
1 Other inference bars
All the examples of deduction trees in the TUGBoat article use ‘-’s for the
inference bars in the ASCII art representation. If we use ‘=’s instead of ‘-’s we
get double bars, and if we use ‘:’s we get a line of vertical dots instead of a bar:

, PR ,QR

,PQR =⇒

....
PQ

[P]1....
R

[Q]1....
R

R
1

You can change the number of vertical dots by redefining the macro ‘\DeduceSym’.
For example:

 \makeatletter
 % Original with 4 dots (from proof.sty):
 % \def\DeduceSym{\vtop{\baselineskip4\p@ \lineskiplimit\z@
 % \vbox{\hbox{.}\hbox{.}\hbox{.}}\hbox{.}}}
 % New, with 3 dots:
 \def\DeduceSym{\vtop{\baselineskip4\p@ \lineskiplimit\z@
 \vbox{\hbox{.}\hbox{.}}\hbox{.}}}
 \makeatother

2 Abbrevs
The first Dednats did not support UTF-8, and the way to write a tree node
that would display as ‘ab’ was to write it as ‘a->b’ after running addabbrevs("-
>", "\to "). The module abbrevs.lua implements this, and unabbrev(str)
parses str from left to right, at each point looking for the longest string starting
at that point that is an abbrev and replacing it by its expansion, or leaving that
character untouched if it doesn’t have an expansion. Here is an example:

 %L addabbrevs("->", "\\to ")
 %:
 %: [a]^1 a->b
 %: -----------
 %: b b->c
 %: ------------
 %: c
 %: ----1
 %: a->c
 %:
 %: ^a->c
 %:
 $$\pu \ded{a->c}$$

→

[a]1 a → b

b b → c

c

a → c
1

Abbrevs are also used in 2D diagrams, in a more complex way. Section
2.2 of the TUGBoat article explains how the grid words create a table nodes,

1

but it doesn’t explain how the fields .tex and .TeX in a node affect how it is
displayed. The code below creates nodes whose tags are "A", "B", "C", "D",
and then changes the fields .tex and .TeX in some of these nodes. The TEX
code for each node is calculated by the function node_to_TeX, that expects a
node (a table) and returns a string. If node_to_TeX receives a node that has a
.TeX field then it returns that field unchanged, surrounded by ‘{}’s; if it doesn’t
have a .TeX field but it has a .tex field then it returns the result of running
unabbrev on that field and surrounding it with ‘{}’s; otherwise it returns the
result of running unabbrev on the tag surrounding it with ‘{}’s. For example:

 %D diagram nodes-and-abbrevs
 %D 2Dx 100 +40
 %D 2D 100 A -> B
 %D 2D | |
 %D 2D v v
 %D 2D +30 C -> D
 %D 2D
 %D ((B .tex= (a->b)
 %D C .TeX= (a->b)
 %D D .tex= (a->b) .TeX= (a->b)
 %L print("nodes:"); print(nodes)
 %L print("A:", node_to_TeX(nodes["A"]))
 %L print("B:", node_to_TeX(nodes["B"]))
 %L print("C:", node_to_TeX(nodes["C"]))
 %L print("D:", node_to_TeX(nodes["D"]))
 %D A B -> A C -> B D -> C D ->
 %D))
 %D enddiagram

→

A (a → b)//A

(a− > b)
��

(a → b)

(a− > b)
��

(a− > b) (a− > b)//

The output of the print()s is:

nodes:
{ 1={"noden"=1, "tag"="A", "x"=100, "y"=100},

2={"noden"=2, "tag"="B", "x"=140, "y"=100, "tex"="(a->b)"},
3={"noden"=3, "tag"="C", "x"=100, "y"=130, "TeX"="(a->b)"},
4={"noden"=4, "tag"="D", "x"=140, "y"=130, "tex"="(a->b)", "TeX"="(a->b)"},

"A"={"noden"=1, "tag"="A", "x"=100, "y"=100},
"B"={"noden"=2, "tag"="B", "x"=140, "y"=100, "tex"="(a->b)"},
"C"={"noden"=3, "tag"="C", "x"=100, "y"=130, "TeX"="(a->b)"},
"D"={"noden"=4, "tag"="D", "x"=140, "y"=130, "tex"="(a->b)", "TeX"="(a->b)"}

}
A: {A}
B: {(a\to b)}
C: {(a->b)}
D: {(a->b)}

3 Renaming
The word ren in the language for 2D diagrams eats the rest of the line, splits it at
the ‘==>’, and splits the material before the ‘==>’ into a list of tags, A1, . . . , An,
and the material after ‘==>’ into a list of texs, B1, . . . , Bn; these two lists must

2

have the same length, and then ren runs nodes[Ai].tex = Bi for each i in
1, . . . , n. For example:

 %D diagram ren
 %D 2Dx 100 +30
 %D 2D 100 A1 <-| A2
 %D 2D | |
 %D 2D v v
 %D 2D +30 A3 |-> A4
 %D 2D
 %D ren A1 A2 ==> A{\times}B A
 %D ren A3 A4 ==> C B{\to}C
 %D
 %D ((A1 A2 <-| .plabel= a ({\times}B)
 %D A1 A3 -> A2 A4 ->
 %D A3 A4 |-> .plabel= b (B{\to})
 %D))
 %D enddiagram

→

A×B Aoo (×B) �
A×B

C
��

A

B→C
��

C B→C�
(B→)

//

4 Arrow modifiers
The language for 2D diagrams in dednat6 has some words for curving and sliding
arrows:

 %D diagram curve-slide
 %D 2Dx 100 +40
 %D 2D 100 A B
 %D 2D
 %D 2D +40 D C
 %D 2D
 %D ((A B -> .plabel= b \text{one}
 %D A B -> .slide= 5pt .plabel= a \text{two}
 %D A B -> .slide= 20pt .plabel= a \text{three}
 %D B C -> .curve= _10pt .plabel= l \text{four}
 %D B C -> .curve= ^5pt .plabel= r \text{five}
 %D C D ->
 %D C D -> .curve= _5pt
 %D C D -> .curve= _5pt .slide= -5pt
 %D .plabel= a \text{six}
 %D))
 %D enddiagram

→

A Bone
//A B

two //
A B

three //

B

C

four

��

B

C

five

��
CD oo CD ss CD

six
ss

The words ‘sl^^’, ‘sl^’, ‘sl_’, and ‘sl__’ are abbreviations for “.slide=
5pt”, “.slide= 2.5pt”, “.slide= -2.5pt”, “.slide= -5pt” respectively.

3

