : command
  syntax "yellow" : tactic

syntax (name := colors) ...
-- our "elaboration function" that infuses syntax with semantics
@[command_elab colors] def elabColors : CommandElab := λ stx => 
Lean.logInfo "success!"
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#better_help option

#better_help option pp.r

#better_help option some.other.name

Use the following template:

5. Mathlib has a ∑ operator. Create a syntax  rule that would accept the following terms:

∑ x in { 1, 2, 3 }, x^2

∑ x in { "apple", "banana", "cherry" }, x.length

Use the following template:

Hint: use the Std.ExtendedBinder.extBinder  parser. Hint: you need Std4 installed in
your Lean project for these imports to work.

syntax (name := help) ...
-- our "elaboration function" that infuses syntax with semantics
@[command_elab help] def elabHelp : CommandElab := λ stx => Lean.logInfo 
"success!"

import Std.Classes.SetNotation
import Std.Util.ExtendedBinder

syntax (name := bigsumin) ...
-- our "elaboration function" that infuses syntax with semantics
@[term_elab bigsumin] def elabSum : TermElab := λ stx tp => return 
mkNatLit 666
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Macros

What is a macro

Macros in Lean are Syntax → MacroM Syntax  functions. MacroM  is the macro monad which
allows macros to have some static guarantees we will discuss in the next section, you can
mostly ignore it for now.

Macros are registered as handlers for a specific syntax declaration using the macro
attribute. The compiler will take care of applying these function to the syntax for us before
performing actual analysis of the input. This means that the only thing we have to do is
declare our syntax with a specific name and bind a function of type Lean.Macro  to it. Let's
try to reproduce the LXOR  notation from the Syntax  chapter:

That was quite easy! The Macro.throwUnsupported  function can be used by a macro to
indicate that "it doesn't feel responsible for this syntax". In this case it's merely used to fill a
wildcard pattern that should never be reached anyways.

However we can in fact register multiple macros for the same syntax this way if we desire,
they will be tried one after another (the later registered ones have higher priority) -- is
"higher" correct? until one throws either a real error using Macro.throwError  or succeeds,
that is it does not Macro.throwUnsupported . Let's see this in action:

import Lean

open Lean

syntax:10 (name := lxor) term:10 " LXOR " term:11 : term

@[macro lxor] def lxorImpl : Macro
  | `($l:term LXOR $r:term) => `(!$l && $r) -- we can use the quotation 
mechanism to create `Syntax` in macros
  | _ => Macro.throwUnsupported

#eval true LXOR true -- false
#eval true LXOR false -- false
#eval false LXOR true -- true
#eval false LXOR false -- false
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This capability is obviously very powerful! It should not be used lightly and without careful
thinking since it can introduce weird behaviour while writing code later on. The following
example illustrates this weird behaviour:

Without knowing exactly how this macro is implemented this behaviour will be very
confusing to whoever might be debugging an issue based on this. The rule of thumb for
when to use a macro vs. other mechanisms like elaboration is that as soon as you are
building real logic like in the 2nd macro above, it should most likely not be a macro but an
elaborator (explained in the elaboration chapter). This means ideally we want to use macros
for simple syntax to syntax translations, that a human could easily write out themselves as
well but is too lazy to.

Simplifying macro declaration

Now that we know the basics of what a macro is and how to register it we can take a look at
slightly more automated ways to do this (in fact all of the ways about to be presented are
implemented as macros themselves).

First things first there is macro_rules  which basically desugars to functions like the ones we
wrote above, for example:

As you can see, it figures out lot's of things on its own for us:

the name of the syntax declaration
the macro  attribute registration
the throwUnsupported  wildcard

@[macro lxor] def lxorImpl2 : Macro
  -- special case that changes behaviour of the case where the left and
  -- right hand side are these specific identifiers
  | `(true LXOR true) => `(true)
  | _ => Macro.throwUnsupported

#eval true LXOR true -- true, handled by new macro
#eval true LXOR false -- false, still handled by the old

#eval true LXOR true -- true, handled by new macro

def foo := true
#eval foo LXOR foo -- false, handled by old macro, after all the identifiers 
have a different name

syntax:10 term:10 " RXOR " term:11 : term

macro_rules
  | `($l:term RXOR $r:term) => `($l && !$r)
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apart from this it just works like a function that is using pattern matching syntax, we can in
theory encode arbitrarily complex macro functions on the right hand side.

If this is still not short enough for you, there is a next step using the macro  macro:

As you can see, macro  is quite close to notation  already:

it performed syntax declaration for us
it automatically wrote a macro_rules  style function to match on it

The are of course differences as well:

notation  is limited to the term  syntax category
notation  cannot have arbitrary macro code on the right hand side

Syntax Quotations

The basics

So far we've handwaved the `(foo $bar)  syntax to both create and match on Syntax
objects but it's time for a full explanation since it will be essential to all non trivial things that
are syntax related.

First things first we call the `()  syntax a Syntax  quotation. When we plug variables into a
syntax quotation like this: `($x)  we call the $x  part an anti-quotation. When we insert x
like this it is required that x  is of type TSyntax x  where x  is some Name  of a syntax
category. The Lean compiler is actually smart enough to figure the syntax categories that are
allowed in this place out. Hence you might sometimes see errors of the form:

macro l:term:10 " ⊕ " r:term:11 : term => `((!$l && $r) || ($l && !$r))

#eval true ⊕ true -- false
#eval true ⊕ false -- true
#eval false ⊕ true -- true
#eval false ⊕ false -- false

application type mismatch
  x.raw
argument
  x
has type
  TSyntax `a : Type
but is expected to have type
  TSyntax `b : Type
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If you are sure that your thing from the a  syntax category can be used as a b  here you can
declare a coercion of the form:

Which will allow Lean to perform the type cast automatically. If you notice that your a  can
not be used in place of the b  here congrats, you just discovered a bug in your Syntax
function. Similar to the Lean compiler, you could also declare functions that are specific to
certain TSyntax  variants. For example as we have seen in the syntax chapter there exists
the function:

Which is guaranteed to not panic because we know that the Syntax  that the function is
receiving is a numeric literal and can thus naturally be converted to a Nat .

If we use the antiquotation syntax in pattern matching it will, as discussed in the syntax
chapter, give us a a variable x  of type TSyntax y  where y  is the Name  of the syntax
category that fits in the spot where we pattern matched. If we wish to insert a literal $x  into
the Syntax  for some reason, for example macro creating macros, we can escape the anti
quotation using: `($$x) .

If we want to specify the syntax kind we wish x  to be interpreted as we can make this
explicit using: `($x:term)  where term  can be replaced with any other valid syntax category
(e.g. command ) or parser (e.g. ident ).

So far this is only a more formal explanation of the intuitive things we've already seen in the
syntax chapter and up to now in this chapter, next we'll discuss some more advanced anti-
quotations.

Advanced anti-quotations

For convenience we can also use anti-quotations in a way similar to format strings:
`($(mkIdent `c))  is the same as: let x := mkIdent `c; `($x) .

Furthermore there are sometimes situations in which we are not working with basic Syntax
but Syntax  wrapped in more complex datastructures, most notably Array (TSyntax c)  or
TSepArray c s . Where TSepArray c s , is a Syntax  specific type, it is what we get if we

pattern match on some Syntax  that users a separator s  to separate things from the
category c . For example if we match using: $xs,* , xs  will have type TSepArray c "," ,.
With the special case of matching on no specific separator (i.e. whitespace): $xs*  in which
we will receive an Array (TSyntax c) .

instance : Coe (TSyntax `a) (TSyntax `b) where
  coe s := ⟨s.raw⟩

#check TSyntax.getNat -- TSyntax.getNat : TSyntax numLitKind → Nat
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If we are dealing with xs : Array (TSyntax c)  and want to insert it into a quotation we
have two main ways to achieve this:

1. Insert it using a separator, most commonly , : `($xs,*) . This is also the way to insert
a TSepArray c ",""

2. Insert it point blank without a separator (TODO): `()

For example:

The last thing for this section will be so called "anti-quotation splices". There are two kinds of
anti quotation splices, first the so called optional ones. For example we might declare a
syntax with an optional argument, say our own let  (in real projects this would most likely
be a let  in some functional language we are writing a theory about):

There is this optional (" : " term)?  argument involved which can let the user define the
type of the term to the left of it. With the methods we know so far we'd have to write two
macro_rules  now, one for the case with, one for the case without the optional argument.

However the rest of the syntactic translation works exactly the same with and without the
optional argument so what we can do using a splice here is to essentially define both cases
at once:

The $[...]?  part is the splice here, it basically says "if this part of the syntax isn't there, just
ignore the parts on the right hand side that involve anti quotation variables involved here".
So now we can run this syntax both with and without type ascription:

The second and last splice might remind readers of list comprehension as seen for example
in Python. We will demonstrate it using an implementation of map  as a macro:

-- syntactically cut away the first element of a tuple if possible
syntax "cut_tuple " "(" term ", " term,+ ")" : term

macro_rules
  -- cutting away one element of a pair isn't possible, it would not result in 
a tuple
  | `(cut_tuple ($x, $y)) => `(($x, $y))
  | `(cut_tuple ($x, $y, $xs,*)) => `(($y, $xs,*))

#check cut_tuple (1, 2) -- (1, 2) : Nat × Nat
#check cut_tuple (1, 2, 3) -- (2, 3) : Nat × Nat

syntax "mylet " ident (" : " term)? " := " term " in " term : term

macro_rules
  | `(mylet $x $[: $ty]? := $val in $body) => `(let $x $[: $ty]? := $val; 
$body)

#eval mylet x := 5 in x - 10 -- 0, due to subtraction behaviour of `Nat`
#eval mylet x : Int := 5 in x - 10 -- -5, after all it is an `Int` now
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In this case the $[...],*  part is the splice. On the match side it tries to match the pattern
we define inside of it repetitively (given the separator we tell it to). However unlike regular
separator matching it does not give us an Array  or SepArray , instead it allows us to write
another splice on the right hand side that gets evaluated for each time the pattern we
specified matched, with the specific values from the match per iteration.

Hygiene issues and how to solve them

If you are familiar with macro systems in other languages like C you probably know about so
called macro hygiene issues already. A hygiene issue is when a macro introduces an
identifier that collides with an identifier from some syntax that it is including. For example:

Given the fact that macros perform only syntactic translations one might expect the above
eval  to return 10 instead of 42: after all, the resulting syntax should be (fun x => x) 10 .

While this was of course not the intention of the author, this is what would happen in more
primitive macro systems like the one of C. So how does Lean avoid these hygiene issues?
You can read about this in detail in the excellent Beyond Notations paper which discusses
the idea and implementation in Lean in detail. We will merely give an overview of the topic,
since the details are not that interesting for practical uses. The idea described in Beyond
Notations comes down to a concept called "macro scopes". Whenever a new macro is
invoked, a new macro scope (basically a unique number) is added to a list of all the macro
scopes that are active right now. When the current macro introduces a new identifier what is
actually getting added is an identifier of the form:

For example, if the module name is Init.Data.List.Basic , the name is foo.bla , and
macros scopes are [2, 5] we get:

-- run the function given at the end for each element of the list
syntax "foreach " "[" term,* "]" term : term

macro_rules
  | `(foreach [ $[$x:term],* ] $func:term) => `(let f := $func; [ $[f $x],* ])

#eval foreach [1,2,3,4] (Nat.add 2) -- [3, 4, 5, 6]

-- Applying this macro produces a function that binds a new identifier `x`.
macro "const" e:term : term => `(fun x => $e)

-- But `x` can also be defined by a user
def x : Nat := 42

-- Which `x` should be used by the compiler in place of `$e`?
#eval (const x) 10 -- 42

<actual name>._@.(<module_name>.<scopes>)*.<module_name>._hyg.<scopes>
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Since macro scopes are unique numbers the list of macro scopes appended in the end of
the name will always be unique across all macro invocations, hence macro hygiene issues
like the ones above are not possible.

If you are wondering why there is more than just the macro scopes to this name generation,
that is because we may have to combine scopes from different files/modules. The main
module being processed is always the right most one. This situation may happen when we
execute a macro generated in a file imported in the current file.

The delimiter _hyg  at the end is used just to improve performance of the function
Lean.Name.hasMacroScopes  -- the format could also work without it.

This was a lot of technical details. You do not have to understand them in order to use
macros, if you want you can just keep in mind that Lean will not allow name clashes like the
one in the const  example.

Note that this extends to all names that are introduced using syntax quotations, that is if
you write a macro that produces: `(def foo := 1) , the user will not be able to access foo
because the name will subject to hygiene. Luckily there is a way to circumvent this. You can
use mkIdent  to generate a raw identifier, for example: `(def $(mkIdent `foo) := 1) . In
this case it won't be subject to hygiene and accessible to the user.

MonadQuotation and MonadRef

Based on this description of the hygiene mechanism one interesting question pops up, how
do we know what the current list of macro scopes actually is? After all in the macro functions
that were defined above there is never any explicit passing around of the scopes happening.
As is quite common in functional programming, as soon as we start having some additional
state that we need to bookkeep (like the macro scopes) this is done with a monad, this is the
case here as well with a slight twist.

Instead of implementing this for only a single monad MacroM  the general concept of
keeping track of macro scopes in monadic way is abstracted away using a type class called
MonadQuotation . This allows any other monad to also easily provide this hygienic Syntax

creation mechanism by simply implementing this type class.

This is also the reason that while we are able to use pattern matching on syntax with
`(syntax)  we cannot just create Syntax  with the same syntax in pure functions: there is

no Monad  implementing MonadQuotation  involved in order to keep track of the macro
scopes.

foo.bla._@.Init.Data.List.Basic._hyg.2.5

foo.bla._@.Init.Data.List.Basic.2.1.Init.Lean.Expr_hyg.4
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Now let's take a brief look at the MonadQuotation  type class:

Since MonadQuotation  is based on MonadRef , let's take a look at MonadRef  first. The idea
here is quite simple: MonadRef  is meant to be seen as an extension to the Monad  typeclass
which

gives us a reference to a Syntax  value with getRef
can evaluate a certain monadic action m α  with a new reference to a Syntax  using
withRef

On it's own MonadRef  isn't exactly interesting, but once it is combined with MonadQuotation
it makes sense.

As you can see MonadQuotation  extends MonadRef  and adds 3 new functions:

getCurrMacroScope  which obtains the latest MacroScope  that was created
getMainModule  which (obviously) obtains the name of the main module, both of these

are used to create these hygienic identifiers explained above
withFreshMacroScope  which will compute the next macro scope and run some

computation m α  that performs syntax quotation with this new macro scope in order
to avoid name clashes. While this is mostly meant to be used internally whenever a
new macro invocation happens, it can sometimes make sense to use this in our own
macros, for example when we are generating some syntax block repeatedly and want
to avoid name clashes.

How MonadRef  comes into play here is that Lean requires a way to indicate errors at certain
positions to the user. One thing that wasn't introduced in the Syntax  chapter is that values
of type Syntax  actually carry their position in the file around as well. When an error is
detected, it is usually bound to a Syntax  value which tells Lean where to indicate the error
in the file. What Lean will do when using withFreshMacroScope  is to apply the position of
the result of getRef  to each introduced symbol, which then results in better error positions
than not applying any position.

To see error positioning in action, we can write a little macro that makes use of it:

namespace Playground

class MonadRef (m : Type → Type) where
  getRef      : m Syntax
  withRef {α} : Syntax → m α → m α

class MonadQuotation (m : Type → Type) extends MonadRef m where
  getCurrMacroScope : m MacroScope
  getMainModule     : m Name
  withFreshMacroScope {α : Type} : m α → m α

end Playground
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Obviously controlling the positions of errors in this way is quite important for a good user
experience.

Mini project

As a final mini project for this section we will re-build the arithmetic DSL from the syntax
chapter in a slightly more advanced way, using a macro this time so we can actually fully
integrate it into the Lean syntax.

Again feel free to play around with it. If you want to build more complex things, like
expressions with variables, maybe consider building an inductive type using macros instead.
Once you got your arithmetic expression term as an inductive, you could then write a
function that takes some form of variable assignment and evaluates the given expression
for this assignment. You could also try to embed arbitrary term s into your arith language
using some special syntax or whatever else comes to your mind.

syntax "error_position" ident : term

macro_rules
  | `(error_position all) => Macro.throwError "Ahhh"
  -- the `%$tk` syntax gives us the Syntax of the thing before the %,
  -- in this case `error_position`, giving it the name `tk`
  | `(error_position%$tk first) => withRef tk (Macro.throwError "Ahhh")

#check_failure error_position all -- the error is indicated at `error_position 
all`
#check_failure error_position first -- the error is only indicated at 
`error_position`

declare_syntax_cat arith

syntax num : arith
syntax arith "-" arith : arith
syntax arith "+" arith : arith
syntax "(" arith ")" : arith
syntax "[Arith|" arith "]" : term

macro_rules
  | `([Arith| $x:num]) => `($x)
  | `([Arith| $x:arith + $y:arith]) => `([Arith| $x] + [Arith| $y]) -- 
recursive macros are possible
  | `([Arith| $x:arith - $y:arith]) => `([Arith| $x] - [Arith| $y])
  | `([Arith| ($x:arith)]) => `([Arith| $x])

#eval [Arith| (12 + 3) - 4] -- 11
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More elaborate examples

Binders 2.0

As promised in the syntax chapter here is Binders 2.0. We'll start by reintroducing our theory
of sets:

The goal for this section will be to allow for both {x : X | p x}  and {x ∈ X, p x}
notations. In principle there are two ways to do this:

1. Define a syntax and macro for each way to bind a variable we might think of
2. Define a syntax category of binders that we could reuse across other binder constructs

such as Σ  or Π  as well and implement macros for the { | }  case

In this section we will use approach 2 because it is more easily reusable.

Now let's define the two binders constructs we are interested in:

And finally the macros to expand our syntax:

def Set (α : Type u) := α → Prop
def Set.mem (x : α) (X : Set α) : Prop := X x

-- Integrate into the already existing typeclass for membership notation
instance : Membership α (Set α) where
  mem := Set.mem

def Set.empty : Set α := λ _ => False

-- the basic "all elements such that" function for the notation
def setOf {α : Type} (p : α → Prop) : Set α := p

declare_syntax_cat binder_construct
syntax "{" binder_construct "|" term "}" : term

syntax ident " : " term : binder_construct
syntax ident " ∈ " term : binder_construct
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Reading further

If you want to know more about macros you can read:

the API docs: TODO link
the source code: the lower parts of Init.Prelude as you can see they are declared quite
early in Lean because of their importance to building up syntax
the aforementioned Beyond Notations paper

macro_rules
  | `({ $var:ident : $ty:term | $body:term }) => `(setOf (fun ($var : $ty) => 
$body))
  | `({ $var:ident ∈ $s:term | $body:term }) => `(setOf (fun $var => $var ∈ $s 
∧ $body))

-- Old examples with better syntax:
#check { x : Nat | x ≤ 1 } -- setOf fun x => x ≤ 1 : Set Nat

example : 1 ∈ { y : Nat | y ≤ 1 } := by simp[Membership.mem, Set.mem, setOf]
example : 2 ∈ { y : Nat | y ≤ 3 ∧ 1 ≤ y } := by simp[Membership.mem, Set.mem, 
setOf]

-- New examples:
def oneSet : Set Nat := λ x => x = 1
#check { x ∈ oneSet | 10 ≤ x } -- setOf fun x => x ∈ oneSet ∧ 10 ≤ x : Set Nat

example : ∀ x, ¬(x ∈ { y ∈ oneSet | y ≠ 1 }) := by
  intro x h
  -- h : x ∈ setOf fun y => y ∈ oneSet ∧ y ≠ 1
  -- ⊢ False
  cases h
  -- : x ∈ oneSet
  -- : x ≠ 1
  contradiction
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Elaboration
The elaborator is the component in charge of turning the user facing Syntax  into
something with which the rest of the compiler can work. Most of the time, this means
translating Syntax  into Expr s but there are also other use cases such as #check  or #eval .
Hence the elaborator is quite a large piece of code, it lives here.

Command elaboration

A command is the highest level of Syntax , a Lean file is made up of a list of commands. The
most commonly used commands are declarations, for example:

def

inductive

structure

but there are also other ones, most notably #check , #eval  and friends. All commands live
in the command  syntax category so in order to declare custom commands, their syntax has
to be registered in that category.

Giving meaning to commands

The next step is giving some semantics to the syntax. With commands, this is done by
registering a so called command elaborator.

Command elaborators have type CommandElab  which is an alias for: Syntax → 
CommandElabM Unit . What they do, is take the Syntax  that represents whatever the user
wants to call the command and produce some sort of side effect on the CommandElabM
monad, after all the return value is always Unit . The CommandElabM  monad has 4 main
kinds of side effects:

1. Logging messages to the user via the Monad  extensions MonadLog  and
AddMessageContext , like #check . This is done via functions that can be found in
Lean.Elab.Log , the most notable ones being: logInfo , logWarning  and logError .

2. Interacting with the Environment  via the Monad  extension MonadEnv . This is the place
where all of the relevant information for the compiler is stored, all known declarations,
their types, doc-strings, values etc. The current environment can be obtained via
getEnv  and set via setEnv  once it has been modified. Note that quite often wrappers

around setEnv  like addDecl  are the correct way to add information to the
Environment .
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3. Performing IO , CommandElabM  is capable of running any IO  operation. For example
reading from files and based on their contents perform declarations.

4. Throwing errors, since it can run any kind of IO , it is only natural that it can throw
errors via throwError .

Furthermore there are a bunch of other Monad  extensions that are supported by
CommandElabM :

MonadRef  and MonadQuotation  for Syntax  quotations like in macros
MonadOptions  to interact with the options framework
MonadTrace  for debug trace information

TODO: There are a few others though I'm not sure whether they are relevant, see the
instance in Lean.Elab.Command

Command elaboration

Now that we understand the type of command elaborators let's take a brief look at how the
elaboration process actually works:

1. Check whether any macros can be applied to the current Syntax . If there is a macro
that does apply and does not throw an error the resulting Syntax  is recursively
elaborated as a command again.

2. If no macro can be applied, we search for all CommandElab s that have been registered
for the SyntaxKind  of the Syntax  we are elaborating, using the command_elab
attribute.

3. All of these CommandElab  are then tried in order until one of them does not throw an
unsupportedSyntaxException , Lean's way of indicating that the elaborator "feels

responsible" for this specific Syntax  construct. Note that it can still throw a regular
error to indicate to the user that something is wrong. If no responsible elaborator is
found, then the command elaboration is aborted with an unexpected syntax  error
message.

As you can see the general idea behind the procedure is quite similar to ordinary macro
expansion.

Making our own

Now that we know both what a CommandElab  is and how they are used, we can start looking
into writing our own. The steps for this, as we learned above, are:

1. Declaring the syntax
2. Declaring the elaborator
3. Registering the elaborator as responsible for the syntax via the command_elab

attribute.

10/06/2024, 16:09 Metaprogramming in Lean 4

https://leanprover-community.github.io/lean4-metaprogramming-book/print.html 73/134



Let's see how this is done:

You might think that this is a little boiler-platey and it turns out the Lean devs did as well so
they added a macro for this!

Note that, due to the fact that command elaboration supports multiple registered
elaborators for the same syntax, we can in fact overload syntax, if we want to.

Furthermore it is also possible to only overload parts of syntax by throwing an
unsupportedSyntaxException  in the cases we want the default handler to deal with it or

just letting the elab  command handle it.

In the following example, we are not extending the original #check  syntax, but adding a
new SyntaxKind  for this specific syntax construct. However, from the point of view of the
user, the effect is basically the same.

This is actually extending the original #check

import Lean

open Lean Elab Command Term Meta

syntax (name := mycommand1) "#mycommand1" : command -- declare the syntax

@[command_elab mycommand1]
def mycommand1Impl : CommandElab := fun stx => do -- declare and register the 
elaborator
  logInfo "Hello World"

#mycommand1 -- Hello World

elab "#mycommand2" : command =>
  logInfo "Hello World"

#mycommand2 -- Hello World

@[command_elab mycommand1]
def myNewImpl : CommandElab := fun stx => do
  logInfo "new!"

#mycommand1 -- new!

elab "#check" "mycheck" : command => do
  logInfo "Got ya!"
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Mini project

As a final mini project for this section let's build a command elaborator that is actually
useful. It will take a command and use the same mechanisms as elabCommand  (the entry
point for command elaboration) to tell us which macros or elaborators are relevant to the
command we gave it.

We will not go through the effort of actually reimplementing elabCommand  though

TODO: Maybe we should also add a mini project that demonstrates a non # style command
aka a declaration, although nothing comes to mind right now. TODO: Define a conjecture
declaration, similar to lemma/theorem , except that it is automatically sorried. The sorry
could be a custom one, to reflect that the "conjecture" might be expected to be true.

@[command_elab Lean.Parser.Command.check] def mySpecialCheck : CommandElab := 
fun stx => do
  if let some str := stx[1].isStrLit? then
    logInfo s!"Specially elaborated string literal!: {str} : String"
  else
    throwUnsupportedSyntax

#check mycheck -- Got ya!
#check "Hello" -- Specially elaborated string literal!: Hello : String
#check Nat.add -- Nat.add : Nat → Nat → Nat

elab "#findCElab " c:command : command => do
  let macroRes ← liftMacroM <| expandMacroImpl? (←getEnv) c
  match macroRes with
  | some (name, _) => logInfo s!"Next step is a macro: {name.toString}"
  | none =>
    let kind := c.raw.getKind
    let elabs := commandElabAttribute.getEntries (←getEnv) kind
    match elabs with
    | [] => logInfo s!"There is no elaborators for your syntax, looks like its 
bad :("
    | _ => logInfo s!"Your syntax may be elaborated by: {elabs.map (fun el => 
el.declName.toString)}"

#findCElab def lala := 12 -- Your syntax may be elaborated by: 
[Lean.Elab.Command.elabDeclaration]
#findCElab abbrev lolo := 12 -- Your syntax may be elaborated by: 
[Lean.Elab.Command.elabDeclaration]
#findCElab #check foo -- even our own syntax!: Your syntax may be elaborated 
by: [mySpecialCheck, Lean.Elab.Command.elabCheck]
#findCElab open Hi -- Your syntax may be elaborated by: 
[Lean.Elab.Command.elabOpen]
#findCElab namespace Foo -- Your syntax may be elaborated by: 
[Lean.Elab.Command.elabNamespace]
#findCElab #findCElab open Bar -- even itself!: Your syntax may be elaborated 
by: [«_aux_lean_elaboration___elabRules_command#findCElab__1»]
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Term elaboration

A term is a Syntax  object that represents some sort of Expr . Term elaborators are the
ones that do the work for most of the code we write. Most notably they elaborate all the
values of things like definitions, types (since these are also just Expr ) etc.

All terms live in the term  syntax category (which we have seen in action in the macro
chapter already). So, in order to declare custom terms, their syntax needs to be registered in
that category.

Giving meaning to terms

As with command elaboration, the next step is giving some semantics to the syntax. With
terms, this is done by registering a so called term elaborator.

Term elaborators have type TermElab  which is an alias for: Syntax → Option Expr → 
TermElabM Expr . This type is already quite different from command elaboration:

As with command elaboration the Syntax  is whatever the user used to create this
term
The Option Expr  is the expected type of the term, since this cannot always be known
it is only an Option  argument
Unlike command elaboration, term elaboration is not only executed because of its side
effects -- the TermElabM Expr  return value does actually contain something of interest,
namely, the Expr  that represents the Syntax  object.

TermElabM  is basically an upgrade of CommandElabM  in every regard: it supports all the
capabilities we mentioned above, plus two more. The first one is quite simple: On top of
running IO  code it is also capable of running MetaM  code, so Expr s can be constructed
nicely. The second one is very specific to the term elaboration loop.

Term elaboration

The basic idea of term elaboration is the same as command elaboration: expand macros
and recurse or run term elaborators that have been registered for the Syntax  via the
term_elab  attribute (they might in turn run term elaboration) until we are done. There is,

however, one special action that a term elaborator can do during its execution.

A term elaborator may throw Except.postpone . This indicates that the term elaborator
requires more information to continue its work. In order to represent this missing
information, Lean uses so called synthetic metavariables. As you know from before,
metavariables are holes in Expr s that are waiting to be filled in. Synthetic metavariables are
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different in that they have special methods that are used to solve them, registered in
SyntheticMVarKind . Right now, there are four of these:

typeClass , the metavariable should be solved with typeclass synthesis
coe , the metavariable should be solved via coercion (a special case of typeclass)
tactic , the metavariable is a tactic term that should be solved by running a tactic
postponed , the ones that are created at Except.postpone

Once such a synthetic metavariable is created, the next higher level term elaborator will
continue. At some point, execution of postponed metavariables will be resumed by the term
elaborator, in hopes that it can now complete its execution. We can try to see this in action
with the following example:

What happened here is that the elaborator for function applications started at List.foldr
which is a generic function so it created metavariables for the implicit type parameters.
Then, it attempted to elaborate the first argument .add .

In case you don't know how .name  works, the basic idea is that quite often (like in this case)
Lean should be able to infer the output type (in this case Nat ) of a function (in this case
Nat.add ). In such cases, the .name  feature will then simply search for a function named
name  in the namespace Nat . This is especially useful when you want to use constructors of

a type without referring to its namespace or opening it, but can also be used like above.

Now back to our example, while Lean does at this point already know that .add  needs to
have type: ?m1 → ?m2 → ?m2  (where ?x  is notation for a metavariable) the elaborator for
.add  does need to know the actual value of ?m2  so the term elaborator postpones

execution (by internally creating a synthetic metavariable in place of .add ), the elaboration
of the other two arguments then yields the fact that ?m2  has to be Nat  so once the .add
elaborator is continued it can work with this information to complete elaboration.

We can also easily provoke cases where this does not work out. For example:

In this case .add  first postponed its execution, then got called again but didn't have enough
information to finish elaboration and thus failed.

#check set_option trace.Elab.postpone true in List.foldr .add 0 [1,2,3] -- 
[Elab.postpone] .add : ?m.5695 → ?m.5696 → ?m.5696

#check_failure set_option trace.Elab.postpone true in List.foldr .add
-- [Elab.postpone] .add : ?m.5808 → ?m.5809 → ?m.5809
-- invalid dotted identifier notation, expected type is not of the form (... → 
C ...) where C is a constant
  -- ?m.5808 → ?m.5809 → ?m.5809
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Making our own

Adding new term elaborators works basically the same way as adding new command
elaborators so we'll only take a very brief look:

Mini project

As a final mini project for this chapter we will recreate one of the most commonly used Lean
syntax sugars, the ⟨a,b,c⟩  notation as a short hand for single constructor types:

syntax (name := myterm1) "myterm 1" : term

def mytermValues := [1, 2]

@[term_elab myterm1]
def myTerm1Impl : TermElab := fun stx type? =>
  mkAppM ``List.get! #[.const ``mytermValues [], mkNatLit 0] -- `MetaM` code

#eval myterm 1 -- 1

-- Also works with `elab`
elab "myterm 2" : term => do
  mkAppM ``List.get! #[.const ``mytermValues [], mkNatLit 1] -- `MetaM` code

#eval myterm 2 -- 2
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As a final note, we can shorten the postponing act by using an additional syntax sugar of the
elab  syntax instead:

Exercises

1. Consider the following code. Rewrite syntax  + @[term_elab hi]... : TermElab
combination using just elab .

-- slightly different notation so no ambiguity happens
syntax (name := myanon) "⟨⟨" term,* "⟩⟩" : term

def getCtors (typ : Name) : MetaM (List Name) := do
  let env ← getEnv
  match env.find? typ with
  | some (ConstantInfo.inductInfo val) =>
    pure val.ctors
  | _ => pure []

@[term_elab myanon]
def myanonImpl : TermElab := fun stx typ? => do
  -- Attempt to postpone execution if the type is not known or is a 
metavariable.
  -- Metavariables are used by things like the function elaborator to fill
  -- out the values of implicit parameters when they haven't gained enough
  -- information to figure them out yet.
  -- Term elaborators can only postpone execution once, so the elaborator
  -- doesn't end up in an infinite loop. Hence, we only try to postpone it,
  -- otherwise we may cause an error.
  tryPostponeIfNoneOrMVar typ?
  -- If we haven't found the type after postponing just error
  let some typ := typ? | throwError "expected type must be known"
  if typ.isMVar then
    throwError "expected type must be known"
  let Expr.const base .. := typ.getAppFn | throwError s!"type is not of the 
expected form: {typ}"
  let [ctor] ← getCtors base | throwError "type doesn't have exactly one 
constructor"
  let args := TSyntaxArray.mk stx[1].getSepArgs
  let stx ← `($(mkIdent ctor) $args*) -- syntax quotations
  elabTerm stx typ -- call term elaboration recursively

#check (⟨⟨1, sorry⟩⟩ : Fin 12) -- { val := 1, isLt := (_ : 1 < 12) } : Fin 12
#check_failure ⟨⟨1, sorry⟩⟩ -- expected type must be known
#check_failure (⟨⟨0⟩⟩ : Nat) -- type doesn't have exactly one constructor
#check_failure (⟨⟨⟩⟩ : Nat → Nat) -- type is not of the expected form: Nat -> 
Nat

-- This `t` syntax will effectively perform the first two lines of `myanonImpl`
elab "⟨⟨" args:term,* "⟩⟩" : term <= t => do
  sorry
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2. Here is some syntax taken from a real mathlib command alias .

We want alias hi ← hello yes  to print out the identifiers after ←  - that is, "hello"
and "yes".

Please add these semantics:

a) using syntax  + @[command_elab alias] def elabOurAlias : CommandElab . b)
using syntax  + elab_rules . c) using elab .

3. Here is some syntax taken from a real mathlib tactic nth_rewrite .

We want nth_rewrite 5 [←add_zero a] at h  to print out "rewrite location!"  if
the user provided location, and "rewrite target!"  if the user didn't provide location.

Please add these semantics:

syntax (name := hi) term " ♥ " " ♥ "? " ♥ "? : term

@[term_elab hi]

def heartElab : TermElab := fun stx tp =>
  match stx with
    | `($l:term ♥) => do
      let nExpr ← elabTermEnsuringType l (mkConst `Nat)
      return Expr.app (Expr.app (Expr.const `Nat.add []) nExpr) (mkNatLit 

1)
    | `($l:term ♥♥) => do
      let nExpr ← elabTermEnsuringType l (mkConst `Nat)
      return Expr.app (Expr.app (Expr.const `Nat.add []) nExpr) (mkNatLit 
2)
    | `($l:term ♥♥♥) => do

      let nExpr ← elabTermEnsuringType l (mkConst `Nat)
      return Expr.app (Expr.app (Expr.const `Nat.add []) nExpr) (mkNatLit 
3)
    | _ =>
      throwUnsupportedSyntax

syntax (name := our_alias) (docComment)? "our_alias " ident " ← " ident* : 
command

open Parser.Tactic
syntax (name := nthRewriteSeq) "nth_rewrite " (config)? num rwRuleSeq 

(ppSpace location)? : tactic
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a) using syntax  + @[tactic nthRewrite] def elabNthRewrite : 
Lean.Elab.Tactic.Tactic . b) using syntax  + elab_rules . c) using elab .
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Embedding DSLs By Elaboration
In this chapter we will learn how to use elaboration to build a DSL. We will not explore the
full power of MetaM , and simply gesture at how to get access to this low-level machinery.

More precisely, we shall enable Lean to understand the syntax of IMP, which is a simple
imperative language, often used for teaching operational and denotational semantics.

We are not going to define everything with the same encoding that the book does. For
instance, the book defines arithmetic expressions and boolean expressions. We, will take a
different path and just define generic expressions that take unary or binary operators.

This means that we will allow weirdnesses like 1 + true ! But it will simplify the encoding,
the grammar and consequently the metaprogramming didactic.

Defining our AST

We begin by defining our atomic literal value.

This is our only unary operator

These are our binary operations.

Now we define the expressions that we want to handle.

import Lean

open Lean Elab Meta

inductive IMPLit
  | nat  : Nat  → IMPLit
  | bool : Bool → IMPLit

inductive IMPUnOp
  | not

inductive IMPBinOp
  | and | add | less

inductive IMPExpr
  | lit : IMPLit → IMPExpr
  | var : String → IMPExpr
  | un  : IMPUnOp → IMPExpr → IMPExpr
  | bin : IMPBinOp → IMPExpr → IMPExpr → IMPExpr
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And finally the commands of our language. Let's follow the book and say that "each piece of
a program is also a program":

Elaborating literals

Now that we have our data types, let's elaborate terms of Syntax  into terms of Expr . We
begin by defining the syntax and an elaboration function for literals.

Elaborating expressions

In order to elaborate expressions, we also need a way to elaborate our unary and binary
operators.

Notice that these could very much be pure functions ( Syntax → Expr ), but we're staying in
MetaM  because it allows us to easily throw an error for match completion.

inductive IMPProgram
  | Skip   : IMPProgram
  | Assign : String → IMPExpr → IMPProgram
  | Seq    : IMPProgram → IMPProgram → IMPProgram
  | If     : IMPExpr → IMPProgram → IMPProgram → IMPProgram
  | While  : IMPExpr → IMPProgram → IMPProgram

declare_syntax_cat imp_lit
syntax num       : imp_lit
syntax "true"    : imp_lit
syntax "false"   : imp_lit

def elabIMPLit : Syntax → MetaM Expr
  -- `mkAppM` creates an `Expr.app`, given the function `Name` and the args
  -- `mkNatLit` creates an `Expr` from a `Nat`
  | `(imp_lit| $n:num) => mkAppM ``IMPLit.nat  #[mkNatLit n.getNat]
  | `(imp_lit| true  ) => mkAppM ``IMPLit.bool #[.const ``Bool.true []]
  | `(imp_lit| false ) => mkAppM ``IMPLit.bool #[.const ``Bool.false []]
  | _ => throwUnsupportedSyntax

elab "test_elabIMPLit " l:imp_lit : term => elabIMPLit l

#reduce test_elabIMPLit 4     -- IMPLit.nat 4
#reduce test_elabIMPLit true  -- IMPLit.bool true
#reduce test_elabIMPLit false -- IMPLit.bool true
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Now we define the syntax for expressions:

Let's also allow parentheses so the IMP programmer can denote their parsing precedence.

Now we can elaborate our expressions. Note that expressions can be recursive. This means
that our elabIMPExpr  function will need to be recursive! We'll need to use partial
because Lean can't prove the termination of Syntax  consumption alone.

declare_syntax_cat imp_unop
syntax "not"     : imp_unop

def elabIMPUnOp : Syntax → MetaM Expr
  | `(imp_unop| not) => return .const ``IMPUnOp.not []
  | _ => throwUnsupportedSyntax

declare_syntax_cat imp_binop
syntax "+"       : imp_binop
syntax "and"     : imp_binop
syntax "<"       : imp_binop

def elabIMPBinOp : Syntax → MetaM Expr
  | `(imp_binop| +)   => return .const ``IMPBinOp.add []
  | `(imp_binop| and) => return .const ``IMPBinOp.and []
  | `(imp_binop| <)   => return .const ``IMPBinOp.less []
  | _ => throwUnsupportedSyntax

declare_syntax_cat                   imp_expr
syntax imp_lit                     : imp_expr
syntax ident                       : imp_expr
syntax imp_unop imp_expr           : imp_expr
syntax imp_expr imp_binop imp_expr : imp_expr

syntax "(" imp_expr ")" : imp_expr
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Elaborating programs

And now we have everything we need to elaborate our IMP programs!

partial def elabIMPExpr : Syntax → MetaM Expr
  | `(imp_expr| $l:imp_lit) => do
    let l ← elabIMPLit l
    mkAppM ``IMPExpr.lit #[l]
  -- `mkStrLit` creates an `Expr` from a `String`
  | `(imp_expr| $i:ident) => mkAppM ``IMPExpr.var #[mkStrLit i.getId.toString]
  | `(imp_expr| $b:imp_unop $e:imp_expr) => do
    let b ← elabIMPUnOp b
    let e ← elabIMPExpr e -- recurse!
    mkAppM ``IMPExpr.un #[b, e]
  | `(imp_expr| $l:imp_expr $b:imp_binop $r:imp_expr) => do
    let l ← elabIMPExpr l -- recurse!
    let r ← elabIMPExpr r -- recurse!
    let b ← elabIMPBinOp b
    mkAppM ``IMPExpr.bin #[b, l, r]
  | `(imp_expr| ($e:imp_expr)) => elabIMPExpr e
  | _ => throwUnsupportedSyntax

elab "test_elabIMPExpr " e:imp_expr : term => elabIMPExpr e

#reduce test_elabIMPExpr a
-- IMPExpr.var "a"

#reduce test_elabIMPExpr a + 5
-- IMPExpr.bin IMPBinOp.add (IMPExpr.var "a") (IMPExpr.lit (IMPLit.nat 5))

#reduce test_elabIMPExpr 1 + true
-- IMPExpr.bin IMPBinOp.add (IMPExpr.lit (IMPLit.nat 1)) (IMPExpr.lit 
(IMPLit.bool true))
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And we can finally test our full elaboration pipeline. Let's use the following syntax:

declare_syntax_cat           imp_program
syntax "skip"              : imp_program
syntax ident ":=" imp_expr : imp_program

syntax imp_program ";;" imp_program : imp_program

syntax "if" imp_expr "then" imp_program "else" imp_program "fi" : imp_program
syntax "while" imp_expr "do" imp_program "od" : imp_program

partial def elabIMPProgram : Syntax → MetaM Expr
  | `(imp_program| skip) => return .const ``IMPProgram.Skip []
  | `(imp_program| $i:ident := $e:imp_expr) => do
    let i : Expr := mkStrLit i.getId.toString
    let e ← elabIMPExpr e
    mkAppM ``IMPProgram.Assign #[i, e]
  | `(imp_program| $p₁:imp_program ;; $p₂:imp_program) => do
    let p₁ ← elabIMPProgram p₁
    let p₂ ← elabIMPProgram p₂
    mkAppM ``IMPProgram.Seq #[p₁, p₂]
  | `(imp_program| if $e:imp_expr then $pT:imp_program else $pF:imp_program fi) 
=> do
    let e ← elabIMPExpr e
    let pT ← elabIMPProgram pT
    let pF ← elabIMPProgram pF
    mkAppM ``IMPProgram.If #[e, pT, pF]
  | `(imp_program| while $e:imp_expr do $pT:imp_program od) => do
    let e ← elabIMPExpr e
    let pT ← elabIMPProgram pT
    mkAppM ``IMPProgram.While #[e, pT]
  | _ => throwUnsupportedSyntax

elab ">>" p:imp_program "<<" : term => elabIMPProgram p

#reduce >>
a := 5;;
if not a and 3 < 4 then
  c := 5
else
  a := a + 1
fi;;
b := 10
<<
-- IMPProgram.Seq (IMPProgram.Assign "a" (IMPExpr.lit (IMPLit.nat 5)))
--   (IMPProgram.Seq
--     (IMPProgram.If
--       (IMPExpr.un IMPUnOp.not
--         (IMPExpr.bin IMPBinOp.and (IMPExpr.var "a")
--           (IMPExpr.bin IMPBinOp.less (IMPExpr.lit (IMPLit.nat 3)) 
(IMPExpr.lit (IMPLit.nat 4)))))
--       (IMPProgram.Assign "c" (IMPExpr.lit (IMPLit.nat 5)))
--       (IMPProgram.Assign "a" (IMPExpr.bin IMPBinOp.add (IMPExpr.var "a") 
(IMPExpr.lit (IMPLit.nat 1)))))
--     (IMPProgram.Assign "b" (IMPExpr.lit (IMPLit.nat 10))))
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Tactics
Tactics are Lean programs that manipulate a custom state. All tactics are, in the end, of type
TacticM Unit . This has the type:

But before demonstrating how to use TacticM , we shall explore macro-based tactics.

Tactics by Macro Expansion

Just like many other parts of the Lean 4 infrastructure, tactics too can be declared by
lightweight macro expansion.

For example, we build an example of a custom_sorry_macro  that elaborates into a sorry .
We write this as a macro expansion, which expands the piece of syntax
custom_sorry_macro  into the piece of syntax sorry :

Implementing trivial: Extensible Tactics by Macro Expansion

As more complex examples, we can write a tactic such as custom_tactic , which is initially
completely unimplemented, and can be extended with more tactics. We start by simply
declaring the tactic with no implementation:

We will now add the rfl  tactic into custom_tactic , which will allow us to prove the
previous theorem

-- from Lean/Elab/Tactic/Basic.lean
TacticM = ReaderT Context $ StateRefT State TermElabM

import Lean.Elab.Tactic

macro "custom_sorry_macro" : tactic => `(tactic| sorry)

example : 1 = 42 := by
  custom_sorry_macro

syntax "custom_tactic" : tactic

/-- error: tactic 'tacticCustom_tactic' has not been implemented -/
example : 42 = 42 := by
  custom_tactic
  sorry
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We can now try a harder problem, that cannot be immediately dispatched by rfl :

We extend the custom_tactic  tactic with a tactic that tries to break And  down with apply 
And.intro , and then (recursively (!)) applies custom_tactic  to the two cases with (<;> 
trivial)  to solve the generated subcases 43 = 43 , 42 = 42 .

The above declaration uses <;>  which is a tactic combinator. Here, a <;> b  means "run
tactic a , and apply "b" to each goal produced by a ". Thus, And.intro <;> custom_tactic
means "run And.intro , and then run custom_tactic  on each goal". We test it out on our
previous theorem and see that we dispatch the theorem.

In summary, we declared an extensible tactic called custom_tactic . It initially had no
elaboration at all. We added the rfl  as an elaboration of custom_tactic , which allowed it
to solve the goal 42 = 42 . We then tried a harder theorem, 43 = 43 ∧ 42 = 42  which
custom_tactic  was unable to solve. We were then able to enrich custom_tactic  to split

"and" with And.intro , and also recursively call custom_tactic  in the two subcases.

Implementing <;>: Tactic Combinators by Macro Expansion

Recall that in the previous section, we said that a <;> b  meant "run a , and then run b  for
all goals". In fact, <;>  itself is a tactic macro. In this section, we will implement the syntax a 
and_then b  which will stand for "run a , and then run b  for all goals".

macro_rules
| `(tactic| custom_tactic) => `(tactic| rfl)

example : 42 = 42 := by
   custom_tactic
-- Goals accomplished 🎉

#check_failure (by custom_tactic : 42 = 43 ∧ 42 = 42)
-- type mismatch
--   Iff.rfl
-- has type
--   ?m.1437 ↔ ?m.1437 : Prop
-- but is expected to have type
--   42 = 43 ∧ 42 = 42 : Prop

macro_rules
| `(tactic| custom_tactic) => `(tactic| apply And.intro <;> custom_tactic)

example : 43 = 43 ∧ 42 = 42 := by
  custom_tactic
-- Goals accomplished 🎉
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Exploring TacticM

The simplest tactic: sorry

In this section, we wish to write a tactic that fills the proof with sorry:

We begin by declaring such a tactic:

This defines a syntax extension to Lean, where we are naming the piece of syntax
custom_sorry_0  as living in tactic  syntax category. This informs the elaborator that, in the

context of elaborating tactic s, the piece of syntax custom_sorry_0  must be elaborated as
what we write to the right-hand-side of the =>  (the actual implementation of the tactic).

Next, we write a term in TacticM Unit  to fill in the goal with sorryAx α , which can
synthesize an artificial term of type α . To do this, we first access the goal with
Lean.Elab.Tactic.getMainGoal : Tactic MVarId , which returns the main goal,

represented as a metavariable. Recall that under types-as-propositions, the type of our goal
must be the proposition that 1 = 2 . We check this by printing the type of goal .

-- 1. We declare the syntax `and_then`
syntax tactic " and_then " tactic : tactic

-- 2. We write the expander that expands the tactic
--    into running `a`, and then running `b` on all goals produced by `a`.
macro_rules
| `(tactic| $a:tactic and_then $b:tactic) =>
    `(tactic| $a:tactic; all_goals $b:tactic)

-- 3. We test this tactic.
theorem test_and_then: 1 = 1 ∧ 2 = 2 := by
  apply And.intro and_then rfl

#print test_and_then
-- theorem test_and_then : 1 = 1 ∧ 2 = 2 :=
-- { left := Eq.refl 1, right := Eq.refl 2 }

example : 1 = 2 := by
  custom_sorry

elab "custom_sorry_0" : tactic => do
  return

example : 1 = 2 := by
  custom_sorry_0
-- unsolved goals: ⊢ 1 = 2
  sorry
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But first we need to start our tactic with Lean.Elab.Tactic.withMainContext , which
computes in TacticM  with an updated context.

To sorry  the goal, we can use the helper Lean.Elab.admitGoal :

And we no longer have the error unsolved goals: ⊢ 1 = 2 .

The custom_assump tactic: Accessing Hypotheses

In this section, we will learn how to access the hypotheses to prove a goal. In particular, we
shall attempt to implement a tactic custom_assump , which looks for an exact match of the
goal among the hypotheses, and solves the theorem if possible.

In the example below, we expect custom_assump  to use (H2 : 2 = 2)  to solve the goal (2 
= 2) :

elab "custom_sorry_1" : tactic =>
  Lean.Elab.Tactic.withMainContext do
    let goal ← Lean.Elab.Tactic.getMainGoal
    let goalDecl ← goal.getDecl
    let goalType := goalDecl.type
    dbg_trace f!"goal type: {goalType}"

example : 1 = 2 := by
  custom_sorry_1
-- goal type: Eq.{1} Nat (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.
{0} Nat 2 (instOfNatNat 2))
-- unsolved goals: ⊢ 1 = 2
  sorry

elab "custom_sorry_2" : tactic =>
  Lean.Elab.Tactic.withMainContext do
    let goal ← Lean.Elab.Tactic.getMainGoal
    Lean.Elab.admitGoal goal

theorem test_custom_sorry : 1 = 2 := by
  custom_sorry_2

#print test_custom_sorry
-- theorem test_custom_sorry : 1 = 2 :=
-- sorryAx (1 = 2) true

theorem assump_correct (H1 : 1 = 1) (H2 : 2 = 2) : 2 = 2 := by
  custom_assump

#print assump_correct
-- theorem assump_correct : 1 = 1 → 2 = 2 → 2 = 2 :=
-- fun H1 H2 => H2
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When we do not have a matching hypothesis to the goal, we expect the tactic
custom_assump  to throw an error, telling us that we cannot find a hypothesis of the type we

are looking for:

We begin by accessing the goal and the type of the goal so we know what we are trying to
prove. The goal  variable will soon be used to help us create error messages.

Next, we access the list of hypotheses, which are stored in a data structure called
LocalContext . This is accessed via Lean.MonadLCtx.getLCtx . The LocalContext  contains
LocalDeclaration s, from which we can extract information such as the name that is given

to declarations ( .userName ), the expression of the declaration ( .toExpr ). Let's write a tactic
called list_local_decls  that prints the local declarations:

theorem assump_wrong (H1 : 1 = 1) : 2 = 2 := by
  custom_assump

#print assump_wrong
-- tactic 'custom_assump' failed, unable to find matching hypothesis of type (2 
= 2)
-- H1 : 1 = 1
-- ⊢ 2 = 2

elab "custom_assump_0" : tactic =>
  Lean.Elab.Tactic.withMainContext do
    let goalType ← Lean.Elab.Tactic.getMainTarget
    dbg_trace f!"goal type: {goalType}"

example (H1 : 1 = 1) (H2 : 2 = 2): 2 = 2 := by
  custom_assump_0
-- goal type: Eq.{1} Nat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) (OfNat.ofNat.
{0} Nat 2 (instOfNatNat 2))
-- unsolved goals
-- H1 : 1 = 1
-- H2 : 2 = 2
-- ⊢ 2 = 2
  sorry

example (H1 : 1 = 1): 2 = 2 := by
  custom_assump_0
-- goal type: Eq.{1} Nat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) (OfNat.ofNat.
{0} Nat 2 (instOfNatNat 2))
-- unsolved goals
-- H1 : 1 = 1
-- ⊢ 2 = 2
  sorry
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Recall that we are looking for a local declaration that has the same type as the hypothesis.
We get the type of LocalDecl  by calling Lean.Meta.inferType  on the local declaration's
expression.

We check if the type of the LocalDecl  is equal to the goal type with
Lean.Meta.isExprDefEq . See that we check if the types are equal at eq? , and we print that
H1  has the same type as the goal ( local decl[EQUAL? true]: name: H1 ), and we print that
H2  does not have the same type ( local decl[EQUAL? false]: name: H2 ):

elab "list_local_decls_1" : tactic =>
  Lean.Elab.Tactic.withMainContext do
    let ctx ← Lean.MonadLCtx.getLCtx -- get the local context.
    ctx.forM fun decl: Lean.LocalDecl => do
      let declExpr := decl.toExpr -- Find the expression of the declaration.
      let declName := decl.userName -- Find the name of the declaration.
      dbg_trace f!"+ local decl: name: {declName} | expr: {declExpr}"

example (H1 : 1 = 1) (H2 : 2 = 2): 1 = 1 := by
  list_local_decls_1
-- + local decl: name: test_list_local_decls_1 | expr: _uniq.3339
-- + local decl: name: H1 | expr: _uniq.3340
-- + local decl: name: H2 | expr: _uniq.3341
  rfl

elab "list_local_decls_2" : tactic =>
  Lean.Elab.Tactic.withMainContext do
    let ctx ← Lean.MonadLCtx.getLCtx -- get the local context.
    ctx.forM fun decl: Lean.LocalDecl => do
      let declExpr := decl.toExpr -- Find the expression of the declaration.
      let declName := decl.userName -- Find the name of the declaration.
      let declType ← Lean.Meta.inferType declExpr -- **NEW:** Find the type.
      dbg_trace f!"+ local decl: name: {declName} | expr: {declExpr} | type: 
{declType}"

example (H1 : 1 = 1) (H2 : 2 = 2): 1 = 1 := by
  list_local_decls_2
  -- + local decl: name: test_list_local_decls_2 | expr: _uniq.4263 | type: 
(Eq.{1} Nat ...)
  -- + local decl: name: H1 | expr: _uniq.4264 | type: Eq.{1} Nat ...)
  -- + local decl: name: H2 | expr: _uniq.4265 | type: Eq.{1} Nat ...)
  rfl
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Finally, we put all of these parts together to write a tactic that loops over all declarations and
finds one with the correct type. We loop over declarations with lctx.findDeclM? . We infer
the type of declarations with Lean.Meta.inferType . We check that the declaration has the
same type as the goal with Lean.Meta.isExprDefEq :

Now that we are able to find the matching expression, we need to close the theorem by
using the match. We do this with Lean.Elab.Tactic.closeMainGoal . When we do not have
a matching expression, we throw an error with Lean.Meta.throwTacticEx , which allows us
to report an error corresponding to a given goal. When throwing this error, we format the
error using m!"..."  which builds a MessageData . This provides nicer error messages than

elab "list_local_decls_3" : tactic =>
  Lean.Elab.Tactic.withMainContext do
    let goalType ← Lean.Elab.Tactic.getMainTarget
    let ctx ← Lean.MonadLCtx.getLCtx -- get the local context.
    ctx.forM fun decl: Lean.LocalDecl => do
      let declExpr := decl.toExpr -- Find the expression of the declaration.
      let declName := decl.userName -- Find the name of the declaration.
      let declType ← Lean.Meta.inferType declExpr -- Find the type.
      let eq? ← Lean.Meta.isExprDefEq declType goalType -- **NEW** Check if 
type equals goal type.
      dbg_trace f!"+ local decl[EQUAL? {eq?}]: name: {declName}"

example (H1 : 1 = 1) (H2 : 2 = 2): 1 = 1 := by
  list_local_decls_3
-- + local decl[EQUAL? false]: name: test_list_local_decls_3
-- + local decl[EQUAL? true]: name: H1
-- + local decl[EQUAL? false]: name: H2
  rfl

elab "custom_assump_1" : tactic =>
  Lean.Elab.Tactic.withMainContext do
    let goalType ← Lean.Elab.Tactic.getMainTarget
    let lctx ← Lean.MonadLCtx.getLCtx
    -- Iterate over the local declarations...
    let option_matching_expr ← lctx.findDeclM? fun ldecl: Lean.LocalDecl => do
      let declExpr := ldecl.toExpr -- Find the expression of the declaration.
      let declType ← Lean.Meta.inferType declExpr -- Find the type.
      if (← Lean.Meta.isExprDefEq declType goalType) -- Check if type equals 
goal type.
      then return some declExpr -- If equal, success!
      else return none          -- Not found.
    dbg_trace f!"matching_expr: {option_matching_expr}"

example (H1 : 1 = 1) (H2 : 2 = 2) : 2 = 2 := by
  custom_assump_1
-- matching_expr: some _uniq.6241
  rfl

example (H1 : 1 = 1) : 2 = 2 := by
  custom_assump_1
-- matching_expr: none
  rfl
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using f!"..."  which builds a Format . This is because MessageData  also runs delaboration,
which allows it to convert raw Lean terms like (Eq.{1} Nat (OfNat.ofNat.{0} Nat 2 
(instOfNatNat 2)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))  into readable strings
like (2 = 2) . The full code listing given below shows how to do this:

Tweaking the context

Until now, we've only performed read-like operations with the context. But what if we want
to change it? In this section we will see how to change the order of goals and how to add
content to it (new hypotheses).

Then, after elaborating our terms, we will need to use the helper function
Lean.Elab.Tactic.liftMetaTactic , which allows us to run computations in MetaM  while

also giving us the goal MVarId  for us to play with. In the end of our computation,
liftMetaTactic  expects us to return a List MVarId  as the resulting list of goals.

The only substantial difference between custom_let  and custom_have  is that the former
uses Lean.MVarId.define  and the later uses Lean.MVarId.assert :

elab "custom_assump_2" : tactic =>
  Lean.Elab.Tactic.withMainContext do
    let goal ← Lean.Elab.Tactic.getMainGoal
    let goalType ← Lean.Elab.Tactic.getMainTarget
    let ctx ← Lean.MonadLCtx.getLCtx
    let option_matching_expr ← ctx.findDeclM? fun decl: Lean.LocalDecl => do
      let declExpr := decl.toExpr
      let declType ← Lean.Meta.inferType declExpr
      if ← Lean.Meta.isExprDefEq declType goalType
        then return Option.some declExpr
        else return Option.none
    match option_matching_expr with
    | some e => Lean.Elab.Tactic.closeMainGoal e
    | none =>
      Lean.Meta.throwTacticEx `custom_assump_2 goal
        (m!"unable to find matching hypothesis of type ({goalType})")

example (H1 : 1 = 1) (H2 : 2 = 2) : 2 = 2 := by
  custom_assump_2

#check_failure (by custom_assump_2 : (H1 : 1 = 1) → 2 = 2)
-- tactic 'custom_assump_2' failed, unable to find matching hypothesis of type 
(2 = 2)
-- H1 : 1 = 1
-- ⊢ 2 = 2
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"Getting" and "Setting" the list of goals

To illustrate these, let's build a tactic that can reverse the list of goals. We can use
Lean.Elab.Tactic.getGoals  and Lean.Elab.Tactic.setGoals :

open Lean.Elab.Tactic in
elab "custom_let " n:ident " : " t:term " := " v:term : tactic =>
  withMainContext do
    let t ← elabTerm t none
    let v ← elabTermEnsuringType v t
    liftMetaTactic fun mvarId => do
      let mvarIdNew ← mvarId.define n.getId t v
      let (_, mvarIdNew) ← mvarIdNew.intro1P
      return [mvarIdNew]

open Lean.Elab.Tactic in
elab "custom_have " n:ident " : " t:term " := " v:term : tactic =>
  withMainContext do
    let t ← elabTerm t none
    let v ← elabTermEnsuringType v t
    liftMetaTactic fun mvarId => do
      let mvarIdNew ← mvarId.assert n.getId t v
      let (_, mvarIdNew) ← mvarIdNew.intro1P
      return [mvarIdNew]

theorem test_faq_have : True := by
  custom_let n : Nat := 5
  custom_have h : n = n := rfl
-- n : Nat := 5
-- h : n = n
-- ⊢ True
  trivial
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FAQ

In this section, we collect common patterns that are used during writing tactics, to make it
easy to find common patterns.

Q: How do I use goals?

A: Goals are represented as metavariables. The module Lean.Elab.Tactic.Basic  has many
functions to add new goals, switch goals, etc.

Q: How do I get the main goal?

A: Use Lean.Elab.Tactic.getMainGoal .

Q: How do I get the list of goals?

A: Use getGoals .

elab "reverse_goals" : tactic =>
  Lean.Elab.Tactic.withMainContext do
    let goals : List Lean.MVarId ← Lean.Elab.Tactic.getGoals
    Lean.Elab.Tactic.setGoals goals.reverse

theorem test_reverse_goals : (1 = 2 ∧ 3 = 4) ∧ 5 = 6 := by
  constructor
  constructor
-- case left.left
-- ⊢ 1 = 2
-- case left.right
-- ⊢ 3 = 4
-- case right
-- ⊢ 5 = 6
  reverse_goals
-- case right
-- ⊢ 5 = 6
-- case left.right
-- ⊢ 3 = 4
-- case left.left
-- ⊢ 1 = 2
  all_goals sorry

elab "faq_main_goal" : tactic =>
  Lean.Elab.Tactic.withMainContext do
    let goal ← Lean.Elab.Tactic.getMainGoal
    dbg_trace f!"goal: {goal.name}"

example : 1 = 1 := by
  faq_main_goal
-- goal: _uniq.9298
  rfl
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Q: How do I get the current hypotheses for a goal?

A: Use Lean.MonadLCtx.getLCtx  which provides the local context, and then iterate on the
LocalDeclaration s of the LocalContext  with accessors such as foldlM  and forM .

Q: How do I evaluate a tactic?

A: Use Lean.Elab.Tactic.evalTactic: Syntax → TacticM Unit  which evaluates a given
tactic syntax. One can create tactic syntax using the macro  `(tactic| ⋯) .

For example, one could call try rfl  with the piece of code:

Q: How do I check if two expressions are equal?

A: Use Lean.Meta.isExprDefEq <expr-1> <expr-2> .

elab "faq_get_goals" : tactic =>
  Lean.Elab.Tactic.withMainContext do
    let goals ← Lean.Elab.Tactic.getGoals
    goals.forM $ fun goal => do
      let goalType ← goal.getType
      dbg_trace f!"goal: {goal.name} | type: {goalType}"

example (b : Bool) : b = true := by
  cases b
  faq_get_goals
-- goal: _uniq.10067 | type: Eq.{1} Bool Bool.false Bool.true
-- goal: _uniq.10078 | type: Eq.{1} Bool Bool.true Bool.true
  sorry
  rfl

elab "faq_get_hypotheses" : tactic =>
  Lean.Elab.Tactic.withMainContext do
  let ctx ← Lean.MonadLCtx.getLCtx -- get the local context.
  ctx.forM (fun (decl : Lean.LocalDecl) => do
    let declExpr := decl.toExpr -- Find the expression of the declaration.
    let declType := decl.type -- Find the type of the declaration.
    let declName := decl.userName -- Find the name of the declaration.
    dbg_trace f!" local decl: name: {declName} | expr: {declExpr} | type: 
{declType}"
  )

example (H1 : 1 = 1) (H2 : 2 = 2): 3 = 3 := by
  faq_get_hypotheses
  -- local decl: name: _example | expr: _uniq.10814 | type: ...
  -- local decl: name: H1 | expr: _uniq.10815 | type: ...
  -- local decl: name: H2 | expr: _uniq.10816 | type: ...
  rfl

Lean.Elab.Tactic.evalTactic (← `(tactic| try rfl))
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Q: How do I throw an error from a tactic?

A: Use throwTacticEx <tactic-name> <goal-mvar> <error> .

Q: What is the difference between Lean.Elab.Tactic.*  and Lean.Meta.Tactic.* ?

A: Lean.Meta.Tactic.*  contains low level code that uses the Meta  monad to implement
basic features such as rewriting. Lean.Elab.Tactic.*  contains high-level code that
connects the low level development in Lean.Meta  to the tactic infrastructure and the
parsing front-end.

Exercises

1. Consider the theorem p ∧ q ↔ q ∧ p . We could either write its proof as a proof term,
or construct it using the tactics. When we are writing the proof of this theorem as a
proof term, we're gradually filling up _ s with certain expressions, step by step. Each
such step corresponds to a tactic.

There are many combinations of steps in which we could write this proof term - but
consider the sequence of steps we wrote below. Please write each step as a tactic. The
tactic step_1  is filled in, please do the same for the remaining tactics (for the sake of
the exercise, try to use lower-level apis, such as mkFreshExprMVar , mvarId.assign  and
modify fun _ => { goals := ~) .

#check Lean.Meta.isExprDefEq
-- Lean.Meta.isExprDefEq : Lean.Expr → Lean.Expr → Lean.MetaM Bool

elab "faq_throw_error" : tactic =>
  Lean.Elab.Tactic.withMainContext do
    let goal ← Lean.Elab.Tactic.getMainGoal
    Lean.Meta.throwTacticEx `faq_throw_error goal "throwing an error at the 
current goal"

#check_failure (by faq_throw_error : (b : Bool) → b = true)
-- tactic 'faq_throw_error' failed, throwing an error at the current goal
-- ⊢ ∀ (b : Bool), b = true
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-- [this is the initial goal]
example : p ∧ q ↔ q ∧ p :=
  _

-- step_1
example : p ∧ q ↔ q ∧ p :=
  Iff.intro _ _

-- step_2
example : p ∧ q ↔ q ∧ p :=
  Iff.intro
    (
      fun hA =>
      _

    )
    (
      fun hB =>
      (And.intro hB.right hB.left)
    )

-- step_3
example : p ∧ q ↔ q ∧ p :=
  Iff.intro
    (

      fun hA =>
      (And.intro _ _)
    )
    (
      fun hB =>
      (And.intro hB.right hB.left)

    )

-- step_4
example : p ∧ q ↔ q ∧ p :=
  Iff.intro

    (
      fun hA =>
      (And.intro hA.right hA.left)
    )
    (

      fun hB =>
      (And.intro hB.right hB.left)
    )
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2. In the first exercise, we used lower-level modify  api to update our goals.
liftMetaTactic , setGoals , appendGoals , replaceMainGoal , closeMainGoal , etc.

are all syntax sugars on top of modify fun s : State => { s with goals := 
myMvarIds } . Please rewrite the forker  tactic with:

a) liftMetaTactic  b) setGoals  c) replaceMainGoal

elab "step_1" : tactic => do
  let mvarId ← getMainGoal
  let goalType ← getMainTarget

  let Expr.app (Expr.app (Expr.const `Iff _) a) b := goalType | throwError 
"Goal type is not of the form `a ↔ b`"

  -- 1. Create new `_`s with appropriate types.

  let mvarId1 ← mkFreshExprMVar (Expr.forallE `xxx a b .default) (userName 
:= "red")
  let mvarId2 ← mkFreshExprMVar (Expr.forallE `yyy b a .default) (userName 
:= "blue")

  -- 2. Assign the main goal to the expression `Iff.intro _ _`.

  mvarId.assign (mkAppN (Expr.const `Iff.intro []) #[a, b, mvarId1, 
mvarId2])

  -- 3. Report the new `_`s to Lean as the new goals.
  modify fun _ => { goals := [mvarId1.mvarId!, mvarId2.mvarId!] }

theorem gradual (p q : Prop) : p ∧ q ↔ q ∧ p := by
  step_1
  step_2
  step_3
  step_4
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3. In the first exercise, you created your own intro  in step_2  (with a hardcoded
hypothesis name, but the basics are the same). When writing tactics, we usually want
to use functions such as intro , intro1 , intro1P , introN  or introNP .

For each of the points below, create a tactic introductor  (one per each point), that
turns the goal (ab: a = b) → (bc: b = c) → (a = c) :

a) into the goal (a = c)  with hypotheses (ab✝: a = b)  and (bc✝: b = c) . b) into
the goal (bc: b = c) → (a = c)  with hypothesis (ab: a = b) . c) into the goal (bc: 
b = c) → (a = c)  with hypothesis (hello: a = b) .

Hint: "P" in intro1P  and introNP  stands for "Preserve".

elab "forker" : tactic => do
  let mvarId ← getMainGoal
  let goalType ← getMainTarget

  let (Expr.app (Expr.app (Expr.const `And _) p) q) := goalType | 
Lean.Meta.throwTacticEx `forker mvarId (m!"Goal is not of the form P ∧ Q")

  mvarId.withContext do

    let mvarIdP ← mkFreshExprMVar p (userName := "red")
    let mvarIdQ ← mkFreshExprMVar q (userName := "blue")

    let proofTerm := mkAppN (Expr.const `And.intro []) #[p, q, mvarIdP, 
mvarIdQ]
    mvarId.assign proofTerm

    modify fun state => { goals := [mvarIdP.mvarId!, mvarIdQ.mvarId!] ++ 
state.goals.drop 1 }

example (A B C : Prop) : A → B → C → (A ∧ B) ∧ C := by
  intro hA hB hC

  forker
  forker
  assumption
  assumption
  assumption

example (a b c : Nat) : (ab: a = b) → (bc: b = c) → (a = c) := by
  introductor
  sorry
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Lean4 Cheat-sheet

Extracting information

Extract the goal: Lean.Elab.Tactic.getMainGoal

Use as let goal ← Lean.Elab.Tactic.getMainGoal

Extract the declaration out of a metavariable: mvarId.getDecl  when mvarId : 
Lean.MVarId  is in context. For instance, mvarId  could be the goal extracted using
getMainGoal

Extract the type of a metavariable: mvarId.getType  when mvarId : Lean.MVarId  is in
context.

Extract the type of the main goal: Lean.Elab.Tactic.getMainTarget

Use as let goal_type ← Lean.Elab.Tactic.getMainTarget

Achieves the same as

Extract local context: Lean.MonadLCtx.getLCtx

Use as let lctx ← Lean.MonadLCtx.getLCtx

Extract the name of a declaration: Lean.LocalDecl.userName ldecl  when ldecl : 
Lean.LocalDecl  is in context

Extract the type of an expression: Lean.Meta.inferType expr  when expr : 
Lean.Expr  is an expression in context

Use as let expr_type ← Lean.Meta.inferType expr

Playing around with expressions

Convert a declaration into an expression: Lean.LocalDecl.toExpr

Use as ldecl.toExpr , when ldecl : Lean.LocalDecl  is in context

let goal ← Lean.Elab.Tactic.getMainGoal
let goal_type ← goal.getType
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For instance, ldecl  could be let ldecl ← Lean.MonadLCtx.getLCtx

Check whether two expressions are definitionally equal: Lean.Meta.isDefEq ex1 ex2
when ex1 ex2 : Lean.Expr  are in context. Returns a Lean.MetaM Bool

Close a goal: Lean.Elab.Tactic.closeMainGoal expr  when expr : Lean.Expr  is in
context

Further commands

meta-sorry: Lean.Elab.admitGoal goal , when goal : Lean.MVarId  is the current
goal

Printing and errors

Print a "permanent" message in normal usage:

Lean.logInfo f!"Hi, I will print\n{Syntax}"

Print a message while debugging:

dbg_trace f!"1) goal: {Syntax_that_will_be_interpreted}" .

Throw an error: Lean.Meta.throwTacticEx name mvar message_data  where name : 
Lean.Name  is the name of a tactic and mvar  contains error data.

Use as Lean.Meta.throwTacticEx tac goal (m!"unable to find matching hypothesis of
type ({goal_type})") where the m! formatting builds a MessageData` for better
printing of terms

TODO: Add?

Lean.LocalContext.forM
Lean.LocalContext.findDeclM?
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Extra: Options
Options are a way to communicate some special configuration to both your meta programs
and the Lean compiler itself. Basically it's just a KVMap  which is a simple map from Name  to
a Lean.DataValue . Right now there are 6 kinds of data values:

String

Bool

Name

Nat

Int

Syntax

Setting an option to tell the Lean compiler to do something different with your program is
quite simple with the set_option  command:

You can furthermore limit an option value to just the next command or term:

If you want to know which options are available out of the Box right now you can simply
write out the set_option  command and move your cursor to where the name is written, it
should give you a list of them as auto completion suggestions. The most useful group of
options when you are debugging some meta thing is the trace.  one.

import Lean
open Lean

#check 1 + 1 -- 1 + 1 : Nat

set_option pp.explicit true -- No custom syntax in pretty printing

#check 1 + 1 -- @HAdd.hAdd Nat Nat Nat (@instHAdd Nat instAddNat) 1 1 : Nat

set_option pp.explicit false

set_option pp.explicit true in
#check 1 + 1 -- @HAdd.hAdd Nat Nat Nat (@instHAdd Nat instAddNat) 1 1 : Nat

#check 1 + 1 -- 1 + 1 : Nat

#check set_option trace.Meta.synthInstance true in 1 + 1 -- the trace of the 
type class synthesis for `OfNat` and `HAdd`
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Options in meta programming

Now that we know how to set options, let's take a look at how a meta program can get
access to them. The most common way to do this is via the MonadOptions  type class, an
extension to Monad  that provides a function getOptions : m Options . As of now, it is
implemented by:

CoreM

CommandElabM

LevelElabM

all monads to which you can lift operations of one of the above (e.g. MetaM  from
CoreM )

Once we have an Options  object, we can query the information via Options.get . To show
this, let's write a command that prints the value of pp.explicit .

Note that the real implementation of getting pp.explicit , Lean.getPPExplicit , uses
whether pp.all  is set as a default value instead.

Making our own

Declaring our own option is quite easy as well. The Lean compiler provides a macro
register_option  for this. Let's see it in action:

However, we cannot just use an option that we just declared in the same file it was declared
in because of initialization restrictions.

elab "#getPPExplicit" : command => do
  let opts ← getOptions
  -- defValue = default value
  logInfo s!"pp.explicit : {opts.get pp.explicit.name pp.explicit.defValue}"

#getPPExplicit -- pp.explicit : false

set_option pp.explicit true in
#getPPExplicit -- pp.explicit : true

register_option book.myGreeting : String := {
  defValue := "Hello World"
  group := "pp"
  descr := "just a friendly greeting"
}
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Extra: Pretty Printing
The pretty printer is what Lean uses to present terms that have been elaborated to the user.
This is done by converting the Expr s back into Syntax  and then even higher level pretty
printing datastructures. This means Lean does not actually recall the Syntax  it used to
create some Expr : there has to be code that tells it how to do that. In the big picture, the
pretty printer consists of three parts run in the order they are listed in:

the delaborator this will be our main interest since we can easily extend it with our
own code. Its job is to turn Expr  back into Syntax .
the parenthesizer responsible for adding parenthesis into the Syntax  tree, where it
thinks they would be useful
the formatter responsible for turning the parenthesized Syntax  tree into a Format
object that contains more pretty printing information like explicit whitespaces

Delaboration

As its name suggests, the delaborator is in a sense the opposite of the elaborator. The job of
the delaborator is to take an Expr  produced by the elaborator and turn it back into a
Syntax  which, if elaborated, should produce an Expr  that behaves equally to the input

one.

Delaborators have the type Lean.PrettyPrinter.Delaborator.Delab . This is an alias for
DelabM Syntax , where DelabM  is the delaboration monad. All of this machinery is defined

here. DelabM  provides us with quite a lot of options you can look up in the documentation
(TODO: Docs link). We will merely highlight the most relevant parts here.

It has a MonadQuotation  instance which allows us to declare Syntax  objects using the
familiar quotation syntax.
It can run MetaM  code.
It has a MonadExcept  instance for throwing errors.
It can interact with pp  options using functions like whenPPOption .
You can obtain the current subexpression using SubExpr.getExpr . There is also an
entire API defined around this concept in the SubExpr  module.

Making our own

Like so many things in metaprogramming the elaborator is based on an attribute, in this
case the delab  one. delab  expects a Name  as an argument, this name has to start with the
name of an Expr  constructor, most commonly const  or app . This constructor name is

10/06/2024, 16:09 Metaprogramming in Lean 4

https://leanprover-community.github.io/lean4-metaprogramming-book/print.html 106/134

https://github.com/leanprover/lean4/tree/master/src/Lean/PrettyPrinter/Delaborator
https://github.com/leanprover/lean4/blob/master/src/Lean/PrettyPrinter/Parenthesizer.lean
https://github.com/leanprover/lean4/blob/master/src/Lean/PrettyPrinter/Formatter.lean
https://github.com/leanprover/lean4/blob/master/src/Lean/PrettyPrinter/Delaborator/Basic.lean


then followed by the name of the constant we want to delaborate. For example, if we want
to delaborate a function foo  in a special way we would use app.foo . Let's see this in
action:

This is obviously not a good delaborator since reelaborating this Syntax  will not yield the
same Expr . Like with many other metaprogramming attributes we can also overload
delaborators:

The mechanism for figuring out which one to use is the same as well. The delaborators are
tried in order, in reverse order of registering, until one does not throw an error, indicating
that it "feels unresponsible for the Expr ". In the case of delaborators, this is done using
failure :

In order to write a proper delaborator for foo , we will have to use some slightly more
advanced machinery though:

import Lean

open Lean PrettyPrinter Delaborator SubExpr

def foo : Nat → Nat := fun x => 42

@[delab app.foo]
def delabFoo : Delab := do
  `(1)

#check foo -- 1 : Nat → Nat
#check foo 13 -- 1 : Nat, full applications are also pretty printed this way

@[delab app.foo]
def delabfoo2 : Delab := do
  `(2)

#check foo -- 2 : Nat → Nat

@[delab app.foo]
def delabfoo3 : Delab := do
  failure
  `(3)

#check foo -- 2 : Nat → Nat, still 2 since 3 failed
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Can you extend delabFooFinal  to also account for non full applications?

Unexpanders

While delaborators are obviously quite powerful it is quite often not necessary to use them.
If you look in the Lean compiler for @[delab  or rather @[builtin_delab  (a special version
of the delab  attribute for compiler use, we don't care about it), you will see there are quite
few occurrences of it. This is because the majority of pretty printing is in fact done by so
called unexpanders. Unlike delaborators they are of type Lean.PrettyPrinter.Unexpander
which in turn is an alias for Syntax → Lean.PrettyPrinter.UnexpandM Syntax . As you can
see, they are Syntax  to Syntax  translations, quite similar to macros, except that they are
supposed to be the inverse of macros. The UnexpandM  monad is quite a lot weaker than
DelabM  but it still has:

MonadQuotation  for syntax quotations
The ability to throw errors, although not very informative ones: throw ()  is the only
valid one

Unexpanders are always specific to applications of one constant. They are registered using
the app_unexpander  attribute, followed by the name of said constant. The unexpander is
passed the entire application of the constant after the Expr  has been delaborated, without
implicit arguments. Let's see this in action:

For a few nice examples of unexpanders you can take a look at NotationExtra

@[delab app.foo]
def delabfooFinal : Delab := do
  let e ← getExpr
  guard $ e.isAppOfArity' `foo 1 -- only delab full applications this way
  let fn := mkIdent `fooSpecial
  let arg ← withAppArg delab
  `($fn $arg)

#check foo 42 -- fooSpecial 42 : Nat
#check foo -- 2 : Nat → Nat, still 2 since 3 failed

def myid {α : Type} (x : α) := x

@[app_unexpander myid]
def unexpMyId : Unexpander
  -- hygiene disabled so we can actually return `id` without macro scopes etc.
  | `(myid $arg) => set_option hygiene false in `(id $arg)
  | `(myid) => pure $ mkIdent `id
  | _ => throw ()

#check myid 12 -- id 12 : Nat
#check myid -- id : ?m.3870 → ?m.3870
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Mini project

As per usual, we will tackle a little mini project at the end of the chapter. This time we build
our own unexpander for a mini programming language. Note that many ways to define
syntax already have generation of the required pretty printer code built-in, e.g. infix , and
notation  (however not macro_rules ). So, for easy syntax, you will never have to do this

yourself.

As you can see, the pretty printing output right now is rather ugly to look at. We can do
better with an unexpander:

declare_syntax_cat lang
syntax num   : lang
syntax ident : lang
syntax "let " ident " := " lang " in " lang: lang
syntax "[Lang| " lang "]" : term

inductive LangExpr
  | numConst : Nat → LangExpr
  | ident    : String → LangExpr
  | letE     : String → LangExpr → LangExpr → LangExpr

macro_rules
  | `([Lang| $x:num ]) => `(LangExpr.numConst $x)
  | `([Lang| $x:ident]) => `(LangExpr.ident $(Lean.quote (toString x.getId)))
  | `([Lang| let $x:ident := $v:lang in $b:lang]) => `(LangExpr.letE 
$(Lean.quote (toString x.getId)) [Lang| $v] [Lang| $b])

instance : Coe NumLit (TSyntax `lang) where
  coe s := ⟨s.raw⟩

instance : Coe Ident (TSyntax `lang) where
  coe s := ⟨s.raw⟩

-- LangExpr.letE "foo" (LangExpr.numConst 12)
--   (LangExpr.letE "bar" (LangExpr.ident "foo") (LangExpr.ident "foo")) : 
LangExpr
#check [Lang|
  let foo := 12 in
  let bar := foo in
  foo
]
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That's much better! As always, we encourage you to extend the language yourself with
things like parenthesized expressions, more data values, quotations for term  or whatever
else comes to your mind.

@[app_unexpander LangExpr.numConst]
def unexpandNumConst : Unexpander
  | `(LangExpr.numConst $x:num) => `([Lang| $x])
  | _ => throw ()

@[app_unexpander LangExpr.ident]
def unexpandIdent : Unexpander
  | `(LangExpr.ident $x:str) =>
    let str := x.getString
    let name := mkIdent $ Name.mkSimple str
    `([Lang| $name])
  | _ => throw ()

@[app_unexpander LangExpr.letE]
def unexpandLet : Unexpander
  | `(LangExpr.letE $x:str [Lang| $v:lang] [Lang| $b:lang]) =>
    let str := x.getString
    let name := mkIdent $ Name.mkSimple str
    `([Lang| let $name := $v in $b])
  | _ => throw ()

-- [Lang| let foo := 12 in foo] : LangExpr
#check [Lang|
  let foo := 12 in foo
]

-- [Lang| let foo := 12 in let bar := foo in foo] : LangExpr
#check [Lang|
  let foo := 12 in
  let bar := foo in
  foo
]
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Solutions

Expressions: Solutions

1.

2.

3.

import Lean
open Lean Meta

def one : Expr :=
  Expr.app (Expr.app (Expr.const `Nat.add []) (mkNatLit 1)) (mkNatLit 2)

elab "one" : term => return one
#check one  -- Nat.add 1 2 : Nat
#reduce one -- 3

def two : Expr :=
  Lean.mkAppN (Expr.const `Nat.add []) #[mkNatLit 1, mkNatLit 2]

elab "two" : term => return two
#check two  -- Nat.add 1 2 : Nat
#reduce two -- 3

def three : Expr :=
  Expr.lam `x (Expr.const `Nat [])
  (Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkNatLit 1, Expr.bvar 0])
  BinderInfo.default

elab "three" : term => return three
#check three    -- fun x => Nat.add 1 x : Nat → Nat
#reduce three 6 -- 7
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4.

5.

def four : Expr :=
  Expr.lam `a (Expr.const `Nat [])
  (
    Expr.lam `b (Expr.const `Nat [])
    (
      Expr.lam `c (Expr.const `Nat [])
      (
        Lean.mkAppN
        (Expr.const `Nat.add [])
        #[
          (Lean.mkAppN (Expr.const `Nat.mul []) #[Expr.bvar 1, Expr.bvar 2]),
          (Expr.bvar 0)
        ]
      )
      BinderInfo.default
    )
    BinderInfo.default
  )
  BinderInfo.default

elab "four" : term => return four
#check four -- fun a b c => Nat.add (Nat.mul b a) c : Nat → Nat → Nat → Nat
#reduce four 666 1 2 -- 668

def five :=
  Expr.lam `x (Expr.const `Nat [])
  (
    Expr.lam `y (Expr.const `Nat [])
    (Lean.mkAppN (Expr.const `Nat.add []) #[Expr.bvar 1, Expr.bvar 0])
    BinderInfo.default
  )
  BinderInfo.default

elab "five" : term => return five
#check five      -- fun x y => Nat.add x y : Nat → Nat → Nat
#reduce five 4 5 -- 9
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6.

7.

8.

def six :=
  Expr.lam `x (Expr.const `String [])
  (Lean.mkAppN (Expr.const `String.append []) #[Lean.mkStrLit "Hello, ", 
Expr.bvar 0])
  BinderInfo.default

elab "six" : term => return six
#check six        -- fun x => String.append "Hello, " x : String → String
#eval six "world" -- "Hello, world"

def seven : Expr :=
  Expr.forallE `x (Expr.sort Lean.Level.zero)
  (Expr.app (Expr.app (Expr.const `And []) (Expr.bvar 0)) (Expr.bvar 0))
  BinderInfo.default

elab "seven" : term => return seven
#check seven  -- ∀ (x : Prop), x ∧ x : Prop
#reduce seven -- ∀ (x : Prop), x ∧ x

def eight : Expr :=
  Expr.forallE `notUsed
  (Expr.const `Nat []) (Expr.const `String [])
  BinderInfo.default

elab "eight" : term => return eight
#check eight  -- Nat → String : Type
#reduce eight -- Nat → String
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9.

10.

def nine : Expr :=
  Expr.lam `p (Expr.sort Lean.Level.zero)
  (
    Expr.lam `hP (Expr.bvar 0)
    (Expr.bvar 0)
    BinderInfo.default
  )
  BinderInfo.default

elab "nine" : term => return nine
#check nine  -- fun p hP => hP : ∀ (p : Prop), p → p
#reduce nine -- fun p hP => hP

def ten : Expr :=
  Expr.sort (Nat.toLevel 7)

elab "ten" : term => return ten
#check ten  -- Type 6 : Type 7
#reduce ten -- Type 6
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MetaM: Solutions

1.

2.

import Lean
open Lean Meta

#eval show MetaM Unit from do
  let hi ← Lean.Meta.mkFreshExprMVar (Expr.const `Nat []) (userName := `hi)
  IO.println s!"value in hi: {← instantiateMVars hi}" -- ?_uniq.1

  hi.mvarId!.assign (Expr.app (Expr.const `Nat.succ []) (Expr.const ``Nat.zero 
[]))
  IO.println s!"value in hi: {← instantiateMVars hi}" -- Nat.succ Nat.zero

-- It would output the same expression we gave it - there were no metavariables 
to instantiate.
#eval show MetaM Unit from do
  let instantiatedExpr ← instantiateMVars (Expr.lam `x (Expr.const `Nat []) 
(Expr.bvar 0) BinderInfo.default)
  IO.println instantiatedExpr -- fun (x : Nat) => x
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3.

4.

#eval show MetaM Unit from do
  let oneExpr := Expr.app (Expr.const `Nat.succ []) (Expr.const ``Nat.zero [])
  let twoExpr := Expr.app (Expr.const `Nat.succ []) oneExpr

  -- Create `mvar1` with type `Nat`
  let mvar1 ← Lean.Meta.mkFreshExprMVar (Expr.const `Nat []) (userName := 
`mvar1)
  -- Create `mvar2` with type `Nat`
  let mvar2 ← Lean.Meta.mkFreshExprMVar (Expr.const `Nat []) (userName := 
`mvar2)
  -- Create `mvar3` with type `Nat`
  let mvar3 ← Lean.Meta.mkFreshExprMVar (Expr.const `Nat []) (userName := 
`mvar3)

  -- Assign `mvar1` to `2 + ?mvar2 + ?mvar3`
  mvar1.mvarId!.assign (Lean.mkAppN (Expr.const `Nat.add []) #[(Lean.mkAppN 
(Expr.const `Nat.add []) #[twoExpr, mvar2]), mvar3])

  -- Assign `mvar3` to `1`
  mvar3.mvarId!.assign oneExpr

  -- Instantiate `mvar1`, which should result in expression `2 + ?mvar2 + 1`
  let instantiatedMvar1 ← instantiateMVars mvar1
  IO.println instantiatedMvar1 -- Nat.add (Nat.add 2 ?_uniq.2) 1

elab "explore" : tactic => do
  let mvarId : MVarId ← Lean.Elab.Tactic.getMainGoal
  let metavarDecl : MetavarDecl ← mvarId.getDecl

  IO.println "Our metavariable"
  -- [anonymous] : 2 = 2
  IO.println s!"\n{metavarDecl.userName} : {metavarDecl.type}"

  IO.println "\nAll of its local declarations"
  let localContext : LocalContext := metavarDecl.lctx
  for (localDecl : LocalDecl) in localContext do
    if localDecl.isImplementationDetail then
      -- (implementation detail) red : 1 = 1 → 2 = 2 → 2 = 2
      IO.println s!"\n(implementation detail) {localDecl.userName} : 
{localDecl.type}"
    else
      -- hA : 1 = 1
      -- hB : 2 = 2
      IO.println s!"\n{localDecl.userName} : {localDecl.type}"

theorem red (hA : 1 = 1) (hB : 2 = 2) : 2 = 2 := by
  explore
  sorry
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5.

6.

7.

-- The type of our metavariable `2 + 2`. We want to find a `localDecl` that has 
the same type, and `assign` our metavariable to that `localDecl`.
elab "solve" : tactic => do
  let mvarId : MVarId ← Lean.Elab.Tactic.getMainGoal
  let metavarDecl : MetavarDecl ← mvarId.getDecl

  let localContext : LocalContext := metavarDecl.lctx
  for (localDecl : LocalDecl) in localContext do
    if ← Lean.Meta.isDefEq localDecl.type metavarDecl.type then
      mvarId.assign localDecl.toExpr

theorem redSolved (hA : 1 = 1) (hB : 2 = 2) : 2 = 2 := by
  solve

def sixA : Bool → Bool := fun x => x
-- .lam `x (.const `Bool []) (.bvar 0) (Lean.BinderInfo.default)
#eval Lean.Meta.reduce (Expr.const `sixA [])

def sixB : Bool := (fun x => x) ((true && false) || true)
-- .const `Bool.true []
#eval Lean.Meta.reduce (Expr.const `sixB [])

def sixC : Nat := 800 + 2
-- .lit (Lean.Literal.natVal 802)
#eval Lean.Meta.reduce (Expr.const `sixC [])

#eval show MetaM Unit from do
  let litExpr := Expr.lit (Lean.Literal.natVal 1)
  let standardExpr := Expr.app (Expr.const ``Nat.succ []) (Expr.const 
``Nat.zero [])

  let isEqual ← Lean.Meta.isDefEq litExpr standardExpr
  IO.println isEqual -- true
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8.

-- a) `5 =?= (fun x => 5) ((fun y : Nat → Nat => y) (fun z : Nat => z))`
-- Definitionally equal.
def expr2 := (fun x => 5) ((fun y : Nat → Nat => y) (fun z : Nat => z))
#eval show MetaM Unit from do
  let expr1 := Lean.mkNatLit 5
  let expr2 := Expr.const `expr2 []
  let isEqual ← Lean.Meta.isDefEq expr1 expr2
  IO.println isEqual -- true

-- b) `2 + 1 =?= 1 + 2`
-- Definitionally equal.
#eval show MetaM Unit from do
  let expr1 := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkNatLit 2, 
Lean.mkNatLit 1]
  let expr2 := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkNatLit 1, 
Lean.mkNatLit 2]
  let isEqual ← Lean.Meta.isDefEq expr1 expr2
  IO.println isEqual -- true

-- c) `?a =?= 2`, where `?a` has a type `String`
-- Not definitionally equal.
#eval show MetaM Unit from do
  let expr1 ← Lean.Meta.mkFreshExprMVar (Expr.const `String []) (userName := 
`expr1)
  let expr2 := Lean.mkNatLit 2
  let isEqual ← Lean.Meta.isDefEq expr1 expr2
  IO.println isEqual -- false

-- d) `?a + Int =?= "hi" + ?b`, where `?a` and `?b` don't have a type
-- Definitionally equal.
-- `?a` is assigned to `"hi"`, `?b` is assigned to `Int`.
#eval show MetaM Unit from do
  let a ← Lean.Meta.mkFreshExprMVar Option.none (userName := `a)
  let b ← Lean.Meta.mkFreshExprMVar Option.none (userName := `b)
  let expr1 := Lean.mkAppN (Expr.const `Nat.add []) #[a, Expr.const `Int []]
  let expr2 := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkStrLit "hi", b]
  let isEqual ← Lean.Meta.isDefEq expr1 expr2
  IO.println isEqual -- true

  IO.println s!"a: {← instantiateMVars a}"
  IO.println s!"b: {← instantiateMVars b}"

-- e) `2 + ?a =?= 3`
-- Not definitionally equal.
#eval show MetaM Unit from do
  let a ← Lean.Meta.mkFreshExprMVar (Expr.const `Nat []) (userName := `a)
  let expr1 := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkNatLit 2, a]
  let expr2 := Lean.mkNatLit 3
  let isEqual ← Lean.Meta.isDefEq expr1 expr2
  IO.println isEqual -- false

-- f) `2 + ?a =?= 2 + 1`
-- Definitionally equal.
-- `?a` is assigned to `1`.
#eval show MetaM Unit from do
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9.

  let a ← Lean.Meta.mkFreshExprMVar (Expr.const `Nat []) (userName := `a)
  let expr1 := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkNatLit 2, a]
  let expr2 := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkNatLit 2, 
Lean.mkNatLit 1]
  let isEqual ← Lean.Meta.isDefEq expr1 expr2
  IO.println isEqual -- true

  IO.println s!"a: {← instantiateMVars a}"

@[reducible] def reducibleDef     : Nat := 1 -- same as `abbrev`
@[instance] def instanceDef       : Nat := 2 -- same as `instance`
def defaultDef                    : Nat := 3
@[irreducible] def irreducibleDef : Nat := 4

@[reducible] def sum := [reducibleDef, instanceDef, defaultDef, irreducibleDef]

#eval show MetaM Unit from do
  let constantExpr := Expr.const `sum []

  Meta.withTransparency Meta.TransparencyMode.reducible do
    let reducedExpr ← Meta.reduce constantExpr
    dbg_trace (← ppExpr reducedExpr) -- [1, instanceDef, defaultDef, 
irreducibleDef]

  Meta.withTransparency Meta.TransparencyMode.instances do
    let reducedExpr ← Meta.reduce constantExpr
    dbg_trace (← ppExpr reducedExpr) -- [1, 2, defaultDef, irreducibleDef]

  Meta.withTransparency Meta.TransparencyMode.default do
    let reducedExpr ← Meta.reduce constantExpr
    dbg_trace (← ppExpr reducedExpr) -- [1, 2, 3, irreducibleDef]

  Meta.withTransparency Meta.TransparencyMode.all do
    let reducedExpr ← Meta.reduce constantExpr
    dbg_trace (← ppExpr reducedExpr) -- [1, 2, 3, 4]

  -- Note: if we don't set the transparency mode, we get a pretty strong 
`TransparencyMode.default`.
  let reducedExpr ← Meta.reduce constantExpr
  dbg_trace (← ppExpr reducedExpr) -- [1, 2, 3, irreducibleDef]
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10.

11.

-- Non-idiomatic: we can only use `Lean.mkAppN`.
def tenA : MetaM Expr := do
  let body := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkNatLit 1, Expr.bvar 
0]
  return Expr.lam `x (Expr.const `Nat []) body BinderInfo.default

-- Idiomatic: we can use both `Lean.mkAppN` and `Lean.Meta.mkAppM`.
def tenB : MetaM Expr := do
  Lean.Meta.withLocalDecl `x .default (Expr.const `Nat []) (fun x => do
    -- let body := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkNatLit 1, x]
    let body ← Lean.Meta.mkAppM `Nat.add #[Lean.mkNatLit 1, x]
    Lean.Meta.mkLambdaFVars #[x] body
  )

#eval show MetaM _ from do
  ppExpr (← tenA) -- fun x => Nat.add 1 x
#eval show MetaM _ from do
  ppExpr (← tenB) -- fun x => Nat.add 1 x

def eleven : MetaM Expr :=
  return Expr.forallE `yellow (Expr.const `Nat []) (Expr.bvar 0) 
BinderInfo.default

#eval show MetaM _ from do
  dbg_trace (← eleven) -- forall (yellow : Nat), yellow
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12.

13.

-- Non-idiomatic: we can only use `Lean.mkApp3`.
def twelveA : MetaM Expr := do
  let nPlusOne := Expr.app (Expr.app (Expr.const `Nat.add []) (Expr.bvar 0)) 
(Lean.mkNatLit 1)
  let forAllBody := Lean.mkApp3 (Expr.const ``Eq []) (Expr.const `Nat []) 
(Expr.bvar 0) nPlusOne
  let forAll := Expr.forallE `n (Expr.const `Nat []) forAllBody 
BinderInfo.default
  return forAll

-- Idiomatic: we can use both `Lean.mkApp3` and `Lean.Meta.mkEq`.
def twelveB : MetaM Expr := do
  withLocalDecl `n BinderInfo.default (Expr.const `Nat []) (fun x => do
    let nPlusOne := Expr.app (Expr.app (Expr.const `Nat.add []) x) 
(Lean.mkNatLit 1)
    -- let forAllBody := Lean.mkApp3 (Expr.const ``Eq []) (Expr.const `Nat []) 
x nPlusOne
    let forAllBody ← Lean.Meta.mkEq x nPlusOne
    let forAll := mkForallFVars #[x] forAllBody
    forAll
  )

#eval show MetaM _ from do
  ppExpr (← twelveA) -- (n : Nat) → Eq Nat n (Nat.add n 1)

#eval show MetaM _ from do
  ppExpr (← twelveB) -- ∀ (n : Nat), n = Nat.add n 1

def thirteen : MetaM Expr := do
  withLocalDecl `f BinderInfo.default (Expr.forallE `a (Expr.const `Nat []) 
(Expr.const `Nat []) .default) (fun y => do
    let lamBody ← withLocalDecl `n BinderInfo.default (Expr.const `Nat []) (fun 
x => do
      let fn := Expr.app y x
      let fnPlusOne := Expr.app y (Expr.app (Expr.app (Expr.const `Nat.add []) 
(x)) (Lean.mkNatLit 1))
      let forAllBody := mkApp3 (mkConst ``Eq []) (Expr.const `Nat []) fn 
fnPlusOne
      let forAll := mkForallFVars #[x] forAllBody
      forAll
    )
    let lam := mkLambdaFVars #[y] lamBody
    lam
  )

#eval show MetaM _ from do
  ppExpr (← thirteen) -- fun f => (n : Nat) → Eq Nat (f n) (f (Nat.add n 1))
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14.

15.

#eval show Lean.Elab.Term.TermElabM _ from do
  let stx : Syntax ← `(∀ (a : Prop) (b : Prop), a ∨ b → b → a ∧ a)
  let expr ← Elab.Term.elabTermAndSynthesize stx none

  let (_, _, conclusion) ← forallMetaTelescope expr
  dbg_trace conclusion -- And ?_uniq.10 ?_uniq.10

  let (_, _, conclusion) ← forallMetaBoundedTelescope expr 2
  dbg_trace conclusion -- (Or ?_uniq.14 ?_uniq.15) -> ?_uniq.15 -> (And ?
_uniq.14 ?_uniq.14)

  let (_, _, conclusion) ← lambdaMetaTelescope expr
  dbg_trace conclusion -- forall (a.1 : Prop) (b.1 : Prop), (Or a.1 b.1) -> b.1 
-> (And a.1 a.1)

#eval show MetaM Unit from do
  let a ← Lean.Meta.mkFreshExprMVar (Expr.const `String []) (userName := `a)
  let b ← Lean.Meta.mkFreshExprMVar (Expr.sort (Nat.toLevel 1)) (userName := 
`b)
  -- ?a + Int
  let c := Lean.mkAppN (Expr.const `Nat.add []) #[a, Expr.const `Int []]
  -- "hi" + ?b
  let d := Lean.mkAppN (Expr.const `Nat.add []) #[Lean.mkStrLit "hi", b]

  IO.println s!"value in c: {← instantiateMVars c}" -- Nat.add ?_uniq.1 Int
  IO.println s!"value in d: {← instantiateMVars d}" -- Nat.add String ?_uniq.2

  let state : SavedState ← saveState
  IO.println "\nSaved state\n"

  if ← Lean.Meta.isDefEq c d then
    IO.println true
    IO.println s!"value in c: {← instantiateMVars c}"
    IO.println s!"value in d: {← instantiateMVars d}"

  restoreState state
  IO.println "\nRestored state\n"

  IO.println s!"value in c: {← instantiateMVars c}"
  IO.println s!"value in d: {← instantiateMVars d}"
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Syntax: Solutions

1.

import Lean
import Lean.Parser.Syntax
import Std.Util.ExtendedBinder

open Lean Elab Command Term

namespace a
  scoped notation:71 lhs:50 " 💀 " rhs:72 => lhs - rhs
end a

namespace b
  set_option quotPrecheck false
  scoped infixl:71 " 💀 " => fun lhs rhs => lhs - rhs
end b

namespace c
  scoped syntax:71 term:50 " 💀 " term:72 : term
  scoped macro_rules | `($l:term 💀 $r:term) => `($l - $r)
end c

open a
#eval 5 * 8 💀 4 -- 20
#eval 8 💀 6 💀 1 -- 1
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2.

3.

4.

syntax "good morning" : term
syntax "hello" : command
syntax "yellow" : tactic

-- Note: the following are highlighted in red, however that's just because we 
haven't implemented the semantics ("elaboration function") yet - the syntax 
parsing stage works.

#check_failure good morning -- the syntax parsing stage works

/-- error: elaboration function for 'commandHello' has not been implemented -/
hello -- the syntax parsing stage works

/-- error: tactic 'tacticYellow' has not been implemented -/
example : 2 + 2 = 4 := by
  yellow -- the syntax parsing stage works

#check_failure yellow -- error: `unknown identifier 'yellow'`

syntax (name := colors) (("blue"+) <|> ("red"+)) num : command

@[command_elab colors]
def elabColors : CommandElab := fun stx => Lean.logInfo "success!"

blue blue 443
red red red 4

syntax (name := help) "#better_help" "option" (ident)? : command

@[command_elab help]
def elabHelp : CommandElab := fun stx => Lean.logInfo "success!"

#better_help option
#better_help option pp.r
#better_help option some.other.name
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5.

-- Note: std4 has to be in dependencies of your project for this to work.
syntax (name := bigsumin) "∑ " Std.ExtendedBinder.extBinder "in " term "," term 
: term

@[term_elab bigsumin]
def elabSum : TermElab := fun stx tp =>
  return mkNatLit 666

#eval ∑ x in { 1, 2, 3 }, x^2

def hi := (∑ x in { "apple", "banana", "cherry" }, x.length) + 1
#eval hi
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Elaboration: Solutions

1.

import Lean
open Lean Elab Command Term Meta

elab n:term "♥" a:"♥"? b:"♥"? : term => do
  let nExpr : Expr ← elabTermEnsuringType n (mkConst `Nat)
  if let some a := a then
    if let some b := b then
      return Expr.app (Expr.app (Expr.const `Nat.add []) nExpr) (mkNatLit 3)
    else
      return Expr.app (Expr.app (Expr.const `Nat.add []) nExpr) (mkNatLit 2)
  else
    return Expr.app (Expr.app (Expr.const `Nat.add []) nExpr) (mkNatLit 1)

#eval 7 ♥ -- 8
#eval 7 ♥♥ -- 9
#eval 7 ♥♥♥ -- 10
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2.

-- a) using `syntax` + `@[command_elab alias] def elabOurAlias : CommandElab`
syntax (name := aliasA) (docComment)? "aliasA " ident " ← " ident* : command

@[command_elab «aliasA»]
def elabOurAlias : CommandElab := λ stx =>
  match stx with
  | `(aliasA $x:ident ← $ys:ident*) =>
    for y in ys do
      Lean.logInfo y
  | _ =>
    throwUnsupportedSyntax

aliasA hi.hello ← d.d w.w nnn

-- b) using `syntax` + `elab_rules`.
syntax (name := aliasB) (docComment)? "aliasB " ident " ← " ident* : command

elab_rules : command
  | `(command | aliasB $m:ident ← $ys:ident*) =>
    for y in ys do
      Lean.logInfo y

aliasB hi.hello ← d.d w.w nnn

-- c) using `elab`
elab "aliasC " x:ident " ← " ys:ident* : command =>
  for y in ys do
    Lean.logInfo y

aliasC hi.hello ← d.d w.w nnn
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3.

open Parser.Tactic

-- a) using `syntax` + `@[tactic nthRewrite] def elabNthRewrite : 
Lean.Elab.Tactic.Tactic`.
syntax (name := nthRewriteA) "nth_rewriteA " (config)? num rwRuleSeq (ppSpace 
location)? : tactic

@[tactic nthRewriteA] def elabNthRewrite : Lean.Elab.Tactic.Tactic := fun stx 
=> do
  match stx with
  | `(tactic| nth_rewriteA $[$cfg]? $n $rules $_loc) =>
    Lean.logInfo "rewrite location!"
  | `(tactic| nth_rewriteA $[$cfg]? $n $rules) =>
    Lean.logInfo "rewrite target!"
  | _ =>
    throwUnsupportedSyntax

-- b) using `syntax` + `elab_rules`.
syntax (name := nthRewriteB) "nth_rewriteB " (config)? num rwRuleSeq (ppSpace 
location)? : tactic

elab_rules (kind := nthRewriteB) : tactic
  | `(tactic| nth_rewriteB $[$cfg]? $n $rules $_loc) =>
    Lean.logInfo "rewrite location!"
  | `(tactic| nth_rewriteB $[$cfg]? $n $rules) =>
    Lean.logInfo "rewrite target!"

-- c) using `elab`.
elab "nth_rewriteC " (config)? num rwRuleSeq loc:(ppSpace location)? : tactic 
=>
  if let some loc := loc then
    Lean.logInfo "rewrite location!"
  else
    Lean.logInfo "rewrite target!"

example : 2 + 2 = 4 := by
  nth_rewriteC 2 [← add_zero] at h
  nth_rewriteC 2 [← add_zero]
  sorry
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import Lean.Elab.Tactic
open Lean Elab Tactic Meta

10/06/2024, 16:09 Metaprogramming in Lean 4

https://leanprover-community.github.io/lean4-metaprogramming-book/print.html 129/134



1.

elab "step_1" : tactic => do
  let mvarId ← getMainGoal
  let goalType ← getMainTarget

  let Expr.app (Expr.app (Expr.const `Iff _) a) b := goalType | throwError 
"Goal type is not of the form `a ↔ b`"

  -- 1. Create new `_`s with appropriate types.
  let mvarId1 ← mkFreshExprMVar (Expr.forallE `xxx a b .default) (userName := 
"red")
  let mvarId2 ← mkFreshExprMVar (Expr.forallE `yyy b a .default) (userName := 
"blue") 

  -- 2. Assign the main goal to the expression `Iff.intro _ _`.
  mvarId.assign (mkAppN (Expr.const `Iff.intro []) #[a, b, mvarId1, mvarId2])

  -- 3. Report the new `_`s to Lean as the new goals.
  modify fun _ => { goals := [mvarId1.mvarId!, mvarId2.mvarId!] }

elab "step_2" : tactic => do
  let some redMvarId ← (← get).goals.findM? (fun mvarId => do
    return (← mvarId.getDecl).userName == `red
  ) | throwError "No mvar with username `red`"
  let some blueMvarId ← (← get).goals.findM? (fun mvarId => do
    return (← mvarId.getDecl).userName == `blue
  ) | throwError "No mvar with username `blue`"

  ---- HANDLE `red` goal
  let Expr.forallE _ redFrom redTo _ := (← redMvarId.getDecl).type | throwError 
"Goal type is not of the form `a → b`"
  let handyRedMvarId ← withLocalDecl `hA BinderInfo.default redFrom (fun fvar 
=> do
    -- 1. Create new `_`s with appropriate types.
    let mvarId1 ← mkFreshExprMVar redTo MetavarKind.syntheticOpaque `red
    -- 2. Assign the main goal to the expression `fun hA => _`.
    redMvarId.assign (← mkLambdaFVars #[fvar] mvarId1)
    -- just a handy way to return a handyRedMvarId for the next code
    return mvarId1.mvarId!
  )
  -- 3. Report the new `_`s to Lean as the new goals.
  modify fun _ => { goals := [handyRedMvarId, blueMvarId] }

  ---- HANDLE `blue` goal
  let Expr.forallE _ blueFrom _ _ := (← blueMvarId.getDecl).type | throwError 
"Goal type is not of the form `a → b`"
  -- 1. Create new `_`s with appropriate types.
  -- None needed!
  -- 2. Assign the main goal to the expression `fun hB : q ∧ p => (And.intro 
hB.right hB.left)`.
  Lean.Meta.withLocalDecl `hB .default blueFrom (fun hB => do
    let body ← Lean.Meta.mkAppM `And.intro #[← Lean.Meta.mkAppM `And.right #
[hB], ← Lean.Meta.mkAppM `And.left #[hB]]
    blueMvarId.assign (← Lean.Meta.mkLambdaFVars #[hB] body)
  )
  -- 3. Report the new `_`s to Lean as the new goals.
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  modify fun _ => { goals := [handyRedMvarId] }

elab "step_3" : tactic => do
  let mvarId ← getMainGoal
  let goalType ← getMainTarget
  let mainDecl ← mvarId.getDecl

  let Expr.app (Expr.app (Expr.const `And _) q) p := goalType | throwError 
"Goal type is not of the form `And q p`"

  -- 1. Create new `_`s with appropriate types.
  let mvarId1 ← mkFreshExprMVarAt mainDecl.lctx mainDecl.localInstances q 
(userName := "red1")
  let mvarId2 ← mkFreshExprMVarAt mainDecl.lctx mainDecl.localInstances p 
(userName := "red2")

  -- 2. Assign the main goal to the expression `And.intro _ _`.
  mvarId.assign (← mkAppM `And.intro #[mvarId1, mvarId2])

  -- 3. Report the new `_`s to Lean as the new goals.
  modify fun _ => { goals := [mvarId1.mvarId!, mvarId2.mvarId!] }

elab "step_4" : tactic => do
  let some red1MvarId ← (← get).goals.findM? (fun mvarId => do
    return (← mvarId.getDecl).userName == `red1
  ) | throwError "No mvar with username `red1`"
  let some red2MvarId ← (← get).goals.findM? (fun mvarId => do
    return (← mvarId.getDecl).userName == `red2
  ) | throwError "No mvar with username `red2`"

  ---- HANDLE `red1` goal
  -- 1. Create new `_`s with appropriate types.
  -- None needed!
  -- 2. Assign the main goal to the expression `hA.right`.
  let some hA := (← red1MvarId.getDecl).lctx.findFromUserName? `hA | throwError 
"No hypothesis with name `hA` (in goal `red1`)"
  red1MvarId.withContext do
    red1MvarId.assign (← mkAppM `And.right #[hA.toExpr])
  -- 3. Report the new `_`s to Lean as the new goals.
  modify fun _ => { goals := [red2MvarId] }

  ---- HANDLE `red2` goal
  -- 1. Create new `_`s with appropriate types.
  -- None needed!
  -- 2. Assign the main goal to the expression `hA.left`.
  let some hA := (← red2MvarId.getDecl).lctx.findFromUserName? `hA | throwError 
"No hypothesis with name `hA` (in goal `red2`)"
  red2MvarId.withContext do
    red2MvarId.assign (← mkAppM `And.left #[hA.toExpr])
  -- 3. Report the new `_`s to Lean as the new goals.
  modify fun _ => { goals := [] }

theorem gradual (p q : Prop) : p ∧ q ↔ q ∧ p := by
  step_1
  step_2
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  step_3
  step_4

10/06/2024, 16:09 Metaprogramming in Lean 4

https://leanprover-community.github.io/lean4-metaprogramming-book/print.html 132/134



2.

elab "forker_a" : tactic => do
  liftMetaTactic fun mvarId => do
    let (Expr.app (Expr.app (Expr.const `And _) p) q) ← mvarId.getType | 
Lean.Meta.throwTacticEx `forker mvarId ("Goal is not of the form P ∧ Q")

    let mvarIdP ← mkFreshExprMVar p (userName := "red")
    let mvarIdQ ← mkFreshExprMVar q (userName := "blue")

    let proofTerm := mkAppN (Expr.const `And.intro []) #[p, q, mvarIdP, 
mvarIdQ]
    mvarId.assign proofTerm

    return [mvarIdP.mvarId!, mvarIdQ.mvarId!]

elab "forker_b" : tactic => do
  let mvarId ← getMainGoal
  let goalType ← getMainTarget

  let (Expr.app (Expr.app (Expr.const `And _) p) q) := goalType | 
Lean.Meta.throwTacticEx `forker mvarId ("Goal is not of the form P ∧ Q")

  mvarId.withContext do
    let mvarIdP ← mkFreshExprMVar p (userName := "red")
    let mvarIdQ ← mkFreshExprMVar q (userName := "blue")

    let proofTerm := mkAppN (Expr.const `And.intro []) #[p, q, mvarIdP, 
mvarIdQ]
    mvarId.assign proofTerm

    setGoals ([mvarIdP.mvarId!, mvarIdQ.mvarId!] ++ (← getGoals).drop 1)

elab "forker_c" : tactic => do
  let mvarId ← getMainGoal
  let goalType ← getMainTarget

  let (Expr.app (Expr.app (Expr.const `And _) p) q) := goalType | 
Lean.Meta.throwTacticEx `forker mvarId ("Goal is not of the form P ∧ Q")

  mvarId.withContext do
    let mvarIdP ← mkFreshExprMVar p (userName := "red")
    let mvarIdQ ← mkFreshExprMVar q (userName := "blue")

    let proofTerm := mkAppN (Expr.const `And.intro []) #[p, q, mvarIdP, 
mvarIdQ]
    mvarId.assign proofTerm

    replaceMainGoal [mvarIdP.mvarId!, mvarIdQ.mvarId!]

example (A B C : Prop) : A → B → C → (A ∧ B) ∧ C := by
  intro hA hB hC
  forker_a
  forker_a
  assumption
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3.

  assumption
  assumption

elab "introductor_a" : tactic => do
  withMainContext do
    liftMetaTactic fun mvarId => do
      let (_, mvarIdNew) ← mvarId.introN 2
      return [mvarIdNew]

elab "introductor_b" : tactic => do
  withMainContext do
    liftMetaTactic fun mvarId => do
      let (_, mvarIdNew) ← mvarId.intro1P
      return [mvarIdNew]

elab "introductor_c" : tactic => do
  withMainContext do
    liftMetaTactic fun mvarId => do
      let (_, mvarIdNew) ← mvarId.intro `wow
      return [mvarIdNew]

-- So:
-- `intro`   - **intro**, specify the name manually
-- `intro1`  - **intro**, make the name inacessible
-- `intro1P` - **intro**, preserve the original name
-- `introN`  - **intro many**, specify the names manually
-- `introNP` - **intro many**, preserve the original names

example (a b c : Nat) : (ab: a = b) → (bc: b = c) → (a = c) := by
  introductor_a
  -- introductor_b
  -- introductor_c
  sorry
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