
1

A system of natural deduction for categories

We will present a system of natural deduction for categories, i.e., a sys-
tem that includes discharge rules, and whose semantics (via a kind of Curry-
Howard isomorphism) interprets terms as objects, morphisms, functors and nat-
ural transformations, plus the usual points and functions. The main novelty of
that system is that it has discharge rules for forming functors and natural trans-
formations — actually protofunctors and protonatural transformations, entities
that behave only syntactically like functors and natural transformations.

The system is expressive enough to let us represent as relatively short terms
things like the Yoneda Lemma and the fact that a category of the form SetC

has exponentials and a subobject classifier; the categorical constructions that
prove those things can be read from the trees that deduce those terms, and it
is easy to draw side to side to them other trees that show how each term would
be written in the usual notation.

Usually we would choose “x” as the default name for a variable ranging over
X, “y” for a variable ranging over Y , etc; we will allow “composite variable
names”, so “(a, b)” will be our default name for a variable ranging over A × B,
c → d our default name for one ranging over DC , etc. We call this notation
the notation of typical points, and the idea is that the name of a variable is the
“name of the typical point” of the space in which that variable can take values.
Generally — but now always — we will want to attributed related values to
variables with related named — for example a being the first coordinate of
(a, b).

The symbol E is used to mean “the space of”, in the sense of “the set of
all possible values for”: we have x ∈ X, and X is considered as the “space of
‘x’s”: X = Ex. Following this idea, E(a,b) = Ea × Eb, Ec→d = (Ed)

(Ec), etc.
In this way the uppercase letters become free for other uses, and we use fewer
symbols. Obviously Ex,Ea, . . . can be seen as variables ranging over the class
of all sets, whose values bear some relation with the values of x, a, . . . — namely
that x ∈ Ex, a ∈ Ea, etc.

This notation for variables was chosen to make it convenient to “read aloud”
construction trees. For example,

[a]1 b

(a, b) (a, b) → c

c

a → c
1

can be read aloud as: “from a value for a and a value for b we have a natural
way to choose a value for (a, b)”... — note that currently we are only talking
in terms of “a value”, not of “the value”; also, we will often say just “an a”,
“a b”, etc, instead of the longer “a value for a”, etc. — ...“and given an (a, b)
and a function (a, b) → c we have a natural choice for a c. So, the tree over the
bar marked with the ‘1’ can be seen as an operation that from an a, a b and
an (a, b) → c builds a c; for each b and (a, b) → c fixed this gives a function

2001nd-abs (typeset 2001jun27 06:49) edrx@mat.puc-rio.br



2

that takes an a and returns a c, that is, an a → c. So the big tree, with the
top a “discharged”, denotes a natural way to build an a → c from a b and an
(a, b) → c.”

The tree above is a “natural construction” for a → c from a b and an (a, b) →
c; the formal definition is that a natural construction for β from α1, . . . , αn in
a certain system is a tree with β in its root where only members of the list
α1, . . . , αn can appear as “leaves” (i.e., as undischarged hypotheses), and where
each bar is an application of a rule of the system.

Generally the list α1, . . . , αn and the rules of the system will be clear from
the context, and then we say that a β has natural constructions if there is a
natural construction for β from α1, . . . , αn in that system, and we say that β

is well-defined (in symbols: wd(β)) if it has natural constructions and further-
more all its natural constructions give the same result, using the semantical
interpretation of the rules and the values for α1, . . . , αn. The result of a natural
construction for β is called a “natural value” for β; if β and γ are well-defined
and have related names then their natural values will be related.

After introducing just a few other auxiliary symbols we will be ready to show
a sample construction in the system of natural deduction for categories (“system
NDC”, from now on). Just like a x → y is a function from Ex to Ey, an a → b is
a morphism from Oa to Ob; if we have an Oa instead of an Ea it would generally
make no sense to speak of “an a”. Cata is the category where Oa lives; on the
presence of an a → b we must have Cata = Catb. An oA is an object of the
category A; a mA is a morphism of the category A. A×B is the product of the
categories A and B; an object of A×B is written like O[(a; b)] and corresponds
to a pair (Oa,Ob). A ⇒ B is a category of functors; an o[A ⇒ B] is a functor
from A to B, and a m[A ⇒ B] is a natural transformation between two such
functors.

A functor is denoted by its action on names of objects, and its action on

“unnamed” arrows (i.e., undecorated arrows — a
f
→ b is not undecorated) is

inferred from its action on objects. For example, a ⇒ aF takes Oa to OaF , Oa′

to Oa′F , a′ → a′′ to a′F → a′′F , and so on.

An “unnamed” natural transformation from a ⇒ aF to a ⇒ aG is written
as a

•

→ (aF → aG); if all its image morphisms are isos, monics or epis we may
include that information in the name of the natural transformation by replacing
the ‘→’ by ‘↔’, ‘→֒’ or ‘։’ respectively.

The table below shows the main rules of system NDC. The full system is
much larger than that, and most rules have restrictions — in Fmorf, for example,
we must have Cata′ = Cata.

a → b

O[a]
src

a → b

O[b]
tgt

O[a]

a → a
id

a → b b → c

a → c

O[a] a ⇒ aF

O[aF ]
Fobj

a′ → a′′ a ⇒ aF

a′F → a′′F
Fmorf

2001nd-abs (typeset 2001jun27 06:49) edrx@mat.puc-rio.br



3

O[a] a
•

→ (aF → aG)

aF → aG
NTobj

[O[a]]1 . . .

aF → aG

a
•

→ (aF → aG)
1 NTdisch

[a′ → a′′]1 . . .

a′F → a′′F

a ⇒ aF
1 Fdisch

The discharging rules Fdisch and NTdisch form protofunctors and proto-
NTs instead of functors and NTs; a protofunctor is an operation that behaves
syntactically like a functor, and, likewise, a proto-NT behaves syntactically like a
natural transformation. A protofunctor that respects identities and composition
of morphisms is a functor; a proto-NT T : F → G that obeys the “square
condition” for any arrow f : A → B (namely: TB ◦ F (f) = G(f) ◦ TA) is a
natural transformation. Using ‘wd’ these conditions can be written as:

∀Oa wd(aF → aF )
∀Oa,Ob,Oc, (a → b), (b → c) wd(aF → cF )
∀Oa,Ob, (a → b) wd(aF → bG)

Note that these conditions must be checked in the semantics.
A simple example of system NDC at work: here’s how to “Curry” the identity

functor (a; b) ⇒ (a; b).

[a′ → a′′]2
[O[b]]1

b → b

(a′; b) → (a′′; b)

b
•

→ ((a′; b) → (a′′; b))
1

(b ⇒ (a′; b)) → (b ⇒ (a′′; b))
ren

a ⇒ (b ⇒ (a; b))
2

From the object of ‘b’s in B build the identity arrow b → b; with the mor-
phisms a′ → a′′ of A and b → b build the morphism (a′; b) → (a′′; b) of the
product category A × B. Now regard what is above the bar marked ‘1’ as an
operation that takes an arbitrary object O[b] of B and produces a morphism

(a′; b) → (a′′; b); this is what a natural transformation b
•

→ ((a′; b) → (a′′; b))
would do, so we can discharge the O[b] and form a (proto-)natural transforma-
tion. Apply a renaming rule and that becomes a morphism between the objects
O[b ⇒ (a′; b)] and O[b ⇒ (a′′; b)] in A ⇒ A × B, a category of functors. So
we’ve got an operation that behaves syntactically as a functor a ⇒ (b ⇒ (a; b)),
as it takes a generic morphism of A, a′ → a′′, and returns a morphism with the
right name; discharge the a′ → a′′ and form a (proto-)functor.

Other examples: the Yoneda lemma corresponds to the term (a; b ⇒ bF )
•

→

(aF ↔ (b
•

→ ((a → b) → bF ))), but explaining it would require a few more
definitons. The terms for the exponentials and the classifier in a SetC would
require even more definitions.

2001nd-abs (typeset 2001jun27 06:49) edrx@mat.puc-rio.br



4

Eduardo Ochs
Departamento de Matemática, PUC-Rio
http://www.mat.puc-rio.br/~edrx/math.html

edrx@mat.puc-rio.br

2001nd-abs (typeset 2001jun27 06:49) edrx@mat.puc-rio.br


