
What is Lean
Lean is a functional programming language that makes it easy to write correct and maintainable
code. You can also use Lean as an interactive theorem prover.

Lean programming primarily involves defining types and functions. This allows your focus to remain
on the problem domain and manipulating its data, rather than the details of programming.

Lean has numerous features, including:

Type inference
First-class functions
Powerful data types
Pattern matching
Type classes
Monads
Extensible syntax
Hygienic macros
Dependent types
Metaprogramming
Multithreading
Verification: you can prove properties of your functions using Lean itself

-- Defines a function that takes a name and produces a greeting.
def getGreeting (name : String) := s!"Hello, {name}! Isn't Lean great?"

-- The `main` function is the entry point of your program.
-- Its type is `IO Unit` because it can perform `IO` operations (side effects).
def main : IO Unit :=
 -- Define a list of names
 let names := ["Sebastian", "Leo", "Daniel"]

 -- Map each name to a greeting
 let greetings := names.map getGreeting

 -- Print the list of greetings
 for greeting in greetings do
 IO.println greeting

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 1/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/typeclass.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/intro.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/syntax.html
https://lean-lang.org/theorem_proving_in_lean4/dependent_type_theory.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/macro_overview.html

Tour of Lean
The best way to learn about Lean is to read and write Lean code. This article will act as a tour
through some of the key features of the Lean language and give you some code snippets that you
can execute on your machine. To learn about setting up a development environment, check out
Setting Up Lean.

There are two primary concepts in Lean: functions and types. This tour will emphasize features of
the language which fall into these two concepts.

Functions and Namespaces
The most fundamental pieces of any Lean program are functions organized into namespaces.
Functions perform work on inputs to produce outputs, and they are organized under namespaces,
which are the primary way you group things in Lean. They are defined using the def command,
which give the function a name and define its arguments.

namespace BasicFunctions

-- The `#eval` command evaluates an expression on the fly and prints the result.
#eval 2+2

-- You use 'def' to define a function. This one accepts a natural number
-- and returns a natural number.
-- Parentheses are optional for function arguments, except for when
-- you use an explicit type annotation.
-- Lean can often infer the type of the function's arguments.
def sampleFunction1 x := x*x + 3

-- Apply the function, naming the function return result using 'def'.
-- The variable type is inferred from the function return type.
def result1 := sampleFunction1 4573

-- This line uses an interpolated string to print the result. Expressions inside
-- braces `{}` are converted into strings using the polymorphic method `toString`
#eval println! "The result of squaring the integer 4573 and adding 3 is {result1}"

-- When needed, annotate the type of a parameter name using '(argument : type)'.
def sampleFunction2 (x : Nat) := 2*x*x - x + 3

def result2 := sampleFunction2 (7 + 4)

#eval println! "The result of applying the 2nd sample function to (7 + 4) is {result2}"

-- Conditionals use if/then/else
def sampleFunction3 (x : Int) :=
 if x > 100 then
 2*x*x - x + 3
 else
 2*x*x + x - 37

#eval println! "The result of applying sampleFunction3 to 2 is {sampleFunction3 2}"

end BasicFunctions

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 2/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/setup.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/functions.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/namespaces.html

-- Lean has first-class functions.
-- `twice` takes two arguments `f` and `a` where
-- `f` is a function from natural numbers to natural numbers, and
-- `a` is a natural number.
def twice (f : Nat → Nat) (a : Nat) :=
 f (f a)

-- `fun` is used to declare anonymous functions
#eval twice (fun x => x + 2) 10

-- You can prove theorems about your functions.
-- The following theorem states that for any natural number `a`,
-- adding 2 twice produces a value equal to `a + 4`.
theorem twiceAdd2 (a : Nat) : twice (fun x => x + 2) a = a + 4 :=
 -- The proof is by reflexivity. Lean "symbolically" reduces both sides of the
equality
 -- until they are identical.
 rfl

-- `(· + 2)` is syntax sugar for `(fun x => x + 2)`. The parentheses + `·` notation
-- is useful for defining simple anonymous functions.
#eval twice (· + 2) 10

-- Enumerated types are a special case of inductive types in Lean,
-- which we will learn about later.
-- The following command creates a new type `Weekday`.
inductive Weekday where
 | sunday : Weekday
 | monday : Weekday
 | tuesday : Weekday
 | wednesday : Weekday
 | thursday : Weekday
 | friday : Weekday
 | saturday : Weekday

-- `Weekday` has 7 constructors/elements.
-- The constructors live in the `Weekday` namespace.
-- Think of `sunday`, `monday`, …, `saturday` as being distinct elements of `Weekday`,
-- with no other distinguishing properties.
-- The command `#check` prints the type of a term in Lean.
#check Weekday.sunday
#check Weekday.monday

-- The `open` command opens a namespace, making all declarations in it accessible
without
-- qualification.
open Weekday
#check sunday
#check tuesday

-- You can define functions by pattern matching.
-- The following function converts a `Weekday` into a natural number.
def natOfWeekday (d : Weekday) : Nat :=
 match d with
 | sunday => 1
 | monday => 2
 | tuesday => 3
 | wednesday => 4
 | thursday => 5
 | friday => 6
 | saturday => 7

#eval natOfWeekday tuesday

def isMonday : Weekday → Bool :=
 -- `fun` + `match` is a common idiom.
 -- The following expression is syntax sugar for
 -- `fun d => match d with | monday => true | _ => false`.
 fun
 | monday => true
 | _ => false

#eval isMonday monday
#eval isMonday sunday

-- Lean has support for type classes and polymorphic methods.
-- The `toString` method converts a value into a `String`.
#eval toString 10
#eval toString (10, 20)

-- The method `toString` converts values of any type that implements
-- the class `ToString`.
-- You can implement instances of `ToString` for your own types.
instance : ToString Weekday where
 toString (d : Weekday) : String :=
 match d with

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 3/156

 | sunday => "Sunday"
 | monday => "Monday"
 | tuesday => "Tuesday"
 | wednesday => "Wednesday"
 | thursday => "Thursday"
 | friday => "Friday"
 | saturday => "Saturday"

#eval toString (sunday, 10)

def Weekday.next (d : Weekday) : Weekday :=
 match d with
 | sunday => monday
 | monday => tuesday
 | tuesday => wednesday
 | wednesday => thursday
 | thursday => friday
 | friday => saturday
 | saturday => sunday

#eval Weekday.next Weekday.wednesday
-- Since the `Weekday` namespace has already been opened, you can also write
#eval next wednesday

-- Matching on a parameter like in the previous definition
-- is so common that Lean provides syntax sugar for it. The following
-- function uses it.
def Weekday.previous : Weekday -> Weekday
 | sunday => saturday
 | monday => sunday
 | tuesday => monday
 | wednesday => tuesday
 | thursday => wednesday
 | friday => thursday
 | saturday => friday

#eval next (previous wednesday)

-- We can prove that for any `Weekday` `d`, `next (previous d) = d`
theorem Weekday.nextOfPrevious (d : Weekday) : next (previous d) = d :=
 match d with
 | sunday => rfl
 | monday => rfl
 | tuesday => rfl
 | wednesday => rfl
 | thursday => rfl
 | friday => rfl
 | saturday => rfl

-- You can automate definitions such as `Weekday.nextOfPrevious`
-- using metaprogramming (or "tactics").
theorem Weekday.nextOfPrevious' (d : Weekday) : next (previous d) = d := by
 cases d -- A proof by case distinction
 all_goals rfl -- Each case is solved using `rfl`

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 4/156

Quickstart
These instructions will walk you through setting up Lean 4 together with VS Code as an editor for
Lean 4. See Setup for supported platforms and other ways to set up Lean 4.

1. Install VS Code.

2. Launch VS Code and install the lean4 extension by clicking on the "Extensions" sidebar entry
and searching for "lean4".

3. Open the Lean 4 setup guide by creating a new text file using "File > New Text File" (Ctrl+N),
clicking on the ∀-symbol in the top right and selecting "Documentation… > Setup: Show Setup
Guide".

4. Follow the Lean 4 setup guide. It will walk you through learning resources for Lean 4, teach you
how to set up Lean's dependencies on your platform, install Lean 4 for you at the click of a
button and help you set up your first project.

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 5/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/setup.html
https://code.visualstudio.com/

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 6/156

Supported Platforms

Tier 1

Platforms built & tested by our CI, available as binary releases via elan (see below)

x86-64 Linux with glibc 2.27+
x86-64 macOS 10.15+
x86-64 Windows 10+

Tier 2

Platforms cross-compiled but not tested by our CI, available as binary releases

Releases may be silently broken due to the lack of automated testing. Issue reports and fixes are
welcome.

aarch64 Linux with glibc 2.27+
aarch64 (Apple Silicon) macOS
x86 (32-bit) Linux
Emscripten Web Assembly

Setting Up Lean
See also the quickstart instructions for a standard setup with VS Code as the editor.

Release builds for all supported platforms are available at
https://github.com/leanprover/lean4/releases. Instead of downloading these and setting up the
paths manually, however, it is recommended to use the Lean version manager elan instead:

lake

Lean 4 comes with a package manager named lake . Use lake init foo to initialize a Lean
package foo in the current directory, and lake build to typecheck and build it as well as all its
dependencies. Use lake help to learn about further commands. The general directory structure of
a package foo is

After running lake build you will see a binary named ./.lake/build/bin/foo and when you run it
you should see the output:

Editing

Lean implements the Language Server Protocol that can be used for interactive development in
Emacs, VS Code, and possibly other editors.

Changes must be saved to be visible in other files, which must then be invalidated using an editor
command (see links above).

$ elan self update # in case you haven't updated elan in a while
download & activate latest Lean 4 stable release
(https://github.com/leanprover/lean4/releases)
$ elan default leanprover/lean4:stable

lakefile.lean # package configuration
lean-toolchain # specifies the lean version to use
Foo.lean # main file, import via `import Foo`
Foo/
 A.lean # further files, import via e.g. `import Foo.A`
 A/... # further nesting
.lake/ # `lake` build output directory

Hello, world!

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 7/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/quickstart.html
https://github.com/leanprover/lean4/releases
https://github.com/leanprover/elan
https://microsoft.github.io/language-server-protocol/
https://github.com/leanprover/lean4-mode
https://github.com/leanprover-community/vscode-lean4

Theorem Proving in Lean
We strongly encourage you to read the book Theorem Proving in Lean. Many Lean users consider it
to be the Lean Bible.

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 8/156

https://lean-lang.org/theorem_proving_in_lean4/title_page.html

Functional Programming in Lean
The goal of this book is to be an accessible introduction to using Lean 4 as a programming language.
It should be useful both to people who want to use Lean as a general-purpose programming
language and to mathematicians who want to develop larger-scale proof automation but do not
have a background in functional programming. It does not assume any background with functional
programming, though it's probably not a good first book on programming in general. New content
will be added once per month until it's done.

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 9/156

https://lean-lang.org/functional_programming_in_lean/

Examples
Palindromes
Binary Search Trees
A Certified Type Checker
The Well-Typed Interpreter
Dependent de Bruijn Indices
Parametric Higher-Order Abstract Syntax

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 10/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/examples/palindromes.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/examples/bintree.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/examples/tc.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/examples/interp.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/examples/deBruijn.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/examples/phoas.lean.html

Palindromes
Palindromes are lists that read the same from left to right and from right to left. For example, [a,
b, b, a] and [a, h, a] are palindromes.

We use an inductive predicate to specify whether a list is a palindrome or not. Recall that inductive
predicates, or inductively defined propositions, are a convenient way to specify functions of type ...
→ Prop .

This example is a based on an example from the book "The Hitchhiker's Guide to Logical
Verification".

The definition distinguishes three cases: (1) [] is a palindrome; (2) for any element a , the singleton
list [a] is a palindrome; (3) for any element a and any palindrome [b₁, . . ., bₙ] , the list [a,
b₁, . . ., bₙ, a] is a palindrome.

We now prove that the reverse of a palindrome is a palindrome using induction on the inductive
predicate h : Palindrome as .

If a list as is a palindrome, then the reverse of as is equal to itself.

Note that you can also easily prove palindrome_reverse using reverse_eq_of_palindrome .

Given a nonempty list, the function List.last returns its element. Note that we use (by simp) to
prove that a₂ :: as ≠ [] in the recursive application.

We use the function List.last to prove the following theorem that says that if a list as is not
empty, then removing the last element from as and appending it back is equal to as . We use the
attribute @[simp] to instruct the simp tactic to use this theorem as a simplification rule.

We now define the following auxiliary induction principle for lists using well-founded recursion on
as.length . We can read it as follows, to prove motive as , it suffices to show that: (1) motive [] ;

(2) motive [a] for any a ; (3) if motive as holds, then motive ([a] ++ as ++ [b]) also holds for
any a , b , and as . Note that the structure of this induction principle is very similar to the
Palindrome inductive predicate.

inductive Palindrome : List α → Prop where
 | nil : Palindrome []
 | single : (a : α) → Palindrome [a]
 | sandwich : (a : α) → Palindrome as → Palindrome ([a] ++ as ++ [a])

theorem palindrome_reverse (h : Palindrome as) : Palindrome as.reverse := by
 induction h with
 | nil => exact Palindrome.nil
 | single a => exact Palindrome.single a
 | sandwich a h ih => simp ; exact Palindrome.sandwich _ ih

theorem reverse_eq_of_palindrome (h : Palindrome as) : as.reverse = as := by
 induction h with
 | nil => rfl
 | single a => rfl
 | sandwich a h ih => simp [ih]

example (h : Palindrome as) : Palindrome as.reverse := by
 simp [reverse_eq_of_palindrome h, h]

def List.last : (as : List α) → as ≠ [] → α
 | [a], _ => a
 | _::a₂:: as, _ => (a₂::as).last (by simp)

@[simp] theorem List.dropLast_append_last (h : as ≠ []) : as.dropLast ++ [as.last h] = as
:= by
 match as with
 | [] => contradiction
 | [a] => simp_all [last, dropLast]
 | a₁ :: a₂ :: as =>
 simp [last, dropLast]
 exact dropLast_append_last (as := a₂ :: as) (by simp)

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 11/156

We use our new induction principle to prove that if as.reverse = as , then Palindrome as holds.
Note that we use the using modifier to instruct the induction tactic to use this induction principle
instead of the default one for lists.

We now define a function that returns true iff as is a palindrome. The function assumes that the
type α has decidable equality. We need this assumption because we need to compare the list
elements.

It is straightforward to prove that isPalindrome is correct using the previously proved theorems.

theorem List.palindrome_ind (motive : List α → Prop)
 (h₁ : motive [])
 (h₂ : (a : α) → motive [a])
 (h₃ : (a b : α) → (as : List α) → motive as → motive ([a] ++ as ++ [b]))
 (as : List α)
 : motive as :=
 match as with
 | [] => h₁
 | [a] => h₂ a
 | a₁::a₂::as' =>
 have ih := palindrome_ind motive h₁ h₂ h₃ (a₂::as').dropLast
 have : [a₁] ++ (a₂::as').dropLast ++ [(a₂::as').last (by simp)] = a₁::a₂::as' :=
by simp
 this ▸ h₃ _ _ _ ih
termination_by as.length

theorem List.palindrome_of_eq_reverse (h : as.reverse = as) : Palindrome as := by
 induction as using palindrome_ind
 next => exact Palindrome.nil
 next a => exact Palindrome.single a
 next a b as ih =>
 have : a = b := by simp_all
 subst this
 have : as.reverse = as := by simp_all
 exact Palindrome.sandwich a (ih this)

def List.isPalindrome [DecidableEq α] (as : List α) : Bool :=
 as.reverse = as

theorem List.isPalindrome_correct [DecidableEq α] (as : List α) : as.isPalindrome ↔
Palindrome as := by
 simp [isPalindrome]
 exact Iff.intro (fun h => palindrome_of_eq_reverse h) (fun h =>
reverse_eq_of_palindrome h)

#eval [1, 2, 1].isPalindrome
#eval [1, 2, 3, 1].isPalindrome

example : [1, 2, 1].isPalindrome := rfl
example : [1, 2, 2, 1].isPalindrome := rfl
example : ![1, 2, 3, 1].isPalindrome := rfl

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 12/156

Binary Search Trees
If the type of keys can be totally ordered -- that is, it supports a well-behaved ≤ comparison -- then
maps can be implemented with binary search trees (BSTs). Insert and lookup operations on BSTs
take time proportional to the height of the tree. If the tree is balanced, the operations therefore take
logarithmic time.

This example is based on a similar example found in the "Software Foundations" book (volume 3).

We use Nat as the key type in our implementation of BSTs, since it has a convenient total order with
lots of theorems and automation available. We leave as an exercise to the reader the generalization
to arbitrary types.

The function contains returns true iff the given tree contains the key k .

t.find? k returns some v if v is the value bound to key k in the tree t . It returns none
otherwise.

t.insert k v is the map containing all the bindings of t along with a binding of k to v .

Let's add a new operation to our tree: converting it to an association list that contains the key--value
bindings from the tree stored as pairs. If that list is sorted by the keys, then any two trees that
represent the same map would be converted to the same list. Here's a function that does so with an
in-order traversal of the tree.

The implementation of Tree.toList is inefficient because of how it uses the ++ operator. On a
balanced tree its running time is linearithmic, because it does a linear number of concatenations at

inductive Tree (β : Type v) where
 | leaf
 | node (left : Tree β) (key : Nat) (value : β) (right : Tree β)
 deriving Repr

def Tree.contains (t : Tree β) (k : Nat) : Bool :=
 match t with
 | leaf => false
 | node left key value right =>
 if k < key then
 left.contains k
 else if key < k then
 right.contains k
 else
 true

def Tree.find? (t : Tree β) (k : Nat) : Option β :=
 match t with
 | leaf => none
 | node left key value right =>
 if k < key then
 left.find? k
 else if key < k then
 right.find? k
 else
 some value

def Tree.insert (t : Tree β) (k : Nat) (v : β) : Tree β :=
 match t with
 | leaf => node leaf k v leaf
 | node left key value right =>
 if k < key then
 node (left.insert k v) key value right
 else if key < k then
 node left key value (right.insert k v)
 else
 node left k v right

def Tree.toList (t : Tree β) : List (Nat × β) :=
 match t with
 | leaf => []
 | node l k v r => l.toList ++ [(k, v)] ++ r.toList

#eval Tree.leaf.insert 2 "two"
 |>.insert 3 "three"
 |>.insert 1 "one"

#eval Tree.leaf.insert 2 "two"
 |>.insert 3 "three"
 |>.insert 1 "one"
 |>.toList

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 13/156

https://softwarefoundations.cis.upenn.edu/vfa-current/SearchTree.html

each level of the tree. On an unbalanced tree it's quadratic time. Here's a tail-recursive
implementation than runs in linear time, regardless of whether the tree is balanced:

We now prove that t.toList and t.toListTR return the same list. The proof is on induction, and
as we used the auxiliary function go to define Tree.toListTR , we use the auxiliary theorem go to
prove the theorem.

The proof of the auxiliary theorem is by induction on t . The generalizing acc modifier instructs
Lean to revert acc , apply the induction theorem for Tree s, and then reintroduce acc in each case.
By using generalizing , we obtain the more general induction hypotheses

left_ih : ∀ acc, toListTR.go left acc = toList left ++ acc

right_ih : ∀ acc, toListTR.go right acc = toList right ++ acc

Recall that the combinator tac <;> tac' runs tac on the main goal and tac' on each produced
goal, concatenating all goals produced by tac' . In this theorem, we use it to apply simp and close
each subgoal produced by the induction tactic.

The simp parameters toListTR.go and toList instruct the simplifier to try to reduce and/or apply
auto generated equation theorems for these two functions. The parameter * instructs the simplifier
to use any equation in a goal as rewriting rules. In this particular case, simp uses the induction
hypotheses as rewriting rules. Finally, the parameter List.append_assoc instructs the simplifier to
use the List.append_assoc theorem as a rewriting rule.

The [csimp] annotation instructs the Lean code generator to replace any Tree.toList with
Tree.toListTR when generating code.

The implementations of Tree.find? and Tree.insert assume that values of type tree obey the
BST invariant: for any non-empty node with key k , all the values of the left subtree are less than
k and all the values of the right subtree are greater than k . But that invariant is not part of the

definition of tree.

So, let's formalize the BST invariant. Here's one way to do so. First, we define a helper ForallTree
to express that idea that a predicate holds at every node of a tree:

Second, we define the BST invariant: An empty tree is a BST. A non-empty tree is a BST if all its left
nodes have a lesser key, its right nodes have a greater key, and the left and right subtrees are
themselves BSTs.

def Tree.toListTR (t : Tree β) : List (Nat × β) :=
 go t []
where
 go (t : Tree β) (acc : List (Nat × β)) : List (Nat × β) :=
 match t with
 | leaf => acc
 | node l k v r => go l ((k, v) :: go r acc)

theorem Tree.toList_eq_toListTR (t : Tree β)
 : t.toList = t.toListTR := by
 simp [toListTR, go t []]
where
 go (t : Tree β) (acc : List (Nat × β))
 : toListTR.go t acc = t.toList ++ acc := by
 induction t generalizing acc <;>
 simp [toListTR.go, toList, *, List.append_assoc]

@[csimp] theorem Tree.toList_eq_toListTR_csimp
 : @Tree.toList = @Tree.toListTR := by
 funext β t
 apply toList_eq_toListTR

inductive ForallTree (p : Nat → β → Prop) : Tree β → Prop
 | leaf : ForallTree p .leaf
 | node :
 ForallTree p left →
 p key value →
 ForallTree p right →
 ForallTree p (.node left key value right)

inductive BST : Tree β → Prop
 | leaf : BST .leaf
 | node :
 ForallTree (fun k v => k < key) left →
 ForallTree (fun k v => key < k) right →
 BST left → BST right →
 BST (.node left key value right)

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 14/156

We can use the macro command to create helper tactics for organizing our proofs. The macro
have_eq x y tries to prove x = y using linear arithmetic, and then immediately uses the new

equality to substitute x with y everywhere in the goal.

The modifier local specifies the scope of the macro.

The by_cases' e is just the regular by_cases followed by simp using all hypotheses in the current
goal as rewriting rules. Recall that the by_cases tactic creates two goals. One where we have h : e
and another one containing h : ¬ e . The simplifier uses the h to rewrite e to True in the first
subgoal, and e to False in the second. This is particularly useful if e is the condition of an if -
statement.

We can use the attribute [simp] to instruct the simplifier to reduce given definitions or apply
rewrite theorems. The local modifier limits the scope of this modification to this file.

We now prove that Tree.insert preserves the BST invariant using induction and case analysis.
Recall that the tactic . tac focuses on the main goal and tries to solve it using tac , or else fails. It is
used to structure proofs in Lean. The notation ‹e› is just syntax sugar for (by assumption : e) .
That is, it tries to find a hypothesis h : e . It is useful to access hypothesis that have auto generated
names (aka "inaccessible") names.

Now, we define the type BinTree using a Subtype that states that only trees satisfying the BST
invariant are BinTree s.

/-- The `have_eq lhs rhs` tactic (tries to) prove that `lhs = rhs`,
 and then replaces `lhs` with `rhs`. -/
local macro "have_eq " lhs:term:max rhs:term:max : tactic =>
 `(tactic|
 (have h : $lhs = $rhs :=
 -- TODO: replace with linarith
 by simp_arith at *; apply Nat.le_antisymm <;> assumption
 try subst $lhs))

/-- `by_cases' e` is a shorthand form `by_cases e <;> simp[*]` -/
local macro "by_cases' " e:term : tactic =>
 `(tactic| by_cases $e <;> simp [*])

attribute [local simp] Tree.insert

theorem Tree.forall_insert_of_forall
 (h₁ : ForallTree p t) (h₂ : p key value)
 : ForallTree p (t.insert key value) := by
 induction h₁ with
 | leaf => exact .node .leaf h₂ .leaf
 | node hl hp hr ihl ihr =>
 rename Nat => k
 by_cases' key < k
 . exact .node ihl hp hr
 . by_cases' k < key
 . exact .node hl hp ihr
 . have_eq key k
 exact .node hl h₂ hr

theorem Tree.bst_insert_of_bst
 {t : Tree β} (h : BST t) (key : Nat) (value : β)
 : BST (t.insert key value) := by
 induction h with
 | leaf => exact .node .leaf .leaf .leaf .leaf
 | node h₁ h₂ b₁ b₂ ih₁ ih₂ =>
 rename Nat => k
 simp
 by_cases' key < k
 . exact .node (forall_insert_of_forall h₁ ‹key < k›) h₂ ih₁ b₂
 . by_cases' k < key
 . exact .node h₁ (forall_insert_of_forall h₂ ‹k < key›) b₁ ih₂
 . have_eq key k
 exact .node h₁ h₂ b₁ b₂

def BinTree (β : Type u) := { t : Tree β // BST t }

def BinTree.mk : BinTree β :=
 ⟨.leaf, .leaf⟩

def BinTree.contains (b : BinTree β) (k : Nat) : Bool :=
 b.val.contains k

def BinTree.find? (b : BinTree β) (k : Nat) : Option β :=
 b.val.find? k

def BinTree.insert (b : BinTree β) (k : Nat) (v : β) : BinTree β :=
 ⟨b.val.insert k v, b.val.bst_insert_of_bst b.property k v⟩

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 15/156

Finally, we prove that BinTree.find? and BinTree.insert satisfy the map properties.

attribute [local simp]
 BinTree.mk BinTree.contains BinTree.find?
 BinTree.insert Tree.find? Tree.contains Tree.insert

theorem BinTree.find_mk (k : Nat)
 : BinTree.mk.find? k = (none : Option β) := by
 simp

theorem BinTree.find_insert (b : BinTree β) (k : Nat) (v : β)
 : (b.insert k v).find? k = some v := by
 let ⟨t, h⟩ := b ; simp
 induction t with simp
 | node left key value right ihl ihr =>
 by_cases' k < key
 . cases h ; apply ihl ; assumption
 . by_cases' key < k
 cases h ; apply ihr ; assumption

theorem BinTree.find_insert_of_ne (b : BinTree β) (ne : k ≠ k') (v : β)
 : (b.insert k v).find? k' = b.find? k' := by
 let ⟨t, h⟩ := b ; simp
 induction t with simp
 | leaf =>
 intros le
 exact Nat.lt_of_le_of_ne le ne
 | node left key value right ihl ihr =>
 let .node hl hr bl br := h
 specialize ihl bl
 specialize ihr br
 by_cases' k < key ; by_cases' key < k
 have_eq key k
 by_cases' k' < k ; by_cases' k < k'
 have_eq k k'
 contradiction

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 16/156

A Certified Type Checker
In this example, we build a certified type checker for a simple expression language.

Remark: this example is based on an example in the book Certified Programming with Dependent
Types by Adam Chlipala.

We define a simple language of types using the inductive datatype Ty , and its typing rules using the
inductive predicate HasType .

We can easily show that if e has type t₁ and type t₂ , then t₁ and t₂ must be equal by using the
the cases tactic. This tactic creates a new subgoal for every constructor, and automatically
discharges unreachable cases. The tactic combinator tac₁ <;> tac₂ applies tac₂ to each subgoal
produced by tac₁ . Then, the tactic rfl is used to close all produced goals using reflexivity.

The inductive type Maybe p has two constructors: found a h and unknown . The former contains an
element a : α and a proof that a satisfies the predicate p . The constructor unknown is used to
encode "failure".

We define a notation for Maybe that is similar to the builtin notation for the Lean builtin type
Subtype .

The function Expr.typeCheck e returns a type ty and a proof that e has type ty , or unknown .
Recall that, def Expr.typeCheck ... in Lean is notation for namespace Expr def typeCheck ...
end Expr . The term .found .nat .nat is sugar for Maybe.found Ty.nat HasType.nat . Lean can
infer the namespaces using the expected types.

Now, we prove that if Expr.typeCheck e returns Maybe.unknown , then forall ty , HasType e ty
does not hold. The notation e.typeCheck is sugar for Expr.typeCheck e . Lean can infer this
because we explicitly said that e has type Expr . The proof is by induction on e and case analysis.
The tactic rename_i is used to to rename "inaccessible" variables. We say a variable is inaccessible if
it is introduced by a tactic (e.g., cases) or has been shadowed by another variable introduced by the

inductive Expr where
 | nat : Nat → Expr
 | plus : Expr → Expr → Expr
 | bool : Bool → Expr
 | and : Expr → Expr → Expr

inductive Ty where
 | nat
 | bool
 deriving DecidableEq

inductive HasType : Expr → Ty → Prop
 | nat : HasType (.nat v) .nat
 | plus : HasType a .nat → HasType b .nat → HasType (.plus a b) .nat
 | bool : HasType (.bool v) .bool
 | and : HasType a .bool → HasType b .bool → HasType (.and a b) .bool

theorem HasType.det (h₁ : HasType e t₁) (h₂ : HasType e t₂) : t₁ = t₂ := by
 cases h₁ <;> cases h₂ <;> rfl

inductive Maybe (p : α → Prop) where
 | found : (a : α) → p a → Maybe p
 | unknown

notation "{{ " x " | " p " }}" => Maybe (fun x => p)

def Expr.typeCheck (e : Expr) : {{ ty | HasType e ty }} :=
 match e with
 | nat .. => .found .nat .nat
 | bool .. => .found .bool .bool
 | plus a b =>
 match a.typeCheck, b.typeCheck with
 | .found .nat h₁, .found .nat h₂ => .found .nat (.plus h₁ h₂)
 | _, _ => .unknown
 | and a b =>
 match a.typeCheck, b.typeCheck with
 | .found .bool h₁, .found .bool h₂ => .found .bool (.and h₁ h₂)
 | _, _ => .unknown

theorem Expr.typeCheck_correct (h₁ : HasType e ty) (h₂ : e.typeCheck ≠ .unknown)
 : e.typeCheck = .found ty h := by
 revert h₂
 cases typeCheck e with
 | found ty' h' => intro ; have := HasType.det h₁ h' ; subst this ; rfl
 | unknown => intros ; contradiction

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 17/156

http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/

user. Note that the tactic simp [typeCheck] is applied to all goal generated by the induction tactic,
and closes the cases corresponding to the constructors Expr.nat and Expr.bool .

Finally, we show that type checking for e can be decided using Expr.typeCheck .

theorem Expr.typeCheck_complete {e : Expr} : e.typeCheck = .unknown → ¬ HasType e ty :=
by
 induction e with simp [typeCheck]
 | plus a b iha ihb =>
 split
 next => intros ; contradiction
 next ra rb hnp =>
 -- Recall that `hnp` is a hypothesis generated by the `split` tactic
 -- that asserts the previous case was not taken
 intro h ht
 cases ht with
 | plus h₁ h₂ => exact hnp h₁ h₂ (typeCheck_correct h₁ (iha · h₁)) (
typeCheck_correct h₂ (ihb · h₂))
 | and a b iha ihb =>
 split
 next => intros ; contradiction
 next ra rb hnp =>
 intro h ht
 cases ht with
 | and h₁ h₂ => exact hnp h₁ h₂ (typeCheck_correct h₁ (iha · h₁)) (
typeCheck_correct h₂ (ihb · h₂))

instance (e : Expr) (t : Ty) : Decidable (HasType e t) :=
 match h' : e.typeCheck with
 | .found t' ht' =>
 if heq : t = t' then
 isTrue (heq ▸ ht')
 else
 isFalse fun ht => heq (HasType.det ht ht')
 | .unknown => isFalse (Expr.typeCheck_complete h')

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 18/156

The Well-Typed Interpreter
In this example, we build an interpreter for a simple functional programming language, with
variables, function application, binary operators and an if...then...else construct. We will use
the dependent type system to ensure that any programs which can be represented are well-typed.

Remark: this example is based on an example found in the Idris manual.

Vectors

A Vector is a list of size n whose elements belong to a type α .

We can overload the List.cons notation :: and use it to create Vector s.

Now, we define the types of our simple functional language. We have integers, booleans, and
functions, represented by Ty .

We can write a function to translate Ty values to a Lean type — remember that types are first class,
so can be calculated just like any other value. We mark Ty.interp as [reducible] to make sure
the typeclass resolution procedure can unfold/reduce it. For example, suppose Lean is trying to
synthesize a value for the instance Add (Ty.interp Ty.int) . Since Ty.interp is marked as
[reducible] , the typeclass resolution procedure can reduce Ty.interp Ty.int to Int , and use

the builtin instance for Add Int as the solution.

Expressions are indexed by the types of the local variables, and the type of the expression itself.

We use the command open to create the aliases stop and pop for HasType.stop and
HasType.pop respectively.

Since expressions are indexed by their type, we can read the typing rules of the language from the
definitions of the constructors. Let us look at each constructor in turn.

We use a nameless representation for variables — they are de Bruijn indexed. Variables are
represented by a proof of their membership in the context, HasType i ctx ty , which is a proof that
variable i in context ctx has type ty .

We can treat stop as a proof that the most recently defined variable is well-typed, and pop n as a
proof that, if the n th most recently defined variable is well-typed, so is the n+1 th. In practice, this
means we use stop to refer to the most recently defined variable, pop stop to refer to the next,
and so on, via the Expr.var constructor.

A value Expr.val carries a concrete representation of an integer.

inductive Vector (α : Type u) : Nat → Type u
 | nil : Vector α 0
 | cons : α → Vector α n → Vector α (n+1)

infix:67 " :: " => Vector.cons

inductive Ty where
 | int
 | bool
 | fn (a r : Ty)

@[reducible] def Ty.interp : Ty → Type
 | int => Int
 | bool => Bool
 | fn a r => a.interp → r.interp

inductive HasType : Fin n → Vector Ty n → Ty → Type where
 | stop : HasType 0 (ty :: ctx) ty
 | pop : HasType k ctx ty → HasType k.succ (u :: ctx) ty

inductive Expr : Vector Ty n → Ty → Type where
 | var : HasType i ctx ty → Expr ctx ty
 | val : Int → Expr ctx Ty.int
 | lam : Expr (a :: ctx) ty → Expr ctx (Ty.fn a ty)
 | app : Expr ctx (Ty.fn a ty) → Expr ctx a → Expr ctx ty
 | op : (a.interp → b.interp → c.interp) → Expr ctx a → Expr ctx b → Expr ctx c
 | ife : Expr ctx Ty.bool → Expr ctx a → Expr ctx a → Expr ctx a
 | delay : (Unit → Expr ctx a) → Expr ctx a

open HasType (stop pop)

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 19/156

A lambda Expr.lam creates a function. In the scope of a function of type Ty.fn a ty , there is a
new local variable of type a .

A function application Expr.app produces a value of type ty given a function from a to ty and a
value of type a .

The constructor Expr.op allows us to use arbitrary binary operators, where the type of the operator
informs what the types of the arguments must be.

Finally, the constructor Exp.ife represents a if-then-else expression. The condition is a Boolean,
and each branch must have the same type.

The auxiliary constructor Expr.delay is used to delay evaluation.

When we evaluate an Expr , we’ll need to know the values in scope, as well as their types. Env is an
environment, indexed over the types in scope. Since an environment is just another form of list,
albeit with a strongly specified connection to the vector of local variable types, we overload again the
notation :: so that we can use the usual list syntax. Given a proof that a variable is defined in the
context, we can then produce a value from the environment.

Given this, an interpreter is a function which translates an Expr into a Lean value with respect to a
specific environment.

We can make some simple test functions. Firstly, adding two inputs fun x y => y + x is written as
follows.

More interestingly, a factorial function fact (e.g. fun x => if (x == 0) then 1 else (fact (x-1) *
x)), can be written as. Note that this is a recursive (non-terminating) definition. For every input
value, the interpreter terminates, but the definition itself is non-terminating. We use two tricks to
make sure Lean accepts it. First, we use the auxiliary constructor Expr.delay to delay its unfolding.
Second, we add the annotation decreasing_by sorry which can be viewed as "trust me, this
recursive definition makes sense". Recall that sorry is an unsound axiom in Lean.

inductive Env : Vector Ty n → Type where
 | nil : Env Vector.nil
 | cons : Ty.interp a → Env ctx → Env (a :: ctx)

infix:67 " :: " => Env.cons

def Env.lookup : HasType i ctx ty → Env ctx → ty.interp
 | stop, x :: xs => x
 | pop k, x :: xs => lookup k xs

def Expr.interp (env : Env ctx) : Expr ctx ty → ty.interp
 | var i => env.lookup i
 | val x => x
 | lam b => fun x => b.interp (Env.cons x env)
 | app f a => f.interp env (a.interp env)
 | op o x y => o (x.interp env) (y.interp env)
 | ife c t e => if c.interp env then t.interp env else e.interp env
 | delay a => (a ()).interp env

open Expr

def add : Expr ctx (Ty.fn Ty.int (Ty.fn Ty.int Ty.int)) :=
 lam (lam (op (·+·) (var stop) (var (pop stop))))

#eval add.interp Env.nil 10 20

def fact : Expr ctx (Ty.fn Ty.int Ty.int) :=
 lam (ife (op (·==·) (var stop) (val 0))
 (val 1)
 (op (·*·) (delay fun _ => app fact (op (·-·) (var stop) (val 1))) (var stop)))
 decreasing_by sorry

#eval fact.interp Env.nil 10

05/06/2024, 12:56 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 20/156

Dependent de Bruijn Indices
In this example, we represent program syntax terms in a type family parameterized by a list of types,
representing the typing context, or information on which free variables are in scope and what their
types are.

Remark: this example is based on an example in the book Certified Programming with Dependent
Types by Adam Chlipala.

Programmers who move to statically typed functional languages from scripting languages often
complain about the requirement that every element of a list have the same type. With fancy type
systems, we can partially lift this requirement. We can index a list type with a “type-level” list that
explains what type each element of the list should have. This has been done in a variety of ways in
Haskell using type classes, and we can do it much more cleanly and directly in Lean.

We parameterize our heterogeneous lists by at type α and an α -indexed type β .

We overload the List.cons notation :: so we can also use it to create heterogeneous lists.

We similarly overload the List notation [] for the empty heterogeneous list.

Variables are represented in a way isomorphic to the natural numbers, where number 0 represents
the first element in the context, number 1 the second element, and so on. Actually, instead of
numbers, we use the Member inductive family.

The value of type Member a as can be viewed as a certificate that a is an element of the list as .
The constructor Member.head says that a is in the list if the list begins with it. The constructor
Member.tail says that if a is in the list bs , it is also in the list b::bs .

Given a heterogeneous list HList β is and value of type Member i is , HList.get retrieves an
element of type β i from the list. The pattern .head and .tail h are sugar for Member.head and
Member.tail h respectively. Lean can infer the namespace using the expected type.

Here is the definition of the simple type system for our programming language, a simply typed
lambda calculus with natural numbers as the base type.

We can write a function to translate Ty values to a Lean type — remember that types are first class,
so can be calculated just like any other value. We mark Ty.denote as [reducible] to make sure
the typeclass resolution procedure can unfold/reduce it. For example, suppose Lean is trying to
synthesize a value for the instance Add (Ty.denote Ty.nat) . Since Ty.denote is marked as
[reducible] , the typeclass resolution procedure can reduce Ty.denote Ty.nat to Nat , and use

the builtin instance for Add Nat as the solution.

Recall that the term a.denote is sugar for denote a where denote is the function being defined.
We call it the "dot notation".

Here is the definition of the Term type, including variables, constants, addition, function application
and abstraction, and let binding of local variables. Since let is a keyword in Lean, we use the
"escaped identifier" «let» . You can input the unicode (French double quotes) using \f<< (for «)

inductive HList {α : Type v} (β : α → Type u) : List α → Type (max u v)
 | nil : HList β []
 | cons : β i → HList β is → HList β (i::is)

infix:67 " :: " => HList.cons

notation "[" "]" => HList.nil

inductive Member : α → List α → Type
 | head : Member a (a::as)
 | tail : Member a bs → Member a (b::bs)

def HList.get : HList β is → Member i is → β i
 | a::as, .head => a
 | a ::as, .tail h => as.get h

inductive Ty where
 | nat
 | fn : Ty → Ty → Ty

@[reducible] def Ty.denote : Ty → Type
 | nat => Nat
 | fn a b => a.denote → b.denote

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 21/156

http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/

and \f>> (for »). The term Term ctx .nat is sugar for Term ctx Ty.nat , Lean infers the
namespace using the expected type.

Here are two example terms encoding, the first addition packaged as a two-argument curried
function, and the second of a sample application of addition to constants.

The command open Ty Term Member opens the namespaces Ty , Term , and Member . Thus, you can
write lam instead of Term.lam .

Since dependent typing ensures that any term is well-formed in its context and has a particular type,
it is easy to translate syntactic terms into Lean values.

The attribute [simp] instructs Lean to always try to unfold Term.denote applications when one
applies the simp tactic. We also say this is a hint for the Lean term simplifier.

You can show that the denotation of three_the_hard_way is indeed 3 using reflexivity.

We now define the constant folding optimization that traverses a term if replaces subterms such as
plus (const m) (const n) with const (n+m) .

The correctness of the Term.constFold is proved using induction, case-analysis, and the term
simplifier. We prove all cases but the one for plus using simp [*] . This tactic instructs the term
simplifier to use hypotheses such as a = b as rewriting/simplications rules. We use the split to
break the nested match expression in the plus case into two cases. The local variables iha and
ihb are the induction hypotheses for a and b . The modifier ← in a term simplifier argument

instructs the term simplifier to use the equation as a rewriting rule in the "reverse direction". That is,
given h : a = b , ← h instructs the term simplifier to rewrite b subterms to a .

inductive Term : List Ty → Ty → Type
 | var : Member ty ctx → Term ctx ty
 | const : Nat → Term ctx .nat
 | plus : Term ctx .nat → Term ctx .nat → Term ctx .nat
 | app : Term ctx (.fn dom ran) → Term ctx dom → Term ctx ran
 | lam : Term (dom :: ctx) ran → Term ctx (.fn dom ran)
 | «let» : Term ctx ty₁ → Term (ty₁ :: ctx) ty₂ → Term ctx ty₂

open Ty Term Member
def add : Term [] (fn nat (fn nat nat)) :=
 lam (lam (plus (var (tail head)) (var head)))

def three_the_hard_way : Term [] nat :=
 app (app add (const 1)) (const 2)

@[simp] def Term.denote : Term ctx ty → HList Ty.denote ctx → ty.denote
 | var h, env => env.get h
 | const n, _ => n
 | plus a b, env => a.denote env + b.denote env
 | app f a, env => f.denote env (a.denote env)
 | lam b, env => fun x => b.denote (x :: env)
 | «let» a b, env => b.denote (a.denote env :: env)

example : three_the_hard_way.denote [] = 3 :=
 rfl

@[simp] def Term.constFold : Term ctx ty → Term ctx ty
 | const n => const n
 | var h => var h
 | app f a => app f.constFold a.constFold
 | lam b => lam b.constFold
 | «let» a b => «let» a.constFold b.constFold
 | plus a b =>
 match a.constFold, b.constFold with
 | const n, const m => const (n+m)
 | a', b' => plus a' b'

theorem Term.constFold_sound (e : Term ctx ty) : e.constFold.denote env = e.denote env :=
by
 induction e with simp [*]
 | plus a b iha ihb =>
 split
 next he₁ he₂ => simp [← iha, ← ihb, he₁, he₂]
 next => simp [iha, ihb]

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 22/156

Parametric Higher-Order Abstract Syntax
In contrast to first-order encodings, higher-order encodings avoid explicit modeling of variable
identity. Instead, the binding constructs of an object language (the language being formalized) can
be represented using the binding constructs of the meta language (the language in which the
formalization is done). The best known higher-order encoding is called higher-order abstract syntax
(HOAS), and we can start by attempting to apply it directly in Lean.

Remark: this example is based on an example in the book Certified Programming with Dependent
Types by Adam Chlipala.

Here is the definition of the simple type system for our programming language, a simply typed
lambda calculus with natural numbers as the base type.

We can write a function to translate Ty values to a Lean type — remember that types are first class,
so can be calculated just like any other value. We mark Ty.denote as [reducible] to make sure
the typeclass resolution procedure can unfold/reduce it. For example, suppose Lean is trying to
synthesize a value for the instance Add (Ty.denote Ty.nat) . Since Ty.denote is marked as
[reducible] , the typeclass resolution procedure can reduce Ty.denote Ty.nat to Nat , and use

the builtin instance for Add Nat as the solution.

Recall that the term a.denote is sugar for denote a where denote is the function being defined.
We call it the "dot notation".

With HOAS, each object language binding construct is represented with a function of the meta
language. Here is what we get if we apply that idea within an inductive definition of term syntax.
However a naive encondig in Lean fails to meet the strict positivity restrictions imposed by the Lean
kernel. An alternate higher-order encoding is parametric HOAS, as introduced by Washburn and
Weirich for Haskell and tweaked by Adam Chlipala for use in Coq. The key idea is to parameterize
the declaration by a type family rep standing for a "representation of variables."

Lean accepts this definition because our embedded functions now merely take variables as
arguments, instead of arbitrary terms. One might wonder whether there is an easy loophole to
exploit here, instantiating the parameter rep as term itself. However, to do that, we would need to
choose a variable representation for this nested mention of term, and so on through an infinite
descent into term arguments.

We write the final type of a closed term using polymorphic quantification over all possible choices of
rep type family

In the next two example, note how each is written as a function over a rep choice, such that the
specific choice has no impact on the structure of the term.

The argument rep does not even appear in the function body for add . How can that be? By giving
our terms expressive types, we allow Lean to infer many arguments for us. In fact, we do not even

inductive Ty where
 | nat
 | fn : Ty → Ty → Ty

@[reducible] def Ty.denote : Ty → Type
 | nat => Nat
 | fn a b => a.denote → b.denote

inductive Term' (rep : Ty → Type) : Ty → Type
 | var : rep ty → Term' rep ty
 | const : Nat → Term' rep .nat
 | plus : Term' rep .nat → Term' rep .nat → Term' rep .nat
 | lam : (rep dom → Term' rep ran) → Term' rep (.fn dom ran)
 | app : Term' rep (.fn dom ran) → Term' rep dom → Term' rep ran
 | let : Term' rep ty₁ → (rep ty₁ → Term' rep ty₂) → Term' rep ty₂

open Ty (nat fn)

namespace FirstTry

def Term (ty : Ty) := (rep : Ty → Type) → Term' rep ty

def add : Term (fn nat (fn nat nat)) := fun _rep =>
 .lam fun x => .lam fun y => .plus (.var x) (.var y)

def three_the_hard_way : Term nat := fun rep =>
 .app (.app (add rep) (.const 1)) (.const 2)

end FirstTry

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 23/156

http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/

need to name the rep argument! By using Lean implicit arguments and lambdas, we can completely
hide rep in these examples.

It may not be at all obvious that the PHOAS representation admits the crucial computable
operations. The key to effective deconstruction of PHOAS terms is one principle: treat the rep
parameter as an unconstrained choice of which data should be annotated on each variable. We will
begin with a simple example, that of counting how many variable nodes appear in a PHOAS term.
This operation requires no data annotated on variables, so we simply annotate variables with Unit
values. Note that, when we go under binders in the cases for lam and let , we must provide the
data value to annotate on the new variable we pass beneath. For our current choice of Unit data,
we always pass () .

We can now easily prove that add has two variables by using reflexivity

Here is another example, translating PHOAS terms into strings giving a first-order rendering. To
implement this translation, the key insight is to tag variables with strings, giving their names. The
function takes as an additional input i which is used to create variable names for binders. We also
use the string interpolation available in Lean. For example, s!"x_{i}" is expanded to "x_" ++
toString i .

It is not necessary to convert to a different representation to support many common operations on
terms. For instance, we can implement substitution of terms for variables. The key insight here is to
tag variables with terms, so that, on encountering a variable, we can simply replace it by the term in
its tag. We will call this function initially on a term with exactly one free variable, tagged with the
appropriate substitute. During recursion, new variables are added, but they are only tagged with
their own term equivalents. Note that this function squash is parameterized over a specific rep
choice.

To define the final substitution function over terms with single free variables, we define Term1 , an
analogue to Term that we defined before for closed terms.

Substitution is defined by (1) instantiating a Term1 to tag variables with terms and (2) applying the
result to a specific term to be substituted. Note how the parameter rep of squash is instantiated:
the body of subst is itself a polymorphic quantification over rep , standing for a variable tag choice
in the output term; and we use that input to compute a tag choice for the input term.

def Term (ty : Ty) := {rep : Ty → Type} → Term' rep ty

def add : Term (fn nat (fn nat nat)) :=
 .lam fun x => .lam fun y => .plus (.var x) (.var y)

def three_the_hard_way : Term nat :=
 .app (.app add (.const 1)) (.const 2)

def countVars : Term' (fun _ => Unit) ty → Nat
 | .var _ => 1
 | .const _ => 0
 | .plus a b => countVars a + countVars b
 | .app f a => countVars f + countVars a
 | .lam b => countVars (b ())
 | .let a b => countVars a + countVars (b ())

example : countVars add = 2 :=
 rfl

def pretty (e : Term' (fun _ => String) ty) (i : Nat := 1) : String :=
 match e with
 | .var s => s
 | .const n => toString n
 | .app f a => s!"({pretty f i} {pretty a i})"
 | .plus a b => s!"({pretty a i} + {pretty b i})"
 | .lam f =>
 let x := s!"x_{i}"
 s!"(fun {x} => {pretty (f x) (i+1)})"
 | .let a b =>
 let x := s!"x_{i}"
 s!"(let {x} := {pretty a i}; => {pretty (b x) (i+1)}"

#eval pretty three_the_hard_way

def squash : Term' (Term' rep) ty → Term' rep ty
 | .var e => e
 | .const n => .const n
 | .plus a b => .plus (squash a) (squash b)
 | .lam f => .lam fun x => squash (f (.var x))
 | .app f a => .app (squash f) (squash a)
 | .let a b => .let (squash a) fun x => squash (b (.var x))

def Term1 (ty1 ty2 : Ty) := {rep : Ty → Type} → rep ty1 → Term' rep ty2

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 24/156

We can view Term1 as a term with hole. In the following example, (fun x => plus (var x) (const
5)) can be viewed as the term plus _ (const 5) where the hole _ is instantiated by subst with
three_the_hard_way

One further development, which may seem surprising at first, is that we can also implement a usual
term denotation function, when we tag variables with their denotations.

The attribute [simp] instructs Lean to always try to unfold denote applications when one applies
the simp tactic. We also say this is a hint for the Lean term simplifier.

To summarize, the PHOAS representation has all the expressive power of more standard encodings
(e.g., using de Bruijn indices), and a variety of translations are actually much more pleasant to
implement than usual, thanks to the novel ability to tag variables with data.

We now define the constant folding optimization that traverses a term if replaces subterms such as
plus (const m) (const n) with const (n+m) .

The correctness of the constFold is proved using induction, case-analysis, and the term simplifier.
We prove all cases but the one for plus using simp [*] . This tactic instructs the term simplifier to
use hypotheses such as a = b as rewriting/simplications rules. We use the split to break the
nested match expression in the plus case into two cases. The local variables iha and ihb are the
induction hypotheses for a and b . The modifier ← in a term simplifier argument instructs the term
simplifier to use the equation as a rewriting rule in the "reverse direction. That is, given h : a = b ,
← h instructs the term simplifier to rewrite b subterms to a .

def subst (e : Term1 ty1 ty2) (e' : Term ty1) : Term ty2 :=
 squash (e e')

#eval pretty <| subst (fun x => .plus (.var x) (.const 5)) three_the_hard_way

@[simp] def denote : Term' Ty.denote ty → ty.denote
 | .var x => x
 | .const n => n
 | .plus a b => denote a + denote b
 | .app f a => denote f (denote a)
 | .lam f => fun x => denote (f x)
 | .let a b => denote (b (denote a))

example : denote three_the_hard_way = 3 :=
 rfl

@[simp] def constFold : Term' rep ty → Term' rep ty
 | .var x => .var x
 | .const n => .const n
 | .app f a => .app (constFold f) (constFold a)
 | .lam f => .lam fun x => constFold (f x)
 | .let a b => .let (constFold a) fun x => constFold (b x)
 | .plus a b =>
 match constFold a, constFold b with
 | .const n, .const m => .const (n+m)
 | a', b' => .plus a' b'

theorem constFold_sound (e : Term' Ty.denote ty) : denote (constFold e) = denote e := by

 induction e with simp [*]
 | plus a b iha ihb =>
 split
 next he₁ he₂ => simp [← iha, ← ihb, he₁, he₂]
 next => simp [iha, ihb]

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 25/156

Organizational features
In this section we introduce some organizational features of Lean that are not a part of its kernel per
se, but make it possible to work in the framework more efficiently.

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 26/156

Variables and Sections
Consider the following three function definitions:

Lean provides us with the variable command to make such declarations look more compact:

We can declare variables of any type, not just Type itself:

Printing them out shows that all three groups of definitions have exactly the same effect.

The variable command instructs Lean to insert the declared variables as bound variables in
definitions that refer to them. Lean is smart enough to figure out which variables are used explicitly
or implicitly in a definition. We can therefore proceed as though α , β , γ , g , f , h , and x are fixed
objects when we write our definitions, and let Lean abstract the definitions for us automatically.

When declared in this way, a variable stays in scope until the end of the file we are working on.
Sometimes, however, it is useful to limit the scope of a variable. For that purpose, Lean provides the
notion of a section :

When the section is closed, the variables go out of scope, and become nothing more than a distant
memory.

You do not have to indent the lines within a section. Nor do you have to name a section, which is to
say, you can use an anonymous section / end pair. If you do name a section, however, you have to
close it using the same name. Sections can also be nested, which allows you to declare new variables
incrementally.

def compose (α β γ : Type) (g : β → γ) (f : α → β) (x : α) : γ :=
 g (f x)

def doTwice (α : Type) (h : α → α) (x : α) : α :=
 h (h x)

def doThrice (α : Type) (h : α → α) (x : α) : α :=
 h (h (h x))

variable (α β γ : Type)

def compose (g : β → γ) (f : α → β) (x : α) : γ :=
 g (f x)

def doTwice (h : α → α) (x : α) : α :=
 h (h x)

def doThrice (h : α → α) (x : α) : α :=
 h (h (h x))

variable (α β γ : Type)
variable (g : β → γ) (f : α → β) (h : α → α)
variable (x : α)

def compose := g (f x)
def doTwice := h (h x)
def doThrice := h (h (h x))

#print compose
#print doTwice
#print doThrice

section useful
 variable (α β γ : Type)
 variable (g : β → γ) (f : α → β) (h : α → α)
 variable (x : α)

 def compose := g (f x)
 def doTwice := h (h x)
 def doThrice := h (h (h x))
end useful

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 27/156

Namespaces
Lean provides us with the ability to group definitions into nested, hierarchical namespaces:

When we declare that we are working in the namespace Foo , every identifier we declare has a full
name with prefix " Foo. " Within the namespace, we can refer to identifiers by their shorter names,
but once we end the namespace, we have to use the longer names.

The open command brings the shorter names into the current context. Often, when we import a
module, we will want to open one or more of the namespaces it contains, to have access to the short
identifiers. But sometimes we will want to leave this information hidden, for example, when they
conflict with identifiers in another namespace we want to use. Thus namespaces give us a way to
manage our working environment.

For example, Lean groups definitions and theorems involving lists into a namespace List .

We will discuss their types, below. The command open List allows us to use the shorter names:

Like sections, namespaces can be nested:

namespace Foo
 def a : Nat := 5
 def f (x : Nat) : Nat := x + 7

 def fa : Nat := f a
 def ffa : Nat := f (f a)

 #check a
 #check f
 #check fa
 #check ffa
 #check Foo.fa
end Foo

-- #check a -- error
-- #check f -- error
#check Foo.a
#check Foo.f
#check Foo.fa
#check Foo.ffa

open Foo

#check a
#check f
#check fa
#check Foo.fa

#check List.nil
#check List.cons
#check List.map

open List

#check nil
#check cons
#check map

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 28/156

Namespaces that have been closed can later be reopened, even in another file:

Like sections, nested namespaces have to be closed in the order they are opened. Namespaces and
sections serve different purposes: namespaces organize data and sections declare variables for
insertion in definitions. Sections are also useful for delimiting the scope of commands such as
set_option and open .

In many respects, however, a namespace ... end block behaves the same as a section ... end
block. In particular, if you use the variable command within a namespace, its scope is limited to
the namespace. Similarly, if you use an open command within a namespace, its effects disappear
when the namespace is closed.

namespace Foo
 def a : Nat := 5
 def f (x : Nat) : Nat := x + 7

 def fa : Nat := f a

 namespace Bar
 def ffa : Nat := f (f a)

 #check fa
 #check ffa
 end Bar

 #check fa
 #check Bar.ffa
end Foo

#check Foo.fa
#check Foo.Bar.ffa

open Foo

#check fa
#check Bar.ffa

namespace Foo
 def a : Nat := 5
 def f (x : Nat) : Nat := x + 7

 def fa : Nat := f a
end Foo

#check Foo.a
#check Foo.f

namespace Foo
 def ffa : Nat := f (f a)
end Foo

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 29/156

Implicit Arguments

Suppose we define the compose function as.

The function compose takes three types, α , β , and γ , and two functions, g : β → γ and f : α →
β , a value x : α , and returns g (f x) , the composition of g and f . We say compose is
polymorphic over types α , β , and γ . Now, let's use compose :

Because compose is polymorphic over types α , β , and γ , we have to provide them in the examples
above. But this information is redundant: one can infer the types from the arguments g and f . This
is a central feature of dependent type theory: terms carry a lot of information, and often some of
that information can be inferred from the context. In Lean, one uses an underscore, _ , to specify
that the system should fill in the information automatically.

It is still tedious, however, to type all these underscores. When a function takes an argument that
can generally be inferred from context, Lean allows us to specify that this argument should, by
default, be left implicit. This is done by putting the arguments in curly braces, as follows:

All that has changed are the braces around α β γ: Type . It makes these three arguments implicit.
Notationally, this hides the specification of the type, making it look as though compose simply takes
3 arguments.

Variables can also be specified as implicit when they are declared with the variable command:

This definition of ident here has the same effect as the one above.

Lean has very complex mechanisms for instantiating implicit arguments, and we will see that they
can be used to infer function types, predicates, and even proofs. The process of instantiating these
"holes," or "placeholders," in a term is part of a bigger process called elaboration. The presence of
implicit arguments means that at times there may be insufficient information to fix the meaning of

def compose (α β γ : Type) (g : β → γ) (f : α → β) (x : α) : γ :=
 g (f x)

def double (x : Nat) := 2*x
def triple (x : Nat) := 3*x

#check compose Nat Nat Nat double triple 10 -- Nat
#eval compose Nat Nat Nat double triple 10 -- 60

def appendWorld (s : String) := s ++ "world"
#check String.length -- String → Nat

#check compose String String Nat String.length appendWorld "hello" -- Nat
#eval compose String String Nat String.length appendWorld "hello" -- 10

#check compose _ _ _ double triple 10 -- Nat
#eval compose Nat Nat Nat double triple 10 -- 60
#check compose _ _ _ String.length appendWorld "hello" -- Nat
#eval compose _ _ _ String.length appendWorld "hello" -- 10

def compose {α β γ : Type} (g : β → γ) (f : α → β) (x : α) : γ :=
 g (f x)
#check compose double triple 10 -- Nat
#eval compose double triple 10 -- 60
#check compose String.length appendWorld "hello" -- Nat
#eval compose String.length appendWorld "hello" -- 10

universe u

section
 variable {α : Type u}
 variable (x : α)
 def ident := x
end

variable (α β : Type u)
variable (a : α) (b : β)

#check ident
#check ident a
#check ident b

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 30/156

an expression precisely. An expression like ident is said to be polymorphic, because it can take on
different meanings in different contexts.

One can always specify the type T of an expression e by writing (e : T) . This instructs Lean's
elaborator to use the value T as the type of e when trying to elaborate it. In the following example,
this mechanism is used to specify the desired types of the expressions ident .

Numerals are overloaded in Lean, but when the type of a numeral cannot be inferred, Lean
assumes, by default, that it is a natural number. So the expressions in the first two #check
commands below are elaborated in the same way, whereas the third #check command interprets
2 as an integer.

Sometimes, however, we may find ourselves in a situation where we have declared an argument to a
function to be implicit, but now want to provide the argument explicitly. If foo is such a function,
the notation @foo denotes the same function with all the arguments made explicit.

Notice that now the first #check command gives the type of the identifier, ident , without inserting
any placeholders. Moreover, the output indicates that the first argument is implicit.

Named arguments enable you to specify an argument for a parameter by matching the argument
with its name rather than with its position in the parameter list. You can use them to specify explicit
and implicit arguments. If you don't remember the order of the parameters but know their names,
you can send the arguments in any order. You may also provide the value for an implicit parameter
when Lean failed to infer it. Named arguments also improve the readability of your code by
identifying what each argument represents.

def ident {α : Type u} (a : α) : α := a

#check (ident : Nat → Nat) -- Nat → Nat

#check 2 -- Nat
#check (2 : Nat) -- Nat
#check (2 : Int) -- Int

variable (α β : Type)

#check @ident -- {α : Type u} → α → α
#check @ident α -- α → α
#check @ident β -- β → β
#check @ident Nat -- Nat → Nat
#check @ident Bool true -- Bool

#check ident (α := Nat) -- Nat → Nat
#check ident (α := Bool) -- Bool → Bool

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 31/156

Auto Bound Implicit Arguments

In the previous section, we have shown how implicit arguments make functions more convenient to
use. However, functions such as compose are still quite verbose to define. Note that the universe
polymorphic compose is even more verbose than the one previously defined.

You can avoid the universe command by providing the universe parameters when defining
compose .

Lean 4 supports a new feature called auto bound implicit arguments. It makes functions such as
compose much more convenient to write. When Lean processes the header of a declaration, any

unbound identifier is automatically added as an implicit argument if it is a single lower case or greek
letter. With this feature, we can write compose as

Note that, Lean inferred a more general type using Sort instead of Type .

Although we love this feature and use it extensively when implementing Lean, we realize some users
may feel uncomfortable with it. Thus, you can disable it using the command set_option
autoImplicit false .

The Lean language server provides semantic highlighting information to editors, and it provides
visual feedback whether an identifier has been interpreted as an auto bound implicit argument.

universe u v w
def compose {α : Type u} {β : Type v} {γ : Type w}
 (g : β → γ) (f : α → β) (x : α) : γ :=
 g (f x)

def compose.{u, v, w}
 {α : Type u} {β : Type v} {γ : Type w}
 (g : β → γ) (f : α → β) (x : α) : γ :=
 g (f x)

def compose (g : β → γ) (f : α → β) (x : α) : γ :=
 g (f x)

#check @compose
-- {β : Sort u_1} → {γ : Sort u_2} → {α : Sort u_3} → (β → γ) → (α → β) → α → γ

set_option autoImplicit false
/- The following definition produces `unknown identifier` errors -/
-- def compose (g : β → γ) (f : α → β) (x : α) : γ :=
-- g (f x)

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 32/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/semantic_highlighting.html

Syntax Extensions
Lean's syntax can be extended and customized by users at every level, ranging from basic "mixfix"
notations over macro transformers to type-aware elaborators. In fact, all builtin syntax is parsed and
processed using the same mechanisms and APIs open to users. In this section, we will describe and
explain the various extension points. Significant syntax extensions already builtin into Lean such as
the do notation are described in subsections.

While introducing new syntax is a relatively rare feature in programming languages and sometimes
even frowned upon because of its potential to obscure code, it is an invaluable tool in formalization
for expressing established conventions and notations of the respective field succinctly in code. Going
beyond basic notations, Lean's ability to factor out common boilerplate code into (well-behaved)
macros and to embed entire custom domain specific languages (DSLs) to textually encode
subproblems efficiently and readably can be of great benefit to both programmers and proof
engineers alike.

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 33/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/notation.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/notation.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/macro_overview.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/elaborators.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/do.html

The do notation
Lean is a pure functional programming language, but you can write effectful code using the do
embedded domain specific language (DSL). The following simple program prints two strings "hello"
and "world" in the standard output and terminates with exit code 0. Note that the type of the
program is IO UInt32 . You can read this type as the type of values that perform input-output
effects and produce a value of type UInt32 .

The type of IO.println is String → IO Unit . That is, it is a function from String to IO Unit
which indicates it may perform input-output effects and produce a value of type Unit . We often say
that functions that may perform effects are methods. We also say a method application, such as
IO.println "hello" is an action. Note that the examples above also demonstrates that braceless
do blocks are whitespace sensitive. If you like ; s and curly braces, you can write the example

above as

Semicolons can be used even when curly braces are not used. They are particularly useful when you
want to "pack" more than one action in a single line.

Whitespace sensitivity in programming languages is a controversial topic among programmers. You
should use your own style. We, the Lean developers, love the braceless and semicolon-free style. We
believe it is clean and beautiful.

The do DSL expands into the core Lean language. Let's inspect the different components using the
commands #print and #check .

The types of bind and pure may look daunting at first sight. They both have many implicit
arguments. Let's focus first on the explicit arguments. bind has two explicit arguments m α and α
→ m β . The first one should be viewed as an action with effects m and producing a value of type α .
The second is a function that takes a value of type α and produces an action with effects m and a
value of type β . The result is m β . The method bind is composing these two actions. We often say
bind is an abstract semicolon. The method pure converts a value α into an action that produces

an action m α .

Here is the same function being defined using bind and pure without the do DSL.

def main : IO UInt32 := do
 IO.println "hello"
 IO.println "world"
 return 0

def main : IO UInt32 := do {
 IO.println "hello";
 IO.println "world";
 return 0;
}

def main : IO UInt32 := do
 IO.println "hello"; IO.println "world"
 return 0

#check IO.println "hello"
-- IO Unit
#print main
-- Output contains the infix operator `>>=` and `pure`
-- The following `set_option` disables notation such as `>>=` in the output
set_option pp.notation false in
#print main
-- Output contains `bind` and `pure`
#print bind
-- bind : {m : Type u → Type v} → [self : Bind m] → {α β : Type u} →
-- m α → (α → m β) → m β
#print pure
-- pure : {m : Type u → Type v} → [self : Pure m] → {α : Type u} →
-- α → m α

-- IO implements the type classes `Bind` and `Pure`.
#check (inferInstance : Bind IO)
#check (inferInstance : Pure IO)

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 34/156

The notations let x <- action1; action2 and let x ← action1; action2 are just syntax sugar
for bind action1 fun x => action2 . Here is a small example using it.

Nested actions

Note that we cannot write if isGreaterThan0 x then ... else ... because the condition in a
if-then-else is a pure value without effects, but isGreaterThan0 x has type IO Bool . You can

use the nested action notation to avoid this annoyance. Here is an equivalent definition for f using
a nested action.

Lean "lifts" the nested actions and introduces the bind for us. Here is an example with two nested
actions. Note that both actions are executed even if x = 0 .

Here are two ways to achieve the short-circuit semantics in the example above

def main : IO UInt32 :=
 bind (IO.println "hello") fun _ =>
 bind (IO.println "world") fun _ =>
 pure 0

def isGreaterThan0 (x : Nat) : IO Bool := do
 IO.println s!"value: {x}"
 return x > 0

def f (x : Nat) : IO Unit := do
 let c <- isGreaterThan0 x
 if c then
 IO.println s!"{x} is greater than 0"
 else
 pure ()

#eval f 10
-- value: 10
-- 10 is greater than 0

def f (x : Nat) : IO Unit := do
 if (<- isGreaterThan0 x) then
 IO.println s!"{x} is greater than 0"
 else
 pure ()

#print f

def f (x y : Nat) : IO Unit := do
 if (<- isGreaterThan0 x) && (<- isGreaterThan0 y) then
 IO.println s!"{x} and {y} are greater than 0"
 else
 pure ()

#eval f 0 10
-- value: 0
-- value: 10

-- The function `f` above is equivalent to
def g (x y : Nat) : IO Unit := do
 let c1 <- isGreaterThan0 x
 let c2 <- isGreaterThan0 y
 if c1 && c2 then
 IO.println s!"{x} and {y} are greater than 0"
 else
 pure ()

theorem fgEqual : f = g :=
 rfl -- proof by reflexivity

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 35/156

if-then notation

In the do DSL, we can write if c then action as a shorthand for if c then action else pure
() . Here is the method f2 using this shorthand.

Reassignments

When writing effectful code, it is natural to think imperatively. For example, suppose we want to
create an empty array xs , add 0 if some condition holds, add 1 if another condition holds, and
then print it. In the following example, we use variable "shadowing" to simulate this kind of "update".

We can use tuples to simulate updates on multiple variables.

We can also simulate the control-flow above using join-points. A join-point is a let that is always tail
called and fully applied. The Lean compiler implements them using goto s. Here is the same
example using join-points.

def f1 (x y : Nat) : IO Unit := do
 if (<- isGreaterThan0 x <&&> isGreaterThan0 y) then
 IO.println s!"{x} and {y} are greater than 0"
 else
 pure ()

-- `<&&>` is the effectful version of `&&`
-- Given `x y : IO Bool`, `x <&&> y` : m Bool`
-- It only executes `y` if `x` returns `true`.

#eval f1 0 10
-- value: 0
#eval f1 1 10
-- value: 1
-- value: 10
-- 1 and 10 are greater than 0

def f2 (x y : Nat) : IO Unit := do
 if (<- isGreaterThan0 x) then
 if (<- isGreaterThan0 y) then
 IO.println s!"{x} and {y} are greater than 0"
 else
 pure ()
 else
 pure ()

def f2 (x y : Nat) : IO Unit := do
 if (<- isGreaterThan0 x) then
 if (<- isGreaterThan0 y) then
 IO.println s!"{x} and {y} are greater than 0"

def f (b1 b2 : Bool) : IO Unit := do
 let xs := #[]
 let xs := if b1 then xs.push 0 else xs
 let xs := if b2 then xs.push 1 else xs
 IO.println xs

#eval f true true
-- #[0, 1]
#eval f false true
-- #[1]
#eval f true false
-- #[0]
#eval f false false
-- #[]

def f (b1 b2 : Bool) : IO Unit := do
 let xs := #[]
 let ys := #[]
 let (xs, ys) := if b1 then (xs.push 0, ys) else (xs, ys.push 0)
 let (xs, ys) := if b2 then (xs.push 1, ys) else (xs, ys.push 1)
 IO.println s!"xs: {xs}, ys: {ys}"

#eval f true false
-- xs: #[0], ys: #[1]

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 36/156

You can capture complex control-flow using join-points. The do DSL offers the variable
reassignment feature to make this kind of code more comfortable to write. In the following example,
the mut modifier at let mut xs := #[] indicates that variable xs can be reassigned. The example
contains two reassignments xs := xs.push 0 and xs := xs.push 1 . The reassignments are
compiled using join-points. There is no hidden state being updated.

The notation x <- action reassigns x with the value produced by the action. It is equivalent to x
:= (<- action)

Iteration

The do DSL provides a unified notation for iterating over datastructures. Here are a few examples.

def f (b1 b2 : Bool) : IO Unit := do
 let jp1 xs ys := IO.println s!"xs: {xs}, ys: {ys}"
 let jp2 xs ys := if b2 then jp1 (xs.push 1) ys else jp1 xs (ys.push 1)
 let xs := #[]
 let ys := #[]
 if b1 then jp2 (xs.push 0) ys else jp2 xs (ys.push 0)

#eval f true false
-- xs: #[0], ys: #[1]

def f (b1 b2 : Bool) : IO Unit := do
 let mut xs := #[]
 if b1 then xs := xs.push 0
 if b2 then xs := xs.push 1
 IO.println xs

#eval f true true
-- #[0, 1]

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 37/156

TODO: describe forIn

def sum (xs : Array Nat) : IO Nat := do
 let mut s := 0
 for x in xs do
 IO.println s!"x: {x}"
 s := s + x
 return s

#eval sum #[1, 2, 3]
-- x: 1
-- x: 2
-- x: 3
-- 6

-- We can write pure code using the `Id.run <| do` DSL too.
def sum' (xs : Array Nat) : Nat := Id.run <| do
 let mut s := 0
 for x in xs do
 s := s + x
 return s

#eval sum' #[1, 2, 3]
-- 6

def sumEven (xs : Array Nat) : IO Nat := do
 let mut s := 0
 for x in xs do
 if x % 2 == 0 then
 IO.println s!"x: {x}"
 s := s + x
 return s

#eval sumEven #[1, 2, 3, 6]
-- x: 2
-- x: 6
-- 8

def splitEvenOdd (xs : List Nat) : IO Unit := do
 let mut evens := #[]
 let mut odds := #[]
 for x in xs do
 if x % 2 == 0 then
 evens := evens.push x
 else
 odds := odds.push x
 IO.println s!"evens: {evens}, odds: {odds}"

#eval splitEvenOdd [1, 2, 3, 4]
-- evens: #[2, 4], odds: #[1, 3]

def findNatLessThan (x : Nat) (p : Nat → Bool) : IO Nat := do
 -- [:x] is notation for the range [0, x)
 for i in [:x] do
 if p i then
 return i -- `return` from the `do` block
 throw (IO.userError "value not found")

#eval findNatLessThan 10 (fun x => x > 5 && x % 4 == 0)
-- 8

def sumOddUpTo (xs : List Nat) (threshold : Nat) : IO Nat := do
 let mut s := 0
 for x in xs do
 if x % 2 == 0 then
 continue -- it behaves like the `continue` statement in imperative languages
 IO.println s!"x: {x}"
 s := s + x
 if s > threshold then
 break -- it behaves like the `break` statement in imperative languages
 IO.println s!"result: {s}"
 return s

#eval sumOddUpTo [2, 3, 4, 11, 20, 31, 41, 51, 107] 40
-- x: 3
-- x: 11
-- x: 31
-- result: 45
-- 45

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 38/156

Try-catch

TODO

Returning early from a failed match

Inside a do block, the pattern let _ ← <success> | <fail> will continue with the rest of the block
if the match on the left hand side succeeds, but will execute the right hand side and exit the block on
failure:

If-let

Inside a do block, users can employ the if let pattern to destructure actions:

Pattern matching

TODO

Monads

TODO

ReaderT

TODO

StateT

TODO

def showUserInfo (getUsername getFavoriteColor : IO (Option String)) : IO Unit := do
 let some n ← getUsername | IO.println "no username!"
 IO.println s!"username: {n}"
 let some c ← getFavoriteColor | IO.println "user didn't provide a favorite color!"
 IO.println s!"favorite color: {c}"

-- username: JohnDoe
-- favorite color: red
#eval showUserInfo (pure <| some "JohnDoe") (pure <| some "red")

-- no username
#eval showUserInfo (pure none) (pure <| some "purple")

-- username: JaneDoe
-- user didn't provide a favorite color
#eval showUserInfo (pure <| some "JaneDoe") (pure none)

def tryIncrement (getInput : IO (Option Nat)) : IO (Except String Nat) := do
 if let some n ← getInput
 then return Except.ok n.succ
 else return Except.error "argument was `none`"

-- Except.ok 2
#eval tryIncrement (pure <| some 1)

-- Except.error "argument was `none`"
#eval tryIncrement (pure <| none)

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 39/156

StateRefT

TODO

ExceptT

TODO

MonadLift and automatic lifting

TODO

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 40/156

String interpolation
The s! prefix identifies a string literal as an interpolated string. An interpolated string is a string
literal that might contain interpolation expressions. When an interpolated string is resolved to a
result string, items with interpolation expressions are replaced by the string representations of the
expression results. The polymorphic method toString is used to convert the value into a string.

String interpolation provides a more readable and convenient syntax to create formatted strings
than a string composite formatting feature. The following example uses both features to produce
the same output:

Structure of an interpolated string
To identify a string literal as an interpolated string, prepend it with s! . Terms inside braces {} are
ordinary expressions whose type implements the type class ToString . To include a curly brace { in
your interpolated string, you must escape it using \{ . You can nest interpolated strings inside
interpolated strings.

ToString instances
You can define a ToString instance for your own datatypes.

def name := "John"
def age := 28

#eval IO.println s!"Hello, {name}! Are you {age} years old?"

#eval IO.println ("Hello, " ++ name ++ "! Are you " ++ toString age ++ " years old?")

-- `println! <interpolated-string>` is a macro for `IO.println s!<interpolated-string>`
#eval println! "Hello, {name}! Are you {age} years old?"

def vals := [1, 2, 3]

#eval IO.println s!"\{ vals := {vals} }"

#eval IO.println s!"variables: {vals.map (fun i => s!"x_{i}")}"

structure Person where
 name : String
 age : Nat

instance : ToString Person where
 toString : Person -> String
 | { name := n, age := v } => s!"\{ name := {n}, age := {v} }"

def person1 : Person := {
 name := "John"
 age := 28
}

#eval println! "person1: {person1}"

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 41/156

Notations and Precedence
The most basic syntax extension commands allow introducing new (or overloading existing) prefix,
infix, and postfix operators.

After the initial command name describing the operator kind (its "fixity"), we give the parsing
precedence of the operator preceded by a colon : , then a new or existing token surrounded by
double quotes (the whitespace is used for pretty printing), then the function this operator should be
translated to after the arrow => .

The precedence is a natural number describing how "tightly" an operator binds to its arguments,
encoding the order of operations. We can make this more precise by looking at what the commands
above unfold to:

It turns out that all commands from the first code block are in fact command macros translating to
the more general notation command. We will learn about writing such macros below. Instead of a
single token, the notation command accepts a mixed sequence of tokens and named term
placeholders with precedences, which can be referenced on the right-hand side of => and will be
replaced by the respective term parsed at that position. A placeholder with precedence p accepts
only notations with precedence at least p in that place. Thus the string a + b + c cannot be
parsed as the equivalent of a + (b + c) because the right-hand side operand of an infixl
notation has precedence one greater than the notation itself. In contrast, infixr reuses the
notation's precedence for the right-hand side operand, so a ^ b ^ c can be parsed as a ^ (b ^
c) . Note that if we used notation directly to introduce an infix notation like

where the precedences do not sufficiently determine associativity, Lean's parser will default to right
associativity. More precisely, Lean's parser follows a local longest parse rule in the presence of
ambiguous grammars: when parsing the right-hand side of a ~ in a ~ b ~ c , it will continue
parsing as long as possible (as the current precedence allows), not stopping after b but parsing ~ c
as well. Thus the term is equivalent to a ~ (b ~ c) .

As mentioned above, the notation command allows us to define arbitrary mixfix syntax freely
mixing tokens and placeholders.

Placeholders without precedence default to 0 , i.e. they accept notations of any precedence in their
place. If two notations overlap, we again apply the longest parse rule:

The new notation is preferred to the binary notation since the latter, before chaining, would stop
parsing after 1 + 2 . If there are multiple notations accepting the same longest parse, the choice will
be delayed until elaboration, which will fail unless exactly one overload is type correct.

infixl:65 " + " => HAdd.hAdd -- left-associative
infix:50 " = " => Eq -- non-associative
infixr:80 " ^ " => HPow.hPow -- right-associative
prefix:75 "-" => Neg.neg
postfix:max "⁻¹" => Inv.inv

notation:65 lhs:65 " + " rhs:66 => HAdd.hAdd lhs rhs
notation:50 lhs:51 " = " rhs:51 => Eq lhs rhs
notation:80 lhs:81 " ^ " rhs:80 => HPow.hPow lhs rhs
notation:75 "-" arg:75 => Neg.neg arg
notation:1024 arg:1024 "⁻¹" => Inv.inv arg -- `max` is a shorthand for precedence 1024

notation:65 lhs:65 " ~ " rhs:65 => wobble lhs rhs

notation:max "(" e ")" => e
notation:10 Γ " ⊢ " e " : " τ => Typing Γ e τ

notation:65 a " + " b:66 " + " c:66 => a + b - c
#eval 1 + 2 + 3 -- 0

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 42/156

Macro Overview
The official paper describing the mechanics behind Lean 4's macro system can be found in Beyond
Notations: Hygienic Macro Expansion for Theorem Proving Languages by Sebastian Ullrich and
Leonardo de Moura, and the accompanying repo with example code can be found in the paper's
code supplement. The supplement also includes a working implementation of the macro expander,
so it's a good case study for people interested in the details.

What is a macro in Lean?

A macro is a function that takes in a syntax tree and produces a new syntax tree. Macros are useful
for many reasons, but two of the big ones are a) allowing users to extend the language with new
syntactic constructs without having to actually expand the core language, and b) allowing users to
automate tasks that would otherwise be extremely repetitive, time-consuming, and/or error-prone.

A motivating example is set builder notation. We would like to be able to write the set of natural
numbers 0, 1, and 2 as just {0, 1, 2} . However, Lean does not natively support this syntax, and
the actual definition of a set in Mathlib does not let us just declare sets in this manner; naively using
the set API would force us to write Set.insert 1 (Set.insert 2 (Set.singleton 3)) . Instead, we
can teach Lean's macro system to recognize {0, 1, 2} as a shorthand for a composition of existing
methods and let it do the repetitive work of creating the Set.insert... invocation for us. In this
way, we can have our more readable and more convenient syntax without having to extend Lean
itself, and while retaining the simple insert/singleton API.

How macros are handled

The general procedure is as follows:

1. Lean parses a command, creating a Lean syntax tree which contains any unexpanded macros.

2. Lean repeats the cycle (elaboration ~> (macro hygiene and expansion) ~> elaboration...)

The cycle in step 2 repeats until there are no more macros which need to be expanded, and
elaboration can finish normally. This repetition is required since macros can expand to other
macros, and may expand to code that needs information from the elaborator. As you can see, the
process of macro parsing and expansion is interleaved with the parsing and elaboration of non-
macro code.

By default, macros in Lean are hygienic, which means the system avoids accidental name capture
when reusing the same name inside and outside the macro. Users may occasionally want to disable
hygiene, which can be accomplished with the command set_option hygiene false . More in-depth
information about hygiene and how it's implemented in the official paper and supplement linked at
the top of this guide.

Elements of "a" macro (important types)

In the big picture, a macro has two components that must be implemented by the user, parsers and
syntax transformers, where the latter is a function that says what the input syntax should expand to.
There is a third component, syntax categories, such as term , tactic , and command , but declaring a
new syntax category is not always necessary. When we say "parser" in the context of a macro, we
refer to the core type Lean.ParserDescr , which parses elements of type Lean.Syntax , where
Lean.Syntax represents elements of a Lean syntax tree. Syntax transformers are functions of type
Syntax -> MacroM Syntax . Lean has a synonym for this type, which is simply Macro . MacroM is a

monad that carries state needed for macro expansion to work nicely, including the info needed to
implement hygiene.

As an example, we again refer to Mathlib's set builder notation:

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 43/156

https://arxiv.org/abs/2001.10490
https://arxiv.org/abs/2001.10490
https://github.com/Kha/macro-supplement

This example should also make clear the reason why macros (and pretty much all of Lean 4's
metaprogramming facilities) are functions that take an argument of type Syntax e.g. Syntax ->
MacroM Syntax ; the leading syntax element is the thing that actually triggers the macro expansion by
matching with the declared parser, and as a user, you will almost always be interested in inspecting
and transforming that initial syntax element (though there are cases in which it can just be ignored,
as in the parameter-less exfalso tactic).

Returning briefly to the API provided by Lean, Lean.Syntax , is pretty much what you would expect a
basic syntax tree type to look like. Below is a slightly simplified representation which omits details in
the atom and ident constructors; users can create atoms and idents which comport with this
simplified representation using the mkAtom and mkIdent methods provided in the Lean
namespace.

For those interested, MacroM is a ReaderT :

The other relevant components are defined as follows:

As a review/checklist, the three (sometimes only two depending on whether you need a new syntax
category) components users need to be concerned with are:

0. You may or may not need to declare a new syntax category using declare_syntax_cat
1. Declare a parser with either syntax or macro
2. Declare an expansion/syntax transformer with either macro_rules or macro

Parsers and syntax transformers can be declared manually, but use of the pattern language and
syntax , macro_rules , and macro is recommended.

syntax categories with declare_syntax_cat

declare_syntax_cat declares a new syntax category, like command , tactic , or mathlib4's
binderterm . These are the different categories of things that can be referred to in a

quote/antiquote. declare_syntax_cat results in a call to registerParserCategory and produces a
new parser descriptor:

/- Declares a parser -/
syntax (priority := high) "{" term,+ "}" : term

/- Declares two expansions/syntax transformers -/
macro_rules
 | `({$x}) => `(Set.singleton $x)
 | `({$x, $xs:term,*}) => `(Set.insert $x {$xs,*})

/- Provided `Set` has been imported (from Mathlib4), these are all we need for `{1, 2,
3}` to be valid notation to create a literal set -/

inductive Syntax where
 | missing : Syntax
 | node (kind : SyntaxNodeKind) (args : Array Syntax) : Syntax
 | atom : String -> Syntax
 | ident : Name -> Syntax

abbrev MacroM := ReaderT Macro.Context (EStateM Macro.Exception Macro.State)

structure Context where
 methods : MethodsRef
 mainModule : Name
 currMacroScope : MacroScope
 currRecDepth : Nat := 0
 maxRecDepth : Nat := defaultMaxRecDepth
 ref : Syntax

inductive Exception where
 | error : Syntax → String → Exception
 | unsupportedSyntax : Exception

structure State where
 macroScope : MacroScope
 traceMsgs : List (Prod Name String) := List.nil
 deriving Inhabited

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 44/156

Declaring a new syntax category like this one automatically declares a quotation operator
`(binderterm| ...) . These pipe prefixes <thing>| are used in syntax quotations to say what
category a given quotation is expected to be an element of. The pipe prefixes are not used for
elements in the term and command categories (since they're considered the default), but need to be
used for everything else.

Parsers and the syntax keyword

Internally, elements of type Lean.ParserDescr are implemented as parser combinators. However,
Lean offers the ability to write parsers using the macro/pattern language by way of the syntax
keyword. This is the recommended means of writing parsers. As an example, the parser for the rwa
(rewrite, then use assumption) tactic is:

Literals are written as double-quoted strings ("rwa " expects the literal sequence of characters
rwa , while the trailing space provides a hint to the formatter that it should add a space after rwa

when pretty printing this syntax); rwRuleSeq and location are themselves ParserDescr s, and we
finish with : tactic specifying that the preceding parser is for an element in the tactic syntax
category. The parentheses around (location)? are necessary (rather than location?) because
Lean 4 allows question marks to be used in identifiers, so location? is one single identifier that
ends with a question mark, which is not what we want.

The name tacticRwa__ is automatically generated. You can name parser descriptors declared with
the syntax keyword like so:

The pattern language

Available quantifiers are ? (one or zero occurrences, see note below), * (zero or more
occurrences), and + (one or more occurrences).

set_option trace.Elab.definition true in
declare_syntax_cat binderterm

/-
Output:

[Elab.definition.body] binderterm.quot : Lean.ParserDescr :=
Lean.ParserDescr.node `Lean.Parser.Term.quot 1024
 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "`(binderterm|")
 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.cat `binderterm 0)
 (Lean.ParserDescr.symbol ")")))
-/

set_option trace.Elab.definition true in
syntax "rwa " rwRuleSeq (location)? : tactic

/-
which expands to:
[Elab.definition.body] tacticRwa__ : Lean.ParserDescr :=
Lean.ParserDescr.node `tacticRwa__ 1022
 (Lean.ParserDescr.binary `andthen
 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.nonReservedSymbol "rwa " false)
Lean.Parser.Tactic.rwRuleSeq)
 (Lean.ParserDescr.unary `optional Lean.Parser.Tactic.location))

-/

set_option trace.Elab.definition true in
syntax (name := introv) "introv " (colGt ident)* : tactic

/-
[Elab.definition.body] introv : Lean.ParserDescr :=
Lean.ParserDescr.node `introv 1022
 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.nonReservedSymbol "introv "
false)
 (Lean.ParserDescr.unary `many
 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.const `colGt)
(Lean.ParserDescr.const `ident))))
-/

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 45/156

Keep in mind that Lean makes ? available for use in identifiers, so if we want a parser to look for an
optional location , we would need to write (location)? with parenthesis acting as a separator,
since location? would look for something under the identifier location? (where the ? is part of
the identifier).

Parentheses can be used as delimiters.

Separated lists can be constructed like so: $ts,* for a comma separated list.

"extended splices" can be constructed as $[..] . See the official paper (p. 12) for more details.

Literals are written as double-quoted strings. A literal may use trailing whitespace (see e.g. the rwa
or introv tactics) to tell the pretty-printer how it should be displayed, but such whitespace will not
prevent a literal with no trailing whitespace from matching. The spaces are relevant, but not
interpreted literally. When the ParserDescr is turned into a Parser, the actual token matcher uses the
.trim of the provided string, but the generated formatter uses the spaces as specified, that is, turning
the atom "rwa" in the syntax into the string rwa as part of the pretty printed output.

Syntax expansions with macro_rules, and how it desugars.

macro_rules lets you declare expansions for a given Syntax element using a syntax similar to a
match statement. The left-hand side of a match arm is a quotation (with a leading <cat>| for

categories other than term and command) in which users can specify the pattern they'd like to write
an expansion for. The right-hand side returns a syntax quotation which is the output the user wants
to expand to.

A feature of Lean's macro system is that if there are multiple expansions for a particular match, Lean
will try the most recently declared expansion first, and will retry with other matching expansions if
the previous attempt failed. This is particularly useful for extending existing tactics.

The following example shows both the retry behavior, and the fact that macros declared using the
shorthand macro syntax can still have additional expansions declared with macro_rules . This
transitivity tactic is implemented such that it will work for either Nat.le or Nat.lt. The Nat.lt

version was declared "most recently", so it will be tried first, but if it fails (for example, if the actual
term in question is Nat.le) the next potential expansion will be tried:

To see the desugared definition of the actual expansion, we can again use set_option
trace.Elab.definition true in and observe the output of the humble exfalso tactic defined in
Mathlib4:

macro "transitivity" e:(colGt term) : tactic => `(tactic| apply Nat.le_trans (m := $e))
macro_rules
 | `(tactic| transitivity $e) => `(tactic| apply Nat.lt_trans (m := $e))

example (a b c : Nat) (h0 : a < b) (h1 : b < c) : a < c := by
 transitivity b <;>
 assumption

example (a b c : Nat) (h0 : a <= b) (h1 : b <= c) : a <= c := by
 transitivity b <;>
 assumption

/- This will fail, but is interesting in that it exposes the "most-recent first"
behavior, since the
 error message complains about being unable to unify mvar1 <= mvar2, rather than mvar1
< mvar2. -/
/-
example (a b c : Nat) (h0 : a <= b) (h1 : b <= c) : False := by
 transitivity b <;>
 assumption
-/

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 46/156

https://github.com/leanprover/lean4/blob/53ec43ff9b8f55989b12c271e368287b7b997b54/src/Lean/Parser/Basic.lean#L1193
https://github.com/leanprover/lean4/blob/53ec43ff9b8f55989b12c271e368287b7b997b54/src/Lean/Parser/Basic.lean#L1193
https://github.com/leanprover/lean4/blob/8d370f151f7c88a687152a5b161dcb484c446ce2/src/Lean/PrettyPrinter/Formatter.lean#L328

We can also create the syntax transformer declaration ourselves instead of using macro_rules .
We'll need to name our parser and use the attribute @[macro myExFalsoParser] to associate our
declaration with the parser:

In the above example, we're still using the sugar Lean provides for creating quotations, as it feels
more intuitive and saves us some work. It is possible to forego the sugar altogether:

The macro keyword

macro is a shortcut which allows users to declare both a parser and an expansion at the same time
as a matter of convenience. Additional expansions for the parser generated by the macro invocation
can be added with a separate macro_rules block (see the example in the macro_rules section).

Unexpanders

TODO; for now, see the unexpander in Mathlib.Set for an example.

set_option trace.Elab.definition true in
macro "exfalso" : tactic => `(tactic| apply False.elim)

/-
Results in the expansion:

[Elab.definition.body] _aux___macroRules_tacticExfalso_1 : Lean.Macro :=
fun x =>
 let discr := x;
 /- This is where Lean tries to actually identify that it's an invocation of the
exfalso tactic -/
 if Lean.Syntax.isOfKind discr `tacticExfalso = true then
 let discr := Lean.Syntax.getArg discr 0;
 let x := discr;
 do
 /- Lean getting scope/meta info from the macro monad -/
 let info ← Lean.MonadRef.mkInfoFromRefPos
 let scp ← Lean.getCurrMacroScope
 let mainModule ← Lean.getMainModule
 pure
 (Lean.Syntax.node Lean.SourceInfo.none `Lean.Parser.Tactic.seq1
 #[Lean.Syntax.node Lean.SourceInfo.none `null
 #[Lean.Syntax.node Lean.SourceInfo.none `Lean.Parser.Tactic.apply
 #[Lean.Syntax.atom info "apply",
 Lean.Syntax.ident info (String.toSubstring "False.elim")
 (Lean.addMacroScope mainModule `False.elim scp) [(`False.elim,
[])]]]])
 else
 /- If this wasn't actually an invocation of the exfalso tactic, throw the
"unsupportedSyntax" error -/
 let discr := x;
 throw Lean.Macro.Exception.unsupportedSyntax
-/

syntax (name := myExfalsoParser) "myExfalso" : tactic

-- remember that `Macro` is a synonym for `Syntax -> TacticM Unit`
@[macro myExfalsoParser] def implMyExfalso : Macro :=
fun stx => `(tactic| apply False.elim)

example (p : Prop) (h : p) (f : p -> False) : 3 = 2 := by
 myExfalso
 exact f h

syntax (name := myExfalsoParser) "myExfalso" : tactic

@[macro myExfalsoParser] def implMyExfalso : Lean.Macro :=
 fun stx => pure (Lean.mkNode `Lean.Parser.Tactic.apply
 #[Lean.mkAtomFrom stx "apply", Lean.mkCIdentFrom stx ``False.elim])

example (p : Prop) (h : p) (f : p -> False) : 3 = 2 := by
 myExfalso
 exact f h

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 47/156

More illustrative examples:

The Tactic.Basic file in Mathlib4 contains many good examples to learn from.

Practical tips:

You can observe the output of commands and functions that in some way use the macro system by
setting this option to true : set_option trace.Elab.definition true

Lean also offers the option of limiting the region in which option is set with the syntax set_option
... in):

Hygiene can be disabled with the command option set_option hygiene false

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 48/156

https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Tactic/Basic.lean

Elaborators

TODO. See Lean Together 2021: Metaprogramming in Lean 4 for an overview as well the
continuation about tactic programming. For more information on antiquotations, see also §4.1 of
Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages.

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 49/156

https://youtu.be/hxQ1vvhYN_U
https://youtu.be/vy4JWIiiXSY
https://youtu.be/vy4JWIiiXSY
https://arxiv.org/pdf/2001.10490.pdf#page=11

Syntax Metaprogramming Examples
Balanced Parentheses
Arithmetic DSL

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 50/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/syntax_example.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/metaprogramming-arith.html

Balanced Parentheses as an Embedded
Domain Specific Language
Let's look at how to use macros to extend the Lean 4 parser and embed a language for building
balanced parentheses. This language accepts strings given by the BNF grammar

We begin by defining an inductive data type of the grammar we wish to parse:

We begin by declaring a syntax category using the declare_syntax_cat <category> command. This
names our grammar and allows us to specify parsing rules associated with our grammar.

Next, we specify the grammar using the syntax <parse rule> command:

The above means that the token "end" lives in syntax category brack .

Similarly, we declare the rules "(" Dyck ")" and "{" Dyck "}" using the rules:

Finally, we need a way to build Lean 4 terms from this grammar -- that is, we must translate out of
this grammar into a Dyck value, which is a Lean 4 term. For this, we create a new kind of "quotation"
that consumes syntax in brack and produces a term .

To specify the transformation rules, we use macro_rules to declare how the syntax `[Dyck|
<brack>] produces terms. This is written using a pattern-matching style syntax, where the left-hand
side declares the syntax pattern to be matched, and the right-hand side declares the production.
Syntax placeholders (antiquotations) are introduced via the $<var-name> syntax. The right-hand
side is an arbitrary Lean term that we are producing.

In summary, we've seen:

How to declare a syntax category for the Dyck grammar.
How to specify parse trees of this grammar using syntax
How to translate out of this grammar into Lean 4 terms using macro_rules .

The full program listing is given below:

Dyck ::=
 "(" Dyck ")"
 | "{" Dyck "}"
 | end

inductive Dyck : Type where
 | round : Dyck → Dyck -- (<inner>)
 | curly : Dyck → Dyck -- { <inner> }
 | leaf : Dyck

declare_syntax_cat brack

syntax "end" : brack

syntax "(" brack ")" : brack
syntax "{" brack "}" : brack

syntax "`[Dyck| " brack "]" : term

macro_rules
 | `(`[Dyck| end]) => `(Dyck.leaf)
 | `(`[Dyck| ($b)]) => `(Dyck.round `[Dyck| $b]) -- recurse
 | `(`[Dyck| {$b}]) => `(Dyck.curly `[Dyck| $b]) -- recurse

#check `[Dyck| end] -- Dyck.leaf
#check `[Dyck| {(end)}] -- Dyck.curl (Dyck.round Dyck.leaf)

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 51/156

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

inductive Dyck : Type where
 | round : Dyck → Dyck -- (<inner>)
 | curly : Dyck → Dyck -- { <inner> }
 | leaf : Dyck

-- declare Dyck grammar parse trees
declare_syntax_cat brack
syntax "(" brack ")" : brack
syntax "{" brack "}" : brack
syntax "end" : brack

-- notation for translating `brack` into `term`
syntax "`[Dyck| " brack "]" : term

-- rules to translate Dyck grammar into inductive value of type Dyck
macro_rules
 | `(`[Dyck| end]) => `(Dyck.leaf)
 | `(`[Dyck| ($b)]) => `(Dyck.round `[Dyck| $b]) -- recurse
 | `(`[Dyck| {$b}]) => `(Dyck.curly `[Dyck| $b]) -- recurse

-- tests
#check `[Dyck| end] -- Dyck.leaf
#check `[Dyck| {(end)}] -- Dyck.curl (Dyck.round Dyck.leaf)

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 52/156

Arithmetic as an embedded domain-specific
language
Let's parse another classic grammar, the grammar of arithmetic expressions with addition,
multiplication, integers, and variables. In the process, we'll learn how to:

Convert identifiers such as x into strings within a macro.
add the ability to "escape" the macro context from within the macro. This is useful to interpret
identifiers with their original meaning (predefined values) instead of their new meaning within
a macro (treat as a symbol).

Let's begin with the simplest thing possible. We'll define an AST, and use operators + and * to
denote building an arithmetic AST.

Here's the AST that we will be parsing:

We declare a syntax category to describe the grammar that we will be parsing. See that we control
the precedence of + and * by writing syntax:50 for addition and syntax:60 for multiplication,
indicating that multiplication binds tighter than addition (higher the number, tighter the binding).
This allows us to declare precedence when defining new syntax.

Further, if we look at syntax:60 arith:60 "+" arith:61 : arith , the precedence declarations at
arith:60 "+" arith:61 conveys that the left argument must have precedence at least 60 or

greater, and the right argument must have precedence at least 61 or greater. Note that this forces
left associativity. To understand this, let's compare two hypothetical parses:

In the parse tree of a + (b:60 + c:61):60 , we see that the right argument (b + c) is given the
precedence 60 . However, the rule for addition expects the right argument to have a precedence of
at least 61, as witnessed by the arith:61 at the right-hand-side of syntax:60 arith:60 "+"
arith:61 : arith . Thus, the rule syntax:60 arith:60 "+" arith:61 : arith ensures that
addition is left associative.

Since addition is declared arguments of precedence 60/61 and multiplication with 70/71 , this
causes multiplication to bind tighter than addition. Once again, let's compare two hypothetical
parses:

While parsing a * (b + c) , (b + c) is assigned a precedence 60 by the addition rule. However,
multiplication expects the right argument to have precedence at least 71. Thus, this parse is invalid.
In contrast, (a * b) + c assigns a precedence of 70 to (a * b) . This is compatible with addition
which expects the left argument to have precedence **at least 60 ** (70 is greater than 60). Thus,
the string a * b + c is parsed as (a * b) + c . For more details, please look at the Lean manual
on syntax extensions.

To go from strings into Arith , we define a macro to translate the syntax category arith into an
Arith inductive value that lives in term :

inductive Arith : Type
 | add : Arith → Arith → Arith -- e + f
 | mul : Arith → Arith → Arith -- e * f
 | int : Int → Arith -- constant
 | symbol : String → Arith -- variable

declare_syntax_cat arith

syntax num : arith -- int for Arith.int
syntax str : arith -- strings for Arith.symbol
syntax:60 arith:60 "+" arith:61 : arith -- Arith.add
syntax:70 arith:70 "*" arith:71 : arith -- Arith.mul
syntax "(" arith ")" : arith -- parenthesized expressions

-- syntax:60 arith:60 "+" arith:61 : arith -- Arith.add
-- a + b + c
(a:60 + b:61):60 + c
a + (b:60 + c:61):60

-- syntax:60 arith:60 "+" arith:61 : arith -- Arith.add
-- syntax:70 arith:70 "*" arith:71 : arith -- Arith.mul
-- a * b + c
a * (b:60 + c:61):60
(a:70 * b:71):70 + c

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 53/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/notation.html#notations-and-precedence
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/notation.html#notations-and-precedence

Our macro rules perform the "obvious" translation:

And some examples:

Writing variables as strings, such as "x" gets old; wouldn't it be so much prettier if we could write x
* y , and have the macro translate this into Arith.mul (Arith.Symbol "x") (Arith.mul "y") ? We
can do this, and this will be our first taste of manipulating macro variables --- we'll use x.getId
instead of directly evaluating $x . We also write a macro rule for Arith| that translates an identifier
into a string, using $(Lean.quote (toString x.getId)) :

Let's test and see that we can now write expressions such as x * y directly instead of having to
write "x" * "y" :

We now show an unfortunate consequence of the above definitions. Suppose we want to build (x +
y) + z . Since we already have defined xPlusY as x + y , perhaps we should reuse it! Let's try:

Whoops, that didn't work! What happened? Lean treats xPlusY itself as an identifier! So we need to
add some syntax to be able to "escape" the Arith| context. Let's use the syntax <[$e:term]> to
mean: evaluate $e as a real term, not an identifier. The macro looks like follows:

Let's try our previous example:

Perfect!

In this tutorial, we expanded on the previous tutorial to parse a more realistic grammar with
multiple levels of precedence, how to parse identifiers directly within a macro, and how to provide
an escape from within the macro context.

-- auxiliary notation for translating `arith` into `term`
syntax "`[Arith| " arith "]" : term

macro_rules
 | `(`[Arith| $s:str]) => `(Arith.symbol $s)
 | `(`[Arith| $num:num]) => `(Arith.int $num)
 | `(`[Arith| $x + $y]) => `(Arith.add `[Arith| $x] `[Arith| $y])
 | `(`[Arith| $x * $y]) => `(Arith.mul `[Arith| $x] `[Arith| $y])
 | `(`[Arith| ($x)]) => `(`[Arith| $x])

#check `[Arith| "x" * "y"] -- mul
-- Arith.mul (Arith.symbol "x") (Arith.symbol "y")

#check `[Arith| "x" + "y"] -- add
-- Arith.add (Arith.symbol "x") (Arith.symbol "y")

#check `[Arith| "x" + 20] -- symbol + int
-- Arith.add (Arith.symbol "x") (Arith.int 20)

#check `[Arith| "x" + "y" * "z"] -- precedence
-- Arith.add (Arith.symbol "x") (Arith.mul (Arith.symbol "y") (Arith.symbol "z"))

#check `[Arith| "x" * "y" + "z"] -- precedence
-- Arith.add (Arith.mul (Arith.symbol "x") (Arith.symbol "y")) (Arith.symbol "z")

#check `[Arith| ("x" + "y") * "z"] -- parentheses
-- Arith.mul (Arith.add (Arith.symbol "x") (Arith.symbol "y")) (Arith.symbol "z")

syntax ident : arith

macro_rules
 | `(`[Arith| $x:ident]) => `(Arith.symbol $(Lean.quote (toString x.getId)))

#check `[Arith| x] -- Arith.symbol "x"

def xPlusY := `[Arith| x + y]
#print xPlusY -- def xPlusY : Arith := Arith.add (Arith.symbol "x") (Arith.symbol "y")

#check `[Arith| xPlusY + z] -- Arith.add (Arith.symbol "xPlusY") (Arith.symbol "z")

syntax "<[" term "]>" : arith -- escape for embedding terms into `Arith`

macro_rules
 | `(`[Arith| <[$e:term]>]) => pure e

#check `[Arith| <[xPlusY]> + z] -- Arith.add xPlusY (Arith.symbol "z")

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 54/156

Full code listing

inductive Arith : Type
 | add : Arith → Arith → Arith -- e + f
 | mul : Arith → Arith → Arith -- e * f
 | int : Int → Arith -- constant
 | symbol : String → Arith -- variable

declare_syntax_cat arith

syntax num : arith -- int for Arith.int
syntax str : arith -- strings for Arith.symbol
syntax:60 arith:60 "+" arith:61 : arith -- Arith.add
syntax:70 arith:70 "*" arith:71 : arith -- Arith.mul
syntax "(" arith ")" : arith -- parenthesized expressions

-- auxiliary notation for translating `arith` into `term`
syntax "`[Arith| " arith "]" : term

macro_rules
 | `(`[Arith| $s:str]) => `(Arith.symbol $s)
 | `(`[Arith| $num:num]) => `(Arith.int $num)
 | `(`[Arith| $x + $y]) => `(Arith.add `[Arith| $x] `[Arith| $y])
 | `(`[Arith| $x * $y]) => `(Arith.mul `[Arith| $x] `[Arith| $y])
 | `(`[Arith| ($x)]) => `(`[Arith| $x])

#check `[Arith| "x" * "y"] -- mul
-- Arith.mul (Arith.symbol "x") (Arith.symbol "y")

#check `[Arith| "x" + "y"] -- add
-- Arith.add (Arith.symbol "x") (Arith.symbol "y")

#check `[Arith| "x" + 20] -- symbol + int
-- Arith.add (Arith.symbol "x") (Arith.int 20)

#check `[Arith| "x" + "y" * "z"] -- precedence
-- Arith.add (Arith.symbol "x") (Arith.mul (Arith.symbol "y") (Arith.symbol "z"))

#check `[Arith| "x" * "y" + "z"] -- precedence
-- Arith.add (Arith.mul (Arith.symbol "x") (Arith.symbol "y")) (Arith.symbol "z")

#check `[Arith| ("x" + "y") * "z"] -- parentheses
-- Arith.mul (Arith.add (Arith.symbol "x") (Arith.symbol "y")) (Arith.symbol "z")

syntax ident : arith

macro_rules
 | `(`[Arith| $x:ident]) => `(Arith.symbol $(Lean.quote (toString x.getId)))

#check `[Arith| x] -- Arith.symbol "x"

def xPlusY := `[Arith| x + y]
#print xPlusY -- def xPlusY : Arith := Arith.add (Arith.symbol "x") (Arith.symbol "y")

syntax "<[" term "]>" : arith -- escape for embedding terms into `Arith`

macro_rules
 | `(`[Arith| <[$e:term]>]) => pure e

#check `[Arith| <[xPlusY]> + z] -- Arith.add xPlusY (Arith.symbol "z")

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 55/156

Declaring New Types
In Lean's library, every concrete type other than the universes and every type constructor other than
the dependent function type is an instance of a general family of type constructions known as
inductive types. It is remarkable that it is possible to develop complex programs and formalize
mathematics based on nothing more than the type universes, dependent function types, and
inductive types; everything else follows from those.

Intuitively, an inductive type is built up from a specified list of constructors. In Lean, the basic syntax
for specifying such a type is as follows:

The intuition is that each constructor specifies a way of building new objects of NewType , possibly
from previously constructed values. The type NewType consists of nothing more than the objects
that are constructed in this way.

We will see below that the arguments to the constructors can include objects of type NewType ,
subject to a certain "positivity" constraint, which guarantees that elements of NewType are built from
the bottom up. Roughly speaking, each ... can be any function type constructed from NewType
and previously defined types, in which NewType appears, if at all, only as the "target" of the function
type.

We will provide a number of examples of inductive types. We will also consider slight generalizations
of the scheme above, to mutually defined inductive types, and so-called inductive families.

Every inductive type comes with constructors, which show how to construct an element of the type,
and elimination rules, which show how to "use" an element of the type in another construction.

inductive NewType where
 | constructor_1 : ... → NewType
 | constructor_2 : ... → NewType
 ...
 | constructor_n : ... → NewType

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 56/156

Enumerated Types
The simplest kind of inductive type is simply a type with a finite, enumerated list of elements. The
following command declares the enumerated type Weekday .

The Weekday type has 7 constructors/elements. The constructors live in the Weekday namespace
Think of sunday , monday , …, saturday as being distinct elements of Weekday , with no other
distinguishing properties.

You can define functions by pattern matching. The following function converts a Weekday into a
natural number.

It is often useful to group definitions related to a type in a namespace with the same name. For
example, we can put the function above into the Weekday namespace. We are then allowed to use
the shorter name when we open the namespace.

In the following example, we define functions from Weekday to Weekday in the namespace
Weekday .

It is so common to start a definition with a match in Lean, that Lean provides a syntax sugar for it.

We can use the command #eval to test our definitions.

inductive Weekday where
 | sunday : Weekday
 | monday : Weekday
 | tuesday : Weekday
 | wednesday : Weekday
 | thursday : Weekday
 | friday : Weekday
 | saturday : Weekday

#check Weekday.sunday -- Weekday
#check Weekday.monday -- Weekday

def natOfWeekday (d : Weekday) : Nat :=
 match d with
 | Weekday.sunday => 1
 | Weekday.monday => 2
 | Weekday.tuesday => 3
 | Weekday.wednesday => 4
 | Weekday.thursday => 5
 | Weekday.friday => 6
 | Weekday.saturday => 7

#eval natOfWeekday Weekday.tuesday -- 3

namespace Weekday

def next (d : Weekday) : Weekday :=
 match d with
 | sunday => monday
 | monday => tuesday
 | tuesday => wednesday
 | wednesday => thursday
 | thursday => friday
 | friday => saturday
 | saturday => sunday

end Weekday

def previous : Weekday -> Weekday
 | sunday => saturday
 | monday => sunday
 | tuesday => monday
 | wednesday => tuesday
 | thursday => wednesday
 | friday => thursday
 | saturday => friday

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 57/156

We can now prove the general theorem that next (previous d) = d for any weekday d . The idea
is to perform a proof by cases using match , and rely on the fact for each constructor both sides of
the equality reduce to the same term.

def toString : Weekday -> String
 | sunday => "Sunday"
 | monday => "Monday"
 | tuesday => "Tuesday"
 | wednesday => "Wednesday"
 | thursday => "Thursday"
 | friday => "Friday"
 | saturday => "Saturday"

#eval toString (next sunday) -- "Monday"
#eval toString (next tuesday) -- "Wednesday"
#eval toString (previous wednesday) -- "Tuesday"
#eval toString (next (previous sunday)) -- "Sunday"
#eval toString (next (previous monday)) -- "Monday"
-- ..

theorem nextOfPrevious (d : Weekday) : next (previous d) = d :=
 match d with
 | sunday => rfl
 | monday => rfl
 | tuesday => rfl
 | wednesday => rfl
 | thursday => rfl
 | friday => rfl
 | saturday => rfl

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 58/156

Inductive Types
Theorem Proving in Lean has a chapter about inductive datatypes.

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 59/156

https://lean-lang.org/theorem_proving_in_lean4/inductive_types.html

Structures
Structure is a special case of inductive datatype. It has only one constructor and is not recursive.
Similar to the inductive command, the structure command introduces a namespace with the
same name. The general form is as follows:

Most parts are optional. Here is our first example.

In the example above, the constructor name is not provided. So, the constructor is named mk by
Lean. Values of type Point are created using Point.mk a b or { x := a, y := b : Point α } .
The latter can be written as { x := a, y := b } when the expected type is known. The fields of a
point p are accessed using Point.x p and Point.y p . You can also the more compact notation
p.x and p.y as a shorthand for Point.x p and Point.y p .

In the notation { ... } , if the fields are in different lines, the , is optional.

You can also use where instead of := { ... } .

Here are some simple theorems about our Point type.

The dot notation is convenient not just for accessing the projections of a structure, but also for
applying functions defined in a namespace with the same name. If p has type Point , the
expression p.foo is interpreted as Point.foo p , assuming that the first argument to foo has type
Point . The expression p.add q is therefore shorthand for Point.add p q in the example below.

structure <name> <parameters> <parent-structures> where
 <constructor-name> :: <fields>

structure Point (α : Type u) where
 x : α
 y : α

#check Point
#check Point -- Type u -> Type u
#check @Point.mk -- {α : Type u} → α → α → Point α
#check @Point.x -- {α : Type u} → Point α → α
#check @Point.y -- {α : Type u} → Point α → α

#check Point.mk 10 20 -- Point Nat
#check { x := 10, y := 20 : Point Nat } -- Point Nat

def mkPoint (a : Nat) : Point Nat :=
 { x := a, y := a }

#eval (Point.mk 10 20).x -- 10
#eval (Point.mk 10 20).y -- 20
#eval { x := 10, y := 20 : Point Nat }.x -- 10
#eval { x := 10, y := 20 : Point Nat }.y -- 20

def addXY (p : Point Nat) : Nat :=
 p.x + p.y

#eval addXY { x := 10, y := 20 } -- 30

def mkPoint (a : Nat) : Point Nat := {
 x := a
 y := a
}

def mkPoint (a : Nat) : Point Nat where
 x := a
 y := a

theorem ex1 (a b : α) : (Point.mk a b).x = a :=
 rfl

theorem ex2 (a b : α) : (Point.mk a b).y = b :=
 rfl

theorem ex3 (a b : α) : Point.mk a b = { x := a, y := b } :=
 rfl

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 60/156

After we introduce type classes, we show how to define a function like add so that it works
generically for elements of Point α rather than just Point Nat , assuming α has an associated
addition operation.

More generally, given an expression p.foo x y z , Lean will insert p at the first argument to foo of
type Point . For example, with the definition of scalar multiplication below, p.smul 3 is interpreted
as Point.smul 3 p .

Inheritance

We can extend existing structures by adding new fields. This feature allows us to simulate a form of
inheritance.

The output for the check command above suggests how Lean encoded inheritance and multiple
inheritance. Lean uses fields to each parent structure.

structure Point (α : Type u) where
 x : α
 y : α

def Point.add (p q : Point Nat) : Point Nat :=
 { x := p.x + q.x, y := p.y + q.y }

def p : Point Nat := Point.mk 1 2
def q : Point Nat := Point.mk 3 4

#eval (p.add q).x -- 4
#eval (p.add q).y -- 6

structure Point (α : Type u) where
 x : α
 y : α

def Point.smul (n : Nat) (p : Point Nat) :=
 Point.mk (n * p.x) (n * p.y)

def p : Point Nat :=
 Point.mk 1 2

#eval (p.smul 3).x -- 3
#eval (p.smul 3).y -- 6

structure Point (α : Type u) where
 x : α
 y : α

inductive Color where
 | red
 | green
 | blue

structure ColorPoint (α : Type u) extends Point α where
 color : Color

#check { x := 10, y := 20, color := Color.red : ColorPoint Nat }
-- { toPoint := { x := 10, y := 20 }, color := Color.red }

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 61/156

Default field values

You can assign default value to fields when declaring a new structure.

When extending a structure, you can not only add new fields, but provide new default values for
existing fields.

Updating structure fields

Structure fields can be updated using { <struct-val> with <field> := <new-value>, ... } :

structure Foo where
 x : Nat
 y : Nat

structure Boo where
 w : Nat
 z : Nat

structure Bla extends Foo, Boo where
 bit : Bool

#check Bla.mk -- Foo → Boo → Bool → Bla
#check Bla.mk { x := 10, y := 20 } { w := 30, z := 40 } true
#check { x := 10, y := 20, w := 30, z := 40, bit := true : Bla }
#check { toFoo := { x := 10, y := 20 },
 toBoo := { w := 30, z := 40 },
 bit := true : Bla }

theorem ex :
 Bla.mk { x := x, y := y } { w := w, z := z } b
 =
 { x := x, y := y, w := w, z := z, bit := b } :=
 rfl

inductive MessageSeverity
 | error | warning

structure Message where
 fileName : String
 pos : Option Nat := none
 severity : MessageSeverity := MessageSeverity.error
 caption : String := ""
 data : String

def msg1 : Message :=
 { fileName := "foo.lean", data := "failed to import file" }

#eval msg1.pos -- none
#eval msg1.fileName -- "foo.lean"
#eval msg1.caption -- ""

structure MessageExt extends Message where
 timestamp : Nat
 caption := "extended" -- new default value for field `caption`

def msg2 : MessageExt where
 fileName := "bar.lean"
 data := "error at initialization"
 timestamp := 10

#eval msg2.fileName -- "bar.lean"
#eval msg2.timestamp -- 10
#eval msg2.caption -- "extended"

def incrementX (p : Point Nat) : Point Nat := { p with x := p.x + 1 }

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 62/156

Type classes
Typeclasses were introduced as a principled way of enabling ad-hoc polymorphism in functional
programming languages. We first observe that it would be easy to implement an ad-hoc
polymorphic function (such as addition) if the function simply took the type-specific implementation
of addition as an argument and then called that implementation on the remaining arguments. For
example, suppose we declare a structure in Lean to hold implementations of addition

In the above Lean code, the field add has type Add.add : {α : Type} → Add α → α → α → α where
the curly braces around the type a mean that it is an implicit argument. We could implement
double by

Note that you can double a natural number n by double { add := Nat.add } n . Of course, it
would be highly cumbersome for users to manually pass the implementations around in this way.
Indeed, it would defeat most of the potential benefits of ad-hoc polymorphism.

The main idea behind typeclasses is to make arguments such as Add a implicit, and to use a
database of user-defined instances to synthesize the desired instances automatically through a
process known as typeclass resolution. In Lean, by changing structure to class in the example
above, the type of Add.add becomes

where the square brackets indicate that the argument of type Add a is instance implicit, i.e. that it
should be synthesized using typeclass resolution. This version of add is the Lean analogue of the
Haskell term add :: Add a => a -> a -> a . Similarly, we can register an instance by

Then for n : Nat and m : Nat , the term Add.add n m triggers typeclass resolution with the goal of
Add Nat , and typeclass resolution will synthesize the instance above. In general, instances may

depend on other instances in complicated ways. For example, you can declare an (anonymous)
instance stating that if a has addition, then Array a has addition:

Note that x + y is notation for Add.add x y in Lean.

The example above demonstrates how type classes are used to overload notation. Now, we explore
another application. We often need an arbitrary element of a given type. Recall that types may not
have any elements in Lean. It often happens that we would like a definition to return an arbitrary

structure Add (a : Type) where
 add : a -> a -> a

#check @Add.add
-- Add.add : {a : Type} → Add a → a → a → a

def double (s : Add a) (x : a) : a :=
 s.add x x

#eval double { add := Nat.add } 10
-- 20

#eval double { add := Nat.mul } 10
-- 100

#eval double { add := Int.add } 10
-- 20

class Add (a : Type) where
 add : a -> a -> a

#check @Add.add
-- Add.add : {a : Type} → [self : Add a] → a → a → a

instance : Add Nat where
 add := Nat.add

instance [Add a] : Add (Array a) where
 add x y := Array.zipWith x y (· + ·)

#eval Add.add #[1, 2] #[3, 4]
-- #[4, 6]

#eval #[1, 2] + #[3, 4]
-- #[4, 6]

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 63/156

element in a "corner case." For example, we may like the expression head xs to be of type a when
xs is of type List a . Similarly, many theorems hold under the additional assumption that a type is

not empty. For example, if a is a type, exists x : a, x = x is true only if a is not empty. The
standard library defines a type class Inhabited to enable type class inference to infer a "default" or
"arbitrary" element of an inhabited type. Let us start with the first step of the program above,
declaring an appropriate class:

Note Inhabited.default doesn't have any explicit argument.

An element of the class Inhabited a is simply an expression of the form Inhabited.mk x , for some
element x : a . The projection Inhabited.default will allow us to "extract" such an element of a
from an element of Inhabited a . Now we populate the class with some instances:

You can use the command export to create the alias default for Inhabited.default

Chaining Instances

If that were the extent of type class inference, it would not be all that impressive; it would be simply
a mechanism of storing a list of instances for the elaborator to find in a lookup table. What makes
type class inference powerful is that one can chain instances. That is, an instance declaration can in
turn depend on an implicit instance of a type class. This causes class inference to chain through
instances recursively, backtracking when necessary, in a Prolog-like search.

For example, the following definition shows that if two types a and b are inhabited, then so is their
product:

With this added to the earlier instance declarations, type class instance can infer, for example, a
default element of Nat × Bool :

Similarly, we can inhabit type function with suitable constant functions:

class Inhabited (a : Sort u) where
 default : a

#check @Inhabited.default
-- Inhabited.default : {a : Sort u} → [self : Inhabited a] → a

instance : Inhabited Bool where
 default := true

instance : Inhabited Nat where
 default := 0

instance : Inhabited Unit where
 default := ()

instance : Inhabited Prop where
 default := True

#eval (Inhabited.default : Nat)
-- 0

#eval (Inhabited.default : Bool)
-- true

export Inhabited (default)

#eval (default : Nat)
-- 0

#eval (default : Bool)
-- true

instance [Inhabited a] [Inhabited b] : Inhabited (a × b) where
 default := (default, default)

instance [Inhabited a] [Inhabited b] : Inhabited (a × b) where
 default := (default, default)

#eval (default : Nat × Bool)
-- (0, true)

instance [Inhabited b] : Inhabited (a -> b) where
 default := fun _ => default

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 64/156

As an exercise, try defining default instances for other types, such as List and Sum types.

The Lean standard library contains the definition inferInstance . It has type {α : Sort u} → [i :
α] → α , and is useful for triggering the type class resolution procedure when the expected type is an
instance.

You can use the command #print to inspect how simple inferInstance is.

ToString

The polymorphic method toString has type {α : Type u} → [ToString α] → α → String . You
implement the instance for your own types and use chaining to convert complex values into strings.
Lean comes with ToString instances for most builtin types.

Numerals

Numerals are polymorphic in Lean. You can use a numeral (e.g., 2) to denote an element of any
type that implements the type class OfNat .

Lean elaborate the terms (2 : Nat) and (2 : Rational) as OfNat.ofNat Nat 2 (instOfNatNat
2) and OfNat.ofNat Rational 2 (instOfNatRational 2) respectively. We say the numerals 2
occurring in the elaborated terms are raw natural numbers. You can input the raw natural number
2 using the macro nat_lit 2 .

Raw natural numbers are not polymorphic.

The OfNat instance is parametric on the numeral. So, you can define instances for particular
numerals. The second argument is often a variable as in the example above, or a raw natural
number.

#check (inferInstance : Inhabited Nat) -- Inhabited Nat

def foo : Inhabited (Nat × Nat) :=
 inferInstance

theorem ex : foo.default = (default, default) :=
 rfl

#print inferInstance

structure Person where
 name : String
 age : Nat

instance : ToString Person where
 toString p := p.name ++ "@" ++ toString p.age

#eval toString { name := "Leo", age := 542 : Person }
#eval toString ({ name := "Daniel", age := 18 : Person }, "hello")

structure Rational where
 num : Int
 den : Nat
 inv : den ≠ 0

instance : OfNat Rational n where
 ofNat := { num := n, den := 1, inv := by decide }

instance : ToString Rational where
 toString r := s!"{r.num}/{r.den}"

#eval (2 : Rational) -- 2/1

#check (2 : Rational) -- Rational
#check (2 : Nat) -- Nat

#check nat_lit 2 -- Nat

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 65/156

Because many users were forgetting the nat_lit when defining OfNat instances, Lean also accepts
OfNat instance declarations not using nat_lit . Thus, the following is also accepted.

Output parameters

By default, Lean only tries to synthesize an instance Inhabited T when the term T is known and
does not contain missing parts. The following command produces the error "failed to create type
class instance for Inhabited (Nat × ?m.1499) " because the type has a missing part (i.e., the _).

You can view the parameter of the type class Inhabited as an input value for the type class
synthesizer. When a type class has multiple parameters, you can mark some of them as output
parameters. Lean will start type class synthesizer even when these parameters have missing parts.
In the following example, we use output parameters to define a heterogeneous polymorphic
multiplication.

The parameters α and β are considered input parameters and γ an output one. Given an
application hMul a b , after types of a and b are known, the type class synthesizer is invoked, and
the resulting type is obtained from the output parameter γ . In the example above, we defined two
instances. The first one is the homogeneous multiplication for natural numbers. The second is the
scalar multiplication for arrays. Note that, you chain instances and generalize the second instance.

class Monoid (α : Type u) where
 unit : α
 op : α → α → α

instance [s : Monoid α] : OfNat α (nat_lit 1) where
 ofNat := s.unit

def getUnit [Monoid α] : α :=
 1

class Monoid (α : Type u) where
 unit : α
 op : α → α → α

instance [s : Monoid α] : OfNat α 1 where
 ofNat := s.unit

def getUnit [Monoid α] : α :=
 1

#check (inferInstance : Inhabited (Nat × _))

class HMul (α : Type u) (β : Type v) (γ : outParam (Type w)) where
 hMul : α → β → γ

export HMul (hMul)

instance : HMul Nat Nat Nat where
 hMul := Nat.mul

instance : HMul Nat (Array Nat) (Array Nat) where
 hMul a bs := bs.map (fun b => hMul a b)

#eval hMul 4 3 -- 12
#eval hMul 4 #[2, 3, 4] -- #[8, 12, 16]

class HMul (α : Type u) (β : Type v) (γ : outParam (Type w)) where
 hMul : α → β → γ

export HMul (hMul)

instance : HMul Nat Nat Nat where
 hMul := Nat.mul

instance : HMul Int Int Int where
 hMul := Int.mul

instance [HMul α β γ] : HMul α (Array β) (Array γ) where
 hMul a bs := bs.map (fun b => hMul a b)

#eval hMul 4 3 -- 12
#eval hMul 4 #[2, 3, 4] -- #[8, 12, 16]
#eval hMul (-2) #[3, -1, 4] -- #[-6, 2, -8]
#eval hMul 2 #[#[2, 3], #[0, 4]] -- #[#[4, 6], #[0, 8]]

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 66/156

You can use our new scalar array multiplication instance on arrays of type Array β with a scalar of
type α whenever you have an instance HMul α β γ . In the last #eval , note that the instance was
used twice on an array of arrays.

Default instances

In the class HMul , the parameters α and β are treated as input values. Thus, type class synthesis
only starts after these two types are known. This may often be too restrictive.

The instance HMul is not synthesized by Lean because the type of y has not been provided.
However, it is natural to assume that the type of y and x should be the same in this kind of
situation. We can achieve exactly that using default instances.

By tagging the instance above with the attribute default_instance , we are instructing Lean to use
this instance on pending type class synthesis problems. The actual Lean implementation defines
homogeneous and heterogeneous classes for arithmetical operators. Moreover, a+b , a*b , a-b ,
a/b , and a%b are notations for the heterogeneous versions. The instance OfNat Nat n is the

default instance (with priority 100) for the OfNat class. This is why the numeral 2 has type Nat
when the expected type is not known. You can define default instances with higher priority to
override the builtin ones.

Priorities are also useful to control the interaction between different default instances. For example,
suppose xs has type α , when elaboration xs.map (fun x => 2 * x) , we want the homogeneous
instance for multiplication to have higher priority than the default instance for OfNat . This is
particularly important when we have implemented only the instance HMul α α α , and did not
implement HMul Nat α α . Now, we reveal how the notation a*b is defined in Lean.

class HMul (α : Type u) (β : Type v) (γ : outParam (Type w)) where
 hMul : α → β → γ

export HMul (hMul)

instance : HMul Int Int Int where
 hMul := Int.mul

def xs : List Int := [1, 2, 3]

-- Error "failed to create type class instance for HMul Int ?m.1767 (?m.1797 x)"
-- #check fun y => xs.map (fun x => hMul x y)

class HMul (α : Type u) (β : Type v) (γ : outParam (Type w)) where
 hMul : α → β → γ

export HMul (hMul)

@[default_instance]
instance : HMul Int Int Int where
 hMul := Int.mul

def xs : List Int := [1, 2, 3]

#check fun y => xs.map (fun x => hMul x y) -- Int -> List Int

structure Rational where
 num : Int
 den : Nat
 inv : den ≠ 0

@[default_instance 200]
instance : OfNat Rational n where
 ofNat := { num := n, den := 1, inv := by decide }

instance : ToString Rational where
 toString r := s!"{r.num}/{r.den}"

#check 2 -- Rational

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 67/156

The Mul class is convenient for types that only implement the homogeneous multiplication.

Scoped Instances

TODO

Local Instances

TODO

class OfNat (α : Type u) (n : Nat) where
 ofNat : α

@[default_instance]
instance (n : Nat) : OfNat Nat n where
 ofNat := n

class HMul (α : Type u) (β : Type v) (γ : outParam (Type w)) where
 hMul : α → β → γ

class Mul (α : Type u) where
 mul : α → α → α

@[default_instance 10]
instance [Mul α] : HMul α α α where
 hMul a b := Mul.mul a b

infixl:70 " * " => HMul.hMul

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 68/156

Unification Hints
TODO

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 69/156

Builtin Types

Numeric Operations

Lean supports the basic mathematical operations you’d expect for all of the number types: addition,
subtraction, multiplication, division, and remainder. The following code shows how you’d use each
one in a def commands:

Each expression in these statements uses a mathematical operator and evaluates to a single value.

-- addition
def sum := 5 + 10

-- subtraction
def difference := 95.5 - 4.3

-- multiplication
def product := 4 * 30

-- division
def quotient := 53.7 / 32.2

-- remainder/modulo
def modulo := 43 % 5

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 70/156

Natural numbers
The Nat type represents the natural numbers, i.e., arbitrary-precision unsigned integers. There are
no overflows.

A numeral is considered to be a Nat if there are no typing constraints.

The operator - for Nat implements truncated subtraction.

The operator / for Nat implements Euclidean division.

As we described in the previous sections, we define the Nat type as an inductive datatype.

However, the internal representation of Nat is optimized. Small natural numbers (i.e., < 2^63 in a
64-bit machine) are represented by a single machine word. Big numbers are implemented using
GMP numbers. We recommend you use fixed precision numeric types only in performance critical
code.

The Lean kernel has builtin support for the Nat type too, and can efficiently reduce Nat
expressions during type checking.

The sharp-eyed reader will notice that GMP is part of the Lean kernel trusted code base. We believe
this is not a problem because you can use external type checkers to double-check your
developments, and we consider GMP very trustworthy. Existing external type checkers for Lean 3
(e.g., Trepplein and TC) can be easily adapted to Lean 4. If you are still concerned after checking your
development with multiple different external checkers because they may all rely on buggy arbitrary-
precision libraries, you can develop your own certified arbitrary-precision library and use it to
implement your own type checker for Lean.

#eval 100000000000000000 * 200000000000000000000 * 1000000000000000000000

#check 10 -- Nat
#check id 10 -- Nat

def f (x : Int) : Int :=
 x - 1

#eval f (3 - 5) -- 3 and 5 are `Int` since `f` expects an `Int`.
-- -3

#eval 10 - 5 -- 5
#eval 5 - 10 -- 0

theorem ex : 5 - 10 = 0 :=
 rfl

#eval (5:Int) - 10 -- -5

#eval 10 / 4 -- 2

#check 10.0 / 4.0 -- Float
#eval 10.0 / 4.0 -- 2.5

inductive Nat where
 | zero : Nat
 | succ : Nat → Nat

#reduce 100000000000000000 * 200000000000000000000 * 1000000000000000000000

theorem ex
 : 1000000000000000 * 2000000000000000000 = 2000000000000000000000000000000000 :=
 rfl

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 71/156

https://gmplib.org/manual/
https://github.com/gebner/trepplein
https://github.com/leanprover/tc

Integers
The Int type represents the arbitrary-precision integers. There are no overflows.

Recall that nonnegative numerals are considered to be a Nat if there are no typing constraints.

The operator / for Int implements integer division.

Similar to Nat , the internal representation of Int is optimized. Small integers are represented by a
single machine word. Big integers are implemented using GMP numbers. We recommend you use
fixed precision numeric types only in performance critical code.

The Lean kernel does not have special support for reducing Int during type checking. However,
since Int is defined as

the type checker will be able reduce Int expressions efficiently by relying on the special support for
Nat .

#eval (100000000000000000 : Int) * 200000000000000000000 * 1000000000000000000000

#check 1 -- Nat
#check -1 -- Int
#check (1:Int) -- Int

#eval -10 / 4 -- -2

inductive Int : Type where
 | ofNat : Nat → Int
 | negSucc : Nat → Int

theorem ex : -2000000000 * 1000000000 = -2000000000000000000 :=
 rfl

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 72/156

https://gmplib.org/manual/

Fixed precision unsigned integers

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 73/156

Float

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 74/156

Arrays
The Array type implements a dynamic (aka growable) array. It is defined as

but its execution time representation is optimized, and it is similar to C++ std::vector<T> and Rust
Vec<T> . The Lean type checker has no special support for reducing Array s.

You can create arrays in several ways. You can create a small array by listing consecutive values
between #[and] and separated by commas, as shown in the following examples.

The type of the array elements is inferred from the literals used and must be consistent.

Recall that the command #check_failure <term> only succeeds when the given term is not type
correct.

To create an array of size n in which all the elements are initialized to some value a , use mkArray .

Accessing elements

You can access array elements by using brackets ([and]).

Note that the index i has type Fin a.size , i.e., it is natural number less than a.size . You can also
write

The bracket operator is whitespace sensitive.

The notation a[i] has two variants: a[i]! and a[i]? . In both cases, i has type Nat . The first
one produces a panic error message if the index i is out of bounds. The latter returns an Option
type.

structure Array (α : Type u) where
 data : List α

#check #[1, 2, 3] -- Array Nat

#check #[] -- Array ?m

#check #["hello", "world"] -- Array String

-- The following is not valid
#check_failure #[10, "hello"]

#eval mkArray 5 'a'
-- #['a', 'a', 'a', 'a', 'a']

def f (a : Array Nat) (i : Fin a.size) :=
 a[i] + a[i]

def f (a : Array Nat) (i : Nat) (h : i < a.size) :=
 a[i] + a[i]

def f (xs : List Nat) : List Nat :=
 xs ++ xs

def as : Array Nat :=
 #[1, 2, 3, 4]

def idx : Fin 4 :=
 2

#eval f [1, 2, 3] -- This is a function application

#eval as[idx] -- This is an array access

#eval #['a', 'b', 'c'][1]?
-- some 'b'
#eval #['a', 'b', 'c'][5]?
-- none
#eval #['a', 'b', 'c'][1]!
-- 'b!

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 75/156

List

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 76/156

Characters

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 77/156

Strings

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 78/156

Option

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 79/156

Thunks, Tasks, and Threads
A Thunk is defined as

A Thunk encapsulates a computation without evaluation. That is, a Thunk stores the way of how the
value would be computed. The Lean runtime has special support for Thunk s. It caches their values
after they are computed for the first time. This feature is useful for implementing data structures
such as lazy lists. Here is a small example using a Thunk .

The function f above uses x.get to evaluate the Thunk x . The expression Thunk.mk (fun _ =>
fib x) creates a Thunk for computing fib x . Note that fib is a very naive function for computing
the Fibonacci numbers, and it would an unreasonable amount of time to compute fib 1000 .
However, our test terminates instantaneously because the Thunk is not evaluated when c is
false . Lean has a builtin coercion from any type a to Thunk a . You write the function g above as

In the following example, we use the macro dbg_trace to demonstrate that the Lean runtime
caches the value computed by a Thunk . We remark that the macro dbg_trace should be used for
debugging purposes only.

Note that the message add1: 2 is printed only once. Now, consider the same example using Unit
-> Nat instead of Thunk Nat .

structure Thunk (α : Type u) : Type u where
 fn : Unit → α

def fib : Nat → Nat
 | 0 => 0
 | 1 => 1
 | x+2 => fib (x+1) + fib x

def f (c : Bool) (x : Thunk Nat) : Nat :=
 if c then
 x.get
 else
 0

def g (c : Bool) (x : Nat) : Nat :=
 f c (Thunk.mk (fun _ => fib x))

#eval g false 1000

def g (c : Bool) (x : Nat) : Nat :=
 f c (fib x)

#eval g false 1000

def add1 (x : Nat) : Nat :=
 dbg_trace "add1: {x}"
 x + 1

def double (x : Thunk Nat) : Nat :=
 x.get + x.get

def triple (x : Thunk Nat) : Nat :=
 double x + x.get

def test (x : Nat) : Nat :=
 triple (add1 x)

#eval test 2
-- add1: 2
-- 9

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 80/156

Now, the message add1: 2 is printed twice. It may come as a surprise that it was printed twice
instead of three times. As we pointed out, dbg_trace is a macro used for debugging purposes only,
and add1 is still considered to be a pure function. The Lean compiler performs common
subexpression elimination when compiling double , and the produced code for double executes x
() only once instead of twice. This transformation is safe because x : Unit -> Nat is pure.

def add1 (x : Nat) : Nat :=
 dbg_trace "add1: {x}"
 x + 1

def double (x : Unit -> Nat) : Nat :=
 x () + x ()

def triple (x : Unit -> Nat) : Nat :=
 double x + x ()

def test (x : Nat) : Nat :=
 triple (fun _ => add1 x)

#eval test 2
-- add1: 2
-- add1: 2
-- 9

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 81/156

Task

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 82/156

Functions
Functions are the fundamental unit of program execution in any programming language. As in other
languages, a Lean function has a name, can have parameters and take arguments, and has a body.
Lean also supports functional programming constructs such as treating functions as values, using
unnamed functions in expressions, composition of functions to form new functions, curried
functions, and the implicit definition of functions by way of the partial application of function
arguments.

You define functions by using the def keyword followed by its name, a parameter list, return type
and its body. The parameter list consists of successive parameters that are separated by spaces. You
can specify an explicit type for each parameter. If you do not specify a specific argument type, the
compiler tries to infer the type from the function body. An error is returned when it cannot be
inferred. The expression that makes up the function body is typically a compound expression
consisting of a number of expressions that culminate in a final expression that is the return value.
The return type is a colon followed by a type and is optional. If you do not specify the type of the
return value explicitly, the compiler tries to determine the return type from the final expression.

In the previous example, the function name is f , the argument is x , which has type Nat , the
function body is x + 1 , and the return value is of type Nat . The following example defines the
factorial recursive function using pattern matching.

By default, Lean only accepts total functions. The partial keyword may be used to define a
recursive function without a termination proof; partial functions compute in compiled programs,
but are opaque in proofs and during type checking.

In the previous example, g x p only terminates if there is a y >= x such that p y returns true .
Of course, g 0 (fun x => false) never terminates.

However, the use of partial is restricted to functions whose return type is not empty so the
soundness of the system is not compromised.

If we were able to partially define loop? , we could prove False with it.

Lambda expressions
A lambda expression is an unnamed function. You define lambda expressions by using the fun
keyword. A lambda expression resembles a function definition, except that instead of the := token,
the => token is used to separate the argument list from the function body. As in a regular function
definition, the argument types can be inferred or specified explicitly, and the return type of the
lambda expression is inferred from the type of the last expression in the body.

def f x := x + 1

def fact x :=
 match x with
 | 0 => 1
 | n+1 => (n+1) * fact n

#eval fact 100

partial def g (x : Nat) (p : Nat -> Bool) : Nat :=
 if p x then
 x
 else
 g (x+1) p

#eval g 0 (fun x => x > 10)

partial def loop? : α := -- failed to compile partial definition 'loop?', failed to
 loop? -- show that type is inhabited and non empty

partial def loop [Inhabited α] : α := -- compiles
 loop

example : True := -- accepted
 loop

example : False :=
 loop -- failed to synthesize instance Inhabited False

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 83/156

Syntax sugar for simple lambda expressions
Simple functions can be defined using parentheses and · as a placeholder.

In the previous example, the term (·.1) is syntax sugar for fun x => x.1 .

Pipelining
Pipelining enables function calls to be chained together as successive operations. Pipelining works
as follows:

The result of the previous #eval commands is 202. The forward pipeline |> operator takes a
function and an argument and return a value. In contrast, the backward pipeline <| operator takes
an argument and a function and returns a value. These operators are useful for minimizing the
number of parentheses.

Lean also supports the operator |>. which combines forward pipeline |> operator with the .
field notation.

For users familiar with the Haskell programming language, Lean also supports the notation f $ a
for the backward pipeline f <| a .

def twice (f : Nat -> Nat) (x : Nat) : Nat :=
 f (f x)

#eval twice (fun x => x + 1) 3
#eval twice (fun (x : Nat) => x * 2) 3

#eval List.map (fun x => x + 1) [1, 2, 3]
-- [2, 3, 4]

#eval List.map (fun (x, y) => x + y) [(1, 2), (3, 4)]
-- [3, 7]

#check (· + 1)
-- fun a => a + 1
#check (2 - ·)
-- fun a => 2 - a
#eval [1, 2, 3, 4, 5].foldl (· * ·) 1
-- 120

def h (x y z : Nat) :=
 x + y + z

#check (h · 1 ·)
-- fun a b => h a 1 b

#eval [(1, 2), (3, 4), (5, 6)].map (·.1)
-- [1, 3, 5]

def add1 x := x + 1
def times2 x := x * 2

#eval times2 (add1 100)
#eval 100 |> add1 |> times2
#eval times2 <| add1 <| 100

def add1Times3FilterEven (xs : List Nat) :=
 List.filter (· % 2 == 0) (List.map (· * 3) (List.map (· + 1) xs))

#eval add1Times3FilterEven [1, 2, 3, 4]
-- [6, 12]

-- Define the same function using pipes
def add1Times3FilterEven' (xs : List Nat) :=
 xs |> List.map (· + 1) |> List.map (· * 3) |> List.filter (· % 2 == 0)

#eval add1Times3FilterEven' [1, 2, 3, 4]
-- [6, 12]

-- Define the same function using pipes
def add1Times3FilterEven'' (xs : List Nat) :=
 xs.map (· + 1) |>.map (· * 3) |>.filter (· % 2 == 0)

#eval add1Times3FilterEven'' [1, 2, 3, 4]
-- [6, 12]

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 84/156

Monads
Monads are used heavily in Lean, as they are also in Haskell. Monads come from the wonderful
world of Category Theory.

Monads in Lean are so similar to Haskell that this introduction to monads is heavily based on the
similar chapter of the Monday Morning Haskell. Many thanks to the authors of that material for
allowing us to reuse it here.

Monads build on the following fundamental type classes which you will need to understand first
before fully understanding monads. Shown in light blue are some concrete functors and monads
that will also be covered in this chapter:

Applicative Bind

Except

Functor

List

Monad

Option

Pure

ReaderM

Seq SeqLeft SeqRight

StateM

This chapter is organized to give you a bottom up introduction to monads, starting with functors and
applicative functors, you'll get an intuition for how these abstract structures work in Lean. Then
you'll dive into monads and learn how to use some of the most useful built-in ones.

Functor

A functor is a type class that provides a map function and the map function is something many
people are already familiar with so this should be easy to follow. Here you will see some concrete
examples in action with List and Option .

Applicative Functors

Applicatives are a little more difficult to understand than functors, but their functionality can still be
summed up in a couple simple functions. Here you will learn how to create an Applicative List
and a completely custom Applicative type.

Monads Tutorial

Now that you have an intuition for how abstract structures work, you'll examine some of the
problems that functors and applicative functors don't help you solve. Then you'll learn the specifics
of how to actually use monads with some examples using the Option monad and the all important
IO monad.

Reader Monad

Now that you understand the details of what makes a monadic structure work, in this section, you'll
learn about one of the most useful built in monads ReaderM , which gives your programs a global
read-only context.

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 85/156

https://en.wikipedia.org/wiki/Monad_%28category_theory%29
https://mmhaskell.com/monads/
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/functors.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/applicatives.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/monads.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/readers.lean.html

State Monad

This section introduces the StateM monad. This monad allows you to access a particular type that
you can both read from and write to. It opens the door to fully stateful programming, allowing you
to do many of the things a function programming language supposedly "can't" do.

Except Monad

Similar to the Option monad the Except monad allows you to change the signature of a function
so that it can return an ok value or an error and it provides the classic exception handling
operations throw/try/catch so that your programs can do monad-based exception handling.

Monad Transformers

Now that you are familiar with all the above monads it is time to answer the question - how you can
make them work together? After all, there are definitely times when you need multiple kinds of
monadic behavior. This section introduces the concept of monad transformers, which allow you to
combine multiple monads into one.

Monad Laws

This section examines what makes a monad a legal monad. You could just implement your monadic
type classes any way you want and write "monad" instances, but starting back with functors and
applicative functors, you'll learn that all these structures have "laws" that they are expected to obey
with respect to their behavior. You can make instances that don't follow these laws. But you do so at
your peril, as other programmers will be very confused when they try to use them.

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 86/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/states.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/except.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/transformers.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/laws.lean.html

Functor
A Functor is any type that can act as a generic container that allows you to transform the
underlying values inside the container using a function, so that the values are all updated, but the
structure of the container is the same. This is called "mapping".

A List is one of the most basic examples of a Functor .

A list contains zero or more elements of the same, underlying type. When you map a function over a
list, you create a new list with the same number of elements, where each has been transformed by
the function:

Here we converted a list of natural numbers (Nat) to a list of strings where the lambda function here
used toString to do the transformation of each element. Notice that when you apply map the
"structure" of the object remains the same, in this case the result is always a List of the same size.

Note that in Lean a lambda function can be written using fun keyword or the unicode symbol λ
which you can type in VS code using \la .

List has a specialized version of map defined as follows:

This is a very generic map function that can take any function that converts (α → β) and use it to
convert List α → List β . Notice the function call f a above, this application of f is producing the
converted items for the new list.

Let's look at some more examples:

Another example of a functor is the Option type. Option contains a value or nothing and is handy
for code that has to deal with optional values, like optional command line arguments.

Remember you can construct an Option using the type constructors some or none :

Lean also provides a convenient short hand syntax for (fun x => x + 1) , namely (· + 1) using
the middle dot unicode character which you can type in VS code using \. .

The map function preserves the none state of the Option, so again map preserves the structure of
the object.

Notice that even in the none case it has transformed Option Nat into Option String as you see in
the #check command.

#eval List.map (λ x => toString x) [1,2,3] -- ["1", "2", "3"]

-- you can also write this using dot notation on the List object
#eval [1,2,3].map (λ x => toString x) -- ["1", "2", "3"]

def map (f : α → β) : List α → List β
 | [] => []
 | a::as => f a :: map f as

-- List String → List Nat
#eval ["elephant", "tiger", "giraffe"].map (fun s => s.length)
-- [8, 5, 7]

-- List Nat → List Float
#eval [1,2,3,4,5].map (fun s => (s.toFloat) ^ 3.0)
-- [1.000000, 8.000000, 27.000000, 64.000000, 125.000000]

--- List String → List String
#eval ["chris", "david", "mark"].map (fun s => s.capitalize)
-- ["Chris", "David", "Mark"]

#check some 5 -- Option Nat
#eval some 5 -- some 5
#eval (some 5).map (fun x => x + 1) -- some 6
#eval (some 5).map (fun x => toString x) -- some "5"

#eval (some 4).map (· * 5) -- some 20

def x : Option Nat := none
#eval x.map (fun x => toString x) -- none
#check x.map (fun x => toString x) -- Option String

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 87/156

How to make a Functor Instance?

The List type is made an official Functor by the following type class instance:

Notice all you need to do is provide the map function implementation. For a quick example, let's
supposed you create a new type describing the measurements of a home or apartment:

Now you can construct a LivingSpace in square feet using floating point values:

Now, suppose you want anyone to be able to map a LivingSpace from one type of measurement
unit to another. Then you would provide a Functor instance as follows:

Notice this functor instance takes LivingSpace and not the fully qualified type LivingSpace
SquareFeet . Notice below that LivingSpace is a function from Type to Type. For example, if you
give it type SquareFeet it gives you back the fully qualified type LivingSpace SquareFeet .

So the instance : Functor then is operating on the more abstract, or generic LivingSpace saying
for the whole family of types LivingSpace α you can map to LivingSpace β using the generic
LivingSpace.map map function by simply providing a function that does the more primitive

mapping from (f : α → β) . So LivingSpace.map is a sort of function applicator. This is called a
"higher order function" because it takes a function as input (α → β) and returns another function
as output F α → F β .

Notice that LivingSpace.map applies a function f to convert the units of all the LivingSpace fields,
except for numBedrooms which is a count (and therefore is not a measurement that needs
converting).

So now you can define a simple conversion function, let's say you want square meters instead:

and now bringing it all together you can use the simple function squareFeetToMeters to map
mySpace to square meters:

Lean also defines custom infix operator <$> for Functor.map which allows you to write this:

Note that the infix operator is left associative which means it binds more tightly to the function on
the left than to the expression on the right, this means you can often drop the parentheses on the

instance : Functor List where
 map := List.map

structure LivingSpace (α : Type) where
 totalSize : α
 numBedrooms : Nat
 masterBedroomSize : α
 livingRoomSize : α
 kitchenSize : α
 deriving Repr, BEq

abbrev SquareFeet := Float

def mySpace : LivingSpace SquareFeet :=
 { totalSize := 1800, numBedrooms := 4, masterBedroomSize := 500,
 livingRoomSize := 900, kitchenSize := 400 }

def LivingSpace.map (f : α → β) (s : LivingSpace α) : LivingSpace β :=
 { totalSize := f s.totalSize
 numBedrooms := s.numBedrooms
 masterBedroomSize := f s.masterBedroomSize
 livingRoomSize := f s.livingRoomSize
 kitchenSize := f s.kitchenSize }

instance : Functor LivingSpace where
 map := LivingSpace.map

#check LivingSpace -- Type → Type

abbrev SquareMeters := Float
def squareFeetToMeters (ft : SquareFeet) : SquareMeters := (ft / 10.7639104)

#eval mySpace.map squareFeetToMeters
/-
{ totalSize := 167.225472,
 numBedrooms := 4,
 masterBedroomSize := 46.451520,
 livingRoomSize := 83.612736,
 kitchenSize := 37.161216 }
 -/

#eval (fun s => s.length) <$> ["elephant", "tiger", "giraffe"] -- [8, 5, 7]
#eval (fun x => x + 1) <$> (some 5) -- some 6

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 88/156

right like this:

Note that Lean lets you define your own syntax, so <$> is nothing special. You can define your own
infix operator like this:

Wow, this is pretty powerful. By providing a functor instance on LivingSpace with an
implementation of the map function it is now super easy for anyone to come along and transform
the units of a LivingSpace using very simple functions like squareFeetToMeters . Notice that
squareFeetToMeters knows nothing about LivingSpace .

How do Functors help with Monads ?

Functors are an abstract mathematical structure that is represented in Lean with a type class. The
Lean functor defines both map and a special case for working on constants more efficiently called
mapConst :

Note that mapConst has a default implementation, namely: mapConst : {α β : Type u} → α → f β
→ f α := Function.comp map (Function.const _) in the Functor type class. So you can use this
default implementation and you only need to replace it if your functor has a more specialized variant
than this (usually the custom version is more performant).

In general then, a functor is a function on types F : Type u → Type v equipped with an operator
called map such that if you have a function f of type α → β then map f will convert your container
type from F α → F β . This corresponds to the category-theory notion of functor in the special case
where the category is the category of types and functions between them.

Understanding abstract mathematical structures is a little tricky for most people. So it helps to start
with a simpler idea like functors before you try to understand monads. Building on functors is the
next abstraction called Applicatives.

#eval (fun x => x + 1) <$> some 5 -- some 6

infixr:100 " doodle " => Functor.map

#eval (· * 5) doodle [1, 2, 3] -- [5, 10, 15]

class Functor (f : Type u → Type v) : Type (max (u+1) v) where
 map : {α β : Type u} → (α → β) → f α → f β
 mapConst : {α β : Type u} → α → f β → f α

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 89/156

https://en.wikipedia.org/wiki/Functor
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/applicatives.lean.html

Applicative Functors
Building on Functors is the Applicative Functor. For simplicity, you can refer to these simply as
"Applicatives". These are a little tricker than functors, but still simpler than monads. Let's see how
they work!

What is an Applicative Functor?

An applicative functor defines a default or "base" construction for an object and allows function
application to be chained across multiple instances of the structure. All applicative functors are
functors, meaning they must also support the "map" operation.

How are Applicatives represented in Lean?

An applicative functor is an intermediate structure between Functor and Monad . It mainly consists
of two operations:

pure : α → F α

seq : F (α → β) → F α → F β (written as <*>)

The pure operator specifies how you can wrap a normal object α into an instance of this structure
F α . This is the "default" mechanism mentioned above.

The seq operator allows you to chain operations by wrapping a function in a structure. The name
"applicative" comes from the fact that you "apply" functions from within the structure, rather than
simply from outside the structure, as was the case with Functor.map .

Applicative in Lean is built on some helper type classes, Functor , Pure and Seq :

Notice that as with Functor it is also a type transformer (f : Type u → Type v) and notice the
extends Functor f is ensuring the base Functor also performs that same type transformation.

As stated above, all applicatives are then functors. This means you can assume that map already
exists for all these types.

The Pure base type class is a very simple type class that supplies the pure function.

You can think of it as lifting the result of a pure value to some monadic type. The simplest example
of pure is the Option type:

Here we used the Option implementation of pure to wrap the Nat 10 value in an Option Nat
type resulting in the value some 10 , and in fact if you look at the Monad instance of Option , you
will see that pure is indeed implemented using Option.some :

The Seq type class is also a simple type class that provides the seq operator which can also be
written using the special syntax <*> .

namespace hidden -- hidden
class Applicative (f : Type u → Type v) extends Functor f, Pure f, Seq f, SeqLeft f,
SeqRight f where
 map := fun x y => Seq.seq (pure x) fun _ => y
 seqLeft := fun a b => Seq.seq (Functor.map (Function.const _) a) b
 seqRight := fun a b => Seq.seq (Functor.map (Function.const _ id) a) b
end hidden -- hidden

namespace hidden -- hidden
class Pure (f : Type u → Type v) where
 pure {α : Type u} : α → f α
end hidden -- hidden

#eval (pure 10 : Option Nat) -- some 10

instance : Monad Option where
 pure := Option.some

namespace hidden -- hidden
class Seq (f : Type u → Type v) : Type (max (u+1) v) where
 seq : {α β : Type u} → f (α → β) → (Unit → f α) → f β
end hidden -- hidden

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 90/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/functors.lean.html
https://en.wikipedia.org/wiki/Applicative_functor
https://en.wikipedia.org/wiki/Applicative_functor

Basic Applicative Examples

Many of the basic functors also have instances of Applicative . For example, Option is also
Applicative .

So let's take a look and what the seq operator can do. Suppose you want to multiply two Option
Nat objects. Your first attempt might be this:

You then might wonder how to use the Functor.map to solve this since you could do these before:

Remember that <$> is the infix notation for Functor.map .

The functor map operation can apply a multiplication to the value in the Option and then lift the
result back up to become a new Option , but this isn't what you need here.

The Seq.seq operator <*> can help since it can apply a function to the items inside a container and
then lift the result back up to the desired type, namely Option .

There are two ways to do this:

In the first way, we start off by wrapping the function in an applicative using pure. Then we apply this
to the first Option , and again to the second Option in a chain of operations. So you can see how
Seq.seq can be chained in fact, Seq.seq is really all about chaining of operations.

But in this case there is a simpler way. In the second way, you can see that "applying" a single
function to a container is the same as using Functor.map . So you use <$> to "transform" the first
option into an Option containing a function, and then apply this function over the second value.

Now if either side is none , the result is none , as expected, and in this case the seq operator was
able to eliminate the multiplication:

For a more interesting example, let's make List an applicative by adding the following definition:

Notice you can now sequence a list of functions and a list of items. The trivial case of sequencing a
singleton list is in fact the same as map , as you saw earlier with the Option examples:

But now with list it is easier to show the difference when you do this:

Why did this produce 4 values? The reason is because <*> applies every function to every value in a
pairwise manner. This makes sequence really convenient for solving certain problems. For example,
how do you get the pairwise combinations of all values from two lists?

How do you get the sum of these pairwise values?

Here you can use <$> to "transform" each element of the first list into a function, and then apply
these functions over the second list.

If you have 3 lists, and want to find all combinations of 3 values across those lists you would need
helper function that can create a tuple out of 3 values, and Lean provides a very convenient syntax

#check_failure (some 4) * (some 5) -- failed to synthesize instance

#eval (some 4).map (fun x => x * 5) -- some 20

#eval (some 4).map (· * 5) -- some 20

#eval (· * 5) <$> (some 4) -- some 20

#eval pure (.*.) <*> some 4 <*> some 5 -- some 20

#eval (.*.) <$> some 4 <*> some 5 -- some 20

#eval (.*.) <$> none <*> some 5 -- none
#eval (.*.) <$> some 4 <*> none -- none

instance : Applicative List where
 pure := List.pure
 seq f x := List.bind f fun y => Functor.map y (x ())

#eval [(·+2)] <*> [4, 6] -- [6, 8]
#eval (·+2) <$> [4,6] -- [6, 8]

#eval [(·+2), (· *3)] <*> [4, 6] -- [6, 8, 12, 18]

#eval Prod.mk <$> [1, 2, 3] <*> [4, 5, 6]
-- [(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)]

#eval (·+·) <$> [1, 2, 3] <*> [4, 5, 6]
-- [5, 6, 7, 6, 7, 8, 7, 8, 9]

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 91/156

for that (·,·,·) :

And you could sum these combinations if you first define a sum function that takes three inputs and
then you could chain apply this over the three lists. Again lean can create such a function with the
expression (·+·+·) :

And indeed each sum here matches the expected values if you manually sum the triples we show
above.

Side note: there is another way to combine lists with a function that does not do the pairwise
combinatorics, it is called List.zipWith :

And there is a helper function named List.zip that calls zipWith using the function Prod.mk so
you get a nice zipped list like this:

And of course, as you would expect, there is an unzip also:

Example: A Functor that is not Applicative

From the chapter on functors you might remember this example of LivingSpace that had a
Functor instance:

It wouldn't really make sense to make an Applicative instance here. How would you write pure in
the Applicative instance? By taking a single value and plugging it in for total size and the master
bedroom size and the living room size? That wouldn't really make sense. And what would the
numBedrooms value be for the default? What would it mean to "chain" two of these objects
together?

If you can't answer these questions very well, then it suggests this type isn't really an Applicative
functor.

SeqLeft and SeqRight

You may remember seeing the SeqLeft and SeqRight base types on class Applicative earlier.
These provide the seqLeft and seqRight operations which also have some handy notation
shorthands <* and *> respectively. Where: x <* y evaluates x , then y , and returns the result of
x and x *> y evaluates x , then y , and returns the result of y .

To make it easier to remember, notice that it returns that value that the <* or *> notation is
pointing at. For example:

#eval (·,·,·) <$> [1, 2] <*> [3, 4] <*> [5, 6]
-- [(1, 3, 5), (1, 3, 6), (1, 4, 5), (1, 4, 6), (2, 3, 5), (2, 3, 6), (2, 4, 5), (2, 4,
6)]

#eval (·+·+·) <$> [1, 2] <*> [3, 4] <*> [5, 6]
-- [9, 10, 10, 11, 10, 11, 11, 12]

#eval List.zipWith (·+·) [1, 2, 3] [4, 5, 6]
-- [5, 7, 9]

#eval List.zip [1, 2, 3] [4, 5, 6]
-- [(1, 4), (2, 5), (3, 6)]

#eval List.unzip (List.zip [1, 2, 3] [4, 5, 6])
-- ([1, 2, 3], [4, 5, 6])

structure LivingSpace (α : Type) where
 totalSize : α
 numBedrooms : Nat
 masterBedroomSize : α
 livingRoomSize : α
 kitchenSize : α
 deriving Repr, BEq

def LivingSpace.map (f : α → β) (s : LivingSpace α) : LivingSpace β :=
 { totalSize := f s.totalSize
 numBedrooms := s.numBedrooms
 masterBedroomSize := f s.masterBedroomSize
 livingRoomSize := f s.livingRoomSize
 kitchenSize := f s.kitchenSize }

instance : Functor LivingSpace where
 map := LivingSpace.map

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 92/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/functors.lean.html

So these are a kind of "discard" operation. Run all the actions, but only return the values that you
care about. It will be easier to see these in action when you get to full Monads, but they are used
heavily in the Lean Parsec parser combinator library where you will find parsing functions like this
one which parses the XML declaration <?xml version="1.0" encoding='utf-8'
standalone="yes"> :

But you will need to understand full Monads before this will make sense.

Lazy Evaluation

Diving a bit deeper, (you can skip this and jump to the Applicative Laws if don't want to dive into this
implementation detail right now). But, if you write a simple Option example (.*.) <$> some 4 <*>
some 5 that produces some 20 using Seq.seq you will see something interesting:

This may look a bit cumbersome, specifically, why did we need to invent this funny looking function
fun (_ : Unit) => (some 5) ?

Well if you take a close look at the type class definition:

You will see this function defined here: (Unit → f α) , this is a function that takes Unit as input
and produces the output of type f α where f is the container type Type u -> Type v , in this
example Option and α is the element type Nat , so fun (_ : Unit) => some 5 matches this
definition because it is taking an input of type Unit and producing some 5 which is type Option
Nat .

The that seq is defined this way is because Lean is an eagerly evaluated language (call-by-value),
you have to use this kind of Unit function whenever you want to explicitly delay evaluation and seq
wants that so it can eliminate unnecessary function evaluations whenever possible.

Fortunately the <*> infix notation hides this from you by creating this wrapper function for you. If
you look up the notation using F12 in VS Code you will find it contains (fun _ : Unit => b) .

Now to complete this picture you will find the default implementation of seq on the Lean Monad
type class:

Notice here that x is the (Unit → f α) function, and it is calling that function by passing the Unit
value () , which is the Unit value (Unit.unit). All this just to ensure delayed evaluation.

How do Applicatives help with Monads?

Applicatives are helpful for the same reasons as functors. They're a relatively simple abstract
structure that has practical applications in your code. Now that you understand how chaining
operations can fit into a structure definition, you're in a good position to start learning about
Monads!

#eval (some 1) *> (some 2) -- Some 2
#eval (some 1) <* (some 2) -- Some 1

def XMLdecl : Parsec Unit := do
 skipString "<?xml"
 VersionInfo
 optional EncodingDecl *> optional SDDecl *> optional S *> skipString "?>"

#eval Seq.seq ((.*.) <$> some 4) (fun (_ : Unit) => some 5) -- some 20

class Seq (f : Type u → Type v) where
 seq : {α β : Type u} → f (α → β) → (Unit → f α) → f β

class Monad (m : Type u → Type v) extends Applicative m, Bind m where
 seq f x := bind f fun y => Functor.map y (x ())

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 93/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/laws.lean.html#what-are-the-applicative-laws
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/monads.lean.html

Monads
Building on Functors and Applicatives we can now introduce monads.

A monad is another type of abstract, functional structure. Let's explore what makes it different from
the first two structures.

What is a Monad?

A monad is a computational context. It provides a structure that allows you to chain together
operations that have some kind of shared state or similar effect. Whereas pure functional code can
only operate on explicit input parameters and affect the program through explicit return values,
operations in a monad can affect other computations in the chain implicitly through side effects,
especially modification of an implicitly shared value.

How are monads represented in Lean?

Like functors and applicatives, monads are represented with a type class in Lean:

Just as every applicative is a functor, every monad is also an applicative and there's one more new
base type class used here that you need to understand, namely, Bind .

The bind operator also has infix notation >>= where x >>= g represents the result of executing x
to get a value of type f α then unwrapping the value α from that and passing it to function g of
type α → f β returning the result of type f β where f is the target structure type (like Option or
List)

This bind operation looks similar to the other ones you've seen so far, if you put them all together
Monad has the following operations:

Notice Monad also contains pure it must also have a "default" way to wrap a value in the structure.

The bind operator is similar to the applicative seq operator in that it chains two operations, with
one of them being function related. Notice that bind , seq and map all take a function of some kind.
Let's examine those function types:

map: (α → β)
seq: f (α → β)
bind: (α → f β)

So map is a pure function, seq is a pure function wrapped in the structure, and bind takes a pure
input but produces an output wrapped in the structure.

Note: we are ignoring the (Unit → f α) function used by seq here since that has a special purpose
explained in Applicatives Lazy Evaluation.

Basic Monad Example

Just as Option is a functor and an applicative functor, it is also a monad! Let's start with how
Option implements the Monad type class.

class Monad (m : Type u → Type v) extends Applicative m, Bind m where

class Bind (f : Type u → Type v) where
 bind : {α β : Type u} → f α → (α → f β) → f β

class Monad (f : Type u → Type v) extends Applicative f, Bind f where
 pure {α : Type u} : α → f α
 map : {α β : Type u} → (α → β) → f α → f β
 seq : {α β : Type u} → f (α → β) → (Unit → f α) → f β
 bind : {α β : Type u} → f α → (α → f β) → f β
 ...

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 94/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/functors.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/applicatives.lean.html
https://en.wikipedia.org/wiki/Monad_%28category_theory%29
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/applicatives.lean.html#lazy-evaluation

where:

Side note: this function definition is using a special shorthand syntax in Lean where the :=
match a, b with code can be collapsed away. To make this more clear consider the following
simpler example, where Option.bind is using the second form like bar :

What is important is that Option.bind is using a match statement to unwrap the input value
Option α , if it is none then it does nothing and returns none , if it has a value of type α then it

applies the function in the second argument (α → Option β) to this value, which is the expression
f a that you see in the line | some a, f => f a above. The function returns a result of type
Option β which then becomes the return value for bind . So there is no structure wrapping

required on the return value since the input function already did that.

But let's bring in the definition of a monad. What does it mean to describe Option as a
computational context?

The Option monad encapsulates the context of failure. Essentially, the Option monad lets us abort
a series of operations whenever one of them fails. This allows future operations to assume that all
previous operations have succeeded. Here's some code to motivate this idea:

Here you see three different functions that could fail. These are then combined in runOptionFuncs .
But then you have to use nested match expressions to check if the previous result succeeded. It
would be very tedious to continue this pattern much longer.

The Option monad helps you fix this. Here's what this function looks like using the bind operator.

It's much cleaner now! You take the first result and pass it into the second and third functions using
the bind operation. The monad instance handles all the failure cases so you don't have to!

Let's see why the types work out. The result of optionFunc1 input is simply Option Nat . Then the
bind operator allows you to take this Option Nat value and combine it with optionFunc2 , whose
type is Nat → Option Float The bind operator resolves these to an Option Float . Then you pass

instance : Monad Option where
 pure := Option.some
 bind := Option.bind

def Option.bind : Option α → (α → Option β) → Option β
 | none, _ => none
 | some a, f => f a

def foo (x : Option Nat) (y : Nat) : Option Nat :=
 match x, y with
 | none, _ => none
 | some x, y => some (x + y)

def bar : Option Nat → Nat → Option Nat
 | none, _ => none
 | some x, y => some (x + y)

#eval foo (some 1) 2 -- some 3
#eval bar (some 1) 2 -- some 3

def optionFunc1 : String -> Option Nat
 | "" => none
 | str => some str.length

def optionFunc2 (i : Nat) : Option Float :=
 if i % 2 == 0 then none else some (i.toFloat * 3.14159)

def optionFunc3 (f : Float) : Option (List Nat) :=
 if f > 15.0 then none else some [f.floor.toUInt32.toNat, f.ceil.toUInt32.toNat]

def runOptionFuncs (input : String) : Option (List Nat) :=
 match optionFunc1 input with
 | none => none
 | some i => match optionFunc2 i with
 | none => none
 | some f => optionFunc3 f

#eval runOptionFuncs "big" -- some [9, 10]

def runOptionFuncsBind (input : String) : Option (List Nat) :=
 optionFunc1 input >>= optionFunc2 >>= optionFunc3

#eval runOptionFuncsBind "big" -- some [9, 10]

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 95/156

this similarly through the bind operator to optionFunc3 , resulting in the final type, Option (List
Nat) .

Your functions will not always combine so cleanly though. This is where do notation comes into
play. This notation allows you to write monadic operations one after another, line-by-line. It almost
makes your code look like imperative programming. You can rewrite the above as:

The ← operator used here is special. It effectively unwraps the value on the right-hand side from the
monad. This means the value i has type Nat , even though the result of optionFunc1 is Option
Nat . This is done using a bind operation under the hood.

Note you can use <- or the nice unicode symbol ← which you can type into VS code by typing
these characters \l . When you type the final space, \l is replaced with ← .

Observe that we do not unwrap the final line of the computation. The function result is Option
(List Nat) which matches what optionFunc3 returns. At first glance, this may look more
complicated than the bind example. However, it gives you a lot more flexibility, like mixing monadic
and non-monadic statements, using if then/else structures with their own local do blocks and so on.
It is particularly helpful when one monadic function depends on multiple previous functions.

Example using List

You can easily make List into a monad with the following, since List already provides an
implementation of pure and bind .

Like you saw with the applicative seq operator, the bind operator applies the given function to
every element of the list. It is useful to look at the bind implementation for List:

So Functor.map is used to apply the function b to every element of a but this would return a
whole bunch of little lists, so join is used to turn those back into a single list.

Here's an example where you use bind to convert a list of strings into a combined list of chars:

The IO Monad

The IO Monad is perhaps the most important monad in Lean. It is also one of the hardest monads to
understand starting out. Its actual implementation is too intricate to discuss when first learning
monads. So it is best to learn by example.

What is the computational context that describes the IO monad? IO operations can read
information from or write information to the terminal, file system, operating system, and/or
network. They interact with systems outside of your program. If you want to get user input, print a
message to the user, read information from a file, or make a network call, you'll need to do so within
the IO Monad.

The state of the world outside your program can change at virtually any moment, and so this IO
context is particularly special. So these IO operations are "side effects" which means you cannot
perform them from "pure" Lean functions.

def runOptionFuncsDo (input : String) : Option (List Nat) := do
 let i ← optionFunc1 input
 let f ← optionFunc2 i
 optionFunc3 f

#eval runOptionFuncsDo "big" -- some [9, 10]

instance : Monad List where
 pure := List.pure
 bind := List.bind

open List
def bind (a : List α) (b : α → List β) : List β := join (map b a)

#eval "apple".toList -- ['a', 'p', 'p', 'l', 'e']

#eval ["apple", "orange"] >>= String.toList
-- ['a', 'p', 'p', 'l', 'e', 'o', 'r', 'a', 'n', 'g', 'e']

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 96/156

Now, the most important job of pretty much any computer program is precisely to perform this
interaction with the outside world. For this reason, the root of all executable Lean code is a function
called main, with the type IO Unit . So every program starts in the IO monad!

When your function is IO monadic, you can get any input you need, call into "pure" code with the
inputs, and then output the result in some way. The reverse does not work. You cannot call into IO
code from pure code like you can call into a function that takes Option as input. Another way to say
this is you cannot invent an IO context out of thin air, it has to be given to you in your main
function.

Let's look at a simple program showing a few of the basic IO functions. It also uses do notation to
make the code read nicely:

So, once again you can see that the do notation lets you chain a series of monadic actions.
IO.getStdin is of type IO IO.FS.Stream and stdin.getLine is of type IO String and
IO.println is of type IO Unit .

In between you see a non-monadic expression let uppercased := input.toUpper which is fine too.
A let statement can occur in any monad. Just as you could unwrap i from Option Nat to get the
inner Nat, you can use ← to unwrap the result of getLine to get a String. You can then manipulate
this value using normal pure string functions like toUpper , and then you can pass the result to the
IO.println function.

This is a simple echo program. It reads a line from the terminal, and then prints the line back out
capitalized to the terminal. Hopefully it gives you a basic understanding of how IO works.

You can test this program using lean --run as follows:

Here the user entered the string the quick brown fox and got back the uppercase result.

What separates Monads from Applicatives?

The key that separates these is context. You cannot really determine the structure of "future"
operations without knowing the results of "past" operations, because the past can alter the context
in which the future operations work. With applicatives, you can't get the final function result without
evaluating everything, but you can determine the structure of how the operation will take place. This
allows some degree of parallelism with applicatives that is not generally possible with monads.

Conclusion

Hopefully you now have a basic level understanding of what a monad is. But perhaps some more
examples of what a "computational context" means would be useful to you. The Reader, State and
Except monads each provide a concrete and easily understood context that can be compared easily
to function parameters. You can learn more about those in Reader monads, State monads, and the
Except monad.

def main : IO Unit := do
 IO.println "enter a line of text:"
 let stdin ← IO.getStdin -- IO IO.FS.Stream (monadic)
 let input ← stdin.getLine -- IO.FS.Stream → IO String (monadic)
 let uppercased := input.toUpper -- String → String (pure)
 IO.println uppercased -- IO Unit (monadic)

> lean --run Main.lean
enter a line of text:
the quick brown fox
THE QUICK BROWN FOX

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 97/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/readers.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/states.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/except.lean.html

Readers
In the previous section you learned about the conceptual idea of monads. You learned what they
are, and saw how some common types like IO and Option work as monads. Now in this section,
you will be looking at some other useful monads. In particular, the ReaderM monad.

How to do Global Variables in Lean?

In Lean, your code is generally "pure", meaning functions can only interact with the arguments
passed to them. This effectively means you cannot have global variables. You can have global
definitions, but these are fixed at compile time. If some user behavior might change them, you
would have to wrap them in the IO monad, which means they can't be used from pure code.

Consider this example. Here, you want to have an Environment containing different parameters as
a global variable. However, you want to load these parameters from the process environment
variables, which requires the IO monad.

The only function actually using the environment is func1. However func1 is a pure function. This
means it cannot directly call loadEnv, an impure function in the IO monad. This means the
environment has to be passed through as a variable to the other functions, just so they can
ultimately pass it to func1. In a language with global variables, you could save env as a global value
in main. Then func1 could access it directly. There would be no need to have it as a parameter to
func1, func2 and func3. In larger programs, these "pass-through" variables can cause a lot of
headaches.

The Reader Solution

The ReaderM monad solves this problem. It effectively creates a global read-only value of a specified
type. All functions within the monad can "read" the type. Let's look at how the ReaderM monad
changes the shape of this code. Now the functions no longer need to be given the Environment as
an explicit parameter, as they can access it through the monad.

structure Environment where
 path : String
 home : String
 user : String
 deriving Repr

def getEnvDefault (name : String): IO String := do
 let val? ← IO.getEnv name
 pure <| match val? with
 | none => ""
 | some s => s

def loadEnv : IO Environment := do
 let path ← getEnvDefault "PATH"
 let home ← getEnvDefault "HOME"
 let user ← getEnvDefault "USER"
 pure { path, home, user }

def func1 (e : Environment) : Float :=
 let l1 := e.path.length
 let l2 := e.home.length * 2
 let l3 := e.user.length * 3
 (l1 + l2 + l3).toFloat * 2.1

def func2 (env : Environment) : Nat :=
 2 + (func1 env).floor.toUInt32.toNat

def func3 (env : Environment) : String :=
 "Result: " ++ (toString (func2 env))

def main : IO Unit := do
 let env ← loadEnv
 let str := func3 env
 IO.println str

#eval main -- Result: 7538

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 98/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/monads.lean.html

The ReaderM monad provides a run method and it is the ReaderM run method that takes the initial
Environment context. So here you see main2 loads the environment as before, and establishes the
ReaderM context by passing env to the run method.

Side note 1: The return statement used above also needs some explanation. The return
statement in Lean is closely related to pure , but a little different. First the similarity is that
return and pure both lift a pure value up to the Monad type. But return is a keyword so you

do not need to parenthesize the expression like you do when using pure . (Note: you can avoid
parentheses when using pure by using the <| operator like we did above in the initial
getEnvDefault function). Furthermore, return can also cause an early return in a monadic

function similar to how it can in an imperative language while pure cannot.

So technically if return is the last statement in a function it could be replaced with pure <| ,
but one could argue that return is still a little easier for most folks to read, just so long as you
understand that return is doing more than other languages, it is also wrapping pure values in
the monadic container type.

Side note 2: If the function readerFunc3 also took some explicit arguments then you would
have to write (readerFunc3 args).run env and this is a bit ugly, so Lean provides an infix
operator |> that eliminates those parentheses so you can write readerFunc3 args |>.run
env and then you can chain multiple monadic actions like this m1 args1 |>.run args2 |>.run
args3 and this is the recommended style. You will see this pattern used heavily in Lean code.

The let env ← read expression in readerFunc1 unwraps the environment from the ReaderM so
we can use it. Each type of monad might provide one or more extra functions like this, functions that
become available only when you are in the context of that monad.

Here the readerFunc2 function uses the bind operator >>= just to show you that there are bind
operations happening here. The readerFunc3 function uses the do notation you learned about in
Monads which hides that bind operation and can make the code look cleaner. So the expression let
x ← readerFunc2 is also calling the bind function under the covers, so that you can access the
unwrapped value x needed for the toString x conversion.

The important difference here to the earlier code is that readerFunc3 and readerFunc2 no longer
have an explicit Environment input parameter that needs to be passed along all the way to
readerFunc1 . Instead, the ReaderM monad is taking care of that for you, which gives you the illusion

of something like global context where the context is now available to all functions that use the
ReaderM monad.

The above code also introduces an important idea. Whenever you learn about a monad "X", there's
often (but not always) a run function to execute that monad, and sometimes some additional
functions like read that interact with the monad context.

You might be wondering, how does the context actually move through the ReaderM monad? How
can you add an input argument to a function by modifying its return type? There is a special
command in Lean that will show you the reduced types:

def readerFunc1 : ReaderM Environment Float := do
 let env ← read
 let l1 := env.path.length
 let l2 := env.home.length * 2
 let l3 := env.user.length * 3
 return (l1 + l2 + l3).toFloat * 2.1

def readerFunc2 : ReaderM Environment Nat :=
 readerFunc1 >>= (fun x => return 2 + (x.floor.toUInt32.toNat))

def readerFunc3 : ReaderM Environment String := do
 let x ← readerFunc2
 return "Result: " ++ toString x

def main2 : IO Unit := do
 let env ← loadEnv
 let str := readerFunc3.run env
 IO.println str

#eval main2 -- Result: 7538

#reduce ReaderM Environment String -- Environment → String

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 99/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/monads.lean.html

And you can see here that this type is actually a function! It's a function that takes an Environment
as input and returns a String .

Now, remember in Lean that a function that takes an argument of type Nat and returns a String
like def f (a : Nat) : String is the same as this function def f : Nat → String . These are
exactly equal as types. Well this is being used by the ReaderM Monad to add an input argument to
all the functions that use the ReaderM monad and this is why main is able to start things off by
simply passing that new input argument in readerFunc3.run env . So now that you know the
implementation details of the ReaderM monad you can see that what it is doing looks very much like
the original code we wrote at the beginning of this section, only it's taking a lot of the tedious work
off your plate and it is creating a nice clean separation between what your pure functions are doing,
and the global context idea that the ReaderM adds.

withReader

One ReaderM function can call another with a modified version of the ReaderM context. You can use
the withReader function from the MonadWithReader type class to do this:

Here we changed the user in the Environment context to "new user" and then we passed that
modified context to readerFunc2 .

So withReader f m executes monad m in the ReaderM context modified by f .

Handy shortcut with (← e)

If you use the operator ← in a let expression and the variable is only used once you can eliminate
the let expression and place the ← operator in parentheses like this call to loadEnv:

Conclusion

It might not seem like much has been accomplished with this ReaderM Environment monad, but you
will find that in larger code bases, with many different types of monads all composed together this
greatly cleans up the code. Monads provide a beautiful functional way of managing cross-cutting
concerns that would otherwise make your code very messy.

Having this control over the inherited ReaderM context via withReader is actually very useful and
something that is quite messy if you try and do this sort of thing with global variables, saving the old
value, setting the new one, calling the function, then restoring the old value, making sure you do that
in a try/finally block and so on. The ReaderM design pattern avoids that mess entirely.

Now it's time to move on to StateM Monad which is like a ReaderM that is also updatable.

def readerFunc3WithReader : ReaderM Environment String := do
 let x ← withReader (λ env => { env with user := "new user" }) readerFunc2
 return "Result: " ++ toString x

def main3 : IO Unit := do
 let str := readerFunc3 (← loadEnv)
 IO.println str

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 100/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/states.lean.html

State
In the previous section, you learned about the ReaderM monad. Hopefully this gave you a new
perspective on Lean. It showed that, in fact, you can have global variables of some sort; you just
need to encode them in the type signature somehow, and this is what monads are for! In this part,
you will explore the StateM monad, which is like a ReaderM only the state can also be updated.

Motivating example: Tic Tac Toe

For this section, let's build a simple model for a Tic Tace Toe game. The main object is the
GameState data type containing several important pieces of information. First and foremost, it has

the "board", a map from 2D tile indices to the "Tile State" (X, O or empty). Then it also knows the
current player, and it has a random generator.

Let's think at a high level about how some of the game functions would work. You could, for
instance, have a function for selecting a random move. This would output a TileIndex to play and
alter the game's number generator. You would then make a move based on the selected move and
the current player. This would change the board state as well as swap the current player. In other
words, you have operations that depend on the current state of the game, but also need to update
that state.

The StateM Monad to the Rescue

This is exactly the situation the StateM monad deals with. The StateM monad wraps computations
in the context of reading and modifying a global state object.

It is parameterized by a single type parameter s , the state type in use. So just like the ReaderM has
a single type you read from, the StateM has a single type you can both read from and write to.
There are three primary actions you can take within the StateM monad:

get - retrieves the state, like Reader.read
set - updates the state
modifyGet - retrieves the state, then updates it

There is also a run function, similar to run on ReaderM . Like the ReaderM monad, you must
provide an initial state, in addition to the computation to run. StateM then produces two outputs:
the result of the computation combined with the final updated state.

If you wish to discard the final state and just get the computation's result, you can use run' method
instead. Yes in Lean, the apostrophe can be part of a name, you read this "run prime", and the
general naming convention is that the prime method discards something.

So for your Tic Tac Toe game, many of your functions will have a signature like State GameState a .

import Lean.Data.HashMap

open Batteries (HashMap)
abbrev TileIndex := Nat × Nat -- a 2D index

inductive TileState where
 | TileEmpty | TileX | TileO
 deriving Repr, BEq

inductive Player where
 | XPlayer | OPlayer
 deriving Repr, BEq

abbrev Board := HashMap TileIndex TileState

structure GameState where
 board : Board
 currentPlayer : Player
 generator : StdGen

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 101/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/readers.lean.html

Stateful Functions

Now you can examine some of the different functions mentioned above and determine their types.
You can, for instance, pick a random move:

This returns a TileIndex and modifies the random number generator stored in the GameState !
Notice you have a fun little use of the Applicative.seqRight operator *> in findOpen as
described in Applicatives.

Now you can create the function that can make a move:

This updates the board in the GameState with the new tile, and then changes the current player,
providing no output (Unit return type).

So finally, you can combine these functions together with do notation, and it actually looks quite
clean! You don't need to worry about the side effects. The different monadic functions handle them.
Here's a sample of what your function might look like to play one turn of the game. At the end, it
returns a boolean determining if all the spaces have been filled.

Notice in isGameDone and nextTurn we have stopped providing the full return type StateM
GameState Unit . This is because Lean is able to infer the correct monadic return type from the
context and as a result the code is now looking really clean.

To give you a quick test harness that runs all moves for both players you can run this:

open TileState

def findOpen : StateM GameState (List TileIndex) := do
 let game ← get
 return game.board.toList.filterMap fun (i, x) => guard (x == TileEmpty) *> pure i

def chooseRandomMove : StateM GameState TileIndex := do
 let game ← get
 let openSpots ← findOpen
 let gen := game.generator
 let (i, gen') := randNat gen 0 (openSpots.length - 1)
 set { game with generator := gen' }
 return openSpots[i]!

open Player

def tileStateForPlayer : Player → TileState
| XPlayer => TileX
| OPlayer => TileO

def nextPlayer : Player → Player
| XPlayer => OPlayer
| OPlayer => XPlayer

def applyMove (i : TileIndex): StateM GameState Unit := do
 let game ← get
 let p := game.currentPlayer
 let newBoard := game.board.insert i (tileStateForPlayer p)
 set { game with currentPlayer := nextPlayer p, board := newBoard }

def isGameDone := do
 return (← findOpen).isEmpty

def nextTurn := do
 let i ← chooseRandomMove
 applyMove i
 isGameDone

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 102/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/applicatives.lean.html

Note that when you run the above code interactively the random number generator always starts in
the same place. But if you run lean --run states.lean then you will see randomness in the result.

Implementation

It may be helpful to see how the StateM monad adds the input state and output state. If you look at
the reduced Type for nextTurn :

So a function like nextTurn that might have just returned a Bool has been modified by the StateM
monad such that the initial GameState is passed in as a new input argument, and the output value
has been changed to the pair Bool × GameState so that it can return the pure Bool and the
updated GameState . So playGame then is automatically saving that updated game state so that
each time around the while loop it is acting on the new state, otherwise that would be an infinite
loop!

It is also interesting to see how much work the do and ← notation are doing for you. To implement
the nextTurn function without these you would have to write this, manually plumbing the state all
the way through:

This expression let (i, gs) conveniently breaks a returned pair up into 2 variables. In the
expression let (_, gs') we didn't care what the first value was so we used underscore. Notice
that nextTurn is capturing the updated game state from chooseRandomMove in the variable gs ,
which it is then passing to applyMove which returns gs' which is passed to isGameDone and that
function returns gs'' which we then return from nextTurnManually . Phew, what a lot of work you
don't have to do when you use do notation!

def initBoard : Board := Id.run do
 let mut board := HashMap.empty
 for i in [0:3] do
 for j in [0:3] do
 let t : TileIndex := (i, j)
 board := board.insert t TileEmpty
 board

def printBoard (board : Board) : IO Unit := do
 let mut row : List String := []
 for i in board.toList do
 let s := match i.2 with
 | TileEmpty => " "
 | TileX => "X"
 | TileO => "O"
 row := row.append [s]
 if row.length == 3 then
 IO.println row
 row := []

def playGame := do
 while true do
 let finished ← nextTurn
 if finished then return

def main : IO Unit := do
 let gen ← IO.stdGenRef.get
 let (x, gen') := randNat gen 0 1
 let gs := {
 board := initBoard ,
 currentPlayer := if x = 0 then XPlayer else OPlayer,
 generator := gen' }
 let (_, g) := playGame |>.run gs
 printBoard g.board

#eval main
-- [X, X, O]
-- [X, O, O]
-- [O, O, X]

#reduce StateM GameState Bool
-- GameState → Bool × GameState

def nextTurnManually : StateM GameState Bool
| state =>
 let (i, gs) := chooseRandomMove |>.run state
 let (_, gs') := applyMove i |>.run gs
 let (result, gs'') := isGameDone |>.run gs'
 (result, gs'')

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 103/156

StateM vs ReaderM

While ReaderM functions can use withReader to modify the context before calling another function,
StateM functions are a little more powerful, let's look at this function again:

In this function chooseRandomMove is modifying the state that applyMove is getting and
chooseRandomMove knows nothing about applyMove . So StateM functions can have this kind of

downstream effect outside their own scope, whereas, withReader cannot do that.

So there is no equivalent to withReader for StateM , besides you can always use the StateM set
function to modify the state before calling the next function anyway. You could however, manually
call a StateM function like you see in nextTurnManually and completely override the state at any
point that way.

State, IO and other languages

When thinking about Lean, it is often seen as a restriction that you can't have global variables or
static variables like you can with other languages like Python or C++. However, hopefully you see

now this isn't true. You can have a data type with exactly the same functionality as a Python class.
You would simply have many functions that can modify some global state using the StateM monad.

The difference is in Lean you simply put a label on these types of functions. You don't allow it to
happen for free anywhere in an uncontrolled fashion because that results in too many sleepless
nights debugging nasty code. You want to know when side effects can potentially happen, because
knowing when they can happen makes your code easier to reason about. In a Python class, many of
the methods won't actually need to modify the global state. But they could, which makes it harder to
debug them. In Lean you can simply make these pure functions, and the compiler will ensure they
stay pure and cannot modify any global state.

IO is the same way. It's not like you can't perform IO in Lean. Instead, you want to label the areas
where you can, to increase your certainty about the areas where you don't need to. When you know
part of your code cannot communicate with the outside world, you can be far more certain of its
behavior.

The StateM monad is also a more disciplined way of managing side effects. Top level code could call
a StateM function multiple times with different independent initial states, even doing that across
multiple tasks in parallel and each of these cannot clobber the state belonging to other tasks.
Monadic code is more predictable and reusable than code that uses global variables.

Summary

That wraps it up for the StateM monad! There is one more very useful monad that can be used to
do exception handling which will be covered in the next section.

def nextTurn : StateM GameState Bool := do
 let i ← chooseRandomMove
 applyMove i
 isGameDone

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 104/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/except.lean.html

Except
The Except Monad adds exception handling behavior to your functions. Exception handling in other
languages like Python or Java is done with a built in throw method that you can use anywhere. In
Lean you can only throw an exception when your function is executing in the context of an Except

monad.

Just as the read operation was available from the ReaderM monad and the get and set
operations came with the StateM monad, here you can see a throw operation is provided by the
Except monad.

So in Lean, throw is not available everywhere like it is in most imperative programming languages.
You have to declare your function can throw by changing the type signature to Except String
Float . This creates a function that might return an error of type String or it might return a value of
type Float in the non-error case.

Once your function is monadic you also need to use the pure constructor of the Except monad to
convert the pure non-monadic value x / y into the required Except object. See Applicatives for
details on pure .

Now this return typing would get tedious if you had to include it everywhere that you call this
function, however, Lean type inference can clean this up. For example, you can define a test function
that calls the divide function and you don't need to say anything here about the fact that it might
throw an error, because that is inferred:

Notice the Lean compiler infers the required Except String Float type information for you. And
now you can run this test and get the expected exception:

Chaining

Now as before you can build a chain of monadic actions that can be composed together using bind
(>>=) :

Notice in the second divide 6 0 the exception from that division was nicely propagated along to
the final result and the square function was ignored in that case. You can see why the square
function was ignored if you look at the implementation of Except.bind :

def divide (x y: Float): Except String Float :=
 if y == 0 then
 throw "can't divide by zero"
 else
 pure (x / y)

#eval divide 5 2 -- Except.ok 2.500000
#eval divide 5 0 -- Except.error "can't divide by zero"

def test := divide 5 0

#check test -- Except String Float

#eval test -- Except.error "can't divide by zero"

def square (x : Float) : Except String Float :=
 if x >= 100 then
 throw "it's absolutely huge"
 else
 pure (x * x)

#eval divide 6 2 >>= square -- Except.ok 9.000000
#eval divide 6 0 >>= square -- Except.error "can't divide by zero"
#eval divide 100 1 >>= square -- Except.error "it's absolutely huge"

def chainUsingDoNotation := do
 let r ← divide 6 0
 square r

#eval chainUsingDoNotation -- Except.error "can't divide by zero"

def bind (ma : Except ε α) (f : α → Except ε β) : Except ε β :=
 match ma with
 | Except.error err => Except.error err
 | Except.ok v => f v

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 105/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/applicatives.lean.html

Specifically notice that it only calls the next function f v in the Except.ok , and in the error case it
simply passes the same error along.

Remember also that you can chain the actions with implicit binding by using the do notation as you
see in the chainUsingDoNotation function above.

Try/Catch

Now with all good exception handling you also want to be able to catch exceptions so your program
can continue on or do some error recovery task, which you can do like this:

Note that the type inferred by Lean for this function is Except String String so unlike the test
function earlier, this time Lean type inference has figured out that since the pure value (toString
r) is of type String , then this function must have type Except String String so you don't have to
explicitly state this. You can always hover your mouse over testCatch or use #check testCatch to
query Lean interactively to figure out what type inference has decided. Lean type inference makes
life easy for you, so it's good to use it when you can.

You can now see the try/catch working in this eval:

Notice the Caught exception: wrapped message is returned, and that it is returned as an
Except.ok value, meaning testCatch eliminated the error result as expected.

So you've interleaved a new concept into your functions (exception handling) and the compiler is still
able to type check everything just as well as it does for pure functions and it's been able to infer
some things along the way to make it even easier to manage.

Now you might be wondering why testCatch doesn't infer the return type String ? Lean does this
as a convenience since you could have a rethrow in or after the catch block. If you really want to stop
the Except type from bubbling up you can unwrap it like this:

The Id.run function is a helper function that executes the do block and returns the result where
Id is the identity monad. So Id.run do is a pattern you can use to execute monads in a function

that is not itself monadic. This works for all monads except IO which, as stated earlier, you cannot
invent out of thin air, you must use the IO monad given to your main function.

Monadic functions

You can also write functions that are designed to operate in the context of a monad. These functions
typically end in upper case M like List.forM used below:

Notice here that the List.forM function passes the monadic context through to the inner function
so it can use the throw function from the Except monad.

The List.forM function is defined like this where [Monad m] means "in the context of a monad m ":

def testCatch :=
 try
 let r ← divide 8 0 -- 'r' is type Float
 pure (toString r)
 catch e =>
 pure s!"Caught exception: {e}"

#check testCatch -- Except String String

#eval testCatch -- Except.ok "Caught exception: can't divide by zero"

def testUnwrap : String := Id.run do
 let r ← divide 8 0 -- r is type Except String Float
 match r with
 | .ok a => toString a -- 'a' is type Float
 | .error e => s!"Caught exception: {e}"

#check testUnwrap -- String
#eval testUnwrap -- "Caught exception: can't divide by zero"

def validateList (x : List Nat) (max : Nat): Except String Unit := do
 x.forM fun a => do
 if a > max then throw "illegal value found in list"

#eval validateList [1, 2, 5, 3, 8] 10 -- Except.ok ()
#eval validateList [1, 2, 5, 3, 8] 5 -- Except.error "illegal value found in list"

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 106/156

Summary

Now that you know all these different monad constructs, you might be wondering how you can
combine them. What if there was some part of your state that you wanted to be able to modify
(using the State monad), but you also needed exception handling. How can you get multiple
monadic capabilities in the same function. To learn the answer, head to Monad Transformers.

def forM [Monad m] (as : List α) (f : α → m PUnit) : m PUnit :=
 match as with
 | [] => pure ⟨⟩
 | a :: as => do f a; List.forM as f

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 107/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/transformers.lean.html

Monad Transformers
In the previous sections you learned about some handy monads Option, IO, Reader, State and
Except, and you now know how to make your function use one of these, but what you do not yet
know is how to make your function use multiple monads at once.

For example, suppose you need a function that wants to access some Reader context and optionally
throw an exception? This would require composition of two monads ReaderM and Except and this
is what monad transformers are for.

A monad transformer is fundamentally a wrapper type. It is generally parameterized by another
monadic type. You can then run actions from the inner monad, while adding your own customized
behavior for combining actions in this new monad. The common transformers add T to the end of
an existing monad name. You will find OptionT , ExceptT , ReaderT , StateT but there is no
transformer for IO . So generally if you need IO it becomes the innermost wrapped monad.

In the following example we use ReaderT to provide some read only context to a function and this
ReaderT transformer will wrap an Except monad. If all goes well the requiredArgument returns

the value of a required argument and optionalSwitch returns true if the optional argument is
present.

Notice that throw was available from the inner Except monad. The cool thing is you can switch this
around and get the exact same result using ExceptT as the outer monad transformer and ReaderM
as the wrapped monad. Try changing requiredArgument to ExceptT String (ReaderM Arguments)
Bool .

Note: the |>. notation is described in Readers.

Adding more layers

Here's the best part about monad transformers. Since the result of a monad transformer is itself a
monad, you can wrap it inside another transformer! Suppose you need to pass in some read only
context like the command line arguments, update some read-write state (like program Config) and
optionally throw an exception, then you could write this:

abbrev Arguments := List String

def indexOf? [BEq α] (xs : List α) (s : α) (start := 0): Option Nat :=
 match xs with
 | [] => none
 | a :: tail => if a == s then some start else indexOf? tail s (start+1)

def requiredArgument (name : String) : ReaderT Arguments (Except String) String := do
 let args ← read
 let value := match indexOf? args name with
 | some i => if i + 1 < args.length then args[i+1]! else ""
 | none => ""
 if value == "" then throw s!"Command line argument {name} missing"
 return value

def optionalSwitch (name : String) : ReaderT Arguments (Except String) Bool := do
 let args ← read
 return match (indexOf? args name) with
 | some _ => true
 | none => false

#eval requiredArgument "--input" |>.run ["--input", "foo"]
-- Except.ok "foo"

#eval requiredArgument "--input" |>.run ["foo", "bar"]
-- Except.error "Command line argument --input missing"

#eval optionalSwitch "--help" |>.run ["--help"]
-- Except.ok true

#eval optionalSwitch "--help" |>.run []
-- Except.ok false

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 108/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/monads.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/monads.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/readers.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/states.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/except.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/readers.lean.html#the-reader-solution

In this example parseArguments is actually three stacked monads, StateM , ReaderM , Except .
Notice the convention of abbreviating long monadic types with an alias like CliConfigM .

Monad Lifting

Lean makes it easy to compose functions that use different monads using a concept of automatic
monad lifting. You already used lifting in the above code, because you were able to compose
optionalSwitch which has type ReaderT Arguments (Except String) Bool and call it from
parseArguments which has a bigger type StateT Config (ReaderT Arguments (Except String)) .

This "just worked" because Lean did some magic with monad lifting.

To give you a simpler example of this, suppose you have the following function:

Notice here we used the ExceptT transformer, but we composed it with the Id identity monad.
This is then the same as writing Except String Float since the identity monad does nothing.

Now suppose you want to count the number of times divide is called and store the result in some
global state:

The modify function is a helper which makes it easier to use modifyGet from the StateM monad.
But something interesting is happening here, divideCounter is returning the value of divide , but
the types don't match, yet it works? This is monad lifting in action.

You can see this more clearly with the following test:

structure Config where
 help : Bool := false
 verbose : Bool := false
 input : String := ""
 deriving Repr

abbrev CliConfigM := StateT Config (ReaderT Arguments (Except String))

def parseArguments : CliConfigM Bool := do
 let mut config ← get
 if (← optionalSwitch "--help") then
 throw "Usage: example [--help] [--verbose] [--input <input file>]"
 config := { config with
 verbose := (← optionalSwitch "--verbose"),
 input := (← requiredArgument "--input") }
 set config
 return true

def main (args : List String) : IO Unit := do
 let config : Config := { input := "default"}
 match parseArguments |>.run config |>.run args with
 | Except.ok (_, c) => do
 IO.println s!"Processing input '{c.input}' with verbose={c.verbose}"
 | Except.error s => IO.println s

#eval main ["--help"]
-- Usage: example [--help] [--verbose] [--input <input file>]

#eval main ["--input", "foo"]
-- Processing input file 'foo' with verbose=false

#eval main ["--verbose", "--input", "bar"]
-- Processing input 'bar' with verbose=true

def divide (x : Float) (y : Float): ExceptT String Id Float :=
 if y == 0 then
 throw "can't divide by zero"
 else
 pure (x / y)

#eval divide 6 3 -- Except.ok 2.000000
#eval divide 1 0 -- Except.error "can't divide by zero"

def divideCounter (x : Float) (y : Float) : StateT Nat (ExceptT String Id) Float := do
 modify fun s => s + 1
 divide x y

#eval divideCounter 6 3 |>.run 0 -- Except.ok (2.000000, 1)
#eval divideCounter 1 0 |>.run 0 -- Except.error "can't divide by zero"

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 109/156

Notice that liftTest returned x without doing anything to it, yet that matched the return type
StateT Nat (Except String) Float . Monad lifting is provided by monad transformers. if you
#print liftTest you will see that Lean is implementing this using a call to a function named
monadLift from the MonadLift type class:

So monadLift is a function for lifting a computation from an inner Monad m α to an outer Monad n
α . You could replace x in liftTest with monadLift x if you want to be explicit about it.

The StateT monad transformer defines an instance of MonadLift like this:

This means that any monad m can be wrapped in a StateT monad by using the function fun s =>
do let a ← t; pure (a, s) that takes state s , runs the inner monad action t , and returns the
result and the new state in a pair (a, s) without making any changes to s .

Because MonadLift is a type class, Lean can automatically find the required monadLift instances in
order to make your code compile and in this way it was able to find the StateT.lift function and
use it to wrap the result of divide so that the correct type is returned from divideCounter .

If you have an instance MonadLift m n that means there is a way to turn a computation that
happens inside of m into one that happens inside of n and (this is the key part) usually without the
instance itself creating any additional data that feeds into the computation. This means you can in
principle declare lifting instances from any monad to any other monad, it does not, however, mean
that you should do this in all cases. You can get a very nice report on how all this was done by
adding the line set_option trace.Meta.synthInstance true in before divideCounter and
moving you cursor to the end of the first line after do .

This was a lot of detail, but it is very important to understand how monad lifting works because it is
used heavily in Lean programs.

Transitive lifting

There is also a transitive version of MonadLift called MonadLiftT which can lift multiple monad
layers at once. In the following example we added another monad layer with ReaderT String ...
and notice that x is also automatically lifted to match.

The ReaderT monadLift is even simpler than the one for StateT:

This lift operation creates a function that defines the required ReaderT input argument, but the
inner monad doesn't know or care about ReaderT so the monadLift function throws it away with the
_ then calls the inner monad action x . This is a perfectly legal implementation of the ReaderM

monad.

Add your own Custom MonadLift

This does not compile:

def liftTest (x : Except String Float) :
 StateT Nat (Except String) Float := x

#eval liftTest (divide 5 1) |>.run 3 -- Except.ok (5.000000, 3)

class MonadLift (m : Type u → Type v) (n : Type u → Type w) where
 monadLift : {α : Type u} → m α → n α

@[inline] protected def lift {α : Type u} (t : m α) : StateT σ m α :=
 fun s => do let a ← t; pure (a, s)

instance : MonadLift m (StateT σ m) := ⟨StateT.lift⟩

def liftTest2 (x : Except String Float) :
 ReaderT String (StateT Nat (Except String)) Float := x

#eval liftTest2 (divide 5 1) |>.run "" |>.run 3
-- Except.ok (5.000000, 3)

instance : MonadLift m (ReaderT ρ m) where
 monadLift x := fun _ => x

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 110/156

saying:

The reason is divideCounter returns the big StateT Nat (ExceptT String Id) Float and that
type cannot be automatically lifted into the main return type of IO Unit unless you give it some
help.

The following custom MonadLift solves this problem:

It turns out that the IO monad you see in your main function is based on the EStateM.Result type
which is similar to the Except type but it has an additional return value. The liftIO function
converts any Except String α into IO α by simply mapping the ok case of the Except to the
Result.ok and the error case to the Result.error .

Lifting ExceptT

In the previous Except section you saw functions that throw Except values. When you get all the way
back up to your main function which has type IO Unit you have the same problem you had above,
because Except String Float doesn't match even if you use a try/catch .

Without the liftIO the (toString ret) expression would not compile with a similar error:

So the general lesson is that if you see an error like this when using monads, check for a missing
MonadLift .

Summary

Now that you know how to combine your monads together, you're almost done with understanding
the key concepts of monads! You could probably go out now and start writing some pretty nice code!
But to truly master monads, you should know how to make your own, and there's one final concept
that you should understand for that. This is the idea of type "laws". Each of the structures you've
learned so far has a series of laws associated with it. And for your instances of these classes to make
sense, they should follow the laws! Check out Monad Laws.

def main2 : IO Unit := do
 try
 let ret ← divideCounter 5 2 |>.run 0
 IO.println (toString ret)
 catch e =>
 IO.println e

typeclass instance problem is stuck, it is often due to metavariables
 ToString ?m.4786

def liftIO (t : ExceptT String Id α) : IO α := do
 match t with
 | .ok r => EStateM.Result.ok r
 | .error s => EStateM.Result.error s

instance : MonadLift (ExceptT String Id) IO where
 monadLift := liftIO

def main3 : IO Unit := do
 try
 let ret ← divideCounter 5 2 |>.run 0
 IO.println (toString ret)
 catch e =>
 IO.println e

#eval main3 -- (2.500000, 1)

def main4 : IO Unit := do
 try
 let ret ← divide 5 0
 IO.println (toString ret) -- lifting happens here.
 catch e =>
 IO.println s!"Unhandled exception: {e}"

#eval main4 -- Unhandled exception: can't divide by zero

typeclass instance problem is stuck, it is often due to metavariables
 ToString ?m.6007

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 111/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/except.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/laws.lean.html

Monad Laws
In the previous sections you learned how to use Functors, Applicatives, and Monads, and you played
with some useful instances including Option, IO, Reader, State and Except and you learned about
composition using Monad Transformers.

So far, you've learned the concrete details you need in order to use monads in your Lean programs.
But there's still one more important concept you need if you want to create new functors,
applicatives and monads. Namely, the notion of structural "laws" -- rules that these type classes
should follow in order to meet other programmers' expectations about your code.

Life without Laws

Remember Lean represents each of these abstract structures by a type class. Each of these type
classes has one or two main functions. So, as long as you implement those functions and it type
checks, you have a new functor, applicative, or monad, right?

Well not quite. Yes, your program will compile and you'll be able to use the instances. But this
doesn't mean your instances follow the mathematical constructs. If they don't, your instances won't
fulfill other programmers' expectations. Each type class has its own "laws". For instance, suppose
you have the following Point Functor:

This Point does something weird, when you map it because it transposes the x and y coordinates
which is not what other people would expect from a map function. In fact, it breaks the rules as you
will see below.

What are the Functor laws?

Functors have two laws: the identity law, and the composition law. These laws express behaviors that
your functor instances should follow. If they don't, other programmers will be very confused at the
effect your instances have on their program.

The identity law says that if you "map" the identity function (id) over your functor, the resulting
functor should be the same. A succinct way of showing this on a List functor is:

Now let's try the same test on the Point functor:

Oh, and look while the List is behaving well, the Point functor fails this identity test.

The composition law says that if you "map" two functions in succession over a functor, this should be
the same as "composing" the functions and simply mapping that one super-function over the
functor. In Lean you can compose two functions using Function.comp f g (or the syntax f ∘ g ,
which you can type in VS code using \o) and you will get the same results from both of these
showing that the composition law holds for List Nat :

structure Point (α : Type) where
 x : α
 y : α
 deriving Repr, BEq

def Point.map (f : α → β) (s : Point α) : Point β :=
 { x := f s.y, -- an example of something weird
 y := f s.x }

instance : Functor Point where
 map := Point.map

#eval (·+2) <$> (Point.mk 1 2) -- { x := 4, y := 3 }

def list1 := [1,2,3]

#eval id <$> list1 == list1 -- true

def p1 : Point Nat := (Point.mk 1 2)

#eval id <$> p1 == p1 -- false

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 112/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/functors.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/applicatives.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/monads.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/monads.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/monads.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/readers.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/states.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/except.lean.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/transformers.lean.html

Note that composition also fails on the bad Point because the x/y transpose.

As you can see this bad Point implementation violates both of the functor laws. In this case it
would not be a true functor. Its behavior would confuse any other programmers trying to use it. You
should take care to make sure that your instances make sense. Once you get a feel for these type
classes, the likelihood is that the instances you'll create will follow the laws.

You can also write a bad functor that passes one law but not the other like this:

This fails the id law but obeys the composition law. Hopefully this explains the value of these laws,
and you don't need to see any more bad examples!

What are the Applicative Laws?

While functors have two laws, applicatives have four laws:

Identity
Homomorphism
Interchange
Composition

Identity

pure id <*> v = v

Applying the identity function through an applicative structure should not change the underlying
values or structure. For example:

The pure id statement here is wrapping the identity function in an applicative structure so that you
can apply that over the container [1, 2, 3] using the Applicative seq operation which has the
notation <*> .

To prove this for all values v and any applicative m you can write this theorem:

Homomorphism

pure f <*> pure x = pure (f x)

Suppose you wrap a function and an object in pure . You can then apply the wrapped function over
the wrapped object. Of course, you could also apply the normal function over the normal object, and

def double (x : Nat) := x + x
def square (x : Nat) := x * x

#eval double <$> (square <$> list1) -- [2, 8, 18]

#eval (double <$> (square <$> list1)) == ((double ∘ square) <$> list1) -- true

-- ok, what about the Point class?
#eval double <$> (square <$> p1) -- { x := 2, y := 8 }
#eval (double ∘ square) <$> p1 -- { x := 8, y := 2 }

#eval double <$> (square <$> p1) == (double ∘ square) <$> p1 -- false

def bad_option_map {α β : Type u} : (α → β) → Option α → Option β
 | _, _ => none

instance : Functor Option where
 map := bad_option_map

def t1 : Option Nat := some 10

#eval id <$> t1 == t1 -- false
#eval double <$> (square <$> t1) == (double ∘ square) <$> t1 -- true

instance : Applicative List where
 pure := List.pure
 seq f x := List.bind f fun y => Functor.map y (x ())

#eval pure id <*> [1, 2, 3] -- [1, 2, 3]

example [Applicative m] [LawfulApplicative m] (v : m α) :
 pure id <*> v = v :=
 by simp -- Goals accomplished 🎉

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 113/156

then wrap it in pure . The homomorphism law states these results should be the same.

For example:

You should see a distinct pattern here. The overriding theme of almost all these laws is that these
Applicative types should behave like normal containers. The Applicative functions should not

have any side effects. All they should do is facilitate the wrapping, unwrapping, and transformation
of data contained in the container resulting in a new container that has the same structure.

Interchange

u <*> pure y = pure (. y) <*> u .

This law is is a little more complicated, so don't sweat it too much. It states that the order that you
wrap things shouldn't matter. One the left, you apply any applicative u over a pure wrapped object.
On the right, you first wrap a function applying the object as an argument. Note that (· y) is short
hand for: fun f => f y . Then you apply this to the first applicative u . These should be the same.

For example:

You can prove this with the following theorem:

Composition:

u <*> v <*> w = u <*> (v <*> w)

This final applicative law mimics the second functor law. It is a composition law. It states that
function composition holds across applications within the applicative:

For example:

To test composition you see the separate grouping (v <*> w) then that can be used in the outer
sequence u <*> grouping to get the same final result [9, 10, 10, 11, 10, 11, 11, 12] .

What are the Monad Laws?

Monads have three laws:

Left Identity
Right Identity
Associativity

Left Identity

Identity laws for monads specify that pure by itself shouldn't really change anything about the
structure or its values.

def x := 1
def f := (· + 2)

#eval pure f <*> pure x = (pure (f x) : List Nat) -- true

def y := 4
def g : List (Nat → Nat) := [(· + 2)]

#eval g <*> pure y = pure (· y) <*> g -- true

example [Applicative m] [LawfulApplicative m] (u : m (α → β)) (y : α) :
 u <*> pure y = pure (· y) <*> u :=
 by simp [pure_seq] -- Goals accomplished 🎉

def u := [1, 2]
def v := [3, 4]
def w := [5, 6]

#eval pure (·+·+·) <*> u <*> v <*> w
-- [9, 10, 10, 11, 10, 11, 11, 12]

#eval let grouping := pure (·+·) <*> v <*> w
 pure (·+·) <*> u <*> grouping
-- [9, 10, 10, 11, 10, 11, 11, 12]

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 114/156

Left identity is x >>= pure = x and is demonstrated by the following examples on a monadic List :

Right Identity

Right identity is pure x >>= f = f x and is demonstrated by the following example:

So in this example, with this specific z and h , you see that the rule holds true.

Associativity

The associativity law is written as:

where (x : m α) and (f : α → m β) and (g : β → m γ) .

The associativity law is difficult to parse like some of the applicative laws, but what it is saying is that
if you change the grouping of bind operations, you should still get the same result. This law has a
parallel structure to the other composition laws.

You can see this in action in the following rewrite of runOptionFuncsBind from monads:

Notice here we had to insert a λ function just like the definition says: (λ x => f x >>= g) . This is
because unlike applicatives, you can't resolve the structure of later operations without the results of
earlier operations quite as well because of the extra context monads provide. But you can still group
their later operations into composite functions taking their inputs from earlier on, and the result
should be the same.

Summary

While these laws may be a bit difficult to understand just by looking at them, the good news is that
most of the instances you'll make will naturally follow the laws so long as you keep it simple, so you
shouldn't have to worry about them too much.

There are two main ideas from all the laws:

instance : Monad List where
 pure := List.pure
 bind := List.bind

def a := ["apple", "orange"]

#eval a >>= pure -- ["apple", "orange"]

#eval a >>= pure = a -- true

def h (x : Nat) : Option Nat := some (x + 1)
def z := 5

#eval pure z >>= h -- some 6
#eval h z -- some 6

#eval pure z >>= h = h z -- true

 x >>= f >>= g = x >>= (λ x => f x >>= g)

def optionFunc1 : String -> Option Nat
 | "" => none
 | str => some str.length

def optionFunc2 (i : Nat) : Option Float :=
 if i % 2 == 0 then none else some (i.toFloat * 3.14159)

def optionFunc3 (f : Float) : Option (List Nat) :=
 if f > 15.0 then none else some [f.floor.toUInt32.toNat, f.ceil.toUInt32.toNat]

def runOptionFuncsBind (input : String) : Option (List Nat) :=
 optionFunc1 input >>= optionFunc2 >>= optionFunc3

def runOptionFuncsBindGrouped (input : String) : Option (List Nat) :=
 optionFunc1 input >>= (λ x => optionFunc2 x >>= optionFunc3)

#eval runOptionFuncsBind "big" -- some [9, 10]
#eval runOptionFuncsBindGrouped "big" -- some [9, 10]

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 115/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/monads/monads.lean.html

1. Applying the identity or pure function should not change the underlying values or structure.
2. It should not matter what order you group operations in. Another way to state this is function

composition should hold across your structures.

Following these laws will ensure other programmers are not confused by the behavior of your new
functors, applicatives and monads.

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 116/156

Frequently Asked Questions

What is Lean?

Lean is a new open source theorem prover being developed at Microsoft Research. It is a research
project that aims to bridge the gap between interactive and automated theorem proving. Lean can
be also used as a programming language. Actually, some Lean features are implemented in Lean
itself.

Should I use Lean?

Lean is under heavy development, and we are constantly trying new ideas and tweaking the system.
It is a research project and not a product. Things change rapidly, and we constantly break backward
compatibility. Lean comes "as is", you should not expect we will fix bugs and/or add new features for
your project. We have our own priorities, and will not change them to accommodate your needs.
Even if you implement a new feature or fix a bug, we may not want to merge it because it may
conflict with our plans for Lean, it may not be performant, we may not want to maintain it, we may
be busy, etc. If you really need this new feature or bug fix, we suggest you create your own fork and
maintain it yourself.

Where is the documentation?

This is the Lean 4 manual. It is a work in progress, but it will eventually cover the whole language. A
public and very active chat room dedicated to Lean is open on Zulip. It is a good place to interact
with other Lean users.

Should I use Lean to teach a course?

Lean has been used to teach courses on logic, type theory and programming languages at CMU and
the University of Washington. The lecture notes for the CMU course Logic and Proof are available
online, but they are for Lean 3. If you decide to teach a course using Lean, we suggest you prepare
all material before the beginning of the course, and make sure that Lean attends all your needs. You
should not expect we will fix bugs and/or add features needed for your course.

Are there IDEs for Lean?

Yes, see Setting Up Lean.

Is Lean sound? How big is the kernel? Should I trust it?

Lean has a relatively small kernel. Several independent checkers have been implemented for Lean 3.
Two of them are tc and trepplein. We expect similar independent checkers will be built for Lean 4.

Should I open a new issue?

We use GitHub to track bugs and new features. Bug reports are always welcome, but nitpicking
issues are not (e.g., the error message is confusing). See also our contribution guidelines.

Is it Lean, LEAN, or L∃∀N?

We always use "Lean" in writing. When specifying a major version number, we append it together
with a single space: Lean 4.

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 117/156

https://leanprover.zulipchat.com/
https://lean-lang.org/logic_and_proof
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/setup.html
https://github.com/leanprover/tc
https://github.com/gebner/trepplein
https://github.com/leanprover/lean4/issues
https://github.com/leanprover/lean4/blob/master/CONTRIBUTING.md

Significant changes from Lean 3
Lean 4 is not backward compatible with Lean 3. We have rewritten most of the system, and took the
opportunity to cleanup the syntax, metaprogramming framework, and elaborator. In this section, we
go over the most significant changes.

Lambda expressions

We do not use , anymore to separate the binders from the lambda expression body. The Lean 3
syntax for lambda expressions was unconventional, and , has been overused in Lean 3. For
example, we believe a list of lambda expressions is quite confusing in Lean 3, since , is used to
separate the elements of a list, and in the lambda expression itself. We now use => as the
separator, as an example, fun x => x is the identity function. One may still use the symbol λ as a
shorthand for fun . The lambda expression notation has many new features that are not supported
in Lean 3.

Pattern matching

In Lean 4, one can easily create new notation that abbreviates commonly used idioms. One of them
is a fun followed by a match . In the following examples, we define a few functions using
fun + match notation.

Implicit lambdas

In Lean 3 stdlib, we find many instances of the dreadful @ + _ idiom. It is often used when the
expected type is a function type with implicit arguments, and we have a constant (reader_t.pure in
the example) which also takes implicit arguments. In Lean 4, the elaborator automatically introduces
lambdas for consuming implicit arguments. We are still exploring this feature and analyzing its
impact, but the experience so far has been very positive. As an example, here is the example in the
link above using Lean 4 implicit lambdas.

Users can disable the implicit lambda feature by using @ or writing a lambda expression with {} or
[] binder annotations. Here are few examples

def Prod.str : Nat × Nat → String :=
 fun (a, b) => "(" ++ toString a ++ ", " ++ toString b ++ ")"

structure Point where
 x : Nat
 y : Nat
 z : Nat

def Point.addX : Point → Point → Nat :=
 fun { x := a, .. } { x := b, .. } => a+b

def Sum.str : Option Nat → String :=
 fun
 | some a => "some " ++ toString a
 | none => "none"

instance : Monad (ReaderT ρ m) where
 pure := ReaderT.pure
 bind := ReaderT.bind

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 118/156

https://github.com/leanprover/lean/blob/master/library/init/category/reader.lean#L39

Sugar for simple functions

In Lean 3, we can create simple functions from infix operators by using parentheses. For example,
(+1) is sugar for fun x, x + 1 . In Lean 4, we generalize this notation using · as a placeholder.

Here are a few examples:

As in Lean 3, the notation is activated using parentheses, and the lambda abstraction is created by
collecting the nested · s. The collection is interrupted by nested parentheses. In the following
example, two different lambda expressions are created.

Function applications

In Lean 4, we have support for named arguments. Named arguments enable you to specify an
argument for a parameter by matching the argument with its name rather than with its position in
the parameter list. If you don't remember the order of the parameters but know their names, you
can send the arguments in any order. You may also provide the value for an implicit parameter
when Lean failed to infer it. Named arguments also improve the readability of your code by
identifying what each argument represents.

In the following examples, we illustrate the interaction between named and default arguments.

def id1 : {α : Type} → α → α :=
 fun x => x

def listId : List ({α : Type} → α → α) :=
 (fun x => x) :: []

-- In this example, implicit lambda introduction has been disabled because
-- we use `@` before `fun`
def id2 : {α : Type} → α → α :=
 @fun α (x : α) => id1 x

def id3 : {α : Type} → α → α :=
 @fun α x => id1 x

def id4 : {α : Type} → α → α :=
 fun x => id1 x

-- In this example, implicit lambda introduction has been disabled
-- because we used the binder annotation `{...}`
def id5 : {α : Type} → α → α :=
 fun {α} x => id1 x

#check (· + 1)
-- fun a => a + 1
#check (2 - ·)
-- fun a => 2 - a
#eval [1, 2, 3, 4, 5].foldl (·*·) 1
-- 120

def f (x y z : Nat) :=
 x + y + z

#check (f · 1 ·)
-- fun a b => f a 1 b

#eval [(1, 2), (3, 4), (5, 6)].map (·.1)
-- [1, 3, 5]

#check (Prod.mk · (· + 1))
-- fun a => (a, fun b => b + 1)

def sum (xs : List Nat) :=
 xs.foldl (init := 0) (·+·)

#eval sum [1, 2, 3, 4]
-- 10

example {a b : Nat} {p : Nat → Nat → Nat → Prop} (h₁ : p a b b) (h₂ : b = a)
 : p a a b :=
 Eq.subst (motive := fun x => p a x b) h₂ h₁

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 119/156

In Lean 4, we can use .. to provide missing explicit arguments as _ . This feature combined with
named arguments is useful for writing patterns. Here is an example:

Ellipsis are also useful when explicit argument can be automatically inferred by Lean, and we want to
avoid a sequence of _ s.

In Lean 4, writing f(x) in place of f x is no longer allowed, you must use whitespace between the
function and its arguments (e.g., f (x)).

Dependent function types

Given α : Type and β : α → Type , (x : α) → β x denotes the type of functions f with the
property that, for each a : α , f a is an element of β a . In other words, the type of the value
returned by f depends on its input. We say (x : α) → β x is a dependent function type. In Lean 3,
we write the dependent function type (x : α) → β x using one of the following three equivalent
notations: forall x : α, β x or ∀ x : α, β x or Π x : α, β x . The first two were intended to
be used for writing propositions, and the latter for writing code. Although the notation Π x : α, β
x has historical significance, we have removed it from Lean 4 because it is awkward to use and often
confuses new users. We can still write forall x : α, β x and ∀ x : α, β x .

def f (x : Nat) (y : Nat := 1) (w : Nat := 2) (z : Nat) :=
 x + y + w - z

example (x z : Nat) : f (z := z) x = x + 1 + 2 - z := rfl

example (x z : Nat) : f x (z := z) = x + 1 + 2 - z := rfl

example (x y : Nat) : f x y = fun z => x + y + 2 - z := rfl

example : f = (fun x z => x + 1 + 2 - z) := rfl

example (x : Nat) : f x = fun z => x + 1 + 2 - z := rfl

example (y : Nat) : f (y := 5) = fun x z => x + 5 + 2 - z := rfl

def g {α} [Add α] (a : α) (b? : Option α := none) (c : α) : α :=
 match b? with
 | none => a + c
 | some b => a + b + c

variable {α} [Add α]

example : g = fun (a c : α) => a + c := rfl

example (x : α) : g (c := x) = fun (a : α) => a + x := rfl

example (x : α) : g (b? := some x) = fun (a c : α) => a + x + c := rfl

example (x : α) : g x = fun (c : α) => x + c := rfl

example (x y : α) : g x y = fun (c : α) => x + y + c := rfl

inductive Term where
 | var (name : String)
 | num (val : Nat)
 | add (fn : Term) (arg : Term)
 | lambda (name : String) (type : Term) (body : Term)

def getBinderName : Term → Option String
 | Term.lambda (name := n) .. => some n
 | _ => none

def getBinderType : Term → Option Term
 | Term.lambda (type := t) .. => some t
 | _ => none

example (f : Nat → Nat) (a b c : Nat) : f (a + b + c) = f (a + (b + c)) :=
 congrArg f (Nat.add_assoc ..)

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 120/156

The meta keyword

In Lean 3, the keyword meta is used to mark definitions that can use primitives implemented in
C/C++. These metadefinitions can also call themselves recursively, relaxing the termination
restriction imposed by ordinary type theory. Metadefinitions may also use unsafe primitives such as
eval_expr (α : Type u) [reflected α] : expr → tactic α , or primitives that break referential

transparency tactic.unsafe_run_io .

The keyword meta has been currently removed from Lean 4. However, we may re-introduce it in the
future, but with a much more limited purpose: marking meta code that should not be included in the
executables produced by Lean.

The keyword constant has been deleted in Lean 4, and axiom should be used instead. In Lean 4,
the new command opaque is used to define an opaque definition. Here are two simple examples:

We can instruct Lean to use a foreign function as the implementation for any definition using the
attribute @[extern "foreign_function"] . It is the user's responsibility to ensure the foreign
implementation is correct. However, a user mistake here will only impact the code generated by
Lean, and it will not compromise the logical soundness of the system. That is, you cannot prove
False using the @[extern] attribute. We use @[extern] with definitions when we want to provide

a reference implementation in Lean that can be used for reasoning. When we write a definition such
as

Lean assumes that the foreign function lean_nat_add implements the reference implementation
above.

The unsafe keyword allows us to define functions using unsafe features such as general recursion,
and arbitrary type casting. Regular (safe) functions cannot directly use unsafe ones since it would
compromise the logical soundness of the system. As in regular programming languages, programs
written using unsafe features may crash at runtime. Here are a few unsafe examples:

The unsafe keyword is particularly useful when we want to take advantage of an implementation
detail of the Lean execution runtime. For example, we cannot prove in Lean that arrays have a

#check forall (α : Type), α → α
#check ∀ (α : Type), α → α
#check ∀ α : Type, α → α
#check ∀ α, α → α
#check (α : Type) → α → α
#check {α : Type} → (a : Array α) → (i : Nat) → i < a.size → α
#check {α : Type} → [ToString α] → α → String
#check forall {α : Type} (a : Array α) (i : Nat), i < a.size → α
#check {α β : Type} → α → β → α × β

opaque x : Nat := 1
-- The following example will not type check since `x` is opaque
-- example : x = 1 := rfl

-- We can evaluate `x`
#eval x
-- 1

-- When no value is provided, the elaborator tries to build one automatically for us
-- using the `Inhabited` type class
opaque y : Nat

@[extern "lean_nat_add"]
def add : Nat → Nat → Nat
 | a, Nat.zero => a
 | a, Nat.succ b => Nat.succ (add a b)

unsafe def unsound : False :=
 unsound

#check @unsafeCast
-- {α : Type _} → {β : Type _} → α → β

unsafe def nat2String (x : Nat) : String :=
 unsafeCast x

-- The following definition doesn't type check because it is not marked as `unsafe`
-- def nat2StringSafe (x : Nat) : String :=
-- unsafeCast x

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 121/156

maximum size, but the runtime used to execute Lean programs guarantees that an array cannot
have more than 2^64 (2^32) elements in a 64-bit (32-bit) machine. We can take advantage of this fact
to provide a more efficient implementation for array functions. However, the efficient version would
not be very useful if it can only be used in unsafe code. Thus, Lean 4 provides the attribute
@[implemented_by functionName] . The idea is to provide an unsafe (and potentially more efficient)

version of a safe definition or constant. The function f at the attribute @[implemented_by f] is very
similar to an extern/foreign function, the key difference is that it is implemented in Lean itself. Again,
the logical soundness of the system cannot be compromised by using the attribute implemented_by ,
but if the implementation is incorrect your program may crash at runtime. In the following example,
we define withPtrUnsafe a k h which executes k using the memory address where a is stored in
memory. The argument h is proof that k is a constant function. Then, we "seal" this unsafe
implementation at withPtr . The proof h ensures the reference implementation k 0 is correct. For
more information, see the article "Sealing Pointer-Based Optimizations Behind Pure Functions".

General recursion is very useful in practice, and it would be impossible to implement Lean 4 without
it. The keyword partial implements a very simple and efficient approach for supporting general
recursion. Simplicity was key here because of the bootstrapping problem. That is, we had to
implement Lean in Lean before many of its features were implemented (e.g., the tactic framework or
support for wellfounded recursion). Another requirement for us was performance. Functions tagged
with partial should be as efficient as the ones implemented in mainstream functional
programming languages such as OCaml. When the partial keyword is used, Lean generates an
auxiliary unsafe definition that uses general recursion, and then defines an opaque constant that is
implemented by this auxiliary definition. This is very simple, efficient, and is sufficient for users that
want to use Lean as a regular programming language. A partial definition cannot use unsafe
features such as unsafeCast and ptrAddrUnsafe , and it can only be used to implement types we
already known to be inhabited. Finally, since we "seal" the auxiliary definition using an opaque
constant, we cannot reason about partial definitions.

We are aware that proof assistants such as Isabelle provide a framework for defining partial
functions that does not prevent users from proving properties about them. This kind of framework
can be implemented in Lean 4. Actually, it can be implemented by users since Lean 4 is an extensible
system. The developers current have no plans to implement this kind of support for Lean 4.
However, we remark that users can implement it using a function that traverses the auxiliary unsafe
definition generated by Lean, and produces a safe one using an approach similar to the one used in
Isabelle.

Library changes

These are changes to the library which may trip up Lean 3 users:

List is no longer a monad.

Style changes

Coding style changes have also been made:

Term constants and variables are now lowerCamelCase rather than snake_case
Type constants are now UpperCamelCase , eg Nat , List . Type variables are still lower case
greek letters. Functors are still lower case latin (m : Type → Type) [Monad m] .
When defining typeclasses, prefer not to use "has". Eg ToString or Add instead of
HasToString or HasAdd .

unsafe
def withPtrUnsafe {α β : Type} (a : α) (k : USize → β) (h : ∀ u, k u = k 0) : β :=
 k (ptrAddrUnsafe a)

@[implemented_by withPtrUnsafe]
def withPtr {α β : Type} (a : α) (k : USize → β) (h : ∀ u, k u = k 0) : β :=
 k 0

partial def f (x : Nat) : IO Unit := do
 IO.println x
 if x < 100 then
 f (x+1)

#eval f 98

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 122/156

Prefer return to pure in monad expressions.
Pipes <| are preferred to dollars $ for function application.
Declaration bodies should always be indented:

In structures and typeclass definitions, prefer where to := and don't surround fields with
parentheses. (Shown in Point above)

inductive Hello where
 | foo
 | bar

structure Point where

 x : Nat
 y : Nat

def Point.addX : Point → Point → Nat :=
 fun { x := a, .. } { x := b, .. } => a + b

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 123/156

You can copy highlighted code straight from VS Code to any rich text editor supporting HTML input.
For highlighting code in LaTeX, there are two options:

listings, which is a common package and simple to set up, but you may run into some
restrictions of it and LaTeX around Unicode
minted , a LaTeX package wrapping the Pygments syntax highlighting library. It needs a few

more steps to set up, but provides unrestricted support for Unicode when combined with
XeLaTeX or LuaLaTex.

Example with listings

Save lstlean.tex into the same directory, or anywhere in your TEXINPUTS path, as the following
test file:

Compile the file via

for older LaTeX versions, you might need to use [utf8x] instead of [utf8] with inputenc

Example with minted

First install Pygments. Then save lean4.py , which contains an version of the Lean highlighter
updated for Lean 4, and the following sample LaTeX file test.tex into the same directory:

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{listings}
\usepackage{amssymb}

\usepackage{color}
\definecolor{keywordcolor}{rgb}{0.7, 0.1, 0.1} % red
\definecolor{tacticcolor}{rgb}{0.0, 0.1, 0.6} % blue
\definecolor{commentcolor}{rgb}{0.4, 0.4, 0.4} % grey
\definecolor{symbolcolor}{rgb}{0.0, 0.1, 0.6} % blue
\definecolor{sortcolor}{rgb}{0.1, 0.5, 0.1} % green
\definecolor{attributecolor}{rgb}{0.7, 0.1, 0.1} % red

\def\lstlanguagefiles{lstlean.tex}
% set default language
\lstset{language=lean}

\begin{document}
\begin{lstlisting}
theorem funext {f₁ f₂ : ∀ (x : α), β x} (h : ∀ x, f₁ x = f₂ x) : f₁ = f₂ := by
 show extfunApp (Quotient.mk f₁) = extfunApp (Quotient.mk f₂)
 apply congrArg
 apply Quotient.sound
 exact h
\end{lstlisting}
\end{document}

$ pdflatex test.tex

\documentclass{article}
\usepackage{fontspec}
% switch to a monospace font supporting more Unicode characters
\setmonofont{FreeMono}
\usepackage{minted}
% instruct minted to use our local theorem.py
\newmintinline[lean]{lean4.py:Lean4Lexer -x}{bgcolor=white}
\newminted[leancode]{lean4.py:Lean4Lexer -x}{fontsize=\footnotesize}
\usemintedstyle{tango} % a nice, colorful theme

\begin{document}
\begin{leancode}
theorem funext {f₁ f₂ : ∀ (x : α), β x} (h : ∀ x, f₁ x = f₂ x) : f₁ = f₂ := by
 show extfunApp (Quotient.mk' f₁) = extfunApp (Quotient.mk' f₂)
 apply congrArg
 apply Quotient.sound
 exact h
\end{leancode}
\end{document}

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 124/156

https://code.visualstudio.com/updates/v1_10#_copy-with-syntax-highlighting
https://ctan.org/pkg/listings
https://ctan.org/pkg/minted
https://pygments.org/
https://raw.githubusercontent.com/leanprover/lean4/master/doc/latex/lstlean.tex
https://pygments.org/download/
https://raw.githubusercontent.com/leanprover/lean4/master/doc/latex/lean4.py

If your version of minted is v2.7 or newer, but before v3.0, you will additionally need to follow the
workaround described in https://github.com/gpoore/minted/issues/360.

You can then compile test.tex by executing the following command:

Some remarks:

either xelatex or lualatex is required to handle Unicode characters in the code.
--shell-escape is needed to allow xelatex to execute pygmentize in a shell.

If the chosen monospace font is missing some Unicode symbols, you can direct them to be
displayed using a fallback font or other replacement LaTeX code.

minted has a "helpful" feature that draws red boxes around characters the chosen lexer
doesn't recognize. Since the Lean lexer cannot encompass all user-defined syntax, it is
advisable to work around this feature.

xelatex --shell-escape test.tex

\usepackage{newunicodechar}
\newfontfamily{\freeserif}{DejaVu Sans}
\newunicodechar{✝}{\freeserif{✝}}
\newunicodechar{𝓞}{\ensuremath{\mathcal{O}}}

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 125/156

https://tex.stackexchange.com/a/343506/14563

The user-widgets system
Proving and programming are inherently interactive tasks. Lots of mathematical objects and data
structures are visual in nature. User widgets let you associate custom interactive UIs with sections of
a Lean document. User widgets are rendered in the Lean infoview.

Trying it out

To try it out, simply type in the following code and place your cursor over the #widget command.

If you want to dive into a full sample right away, check out RubiksCube . Below, we'll explain the
system piece by piece.

⚠️ WARNING: All of the user widget APIs are unstable and subject to breaking changes.

Widget sources and instances

A widget source is a valid JavaScript ESModule which exports a React component. To access React, the
module must use import * as React from 'react' . Our first example of a widget source is of
course the value of helloWidget.javascript .

We can register a widget source with the @[widget] attribute, giving it a friendlier name in the name
field. This is bundled together in a UserWidgetDefinition .

A widget instance is then the identifier of a UserWidgetDefinition (so `helloWidget , not "Hello")
associated with a range of positions in the Lean source code. Widget instances are stored in the
infotree in the same manner as other information about the source file such as the type of every
expression. In our example, the #widget command stores a widget instance with the entire line as
its range. We can think of a widget instance as an instruction for the infoview: "when the user places
their cursor here, please render the following widget".

Every widget instance also contains a props : Json value. This value is passed as an argument to
the React component. In our first invocation of #widget , we set it to .null . Try out what happens
when you type in:

import Lean
open Lean Widget

@[widget_module]
def helloWidget : Widget.Module where
 javascript := "
 import * as React from 'react';
 export default function(props) {
 const name = props.name || 'world'
 return React.createElement('p', {}, name + '!')
 }"

#widget helloWidget

structure HelloWidgetProps where
 name? : Option String := none
 deriving Server.RpcEncodable

#widget helloWidget with { name? := "<your name here>" : HelloWidgetProps }

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 126/156

https://github.com/leanprover/lean4-samples/blob/main/RubiksCube/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://reactjs.org/docs/components-and-props.html

💡 NOTE: The RPC system presented below does not depend on JavaScript. However the primary
use case is the web-based infoview in VSCode.

Querying the Lean server

Besides enabling us to create cool client-side visualizations, user widgets come with the ability to
communicate with the Lean server. Thanks to this, they have the same metaprogramming
capabilities as custom elaborators or the tactic framework. To see this in action, let's implement a
#check command as a web input form. This example assumes some familiarity with React.

The first thing we'll need is to create an RPC method. Meaning "Remote Procedure Call", this is
basically a Lean function callable from widget code (possibly remotely over the internet). Our
method will take in the name : Name of a constant in the environment and return its type. By
convention, we represent the input data as a structure . Since it will be sent over from JavaScript,
we need FromJson and ToJson . We'll see below why the position field is needed.

After its arguments, we define the getType method. Every RPC method executes in the RequestM
monad and must return a RequestTask α where α is its "actual" return type. The Task is so that
requests can be handled concurrently. A first guess for α might be Expr . However, expressions in
general can be large objects which depend on an Environment and LocalContext . Thus we cannot
directly serialize an Expr and send it to the widget. Instead, there are two options:

One is to send a reference which points to an object residing on the server. From JavaScript's
point of view, references are entirely opaque, but they can be sent back to other RPC methods
for further processing.
Two is to pretty-print the expression and send its textual representation called CodeWithInfos .
This representation contains extra data which the infoview uses for interactivity. We take this
strategy here.

RPC methods execute in the context of a file, but not any particular Environment so they don't know
about the available def initions and theorem s. Thus, we need to pass in a position at which we want
to use the local Environment . This is why we store it in GetTypeParams . The
withWaitFindSnapAtPos method launches a concurrent computation whose job is to find such an
Environment and a bit more information for us, in the form of a snap : Snapshot . With this in

hand, we can call MetaM procedures to find out the type of name and pretty-print it.

Using infoview components

Now that we have all we need on the server side, let's write the widget source. By importing
@leanprover/infoview , widgets can render UI components used to implement the infoview itself.

For example, the <InteractiveCode> component displays expressions with term : type tooltips as
seen in the goal view. We will use it to implement our custom #check display.

⚠️ WARNING: Like the other widget APIs, the infoview JS API is unstable and subject to breaking
changes.

The code below demonstrates useful parts of the API. To make RPC method calls, we use the
RpcContext . The useAsync helper packs the results of a call into an AsyncState structure which

indicates whether the call has resolved successfully, has returned an error, or is still in-flight. Based
on this we either display an InteractiveCode with the type, mapRpcError the error in order to turn
it into a readable message, or show a Loading.. message, respectively.

structure GetTypeParams where
 /-- Name of a constant to get the type of. -/
 name : Name
 /-- Position of our widget instance in the Lean file. -/
 pos : Lsp.Position
 deriving FromJson, ToJson

open Server RequestM in
@[server_rpc_method]
def getType (params : GetTypeParams) : RequestM (RequestTask CodeWithInfos) :=
 withWaitFindSnapAtPos params.pos fun snap => do
 runTermElabM snap do
 let name ← resolveGlobalConstNoOverloadCore params.name
 let c ← try getConstInfo name
 catch _ => throwThe RequestError ⟨.invalidParams, s!"no constant named '{name}'"⟩
 Widget.ppExprTagged c.type

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 127/156

Finally we can try out the widget.

Building widget sources

While typing JavaScript inline is fine for a simple example, for real developments we want to use
packages from NPM, a proper build system, and JSX. Thus, most actual widget sources are built with
Lake and NPM. They consist of multiple files and may import libraries which don't work as
ESModules by default. On the other hand a widget source must be a single, self-contained ESModule
in the form of a string. Readers familiar with web development may already have guessed that to
obtain such a string, we need a bundler. Two popular choices are rollup.js and esbuild . If we go
with rollup.js , to make a widget work with the infoview we need to:

Set output.format to 'es' .
Externalize react , react-dom , @leanprover/infoview . These libraries are already loaded by
the infoview so they should not be bundled.

In the RubiksCube sample, we provide a working rollup.js build configuration in rollup.config.js.

Inserting text

We can also instruct the editor to insert text, copy text to the clipboard, or reveal a certain location in
the document. To do this, use the React.useContext(EditorContext) React context. This will return
an EditorConnection whose api field contains a number of methods to interact with the text
editor.

You can see the full API for this here

Finally, we can try this out:

@[widget_module]
def checkWidget : Widget.Module where
 javascript := "
import * as React from 'react';
const e = React.createElement;
import { RpcContext, InteractiveCode, useAsync, mapRpcError } from
'@leanprover/infoview';

export default function(props) {
 const rs = React.useContext(RpcContext)
 const [name, setName] = React.useState('getType')

 const st = useAsync(() =>
 rs.call('getType', { name, pos: props.pos }), [name, rs, props.pos])

 const type = st.state === 'resolved' ? st.value && e(InteractiveCode, {fmt: st.value})
 : st.state === 'rejected' ? e('p', null, mapRpcError(st.error).message)
 : e('p', null, 'Loading..')
 const onChange = (event) => { setName(event.target.value) }
 return e('div', null,
 e('input', { value: name, onChange }), ' : ', type)
}
"

#widget checkWidget

@[widget_module]
def insertTextWidget : Widget.Module where
 javascript := "
import * as React from 'react';
const e = React.createElement;
import { EditorContext } from '@leanprover/infoview';

export default function(props) {
 const editorConnection = React.useContext(EditorContext)
 function onClick() {
 editorConnection.api.insertText('-- hello!!!', 'above')
 }

 return e('div', null, e('button', { value: name, onClick }, 'insert'))
}
"

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 128/156

https://rollupjs.org/guide/en/
https://esbuild.github.io/
https://rollupjs.org/guide/en/#outputformat
https://rollupjs.org/guide/en/#external
https://github.com/leanprover/lean4-samples/blob/main/RubiksCube/widget/rollup.config.js
https://github.com/leanprover/vscode-lean4/blob/master/lean4-infoview-api/src/infoviewApi.ts#L52

#widget insertTextWidget

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 129/156

Semantic Highlighting

The Lean language server provides semantic highlighting information to editors. In order to benefit
from this in VSCode, you may need to activate the "Editor > Semantic Highlighting" option in the
preferences (this is translates to "editor.semanticHighlighting.enabled": true, in
settings.json). The default option here is to let your color theme decides whether it activates

semantic highlighting (the default themes Dark+ and Light+ do activate it for instance).

However this may be insufficient if your color theme does not distinguish enough syntax categories
or distinguishes them very subtly. For instance the default Light+ theme uses color #001080 for
variables. This is awfully close to #000000 that is used as the default text color. This makes it very
easy to miss an accidental use of auto bound implicit arguments. For instance in

maybe nat is a typo and Nat was intended. If your color theme is good enough then you should
see that n and nat have the same color since they are both marked as variables by semantic
highlighting. If you rather write (n : Nat) then n keeps its variable color but Nat gets the default
text color.

If you use such a bad theme, you can fix things by modifying the Semantic Token Color
Customizations configuration. This cannot be done directly in the preferences dialog but you can
click on "Edit in settings.json" to directly edit the settings file. Beware that you must save this file (in
the same way you save any file opened in VSCode) before seeing any effect in other tabs or VSCode
windows.

In the main config object, you can add something like

The colors in this example are not meant to be nice but to be easy to spot in your file when testing.
Of course you need to replace Default Light+ with the name of your theme, and you can
customize several themes if you use several themes. VSCode will display small colored boxes next to
the HTML color specifications. Hovering on top of a color specification opens a convenient color
picker dialog.

In order to understand what function , property and variable mean in the above example, the
easiest path is to open a Lean file and ask VSCode about its classification of various bits of your file.
Open the command palette with Ctrl-shift-p (or ⌘-shift-p on a Mac) and search for "Inspect Editor
Tokens and Scopes" (typing the word "tokens" should be enough to see it). You can then click on any
word in your file and look if there is a "semantic token type" line in the displayed information.

def my_id (n : nat) := n

"editor.semanticTokenColorCustomizations": {
 "[Default Light+]": {"rules": {"function": "#ff0000", "property": "#00ff00",
"variable": "#ff00ff"}}
 },

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 130/156

https://lean-lang.org/lean4/doc/autobound.html

Development Workflow
If you want to make changes to Lean itself, start by building Lean from a clean checkout to make
sure that everything is set up correctly. After that, read on below to find out how to set up your
editor for changing the Lean source code, followed by further sections of the development manual
where applicable such as on the test suite and commit convention.

If you are planning to make any changes that may affect the compilation of Lean itself, e.g. changes
to the parser, elaborator, or compiler, you should first read about the bootstrapping pipeline. You
should not edit the stage0 directory except using the commands described in that section when
necessary.

Development Setup

You can use any of the supported editors for editing the Lean source code. If you set up elan as
below, opening src/ as a workspace folder should ensure that stage 0 (i.e. the stage that first
compiles src/) will be used for files in that directory.

Dev setup using elan

You can use elan to easily switch between stages and build configurations based on the current
directory, both for the lean , leanc , and leanmake binaries in your shell's PATH and inside your
editor.

To install elan, you can do so, without installing a default version of Lean, using (Unix)

or (Windows)

The lean-toolchain files in the Lean 4 repository are set up to use the lean4-stage0 toolchain for
editing files in src and the lean4 toolchain for editing files in tests .

Run the following commands to make lean4 point at stage1 and lean4-stage0 point at stage0 :

You can also use the +toolchain shorthand (e.g. lean +lean4-debug) to switch toolchains on the
spot. lean4-mode will automatically use the lean executable associated with the directory of the
current file as long as lean4-rootdir is unset and ~/.elan/bin is in your exec-path . Where
Emacs sources the exec-path from can be a bit unclear depending on your configuration, so
alternatively you can also set lean4-rootdir to "~/.elan" explicitly.

You might find that debugging through elan, e.g. via gdb lean , disables some things like symbol
autocompletion because at first only the elan proxy binary is loaded. You can instead pass the
explicit path to bin/lean in your build folder to gdb, or use gdb $(elan which lean) .

It is also possible to generate releases that others can use, simply by pushing a tag to your fork of
the Lean 4 github repository (and waiting about an hour; check the Actions tab for completion). If
you push my-tag to a fork in your github account my_name , you can then put my_name/lean4:my-
tag in your lean-toolchain file in a project using lake . (You must use a tag name that does not
start with a numeral, or contain _).

VS Code

There is a lean.code-workspace file that correctly sets up VS Code with workspace roots for the
stage0/stage1 setup described above as well as with other settings. You should always load it when

curl https://raw.githubusercontent.com/leanprover/elan/master/elan-init.sh -sSf | sh -s
-- --default-toolchain none

curl -O --location https://raw.githubusercontent.com/leanprover/elan/master/elan-
init.ps1
powershell -f elan-init.ps1 --default-toolchain none
del elan-init.ps1

in the Lean rootdir
elan toolchain link lean4 build/release/stage1
elan toolchain link lean4-stage0 build/release/stage0

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 131/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/make/index.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/dev/testing.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/dev/commit_convention.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/dev/bootstrap.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/setup.html
https://github.com/leanprover/elan

working on Lean, such as by invoking

on the command line.

ccache

Lean's build process uses ccache if it is installed to speed up recompilation of the generated C code.
Without ccache , you'll likely spend more time than necessary waiting on rebuilds - it's a good idea
to make sure it's installed.

prelude

Unlike most Lean projects, all submodules of the Lean module begin with the prelude keyword.
This disables the automated import of Init , meaning that developers need to figure out their own
subset of Init to import. This is done such that changing files in Init doesn't force a full rebuild of
Lean .

code lean.code-workspace

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 132/156

https://ccache.dev/

Requirements

C++14 compatible compiler
CMake
GMP (GNU multiprecision library)

Platform-Specific Setup

Linux (Ubuntu)
Windows (msys2)
Windows (WSL)
macOS (homebrew)
Linux/macOS/WSL via Nix: Call nix develop in the project root. That's it.

Generic Build Instructions

Setting up a basic release build:

For regular development, we recommend running

in the checkout so that --recurse-submodules doesn't have to be specified with git
pull/checkout/... .

The above commands will compile the Lean library and binaries into the stage1 subfolder; see
below for details. Add -j N for an appropriate N to make for a parallel build.

For example, on an AMD Ryzen 9 make takes 00:04:55, whereas make -j 10 takes 00:01:38. Your
results may vary depending on the speed of your hard drive.

You should not usually run make install after a successful build. See Dev setup using elan on how
to properly set up your editor to use the correct stage depending on the source directory.

Useful CMake Configuration Settings

Pass these along with the cmake ../.. command.

-D CMAKE_BUILD_TYPE=

Select the build type. Valid values are RELEASE (default), DEBUG , RELWITHDEBINFO , and
MINSIZEREL .

-D CMAKE_C_COMPILER=

-D CMAKE_CXX_COMPILER=

Select the C/C++ compilers to use. Official Lean releases currently use Clang; see also
.github/workflows/ci.yml for the CI config.

Lean will automatically use CCache if available to avoid redundant builds, especially after stage 0 has
been updated.

Troubleshooting

Call make with an additional VERBOSE=1 argument to print executed commands.

git clone https://github.com/leanprover/lean4 --recurse-submodules
cd lean4
mkdir -p build/release
cd build/release
cmake ../..
make

git config submodule.recurse true

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 133/156

http://www.cmake.org/
http://gmplib.org/
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/make/ubuntu.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/make/msys2.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/make/wsl.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/make/osx-10.9.html
https://nixos.org/nix/
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/dev/index.html#dev-setup-using-elan
https://ccache.dev/

Installing Lean on Ubuntu

Build Dependencies

Please ensure you have the following build tools available and then follow the generic build
instructions.

Basic packages

sudo apt-get install git libgmp-dev cmake ccache clang

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 134/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/make/index.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/make/index.html

Install Packages on OS X 10.9
We assume that you are using homebrew as a package manager.

Compilers

You need a C++11-compatible compiler to build Lean. As of November 2014, you have three options:

clang++-3.5 (shipped with OSX, Apple LLVM version 6.0)
gcc-4.9.1 (homebrew)
clang++-3.5 (homebrew)

We recommend to use Apple's clang++ because it is pre-shipped with OS X and requires no further
installation.

To install gcc-4.9.1 via homebrew, please execute:

To install clang++-3.5 via homebrew, please execute:

To use compilers other than the default one (Apple's clang++), you need to use -
DCMAKE_CXX_COMPILER option to specify the compiler that you want to use when you run cmake . For
example, do the following to use g++ .

Required Packages: CMake, GMP

Recommended Packages: CCache

brew install gcc

brew install llvm --with-clang --with-asan

cmake -DCMAKE_CXX_COMPILER=g++ ...

brew install cmake
brew install gmp

brew install ccache

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 135/156

http://brew.sh/

Lean for Windows
A native Lean binary for Windows can be generated using MSYS2. It is easy to install all
dependencies, it produces native 64/32-binaries, and supports a C++14 compiler.

An alternative to MSYS2 is to use Lean in Windows WSL.

While not necessary for pure building, you should first activate Developer Mode (Settings > Update &
Security > For developers > Developer Mode), which will allow Lean to create symlinks that e.g.
enable go-to-definition in the stdlib.

Installing dependencies

The official webpage of MSYS2 provides one-click installers. Once installed, you should run the
"MSYS2 MinGW 64-bit shell" from the start menu (the one that runs mingw64.exe). Do not run
"MSYS2 MSYS" instead! MSYS2 has a package management system, pacman, which is used in Arch
Linux.

Here are the commands to install all dependencies needed to compile Lean on your machine.

You should now be able to run these commands:

Then follow the generic build instructions in the MSYS2 MinGW shell, using:

instead of cmake ../.. . This ensures that cmake will call sh instead of cmd.exe for script tasks
and it will use the clang compiler instead of gcc, which is required.

Install lean

Follow the steps in Dev setup using elan regarding installation of the bits you just built. Note that in
an msys2 environment elan-init.sh reports you need to add %USERPROFILE%\.elan\bin to your
path, but of course in msys2 that needs to be a valid linux style path, like this:

Running

You can run lean --version to see if your binaries work.

If you want a version that can run independently of your MSYS install then you need to copy the
following dependent DLL's from where ever they are installed in your MSYS setup:

libgcc_s_seh-1.dll
libstdc++-6.dll
libgmp-10.dll
libwinpthread-1.dll

The following linux command will do that:

However, if you plan to use this build to compile lean programs to executable binaries using lake
build in normal Windows command prompt outside of msys2 environment you will also need to
add a windows version clang to your path.

pacman -S make python mingw-w64-x86_64-cmake mingw-w64-x86_64-clang mingw-w64-x86_64-
ccache git unzip diffutils binutils

clang --version
cmake --version

cmake ../.. -G "Unix Makefiles" -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++

export PATH="$PATH:/c/users/$USERNAME/.elan/bin"

cp $(ldd lean.exe | cut -f3 -d' ' | grep mingw) .

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 136/156

http://msys2.github.io/
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/make/wsl.html
https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development
http://msys2.github.io/
https://wiki.archlinux.org/index.php/pacman
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/make/index.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/dev/index.html#dev-setup-using-elan

Trouble shooting

-bash: gcc: command not found

Make sure /mingw64/bin is in your PATH environment. If it is not then check you launched the
MSYS2 MinGW 64-bit shell from the start menu. (The one that runs mingw64.exe).

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 137/156

Lean in Windows WSL
As an alternative to the MSYS2 setup you can also use the Windows Subsystem for Linux to build
Lean there, but edit and debug using Visual Studio Code in Windows.

For the most part setup in WSL is the same as Ubuntu. This document provides additional
information on how to setup Windows Visual Studio Code remote debugging into your WSL
environment using the lean extension running in WSL.

It is recommended that you setup Ubuntu in WSL 2. Then follow the Dev setup using elan.

Visual Studio Code setup on Windows

Install Visual Studio Code on Windows. Install the VS Code Remote Development extension from
Microsoft. This extension includes the Remote - WSL extension. Install the lean4 extension but into
the WSL using: Install in WSL: Ubuntu

Type Ctrl+Shift+P and select Remote-WSL: Open Folder in WSL... to open a folder containing
your hello world lean package.

When everything is working you should see something like this with a functioning infoview, syntax
coloring and tooltips:

Troubleshooting

lean4: Could not find Lean version by running 'lean --version'.

Check that the lean program is available in your PATH in your WSL environment.

Logs are showing up with a windows file path

Check that you have not set a windows path in your lean4.serverLogging.path Visual Studio Code
setting. it is best if this setting is set as follows:

This will result in a logs folder being created inside your lean package folder in the WSL file system.

 "lean4.serverLogging.path": "logs"

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 138/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/make/msys2.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://code.visualstudio.com/Download
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/make/ubuntu.html
https://docs.microsoft.com/en-us/windows/wsl/compare-versions
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/dev/index.html#dev-setup-using-elan
https://code.visualstudio.com/Download

Lean Build Bootstrapping
Since version 4, Lean is a partially bootstrapped program: most parts of the frontend and compiler
are written in Lean itself and thus need to be built before building Lean itself - which is needed to
again build those parts. This cycle is broken by using pre-built C files checked into the repository
(which ultimately go back to a point where the Lean compiler was not written in Lean) in place of
these Lean inputs and then compiling everything in multiple stages up to a fixed point. The build
directory is organized in these stages:

Stage 0 can be viewed as a blackbox since it does not depend on any local changes and is equivalent
to downloading a bootstrapping binary as done in other compilers. The build for any other stage
starts by building the runtime and standard library from src/ , using the lean binary from the
previous stage in the latter case, which are then assembled into a new bin/lean binary.

Each stage can be built by calling make stageN in the root build folder. Running just make will
default to stage 1, which is usually sufficient for testing changes on the test suite or other files
outside of the stdlib. However, it might happen that the stage 1 compiler is not able to load its own
stdlib, e.g. when changing the .olean format: the stage 1 stdlib will use the format generated by the
stage 0 compiler, but the stage 1 compiler will expect the new format. In this case, we should
continue with building and testing stage 2 instead, which will both build and expect the new format.
Note that this is only possible because when building a stage's stdlib, we use the previous compiler
but never load the previous stdlib (since everything is prelude). We can also use stage 2 to test
changes in the compiler or other "meta" parts, i.e. changes that affect the produced (.olean or .c)
code, on the stdlib and compiler itself. We are not aware of any "meta-meta" parts that influence
more than two stages of compilation, so stage 3 should always be identical to stage 2 and only exists
as a sanity check.

In summary, doing a standard build via make internally involves these steps:

1. compile the stage0/src archived sources into stage0/bin/lean
2. use it to compile the current library (including your changes) into stage1/lib
3. link that and the current C++ code from src/ into stage1/bin/lean

You now have a Lean binary and library that include your changes, though their own compilation
was not influenced by them, that you can use to test your changes on test programs whose
compilation will be influenced by the changes.

Updating stage0

Finally, when we want to use new language features in the library, we need to update the archived C
source code of the stage 0 compiler in stage0/src .

The github repository will automatically update stage0 on master once src/stdlib_flags.h and
stage0/src/stdlib_flags.h are out of sync.

stage0/
 # Bootstrap binary built from stage0/src/.
 # We do not use any other files from this directory in further stages.
 bin/lean
stage1/
 include/
 config.h # config variables used to build `lean` such as used allocator
 runtime/lean.h # runtime header, used by extracted C code, uses `config.h`
 share/lean/
 lean.mk # used by `leanmake`
 lib/
 lean/**/*.olean # the Lean library (incl. the compiler) compiled by the previous
stage's `lean`
 temp/**/*.{c,o} # the library extracted to C and compiled by `leanc`
 libInit.a libLean.a # static libraries of the Lean library
 libleancpp.a # a static library of the C++ sources of Lean
 libleanshared.so # a dynamic library including the static libraries above
 bin/
 lean # the Lean compiler & server, a small executable that calls directly into
libleanshared.so
 leanc # a wrapper around a C compiler supplying search paths etc
 leanmake # a wrapper around `make` supplying the Makefile above
stage2/...
stage3/...

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 139/156

If you have write access to the lean4 repository, you can also also manually trigger that process, for
example to be able to use new features in the compiler itself. You can do that on
https://github.com/leanprover/lean4/actions/workflows/update-stage0.yml or using Github CLI with

Leaving stage0 updates to the CI automation is preferable, but should you need to do it locally, you
can use make update-stage0-commit in build/release to update stage0 from stage1 or make -C
stageN update-stage0-commit to update from another stage. This command will automatically
stage the updated files and introduce a commit,so make sure to commit your work before that.

If you rebased the branch (either onto a newer version of master , or fixing up some commits prior
to the stage0 update, recreate the stage0 update commits. The script script/rebase-stage0.sh can
be used for that.

The CI should prevent PRs with changes to stage0 (besides stdlib_flags.h) from entering master
through the (squashing!) merge queue, and label such PRs with the changes-stage0 label. Such PRs
should have a cleaned up history, with separate stage0 update commits; then coordinate with the
admins to merge your PR using rebase merge, bypassing the merge queue.

Further Bootstrapping Complications

As written above, changes in meta code in the current stage usually will only affect later stages. This
is an issue in two specific cases.

For non-builtin meta code such as notation s or macro s in Notation.lean , we expect changes
to affect the current file and all later files of the same stage immediately, just like outside the
stdlib. To ensure this, we need to build the stage using -Dinterpreter.prefer_native=false -
otherwise, when executing a macro, the interpreter would notice that there is already a native
symbol available for this function and run it instead of the new IR, but the symbol is from the
previous stage!

To make matters more complicated, while false is a reasonable default incurring only minor
overhead (ParserDescr s and simple macros are cheap to interpret), there are situations
where we need to set the option to true : when the interpreter is executed from the native
code of the previous stage, the type of the value it computes must be identical to/ABI-
compatible with the type in the previous stage. For example, if we add a new parameter to
Macro or reorder constructors in ParserDescr , building the stage with the interpreter will

likely fail. Thus we need to set interpreter.prefer_native to true in such cases to "freeze"
meta code at their versions in the previous stage; no new meta code should be introduced in
this stage. Any further stages (e.g. after an update-stage0) will then need to be compiled with
the flag set to false again since they will expect the new signature.

For an example, see
https://github.com/leanprover/lean4/commit/da4c46370d85add64ef7ca5e7cc4638b62823fbb.

For the special case of quotations, it is desirable to have changes in built-in parsers affect them
immediately: when the changes in the parser become active in the next stage, macros
implemented via quotations should generate syntax trees compatible with the new parser, and
quotation patterns in macro and elaborators should be able to match syntax created by the
new parser and macros. Since quotations capture the syntax tree structure during execution of
the current stage and turn it into code for the next stage, we need to run the current stage's
built-in parsers in quotation via the interpreter for this to work. Caveats:

Since interpreting full parsers is not nearly as cheap and we rarely change built-in syntax,
this needs to be opted in using -Dinternal.parseQuotWithCurrentStage=true .
The parser needs to be reachable via an import statement, otherwise the version of the
previous stage will silently be used.
Only the parser code (Parser.fn) is affected; all metadata such as leading tokens is taken
from the previous stage.

For an example, see
https://github.com/leanprover/lean4/commit/f9dcbbddc48ccab22c7674ba20c5f409823b4cc1#diff-
371387aed38bb02bf7761084fd9460e4168ae16d1ffe5de041b47d3ad2d22422 (from before the
flag defaulted to false).

To modify either of these flags both for building and editing the stdlib, adjust the code in
stage0/src/stdlib_flags.h . The flags will automatically be reset on the next update-stage0 when

gh workflow run update-stage0.yml

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 140/156

https://github.com/leanprover/lean4/actions/workflows/update-stage0.yml

the file is overwritten with the original version in src/ .

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 141/156

Test Suite
After building Lean you can run all the tests using

Change the 4 to the maximum number of parallel tests you want to allow. The best choice is the
number of CPU cores on your machine as the tests are mostly CPU bound. You can find the number
of processors on linux using nproc and on Windows it is the NUMBER_OF_PROCESSORS environment
variable.

You can run tests after building a specific stage by adding the -C stageN argument. The default
when run as above is stage 1. The Lean tests will automatically use that stage's corresponding Lean
executables

Running make test will not pick up new test files; run

to update the list of tests.

You can also use ctest directly if you are in the right folder. So to run stage1 tests with a 300
second timeout run this:

Useful ctest flags are -R <name of test> to run a single test, and --rerun-failed to run all tests
that failed during the last run. You can also pass ctest flags via make test ARGS="--rerun-
failed" .

To get verbose output from ctest pass the --verbose command line option. Test output is normally
suppressed and only summary information is displayed. This option will show all test output.

Test Suite Organization

All these tests are included by src/shell/CMakeLists.txt:

tests/lean : contains tests that come equipped with a .lean.expected.out file. The driver script
test_single.sh runs each test and checks the actual output (*.produced.out) with the

checked in expected output.

tests/lean/run : contains tests that are run through the lean command line one file at a time.
These tests only look for error codes and do not check the expected output even though
output is produced, it is ignored.

tests/lean/interactive : are designed to test server requests at a given position in the input
file. Each .lean file contains comments that indicate how to simulate a client request at that
position. using a --^ point to the line position. Example:

In this example, the test driver test_single.sh will simulate an auto-completion request at
Bla. . The expected output is stored in a .lean.expected.out in the json format that is part of

the Language Server Protocol.

This can also be used to test the following additional requests:

cd build/release
make test ARGS=-j4

cmake build/release/stage1

cd build/release/stage1
ctest -j 4 --output-on-failure --timeout 300

open Foo in
theorem tst2 (h : a ≤ b) : a + 2 ≤ b + 2 :=
Bla.
 --^ textDocument/completion

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 142/156

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/make/index.html
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/dev/bootstrap.html
https://github.com/leanprover/lean4/blob/master/src/shell/CMakeLists.txt
https://github.com/leanprover/lean4/tree/master/tests/lean/
https://github.com/leanprover/lean4/tree/master/tests/lean/test_single.sh
https://github.com/leanprover/lean4/tree/master/tests/lean/run/
https://github.com/leanprover/lean4/tree/master/tests/lean/interactive/
https://github.com/leanprover/lean4/tree/master/tests/lean/interactive/test_single.sh
https://microsoft.github.io/language-server-protocol/

tests/lean/server : Tests more of the Lean --server protocol. There are just a few of them,
and it uses .log files containing JSON.

tests/compiler : contains tests that will run the Lean compiler and build an executable that is
executed and the output is compared to the .lean.expected.out file. This test also contains a
subfolder foreign which shows how to extend Lean using C++.

tests/lean/trust0 : tests that run Lean in a mode that Lean doesn't even trust the .olean files
(i.e., trust 0).

tests/bench : contains performance tests.

tests/plugin : tests that compiled Lean code can be loaded into lean via the --plugin
command line option.

Writing Good Tests

Every test file should contain:

an initial /-! -/ module docstring summarizing the test's purpose
a module docstring for each test section that describes what is tested and, if not 100% clear,
why that is the desirable behavior

At the time of writing, most tests do not follow these new guidelines yet. For an example of a
conforming test, see tests/lean/1971.lean .

Fixing Tests

When the Lean source code or the standard library are modified, some of the tests break because
the produced output is slightly different, and we have to reflect the changes in the
.lean.expected.out files. We should not blindly copy the new produced output since we may

accidentally miss a bug introduced by recent changes. The test suite contains commands that allow
us to see what changed in a convenient way. First, we must install meld. On Ubuntu, we can do it by
simply executing

Now, suppose bad_class.lean test is broken. We can see the problem by going to tests/lean
directory and executing

When the -i option is provided, meld is automatically invoked whenever there is discrepancy
between the produced and expected outputs. meld can also be used to repair the problems.

In Emacs, we can also execute M-x lean4-diff-test-file to check/diff the file of the current
buffer. To mass-copy all .produced.out files to the respective .expected.out file, use
tests/lean/copy-produced .

--^ textDocument/hover
--^ textDocument/typeDefinition
--^ textDocument/definition

--^ $/lean/plainGoal
--^ $/lean/plainTermGoal
--^ insert: ...
--^ collectDiagnostics

sudo apt-get install meld

./test_single.sh -i bad_class.lean

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 143/156

https://github.com/leanprover/lean4/tree/master/tests/lean/server/
https://github.com/leanprover/lean4/tree/master/tests/compiler/
https://github.com/leanprover/lean4/tree/master/tests/compiler/foreign/
https://github.com/leanprover/lean4/tree/master/tests/lean/trust0
https://github.com/leanprover/lean4/tree/master/tests/bench/
https://github.com/leanprover/lean4/tree/master/tests/plugin/
https://github.com/leanprover/lean4/tree/master/tests/lean/1971.lean
http://meldmerge.org/
https://github.com/leanprover/lean4/tree/master/tests/lean

Debugging
Some notes on how to debug Lean, which may also be applicable to debugging Lean programs in
general.

Tracing

In CoreM and derived monads, we use trace![traceCls] "msg with {interpolations}" to fill the
structured trace viewable with set_option trace.traceCls true . New trace classes have to be
registered using registerTraceClass first.

Notable trace classes:

Elab.command / Elab.step : command/term macro expansion/elaboration steps

Useful options modifying these traces for debugging syntax trees:

Meta.synthInstance : typeclass resolution

Meta.isDefEq : unification

interpreter : full execution trace of the interpreter. Only available in debug builds.

In pure contexts or when execution is aborted before the messages are finally printed, one can
instead use the term dbg_trace "msg with {interpolations}"; val (; can also be replaced by a
newline), which will print the message to stderr before evaluating val . dbgTraceVal val can be
used as a shorthand for dbg_trace "{val}"; val . Note that if the return value is not actually used,
the trace code is silently dropped as well. In the language server, stderr output is buffered and
shown as messages after a command has been elaborated, unless the option
server.stderrAsMessages is deactivated.

Debuggers

gdb / lldb can be used to inspect stack traces of compiled Lean code, though they cannot print
values of Lean variables and terms in any legible way yet. For example, b lean_panic_fn can be
used to look at the stack trace of a panic.

The rr reverse debugger is an amazing tool for investigating e.g. segfaults from reference counting
errors, though better hope you will never need it...

set_option pp.raw true
set_option pp.raw.maxDepth 10

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 144/156

https://github.com/rr-debugger/rr

Git Commit Convention
We are using the following convention for writing git commit messages. For pull requests, make sure
the pull request title and description follow this convention, as the squash-merge commit will inherit
title and body from the pull request.

This convention is based on the one from the AngularJS project (doc, commits).

Format of the commit message

<type> is:

feat (feature)
fix (bug fix)
doc (documentation)
style (formatting, missing semicolons, ...)
refactor
test (when adding missing tests)
chore (maintain, ex: travis-ci)
perf (performance improvement, optimization, ...)

<subject> has the following constraints:

use imperative, present tense: "change" not "changed" nor "changes"
do not capitalize the first letter
no dot(.) at the end

<body> has the following constraints:

just as in <subject> , use imperative, present tense
includes motivation for the change and contrasts with previous behavior

<footer> is optional and may contain two items:

Breaking changes: All breaking changes have to be mentioned in footer with the description of
the change, justification and migration notes

Referencing issues: Closed bugs should be listed on a separate line in the footer prefixed with
"Closes" keyword like this:

Closes #123, #456

Examples

fix: add declarations for operator<<(std::ostream&, expr const&) and operator<<(std::ostream&,
context const&) in the kernel

The actual implementation of these two operators is outside of the kernel. They are implemented in
the file 'library/printer.cpp'. We declare them in the kernel to prevent the following problem.
Suppose there is a file 'foo.cpp' that does not include 'library/printer.h', but contains

The compiler does not generate an error message. It silently uses the operator bool() to coerce the
expression into a Boolean. This produces counter-intuitive behavior, and may confuse developers.

<type>: <subject>
<NEWLINE>
<body>
<NEWLINE>
<footer>

expr a;
...
std::cout << a << "\n";
...

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 145/156

https://docs.google.com/document/d/1QrDFcIiPjSLDn3EL15IJygNPiHORgU1_OOAqWjiDU5Y/edit#
https://github.com/angular/angular.js/commits/master

Releasing a stable version
This checklist walks you through releasing a stable version. See below for the checklist for release
candidates.

We'll use v4.6.0 as the intended release version as a running example.

One week before the planned release, ensure that someone has written the first draft of the
release blog post
git checkout releases/v4.6.0 (This branch should already exist, from the release

candidates.)
git pull

In src/CMakeLists.txt , verify you see
set(LEAN_VERSION_MINOR 6) (for whichever 6 is appropriate)
set(LEAN_VERSION_IS_RELEASE 1)

(both of these should already be in place from the release candidates)
It is possible that the v4.6.0 section of RELEASES.md is out of sync between releases/v4.6.0
and master . This should be reconciled:

Run git diff master RELEASES.md .
You should expect to see additons on master in the v4.7.0-rc1 section; ignore these.
(i.e. the new release notes for the upcoming release candidate).
Reconcile discrepancies in the v4.6.0 section, usually via copy and paste and a commit
to releases/v4.6.0 .

git tag v4.6.0

git push $REMOTE v4.6.0 , where $REMOTE is the upstream Lean repository (e.g., origin ,
upstream)

Now wait, while CI runs.
You can monitor this at
https://github.com/leanprover/lean4/actions/workflows/ci.yml , looking for the
v4.6.0 tag.

This step can take up to an hour.
If you are intending to cut the next release candidate on the same day, you may want to
start on the release candidate checklist now.

Go to https://github.com/leanprover/lean4/releases and verify that the v4.6.0 release
appears.

Edit the release notes on Github to select the "Set as the latest release".
Copy and paste the Github release notes from the previous releases candidate for this
version (e.g. v4.6.0-rc1), and quickly sanity check.

Next, we will move a curated list of downstream repos to the latest stable release.
For each of the repositories listed below:

Make a PR to master / main changing the toolchain to v4.6.0
Update the toolchain file
In the Lakefile, if there are dependencies on specific version tags of
dependencies that you've already pushed as part of this process, update them
to the new tag. If they depend on main or master , don't change this; you've
just updated the dependency, so it will work and be saved in the manifest
Run lake update
The PR title should be "chore: bump toolchain to v4.6.0".

Merge the PR once CI completes.
Create the tag v4.6.0 from master / main and push it.
Merge the tag v4.6.0 into the stable branch and push it.

We do this for the repositories:
lean4checker

No dependencies
Note: lean4checker uses a different version tagging scheme: use
toolchain/v4.6.0 rather than v4.6.0 .

Toolchain bump PR
Create and push the tag
Merge the tag into stable

Batteries
No dependencies
Toolchain bump PR
Create and push the tag
Merge the tag into stable

ProofWidgets4

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 146/156

https://github.com/leanprover/lean4checker
https://github.com/leanprover-community/batteries
https://github.com/leanprover-community/ProofWidgets4

Dependencies: Batteries
Note on versions and branches:

ProofWidgets uses a sequential version tagging scheme, e.g. v0.0.29 ,
which does not refer to the toolchain being used.
Make a new release in this sequence after merging the toolchain bump
PR.
ProofWidgets does not maintain a stable branch.

Toolchain bump PR
Create and push the tag, following the version convention of the repository

Aesop
Dependencies: Batteries
Toolchain bump PR including updated Lake manifest
Create and push the tag
Merge the tag into stable

doc-gen4
Dependencies: exist, but they're not part of the release workflow
Toolchain bump PR including updated Lake manifest
Create and push the tag
There is no stable branch; skip this step

import-graph
Toolchain bump PR including updated Lake manifest
Create and push the tag
There is no stable branch; skip this step

Mathlib
Dependencies: Aesop , ProofWidgets4 , lean4checker , Batteries , doc-gen4 ,
import-graph

Toolchain bump PR notes:
In addition to updating the lean-toolchain and lakefile.lean , in
.github/workflows/build.yml.in in the lean4checker section update

the line git checkout toolchain/v4.6.0 to the appropriate tag, and
then run .github/workflows/mk_build_yml.sh . Coordinate with a
Mathlib maintainer to get this merged.
Push the PR branch to the main Mathlib repository rather than a fork, or
CI may not work reliably
Create and push the tag
Create a new branch from the tag, push it, and open a pull request
against stable . Coordinate with a Mathlib maintainer to get this merged.

REPL
Dependencies: Mathlib (for test code)
Note that there are two copies of lean-toolchain / lakefile.lean : in the
root, and in test/Mathlib/ . Edit both, and run lake update in both
directories.
Toolchain bump PR including updated Lake manifest
Create and push the tag
Merge the tag into stable

Merge the release announcement PR for the Lean website - it will be deployed automatically
Finally, make an announcement! This should go in
https://leanprover.zulipchat.com/#narrow/stream/113486-announce, with topic v4.6.0 .
Please see previous announcements for suggested language. You will want a few bullet points
for main topics from the release notes. Link to the blog post from the Zulip announcement.
Make sure that whoever is handling social media knows the release is out.

Optimistic(?) time estimates:

Initial checks and push the tag: 30 minutes.
Note that if RELEASES.md has discrepancies this could take longer!
Waiting for the release: 60 minutes.
Fixing release notes: 10 minutes.
Bumping toolchains in downstream repositories, up to creating the Mathlib PR: 30 minutes.
Waiting for Mathlib CI and bors: 120 minutes.
Finalizing Mathlib tags and stable branch, and updating REPL: 15 minutes.
Posting announcement and/or blog post: 20 minutes.

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 147/156

https://github.com/leanprover-community/aesop
https://github.com/leanprover/doc-gen4
https://github.com/leanprover-community/import-graph
https://github.com/leanprover-community/mathlib4
https://github.com/leanprover-community/repl

Creating a release candidate.
This checklist walks you through creating the first release candidate for a version of Lean.

We'll use v4.7.0-rc1 as the intended release version in this example.

Decide which nightly release you want to turn into a release candidate. We will use nightly-
2024-02-29 in this example.
It is essential that Batteries and Mathlib already have reviewed branches compatible with this
nightly.

Check that both Batteries and Mathlib's bump/v4.7.0 branch contain nightly-2024-02-
29 in their lean-toolchain .
The steps required to reach that state are beyond the scope of this checklist, but see
below!

Create the release branch from this nightly tag:

In RELEASES.md remove (development in progress) from the v4.7.0 section header.
Our current goal is to have written release notes only about major language features or
breaking changes, and to rely on automatically generated release notes for bugfixes and minor
changes.

Do not wait on RELEASES.md being perfect before creating the release/v4.7.0 branch. It
is essential to choose the nightly which will become the release candidate as early as
possible, to avoid confusion.
If there are major changes not reflected in RELEASES.md already, you may need to solicit
help from the authors.
Minor changes and bug fixes do not need to be documented in RELEASES.md : they will be
added automatically on the Github release page.
Commit your changes to RELEASES.md , and push.
Remember that changes to RELEASES.md after you have branched releases/v4.7.0
should also be cherry-picked back to master .

In src/CMakeLists.txt ,
verify that you see set(LEAN_VERSION_MINOR 7) (for whichever 7 is appropriate); this
should already have been updated when the development cycle began.
set(LEAN_VERSION_IS_RELEASE 1) (this should be a change; on master and nightly

releases it is always 0).
Commit your changes to src/CMakeLists.txt , and push.

git tag v4.7.0-rc1

git push origin v4.7.0-rc1

Now wait, while CI runs.
You can monitor this at
https://github.com/leanprover/lean4/actions/workflows/ci.yml , looking for the
v4.7.0-rc1 tag.

This step can take up to an hour.
Once the release appears at https://github.com/leanprover/lean4/releases/

Edit the release notes on Github to select the "Set as a pre-release box".
Copy the section of RELEASES.md for this version into the Github release notes.
Use the title "Changes since v4.6.0 (from RELEASES.md)"
Then in the "previous tag" dropdown, select v4.6.0 , and click "Generate release notes".
This will add a list of all the commits since the last stable version.

Delete anything already mentioned in the hand-written release notes above.
Delete "update stage0" commits, and anything with a completely inscrutable commit
message.
Briefly rearrange the remaining items by category (e.g. simp , lake , bug fixes),
but for minor items don't put any work in expanding on commit messages.

(How we want to release notes to look is evolving: please update this section if it looks
wrong!)

Next, we will move a curated list of downstream repos to the release candidate.
This assumes that there is already a reviewed branch bump/v4.7.0 on each repository
containing the required adaptations (or no adaptations are required). The preparation of
this branch is beyond the scope of this document.
For each of the target repositories:

git remote add nightly https://github.com/leanprover/lean4-nightly.git
git fetch nightly tag nightly-2024-02-29
git checkout nightly-2024-02-29
git checkout -b releases/v4.7.0

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 148/156

Checkout the bump/v4.7.0 branch.
Verify that the lean-toolchain is set to the nightly from which the release
candidate was created.
git merge origin/master

Change the lean-toolchain to leanprover/lean4:v4.7.0-rc1
In lakefile.lean , change any dependencies which were using nightly-testing or
bump/v4.7.0 branches back to master or main , and run lake update for those

dependencies.
Run lake build to ensure that dependencies are found (but it's okay to stop it after
a moment).
git commit

git push

Open a PR from bump/v4.7.0 to master , and either merge it yourself after CI, if
appropriate, or notify the maintainers that it is ready to go.
Once this PR has been merged, tag master with v4.7.0-rc1 and push this tag.

We do this for the same list of repositories as for stable releases, see above. As above,
there are dependencies between these, and so the process above is iterative. It greatly
helps if you can merge the bump/v4.7.0 PRs yourself!
For Batteries/Aesop/Mathlib, which maintain a nightly-testing branch, make sure
there is a tag nightly-testing-2024-02-29 with date corresponding to the nightly used
for the release (create it if not), and then on the nightly-testing branch git reset --
hard master , and force push.

Make an announcement! This should go in
https://leanprover.zulipchat.com/#narrow/stream/113486-announce, with topic v4.7.0-rc1 .
Please see previous announcements for suggested language. You will want a few bullet points
for main topics from the release notes. Please also make sure that whoever is handling social
media knows the release is out.
Begin the next development cycle (i.e. for v4.8.0) on the Lean repository, by making a PR that:

Updates src/CMakeLists.txt to say set(LEAN_VERSION_MINOR 8)
Removes (in development) from the section heading in RELEASES.md for v4.7.0 , and
creates a new v4.8.0 (in development) section heading.

Time estimates:

Slightly longer than the corresponding steps for a stable release. Similar process, but more things go
wrong. In particular, updating the downstream repositories is significantly more work (because we
need to merge existing bump/v4.7.0 branches, not just update a toolchain).

Preparing bump/v4.7.0 branches
While not part of the release process per se, this is a brief summary of the work that goes into
updating Batteries/Aesop/Mathlib to new versions.

Please read https://leanprover-community.github.io/contribute/tags_and_branches.html

Each repo has an unreviewed nightly-testing branch that receives commits automatically
from master , and has its toolchain updated automatically for every nightly. (Note: the aesop
branch is not automated, and is updated on an as needed basis.) As a consequence this branch
is often broken. A bot posts in the (private!) "Mathlib reviewers" stream on Zulip about the
status of these branches.
We fix the breakages by committing directly to nightly-testing : there is no PR process.

This can either be done by the person managing this process directly, or by soliciting
assistance from authors of files, or generally helpful people on Zulip!

Each repo has a bump/v4.7.0 which accumulates reviewed changes adapting to new versions.
Once nightly-testing is working on a given nightly, say nightly-2024-02-15 , we:

Make sure bump/v4.7.0 is up to date with master (by merging master , no PR necessary)
Create from bump/v4.7.0 a bump/nightly-2024-02-15 branch.
In that branch, git merge --squash nightly-testing to bring across changes from
nightly-testing .

Sanity check changes, commit, and make a PR to bump/v4.7.0 from the bump/nightly-
2024-02-15 branch.
Solicit review, merge the PR into bump/v4,7,0 .

It is always okay to merge in the following directions: master -> bump/v4.7.0 ->
bump/nightly-2024-02-15 -> nightly-testing . Please remember to push any merges you

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 149/156

make to intermediate steps!

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 150/156

Documentation
The Lean doc folder contains the Lean Manual and is authored in a combination of markdown
(*.md) files and literate Lean files. The .lean files are preprocessed using a tool called LeanInk and
Alectryon which produces a generated markdown file. We then run mdbook on the result to
generate the html pages.

Settings

We are using the following settings while editing the markdown docs.

Build

Using Nix

Building the manual using Nix (which is what the CI does) is as easy as

You can also open a shell with mdbook for running the commands mentioned below with nix
develop ./doc#book . Otherwise, read on.

Manually

To build and test the book you have to preprocess the .lean files with Alectryon then use our own
fork of the Rust tool named mdbook. We have our own fork of mdBook with the following additional
features:

Add support for hiding lines in other languages #1339
Make mdbook test call the lean compiler to test the snippets.
Ability to test a single chapter at a time which is handy when you are working on that chapter.
See the --chapter option.

So you need to setup these tools before you can run mdBook .

1. install Rust which provides you with the cargo tool for building rust packages. Then run the
following:

2. Clone https://github.com/leanprover/LeanInk.git and run lake build then make the resulting
binary available to Alectryon using e.g.

3. Create a Python 3.10 environment.

4. Install Alectryon:

5. Now you are ready to process the *.lean files using Alectryon as follows:

{
 "files.insertFinalNewline": true,
 "files.trimTrailingWhitespace": true,
 "[markdown]": {
 "rewrap.wrappingColumn": 70
 }
}

$ nix build --update-input lean ./doc

cargo install --git https://github.com/leanprover/mdBook mdbook

make `leanInk` available in the current shell
export PATH=$PWD/build/bin:$PATH

python3 -m pip install git+https://github.com/Kha/alectryon.git@typeid

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 151/156

https://lean-lang.org/lean4/doc/
https://github.com/leanprover/leanink
https://github.com/Kha/alectryon
https://github.com/leanprover/mdbook
https://github.com/rust-lang/mdBook/pull/1339
https://www.rust-lang.org/tools/install

Repeat this for the other .lean files you care about or write a script to process them all.

6. Now you can build the book using:

This will put the HTML in a out folder so you can load out/index.html in your web browser and it
should look like https://lean-lang.org/lean4/doc/.

1. It is also handy to use e.g. mdbook watch in the doc/ folder so that it keeps the html up to
date while you are editing.

Testing Lean Snippets

You can run the following in the doc/ folder to test all the lean code snippets.

and you can use the --chapter option to test a specific chapter that you are working on:

Use chapter name ? to get a list of all the chapter names.

cd lean4/doc
alectryon --frontend lean4+markup examples/palindromes.lean --backend webpage -o
palindromes.lean.md

cd lean4/doc
mdbook build

mdbook watch --open # opens the output in `out/` in your default browser

```bash
mdbook test
```

```bash
mdbook test --chapter Array
```

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 152/156

https://rust-lang.github.io/mdBook/cli/watch.html

Foreign Function Interface
NOTE: The current interface was designed for internal use in Lean and should be considered
unstable. It will be refined and extended in the future.

As Lean is written partially in Lean itself and partially in C++, it offers efficient interoperability
between the two languages (or rather, between Lean and any language supporting C interfaces).
This support is however currently limited to transferring Lean data types; in particular, it is not
possible yet to pass or return compound data structures such as C struct s by value from or to
Lean.

There are two primary attributes for interoperating with other languages:

@[extern "sym"] constant leanSym : ... binds a Lean declaration to the external symbol
sym . It can also be used with def to provide an internal definition, but ensuring consistency of

both definitions is up to the user.
@[export sym] def leanSym : ... exports leanSym under the unmangled symbol name
sym .

For simple examples of how to call foreign code from Lean and vice versa, see
https://github.com/leanprover/lean4/blob/master/src/lake/examples/ffi and
https://github.com/leanprover/lean4/blob/master/src/lake/examples/reverse-ffi, respectively.

The Lean ABI

The Lean Application Binary Interface (ABI) describes how the signature of a Lean declaration is
encoded as a native calling convention. It is based on the standard C ABI and calling convention of
the target platform. For a Lean declaration marked with either @[extern "sym"] or @[export sym]
for some symbol name sym , let α₁ → ... → αₙ → β be the normalized declaration's type. If n is 0,
the corresponding C declaration is

where s is the C translation of β as specified in the next section. In the case of an @[extern]
definition, the symbol's value is guaranteed to be initialized only after calling the Lean module's
initializer or that of an importing module; see Initialization.

If n is greater than 0, the corresponding C declaration is

where the parameter types tᵢ are the C translation of the αᵢ as in the next section. In the case of
@[extern] all irrelevant types are removed first; see next section.

Translating Types from Lean to C

The integer types UInt8 , ..., UInt64 , USize are represented by the C types uint8_t , ...,
uint64_t , size_t , respectively

Char is represented by uint32_t

Float is represented by double

An enum inductive type of at least 2 and at most 2^32 constructors, each of which with no
parameters, is represented by the first type of uint8_t , uint16_t , uint32_t that is sufficient
to represent all constructor indices.

For example, the type Bool is represented as uint8_t with values 0 for false and 1 for
true .

Decidable α is represented the same way as Bool

An inductive type with a trivial structure, that is,

it is none of the types described above
it is not marked unsafe

extern s sym;

s sym(t₁, ..., tₘ);

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 153/156

https://github.com/leanprover/lean4/blob/master/src/lake/examples/ffi
https://github.com/leanprover/lean4/blob/master/src/lake/examples/reverse-ffi
file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/dev/ffi.html#initialization

it has a single constructor with a single parameter of relevant type

is represented by the representation of that parameter's type.

For example, { x : α // p } , the Subtype structure of a value of type α and an irrelevant
proof, is represented by the representation of α .

Nat is represented by lean_object * . Its runtime value is either a pointer to an opaque
bignum object or, if the lowest bit of the "pointer" is 1 (lean_is_scalar), an encoded unboxed
natural number (lean_box / lean_unbox).

A universe Sort u , type constructor ... → Sort u , or proposition p : Prop is irrelevant and
is either statically erased (see above) or represented as a lean_object * with the runtime
value lean_box(0)

Any other type is represented by lean_object * . Its runtime value is a pointer to an object of
a subtype of lean_object (see the "Inductive types" section below) or the unboxed value
lean_box(cidx) for the cidx th constructor of an inductive type if this constructor does not

have any relevant parameters.

Example: the runtime value of u : Unit is always lean_box(0) .

Inductive types

For inductive types which are in the fallback lean_object * case above and not trivial constructors,
the type is stored as a lean_ctor_object , and lean_is_ctor will return true. A lean_ctor_object
stores the constructor index in the header, and the fields are stored in the m_objs portion of the
object.

The memory order of the fields is derived from the types and order of the fields in the declaration.
They are ordered as follows:

Non-scalar fields stored as lean_object *
Fields of type USize
Other scalar fields, in decreasing order by size

Within each group the fields are ordered in declaration order. Warning: Trivial wrapper types still
count toward a field being treated as non-scalar for this purpose.

To access fields of the first kind, use lean_ctor_get(val, i) to get the i th non-scalar field.
To access USize fields, use lean_ctor_get_usize(val, n+i) to get the i th usize field and n
is the total number of fields of the first kind.
To access other scalar fields, use lean_ctor_get_uintN(val, off) or
lean_ctor_get_usize(val, off) as appropriate. Here off is the byte offset of the field in the

structure, starting at n*sizeof(void*) where n is the number of fields of the first two kinds.

For example, a structure such as

would get re-sorted into the following memory order:

S.ptr_1 - lean_ctor_get(val, 0)
S.ptr_2 - lean_ctor_get(val, 1)
S.ptr_3 - lean_ctor_get(val, 2)
S.usize_1 - lean_ctor_get_usize(val, 3)
S.usize_2 - lean_ctor_get_usize(val, 4)
S.sc64_1 - lean_ctor_get_uint64(val, sizeof(void*)*5)
S.sc64_2 - lean_ctor_get_float(val, sizeof(void*)*5 + 8)
S.sc64_3 - lean_ctor_get_uint64(val, sizeof(void*)*5 + 16)

structure S where
 ptr_1 : Array Nat
 usize_1 : USize
 sc64_1 : UInt64
 ptr_2 : { x : UInt64 // x > 0 } -- wrappers don't count as scalars
 sc64_2 : Float -- `Float` is 64 bit
 sc8_1 : Bool
 sc16_1 : UInt16
 sc8_2 : UInt8
 sc64_3 : UInt64
 usize_2 : USize
 ptr_3 : Char -- trivial wrapper around `UInt32`
 sc32_1 : UInt32
 sc16_2 : UInt16

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 154/156

S.sc32_1 - lean_ctor_get_uint32(val, sizeof(void*)*5 + 24)
S.sc16_1 - lean_ctor_get_uint16(val, sizeof(void*)*5 + 28)
S.sc16_2 - lean_ctor_get_uint16(val, sizeof(void*)*5 + 30)
S.sc8_1 - lean_ctor_get_uint8(val, sizeof(void*)*5 + 32)
S.sc8_2 - lean_ctor_get_uint8(val, sizeof(void*)*5 + 33)

Borrowing

By default, all lean_object * parameters of an @[extern] function are considered owned, i.e. the
external code is passed a "virtual RC token" and is responsible for passing this token along to
another consuming function (exactly once) or freeing it via lean_dec . To reduce reference counting
overhead, parameters can be marked as borrowed by prefixing their type with @& . Borrowed objects
must only be passed to other non-consuming functions (arbitrarily often) or converted to owned
values using lean_inc . In lean.h , the lean_object * aliases lean_obj_arg and b_lean_obj_arg
are used to mark this difference on the C side.

Return values and @[export] parameters are always owned at the moment.

Initialization

When including Lean code as part of a larger program, modules must be initialized before accessing
any of their declarations. Module initialization entails

initialization of all "constants" (nullary functions), including closed terms lifted out of other
functions
execution of all [init] functions
execution of all [builtin_init] functions, if the builtin parameter of the module initializer
has been set

The module initializer is automatically run with the builtin flag for executables compiled from
Lean code and for "plugins" loaded with lean --plugin . For all other modules imported by lean ,
the initializer is run without builtin . Thus [init] functions are run iff their module is imported,
regardless of whether they have native code available or not, while [builtin_init] functions are
only run for native executable or plugins, regardless of whether their module is imported or not.
lean uses built-in initializers for e.g. registering basic parsers that should be available even without

importing their module (which is necessary for bootstrapping).

The initializer for module A.B is called initialize_A_B and will automatically initialize any
imported modules. Module initializers are idempotent (when run with the same builtin flag), but
not thread-safe. Together with initialization of the Lean runtime, you should execute code like the
following exactly once before accessing any Lean declarations:

In addition, any other thread not spawned by the Lean runtime itself must be initialized for Lean use
by calling

void lean_initialize_runtime_module();
void lean_initialize();
lean_object * initialize_A_B(uint8_t builtin, lean_object *);
lean_object * initialize_C(uint8_t builtin, lean_object *);
...

lean_initialize_runtime_module();
//lean_initialize(); // necessary if you (indirectly) access the `Lean` package

lean_object * res;
// use same default as for Lean executables
uint8_t builtin = 1;
res = initialize_A_B(builtin, lean_io_mk_world());
if (lean_io_result_is_ok(res)) {
 lean_dec_ref(res);
} else {
 lean_io_result_show_error(res);
 lean_dec(res);
 return ...; // do not access Lean declarations if initialization failed
}
res = initialize_C(builtin, lean_io_mk_world());
if (lean_io_result_is_ok(res)) {
...

//lean_init_task_manager(); // necessary if you (indirectly) use `Task`
lean_io_mark_end_initialization();

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 155/156

and should be finalized in order to free all thread-local resources by calling

@[extern] in the Interpreter

The interpreter can run Lean declarations for which symbols are available in loaded shared libraries,
which includes @[extern] declarations. Thus to e.g. run #eval on such a declaration, you need to

1. compile (at least) the module containing the declaration and its dependencies into a shared
library, and then

2. pass this library to lean --load-dynlib= to run code import ing this module.

Note that it is not sufficient to load the foreign library containing the external symbol because the
interpreter depends on code that is emitted for each @[extern] declaration. Thus it is not possible
to interpret an @[extern] declaration in the same file.

See tests/compiler/foreign for an example.

void lean_initialize_thread();

void lean_finalize_thread();

05/06/2024, 12:57 Lean Manual

file:///home/edrx/snarf/https/lean-lang.org/lean4/doc/print.html 156/156

https://github.com/leanprover/lean4/tree/master/tests/compiler/foreign/

