Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% -*- coding: raw-text -*- % This is the file `examples/eedemo2.tex' of dednat4. % The target "demo2" of the makefile copies this to % "demos/ee.tex" and then runs dednat41 and latex on % "demos/tmp.tex", that will be a wrapper around "ee.tex". % Usage: % cd ~/dednat4/ % make demo2 % xdvi demos/tmp.dvi % See: % http://angg.twu.net/dednat4.html % http://angg.twu.net/dednat4/examples/eedemo2.tex % http://angg.twu.net/dednat4/examples/eedemo2.tex.html % (find-dn4 "Makefile") % Author: Eduardo Ochs <eduardoochs@gmail.com> % Version: 2008jul06 % Public Domain. % «.comprcat» (to "comprcat") % «.midpoint» (to "midpoint") % «.harrownodes» (to "harrownodes") % «.presheaf» (to "presheaf") % «.color» (to "color") % «.beta-reductions» (to "beta-reductions") % «comprcat» (to ".comprcat") A construction from Bart Jacobs' ``Categorical Logic and Type Theory'' book (sec. 10.4.7, pp.616--617): %D diagram ccwu-pb %D 2Dx 100 +30 -15 +15 +15 +15 +30 %D 2D 100 a0 %D 2D /\/ %D 2D || \ %D 2D || v %D 2D +25 a1 |--> a2 a3 %D 2D - - ||/ %D 2D \ \ || \ %D 2D v v\/ \ %D 2D +25 a4 |---> a5 \ %D 2D - - v %D 2D +25 a6 |-> a7 |------------------> a8 %D 2D /\ /\ \ // || %D 2D || || \ // || %D 2D || || v \/ \/ %D 2D +25 a9 |-> a10 |---------> a11 |-> a12 %D 2D %D (( a0 .tex= 1I %D a1 .tex= \{1I\} a2 .tex= I a3 .tex= X %D a4 .tex= \{X\} a5 .tex= pX %D a6 .tex= 1I a7 .tex= 1\{Y\} a8 .tex= Y %D a9 .tex= I a10 .tex= \{Y\} a11 .tex= \{Y\} a12 .tex= pY %D a0 a1 |-> a0 a2 <-| %D a3 a4 |-> a3 a5 |-> %D a6 a9 <-| a7 a10 <-| a8 a11 |-> a8 a12 |-> %D a1 a2 -> sl_ .plabel= b \pi_{1I} %D a1 a2 <- sl^ .plabel= a \eta_I %D a1 a4 -> .plabel= l \{g\} %D a2 a4 -> .plabel= m g^\vee %D a0 a3 -> .plabel= a g %D a2 a5 -> .plabel= m u %D a4 a5 -> .plabel= b \pi_X %D a3 a8 -> .PLABEL= ^(0.33) f %D a4 a11 -> .PLABEL= ^(0.33) \{f\} %D a5 a12 -> .PLABEL= ^(0.33) pf %D a6 a7 -> .plabel= b 1v %D a7 a8 -> .PLABEL= _(0.5) \ee_Y %D a9 a10 -> .plabel= b v %D a10 a11 -> .plabel= b \id %D a11 a12 -> .plabel= b \pi_Y %D )) %D enddiagram %D diagram ccwu-pb-dnc %D 2Dx 100 +30 -15 +15 +15 +15 +30 %D 2D 100 a0 %D 2D /\/ %D 2D || \ %D 2D || v %D 2D +25 a1 |--> a2 a3 %D 2D - - ||/ %D 2D \ \ || \ %D 2D v v\/ \ %D 2D +25 a4 |---> a5 \ %D 2D - - v %D 2D +25 a6 |-> a7 |------------------> a8 %D 2D /\ /\ \ // || %D 2D || || \ // || %D 2D || || v \/ \/ %D 2D +25 a9 |-> a10 |---------> a11 |-> a12 %D 2D %D (( a0 .tex= \s[i|*] %D a1 .tex= i,* a2 .tex= i a3 .tex= \s[a|b] %D a4 .tex= a,b a5 .tex= a %D a6 .tex= \s[i|*] a7 .tex= \s[c,d|*] a8 .tex= \s[c|d] %D a9 .tex= i a10 .tex= c,d a11 .tex= c,d a12 .tex= c %D a0 a2 <= a0 a1 => %D a3 a4 => a3 a5 => %D a6 a9 <= a7 a10 <= a8 a11 => a8 a12 => %D a0 a3 |-> %D a1 a2 <-> a1 a4 |-> a2 a4 |-> %D a2 a5 |-> a3 a8 |-> .plabel= a \Box a4 a5 |-> %D a4 a11 |-> a5 a12 |-> %D a6 a7 |-> a7 a8 |-> %D a9 a10 |-> a10 a11 |-> a11 a12 |-> %D )) %D enddiagram $$\diag{ccwu-pb} \quad \diag{ccwu-pb-dnc}$$ \medskip Two examples of diagrams with phantom nodes: % «midpoint» (to ".midpoint") %D diagram T:F->G %D 2Dx 100 +20 +20 %D 2D 100 A %D 2D \ - / %D 2D / | \ %D 2D v v v %D 2D +25 FA ------> GA %D 2D TA %D 2D %D (( A FA |-> A GA |-> %D FA GA -> .plabel= b TA %D A FA GA midpoint %D |-> %D )) %D enddiagram $$\diag{T:F->G} \qquad \def\red#1{{\color{red}#1}} \def\phantom{\red} \diag{T:F->G} $$ % «harrownodes» (to ".harrownodes") %D diagram harrowdemo %D 2Dx 100 +40 %D 2D 100 A |-----> FA %D 2D | - %D 2D f | |-> | Ff %D 2D v v %D 2D +30 B |-----> FB %D 2D %D (( A FA |-> %D A B -> .plabel= l f %D FA FB -> .plabel= r Ff %D B FB |-> %D A FB harrownodes nil 20 nil |-> %D )) %D enddiagram $$\diag{harrowdemo} \qquad \def\red#1{{\color{red}#1}} \def\phantom{\red} \diag{harrowdemo} $$ \newpage % «presheaf» (to ".presheaf") \def\emp{\emptyset} \def\ph#1{\phantom{#1}} A diagram with relative phantom nodes: %L thereplusxy = function (dx, dy, tag) %L ds[1] = storenode({x = ds[1].x + dx, y = ds[1].y + dy, tag = tag}) %L return ds[1] %L end %L forths["there+xy:"] = function () %L thereplusxy(getword(), getword(), getword()) %L end %D diagram a-presheaf-that-is-not-a-sheaf %D 2Dx 100 +15 +15 +30 +15 +15 %D 2D 100 X X' %D 2D / \ / \ %D 2D +20 U V U' V' %D 2D \ / \ / %D 2D +20 W W' %D 2D | | %D 2D +20 \emp \emp{} %D 2D %D (( X .tex= P(X) %D U .tex= P(U) V .tex= P(V) %D W .tex= P(W) %D \emp .tex= P(\emp) %D @ 0 @ 1 -> @ 0 @ 2 -> %D @ 1 @ 3 -> @ 2 @ 3 -> %D @ 3 @ 4 -> %D )) %D (( X' there+xy: -6 0 X'L .tex= \ph{p_X} %D X' there+xy: 6 0 X'R .tex= \ph{p'_X} %D V' there+xy: -6 0 V'L .tex= \ph{p_V} %D V' there+xy: 6 0 V'R .tex= \ph{p'_V} %D )) %D (( X' .tex= \{p_X,p'_X\} %D U' .tex= \{p_U\} V' .tex= \{p_V,p'_V\} %D W' .tex= \{p_W\} %D \emp{} .tex= \{p_\emp\} %D # @ 0 @ 1 -> @ 0 @ 2 -> %D # @ 1 @ 3 -> @ 2 @ 3 -> %D # @ 3 @ 4 -> %D X' place %D X'L U' -> X'R U' -> X'L V'L -> X'R V'L -> %D V' place %D U' W' -> V'L W' -> V'R W' -> %D W' \emp{} -> %D )) %D enddiagram %D $$\diag{a-presheaf-that-is-not-a-sheaf}$$ Same, but with the relative phantom nodes in red: $$\def\ph#1{{\color{red}#1}} \diag{a-presheaf-that-is-not-a-sheaf} $$ \bsk % «color» (to ".color") \def\colorpush#1#2#3{\special{color push rgb #1 #2 #3}} \def\colorpop{\special{color pop}} %L arrowwrap = function (arrow) %L return format(arrow.wrapin, arrowtoTeX(arrow, "")) %L end %L setwrap = function (fmtstr) %L ds[1].special = arrowwrap %L ds[1].wrapin = fmtstr %L end %L setcolor = function (rgb) %L setwrap("\\colorpush "..rgb.."%s \\colorpop") %L end %L forths[".wrap="] = function () setwrap(getword()) end %L forths[".color="] = function () setcolor(getword()) end %D diagram colors-pushing %D 2Dx 100 +15 +15 %D 2D 100 red %D 2D %D 2D +25 green blue %D 2D %D (( red .tex= {\color{red}\text{red}} %D green .tex= {\color{green}\text{green}} %D blue .tex= {\color{blue}\text{blue}} %D red green <-> .color= 110 %D red blue <-> .color= 101 %D green blue <-> .color= 011 %D )) %D enddiagram Coolored nodes and arrows: $\diag{colors-pushing}$ \newpage % «beta-reductions» (to ".beta-reductions") Some $\bb$-reductions from Bierman and de Paiva's ``On an intuitionistic modal logic'' paper: % To do: change \fst, \snd, \inl, \inr to use \operatorname % (but in the sans-serif font) \def\fst{\textsf{fst}} \def\snd{\textsf{snd}} \def\inl{\textsf{inl}} \def\inr{\textsf{inr}} \def\unbox #1{\textsf{unbox $#1$}} \def\unboxp#1{\textsf{unbox($#1$)}} \def\caseofinlinr#1#2#3#4#5{ \textsf{case $#1$ of $\inl(#2) \to #3 \;||\; \inr(#4) \to #5$}} \def\boxwithfor#1#2#3{\textsf{box $#1$ with $#2$ for $#3$}} \def\letppinwithfor#1#2#3#4#5{ \textsf{let $\poss#1 \funot \poss#2$ in $#3$ with $#4$ for $#5$}} \def\poss{\lozenge} \def\I{\mathcal{I}} \def\E{\mathcal{E}} \def\betaquad{\quad \rightsquigarrow_\beta \quad} % Note that the characters ∧, ∨, ⊃ are \def'd to \land, \lor, % and \limp (and \limp looks somewhat like \supset). See: % (find-dn4ex "edrx08.sty" "glyphs") % (find-dn4ex "edrx08.sty" "limp") %:*\vec*\vec * %:*[]*\Box * %:*<>*\poss * %: [x:A]^1 \GG %: ::::::::: %: M:B %: -------------{⊃\I};1 %: N:A (ðx:A.M):A->B N:A \GG %: ------------------{⊃\E} ::::: %: (ðx:A.M)N:B -> M[x:=N]:B %: %: ^betared-imp-1 ^betared-imp-2 %: %: M:A N:B %: -------------{∧\I} %: \ang{M,N}:A×B %: -----------------{∧\E}_1 %: \fst\ang{M,N}:A×B -> M:A %: %: ^betared-and1-1 ^betared-and1-2 %: %: M:A [x:A]^1 \GG [y:B]^1 \DD %: -----------∨\I_1 ::::: ::::: %: \inl(M):A+B N:C P:C M:A \GG %: ------------------------------------------∨\E :::: %: \caseofinlinr{\inl(M)}{x}{N}{y}{P} N[x:=M]:C %: %: ^betared-or-1 ^betared-or-2 %: %: \GG [\vecx:[]\vecA]^1 %: : : %: \vecM:[]\vecA N:B \GG %: --------------------------------[]\I;1 ::: %: \boxwithfor{N}{\vecM}{\vecx}:[]B \vecM:[]\vecA %: -----------------------------------------[]\E ::: %: \unboxp{\boxwithfor{N}{\vecM}{\vecx}:[]B} N[\vecx:=\vecM]:B %: %: ^betared-box-1 ^betared-box-2 %: %: \DD %: ::: %: \GG N:B [\vecx:[]\vecA\;y:B]^1 \GG \DD %: ::: -----<>\I ::: ::: ::: %: \vecM:[]\vecA <>N:<>B P:<>C \vecM:[]\vecA N:B %: -------------------------------------<>\E;1 :::: %: P[\vecx:=\vecM,<>y:=<>N]:<>C P[\vecx:=\vecM,y:=N]:<>C %: %: ^betared-poss-1 ^betared-poss-2 %: $$\ded{betared-imp-1} \qquad \ded{betared-imp-2}$$ $$\ded{betared-and1-1} \betaquad \ded{betared-and1-2}$$ $$\ded{betared-or-1} \betaquad \ded{betared-or-2}$$ $$\ded{betared-box-1} \betaquad \ded{betared-box-2}$$ $$\ded{betared-poss-1} \betaquad \ded{betared-poss-2}$$ \bigskip ``$P[\vec x := \vec M, \poss y := \poss N]$'' is a shorthand for ``$\letppinwithfor y N P {\vec M} {\vec x}$''.