
Dednat6: Some Extra Features
Eduardo Ochs

July 6, 2019

At this moment the documentation of Dednat6 consists of:

• An article about Dednat6 for TUGBoat, called “Dednat6: An extensible
(semi-)preprocessor for LuaLATEX that understands diagrams in ASCII
art”, that explains all the main concepts and how they are implemented.
Link:
http://angg.twu.net/LATEX/2018tugboat-rev1.pdf

• The slides for a presentation with the same title (on the TUG2018 con-
ference). Link:
http://angg.twu.net/LATEX/2018tug-dednat6.pdf

• This document, that complements the article and the slides — with in-
stallation instructions, plus lots of details and technicalities. Link:
http://angg.twu.net/LATEX/2018dednat6-extras.pdf

See also:
http://angg.twu.net/dednat6.html
http://angg.twu.net/math-b.html#tug-2018

1 Hey!
The slides for the TUG talk end with this call for feedback:

I’ve stopped trying to document Dednat6 because
1) I don’t have a mental image of who I am writing for,
2) I get far too little feedback,
3) all of the feedback that I got came from people who felt that I was not

writing for them — my approach, tone and choice of pre-requisites were all
wrong.

If you would like to try Dednat6, get in touch, let’s chat — please!
Maybe I can typeset in 20 minutes a diagram that took you
a day, maybe I can implement an extension that you need...
This still holds! I’m eduardoochs@gmail.com, get in touch!
Index of sections:

1

http://angg.twu.net/LATEX/2018tugboat-rev1.pdf
http://angg.twu.net/LATEX/2018tug-dednat6.pdf
http://angg.twu.net/LATEX/2018dednat6-extras.pdf
http://angg.twu.net/dednat6.html
http://angg.twu.net/math-b.html#tug-2018


2 Downloading
You can download the current version of dednat6 from http://angg.twu.net/
dednat6.html, or from here: http://angg.twu.net/dednat6.zip. The .zip
file contains documentation in PDF and source form. To download it, delete
the PDFs and recompile them, do this:

 rm -Rfv /tmp/dn6-test/
 mkdir   /tmp/dn6-test/
 cd      /tmp/dn6-test/
 wget http://angg.twu.net/dednat6.zip
 unzip dednat6.zip
 rm -v *.pdf
 lualatex 2018tugboat-rev1.tex
 lualatex 2018tugboat-rev1.tex
 lualatex 2018tug-dednat6.tex
 lualatex 2018tug-dednat6.tex
 lualatex 2018dednat6-extras.tex
 lualatex 2018dednat6-extras.tex
 lualatex 2018dednat6-minimal.tex
 lualatex 2018dednat6-no-lua.tex
 mkdir no-lua/
 cd    no-lua/
 cp -v ../2018dednat6-no-lua.tex ../2018dednat6-no-lua.dnt .
 pdflatex 2018dednat6-no-lua.tex

Dednat6 itself consists of just the contents of the dednat6/ directory plus
the file dednat6load.lua. You can run the code below to check that that’s
what is needed to compile 2018dednat6-minimal.tex:

 rm -Rfv /tmp/dn6-test-min/
 mkdir   /tmp/dn6-test-min/
 cd      /tmp/dn6-test-min/
 wget http://angg.twu.net/dednat6.zip
 unzip dednat6.zip "dednat6/**" dednat6load.lua 2018dednat6-minimal.tex
 lualatex 2018dednat6-minimal.tex

3 The preamble
It should be possible to load Dednat6 from a .tex file with a single command,
like this:

 \documentclass{article}
   \directlua{dofile "dednat6load.lua"}
 \begin{document}
 (...)
 \end{document}

2

http://angg.twu.net/dednat6.html
http://angg.twu.net/dednat6.html
http://angg.twu.net/dednat6.zip


but due to some quirks this is not possible at this moment, and we have to do
this (the indented lines):

 \documentclass{article}
   \usepackage{proof}
   \input diagxy
   \xyoption{curve}
 \begin{document}
   \catcode`\^^J=10
   \directlua{dofile "dednat6load.lua"}
 (...)
 \end{document}

The ‘\catcode’ is needed to make the newlines in the TEX code gener-
ated by dednat6 be interpreted as newlines and not as ‘Ω’s (the “spurious
omega problem”); ‘\usepackage{proof}’ loads a package for typesetting proof
trees, ‘\input diagxy’ loads XYPic and the diagxy extension (sec.??), and
\xyoptioncurve loads an extension for diagxy that allows drawing curved ar-
rows.

One of the things that \directlua{dofile "dednat6load.lua"} does is
that it runs this from Lua:

output(preamble1)

preamble1 is a chunk of TEX code defined in the file dednat6/preamble.lua,
that contains material like this:

 \def\defdiag#1#2{\expandafter\def\csname diag-#1\endcsname{\bfig#2\efig}}
 \def\ifdiagundefined#1{\expandafter\ifx\csname diag-#1\endcsname\relax}
 \def\diag#1{\ifdiagundefined{#1}
     \errmessage{UNDEFINED DIAGRAM: #1}
   \else
     \csname diag-#1\endcsname
   \fi
 }
 %
 \def\expr#1{\directlua{output(tostring(#1))}}
 \def\eval#1{\directlua{#1}}
 \def\pu{\directlua{pu()}}

The file dednat6/preamble.lua also defines a ‘preamble0’ with the ‘\usepackage’s
and ‘\input’s that would have to be run before the ‘\begin{document}’, and
it explains in comments why this currently doesn’t work. See the source.

4 Producing a .tex/.dnt pair that doesn’t need
LuaLATEX

Here is a trick for dealing with situations in which we need to generate code that
compiles with just pdflatex, without lualatex — for example, when we need

3



to produce LATEX code acceptable by Arxiv. The file 2018dednat6-no-lua.tex
in the .zip package is an example of that trick. To prepare a version of it that
only needs pdflatex, do this:

 rm -Rfv /tmp/dn6-test-no-lua/
 mkdir   /tmp/dn6-test-no-lua/
 cd      /tmp/dn6-test-no-lua/
 wget http://angg.twu.net/dednat6.zip
 unzip dednat6.zip "dednat6/**" dednat6load.lua 2018dednat6-no-lua.tex
 lualatex 2018dednat6-no-lua.tex
 mkdir no-lua/
 cd    no-lua/
 cp -v ../2018dednat6-no-lua.tex ../2018dednat6-no-lua.dnt .
 pdflatex 2018dednat6-no-lua.tex
 xpdf     2018dednat6-no-lua.pdf

The line “lualatex 2018dednat6-no-lua.tex” generates a .dnt file; the
commands after that create a directory with just the .tex and the .dnt, and
compiles the .tex with pdflatex.

A .tex file that supports being compiled in this was has this structure:

 \documentclass[oneside]{book}
 \usepackage{ifluatex}
 \usepackage{proof}
 \input diagxy
 \xyoption{curve}
 \begin{document}
 
 \ifluatex
   \catcode`\^^J=10
   \directlua{dofile "dednat6load.lua"}
 \else
   \input\jobname.dnt
   \def\pu{}
 \fi
 
 (...)
 
 %L write_dnt_file()
 \pu
 
 \end{document}

Note the “\usepackage{ifluatex}”, the \ifluatex / \else / \fi block,
and the “%L write_dnt_file()” followed by a \pu.

4



5 Other inference bars
All the examples of deduction trees in the TUGBoat article use ‘-’s for the
inference bars in the ASCII art representation. If we use ‘=’s instead of ‘-’s we
get double bars, and if we use ‘:’s we get a line of vertical dots instead of a bar:

Γ, P ` R Γ, Q ` R

Γ, P ∨Q ` R =⇒

Γ....
P ∨Q

Γ [P ]1....
R

Γ [Q]1....
R

R
1

You can change the number of vertical dots by redefining the macro ‘\DeduceSym’.
For example:

 \makeatletter
 % Original with 4 dots (from proof.sty):
 % \def\DeduceSym{\vtop{\baselineskip4\p@ \lineskiplimit\z@
 %     \vbox{\hbox{.}\hbox{.}\hbox{.}}\hbox{.}}}
 % New, with 3 dots:
 \def\DeduceSym{\vtop{\baselineskip4\p@ \lineskiplimit\z@
     \vbox{\hbox{.}\hbox{.}}\hbox{.}}}
 \makeatother

6 Changing how tree nodes are LATEX’ed
The trees below were produced by changing temporarily the function that con-
verts each tree node from ascii to TEX code. TO DO: explain this; for the
moment look at the source code of this section.

\POS

(

1500

〈factor〉 ,

1000

〈factor〉 )

〈vector〉
〈coord〉
〈pos〉 ∗

+

〈addop〉
〈empty〉
〈size〉

〈modifier〉 〈object1〉
〈object〉

〈coord〉
〈command〉

!

〈modifier〉

!

<

0ex

〈dimen〉 ,

.75ex

〈dimen〉 >

〈vector〉
〈modifier〉 〈object2〉

〈object〉
〈object1〉

5



7 Abbrevs
The first Dednats did not support UTF-8, and the way to write a tree node that
would display as ‘a → b’ was to write it as ‘a->b’ after running addabbrevs("-
>", "\to "). The module abbrevs.lua implements this, and unabbrev(str)
parses str from left to right, at each point looking for the longest string starting
at that point that is an abbrev and replacing it by its expansion, or leaving that
character untouched if it doesn’t have an expansion. Here is an example:

 %L addabbrevs("->", "\\to ")
 %:
 %:  [a]^1  a->b
 %:  -----------
 %:       b       b->c
 %:       ------------
 %:            c
 %:          ----1
 %:          a->c
 %:
 %:          ^a->c
 %:
 $$\pu \ded{a->c}$$

→

[a]1 a → b

b b → c

c

a → c
1

Abbrevs are also used in 2D diagrams, in a more complex way. Section
2.2 of the TUGBoat article explains how the grid words create a table nodes,
but it doesn’t explain how the fields .tex and .TeX in a node affect how it is
displayed. The code below creates nodes whose tags are "A", "B", "C", "D",
and then changes the fields .tex and .TeX in some of these nodes. The TEX
code for each node is calculated by the function node_to_TeX, that expects a
node (a table) and returns a string. If node_to_TeX receives a node that has a
.TeX field then it returns that field unchanged, surrounded by ‘{}’s; if it doesn’t
have a .TeX field but it has a .tex field then it returns the result of running
unabbrev on that field and surrounding it with ‘{}’s; otherwise it returns the
result of running unabbrev on the tag surrounding it with ‘{}’s. For example:

6



 %D diagram nodes-and-abbrevs
 %D 2Dx     100 +40
 %D 2D  100 A -> B
 %D 2D      |    |
 %D 2D      v    v
 %D 2D  +30 C -> D
 %D 2D
 %D (( B .tex= (a->b)
 %D    C              .TeX= (a->b)
 %D    D .tex= (a->b) .TeX= (a->b)
 %L print("nodes:"); print(nodes)
 %L print("A:", node_to_TeX(nodes["A"]))
 %L print("B:", node_to_TeX(nodes["B"]))
 %L print("C:", node_to_TeX(nodes["C"]))
 %L print("D:", node_to_TeX(nodes["D"]))
 %D    A B -> A C -> B D -> C D ->
 %D ))
 %D enddiagram

→

A (a → b)//A

(a− > b)
��

(a → b)

(a− > b)
��

(a− > b) (a− > b)//

The output of the print()s is:

nodes:
{ 1={"noden"=1, "tag"="A", "x"=100, "y"=100},

2={"noden"=2, "tag"="B", "x"=140, "y"=100, "tex"="(a->b)"},
3={"noden"=3, "tag"="C", "x"=100, "y"=130, "TeX"="(a->b)"},
4={"noden"=4, "tag"="D", "x"=140, "y"=130, "tex"="(a->b)", "TeX"="(a->b)"},

"A"={"noden"=1, "tag"="A", "x"=100, "y"=100},
"B"={"noden"=2, "tag"="B", "x"=140, "y"=100, "tex"="(a->b)"},
"C"={"noden"=3, "tag"="C", "x"=100, "y"=130, "TeX"="(a->b)"},
"D"={"noden"=4, "tag"="D", "x"=140, "y"=130, "tex"="(a->b)", "TeX"="(a->b)"}

}
A: {A}
B: {(a\to b)}
C: {(a->b)}
D: {(a->b)}

8 Renaming
The word ren in the language for 2D diagrams eats the rest of the line, splits it at
the ‘==>’, and splits the material before the ‘==>’ into a list of tags, A1, . . . , An,
and the material after ‘==>’ into a list of texs, B1, . . . , Bn; these two lists must
have the same length, and then ren runs nodes[Ai].tex = Bi for each i in
1, . . . , n. For example:

7



 %D diagram ren
 %D 2Dx     100    +30
 %D 2D  100 A1 <-| A2
 %D 2D      |       |
 %D 2D      v       v
 %D 2D  +30 A3 |-> A4
 %D 2D
 %D ren A1 A2 ==> A{\times}B A
 %D ren A3 A4 ==> C B{\to}C
 %D
 %D (( A1 A2 <-| .plabel= a ({\times}B)
 %D    A1 A3 -> A2 A4 ->
 %D    A3 A4 |-> .plabel= b (B{\to})
 %D ))
 %D enddiagram

→

A×B Aoo (×B) �A×B

C
��

A

B→C
��

C B→C
�
(B→)

//

9 Arrow modifiers
The language for 2D diagrams in dednat6 has some words for curving and sliding
arrows:

 %D diagram curve-slide
 %D 2Dx     100 +40
 %D 2D  100 A   B
 %D 2D
 %D 2D  +40 D   C
 %D 2D
 %D (( A B ->               .plabel= b \text{one}
 %D    A B -> .slide=  5pt  .plabel= a \text{two}
 %D    A B -> .slide= 20pt  .plabel= a \text{three}
 %D    B C -> .curve= _10pt .plabel= l \text{four}
 %D    B C -> .curve=  ^5pt .plabel= r \text{five}
 %D    C D ->
 %D    C D -> .curve=  _5pt
 %D    C D -> .curve=  _5pt .slide= -5pt
 %D           .plabel= a \text{six}
 %D ))
 %D enddiagram

→

A Bone
//A B

two //
A B

three //

B

C

four

��

B

C

five

��
CD oo CD ss CD

six
ss

The words ‘sl^^’, ‘sl^’, ‘sl_’, and ‘sl__’ are abbreviations for “.slide=
5pt”, “.slide= 2.5pt”, “.slide= -2.5pt”, “.slide= -5pt” respectively.

10 Strange modules
The code of Dednat6 — inside the directory dednat6/ — is made of several
.lua files that are all loaded by dednat6.lua; there is no provision yet for
loading only the modules that are used in a given .tex file. This means that
some modules that are only useful to the author of Dednat6 (Eduardo Ochs,
a.k.a. “me”) are always loaded.

8



Most of these extra modules were written to handle the objects described in
my series of papers about “Planar Heyting Algebras”, at:

http://angg.twu.net/math-b.html#zhas-for-children-2

Here’s an example of what they produce:
1_

2_

3_

4_

_1

_2

_3

_4

_5

_6

?

?

?

?

?

?

?



oo ///o/o/o/o

45
46

34
35

36

22
23
24

25
26

11
12
13

14

00
01
02

03
04

Even though these modules are not useful to other people some ideas in them
may be. (TO DO: give examples!)

11 Versions of diagxy
Diagxy comes in two versions: the original one, diagxy.tex, that is loaded
with \input diagxy, and another one, xybarr.tex, that is a module of xypic
and is loaded with \usepackage[barr,pdf]{xy}. If you have a recent texlive,
installed with, say,

https://www.tug.org/texlive/quickinstall.html
then you should have these .tex files and their documentation files at places like
these:

/usr/local/texlive/2018/texmf-dist/tex/generic/barr/diagxy.tex
/usr/local/texlive/2018/texmf-dist/doc/generic/barr/diaxydoc.pdf
/usr/local/texlive/2018/texmf-dist/tex/generic/xypic/xybarr.tex
/usr/local/texlive/2018/texmf-dist/doc/generic/xypic/barrdoc.pdf

You can access their docs online at these URLs:
http://www.math.mcgill.ca/barr/papers/diaxydoc.pdf
http://tug.ctan.org/tex-archive/macros/latex/contrib/xypic/doc/barrdoc.pdf

It seems that loading diagxy with \usepackage[barr,pdf]{xy} is incom-
patible with lualatex, and thus with Dednat6. Until we get that fixed please
use \input diagxy instead.

12 “A few samples”
The file barrdoc.pdf has a section called “A few samples” (5.9), that shows
how to produce a certain big diagram in two ways; one, that we will not discuss,

9

http://angg.twu.net/math-b.html#zhas-for-children-2
https://www.tug.org/texlive/quickinstall.html
http://www.math.mcgill.ca/barr/papers/diaxydoc.pdf
http://tug.ctan.org/tex-archive/macros/latex/contrib/xypic/doc/barrdoc.pdf


using ‘\morphism’, and another one, that we will call “Barr’s diagram”, that
uses ‘\node’ and ‘\arrow’ instead. In the next two pages we will compare Barr’s
diagram to an approximate translation of it to Dednat6.

Note: I don’t quite understand Barr’s code for the two outermost curved
arrows — it seems that he resorts to low-level XYPic code in the “modifier”
part of the shape parameter to create splined arrows, but I couldn’t figure out
the exact meaning of “@`{c,(3000,0),(2700,2800),p}” in the XYPic reference
manual...

10



 % Source code for Barr's diagram:
 %
 $$\bfig
   \def\f{\bar f}
   \def\g{\bar g}
   \def\h{\bar h}
   \let\t\tau
   \node A11(0,2800)[(\h(\g\f))\t_A]
   \node A13(1200,2800)[((\h\g)\f)\t_A]
   \node A21(0,2400)[\h((\g\f)\t_A)]
   \node A22(600,2400)[\h(\g\f\t_A)]
   \node A23(1200,2400)[(\h\g(\f\t_A))]
   \node A32(600,2000)[\h(\g(\t_Bf))]
   \node A33(1200,2000)[(\h\g)(\t_Bf)]
   \node A34(1800,2000)[((\h\g)\t_B)f]
   \node A42(600,1600)[\h((\g\t_B)f)]
   \node A44(1800,1600)[(\h(\g\t_B))f]
   \node A52(600,1200)[\h((\t_C)g)f]
   \node A54(1800,1200)[(\h(\t_Cg))f]
   \node A62(600,800)[\h(\t_C(gf))]
   \node A63(1200,800)[(\h\t_C)(gf)]
   \node A64(1800,800)[\h(\t_C(gf))]
   \node A73(1200,400)[(\t_Dh)(gf)]
   \node A74(1800,400)[((\t_D)h)g]
   \node A75(2400,400)[(\t_D(hg))f]
   \node A83(1200,0)[\t_D(h(gf))]
   \node A85(2400,0)[\t_D((hg)f)]
   \arrow[A11`A13;]
   \arrow[A21`A11;]
   \arrow[A21`A22;]
   \arrow[A22`A23;]
   \arrow[A23`A13;]
   \arrow[A32`A22;\h(\g\t_f)]
   \arrow[A32`A33;]
   \arrow[A33`A23;(\h\g)\t_f]
   \arrow[A33`A34;]
   \arrow[A42`A44;]
   \arrow[A42`A32;]
   \arrow[A44`A34;]
   \arrow[A52`A42;\h(\t_gf)]
   \arrow[A52`A54;]
   \arrow[A54`A44;(\h\t_g)f]
   \arrow[A62`A52;]
   \arrow[A62`A63;]
   \arrow[A63`A64;]
   \arrow[A73`A63;\t_h(gf)]
   \arrow[A73`A74;]
   \arrow[A74`A64;\t_{(hg)f}]
   \arrow[A74`A75;]
   \arrow[A83`A73;]
   \arrow[A83`A85;]
   \arrow[A85`A75;]
   \arrow|r|/{@{>}@/_15pt/}/[A75`A34;\t_{hg}f]
   \arrow|l|/{@{>}@/^15pt/}/[A62`A21;\h(\t_C(gf))]
   \arrow|l|/{@{>}@`{c,(3000,0),(2700,2800),p}}/[A85`A13;\t_{hg}f]
   \arrow|r|/{@{>}@`{c,(-300,0),(-600,2400),p}}/[A83`A11;\t_{h(fg)}]
   \efig
 $$

 % Source code for its translation to Dednat6:
 %
 %D diagram barr-dednat6
 %D 2Dx     100    +40    +40    +40    +40
 %D 2D  100 A11 --------> A13
 %D 2D       ^             ^
 %D 2D       |             |
 %D 2D  +27 A21 -> A22 -> A23
 %D 2D       ^      ^      ^
 %D 2D       |      |      |
 %D 2D  +27  |     A32 -> A33 -> A34
 %D 2D       |      ^             ^  ^
 %D 2D       |      |             |   \
 %D 2D  +27  |     A42 --------> A44   \
 %D 2D       |      ^             ^     \
 %D 2D        \     |             |      |
 %D 2D  +27    \   A52 --------> A54     |
 %D 2D          \   ^                    |
 %D 2D           \  |                    |
 %D 2D  +27        A62 -> A63 -> A64     |
 %D 2D                     ^      ^      |
 %D 2D                     |      |      |
 %D 2D  +27               A73 -> A74 -> A75
 %D 2D                     ^             ^
 %D 2D                     |             |
 %D 2D  +27               A83 --------> A85
 %D 2D
 %D ren A11     A13   ==>   (\h(\g\f))\t_A              ((\h\g)\f)\t_A
 %D ren A21 A22 A23   ==>   \h((\g\f)\t_A) \h(\g\f\t_A) (\h\g(\f\t_A))
 %D ren     A32 A33 A34     ==>            \h(\g(\t_Bf)) (\h\g)(\t_Bf) ((\h\g)\t_B)f
 %D ren     A42     A44     ==>            \h((\g\t_B)f)               (\h(\g\t_B))f
 %D ren     A52     A54     ==>            \h((\t_C)g)f                (\h(\t_Cg))f
 %D ren     A62 A63 A64     ==>            \h(\t_C(gf)) (\h\t_C)(gf) \h(\t_C(gf))
 %D ren         A73 A74 A75 ==>                          (\t_Dh)(gf) ((\t_D)h)g (\t_D(hg))f
 %D ren         A83     A85 ==>                          \t_D(h(gf))            \t_D((hg)f)
 %D
 %D (( # Horizontal arrows:
 %D    A11 A13 ->
 %D    A21 A22 -> A22 A23 ->
 %D    A32 A33 -> A33 A34 ->
 %D    A42 A44 ->
 %D    A52 A54 ->
 %D    A62 A63 -> A63 A64 ->
 %D    A73 A74 -> A74 A75 ->
 %D    A83 A85 ->
 %D
 %D    # Simple vertical arrows:
 %D    A11 A21 <-                       A13 A23 <-
 %D    A22 A32 <- .plabel= r \h(\g\t_f) A23 A33 <- .plabel= r (\h\g)\t_f
 %D    A32 A42 <-                       A34 A44 <-
 %D    A42 A52 <- .plabel= r \h(\t_gf)  A44 A54 <- .plabel= r (\h\t_g)f
 %D    A52 A62 <-
 %D    A63 A73 <- .plabel= r \t_h(gf)   A64 A74 <- .plabel= r \t_{(hg)f}
 %D    A73 A83 <- A75 A85 <-
 %D
 %D    # Curved vertical arrows:
 %D    A75 A34 -> .curve= _15pt .plabel= r \t_{hg}f
 %D    A62 A21 -> .curve= ^15pt .plabel= l \h(\t_C(gf))
 %D    A83 A11 -> .mod= @`{c,(-300,-2835),(-800,-100),p} .plabel= r \t_{h(fg)}
 %D    A85 A13 -> .mod= @`{c,(3000,-2000),(2700,-500),p} .plabel= l \t_{hg}f
 %D
 %D ))
 %D enddiagram
 %D
 $$\pu
   \def\f{\bar f}
   \def\g{\bar g}
   \def\h{\bar h}
   \let\t\tau
   \diag{barr-dednat6}
 $$

11



Barr’s diagram:

(h̄(ḡf̄))τA ((h̄ḡ)f̄)τA

h̄((ḡf̄)τA) h̄(ḡf̄ τA) (h̄ḡ(f̄ τA))

h̄(ḡ(τBf)) (h̄ḡ)(τBf) ((h̄ḡ)τB)f

h̄((ḡτB)f) (h̄(ḡτB))f

h̄((τC)g)f (h̄(τCg))f

h̄(τC(gf)) (h̄τC)(gf) h̄(τC(gf))

(τDh)(gf) ((τD)h)g (τD(hg))f

τD(h(gf)) τD((hg)f)

//
OO

// //

OO

h̄(ḡτf )

OO

//

(h̄ḡ)τf

OO

//

//

OO OO

h̄(τgf)

OO

//

(h̄τg)f

OO

OO

// //

τh(gf)

OO

//

τ(hg)f

OO

//
OO

//

OO

τhgf

[[

h̄(τC(gf))

PP

τhgf

mm

τh(fg)

@@

My approximate translation of it to dednat6:

(h̄(ḡf̄))τA ((h̄ḡ)f̄)τA//

h̄((ḡf̄)τA) h̄(ḡf̄ τA)// h̄(ḡf̄ τA) (h̄ḡ(f̄ τA))//

h̄(ḡ(τBf)) (h̄ḡ)(τBf)// (h̄ḡ)(τBf) ((h̄ḡ)τB)f//

h̄((ḡτB)f) (h̄(ḡτB))f//

h̄((τC)g)f (h̄(τCg))f//

h̄(τC(gf)) (h̄τC)(gf)// (h̄τC)(gf) h̄(τC(gf))//

(τDh)(gf) ((τD)h)g// ((τD)h)g (τD(hg))f//

τD(h(gf)) τD((hg)f)//

(h̄(ḡf̄))τA

h̄((ḡf̄)τA)

OO
((h̄ḡ)f̄)τA

(h̄ḡ(f̄ τA))

OO

h̄(ḡf̄ τA)

h̄(ḡ(τBf))

OO

h̄(ḡτf )

(h̄ḡ(f̄ τA))

(h̄ḡ)(τBf)

OO

(h̄ḡ)τf

h̄(ḡ(τBf))

h̄((ḡτB)f)

OO
((h̄ḡ)τB)f

(h̄(ḡτB))f

OO

h̄((ḡτB)f)

h̄((τC)g)f

OO

h̄(τgf)

(h̄(ḡτB))f

(h̄(τCg))f

OO

(h̄τg)f

h̄((τC)g)f

h̄(τC(gf))

OO

(h̄τC)(gf)

(τDh)(gf)

OO

τh(gf)

h̄(τC(gf))

((τD)h)g

OO
τ(hg)f

(τDh)(gf)

τD(h(gf))

OO
(τD(hg))f

τD((hg)f)

OO
(τD(hg))f

((h̄ḡ)τB)f

τhgf

[[

h̄(τC(gf))

h̄((ḡf̄)τA)

h̄(τC(gf))

PP

τD(h(gf))

(h̄(ḡf̄))τA

τh(fg)

99

τD((hg)f)

((h̄ḡ)f̄)τA

τhgf

ii

12



13 The REPL
Section 5 of the TUGBoat article — called “A read-eval-print-loop (REPL)” —
describes a way to start a Lua REPL in the middle of the compilation of a .tex
file. The .zip file for dednat6 includes a file 2018dednat6-repl.tex that lets
you play with the REPL by running just this:

lualatex 2018dednat6-repl.tex

The REPL can be used to inspect ‘\def’s, among other things. See the
ongoing discussing here:

http://tug.org/pipermail/luatex/2019-January/007034.html

14 Other back-ends
Dednat6 can be seen as a front-end for proof.sty and for (the ‘\morphism’ fla-
vor of) diagxy.tex. It shouldn’t be hard to make it generate, say, code for Tikz
instead of for diagxy, and code for Sam Buss’s bussproofs.sty instead of for
proof.sty. If you are interested in this, and you know Tikz/bussproofs/what-
ever enough to give me examples of how the output should look, get in touch!

Update: of all other possible back-ends for 2D diagrams the easiest one to
implement seems to be the ‘\node’s and ‘\arrow’s flavor of diagxy — I guess
it would be just a few hours of work. If you think that this would be useful to
you, drop me a line!

13

http://tug.org/pipermail/luatex/2019-January/007034.html

