
Type Checking in Lean 4
This document exists to help readers better understand Lean's kernel, clarify the trust
assumptions involved in using Lean, and serve as a resource for those who wish to write
their own external type checkers for Lean's kernel language.
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What is the kernel?
The kernel is an implementation of Lean's logic in software; a computer program with the
minimum amount of machinery required to construct elements of Lean's logical language
and check those elements for correctness. The major components are:

A sort of names used for addressing.

A sort of universe levels.

A sort of expressions (lambdas, variables, etc.)

A sort of declarations (axioms, definitions, theorems, inductive types, etc.)

Environments, which are maps of names to declarations.

Functionality for manipulating expressions. For example bound variable substitution
and substitution of universe parameters.

Core operations used in type checking, including type inference, reduction, and
definitional equality checking.

Functionality for manipulating and checking inductive type declarations. For example,
generating a type's recursors (elimination rules), and checking whether a type's
constructors agree with the type's specification.

Optional kernel extensions which permit the operations above to be performed on nat
and string literals.

The purpose of isolating a small kernel and requiring Lean definitions to be translated to a
minimal kernel language is to increase the trustworthiness of the proof system. Lean's
design allows users to interact with a full-featured proof assistant which offers nice things
like robust metaprogramming, rich editor support, and extensible syntax, while also
permitting extraction of constructed proof terms into a form that can be verified without
having to trust the correctness of the code that implements the higher level features that
makes Lean (the proof assistant) productive and pleasant to use.

In section 1.2.3 of the Certified Programming with Dependent Types, Adam Chlipala defines
what is sometimes referred to as the de Bruijn criterion, or de Bruijn principle.

Proof assistants satisfy the “de Bruijn criterion” when they produce proof terms in
small kernel languages, even when they use complicated and extensible procedures to
seek out proofs in the first place. These core languages have feature complexity on par
with what you find in proposals for formal foundations for mathematics (e.g., ZF set
theory). To believe a proof, we can ignore the possibility of bugs during search and just
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rely on a (relatively small) proof-checking kernel that we apply to the result of the
search.

Lean's kernel is small enough that developers can write their own implementation and

independently check proofs in Lean by using an exporter1. Lean's export format contains
enough information about the exported declarations that users can optionally restrict their
implementation to certain subsets of the full kernel. For example, users interested in the
core functionality of inference, reduction, and definitional equality may opt out of
implementing the functionality for checking inductive specifications.

In addition to the list of items above, external type checkers will also need a parser for
Lean's export format, and a pretty printer, for input and output respectively. The parser and
pretty printer are not part of the kernel, but they are important if one wants to have
interesting interactions with the kernel.

1 Writing your own type checker is not an afternoon project, but it is well within the realm of what is
achievable for citizen scientists.
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Trust
A big part of Lean's value proposition is the ability to construct mathematical proofs,
including proofs about program correctness. A common question from users is how much
trust, and in what exactly, is involved in trusting Lean.

An answer to this question has two parts: what users need to trust in order to trust proofs in
Lean, and what users need to trust in order to trust executable programs obtained by
compiling a Lean program.

Concretely, the distinction is that proofs (which includes statements about programs) and
uncompiled programs can be expressed directly in Lean's kernel language and checked by
an implementation of the kernel. They do not need to be compiled to an executable,
therefore the trust is limited to whatever implementation of the kernel they're being
checked with, and the Lean compiler does not become part of the trusted code base.

Trusting the correctness of compiled Lean programs requires trust in Lean's compiler, which
is separate from the kernel and is not part of Lean's core logic. There is a distinction
between trusting statements about programs in Lean, and trusting programs produced by the
Lean compiler. Statements about Lean programs are proofs, and fall into the category that
only requires trust in the kernel. Trusting that proofs about a program extend to the behavior
of a compiled program brings the compiler into the trusted code base.

NOTE: Tactics and other metaprograms, even tactics that are compiled, do not need to be
trusted at all; they are untrusted code which is used to produce kernel terms for use by
something else. A proposition P  can be proved in Lean using an arbitrarily complex
compiled metaprogram without expanding the trusted code base beyond the kernel,
because the metaprogram is required to produce a proof expressed in Lean's kernel
language.

These statements hold for proofs that are exported. To satisfy more pedantic vigilant
readers, this does necessarily entail some degree of trust in, for example, the
operating system on the computer used to run the exporter and verifier, the hardware,
etc.

For proofs that are not exported, users are additionally trusting the elements of Lean
outside the kernel (the elaborator, parser, etc.).

An more itemized list

A more itemized description of the trust involved in Lean 4 comes from a post by Mario
Carneiro on the Lean Zulip.
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In general:

1. You trust that the lean logic is sound (author's note: this would include any kernel
extensions, like those for Nat and String)

2. If you didn't prove the program correct, you trust that the elaborator has
converted your input into the lean expression denoting the program you expect.

3. If you did prove the program correct, you trust that the proofs about the program
have been checked (use external checkers to eliminate this)

4. You trust that the hardware / firmware / OS software running all of these things
didn't break or lie to you

5. (When running the program) You trust that the hardware / firmware / OS
software faithfully executes the program according to spec and there are no
debuggers or magnets on the hard drive or cosmic rays messing with your output

For compiled executables:

6. You trust that any compiler overrides (extern / implemented_by) do not violate
the lean logic (i.e. the model matches the implementation)

7. You trust the lean compiler (which lowered the lean code to C) to preserve the
semantics of the program

8. You trust clang / LLVM to convert the C program into an executable with the same
semantics

The first set of points applies to both proofs and compiled executables, while the second set
applies specifically to compiled executable programs.

Trust for external checkers

1. You're still trusting Lean's logic is sound.

2. You're trusting that the developers of the external checker properly implemented the
program.

3. You're trusting the implementing language's compiler or interpreter. If you run
multiple external checkers, you can think of them as circles in a venn diagram; you're
trusting that the part where the circles intersect is free of soundness issues.

4. For the Nat and String kernel extensions, you're probably trusting a bignum library and
the UTF-8 string type of the implementing language.
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The advantages of using external checkers are:

Users can check their results with something that is completely disjoint from the Lean
ecosystem, and is not dependent on any parts of Lean's code base.

External checkers can be written to take advantage of mature compilers or
interpreters.

For kernel extensions, users can cross-check the results of multiple bignum/string
implementations.

Using the export feature is the only way to get out of trusting the parts of Lean outside
the kernel, so there's a benefit to doing this even if the export file is checked by
something like lean4lean. Users worried about fallout from misuse of Lean's
metaprogramming features are therefore encouraged to use the export feature.
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Unsafe declarations
Lean's vernacular allows users to write declarations marked as unsafe , which are permitted
to do things that are normally forbidden. For example, Lean permits the following definition:

Unsafe declarations are not exported1, do not need to be trusted, and (for the record) are
not permitted in proofs, even in the vernacular. Permitting unsafe declarations in the
vernacular is still beneficial for Lean users, because it gives users more freedom when
writing code that is used to produce proofs but doesn't have to be a proof in and of itself.

The aesop library provides us with an excellent real world example. Aesop is an automation
framework; it helps users generate proofs. At some point in development, the authors of
aesop felt that the best way to express a certain part of their system was with a mutually
defined inductive type, seen here. It just so happens that this set of inductive type has an
invalid occurrence of one of the types being declared within Lean's theory, and would not be
permitted by Lean's kernel, so it needs to be marked unsafe .

Permitting this definition as an unsafe  declaration is still a win-win. The Aesop developers
were able to use Lean to write their library the way they wanted, in Lean, without having to
call out to (and learn) a separate metaprogramming DSL, they didn't have to jump through
hoops to satisfy the kernel, and users of aesop can still export and verify the proofs
produced by aesop without having to verify aesop itself.

1 There's technically nothing preventing an unsafe declaration from being put in an export file
(especially since the exporter is not a trusted component), but checks run by the kernel will prevent
unsafe declarations from being added to the environment if they are actually unsafe. A properly
implemented type checker would throw an error if it received an export file declaring the aesop library
code described above.

  unsafe def y : Nat := y
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Adversarial inputs
A topic that often accompanies the more general trust question is Lean's robustness against
adversarial inputs.

A correct type checker will restrict the input it receives to the rules of Lean's type system
under whatever axioms the operator allows. If the operator restricts the permitted axioms
to the three "official" ones ( propext , Quot.sound , Classical.choice ), an input file should
not be able to offer a proof of the prelude's False  which is accepted by the type checker
under any circumstances.

However, a minimal type checker will not actively protect against inputs which provide Lean
declarations that are logically sound, but are designed to fool a human operator. For
example, redefining deep dependencies an adversary knows will not be examined by a
referee, or introducing unicode lookalikes to produce a pretty printer output that conceals
modification of key definitions.

The idea that "a user might think a theorem has been formally proved, while in fact he or
she is misled about what it is that the system has actually done" is addressed by the idea of

Pollack consistency and is explored in this publication1 by Freek Wiedijk.

Note that there is nothing in principle preventing developers from writing software or
extending a type checker to provide protection against such attacks, it's just not captured by
the minimal functionality required by the kernel. However, the extent to which Lean's users
have embraced its powerful custom syntax and macro systems may pose some challenges
for those interested in improving the story here. Readers should consider this somewhat of
an open issue for future work

1 Freek Wiedijk. Pollack-inconsistency. Electronic Notes in Theoretical Computer Science, 285:85–100,
2012
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Export format
An exporter is a program which emits Lean declarations using the kernel language, for
consumption by external type checkers. Producing an export file is a complete exit from the
Lean ecosystem; the data in the file can be checked with entirely external software, and the
exporter itself is not a trusted component. Rather than inspecting the export file itself to see
whether the declarations were exported as the developer intended, the exported
declarations are checked by the external checker, and are displayed back to the user by a
pretty printer, which produces output far more readable than the export file. Readers can
(and are encouraged to) write their own external checkers for Lean export files.

The official exporter is lean4export.

A description of the current export file format can be found below. There are also ongoing
discussions about how best to evolve the export format.

(ver 0.1.2)

For clarity, some of the compound items are decorated here with a name, for example
(name : T) , but they appear in the export file as just an element of T .

The export scheme for mutual and nested inductives is as follows:

Inductive.inductiveNames  contains the names of all types in the mutual .. end
block. The names of any other inductive types used in a nested (but not mutual)
construction will not be included.
Inductive.constructorNames  contains the names of all constructors for THAT

inductive type, and no others (no constructors of the other types in a mutual block,
and no constructors from any nested construction).

NOTE: readers writing their own parsers and/or checkers should initialize names[0] as the
anonymous name, and levels[0] as universe zero, as they are not emitted by the exporter,
but are expected to occupy the name and level indices for 0.
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File ::= ExportFormatVersion Item*

ExportFormatVersion ::= nat '.' nat '.' nat

Item ::= Name | Universe | Expr | RecRule | Declaration

Declaration ::= 
    | Axiom 
    | Quotient 
    | Definition 
    | Theorem 
    | Inductive 
    | Constructor 
    | Recursor

nidx, uidx, eidx, ridx ::= nat

Name ::=
  | nidx "#NS" nidx string
  | nidx "#NI" nidx nat

Universe ::=
  | uidx "#US"  uidx
  | uidx "#UM"  uidx uidx
  | uidx "#UIM" uidx uidx
  | uidx "#UP"  nidx

Expr ::=
  | eidx "#EV"  nat
  | eidx "#ES"  uidx
  | eidx "#EC"  nidx uidx*
  | eidx "#EA"  eidx eidx
  | eidx "#EL"  Info nidx eidx
  | eidx "#EP"  Info nidx eidx eidx
  | eidx "#EZ"  Info nidx eidx eidx eidx
  | eidx "#EJ"  nidx nat eidx
  | eidx "#ELN" nat
  | eidx "#ELS" (hexhex)*
  -- metadata node w/o extensions
  | eidx "#EM" mptr eidx

Info ::= "#BD" | "#BI" | "#BS" | "#BC"

Hint ::= "O" | "A" | "R" nat

RecRule ::= ridx "#RR" (ctorName : nidx) (nFields : nat) (val : eidx)

Axiom ::= "#AX" (name : nidx) (type : eidx) (uparams : uidx*)

Def ::= "#DEF" (name : nidx) (type : eidx) (value : eidx) (hint : Hint) 
(uparams : uidx*)
  
Theorem ::= "#THM" (name : nidx) (type : eidx) (value : eidx) (uparams: uidx*)

Quotient ::= "#QUOT" (name : nidx) (type : eidx) (uparams : uidx*)

Inductive ::= 
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  "#IND"
  (name : nidx) 
  (type : eidx) 
  (isRecursive: 0 | 1)
  (isNested : 0 | 1)
  (numParams: nat) 
  (numIndices: nat)
  (numInductives: nat)
  (inductiveNames: nidx {numInductives})
  (numConstructors : nat) 
  (constructorNames : nidx {numConstructors}) 
  (uparams: uidx*)

Constructor ::= 
  "#CTOR"
  (name : nidx) 
  (type : eidx) 
  (parentInductive : nidx) 
  (constructorIndex : nat)
  (numParams : nat)
  (numFields : nat)
  (uparams: uidx*)

Recursor ::= 
  "#REC"
  (name : nidx)
  (type : eidx)
  (numInductives : nat)
  (inductiveNames: nidx {numInductives})
  (numParams : nat)
  (numIndices : nat)
  (numMotives : nat)
  (numMinors : nat)
  (numRules : nat)
  (recRules : ridx {numRules})
  (k : 1 | 0)
  (uparams : uidx*)
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Kernel concepts
This chapter begins with a high level road map, which everyone should read, then covers
some ideas needed to understand the kernel's nuts and bolts, and is less focused on theory.
The ideas in the later sections do not need to be completely understood up-front, so readers
should feel free to skim them and come back as needed.
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The big picture
To give the reader a road map, the entire procedure of checking an export file consists of
these steps:

Parse an export file, yielding a collection of components for each primitive sort: names,
levels, and expressions, as well as a collection of declarations.

The collection of parsed declarations represents an environment, which is a mapping
from each declaration's name to the declaration itself; these are the actual targets of
the type checking process.

For each declaration in the environment, the kernel requires that the declaration is not
already declared in the environment, has no duplicate universe parameters, that the
declaration's type is actually a type and not a value (that infer declar.ty  returns an
expression Sort <n> ), and that the declaration's type has no free variables.

For definitions, theorems, and opaque declarations, assert that inferring the type of
the definition's value yields an expression which is definitionally equal to the type the
user assigned to the declaration. This is where the rubber meets the road in terms of
asserting that proofs are correct, and for theorems, this is the step that corresponds to
"the user says this is a proof of P , does the value actually constitute a valid proof of
P ".

For inductive declarations, their constructors, and recursors, check that they are
properly formed and comply with the rules of Lean's type theory (more on this later).

If the export file includes the primitive declarations for quotient types, ensure those
declarations have the correct types, and that the Eq  type exists, and is defined
properly (since quotients rely on equality).

Finally, pretty print any declarations requested by the user, so they can check that the
declarations checked match the declarations they exported.
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Clarifying language

Type, Sort, Prop

Prop  refers to Sort 0

Type n  refers to Sort (n+1)

Sort n  is how these are actually represented in the kernel, and can always be used.

The reason why Type <N>  and Prop  are sometimes used instead of always adhering to
Sort n  is that elements of Type <N>  have certain important qualities and behaviors that

are not observed by those of Prop  and vice versa.

Example: elements of Prop  can be considered for definitional proof irrelevance, while
elements of Type _  can use large elimination without needing to satisfy other tests.

Level/universe and Sort

The terms "level" and "universe" are basically synonymous; they refer to the same kind of
kernel object.

A small distinction that's sometimes made is that "universe parameter" may be implicitly
restricted to levels that are variables/parameters. This is because "universe parameters"
refers to the set of levels that parameterize a Lean declaration, which can only be identifiers,
and are therefore restricted to identifiers. If this doesn't mean anything to you, don't worry
about it for now. As an example, a Lean declaration may begin with def Foo.{u} ..
meaning "a definition parameterized by the universe variable u ", but it may not begin with
def Foo.{1} .. , because 1  is an explicit level, and not a parameter.

On the other hand, Sort _  is an expression that represents a level.

Value vs. type

Expressions can be either values or types. Readers are probably familiar with the idea that
Nat.zero  is a value, while Nat  is a type. An expression e  is a value or "value level

expression" if infer e != Sort _ . An expression e  is a type or "type level expression" if
infer(e) = Sort _ .
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Parameters vs. indices

The distinction between a parameter and index comes into play when dealing with inductive
types. Roughly speaking, elements of a telescope that come before the colon in a
declaration are parameters, and elements that come after the colon are indices:

The distinction is non-negligible within the kernel, because parameters are fixed within a
declaration, while indices are not.

      parameter ----v         v---- index
inductive Nat.le (n : Nat) : Nat → Prop
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Instantiation and abstraction
Instantiation refers to substitution of bound variables for the appropriate arguments.
Abstraction refers to replacement of free variables with the appropriate bound variable
when replacing binders. Lean's kernel uses deBruijn indices for bound variables and unique
identifiers for free variables.

For our purposes, a free variable is a variable in an expression that refers to a binder which
has been "opened", and is no longer immediately available to us, so we replace the
corresponding bound variable with a free variable that has some information about the
binder we're leaving behind.

To illustrate, let's say we have some lambda expression (fun (x : A) => <body>)  and
we're doing type inference. Type inference has to traverse into the <body>  part of the
expression, which may contain a bound variable that refers to x . When we traverse into the
body, we can either add x  to some stateful context of binders and take the whole stateful
context into the body with us, or we can temporarily replace all of the bound variables that
refer to x  with a free variable, allowing us to traverse into the body without having to carry
any additional context.

If we eventually come back to where we were before we opened the binder, abstraction
allows us to replace all of the free variables that were once bound variables referring to x
with new bound variables that again refer to x , with the correct deBruijn indices.

Implementing free variable abstraction

For deBruijn levels, the free variables keep track of a number that says "I am a free variable
representing the nth bound variable from the top of the telescope".

This is the opposite of a deBruijn index, which is a number indicating "the nth bound
variable from the bottom of the telescope".

Top and bottom here refer to visualizing the expression's telescope as a tree:

      fun
      /  \
    a    fun
        /   \
      b      ...
              \
              fun
             /   \
            e    bvar(0)
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For example, with a lambda fun (a b c d e) => bvar(0) , the bound variable refers to e ,
by referencing "the 0th from the bottom".

In the lambda expression fun (a b c d e) => fvar(4) , the free variable is a deBruijn level
representing e  again, but this time as "the 4th from the top of the telescope".

Why the distinction? When we create a free variable during strong reduction, we know a
couple of things: we know that the free variable we're about to sub in might get moved
around by further reduction, we know how many open binder are ABOVE us (because we
had to visit them to get here), and we know we might need to quote/abstract this expression
to replace the binders, meaning we need to re-bind the free variable. However, in that
moment, we do NOT know how many binders remain below us, so we cannot say how many
variables from the bottom that variable might be when it's eventually abstracted/quoted.

For implementations using unique identifiers to tag free variables, this problem is solved by
having the actual telescope that's being reconstructed during abstraction. As long as you
have the expression and a list of the uniquely-tagged free variables, you can abstract,
because the position of the free variables within the list indicates their binder position.
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Weak and strong reduction
The implementation details of Lean's reduction strategies is discussed in another chapter;
this section is specifically to clarify the difference between the general concepts of weak and
strong reduction.

Weak reduction

Weak reduction refers to reduction that stops at binders which do not have an argument
applied to them. By binders, we mean lambda, pi, and let expressions.

For example, weak reduction can reduce (fun (x y : Nat) => y + x) (0 : Nat)  to (fun 
(y : Nat) => y + 0) , but can do no further reduction.

When we say or 'weak head normal form reduction', or just reduction without specifically
identifying it as 'strong', we're talking about weak reduction. Strong reduction just happens
as a byproduct of applying weak reduction after we've opened a binder somewhere else.

Strong reduction

Strong reduction refers to reduction under open binders; when we run across a binder
without an accompanying argument (like a lambda expression with no app  node applying
an argument), we can traverse into the body and potentially do further reduction by creating
and substituting in a free variable. Strong reduction is needed for type inference and
definitional equality checking. For type inference, we also need the ability to "re-close" open
terms, replacing free variables with the correct bound variables afer some reduction has
been done in the body. This is not as simple as just replacing it with the same bound
variable as before, because bound variables may have shifted, invalidating their old deBruijn
index relative to the new rebuilt expression.

As with weak reduction, strong reduction can stil reduce (fun (x y : Nat) => y + x) (0 : 
Nat)  to (fun (y : Nat) => y + 0) , and instead of getting stuck, it can continue by
substituting y  for a free variable, reducing the expression further to ((fVar id, y, Nat) + 
0) , and (fvar id, y, Nat) .

As long as we keep the free variable information around somewhere, we can re-combine that
information with the reduced (fVar id, y, Nat)  to recreate (fun (y : Nat) => 
bvar(0))
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Names
The first of the kernel's primitive types is Name , which is sort of what it sounds like; it
provides kernel items with a way of addressing things.

Elements of the Name  type are displayed as dot-separated names, which users of Lean are
probably familiar with. For example, num (str (anonymous) "foo") 7  is displayed as
foo.7 .

Implementation notes
The implementation of names assumes UTF-8 strings, with characters as unicode scalars
(these assumptions about the implementing language's string type are also important for
the string literal kernel extension).

Some information on the lexical structure of names can be found here

The exporter does not explicitly output the anonymous name, and expects it to be the 0th
element of the imported names.

Name ::= anonymous | str Name String | num Name Nat
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Universe levels
This section will describe universe levels from an implementation perspective, and will cover
what readers need to know when it comes to type checking Lean declarations. More in-
depth treatment of their role in Lean's type theory can be found in TPIL4, or section 2 of
Mario Carneiro's thesis

The syntax for universe levels is as follows:

Properties of the Level  type that readers should take note of are the existence of a partial
order on universe levels, the presence of variables (the Param  constructor), and the
distinction between Max  and IMax .

Max  simply constructs a universe level that represents the larger of the left and right
arguments. For example, Max(1, 2)  simplifies to 2 , and Max(u, u+1)  simplifies to u+1 .
The IMax  constructor represents the larger of the left and right arguments, unless the right
argument simplifies to Zero , in which case the entire IMax  resolves to 0 .

The important part about IMax  is its interaction with the type inference procedure to
ensure that, for example, forall (x y : Sort 3), Nat  is inferred as Sort 4 , but forall 
(x y : Sort 3), True  is inferred as Prop .

Partial order on levels

Lean's Level  type is equipped with a partial order, meaning there's a "less than or equals"
test we can perform on pairs of levels. The rather nice implementation below comes from
Gabriel Ebner's Lean 3 checker trepplein. While there are quite a few cases that need to be
covered, the only complex matches are those relying on cases , which checks whether x ≤ 
y  by examining whether x ≤ y  holds when a parameter p  is substituted for Zero , and
when p  is substituted for Succ p .

Level ::= Zero | Succ Level | Max Level Level | IMax Level Level | Param Name
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Equality for levels

The Level  type recognizes equality by antisymmetry, meaning two levels l1  and l2  are
equal if l1 ≤ l2  and l2 ≤ l1 .

Implementation notes
Be aware that the exporter does not export Zero , but it is assumed to be the 0th element of
Level .

For what it's worth, the implementation of Level  does not have a large impact on
performance, so don't feel the need to aggressively optimize here.

  leq (x y : Level) (balance : Integer): bool :=
    Zero, _ if balance >= 0 => true
    _, Zero if balance < 0 => false
    Param(i), Param(j) => i == j && balance >= 0
    Param(_), Zero => false
    Zero, Param(_) => balance >= 0
    Succ(l1_), _ => leq l1_ l2 (balance - 1)
    _, Succ(l2_) => leq l1 l2_ (balance + 1)

    -- descend left
    Max(a, b), _ => (leq a l2 balance) && (leq b l2 balance)

    -- descend right
    (Param(_) | Zero), Max(a, b) => (leq l1 a balance) || (leq l1 b balance)

    -- imax
    IMax(a1, b1), IMax(a2, b2) if a1 == a2 && b1 == b2 => true
    IMax(_, p @ Param(_)), _ => cases(p)
    _, IMax(_, p @ Param(_)) => cases(p)
    IMax(a, IMax(b, c)), _ => leq Max(IMax(a, c), IMax(b, c)) l2 balance
    IMax(a, Max(b, c)), _ => leq (simplify Max(IMax(a, b), IMax(a, c))) l2 
balance
    _, IMax(a, IMax(b, c)) => leq l1 Max(IMax(a, c), IMax(b, c)) balance
    _, IMax(a, Max(b, c)) => leq l1 (simplify Max(IMax(a, b), IMax(a, c))) 
balance

  cases l1 l2 p: bool :=
    leq (simplify $ subst l1 p zero) (simplify $ subst l2 p zero)
    ∧
    leq (simplify $ subst l1 p (Succ p)) (simplify $ subst l2 p (Succ p))
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Expressions

Complete syntax

Expressions will be explained in more detail below, but just to get it out in the open, the
complete syntax for expressions, including the string and nat literal extensions, is as follows:

Some notes:

The Nat  used by nat literals should be an arbitrary precision natural/bignum.

The expressions that have binders (lambda, pi, let, free variable) can just as easily
bundle the three arguments (binder_name, binder_type, binder_style) as one argument
Binder , where a binder is Binder ::= Name BinderInfo Expr . In the pseudocode

Expr ::= 
  | boundVariable 
  | freeVariable 
  | const 
  | sort 
  | app 
  | lambda 
  | forall 
  | let 
  | proj 
  | literal

BinderInfo ::= Default | Implicit | InstanceImplicit | StrictImplicit

const ::= Name, Level*
sort ::= Level
app ::= Expr Expr
-- a deBruijn index
boundVariable ::= Nat
lambda ::= Name, (binderType : Expr), BinderInfo, (body : Expr)
forall ::= Name, (binderType : Expr), BinderInfo, (body : Expr)
let ::= Name, (binderType : Expr), (val : Expr) (body : Expr)
proj ::= Name Nat Expr
literal ::= natLit | stringLit

-- Arbitrary precision nat/unsigned integer
natLit ::= Nat
-- UTF-8 string
stringLit ::= String

-- fvarId can be implemented by unique names or deBruijn levels; 
-- unique names are more versatile, deBruijn levels have better
-- cache behavior
freeVariable ::= Name, Expr, BinderInfo, fvarId
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that appears elsewhere I will usually treat them as though they have that property,
because it's easier to read.

Free variable identifiers can be either unique identifiers, or they can be deBruijn levels.

The expression type used in Lean proper also has an mdata  constructor, which
declares an expression with attached metadata. This metadata does not effect the
expression's behavior in the kernel, so we do not include this constructor.

Binder information

Expressions constructed with the lambda, pi, let, and free variable constructors contain
binder information, in the form of a name, a binder "style", and the binder's type. The
binder's name and style are only for use by the pretty printer, and do not alter the core
procedures of inference, reduction, or equality checking. In the pretty printer however, the
binder style may alter the output depending on the pretty printer options. For example, the
user may or may not want to display implicit or instance implicits (typeclass variables) in the
output.

Sort

sort  is simply a wrapper around a level, allowing it to be used as an expression.

Bound variables

Bound variables are implemented as natural numbers representing deBruijn indices.

Free variables

Free variables are used to convey information about bound variables in situations where the
binder is currently unavailable. Usually this is because the kernel has traversed into the
body of a binding expression, and has opted not to carry a structured context of the binding
information, instead choosing to temporarily swap out the bound variable for a free
variable, with the option of swapping in a new (maybe different) bound variable to
reconstruct the binder. This unavailability description may sound vague, but a literal
explanation that might help is that expressions are implemented as trees without any kind
of parent pointer, so when we descend into child nodes (especially across function
boundaries), we end up just losing sight of the elements above where we currently are in a
given expression.
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When an open expression is closed by reconstructing binders, the bindings may have
changed, invalidating previously valid deBruijn indices. The use of unique names or deBruijn
levels allow this re-closing of binders to be done in a way that compensates for any changes
and ensures the new deBruijn indices of the re-bound variables are valid with respect the
reconstructed telescope (see this section).

Going forward, we may use some form of the term "free variable identifier" to refer to the
objects in whatever scheme (unique IDs or deBruijn levels) an implementation may be using.

Const

The const  constructor is how an expression refers to another declaration in the
environment, it must do so by reference.

In example below, def plusOne  creates a Definition  declaration, which is checked, then
admitted to the environment. Declarations cannot be placed directly in expressions, so
when the type of plusOne_eq_succ  invokes the previous declaration plusOne , it must do so
by name. An expression is created: Expr.const (plusOne, []) , and when the kernel finds
this const  expression, it can look up the declaration referred to by name, plusOne , in the
environment:

Expressions created with the const  constructor also carry a list of levels which are
substituted into any unfolded or inferred declarations taken from the environment by
looking up the definition the const  expression refers to. For example, inferring the type of
const List [Level.param(x)]  involves looking up the declaration for List  in the current

environment, retrieving its type and universe parameters, then substituting x  for the
universe parameter with which List  was initially declared.

Lambda, Pi

lambda  and pi  expressions (Lean proper uses the name forallE  instead of pi ) refer to
function abstraction and the "forall" binder (dependent function types) respectively.

def plusOne : Nat -> Nat := fun x => x + 1

theorem plusOne_eq_succ (n : Nat) : plusOne n = n.succ := rfl 

  binderName      body
      |            |
fun (foo : Bar) => 0 
            |         
        binderType    

-- `BinderInfo` is reflected by the style of brackets used to
-- surround the binder.
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Let

let  is exactly what it sounds like. While let  expressions are binders, they do not have a
BinderInfo , their binder info is treated as Default .

App

app  expressions represent the application of an argument to a function. App nodes are
binary (have only two children, a single function and an single argument), so f x_0 x_1 .. 
x_N  is represented by App(App(App(f, x_0), x_1)..., x_N) , or visualized as a tree:

An exceedingly common kernel operation for manipulating expressions is folding and
unfolding sequences of applications, getting (f, [x_0, x_1, .., x_N])  from the tree
structure above, or folding f, [x_0, x_1, .., x_N]  into the tree above.

Projections

The proj  constructor represents structure projections. Inductive types that are not
recursive, have only one constructor, and have no indices can be structures.

The constructor takes a name, which is the name of the type, a natural number indicating
the field being projected, and the actual structure the projection is being applied to.

Be aware that in the kernel, projection indices are 0-based, despite being 1-based in Lean's
vernacular, where 0 is the first non-parameter argument to the constructor.

For example, the kernel expression proj Prod 0 (@Prod.mk A B a b)  would project the a ,
because it is the 0th field after skipping the parameters A  and B .

  binderName      val
      |            |
let (foo : Bar) := 0; foo
            |          |
        binderType     .... body

                App
                / \
              ...  x_N
              /
            ...
           App
          / \
       App  x_1
       / \
     f  x_0
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While the behavior offered by proj  can be accomplished by using the type's recursor, proj
more efficiently handles frequent kernel operations.

Literals

Lean's kernel optionally supports arbitrary precision Nat and String literals. As needed, the
kernel can transform a nat literal n  to Nat.zero  or Nat.succ m , or convert a string literal
s  to String.mk List.nil  or String.mk (List.cons (Char.ofNat _) ...) .

String literals are lazily converted to lists of characters for testing definitional equality, and
when they appear as the major premise in reduction of a recursor.

Nat literals are supported in the same positions as strings (definitional equality and major
premises of a recursor application), but the kernel also provide support for addition,
multiplication, exponentiation, subtraction, mod, division, as well as boolean equality and
"less than or equal" comparisons on nat literals.
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Implementing Expressions
A few noteworthy points about the expression type for readers interested in writing their
own kernel in whole or in part...

Stored data

Expressions need to store some data inline or cache it somewhere to prevent prohibitively
expensive recomputation. For example, creating an expression app x y  needs to calculate
and then store the hash digest of the resulting app expression, and it needs to do so by
getting the cached hash digests of x  and y  instead of traversing the entire tree of x  to
recursively calculate the digest of x , then doing the same for y .

The data you will probably want to store inline are the hash digest, the number of loose
bound variables in an expression, and whether or not the expression has free variables. The
latter two are useful for optimizing instantiation and abstraction respectively.

An example "smart constructor" for app  expressions would be:

No deep copies

Expressions should be implemented such that child expressions used to construct some
parent expression are not deep copied. Put another way, creating an expression app x y
should not recursively copy the elements of x  and y , rather it should take some kind of
reference, whether it's a pointer, integer index, reference to a garbage collected object,
reference counted object, or otherwise (any of these strategies should deliver acceptable
performance). If your default strategy for constructing expressions involves deep copies, you
will not be able to construct any nontrivial environments without consuming massive
amounts of memory.

def mkApp x y:
  let hash := hash x.storedHash y.storedHash
  let numLooseBvars := max x.numLooseBvars y.numLooseBvars
  let hasFvars := x.hasFvars || y.hasFvars
  .app x y (cachedData := hash numLooseBVars hasFVars)
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Example implementation for number of loose bound
variables

For Var  expressions, the number of loose bound variables is the deBruijn index plus one,
because we're counting the number of binders that would need to be applied for that
variable to no longer be loose (the +1  is because deBruijn indices are 0-based). For the
expression Var(0) , one binder needs to be placed above the bound variable in order for
the variable to no longer be loose. For Var(3) , we need four:

When we create a new binder (lambda, pi, or let), we can subtract 1 (using saturating/natural
number subtraction) from the number of loose bvars in the body, because the body is now
under one additional binder.

numLooseBVars e:
    match e with
    | Sort | Const | FVar | StringLit | NatLit => 0
    | Var dbjIdx => dbjIdx + 1,
    | App fun arg => max fun.numLooseBvars arg.numLooseBvars
    | Pi binder body | Lambda binder body => 
    |   max binder.numLooseBVars (body.numLooseBVars - 1)
    | Let binder val body =>
    |   max (max binder.numLooseBvars val.numLooseBvars) (body.numLooseBvars - 
1)
    | Proj _ _ structure => structure.numLooseBvars

--  3 2 1 0
fun a b c d => Var(3)
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Declarations
Declarations are the big ticket items, and are the last domain elements we need to define.

Checking a declaration

For all declarations, the following preliminary checks are performed before any additional
procedures specific to certain kinds of declaration:

The universe parameters in the declaration's declarationInfo  must not have
duplicates. For example, a declaration def Foo.{u, v, u} ...  would be prohibited.

declarationInfo ::= Name, (universe params : List Level), (type : Expr)

declar ::= 
  Axiom declarationInfo
  | Definition declarationInfo (value : Expr) ReducibilityHint
  | Theorem declarationInfo (value : Expr) 
  | Opaque declarationInfo (value : Expr) 
  | Quot declarationInfo
  | InductiveType 
      declarationInfo
      is_recursive: Bool
      num_params: Nat
      num_indices: Nat
      -- The name of this type, and any others in a mutual block
      allIndNames: Name+
      -- The names of the constructors for *this* type only, 
      -- not including the constructors for mutuals that may 
      -- be in this block.
      constructorNames: Name*
      
  | Constructor 
      declarationInfo 
      (inductiveName : Name) 
      (numParams : Nat) 
      (numFields : Nat)

  | Recursor 
        declarationInfo 
        numParams : Nat
        numIndices : Nat
        numMotives : Nat
        numMinors : Nat
        RecRule+
        isK : Bool

RecRule ::= (constructor name : Name), (number of constructor args : Nat), (val 
: Expr)
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The declaration's type must not have free variables; all variables in a "finished"
declaration must correspond to a binder.

The declaration's type must be a type ( infer declarationInfo.type  must produce a
Sort ). In Lean, a declaration def Foo : Nat.succ := ..  is not permitted; Nat.succ

is a value, not a type.

Axiom

The only checks done against axioms are those done for all declarations which ensure the
declarationInfo  passes muster. If an axiom has a valid set of universe parameters and a

valid type with no free variables, it is admitted to the environment.

Quot

The Quot  declarations are Quot , Quot.mk , Quot.ind , and Quot.lift . These declarations
have prescribed types which are known to be sound within Lean's theory, so the
environment's quotient declarations must match those types exactly. These types are hard-
coded into kernel implementations since they are not prohibitively complex.

Definition, theorem, opaque

Definition, theorem, and opaque are interesting in that they both a type and a value.
Checking these declarations involves inferring a type for the declaration's value, then
asserting that the inferred type is definitionally equal to the ascribed type in the
declarationInfo .

In the case of a theorem, the declarationInfo 's type is what the user claims the type is,
and therefore what the user is claiming to prove, while the value is what the user has
offered as a proof of that type. Inferring the type of the received value amounts to checking
what the proof is actually a proof of, and the definitional equality assertion ensures that the
thing the value proves is actually what the user intended to prove.

Reducibility hints

Reducibility hints contain information about how a declaration should be unfolded. An
abbreviation  will generally always be unfolded, opaque  will not be unfolded, and regular 
N  might be unfolded depending on the value of N . The regular  reducibility hints
correspond to a definition's "height", which refers to the number of declarations that
definition uses to define itself. A definition x  with a value that refers to definition y  will
have a height value greater than y .
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The Secret Life of Inductive Types

Inductive

For clarity, the whole shebang of "an inductive declaration" is a type, a list of constructors,
and a list of recursors. The declaration's type and constructors are specified by the user, and
the recursor is derived from those elements. Each recursor also gets a list of "recursor
rules", also known as computation rules, which are value level expressions used in iota
reduction (a fancy word for pattern matching). Going forward, we will do our best do
distinguish between "an inductive type" and "an inductive declaration".

Lean's kernel natively supports mutual inductive declarations, in which case there is a list of
(type, list constructor) pairs. The kernel supports nested inductive declarations by
temporarily transforming them to mutual inductives (more on this below).

Inductive types

The kernel requires the "inductive type" part of an inductive declaration to actually be a
type, and not a value ( infer ty  must produce some sort <n> ). For mutual inductives, the
types being declared must all be in the same universe and have the same parameters.

Constructor

For any constructor of an inductive type, the following checks are enforced by the kernel:

The constructor's type/telescope has to share the same parameters as the type of the
inductive being declared.

For the non-parameter elements of the constructor type's telescope, the binder type
must actually be a type (must infer as Sort _ ).

For any non-parameter element of the constructor type's telescope, the element's
inferred sort must be less than or equal to the inductive type's sort, or the inductive
type being declared has to be a prop.

No argument to the constructor may contain a non-positive occurrence of the type
being declared (readers can explore this issue in depth here).

The end of the constructor's telescope must be a valid application of arguments to the
type being declared. For example, we require the List.cons ..  constructor to end
with .. -> List A , and it would be an error for List.cons  to end with .. -> Nat
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Nested inductives

Checking nested inductives is a more laborious procedure that involves temporarily
specializing the nested parts of the inductive types in a mutual block so that we just have a
"normal" (non-nested) set of mutual inductives, checking the specialized types, then
unspecializing everything and admitting those types.

Consider this definition of S-expressions, with the nested construction Array Sexpr :

Zooming out, the process of checking a nested inductive declaration has three steps:

1. Convert the nested inductive declaration to a mutual inductive declaration by
specializing the "container types" in which the current type is being nested. If the
container type is itself defined in terms of other types, we'll need to reach those
components for specialization as well. In the example above, we use Array  as a
container type, and Array  is defined in terms of List , so we need to treat both
Array  and List  as container types.

2. Do the normal checks and construction steps for a mutual inductive type.

3. Convert the specialized nested types back to the original form (un-specializing), adding
the recovered/unspecialized declarations to the environment.

An example of this specialization would be the conversion of the Sexpr  nested inductive
above as:

Then recovering the original inductive declaration in the process of checking these types. To
clarify, when we say "specialize", the new ListSexpr  and ArraySexpr  types above are
specialized in the sense that they're defined only as lists and arrays of Sexpr , as opposed to
being generic over some arbitrary type as with the regular List  type.

inductive Sexpr
| atom (c : Char) : Sexpr
| ofArray : Array Sexpr -> Sexpr

mutual
  inductive Sexpr
    | atom : Char -> Sexpr
    | ofList : ListSexpr -> Sexpr

  inductive ListSexpr 
    | nil : ListSexpr
    | cons : Sexpr -> ListSexpr -> ListSexpr 

  inductive ArraySexpr
    | mk : ListSexpr -> ArraySexpr
end
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Recursors

TBD
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Type Inference
Type inference is a procedure for determining the type of a given expression, and is one of
the core functionalities of Lean's kernel. Type inference is how we determine that Nat.zero
is an element of the type Nat , or that (fun (x : Char) => var(0))  is an element of the
type Char -> Char .

This section begins by examining the simplest complete procedure for type inference, then
the more performant but slightly more complex version of each procedure.

We will also look at a number of additional correctness assertions that Lean's kernel makes
during type inference.

Bound variables

If you're following Lean's implementation and using the locally nameless approach, you
should not run into bound variables during type inference, because all open binders will be
instantiated with the appropriate free variables.

When we come across a binder, we need to traverse into the body to determine the body's
type. There are two main approaches one can take to preserve the information about the
binder type; the one used by Lean proper is to create a free variable that retains the binder's
type information, replace the corresponding bound variables with the free variable using
instantiation, and then enter the body. This is nice, because we don't have to keep track of a
separate piece of state for a typing context.

For closure-based implementations, you will generally have a separate typing context that
keeps track of the open binders; running into a bound variable then means that you will
index into your typing context to get the type of that variable.

Free variables

When a free variable is created, it's given the type information from the binder it represents,
so we can just take that type information as the result of inference.

infer FVar id binder:
  binder.type
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Function application

The additional assertion needed here is that the type of arg  matches the type of binder .
For example, in the expression

(fun (n : Nat) => 2 * n) 10 , we would need to assert that defEq(Nat, infer(10)) .

While existing implementations prefer to perform this check inline, one could potentially
store this equality assertion for processing elsewhere.

Lambda

Pi

Sort

The type of any Sort n  is just Sort (n+1) .

infer App(f, arg):
  match (whnf $ infer f) with
  | Pi binder body => 
    assert! defEq(binder.type, infer arg)
    instantiate(body, arg)
  | _ => error

infer Lambda(binder, body):
  assert! infersAsSort(binder.type)
  let binderFvar := fvar(binder)
  let bodyType := infer $ instantiate(body, binderFVar)
  Pi binder (abstract bodyType binderFVar)

infer Pi binder body:
  let l := inferSortOf binder
  let r := inferSortOf $ instantiate body (fvar(binder))
  imax(l, r)

inferSortOf e:
  match (whnf (infer e)) with
  | sort level => level
  | _ => error

infer Sort level:
  Sort (succ level)
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Const

const  expressions are used to refer to other declarations by name, and any other
declaration referred to must have been previously declared and had its type checked. Since
we therefore already know what the type of the referred to declaration is, we can just look it
up in the environment. We do have to substitute in the current declaration's universe levels
for the indexed definition's universe parameters however.

Let

Proj

We're trying to infer the type of something like Proj (projIdx := 0) (structure := 
Prod.mk A B (a : A) (b : B)) .

Start by inferring the type of the structure offered; from that we can get the structure name
and look up the structure and constructor type in the environment.

Traverse the constructor type's telescope, substituting the parameters of Prod.mk  into the
telescope for the constructor type. If we looked up the constructor type A -> B -> (a : A) 
-> (b : B) -> Prod A B , substitute A and B, leaving the telescope (a : A) -> (b : B) -> 
Prod A B .

The remaining parts of the constructor's telescope represent the structure's fields and have
the type information in the binder, so we can just examine telescope[projIdx]  and take
the binder type. We do have to take care of one more thing; because later structure fields
can depend on earlier structure fields, we need to instantiate the rest of the telescope (the
body at each stage) with proj thisFieldIdx s  where s  is the original structure in the proj
expression we're trying to infer.

infer Const name levels:
  let knownType := environment[name].type
  substituteLevels (e := knownType) (ks := knownType.uparams) (vs := levels)

infer Let binder val body:
  assert! inferSortOf binder
  assert! defEq(infer(val), binder.type)
  infer (instantiate body val)
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Nat literals

Nat literals infer as the constant referring to the declaration Nat .

String literals

String literals infer as the constant referring to the declaration String .

infer Projection(projIdx, structure):
  let structType := whnf (infer structure)
  let (const structTyName levels) tyArgs := structType.unfoldApps
  let InductiveInfo := env[structTyName]
  -- This inductive should only have the one constructor since it's claiming to 
be a structure.
  let ConstructorInfo := env[InductiveInfo.constructorNames[0]]

  let mut constructorType := substLevels ConstructorInfo.type (newLevels := 
levels)

  for tyArg in tyArgs.take constructorType.numParams
    match (whnf constructorType) with
      | pi _ body => inst body tyArg
      | _ => error

  for i in [0:projIdx]
    match (whnf constructorType) with
      | pi _ body => inst body (proj i structure)
      | _ => error

  match (whnf constructorType) with
    | pi binder _=> binder.type
    | _ => error 

infer NatLiteral _:
  Const(Nat, [])

infer StringLiteral _:
  Const(String, [])
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Definitional equality
Definitional equality is implemented as a function that takes two expressions as input, and
returns true  if the two expressions are definitionally equal within Lean's theory, and false
if they are not.

Within the kernel, definitional equality is important simply because it's a necessary part of
type checking. Definitional equality is still an important concept for Lean users who do not
venture into the kernel, because definitional equalities are comparatively nice to work with
in Lean's vernacular; for any a  and b  that are definitionally equal, Lean doesn't need any
prompting or additional input from the user to determine whether two expressions are
equal.

There are two big-picture parts of implementing the definitional equality procedure. First,
the individual tests that are used to check for different definitional equalities. For readers
who are just interested in understanding definitional equality from the perspective of an
end user, this is probably what you want to know.

Readers interested in writing a type checker should also understand how the individual
checks are composed along with reduction and caching to make the problem tractable;
naively running each check and reducing along the way is likely to yield unacceptable
performance results.

Sort equality

Two Sort  expressions are definitionally equal if the levels they represent are equal by
antisymmetry using the partial order on levels.

Const equality

Two Const  expressions are definitionally equal if their names are identical, and their levels
are equal under antisymmetry.

defEq (Sort x) (Sort y):
  x ≤ y ∧ y ≤ x
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Bound Variables

For implementations using a substitution-based strategy like locally nameless (if you're
following the C++ or lean4lean implementations, this is you), encountering a bound variable
is an error; bound variables should have been replaced during weak reduction if they
referred to an argument, or they should have been replaced with a free variable via strong
reduction as part of a definitional equality check for a pi or lambda expression.

For closure-based implementations, look up the elements corresponding to the bound
variables and assert that they are definitionally equal.

Free Variables

Two free variables are definitionally equal if they have the same identifier (unique ID or
deBruijn level). Assertions about the equality of the binder types should have been
performed wherever the free variables were constructed (like the definitional equality check
for pi/lambda expressions), so it is not necessary to re-check that now.

App

Two application expressions are definitionally equal if their function component and
argument components are definitionally equal.

defEq (Const n xs) (Const m ys):
  n == m ∧ forall (x, y) in (xs, ys), antisymmEq x y

  -- also assert that xs and ys have the same length if your `zip` doesn't do 
so.

defEqFVar (id1, _) (id2, _):
  id1 == id2

defEqApp (App f a) (App g b):
  defEq f g && defEq a b
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Pi

Two Pi expressions are definitionally equal if their binder types are definitionally equal, and
their body types, after substituting in the appropriate free variable, are definitionally equal.

Lambda

Lambda uses the same test as Pi:

Structural eta

Lean recognizes definitional equality of two elements x  and y  if they're both instances of
some structure type, and the fields are definitionally equal using the following procedure
comparing the constructor arguments of one and the projected fields of the other:

defEq (Pi s a) (Pi t b)
  if defEq s.type t.type
  then
    let thisFvar := fvar s
    defEq (inst a thisFvar) (inst b thisFvar)
  else
    false

defEq (Lambda s a) (Lambda t b)
  if defEq s.type t.type
  then
    let thisFvar := fvar s
    defEq (inst a thisFvar) (inst b thisFvar)
  else
    false
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The more pedestrian case of congruence T.mk a .. N  = T.mk x .. M  if [a, .., N] = [x, 
.., M] , is simply handled by the App  test.

Unit-like equality

Lean recognizes definitional equality of two elements x: S p_0 .. p_N  and y: T p_0 .. 
p_M  under the following conditions:

S  is an inductive type
S  has no indices
S  has only one constructor which takes no arguments other than the parameters of
S , p_0 .. p_N

The types S p_0 .. p_N  and T p0 .. p_M  are definitionally equal

Intuitively this definitional equality is fine, because all of the information that elements of
these types can convey is captured by their types, and we're requiring those types to be
definitionally equal.

Eta expansion

The lambda created on the right, (fun _ => $0) y  trivially reduces to y , but the addition
of the lambda binder gives the x  and y'  a chance to match with the rest of the definitional
equality procedure.

defEqEtaStruct x y:
  let (yF, yArgs) := unfoldApps y
  if 
    yF is a constructor for an inductive type `T` 
    && `T` can be a struct
    && yArgs.len == T.numParams + T.numFields
    && defEq (infer x) (infer y)
  then
    forall i in 0..t.numFields, defEq Proj(i+T.numParams, x) 
yArgs[i+T.numParams]

    -- we add `T.numParams` to the index because we only want 
    -- to test the non-param arguments. we already know the 
    -- parameters are defEq because the inferred types are 
    -- definitionally equal.

defEqEtaExpansion x y : bool :=
  match x, (whnf $ infer y) with
  | Lambda .., Pi binder _ => defEq x (App (Lambda binder (Var 0)) y)
  | _, _ => false
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Proof irrelevant equality

Lean treats proof irrelevant equality as definitional. For example, Lean's definitional equality
procedure treats any two proofs of 2 + 2 = 4  as definitionally equal expressions.

If a type T  infers as Sort 0 , we know it's a proof, because it is an element of Prop
(remember that Prop  is Sort 0 ).

If p  is a proof of type A  and q  is a proof of type B , then if A  is definitionally equal to B ,
p  and q  are definitionally equal by proof irrelevance.

Natural numbers (nat literals)

Two nat literals are definitionally equal if they can be reduced to Nat.zero , or they can be
reduced as ( Nat.succ x , Nat.succ y ), where x  and y  are definitionally equal.

String literal

StringLit(s), App(String.mk, a)

The string literal s  is converted to an application of Const(String.mk, [])  to a List 
Char . Because Lean's Char  type is used to represent unicode scalar values, their integer
representation is a 32-bit unsigned integer.

To illustrate, the string literal "ok", which uses two characters corresponding to the 32 bit
unsigned integers 111  and 107  is converted to:

defEqByProofIrrelevance p q :
  infer(p) == S ∧ 
  infer(q) == T ∧
  infer(S) == Sort(0) ∧
  infer(T) == Sort(0) ∧
  defEq(S, T)

match X, Y with
| Nat.zero, Nat.zero => true
| NatLit 0, NatLit 0 => true
| Nat.succ x, NatLit (y+1) => defEq x (NatLit y)
| NatLit (x+1), Nat.succ y => defEq (NatLit x) y
| NatLit (x+1), NatLit (y+1) => x == y
| _, _ => false
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(String.mk (((List.cons Char) (Char.ofNat.[] NatLit(111))) (((List.cons Char) (Char.ofNat
NatLit(107))) (List.nil Char))))

Lazy delta reduction and congruence

The available kernel implementations implement a "lazy delta reduction" procedure as part
of the definitional equality check, which unfolds definitions lazily using reducibility hints and
checks for congruence when things look promising. This is a much more efficient strategy
than eagerly reducing both expressions completely before checking for definitional equality.

If we have two expressions a  and b , where a  is an application of a definition with height
10, and b  is an application of a definition with height 12, the lazy delta procedure takes the
more efficient route of unfolding b  to try and get closer to a , as opposed to unfolding both
of them completely, or blindly choosing one side to unfold.

If the lazy delta procedure finds two expressions which are an application of a const
expression to arguments, and the const  expressions refer to the same declaration, the
expressions are checked for congruence (whether they're the same consts applied to
definitionally equal arguments). Congruence failures are cached, and for readers writing
their own kernel, caching these failures turns out to be a performance critical optimization,
since the congruence check involves a potentially expensive call to def_eq_args .

Syntactic equality (also structural or pointer equality)

Two expressions are definitionally equal if they refer to exactly the same implementing
object, as long as the type checker ensures that two objects are equal if and only if they are
constructed from the same components (where the relevant constructors are those for
Name, Level, and Expr).
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Reduction
Reduction is about nudging expressions toward their normal form so we can determine
whether expressions are definitionally equal. For example, we need to perform beta
reduction to determine that (fun x => x) Nat.zero  is definitionally equal to Nat.zero ,
and delta reduction to determine that id List.nil  is definitionally equal to List.nil .

Reduction in Lean's kernel has two properties that introduce concerns which sometimes go
unaddressed in basic textbook treatments of the topic. First, reduction in some cases is
interleaved with inference. Among other things, this means reduction may need to be
performed with open terms, even though the reduction procedures themselves are not
creating free variables. Second, const  expressions which are applied to multiple arguments
may need to be considered together with those arguments during reduction (as in iota
reduction), so sequences of applications need to be unfolded together at the beginning of
reduction.

Beta reduction

Beta reduction is about reducing function application. Concretely, the reduction:

An implementation of beta reduction must despine an expression to collect any arguments
in app  expressions, check whether the expression to which they're applied is a lambda,
then substitute the appropriate argument for any appearances of the corresponding bound
variable in the function body:

An important performance optimization for the instantiation (substitution) component of
beta reduction is what's sometimes referred to as "generalized beta reduction", which
involves gathering the arguments that have a corresponding lambda and substituting them
in all at once. This optimization means that for n  sequential lambda expressions with
applied arguments, we only perform one traveral of the expression to substitute the
appropriate arguments, instead of n  traversals.

(fun x => x) a    ~~>    a

betaReduce e:
  betaReduceAux e.unfoldApps

betaReduceAux f args:
  match f, args with
  | lambda _ body, arg :: rest => betaReduceAux (inst body arg) rest
  | _, _ => foldApps f args
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Zeta reduction (reducing let expressions)

Zeta reduction is a fancy name for reduction of let  expressions. Concretely, reducing

An implementation can be as simple as:

Delta reduction (definition unfolding)

Delta reduction refers to unfolding definitions (and theorems). Delta reduction is done by
replacing a const ..  expr with the referenced declaration's value, after swapping out the
declaration's generic universe parameters for the ones that are relevant to the current
context.

If the current environment contains a definition x  which was declared with universe
parameters u* and value v , then we may delta reduce an expression Const(x, w*)  by
replacing it with val , then substituting the universe parameters u*  for those in w* .

If we had to remove any applied arguments to reach the const  expression that was delta
reduced, those arguments should be reapplied to the reduced definition.

betaReduce e:
  betaReduceAux e.unfoldApps []

betaReduceAux f remArgs argsToApply:
  match f, remArgs with
  | lambda _ body, arg :: rest => betaReduceAux body rest (arg :: argsToApply)
  | _, _ => foldApps (inst f argsToApply) remArgs

let (x : T) := y; x + 1    ~~>    (y : T) + 1

reduce Let _ val body:
  instantiate body val

deltaReduce Const name levels:
  if environment[name] == (d : Declar) && d.val == v then
  substituteLevels (e := v) (ks := d.uparams) (vs := levels)
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Projection reduction

A proj  expression has a natural number index indicating the field to be projected, and
another expression which is the structure itself. The actual expression comprising the
structure should be a sequence of arguments applied to const  referencing a constructor.

Keep in mind that for fully elaborated terms, the arguments to the constructor will include
any parameters, so an instance of the Prod  constructor would be e.g. Prod.mk A B (a : A) 
(b : B) .

The natural number indicating the projected field is 0-based, where 0 is the first non-
parameter argument to the constructor, since a projection cannot be used to access the
structure's parameters.

With this in mind, it becomes clear that once we despine the constructor's arguments into
(constructor, [arg0, .., argN]) , we can reduce the projection by simply taking the

argument at position i + num_params , where num_params  is what it sounds like, the
number of parameters for the structure type.

Special case for projections: String literals

The kernel extension for string literals introduces one special case in projection reduction,
and one in iota reduction.

Projection reduction for string literals: Because the projection expression's structure might
reduce to a string literal (Lean's String  type is defined as a structure with one field, which is
a List Char )

If the structure reduces as a StringLit (s) , we convert that to String.mk (.. : List 
Char)  and proceed as usual for projection reduction.

Nat literal reduction

The kernel extension for nat literals includes reduction of Nat.succ  as well as the binary
operations of addition, subtraction, multiplication, exponentiation, division, mod, boolean

reduce proj fieldIdx structure:
  let (constructorApp, args) := unfoldApps (whnf structure)
  let num_params := environment[constructorApp].num_params
  args[fieldIdx + numParams]

  -- Following our `Prod` example, constructorApp will be `Const(Prod.mk, [u, 
v])`
  -- args will be `[A, B, a, b]`

30/06/2024, 00:41 Type Checking in Lean 4

https://ammkrn.github.io/type_checking_in_lean4/print.html 47/54



equality, and boolean less than or equal.

If the expression being reduced is Const(Nat.succ, []) n  where n  can be reduced to a
nat literal n' , we reduce to NatLit(n'+1)

If the expression being reduced is Const(Nat.<binop>, []) x y  where x  and y  can be
reduced to nat literals x'  and y' , we apply the native version of the appropriate <binop>
to x'  and y' , returning the resulting nat literal.

Examples:

Iota reduction (pattern matching)

Iota reduction is about applying reduction strategies that are specific to, and derived from, a
given inductive declaration. What we're talking about is application of an inductive
declaration's recursor (or the special case of Quot  which we'll see later).

Each recursor has a set of "recursor rules", one recursor rule for each constructor. In
contrast to the recursor, which presents as a type, these recursor rules are value level
expressions showing how to eliminate an element of type T  created with constructor T.c .
For example, Nat.rec  has a recursor rule for Nat.zero , and another for Nat.succ .

For an inductive declaration T , one of the elements demanded by T 's recursor is an actual
(t : T) , which is the thing we're eliminating. This (t : T)  argument is known as the

"major premise". Iota reduction performs pattern matching by taking apart the major
premise to see what constructor was used to make t , then retrieving and applying the
corresponding recursor rule from the environment.

Because the recursor's type signature also demands the parameters, motives, and minor
premises required, we don't need to change the arguments to the recursor to perform
reduction on e.g. Nat.zero  as opposed to Nat.succ .

In practice, it's sometimes necessary to do some initial manipulation to expose the
constructor used to create the major premise, since it may not be found as a direct
application of a constructor. For example, a NatLit(n)  expression will need to be
transformed into either Nat.zero , or App Const(Nat.succ, []) .. . For structures, we may
also perform structural eta expansion, transforming an element (t : T)  into T.mk t.1 .. 
t.N , thereby exposing the application of the mk  constructor, permitting iota reduction to

Const(Nat.succ, []) NatLit(100) ~> NatLit(100+1)

Const(Nat.add, []) NatLit(2) NatLit(3) ~> NatLit(2+3)

Const(Nat.add, []) (Const Nat.succ [], NatLit(10)) NatLit(3) ~> NatLit(11+3)
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proceed (if we can't figure out what constructor was used to create the major premise,
reduction fails).

List.rec type

List.nil rec rule

List.cons rec rule

k-like reduction

For some inductive types, known as "subsingleton eliminators", we can proceed with iota
reduction even when the major premise's constructor is not directly exposed, as long as we
know its type. This may be the case when, for example, the major premise appears as a free
variable. This is known as k-like reduction, and is permitted because all elements of a
subsingleton eliminator are identical.

forall 
  {α : Type.{u}} 
  {motive : (List.{u} α) -> Sort.{u_1}}, 
  (motive (List.nil.{u} α)) -> 
  (forall (head : α) (tail : List.{u} α), (motive tail) -> (motive (List.cons.
{u} α head tail))) -> (forall (t : List.{u} α), motive t)

fun 
  (α : Type.{u}) 
  (motive : (List.{u} α) -> Sort.{u_1}) 
  (nilCase : motive (List.nil.{u} α)) 
  (consCase : forall (head : α) (tail : List.{u} α), (motive tail) -> (motive 
(List.cons.{u} α head tail))) => 
  nil

fun 
  (α : Type.{u}) 
  (motive : (List.{u} α) -> Sort.{u_1}) 
  (nilCase : motive (List.nil.{u} α)) 
  (consCase : forall (head : α) (tail : List.{u} α), (motive tail) -> (motive 
(List.cons.{u} α head tail))) 
  (head : α) 
  (tail : List.{u} α) => 
  consCase head tail (List.rec.{u_1, u} α motive nilCase consCase tail)
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To be a subsingleton eliminator, an inductive declaration must be an inductive prop, must
not be a mutual or nested inductive, must have exactly one constructor, and the sole
constructor must take only the type's parameters as arguments (it cannot "hide" any
information that isn't fully captured in its type signature).

For example, the value of any element of the type Eq Char 'x'  is fully determined just by
its type, because all elements of this type are identical.

If iota reduction finds a major premise which is a subsingleton eliminator, it is permissible to
substitute the major premise for an application of the type's constructor, because that is the
only element the free variable could actually be. For example, a major premise which is a
free variable of type Eq Char 'a'  may be substituted for an explicitly constructed Eq.refl 
Char 'a' .

Getting to the nuts and bolts, if we neglected to look for and apply k-like reduction, free
variables that are subsingleton eliminators would fail to identify the corresponding recursor
rule, iota reduction would fail, and certain conversions expected to succeed would no longer
succeed.

Quot reduction; Quot.ind and Quot.lift

Quot  introduces two special cases which need to be handled by the kernel, one for
Quot.ind , and one for Quot.lift .

Both Quot.ind  and Quot.lift  deal with application of a function f  to an argument (a : 
α) , where the a  is a component of some Quot r , formed with Quot.mk .. a .

To execute the reduction, we need to pull out the argument that is the f  element and the
argument that is the Quot  where we can find (a : α) , then apply the function f  to a .
Finally, we reapply any arguments that were part of some outer expression not related to
the invocation of Quot.ind  or Quot.lift .

Since this is only a reduction step, we rely on the type checking phases done elsewhere to
provide assurances that the expression as a whole is well typed.

The type signatures for Quot.ind  and Quot.mk  are recreated below, mapping the elements
of the telescope to what we should find as the arguments. The elements with a *  are the
ones we're interested in for reduction.
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Quotient primitive Quot.ind.{u} : ∀ {α : Sort u} {r : α → α → Prop} 
  {β : Quot r → Prop}, (∀ (a : α), β (Quot.mk r a)) → ∀ (q : Quot r), β q

  0  |-> {α : Sort u} 
  1  |-> {r : α → α → Prop} 
  2  |-> {β : Quot r → Prop}
  3* |-> (∀ (a : α), β (Quot.mk r a)) 
  4* |-> (q : Quot r)
  ...

Quotient primitive Quot.lift.{u, v} : {α : Sort u} →
  {r : α → α → Prop} → {β : Sort v} → (f : α → β) → 
  (∀ (a b : α), r a b → f a = f b) → Quot r → β

  0  |-> {α : Sort u}
  1  |-> {r : α → α → Prop} 
  2  |-> {β : Sort v} 
  3* |-> (f : α → β) 
  4  |-> (∀ (a b : α), r a b → f a = f b)
  5* |-> Quot r
  ...
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Future work and open issues

File format

There is an open rfc here about moving the export file format to json, which would be a
major version change.

Ensuring Nat/String are defined properly.

The Lean community has not yet settled on a particular solution for determining whether
the declarations in an export file for Nat , String , and the operations covered by the
relevant kernel extensions match those expected by extensions in a way that does not pull
the exporter into the trusted code.

An approach similar to that taken for Eq  and the Quot  declarations (defining them by hand
within the type checker, then asserting they're the same) is not feasible due to the
complexity of the fully elaborated terms for the supported binary operations on Nat .

Improving Pollack consistency

Lean 4 offers very powerful facilities for defining custom syntax, macros, and pretty printer
behaviors, and almost every aspect of Lean 4's internals is available to users. These
elements of Lean's design were effective responses to real world feedback from the mathlib
community during Lean 3's lifetime.

While these features were important factors in Lean's success as a tool for enabling large

formalization efforts, they are also in tension with Lean4's Pollack consistency1, or lack
thereof. Without replicating the macro and syntax extension capabilities in the pretty
printer, type checkers cannot consistently read terms back to the user in a form that is
recognizable. However, the idea of adding these features to a pretty printer is an
unappealing expansion of the trusted code base. An alternative approach is to drop the
pretty printer in favor of a trusted parser (ala metamath zero), but Lean's parser can be
modified on the fly in userspace with custom syntax declarations.

As Lean matures and adoption increases, there is likely to be a push for progress in the
development of techniques and practices that allow users to take advantage of Lean's
extensibility while sacrificing the least degree of Pollack consistency.
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Forward reasoning

Existing type checkers implement a form of backward reasoning; an alternate strategy for
type checking is to accept and check forward reasoning chains worked out by an external
program, potentially allowing for an even simpler type checker.

1 Freek Wiedijk. Pollack-inconsistency. Electronic Notes in Theoretical Computer Science, 285:85–100,
2012
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Further reading
Mario Carneiro's thesis on Lean's type theory

Lean's official kernel: https://github.com/leanprover/lean4/tree/master/src/kernel

lean4lean, a reimplementation of Lean's kernel in Lean4.

lean4export, the recommended/official exporter for Lean 4 environments.

lean4checker

Peter Dybjer's original description of the inductive types implemented by Lean: P.
Dybjer. Inductive families. Formal aspects of computing, 6(4):440–465, 1994.

Conor McBride and James McKinna's paper I am not a number: I am a free variable
describing the locally nameless approach to bound/free variables

Information about non-positive occurrences in inductive types, from Counterexamples
in Type Systems: https://counterexamples.org/strict-positivity.html?
highlight=posi#positivity-strict-and-otherwise

Freek Wiedijk. Pollack-inconsistency. Electronic Notes in Theoretical Computer Science,
285:85–100, 2012
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