

Squeak by Example
Version for Squeak 5.3 of July 12, 2022
Christoph Thiede, Patrick Rein

based on previous versions by
Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien
Pollet, Damien Cassou, and Marcus Denker

Copyright of original editions © 2007, 2008, 2009 by Andrew P. Black, Stéphane Ducasse,
Oscar Nierstrasz, Damien Pollet, Damien Cassou, and Marcus Denker.

Copyright of the 5.3 edition as a derivative of original editions through corrections and exten-
sions © 2022 by Patrick Rein and Christoph Thiede.

The contents of this book are protected under the Creative Commons Attribution-ShareAlike
3.0 Unported license.

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor
(but not in any way that suggests that they endorse you or your use of the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting

work only under the same, similar, or a compatible license.

¢ For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page: creativecommons.org/
licenses/by-sa/3.0/

* Any of the above conditions can be waived if you get permission from the copyright
holder.

¢ Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This
is a human-readable summary of the Legal Code (the full license):
BY SA

creativecommons.org/licenses/by-sa/3.0/legalcode

First Edition, September 2007.

Revised editions with corrections, March 2008, May 2008, September 2009.
Published by Square Bracket Associates, Switzerland. SquareBracketAssociates.org
ISBN 978-3-9523341-0-2 (First Edition)

5.3 Edition, December 2022.
Published by Software Architecture Group, Hasso Plattner Institute, Germany. hpi.de/swa
ISBN TBD (5.3 Edition)

Figures flattened July 12, 2022.

creativecommons.org/licenses/by-sa/3.0/
creativecommons.org/licenses/by-sa/3.0/
creativecommons.org/licenses/by-sa/3.0/legalcode
SquareBracketAssociates.org
hpi.de/swa

Contributors

This book is only kept up-to-date thanks to the help of many members of
the Smalltalk community, who have contributed small and large additions
over the years!. Thanks goes to all of them (in alphabetical order):

Nick Ager, Tarik Alnawa, Tom Beckmann, Joana Bergsiek, Luca Bettosini,
Andrew P. Black, Tom Braun, Ken G. Brown, Damien Cassou, Jordi
Delgado, Stéphane Ducasse, Doug Edmunds, Hilaire Fernandes, Tim
Garrels, Orla Greevy, Henrik Guhl, Jonathan Hankinds, Pascal Hecker,
Robert Hirschfeld, Theresa Hradilak, Lea Hansenberger, Uwe Hiibner,
Chris Kassopulo, Has van der Krieken, Leon Matthes, Oscar Nierstrasz,
Frederica Nierstrasz, Damien Pollet, Patrick Rein, Lukas Renggli, Mike
Roberts, Victor Rodriguez, Tim Rowledge, Laurent Sebag, Serge
Stinckwich, Christoph Thiede, Mark Volkmann, Kira Weinlein

IThe list was assembled more than ten years after the first edition was published. During
this time, we probably have lost sight of contributors. If you feel you should be on this list, let
us know at https:/github.com/hpi-swa-lab/SqueakByExample-english

https://github.com/hpi-swa-lab/SqueakByExample-english

Contents

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

2.1
22
23
24
25
2.6
2.7

Preface
Getting started

A quick tour of Squeak

Getting started .

The world menu .

Saving, quitting, and restarting a Squeak session
Workspaces and transcripts .

Keyboard shortcuts .

The system browser .

Finding classes .

Finding methods .

Defining a new method.

Chapter summary.

Your first interactive object: the Quinto game
The Quinto game .

Creating a new class category

Defining the class SBECell.

Adding methods to a class.

Inspecting an object .

Defining the class SBEGame .

Organizing methods into protocols

xi

O 0 W W

10
12
14
16
17
19
24

27
27
28
28
31
33
34
37

vl

2.8
29
2.10

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

4.1
4.2
43
44
4.5
4.6
4.7

I1

5.1
52
5.3
54
5.5
5.6
5.7
5.8

Let’s try our code . .
Saving and sharing Smalltalk code.

Chapter summary.

Syntax in a nutshell

Syntactic elements

Pseudo-variables .

Message sends .

Method syntax .

Block syntax.

Conditionals and loops in a nutshell .
Primitives and pragmas

Chapter summary.

Understanding message syntax
Identifying messages

Three kinds of messages

Message composition

Hints for identifying keyword messages
Expression sequences

Cascaded messages .

Chapter summary.
Developing in Squeak

The Smalltalk object model

The rules of the model .

Everything is an object .

Every object is an instance of a class .

Every class has a superclass .

Everything happens by sending messages .
Method lookup follows the inheritance chain .

Shared variables

Chapter summary.

Contents

41
44
47

49
49
53
53
55
56
57
59
60

61
61
63
65
71
73
73
74

77
77
77
78
86
89
90
97
102

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
79
7.10

8.1
8.2
8.3
8.4
8.5
8.6

The Squeak programming environment
Overview .

The system browser .

Monticello

The inspector and the explorer .
The debugger .

The process browser .

Finding methods .

Change sets and the change sorter .
The file list browser .

In Smalltalk, you can’t lose code
Other interesting tools .

Chapter summary.

SUnit

Introduction .

Why testing is important .
What makes a good test? .
SUnit by example .

The SUnit cook book.

The SUnit framework
Advanced features of SUnit .
The implementation of SUnit.
Some advice on testing .

Chapter summary.

Basic Classes
Object .
Numbers .
Characters
Strings .
Booleans .

Exceptions

vii

105
106
107
120
127
130
138
139
140
143
145
146
147

149
149
150
151
152
156
158
160
162
165
166

169
169
179
183
183
185
187

viii

8.7

9.1
9.2
9.3
94
9.5
9.6
9.7

10

10.1
10.2
10.3
10.4
10.5

11
11.1
11.2
11.3
114
11.5
11.6
11.7
11.8
11.9
11.10

I11

12
12.1

Chapter summary.

Collections

Introduction.

Implementations of collections .
Examples of key classes.
Collection iterators

Some hints for using collections.
Sorting collections.

Chapter summary.

Streams

Two sequences of elements
Streams vs. collections .
Streaming over collections.
Using streams for file access .

Chapter summary.

Morphic

The history of Morphic .

Manipulating morphs

Composing morphs .

Creating and drawing your own morphs
Interaction and animation .

Dialog windows

Drag-and-drop .

A complete example .

More about the canvas .

Chapter summary.
Advanced Squeak

Classes and metaclasses

Rules for classes and metaclasses .

Contents

188

191
191
195
196
207
211
212
214

217
217
218
219
227
230

233
233
235
236
237
241
246
247
249
253
255

259
259

12.2
12.3
12.4
12.5
12.6
12.7
12.8

IV

Al
A2
A3
A4
AS5
A6
A7
A8

Revisiting the Smalltalk object model.

Every class is an instance of a metaclass .

The metaclass hierarchy parallels the class hierarchy .
Every metaclass inherits from Class and Behavior .
Every metaclass is an instance of Metaclass .

The metaclass of Metaclass is an instance of Metaclass

Chapter summary.
Appendices

Frequently asked questions

Getting started .

Collections

Browsing the system.

Morphic .

System . .

Using Monticello and SqueakSource .
Tools

Regular expressions and parsing

Bibliography

260
262
263
266
268
269
270

275
275
276
277
279
280
280
282
283

285

Preface

What is Squeak?

Squeak is a modern, open-source, fully-featured implementation of the
Smalltalk programming language and environment.

Squeak is highly portable — even its virtual machine is written almost
entirely in Smalltalk, making it easy to debug, analyze, and change. Squeak
is the vehicle for a wide range of innovative projects from multimedia
applications and educational platforms to commercial web development
environments.

Who should read this book?

This book presents the various aspects of Squeak, starting with the basics,
and proceeding to more advanced topics.

This book will not teach you how to program. The reader should
have some familiarity with programming languages. Some background on
object-oriented programming is also helpful.

This book will introduce the Squeak programming environment, the
language, and the associated tools. You will be exposed to common idioms
and practices, but the focus is on the technology, not on object-oriented
design. Wherever possible, we will show you lots of examples. (We have
been inspired by Alec Sharp’s excellent book on Smalltalk?.)

2 Alec Sharp, Smalltalk by Example. McGraw-Hill, 1997.

xii Preface
A word of advice

Do not be frustrated by parts of Smalltalk that you do not immediately
understand. You do not have to know everything! Alan Knight expresses
this principle as follows?:

Try not to care. Beginning Smalltalk programmers often
have trouble because they think they need to understand
all the details of how a thing works before they can use
it. This means it takes quite a while before they can
master Transcript show: 'Hello World'. One of the great leaps
in OO is to be able to answer the question “How does
this work?” with “I don’t care”.

An open book

This book is an open book in the following senses:

* The content of this book is released under the Creative Commons
Attribution-ShareAlike (by-sa) license. In short, you are allowed to
freely share and adapt this book, as long as you respect the conditions
of the license available at the following URL: creativecommons.org/
licenses/by-sa/3.0/.

* This book just describes the core of Squeak. Ideally, we would like
to encourage others to contribute chapters on the parts of Squeak
that we have not described. If you would like to participate in
this effort, take a look at the repository at https:/github.com/nhpi-swa-lab/
SqueakByExample-english. We would like to see this book grow!

The Squeak community

The Squeak community is friendly and active. Here is a short list of re-
sources that you may find useful:

* www.squeak.org is the main web site of Squeak. (Do not confuse it with
www.squeakland.org which is dedicated to the eToys environment built
on top of Squeak but whose audience is elementary school teachers.)

3https://web.archive.org/web/201 91012144419/http://alanknightsblog.blogspot.com/2011/10/
principles-of-o0o-design-or-everything-i.html

creativecommons.org/licenses/by-sa/3.0/
creativecommons.org/licenses/by-sa/3.0/
https://github.com/hpi-swa-lab/SqueakByExample-english
https://github.com/hpi-swa-lab/SqueakByExample-english
www.squeak.org
www.squeakland.org
https://web.archive.org/web/20191012144419/http://alanknightsblog.blogspot.com/2011/10/principles-of-oo-design-or-everything-i.html
https://web.archive.org/web/20191012144419/http://alanknightsblog.blogspot.com/2011/10/principles-of-oo-design-or-everything-i.html

xiii
* www.squeaksource.com is the equivalent of GitHub for Squeak projects.

¢ wiki.squeak.org/squeak is a wiki with all kinds of information about
Squeak.

About mailing-lists. There are a lot of mailing-lists and sometimes they
can be just a little bit too active. If you do not want to get flooded by
mail but would still like to participate we suggest you use forum.world.st or
forum.world.st/Squeak-f45487.html to browse the lists.

You can find the complete list of Squeak mailing-lists at lists.squeakfoundation.
org/mailman/listinfo.

* Note that squeak-dev refers to the developers’ mailing list, which can
be browsed here:
forum.world.st/squeak-dev-f45488.html

* Beginners refers to a friendly mailing-list for beginners where any
question can be asked:
forum.world.st/Squeak-Beginners-f107673.html
(There is so much to learn that we are all beginners in some aspect of
Squeak!)

Group chats. Have a question that you need to be answered quickly?
Would you like to meet with other squeakers around the world? A great
place to participate in longer-term discussions is the Slack instance at
squeak.slack.com. Stop by and say “Hi!”

Otherssites. There are several websites supporting the Squeak community
today in various ways. Here are some of them:

* github.com/squeak-smalltalk is the GitHub organization hosting new re-
leases and the various Squeak websites.

* github.com/OpenSmalltalk/opensmalltalk-vm is the repository of the OpenSmalltalk-
VM which is the virtual machine running Squeak.

* planet.squeak.org is the site of PlanetSqueak which is an RSS aggregator.
It is a good place to get a flood of squeaky things. This includes the
latest blog entries from developers and others who have an interest
in Squeak.

www.squeaksource.com
wiki.squeak.org/squeak
forum.world.st
forum.world.st/Squeak-f45487.html
lists.squeakfoundation.org/mailman/listinfo
lists.squeakfoundation.org/mailman/listinfo
forum.world.st/squeak-dev-f45488.html
forum.world.st/Squeak-Beginners-f107673.html
squeak.slack.com
github.com/squeak-smalltalk
github.com/OpenSmalltalk/opensmalltalk-vm
planet.squeak.org

xiv Preface

Examples and exercises

We make use of two special conventions in this book.

We have tried to provide as many examples as possible. In particular,
there are many examples that show a fragment of code that can be evaluated.
We use the symbol — to indicate the result that you obtain when you
select an expression and printit:

3+4 — 7 'ifyou select 3+4 and ‘print it', you will see 7"

The other convention that we use is to display the icon & to indicate
when there is something for you to do:

) Go ahead and read the next chapter!

89

Acknowledgments (2009 edition)

We would like to thank Hilaire Fernandes and Serge Stinckwich who al-
lowed us to translate parts of their columns on Smalltalk, and Damien Cas-
sou for contributing the chapter on streams. We also thank Tim Rowledge
for the use of the Squeak logo, and Frederica Nierstrasz for the original
cover art.

We especially thank Lukas Renggli and Orla Greevy for their comments
on drafts of the first release.

We thank the University of Bern, Switzerland, for graciously supporting
this open-source project and for hosting the web site of this book.

We also thank the Squeak community for their enthusiastic support of
this project, and for informing us of the errors found in the first edition of
this book. Finally, we thank the team that developed Squeak in the first
place for making this amazing development environment available to us.

Part 1

Getting started

Chapter 1

A quick tour of Squeak

In this chapter, we will give you a high-level tour of Squeak to help you get
comfortable with the environment. There will be plenty of opportunities to
try things out, so it would be a good idea if you have a computer handy
when you read this chapter.

We will use this icon: ¢ to mark places in the text where you should
try something out in Squeak. In particular, you will fire up Squeak, learn
about the different ways of interacting with the system, and discover some
of the basic tools. You will also learn how to define a new method, create
an object, and send it messages.

1.1 Getting started

Squeak is available as a free download from www.squeak.org. Your down-
load will be an archive file that contents vary from platform to platform.
However, there are two important components common to all versions (see
Figure 1.1).

1. The virtual machine (VM) is the only part of the system that is differ-
ent for each operating system and processor. Pre-compiled virtual
machines are available for all the major computing environments. In
Figure 1.1 we see the VM for the Windows is called Squeak.exe.

2. The current system image is a snapshot of a running Squeak system,
frozen in time. It consists of two files: an .image file, which contains the
state of all of the objects in the system (including classes and methods,
since they are objects too), and a .changes file, which contains a log
of all of the changes to the source code of the system. In Figure 1.1,

www.squeak.org

4 A quick tour of Squeak

—
T

Squeak.exe Squeak5.3-1943 Squeak5.3-1943
5-64bit.image 5-64bit.changes

-
'

Figure 1.1: The Squeak download files (in this example, for 64-bit Win-
dows).

we see that we have grabbed the Squeak5.3-19435 image and changes
files. Actually, we will use a slightly different image in this book.

¢ Download and install Squeak on your computer. We recommend that you

use the standard image provided on the Squeak web page.

Most of the introductory material in this book will work with any
version, so if you already have one installed, you may as well continue
to use it. However, if you notice differences between the appearance or
behavior of your system and what is described here, do not be surprised.

As you work in Squeak, the image and changes files are modified, so
you need to make sure that they are writable. Always keep these two files
together. Never edit them directly with a text editor, as Squeak uses them
to store the objects you work with and to log the changes you make to the
source code. It is a good idea to keep a backup copy of the downloaded
image and changes files so you can always start from a fresh image and
reload your code.

The sources file and the VM can be read-only —they can be shared
between different users. All of these files can be placed in the same directory,
but itis also possible to put the virtual machine and sources file in a separate
directory where everyone has access to them. Do whatever works best for
your style of working and your operating system.

Launching. To start Squeak, do whatever your operating system expects:
drag the .image file onto the icon of the virtual machine, or double-click the
.image file, or double-click the virtual machine icon, or at the command line
type the name of the virtual machine followed by the path to the .image file.
(When you have multiple VMs installed on your machine, the operating
system may not automatically pick the right one; in this case, it is safer to

Getting started 5

Welcome to Squeak: Welcome

Welcome to Squeak

garming, resea L d
flexible and free.

It's Smalltalk!

Everything is an object. Objects collaborate by

Figure 1.2: A fresh Squeak image.

drag and drop the image onto the virtual machine, or to use the command
line.)

Once Squeak is running, you should see a single large window, possibly
containing some open workspace windows (see Figure 1.2). You will also
notice that there is a small menu bar at the top. Beyond this one global
menu, Squeak makes heavy use of context-dependent pop-up menus.

N Start Squeak. You can dismiss any open workspaces by clicking on the X in

the top left corner of the workspace window. You can collapse the windows (so that
they can be expanded again later) by clicking on the — in the top-right corner.

First interaction. A good place to get started is the world menu shown in
Figure 1.3 (a).

% Click with the mouse on the background of the main window to show the

world menu, then choose open ... >workspace fo create a new workspace.

Squeak was originally designed for a computer with a three button
mouse. If your mouse has fewer than three buttons, you will have to press
extra keys while clicking the mouse to simulate the extra buttons.

Squeak avoids terms like “left mouse click” because different computers,
mice, keyboards, and personal configurations mean that different users will
need to press different physical buttons to achieve the same effect. Instead,
the mouse buttons are labeled with colors. The mouse button that you

6 A quick tour of Squeak

) Workspace (v 1+]

[x] World b4 Time now Aaset font... (k)
Browser set style... (K)
Workspace set alignment... (u)
Transcript - =
Test Runner make project link (P)

@prewous project O‘gn:...(f]. @

\esl jump to project... ind again (g
save project on file... find and replace ...
load project from file... dofreplace again (j)
can't und.o undo (2)

5 restore display (r) I,(_a‘> redo (2)
open...

= wndows... - copy (c)

|« changes... 3$CUt (x)

@help... paste (v)

% appearance... paste...
do... Eido it (d)

n

“hobjects (o) x (=] [+] (=] @ <5 debug it (D)
QWY O oo & print it (p)

% auth tool P J
2y (.)Hng oos o |[Time now| Q (_j]\) inspect it (i}
playfield options... explore it (1)
flaps...

[projects... - button for it
telemorphic... G)tally it

fimlmake screenshot = o spy on it

i debug... + accept (s)

* save ° a 3 cancel {I)
::: gzl;ew version e . ET iR =
save and quit (C) The morphlc halo copy html

[Bquit more...

(a) The world (b) The contextual menu

menu

Figure 1.3: The world menu (brought up by the red mouse button), a
contextual menu (yellow mouse button), and a morphic halo (blue mouse
button).

pressed to get the “World” menu is called the red button; it is most often
used for selecting items in lists, selecting text, and selecting menu items.
When you start using Squeak, it can be surprisingly helpful to actually label
your mouse, as shown in Figure 1.4.1

The yellow button is the next most used button; it is used to bring up
a contextual menu, that is, a menu that offers different sets of actions
depending on where the mouse is pointing; see Figure 1.3 (b).

Nd - Type Time now in the workspace. Now click the yellow button in the workspace.
Select print it.

Finally, there is the blue button to activate the “morphic halo”, an array
of handles that are used to perform operations on the on-screen objects
themselves, such as rotating or resizing; see Figure 1.3 (c). If you let the
mouse linger over a handle, a help balloon will explain its function.

1We will avoid the term “red-click” and use “click” instead since this is the default.

Getting started

NJ Click the blue button on the workspace. Grab the
Ohiandle near the bottom left corner and drag it to rotate
the workspace.

We recommend that right-handed people config-
ure their mouse to put the red button on the left side
of their mouse, the yellow button on the right, and
use a clickable scroll wheel, if one is available, for the
blue button. If you don’t have a clickable scroll wheel,
then you can get the Morphic halo by holding down
the alt or option key while clicking the red button. If
you use a Mac without a second mouse button, you
can simulate one by holding down the 3 key while
clicking the mouse.

You can configure your mouse to work the way
you want by using the preferences of your operating
system and mouse driver. Squeak has some prefer-
ences for customizing the mouse and the meta keys on
your keyboard. You can find the preference browser
in the open item of the World menu. In the prefer-

Figure 1.4: The
author’s mouse.
Clicking the scroll
wheel activates
the blue button.

ence browser, the general category contains an option Swap mouse buttons
that switches the yellow and blue functions (see Figure 1.5). The keyboard
category has options to duplicate the various command keys.

J Open the preference browser and find the Swap mouse buttons option using

the search box.

3 Preference Browser

o

[: default j (save :](load :] (save to disk](load from di:] [maore ...

)

|swap| |
explo;i'ng Duplicate all control and alt keys [m] enabled []local
fileout Duplicate control and alt keys [enabled []iocal
g:\?:aral Projects sent to disk [Jenabled [Jlocal
halos Swap control and alt keys [Jenabled []lacal
keyboard Swap mouse buttons [m] enabled []local
mz: i:g [if true, swaps mouse buttons 2 and 3

morphic Preferences valueOfFlag: #swapMouseButtons

mouse @
performance

printing

Figure 1.5: The Preference Browser.

8 A quick tour of Squeak

1.2 The world menu

NJ Click again on the Squeak background.

You will see the World menu again. Most Squeak menus are not modal;
you can leave them on the screen for as long as you wish by clicking the
thumbtack icon in the top-right corner. Do this. Also, notice that menus
appear when you click the mouse, but do not disappear when you release
it; they stay visible until you make a selection, or until you click outside of
the menu. You can even move the menu around by grabbing its title bar.

The world menu provides you a simple means to access many of the
tools that Squeak offers.

¢ Have a closer look at the world>open ... menii.

You will see a list of several of the core tools in Squeak, including the
system browser (one of many available class browsers) and the workspace.
We will encounter most of them in the coming chapters.

[x] open... »
class browser
workspace
file list
package pane browser
process browser
method finder
message names
simple change sorter
dual change sorter
file...
transcript (t)
Dependency Browser
Font Importer
Help Browser
http proxy editor
Monticello Browser
Monticello Configurations
Preference Browser
Preference Wizard
Services Browser
SqueakMap Catalog
SqueakMap Categories
Test Runner
mvc project
morphic project

Figure 1.6: The open ... dialogue of the world menu.

Saving, quitting, and restarting a Squeak session 9

1.3 Saving, quitting, and restarting a Squeak ses-
sion

N Bring up the world menu. Now select new morph ... and navigate to

from alphabetical list>A-C >BouncingAtomsMorph . You now have a morph full of
bouncing atoms “in hand”. Put the atoms morph down (by clicking) somewhere.

%) Save As File ©

Save Image as new name...

TravisCl.image

Figure 1.7: An instance of Bouncin- Figure 1.8: The save as ... dialogue.
gAtomsMorph.

Ns1 Select World>save as ..., and enter the name “SBE”. Now click on the

Accept(s) button. Now select World>save and quit.

Now if you go to the location where the original image and changes files
were, you will find two new files called “SBE.image” and “SBE.changes”
that represent the working state of the Squeak image at the moment before
you told Squeak to save and quit. If you wish, you can move these two files
anywhere that you like on your disk, but if you do so you may (depending
on your operating system) need to also move, copy or link to the virtual
machine and the .source file.

NJ Start up Squeak from the newly created “SBE.image” file.

Now you should find yourself in precisely the state you were when
you quit Squeak. The bouncing atoms morph is there again and the atoms
continue to move from where they were when you left it.

When you start Squeak for the first time, the Squeak virtual machine
loads the image file that you provide. This file contains a snapshot of a
large number of objects, including a vast amount of pre-existing code and
a large number of programming tools (all of which are objects). As you
work with Squeak, you will send messages to these objects, you will create
new objects, and some of these objects will die and their memory will be
reclaimed (i.e., garbage-collected).

10 A quick tour of Squeak

When you quit Squeak, you will normally save a snapshot that contains
all of your objects. If you save normally, you will overwrite your old image
file with the new snapshot. Alternatively, you may save the image under a
new name, as we just did.

In addition to the .image file, there is also a .changes file. This file contains
a log of all the changes to the source code that you have made using the
standard tools. Most of the time you do not need to worry about this file
at all. As we shall see, however, the .changes file can be very useful for
recovering from errors or replaying lost changes. More about this later!

The image that you have been working with is a descendant of the
original Smalltalk-80 image created in the late 1970s. Some of these objects
have been around for decades!

The image can be used as a mechanism for storing and managing soft-
ware projects you are working on. However, as we shall see later on, there
are also tools for managing code and sharing software developed by teams.
For now, we will continue by cleaning up the image before we take a look
at the tools Squeak provides.

"] Projects [EFE Apps Do Extras Windows Help Squeak by Example 13:40:29

[Browser

[] Workspace

[Transcript

[Test Runner

[Method Finder

[Message Names

[Simple Change Sorter

[] Dual Change Sorter

[0 Monticello Browser

[Monticello Configurations
Git Browser (click to install)
Process Browser

[Preferences

[File List

Figure 1.9: The Squeak Tools menu.

1.4 Workspaces and transcripts

&g Close all open windows. In the menu bar at the top select Tools.

You will see entries for some of the key tools in Squeak (Figure 1.9).
Open a transcript and a workspace.

NJ Position and resize the transcript and workspace windows so that the
workspace just overlaps the transcript.

You can resize windows either by dragging one of the corners, or by
blue-clicking the window to bring up the morphic handles, and dragging
the yellow, bottom right handle.

Workspaces and transcripts 11

At any time only one window is active; it is in front and has its label
highlighted (e.g. the workspace window is active in Figure 1.10).

The transcript is an object that is often used for logging system messages.
It is a kind of “system console”. Note that the transcript is terribly slow, so
if you keep it open and write to it certain operations can become 10 times
slower. (You can speed up it by disabling the preference “Force transcript
updates to screen” in the Preference Browser.) In addition, the transcript is
not thread-safe so you may experience strange problems if multiple objects
write concurrently to the transcript.

Workspaces are useful for typing snippets of Smalltalk code that you
would like to experiment with. You can also use workspaces simply for
typing arbitrary text that you would like to remember, such as to-do lists
or instructions for anyone who will use your image. Workspaces are often
used to hold documentation about a captured image, as is the case with the
standard image that we downloaded earlier (see Figure 1.2).

N Type the following text into the workspace:

Transcript show: 'hello world'; cr.

Try double-clicking in the workspace at various points in the text you
have just typed. Notice how an entire word, entire string, or the whole text
is selected, depending on where you click.

NJ Select the text you have typed and yellow-click. Select do it (d).

Notice how the text “hello world” appears in the transcript window
(Figure 1.10). Do it again. (The (d) in the menu item do it (d) tells you that
the keyboard shortcut to do it is CMD—d. More on this in the next section!)

You have just evaluated your first Smalltalk expression! You just sent the
message show: 'hello world' to the Transcript object, followed by the message cr
(carriage return). The Transcript then decided what to do with this message,
that is, it looked up its methods for handling show: and cr messages and
reacted appropriately.

If you talk to Smalltalkers for a while, you will quickly notice that
they generally do not use expressions like “call an operation” or “invoke
a method”, but instead they will say “send a message”. This reflects the
idea that objects are responsible for their own actions. You never tell an
object what to do—instead, you politely ask it to do something by sending
it a message. The object, not you, selects the appropriate method for
responding to your message (more about this in Chapter 4).

12 A quick tour of Squeak

£) Workspace [~ 1+]
Transcript show: 'hello world'; cr. |Aaset font... (k)
set style... (K)
set alignment... (u)
make project link (P)
i find...(f)
find again (g)
find and replace ...
dofreplace again (j)
undo (2)
> redo (Z)
copy (c)
W cut (x)
[[] paste (v)
paste...
4irdebug it (D)
(hprint it (p)
([, inspect it (i)
explore it (1)

Transcript

hello world

Figure 1.10: “Doing” an expression.

1.5 Keyboard shortcuts

If you want to evaluate an expression, you do not always have to bring
up the yellow-button menu. Instead, you can use keyboard shortcuts.
These are the parenthesized expressions in the menu. Depending on your
platform, you may have to press one of the modifier keys (control, alt,
command, or meta). (We will indicate these generically as CMD—key.)

¢ Evaluate the expression in the workspace again, but using the keyboard

shortcut: CMD—d.

In addition to doit, you will have noticed printit, inspect it and explore it.
Let’s have a quick look at each of these.

¢ Type the expression 3 + 4 into the workspace. Now do it with the keyboard

shortcut.

Do not be surprised if you saw nothing happen! What you just did is
send the message + with argument 4 to the number 3. Normally the result 7
will have been computed and returned to you, but since the workspace did
not know what to do with this answer, it simply threw the answer away.
If you want to see the result, you should printit instead. printit actually
compiles the expression, executes it, sends the message printString to the
result, and displays the resulting string.

N Select 3 + 4 and printit (CMD—p).

Keyboard shortcuts 13

This time we see the result we expect (Figure 1.11).

) Workspace e I
3+47

Figure 1.11: “Print it” rather than “do it”.

3+4 — 7

We use the notation — as a convention in this book to indicate that a
particular Squeak expression yields a given result when you printit.

NJ Delete the highlighted text “7” (Squeak should have selected it for you, so you
can just press the delete key). Select 3 + 4 again and this time inspect it (CMD—i).

Now you should see a new window, called an inspector, with the heading
Smallinteger: 7 (Figure 1.12). The inspector is an extremely useful tool that
will allow you to browse and interact with any object in the system. The title
tells us that 7 is an instance of the class Smallinteger. The left panel allows us
to browse the instance variables of an object, the values of which are shown
in the right panel. The bottom panel can be used to write expressions to
send messages to the object.

Smallinteger: 7
Workspace d 9 oo
self
I+ 4 all inst vars

-
{EXFIHJFE

Figure 1.12: Inspecting an object.

NJ Type self squared in the bottom panel of the inspector on 7 and print it.

14 A quick tour of Squeak

& Close the inspector. Type the expression Object in a workspace and this time

explore it (CMD—I, uppercased i).

This time you should see a window labeled Object containing the text
> root: Object. Click on the triangle to open it up (Figure 1.13).

©) Object o0
- root Object
p-superclass ProtoObject
b methodDict a MethodDictionary(size 503)
p-format 0
instanceVariables nil
p-organization ('accessing' at: at:modify: at:
p-subclasses {BalloonState . SoundCodec
name #0Object
b classPool a Dictionary(#DependentsFieg
sharedPools alll
p-environment Smalltalk
inspect

Figure 1.13: Exploring an object.

The explorer is similar to the inspector, but it offers a tree view of a
complex object. In this case, the object we are looking at is the Object class.
We can see directly all the information stored in this class, and we can easily
navigate to all its parts, e.g. its superclass which is stored in superclass.

1.6 The system browser

The system browser is one of the key tools used for programming. As we
shall see, there are several interesting browsers available for Squeak, but
this is the basic one you will find in any image.

NJ Openabrowser by selecting World > Browser, or by selecting Tools >Browser

in the world menu bar.

We can see a system browser in Figure 1.14. The title bar indicates that
we are browsing the class Object.

When the browser first opens, all panes are empty except for the leftmost
one. This first pane lists all known system categories, which are groups of
related classes.

NJ Click on the category Kernel-Objects.

The system browser 15

) System Browser: Object (~Y+1-}

an - ragrgTTy rarTrTresrerTTy
Kernel-Classes g Pg)tt.oOl:Ject futures + isLiteral
Kernel-Exceptions thl graph model & longPrintOmn:
Kernel-Exceptions-Keri (F)olean literals 4 longPrintOm:limit
Kernel-Methods Ta se macpal longPrintString

cl T Rucio ; ;

CTamnomme) | M || MeSoie || lnbosn
Kernel-Numbers-Exceg Wn ?(I'\Il'ln Jesc pinning & printOn:
Kernel-Objects Ob'eatT essage printing < printString
Kernel-Poals _,..ch ‘f::x_cer . private printStringLimitedl
Ko PO | G s (1) IO ,,,,, U R CosureAr

!name of methnd)u:lers)[implementnrj[wersions)[:inheritancej(hierarchy)(wars j source
printString 1 method comment |

"Answer a String whose characters are a description of the receiver.

If you want to print without a character limit, use fullPrint5tring."”
code of method

~ self printStringLimitedTo: & Euntaringd

[sma 6/1/2000 09:22 - printing - 11 implementors - in no change set - |

Figure 1.14: The system browser showing the printString method of class
Object.

This causes the second pane to show a list of all of the classes in the
selected category.

01 Select the class Object.

Now the remaining two panes will be filled with text. The third pane
displays the protocols of the currently selected class (referred to as method
categories by the browser). These are convenient groupings of related meth-
ods. If no protocol is selected you should see all methods in the fourth
pane.

NJ Select the printing protocol.

You may have to scroll down to find it. Now you will see in the fourth
pane only methods related to printing.

5¢ Select the printString method.

Now we see in the bottom pane the source code of the printString method,
shared by all objects in the system (except those that override it).

16 A quick tour of Squeak
1.7 Finding classes

There are several ways to find a class in Squeak. The first, as we have just
seen above, is to know (or guess) what category it is in, and to navigate to
it using the browser.

A second way is to send the browse message to the class, asking it to
open a browser on itself. Suppose we want to browse the class Boolean.

N Type Boolean browse into a workspace and do it.

A browser will open on the Boolean class (Figure 1.15). There is also a
keyboard shortcut CMD—b (browse) that you can use in any tool where you
find a class name; , select the name and type CMD-b.

NJ Use the keyboard shortcut to browse the class Boolean.

) System Browser: Boolean (v 1 +]
Kernel-Classes (| ProtoObject —all- o0&
Kernel-Exceptions Object *Etoys-tiles o==>
Kernel-Exceptions-Ker Boolean *Tools-Debugger = and:
Kernel-Methods False *monticellofiletree-co and:and:
Kernel-Models True "stc-n-ct_)re and:and:and:
Kernel-Numbers MessageSend controlling and:and:and:and:
Kernel-Numbers-Excef UndefinedObjec conv_ertlng = asBit
Kernel-Objects WeakMessageS copying) asinteger
Kernel-Pools ObjectTracer logical operations asNumber
Kernel-Processes e printing + basicType

Wearnnal D e \inrin | L_instance | class testing _{ | # canonicalArgumen
[browse :](senders j(implementmj YErsions inheritance (hierarchy j vars j | source

Object subclass; #Boolean
instanceVariableNames: "
classVariableNames: "
poolDictionaries; "
category: 'Kernel-Objects’

|Boolean is an abstract class defining the protocol for logic testing operations and conditional coni

Figure 1.15: The system browser showing the definition of class Boolean.

Notice that when the Boolean class is selected but no protocol or method
is selected, the bottom pane automatically shows the class definition (Fig-
ure 1.15). This is nothing more than an ordinary Smalltalk message that
is sent to the parent class, asking it to create a subclass. Here we see that
the class Object is being asked to create a subclass named Boolean with no
instance variables, class variables or “pool dictionaries”, and to put the
class Boolean in the Kernel-Objects category.

Finding methods 17

If you want to see further information on the class, you can click on the
at the bottom of the class pane. This opens the comment in a dedicated
pane.

If you would like to explore Squeak’s inheritance hierarchy, the hierarchy
browser can help you. This can be useful if you are looking for an unknown
subclass or superclass of a known class. The hierarchy browser is like the
system browser, except that the list of classes is arranged as an indented
tree mirroring the inheritance hierarchy.

¢ Click on in the browser while the class Boolean is selected.

This will open a hierarchy browser showing the superclasses and subclasses
of Boolean.

Navigate to the immediate superclass and subclasses of Boolean.

Often, the fastest way to find a class is to search for it by name. For exam-
ple, suppose that you are looking for some unknown class that represents
dates and times.

NJ Put the mouse in the system category pane of the system browser and type

CMD—f, or select find class ... (f) from the yellow-button menu. Type “time” in the
dialog box.

You will be presented with a list of classes whose names contain “time” (see
Figure 1.16). Choose one, say, Time, and the browser will show it.

O System Browser -1+) System Browser o0

—ail—

all -
Kernel-Classes Kernel-Classes

HE;
kerne-€) Class name or fragment? O KerolE|) Class name or fragment? O

Kernel-N KernelN
Kernel-N | AColorSelectorMorph KernelN [Time

0 |ADPCMCodec o [TimeProfieBrowser
Pl | AIFFFileReader TimeStam
TimeStampTest
TimeTest
= [Timezone
TimedOut
TimesRepeatMorph
TimesRepeatTile
TimesRow
Timespan
TimespanDoSpanAYearTest

‘Abstractvent
= |AbstractFont.
‘AbstractHelpTopic
AbstractHierarchicalList
‘AbstractLauncher
AbstractVediaEventMorph
AbstractObjectsAsMethod
AbstractResizerMorph

ey o= |

Figure 1.16: Searching for a class by name.

1.8 Finding methods

Sometimes you can guess the name of a method, or at least part of the
name of a method, more easily than the name of a class. For example, if
you are interested in the current time, you might expect that there would

18 A quick tour of Squeak

be a method called “now”, or containing “now” as a substring. But where
might it be? The method finder can help you.

Nd Select Tools >Method Finder in the menu bar at the top or open the world
menu and select open... >method finder. Type “now” in the top left pane, and
accept it (or just press the RETURN key).

The method finder will display a list of all the method names that
contain the substring “now”. To scroll to now itself, move the cursor to the
list and type “n”; this trick works in all scrolling windows. Select “now”
and the right-hand pane shows you the three classes that define a method
with this name, as shown in Figure 1.17. Selecting any one of them will

open a browser on it.

) Selector Browser (v N+

|now | DateAndTime class now
Time class now

nameForWellKnownTCPPort:
notkKnown

g

now
nowAtOffset:
LnowHasDef

Type a fragment of a selector in the top pane. Accept it. &

Or, use an example to find a method in the system. Type receiver, args, and
answer in the top pane with periods between the items. 3. 4.7

Figure 1.17: The method finder showing three classes that define a method
named now.

At other times you may have a good idea that a method exists, but will
have no idea what it might be called. The method finder can still help! For
example, suppose that you would like to find a method that turns a string
into upper case, for example, it would translate 'eureka’ into 'EUREKA".

NJ - Type ‘eureka’ . 'EUREKA' into the method finder and press the RETURN key,

as shown in Figure 1.18.

The method finder will suggest a method that does what you want.

An asterisk at the beginning of a line in the right pane of the method
finder indicates that this method is the one that was actually used to obtain
the requested result. So, the asterisk in front of String asUppercase lets us
know that the method asUppercase defined on the class String was executed
and returned the result we wanted. The methods that do not have an
asterisk are just the other methods that have the same name as the ones that
returned the expected result. So Character»asUppercase was not executed on
our example, because 'eureka’ is not a Character object.

Defining a new method 19

) Selector Browser (v N+

| ‘eureka'. 'EUREKA' Character asUppercase
*String asUppercase

'‘eureka’ asUppercase —= 'EUREKA’ Wide5tring asUppercase

Type a fragment of a selector in the top pane. Accept it. [&

Or, use an example to find a method in the system. Type receiver, args, and
answer in the top pane with periods between the items. 3. 4. 7

Figure 1.18: Finding a method by example.

You can also use the method finder for methods with arguments; for
example, if you are looking for a method that will find the greatest common
factor of two integers, you might try 25. 35. 5 as an example. You can also
give the method finder multiple examples to narrow the search space; the
help text in the bottom pane explains more.

There is yet another way to find both, methods, and classes. In the top
right corner of the menu bar at the top you can find a pane saying “Search
or evaluate...”. This pane provides you a global search; you can activate
it from everywhere via CMD-0. When you try previous searches for the
class Time or the method now you will see that the search directly opens a
browser for the class or the methods.

1.9 Defining a new method

Squeak provides many more interesting tools, such as the test runner and
the debugger. In order to illustrate you how these are typically used while
programming in Squeak, we will show you how you can make use of them
while defining a new method.

The advent of Test Driven Development? has changed the way that we
write code. The idea behind Test Driven Development, also called TDD
or Behavior Driven Development, is that we write a test that defines the
desired behavior of our code before we write the code itself. Only then do
we write the code that satisfies the test.

Suppose that our assignment is to write a method that “says something
loudly and with emphasis”. What exactly does that mean? How can we
make sure that programmers who may have to maintain our method in

2Kent Beck, Test Driven Development: By Example. Addison-Wesley, 2003, ISBN 0-321-14653~
0.

20 A quick tour of Squeak

the future have an unambiguous description of what it should do? We can
start answering these questions by giving an example:

When we send the message shout to the string “Don’t panic” the
result should be “DON’T PANIC!”.

To make this example into something that the system can use, we turn it
into a test method:

Method 1.1: A test for a shout method.
StringTest»testShout

self assert: 'DON"T PANIC!' equals: 'Don"t panic' shout.

How do we create a new method in Squeak? First, we have to decide
which class the method should belong to. In this case, the shout method
that we are testing will go in class String, so the corresponding test will, by
convention, go in a class called StringTest.

) System Browser: StringTest o=
Collec tioneTecte. = CharacterTest —all - - testAsCamelCase

g: ::E:g:g:g::?:; L2 HtmlReadWriterT *SBE-Environment @ testAsDecomposed
CollectionsTests-Seque || - StringTest *SBE-QuickTour @ testAsinteger
CollectionsTests-SortFy || ° SYmbolTest running _ = testAsIntegerSigne
CollectionsTests-Stack || ° TextAlignmentTest | tests - accessing =@ testAsintegerSigne| |
CollectionsTests-Strear || ° TextAnd_‘I'e):tStrea tests - comparing @ testAsOctetString
CollectionsTests-Suppe || ° TextAttributesScan | tests - c_on_rerﬂng @ testAsPrecomposec
CollectionsTests-Text o TextEmphasisTest tests - finding) = testAsSmalltalkCon
CollectionsTests-Unord || © TextFontChangeTe: | tests - formatting @ testBase64
CollectionsTests-Weak |~ oo oo tests - indexOf o testCapitalized

Eilae Dirackar {_instance | class (7} |tests - instance creati || » testCondensedinto

[browse)[senders)[:implementnr)[VErsions)['r‘icr't:ﬁ:c)[hierarchy)l:

wars) |

source

statements

messageSelectorAndArgumentNames
"comment stating purpose of message"

| temporary variable names |

Figure 1.19: The new method template in class StringTest.

=

¢ Open a browser on the class StringTest, and select an appropriate protocol for

our method, in this case tests - converting, as shown in Figure 1.19. The highlighted
text in the bottom pane is a template that reminds you of what a Smalltalk method
looks like. Delete this and enter the code from method 1.1.

Defining a new method 21

Once you have typed the text into the browser, notice that the bottom
pane is outlined in red. This is a reminder that the pane contains unsaved
changes. So select accept (s) from the yellow-button menu in the bottom
pane, or just type CMD-s, to compile and save your method.

Because there is as yet no method called shout, the browser will ask you
to confirm that this is the name that you really want—and it will suggest
some other names that you might have intended (Figure 1.20). This can be
quite useful if you have merely made a typing mistake, but in this case, we
really do mean shout, since that is the method we are about to create, so we
have to confirm this by selecting the first option from the menu of choices,
as shown in Figure 1.20.

) System Browser: StringTest (vN+]
CollectionsTests-Abstre”) | CharacterTest : all — [1] = testAsCamelCase
CollectionsTests-Arraye || = HtmIReadWriterT SBE-g Unknown selector, please
CollectionsTests-Seque || StringTest *sBE-(confirm, correct, or cancel o
CollectionsTests-SortF. || ° SymbolTest runnin
CollectionsTests-Stack ||~ TeXtAllgnmentrest| | tests -
CollectionsTests-Strear || © TeXtAndTextStrean) ||tests -
CollectionsTests-Suppe || © TextAttributesScan | tests = e
CollectionsTests Text > TextEmphasisTest | [tests-| |20 .
CollectionsTests-Unord = TextFontChangeTe: || tests - Shouic iimeotr
I 3 Tt EantDof, - ||taste .| |ShouldNotimplement

Eﬂlﬂes}ilf}nsiTerisntf—Wea kK W @ tests - sé?gutFt’arserCIass

ou

[browse j[senders j[:implementm)
testShout

shouldRaiseWithExceptionDoTest
shoutShouldPreserve

shortcut

stdout
shouldRaiseWithSignalDoTest
shouldSaveOnQuit

self assert: 'DON"'T PANIC!' equals: 'Don"t panic' sho|

Figure 1.20: Accepting the testShout method class StringTest.

% Runyour newly created test: open the SUnit TestRunner, either by dragging

it from the Tools flap, or by selecting World >open... >Test Runner.

The leftmost two panes are a bit like the top panes in the system browser.
The left pane contains a list of system categories, but it’s restricted to those
categories that contain test classes.

Select CollectionsTests-Text and the pane to the right will show all of the test
classes in that category, which includes the class StringTest. The names of the
classes are already selected, so click Run Selected to run all these tests.

L

22

KernelTests-Classes
KernelTests-Methods
KernelTests-Numbers
KernelTests-Objects
KernelTests-Processes
CollectionsTests-Abstra
CollectionsTests-Array:
CollectionsTests-Sequel
CollectionsTests-SortFu
CollectionsTests-5tack
CollectionsTests-Stream:
CollectionsTests-Suppor
CollectionsTests-Text
CollectionsTests-Unorde

CharacterTest (11 tests)

SymbolTest (10 tests)
TextTest (18 tests)
WideStringTest (20 tes
TextAlignmentTest (2 t
TextEmphasisTest (4 t
TextFontChangeTest (2
TextFontReferenceTest (
TextkKernTest (2 tests)
HtmlReadWriterTest (15
TextAndTextStreamTest
TextAttributesScanning
TextLineEndingsTest (9

StringTest (86 tests, 341 fajlures, 1 failures, 0 errors, 0 unexpected passes

A quick tour of Squeak

86 run in 0:00:00:00.341, 85 passes, 0 expected

StringTest==>#testShout

CollectionsTests-Weak
GraphicsTests-Files
GraphicsTests-Primitives
GraphicsTests-Text
MorphicTests-Basic
MorphicTests-Events
MorphicTests-Kernel
MorphicTests-Layouts
MorphicTests-Support
MorphicTests-Text Supp
MorphicTests-ToolBuilde
MorphicTests-Widgets
MorphicTests-Worlds
Nebraska-Metwork-Objet
NetworkTests-Kernel

5

Run Selected

Run Profiled I Run Coverage I Run Failures -

Figure 1.21: Running the String tests.

You should see a message like that shown in Figure 1.21, which indicates
that there was an error in running the tests. The list of tests that gave rise
to errors is shown in the bottom right pane; as you can see, StringTest»
#testShout is the culprit. (Note that StringTest>>#testShout is the Smalltalk way
of identifying the testShout method of the StringTest class.) If you click on
that line of text, the erroneous test will run again, this time in such a way
that you see the error happen: “MessageNotUnderstood: ByteString»shout”.

The window that opens with the error message is the Smalltalk debug-
ger (see Figure 1.22). We will look at the debugger and how to use it in
Chapter 6.

The error is, of course, exactly what we expected: Running the test
generates an error because we haven’t yet written a method that tells
strings how to shout. Nevertheless, it’s good practice to make sure that the
test fails because this confirms that we have set up the testing machinery
correctly and that the new test is actually being run. Once you have seen
the error, you can the running test, which will close the debugger
window. Note that often with Smalltalk you can define the missing method
using the button, edit the newly-created method in the debugger,

Defining a new method 23

) MessageNotUnderstood: ByteString>>shout [vI+]

(Proceed :l(Abandon)C Debug)l: Create :l
i ByteString(Object)>>doesNotUnderstand: #shout
5 StringTest>>testShout

= [1in [1in []in SBEQuickTourFigureBuilder>=>buildPredebugger
[] in BlockClosure==>newProcess

Figure 1.22: The (pre-)debugger.

and then with the test. Now let’s define the method that will make
the test succeed!

¢ Select class String in the system browset, select the converting category, type

the text in method 1.2 over the method creation template, and accept it.

Method 1.2: The shout method.

shout

A self asUppercase , "'

The comma is the string concatenation operation, so the body of this
method appends an exclamation mark to an upper-case version of whatever
String object the shout message was sent to. The * tells Squeak that the
expression that follows is the answer to be returned from the method, in
this case, the new concatenated string.

Does this method work? Let’s run the tests and see.

NJ Click on Run Selected again in the test runner, and this time you should see
a green bar and text indicating that all of the tests ran with no failures and no
errors.

When you get to a green bar?, it’s a good idea to save your work and
take a break. So do that right now!

3Actually, you might not get a green bar since some images contain tests for bugs that still
need to be fixed. Don’t worry about this. Squeak is constantly evolving.

24 A quick tour of Squeak
) System Browser: String (v J+]
CuTCTTOTE ey : ST S TG raroreTeTToT
Collections-Cache Q Zg.::i;racter *versionnumber findSymbaol
Collections-Exceptions B’ ?951 : *xmi-parser initiallntegerorNil
Collections-Heap S“" eb qlng accessing keywords
Collections-Sequencea "E‘!"; g bol accessing - features numericSuffix
Collections-SortFunctic “}'fde S""m bol accessing - tokens onlylLetters
Collections-Stack Wi d' gt".”“ o arithmetic romanNumber
Collections-5treams ldestring comparing sansPeriodSuffix C
Collections-Strings converting C splitinteger
Collections-Support copying + squeakTolUtfg
E(}”eCE!OEE—IeXt . . W@ dlnﬁmi‘,:'rl‘l'lg sEe_mAndNumerlcSl
[browse)[senders)[:implementnr)[VErsions)[inheritan:e)[hierarchy)l: Wars] | source |

shout

~ self asUppercase ,

pre 12/2/2020 18:50 - *SBE-QuickTour - 2 implementors - in change sets: SBE-QuickTour-cypres:

Figure 1.23: The shout method defined on class String.

1.10 Chapter summary

This chapter has introduced you to the Squeak environment and shown
you how to use some of the major tools, such as the system browser, the
method finder, and the test runner. You have also seen a little of Squeak’s
syntax, even though you may not understand it all yet.

* A running Squeak system consists of a virtual machine, a sources file,
and image and changes files. Only these last two change, as they record
a snapshot of the running system.

* When you start a Squeak image, you will find yourself in exactly the
same state — with the same running objects — that you had when
you last saved that image.

Squeak is designed to work with a three-button mouse. The buttons

are known as the red, the yellow and the blue buttons. If you don’t
have a three-button mouse, you can use modifier keys to obtain the

same effect.

* You use the red button on the Squeak background to bring up the
World menu and launch various tools. You can also launch tools from
the Tools flap at the right of the Squeak screen.

Chapter summary 25

* A workspace is a tool for writing and evaluating snippets of code. You
can also use it to store arbitrary text.

* You can use keyboard shortcuts on text in the workspace, or any
other tool, to evaluate code. The most important of these are do it
(cMD-d), printit (CMD—-p), inspectit (CMD—i), explore it (CMD-I) and
browse it (CMD-Db).

* The system browser is the main tool for browsing Squeak code, and for
developing new code.

* The test runner is a tool for running unit tests. It also supports Test
Driven Development (TDD).

Chapter 2

Your first interactive object:
the Quinto game

In this chapter, we will develop a simple game: Quinto. Along the way, we
will demonstrate most of the tools that Squeak programmers use to con-
struct and debug their programs, and show how programs are exchanged
with other developers. We will see the system browser, the object inspec-
tor, the debugger, and the Monticello package browser. Development in
Smalltalk is efficient: You will find that you spend far more time actually
writing code and far less managing the development process. This is partly
because the Smalltalk language is simple, and partly because the tools
that make up the programming environment are integrated well with the
language.

Nevertheless, if you find yourself not understanding all of the code,
don’t worry. We will explain the details of the syntax, the object model, and
message passing in later chapters.

2.1 The Quinto game

To show you how to use Squeak’s programming tools, we will build a
simple game called Quinto. The game board is shown in Figure 2.1. The
board consists of a rectangular grid of light yellow cells. When you click on
one of the cells with the mouse, the four surrounding cells turn blue, but
not the cell you clicked on. Click again, and the surrounding cells toggle
back to light yellow. The objective of the game is to turn as many cells as
possible to blue.

28 Your first interactive object: the Quinto game

s

Figure 2.1: The Quinto game board. The user has just clicked the mouse as
shown by the cursor.

The Quinto game shown in Figure 2.1 is made up of two kinds of objects:
the game board itself, and 100 individual cell objects. The Squeak code to
implement the game will contain two classes: one for the game and one
for the cells. We will now show you how to define these classes using the
Squeak programming tools.

2.2 Creating a new class category

We have already seen the system browser in Chapter 1, where we learned
how to navigate to classes and methods, and saw how to define new
methods. Now we will see how to create system categories and classes.

¢ Open a system browser and yellow-click in the category pane. Select

e

add item

Type the name of the new category (we will use SBE-Quinto) in the dialog
box and click accept (or just press the return key); the new category is
created, and positioned at the end of the category list. If you selected an ex-
isting category first, then the new category will be positioned immediately
ahead of the selected one.

2.3 Defining the class SBECell

As yet there are of course no classes in the new category. However, the
main editing pane displays a template to make it easy to create a new
class (see Figure 2.3). This template shows us a Smalltalk expression that
sends a message to a class called Object, asking it to create a subclass called
NameOfSubClass. The new class has no variables and should belong to the

Defining the class SBECell 29
£) System Browser £) System Browser
'— & i find class... {f} [|[]AColorSele: Fo Toere Mo =1 SBECell
Kerl back... (b) ADPCMCod FS Tests Memory ~1SBEGame
K AIEEFileRe: FS-Tests-AnsiStreams SBEG T
21" prowse all lienes FS-FileDirectory-Adapt || ~ ame
Ker Abort SBE-Envi
browse -Environment
Ker AbstractEv
- SBE-Extract
Ker printOut AbstractFo i
) SBE-Maonticello
Ken fileQOut AbstractHe :
£ SBE-Morphic
Ker" regrganize AbstractHir SBE-Quinto
Ker Iphabeti AbstractLa SBE-St
Ker . 2iphabetize L5 A brn cbhAc reams .
E update |l instance i EEE_IfELng C instance i
b 'ﬂdd item... -_implernentm browse senders implementor
Obj A e0fsubcl (or.:' t bj(I #N thDfS bel)
ubclass ject subclass: am ubclass
M..meﬁ: " instanceVariableNames: "
classVariableNames: " classVariableNames: "
poolDictionaries: " poolDictionaries: "
category: '-- all --' category: 'SBE-Quinto’

Figure 2.2: Adding a system cate-
gory.

Figure 2.3: The class-creation tem-
plate.

category SBE-Quinto. We now modify the template to create the class that
we want.

NJ Modify the class creation template as follows:

* Replace Object by SimpleSwitchMorph.
¢ Replace NameOfSubClass by SBECell.

e Add mouseAction to the list of instance variables.

The result should look like class 2.1.

Class 2.1: Defining the class SBECell.
SimpleSwitchMorph subclass: #SBECell
instanceVariableNames: 'mouseAction'
classVariableNames: "
poolDictionaries: "
category: 'SBE-Quinto'

This new definition consists of a Smalltalk expression that sends a
message to the existing class SimpleSwitchMorph, asking it to create a subclass
called SBECell. (Actually, since SBECell does not exist yet, we passed as
an argument the symbol #SBECell which stands for the name of the class
to create.) We also tell it that instances of the new class should have a

30 Your first interactive object: the Quinto game

mouseAction instance variable, which we will use to define what action the
cell should take if we click on it.

At this point, you still have not created anything. Note that in the upper
right corner of the class template pane a red triangle appeared (Figure 2.4).
This means that there are unsaved changes. To actually send this message,
you must accept it.

SBE-Streams | | Gaok (a)
SBE-Testing 4i5-debug it (D)
instance | class @ - -
(- print it {(p)
I: browse :II: senders j[lmplemenj ions inheritar Ql inspect it (i) source
SimpleSwitchMorph subclass: #SBECell explore it (1)
instanceVariableNames: 'mousefction’ button for it
classVariableNames: " @ tally it
poolDictionaries: " spy on it
category: 'SBE-Quintg’ ./ accept (s)
3 cancel (1)
show bytecodes
copy htmil
mare...

| represent a single cell of a SBEGame.

Figure 2.4: The class-creation template.

w) Accept the new class definition.

o=

Either yellow-click and select accept, or use the shortcut CMD—s (for
“save”). The message will be sent to SimpleSwitchMorph, which will cause the
new class to be compiled.

Once the class definition is accepted, the class will be created and appear
in the classes pane of the browser (Figure 2.5). The editing pane now shows
the class definition, and a small pane below it will remind you to write a
few words describing the purpose of the class. This is called a class comment,
and it is quite important to write one that will give other programmers a
high-level overview of the purpose of this class. Smalltalkers put a very
high value on the readability of their code, and detailed comments about
the content of a method are unusual: The philosophy is that the code
should speak for itself. (If it doesn’t, you should refactor it until it does!) Be
aware that this refers to the content of the method, not the purpose of the
method in the larger system or assumptions of the method; these aspects
should definitely be described in a method or class comment. A class
comment need not contain a detailed description of the implementation
details of the class, but a few words describing its overall purpose are vital

Adding methods to a class

31

if programmers who come after you are to know whether to spend time
looking at this class.

NJ Type a class comment for SBECell and accept it; you can always improve it

later.
) System Browser: SBECell v I+H]=]
’ “'_' v . SBECell —all - 4+ initialize
F S_Test}Men_'lory Z15BEGame accessing mouseAction:
FS-Tests-AnsiStreams -)
FS-FileDirectory-Adapt || ° SBEGameTest event handling 4+ mouseUp:
SBE-Environment initiakzation
SBE-Extract
SBE-Monticello
SBE-Morphic
SBE-Quinto
SBE-Streams
EEE_IfELng C instance class @
[browse :](senders j[:implementnl)(VEersions)[inh:.’it:n:c :](hierarchy jl: wars) | source

poolDictionaries: "

SimpleSwitchMorph subclass: #5BECell
instanceVariableNames: 'mouseAction’
classVariableMames:

category: 'SBE-Quinto’

| represent a single cell of a SBEGame.

Figure 2.5: The newly-created class SBECell.

2.4 Adding methods to a class

Now let’s add some methods to our class.

¥

Select the protocol --all-- in the protocol pane.

You will see a template for method creation in the editing pane. Select
it, and replace it by the text of method 2.2.

32 Your first interactive object: the Quinto game

Method 2.2: Initializing instances of SBECell.
SBECell»initialize

super initialize.

self
label: ";
borderWidth: 2;
bounds: (0 @ 0 corner: 16 @ 16);
offColor: Color cantaloupe;
onColor: Color aqua;
useSquareCorners.

self turnOff.

Note that the characters " on line 3 are two separate single quotes with
nothing between them, not a double quote! " denotes the empty string.

NJ Accept this method definition.

What does the above code do? We won't go into all of the details here
(that’s what the rest of the book is for!), but we will give you a quick
preview. Let’s take it line by line.

Notice that the method is called initialize. This name has a special mean-
ing. By convention, if a class defines a method named initialize, it will be
called right after the object is created. So, when we evaluate SBECell new,
the message initialize will be sent automatically to this newly created object.
Initialize methods are used to set up the state of objects, typically to set
their instance variables; this is exactly what we are doing here.

The first thing that this method does (line 2) is to execute the initialize
method of its superclass, SimpleSwitchMorph. The idea here is that any inher-
ited state will be properly initialized by the initialize method of the superclass.
It is always a good idea to initialize inherited state by sending super initialize
before doing anything else; we don’t know exactly what SimpleSwitchMorph’s
initialize method will do, and we don’t care, but it’s a fair bet that it will set
up some instance variables to hold reasonable default values, so we had
better call it, or we risk starting in an unclean state.

The rest of the method sets up the state of this object. Sending self label: ",
for example, sets the label of this object to the empty string.

The expression 0 @ 0 corner: 16 @ 16 probably needs some explanation.
0 @ 0 represents a Point object with z and y coordinates both set to 0. In
fact, 0 @ 0 sends the message @ to the Number object 0 with argument 0.
The effect will be that the number 0 will ask the Point class to create a new
instance with coordinates (0, 0). Now we send this newly created point the
message corner: 16 @ 16, which causes it to create a Rectangle with corners

Inspecting an object 33

0@ 0 and 16 @ 16. We use the setter method bounds, inherited from the
superclass, to set the bounds of the cell to the newly created rectangle.

Note that the origin of the Squeak screen is the fop left, and the y coordi-
nate increases downward.

The rest of the method should be self-explanatory. Part of the art of
writing good Smalltalk code is to pick good method names so that Smalltalk
code can be read like a kind of pidgin English. You should be able to
imagine the object talking to itself and saying “Self use square corners!”, “Self
turn offl”.

2.5 Inspecting an object

You can test the effect of the code you have written by creating a new
SBECell object and inspecting it.

NJ Open a workspace. Type the expression SBECell new and inspect it.

£ a SBECell(1593617) v +]

self D@0 corner: 16@16
all inst vars

bounds
owner
submorphs
fullBounds

calar

explore

Figure 2.6: The inspector used to examine a SBECell object.

The left-hand pane of the inspector shows a list of instance variables;
if you select one (try bounds), the value of the instance variable is shown
in the right pane. You can also use the inspector to change the value of an
instance variable.

LJ Change the value of bounds fo 0 @ 0 corner: 50 @ 50 and accept it.

The bottom pane of the inspector is a mini-workspace. It’s useful be-
cause in this workspace the pseudo-variable self is bound to the object being
inspected.

N Type the text self openinWorld in the bottom pane and do it.

12 T N R

34 Your first interactive object: the Quinto game

The cell should appear at the top left-hand corner of the screen, indeed,
exactly where its bounds say that it should appear. Blue-click on the cell to
bring up the morphic halo. Move the cell with the brown (next to top-right)
handle and resize it with the yellow (bottom-right) handle. Notice how the
bounds reported by the inspector also change.

€3 a SBECell(764640) (v] +]
x e e @ & self 100@100 corner: 198@189

all inst vars
Q A bounds

owner
o submorphs

fullBounds

- borderWidth
o borderColor

target

SBECell
self openinWorld
explore

Figure 2.7: Resizing the cell.

o color
extension

NJ Delete the cell by clicking on the x in the pink handle.

o=

2.6 Defining the class SBEGame

Now let’s create the other class that we need for the game, which we will
call SBEGame.

NJ Make the class definition template visible in the browser’s main window.

Do this by clicking twice on the name of the already-selected class
category, or by displaying the definition of SBECell again (by clicking the
button.) Edit the code so that it reads as follows, and accept it.

Class 2.3: Defining the SBEGame class
BorderedMorph subclass: #SBEGame
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: 'SBE-Quinto'

Here we subclass BorderedMorph; Morph is the superclass of all of the
graphical shapes in Squeak, and (surprise!) a BorderedMorph is a Morph with

Defining the class SBEGame 35

a border. We could also insert the names of the instance variables between
the quotes on the second line, but for now, let’s just leave that list empty:.

Now let’s define an initialize method for SBEGame.

accept it:

N Type the following into the browser as a method for SBEGame and try to

Method 2.4: Initializing the game.

SBEGame~»initialize
| height overallBorderWidth sampleCell width |

super initialize.

sampleCell := SBECell new.

width := sampleCell width.

height := sampleCell height.

overallBorderWidth := 2 « self borderWidth.

self position: 5 @ 5.

self extent: (width « self cellsPerSide) @ (height « self cellsPerSide) +
overallBorderWidth.

cells := Matrix new: self cellsPerSide tabulate: [:i ;j | self newCellAt: i at: j].

Squeak will complain that it doesn’t know the meaning of some of the
terms. Squeak tells you that it doesn’t know of a message cellsPerSide, and
suggests a number of corrections, in case it was a spelling mistake.

o Unknown selector, please
confirm, correct, or cancel

o

cellsPerSide
CellSpacing
cellSpacing
clearinside X Please Choose (v}
isClassSide
canCastleKingSide
canCastleWhiteQueenSide
m1lClassSide (declare method temp :]
instanceSide

canCastleQueenSide [: declare block-local temp :]
canCastleWhiteKingSide

Unknown variable: cells please correct, or cancel:

[: declare instance :]

(cavest J

Figure 2.8: Squeak detecting an Figure 2.9: Declaring a new instance vari-
unknown selector. able.

But cellsPerSide is not a mistake — it is just a method that we haven’t yet
defined —we will do so in a minute or two.

36 Your first interactive object: the Quinto game

g So just select the first item from the menu, which confirms that we really

meant cellsPerSide.

Next, Squeak will complain that it doesn’t know the meaning of cells. It
offers you a number of ways of fixing this.

%4 Choose declare instance because we want cells to be an instance variable.

Finally, Squeak will complain about the message newCellAt:at: sent on
the last line; this is also not a mistake, so confirm that message too.

If you now look at the class definition once again (which you can do by
clicking on the button), you will see that the browser has modified
it to include the instance variable cells.

Let’s look at our initialize method. The line |height overallBorderWidth sampleCell
width| declares 4 temporary variables. They are called temporary variables
because their scope and lifetime are limited to this method. Temporary vari-
ables with explanatory names are helpful in making code more readable.
Smalltalk has no special syntax to distinguish constants and variables, and
in fact all four of these “variables” are really constants. Lines 5-7 define
these constants.

How big should our game board be? Big enough to hold some integral
number of cells, and big enough to draw a border around them. How many
cells is the right number? 5? 10? 100? We don’t know yet, and if we did, we
would probably change our minds later. So we delegate the responsibility
for knowing that number to another method, which we will call cellsPerSide,
and which we will write in a minute or two. It’s because we are sending the
cellsPerSide message before we define a method with that name that Squeak
asked us to “confirm, correct, or cancel” when we accepted the method
body for initialize. Don’t be put off by this: It is actually good practice to
write in terms of other methods that we haven’t yet defined. Why? Well, it
wasn’t until we started writing the initialize method that we realized that we
needed it, and at that point, we can give it a meaningful name, and move
on, without interrupting our flow.

The lines 4-6 create a new SBECell object, and assign its width and height
to the appropriate temporary variables.

Line 8 sets the extent of the new object. Without worrying too much
about the details just yet, just believe us that the expression in parentheses
creates a square with its origin (i.e., its top-left corner) at the point (5, 5)
and its bottom-right corner far enough away to allow space for the right
number of cells.

The last line sets the SBEGame object’s instance variable cells to a newly
created Matrix with the right number of rows and columns. We do this

Organizing methods into protocols 37

by sending the message new:tabulate: to the Matrix class (classes are objects
too, so we can send them messages). We know that new:tabulate: takes two
arguments because it has two colons (:) in its name. The arguments go right
after the colons. If you are used to languages that put all of the arguments
together inside parentheses, this may seem weird at first. Don’t panic, it’s
only syntax! It turns out to be a very good syntax because the name of the
method can be used to explain the roles of the arguments. For example, it
is pretty clear that Matrix rows: 5 columns: 2 has 5 rows and 2 columns, and
not 2 rows and 5 columns.

Matrix new: self cellsPerSide tabulate: [:i ;j | self newCellAt: i at: j] creates a new
nxn matrix and initializes its elements. The initial value of each element
will depend on its coordinates. The (i, j)™ element will be initialized to the
result of evaluating self newCellAt: i at: j.

2.7 Organizing methods into protocols

Before we define any more methods, let’s take a quick look at the third pane
at the top of the browser. In the same way that the first pane of the browser
lets us categorize classes so we are not overwhelmed by a very long list of
class names in the second pane, so the third pane lets us categorize methods
so that we are not overwhelmed by a very long list of method names in the
fourth pane. These categories of methods are also called “protocols”.

If there are only a few methods in a class, the extra level of hierarchy
provided by protocols is not really necessary. This is why the browser also
offers us the --all-- virtual protocol, which, you will not be surprised to learn,
contains all of the methods in the class.

If you have followed along with this example, the third pane may well
contain the protocol as yet unclassified.

¢ Select the yellow button menu item categorize all uncategorized to fix this,

and move the initialize methods to a new protocol called initialization.

How does Squeak know that this is the right protocol? Well, in general
Squeak can’t know, but in this case, there is also an initialize method in a
superclass, and Squeak assumes that our initialize method should go in the
same protocol as the one that it overrides.

”

A typographic convention. Smalltalkers frequently use the notation “>>
to identify the class to which a method belongs, so, for example, the
cellsPerSide method in class SBEGame would be referred to as SBEGame
>>cellsPerSide. To indicate that this is not Smalltalk syntax, we will use the

F SR R

38 Your first interactive object: the Quinto game

! Objectl v I+
Objectl —all — H # initialize

as yet unclassified

browse
print out
file out

regrganize
alphabetize

(instance | _class) AL A KL

I

— @ categorize all uncategorized
Iiimplement{j[versions j inher |L__jlne'l'l' category... purce

1dArgumentNames rename...
] purpose of message" ﬁ remove (x)
ble names |

Figure 2.10: Categorize all uncategorized methods.

special symbol » instead, so this method will appear in the text as SBEGame
»cellsPerSide. From now on, when we show a method in this book, we will
write the name of the method in this form. Of course, when you actually
type the code into the browser, you don’t have to type the class name or
the »; instead, you just make sure that the appropriate class is selected in
the class pane.

Now let’s define the other two methods that are used by the SBEGame»
initialize method. Both of them can go in the initialization protocol.

Method 2.5: A constant method.

SBEGamen»cellsPerSide
"The number of cells along each side of the game"

~10

This method could hardly be simpler: It answers the constant 10. One
advantage of representing constants as methods is that if the program
evolves so that the constant then depends on some other features, the
method can be changed to calculate this value.

© © N o o & © N o=

=)

I T R N S ORI

Organizing methods into protocols 39

Method 2.6: An initialization helper method.
SBEGame»newCellAt: i at: j
"Create a cell for position (i,j) and add it to my on-screen
representation at the appropriate screen position. Answer the new cell."

| cell origin |

cell := SBECell new.

origin := self innerBounds origin.

self addMorph: cell.

cell
position: ((i - 1) = cell width) @ ((j - 1) = cell height) + origin;
mouseAction: [self toggleNeighboursOfCellAt: i at: j].

54 Add the methods SBEGame»cellsPerSide and SBEGame»newCellAt:at:.

Confirm the spelling of the new selectors toggleNeighboursOfCellAt:at: and
mouseAction:.

Method 2.6 answers a new SBECell, specialized to position (i, j) in the
Matrix of cells. The last line defines the new cell’s mouseAction to be the
block [self toggleNeighboursOfCellAt: i at: j]. In effect, this defines the callback
behavior to perform when the mouse is clicked. The corresponding method
also needs to be defined.

Method 2.7: The callback method.
SBEGame»toggleNeighboursOfCellAt: i at: |

i > 1ifTrue: [(cells at: i - 1 at: j) toggleState].
i < self cellsPerSide ifTrue: [(cells at: i + 1 at: j) toggleState].
j > 1ifTrue: [(cells at: i at:j - 1) toggleState].
j < self cellsPerSide ifTrue: [(cells at: i at: j + 1) toggleState].

Method 2.7 toggles the state of the four cells to the north, south, west
and east of cell (7, j). The only complication is that the board is finite, so we
have to make sure that a neighboring cell exists before we toggle its state.
Nd Place this method in a new protocol called game logic. To create the protocol,
press the yellow mouse button in the protocol list, select new category... , enter
“eame logic”, and submit the dialog.

To move the method, you can simply click on its name and drag it to
the newly-created protocol (Figure 2.11).

To complete the Quinto game, we need to define two more methods in
class SBECell to handle mouse events.

40 Your first interactive object: the Quinto game

) System Browser: SBEGame (v J+]
ES_TesteMeorr “1SBECell —all — cellsPerSide
ig_l:g_r:;r&?eams . SBEGame gamg lonic || initialize

> SBEGameTest initi

FS-FileDirectory-Adapt
SBE-Environment
SBE-Extract
SBE-Monticello

EEE-ﬂErE.TC C instance class @
[browse :](senders j(implementmj(Versions j[inheritam:e:](hierarchy j(vars jl sOuUrce
toggleNeighboursOfCellAt: | at: |

Figure 2.11: Drag a method to a protocol.

Method 2.8: A typical setter method.
SBECell»mouseAction: aBlock

mouseAction := aBlock

Method 2.8 does nothing more than set the cell’s mouseAction variable to
the argument, and then answers the new value. Any method that changes
the value of an instance variable in this way is called a setter method; a
method that answers the current value of an instance variable is called a
getter method.

If you are used to getters and setters in other programming languages,
you might expect these methods to be called setmouseAction and getmouseAction
. The Smalltalk convention is different. A getter always has the same name
as the variable it gets, and a setter is named similarly, but with a trailing
“.” hence mouseAction and mouseAction:.

Collectively, setters and getters are called accessor methods!, and by
convention they should be placed in the accessing protocol. In Smalltalk, all
instance variables are private to the object that owns them, so the only way
for another object to read or write those variables in the Smalltalk language

is through accessor methods like this one?.

& Go to the class SBECell, define SBECell»mouseAction: and put it in the ac-

cessing protocol.

Finally, we need to define a method mouseUp:; this will be called auto-
matically by the GUI framework if the mouse button is released while the
mouse is over this cell on the screen.

1Edward J. Klimas, Suzanne Skublics and David A. Thomas, Smalltalk with Style. Prentice-
Hall, 1996, ISBN 0-13-165549-3.
2In fact, the instance variables can be accessed in subclasses too.

Let’s try our code 41

Method 2.9: An event handler.
SBECell»>mouseUp: anEvent

mouseAction value.

Nd Add the method SBECell»mouseUp: and then categorize all uncategorized

methods.

This method sends the message value to the object stored in the instance
variable mouseAction. Recall that in SBEGame»newCellAt: i at: j we assigned
the following code fragment to mouseAction:

[self toggleNeighboursOfCellAt: i at: j]

Sending the value message causes this code fragment to be evaluated, and
consequently, the state of the cells will toggle.

2.8 Let’s try our code

That’s it: The Quinto game is complete!

If you have followed all of the steps, you should be able to play the
game, consisting of just 2 classes and 7 methods.

Nd In a workspace, type SBEGame new openinWorld and do it.

The game will open, and you should be able to click on the cells and see
how it works.

Well, so much for theory... When you click on a cell, a notifier win-
dow appears with an error message! As depicted in Figure 2.12, it says
MessageNotUnderstood: SBEGame»toggleState.

) MessageNotUnderstood: SBEGame>>toggleState [vI+]
(Proceed :l(Abandon)C Debug)l: Create :l

it SBEGame(Object)>=>doesNotUnderstand: #toggleState
SBEGame=>=>toggleNeighboursOfCellAt:at:

[1in SBEGame==>newCellAt:at:

4+ SBECell=>mouseUp:

+ S5BECell{Morph)=>>handleMouselp:

4+ MouseButtonEvent==>sentTo:

+ SBECell{Morph)>=>handleEvent:
SBECell(Morph)==>handleFocusEvent:
MorphicEventDispatcher=>doHandlingForFocusEvent:with:
MorphicEventDispatcher=>=>dispatchFocusEvent:with:

Figure 2.12: There is a bug in our game when a cell is clicked!

42 Your first interactive object: the Quinto game

What happened? To find out, let’s use one of Smalltalk’s more powerful
tools: the debugger.

NJ Click on the debug button in the notifier window.

The debugger will appear. In the upper part of the debugger window
you can see the execution stack, showing all the active methods; selecting
any one of them will show, in the middle pane, the Smalltalk code being
executed in that method, with the part that triggered the error highlighted.

Nd o Click on the line labelled SBEGame»toggleNeighboursOfCellAt:at: (near the

top).

The debugger will show you the execution context within this method
where the error occurred (Figure 2.13).

) MessageNotUnderstood: SBEGame>>toggleState (v [+]

it SBEGame(Object)>=>doesNotUnderstand: #toggleState L
SBEGame=>>toggleNeighboursOfCellAt:at:
[1in SBEGame==>newCellAt:at:

4+ SBECell>>mouseUp:

+ SBECell{Morph)==handleMauseUp:

My iseRttanFyent==cantTn-

[Proceed j(Restart j[Into j(Over j[Through j(Full Stack j[Where j(Tally It j

toggleNeighboursOfCellAt: | at: |

i = 1ifTrue: [(cells at: i - 1 at: |) toggleState].

| = self cellsPerSide ifTrue: [(cells at: | + 1 at: |) toggleState].
j= 1ifTrue: [(cells at: | at: j- 1) toggleState].

j = self cellsPerSide ifTrue: [(cells at: | at: | + 1) toggleState].

self thisContext
all inst vars stack top
bounds all temp vars
owner i

submorphs i

Figure 2.13: The debugger, with the method toggleNeighboursOfCell:at: se-
lected.

At the bottom of the debugger are two small inspector windows. On
the left, you can inspect the object that is the receiver of the message that
caused the selected method to execute, so you can look here to see the
values of the instance variables. On the right you can inspect an object that
represents the currently executing method itself, so you can look here to
see the values of the method’s parameters and temporary variables.

Let’s try our code 43

Using the debugger, you can execute code step by step, inspect objects in
parameters and local variables, evaluate code just as you can in a workspace,
and, most surprisingly to those used to other debuggers, change the code
while it is being debugged! Some Smalltalkers program in the debugger
almost all the time, rather than in the browser. The advantage of this is that
you see the method that you are writing as it will be executed, with real
parameters in the actual execution context.

In this case, we can see in the first line of the top panel that the toggleState
message has been sent to an instance of SBEGame, while it should clearly
have been an instance of SBECell. We can also see this by selecting the cells
variable in the lower-left pane in the debugger. The problem is most likely
with the initialization of the cells matrix. Browsing the code of SBEGame»
initialize shows that cells is filled with the return values of newCellAt:at:, but
when we look at that method, we see that there is no return statement there!
By default, a method returns self, which in the case of newCellAt:at: is indeed
an instance of SBEGame.

LJ Close the debugger window. Add the expression “* cell” to the end of the

method SBEGame»newCellAt:at: so that it returns cell. (See method 2.10.)

Method 2.10: Fixing the bug.

SBEGame»newCellAt: i at: j
"Create a cell for position (i,j) and add it to my on-screen
representation at the appropriate screen position. Answer the new cell.”

| cell origin |

cell := SBECell new.

origin := self innerBounds origin.

self addMorph: cell.

cell
position: ((i - 1) = cell width) @ ((j - 1) = cell height) + origin;
mouseAction: [self toggleNeighboursOfCellAt: i at: j].

A cell

Often, you can fix the code directly in the debugger window and click
Proceed to continue running the application. In our case, because the bug
was in the initialization of an object, rather than in the method that failed,
the easiest thing to do is to close the debugger window, destroy the running
instance of the game (with the halo), and create a new one.

% Do: SBEGame new openinWorld again.

Now the game should work properly.

44 Your first interactive object: the Quinto game

2.9 Saving and sharing Smalltalk code

Now that you have the Quinto game working, you probably want to save
it somewhere so that you can share it with your friends. Of course, you can
save your whole Squeak image, and show off your first program by running
it, but your friends probably have their own code in their images, and don’t
want to give that up to use your image. What you need is a way of getting
source code out of your Squeak image so that other programmers can bring
it into theirs. There is a variety of ways to do this, from ad-hoc sharing via
exported files, to built-in version control systems like Monticello, or full
tool support for Git.

The simplest way of doing this is by filing out the code. The yellow-
button menu in the System Categories pane will give you the option to
file out the whole of category SBE-Quinto. The resulting file is more or less
human-readable, but is really intended for computers, not humans. You
can email this file to your friends, and they can file it into their own Squeak
images using the file list browser.

N Yellow-click on the SBE-Quinto category and fileOut the contents.

You should now find a file called “SBE-Quinto.st” in the same folder on
disk where your image is saved. Have a look at this file with a text editor.

NJ Open a fresh Squeak image and drag the exported file onto the running
Squeak. Verify that the game now works in the new image.

Monticello packages

Although fileouts are a convenient way of making a snapshot of the code
you have written, they do not work well for long-running projects. Just
as most open-source projects find it much more convenient to maintain
their code in a repository using Git® or Mercurial?, so Squeak programmers
find it more convenient to manage their code using Monticello packages.
These packages are represented as files with names ending in .mcz; they are
actually zip-compressed bundles that contain the complete code of your
package.

Using the Monticello package browser, you can save packages to reposi-
tories on various types of servers, including FTP and HTTP servers; you
can also just write the packages to a repository in a local file system direc-
tory. A copy of your package is also always cached on your local hard-disk

3www.git-scm.com
4www.mc:*;rcurial—scm.org

www.git-scm.com
www.mercurial-scm.org

Saving and sharing Smalltalk code 45

in the package-cache folder. Monticello lets you save multiple versions of
your program, merge versions, go back to an old version, and browse the
differences between versions. In fact, Monticello is a distributed version
control system just like Git; this means it allows developers to save their
work on different places, not on a single repository.

You can also send a .mcz file by email. The recipient will have to place it
in her package-cache folder; she will then be able to use Monticello to browse
and load it.

+) Open the Monticello browser by selecting World >open... >Monticello browser.

=

In the right-hand pane of the browser (see Figure 2.14) is a list of Mon-
ticello repositories, which will include all of the repositories from which
code has been loaded into the image that you are using.

7 Monticello Browser (v 1+
45Deprecated (ct.27) [fhomefrunner/.smalltalkCl/_builds/packag
d6Deprecated (ct.9) http://source.squeak.org/squeak53
51Deprecated (mt.57) http:/isource.squeak.org/inbox
60Deprecated (topa.68) http:/fwww.squeaksource.com/Metacellol
Balloon (dtl.32) http:/fwww.hpi.uni-potsdam.defhirschfel
BalloonTests (egp.2) http:/iseaside.gemtalksystems.com/ss/m
BaselineOfFileSystem (cypress.1) http://ss3.gemtalksystems.com/ss/FileTn
BaselineOfFileTree (dkh.4) http:/ismalltalkhub.com/mc/dkh/metacell
BaselineOfMetacello (ct.103) github://Metacello/metacello:master/repos
BaselineOfSBE (cypress.1) github://dalehenrich/filetree:squeakd.3/re

Figure 2.14: The Monticello browser.

At the top of the list in the Monticello browser is a repository in a local
directory called the package cache, which caches copies of the packages that
you have loaded or published over the network. This local cache is really
handy because it lets you keep your own local history; it also allows you to
work in places where you do not have internet access, or where access is
slow and you do not want to save to a remote repository frequently.

Saving and loading code with Monticello.

On the left-hand side of the Monticello browser is a list of packages that
have a version loaded into the image; packages that have been modified
since they were loaded are marked with an asterisk. (These are sometimes
referred to as dirty packages.) If you select a package, the list of repositories
is restricted to just those repositories that contain a copy of the selected
package.

46 Your first interactive object: the Quinto game

What is a package? For now, you can think of a package as a group of
class categories and protocols that share the same prefix. Since we put all
of the code for the Quinto game into the class category called SBE-Quinto,
we can refer to it as the SBE-Quinto package.

4 Add the SBE-Quinto package to your Monticello browser using the
button and type SBE-Quinto.

SqueakSource: a sharing platform for Monticello.

We think that the best way to save your code and share it is to create
an account for your project on a SqueakSource server. SqueakSource is
like GitHub®: It is a web front-end to an HTTP Monticello server that
lets you manage your projects. There is a public SqueakSource server at
http://www.squeaksource.com, and a copy of the code related to our game is
stored there at http://www.squeaksource.com/QuintoExampleSBE.html. You can
look at this project with a web browser, but it’s a lot more productive to
do so from inside Squeak, using the Monticello browser, which lets you
manage your packages.

L Open aweb browser to www.squeaksource.com. Create an account for yourself

and then create (i.e., “register”) a project for the Quinto game.

SqueakSource will show you the information that you should use when
adding a repository using the Monticello browser.

Once your project has been created on SqueakSource, you have to tell
your Squeak system to use it.

0 With the SBE-Quinto package selected, click the button in the
Monticello browser.

You will see a list of the different available types of repositories; to add a
SqueakSource repository select HTTP. You will be presented with a dialog
in which you can provide the necessary information about the server. You
should copy the presented template to identify your SqueakSource project,
paste it into Monticello, and supply your initials and password:
MCHttpRepository

location: 'http://www.squeaksource.com/ YourProject'
user: 'yourlnitials'
password: 'yourPassword'

If you provide empty initials and password strings, you can still load the
project, but you will not be able to update it:

Swww.github.com

http://www.squeaksource.com
http://www.squeaksource.com/QuintoExampleSBE.html
www.squeaksource.com
www.github.com

Chapter summary 47

MCHttpRepository
location: 'http://www.squeaksource.com/ YourProject'
user: "
password: "

Once you have accepted this template, your new repository should be
listed on the right-hand side of the Monticello browser.

. Repository: /home/runner/.smalltalkCl/_builds/package-cache-a SBEWorldHel O o

[Rerresh j[Browse][Histary :][Changasj[Load][Merge j[Adopt][:Reparent:][Copy][Diff j

SBE-Quinto SBE-Quinto-xyz.2.mcz

Name: SBE-Quinto-xyz.2

Author: xyz

Time: 12 July 2022, 1:39:35.109596 pm

UUID: ebB5dBdb-4a34-4f6e-a370-74f90f9c0671
Ancestors: SBE-Quinto-cypress.1

Figure 2.15: Browsing a Monticello repository.

NJ Clickon to save the first version of your Quinto game on SqueakSource.

To load a package into your image, you must first select a particular
version. You can do this in the repository browser, which you can open
using the button or the yellow-button menu. Once you have selected
a version, you can load it onto your image.

Nd - Open the SBE-Quinto repository you have just saved.

Monticello has many more capabilities, which will be discussed in depth
in Chapter 6.

210 Chapter summary

In this chapter, you have seen how to create categories, classes, and methods.
You have seen how to use the system browser, the inspector, the debugger,
and the Monticello browser.

48

Your first interactive object: the Quinto game

Categories are groups of related classes.
A new class is created by sending a message to its superclass.
Protocols are groups of related methods.

A new method is created or modified by editing its definition in the
browser and then accepting the changes.

The inspector offers a simple, general-purpose GUI for inspecting
and interacting with arbitrary objects.

The system browser detects usage of undeclared methods and vari-
ables, and offers possible corrections.

The initialize method is automatically executed after an object is created
in Squeak. You can put any initialization code there.

The debugger provides a high-level GUI to inspect and modify the
state of a running program.

You can share source code filing out a category.

A better way to share code is to use Monticello to manage an external
repository, for example, defined as a SqueakSource project.

Chapter 3

Syntax in a nutshell

Squeak, like most modern Smalltalk dialects, adopts a syntax very close to
that of Smalltalk-80. The syntax is designed so that program text can be
read aloud as though it were a kind of pidgin English:

(Smalltalk includes: Class) ifTrue: [Transcript show: Class superclass]

Squeak’s syntax is minimal. Essentially there is syntax only for sending
messages (i.e., expressions). Expressions are built up from a very small
number of primitive elements. There are only 6 keywords, and there is
no syntax for control structures or declaring new classes. Instead, nearly
everything is achieved by sending messages to objects. For instance, instead
of an if-then-else control structure, Smalltalk sends messages like ifTrue: to
Boolean objects. New (sub-)classes are created by sending a message to their
superclass.

3.1 Syntactic elements

Expressions are composed of the following building blocks: (i) six reserved
keywords, or pseudo-variables: self, super, nil, true, false, and thisContext,
(ii) constant expressions for literal objects including numbers, characters,
strings, symbols, and arrays, (iii) variable declarations, (iv) assignments,
(v) block closures, and (vi) messages.

We can see examples of the various syntactic elements in Table 3.1.

Local variables. startPoint is a variable name, or identifier. By convention,
identifiers are composed of words in “camelCase” (i.e., each word
except the first starting with an upper case letter). The first letter of an

50 Syntax in a nutshell
Syntax What it represents
startPoint a variable name
Transcript a global variable name
self pseudo-variable
1 decimal integer
2r101 binary integer
1.5 floating point number
2.4e7 exponential notation
$a the character ‘a’
"Hello’ the string “Hello”
#Hello the symbol #Hello
1.2.1+2} a dynamic array
#(123) a literal array
#]255 33 200 1] a byte array
"a comment" a comment
Xyl declaration of variables x and y
X =1 assign 1 to x
[x +y] a block that evaluates to x+y
<primitive: 1> primitive pragma to invoke virtual machine
3 factorial unary message
3+4 binary messages

2 raisedTo: 6 modulo: 10

keyword message

A true
Transcript show: ’hello’. Transcript cr
Transcript show: ’hello’; cr

return the value true
expression separator (.)
message cascade (;)

Table 3.1: Squeak Syntax in a nutshell.

instance variable, method or block argument, or temporary variable
must be lower case. This indicates to the reader that the variable has

a private scope.

Shared variables. Identifiers that start with upper case letters are global
variables, class variables, pool dictionaries, or class names. Transcript
is a global variable, an instance of the class TranscriptStream.

The receiver. self is a keyword that refers to the object inside which the
current method is executing. We call it “the receiver” because this ob-
ject will normally have received the message that caused the method
to execute. self is called a “pseudo-variable” since we cannot assign

to it.

Syntactic elements 51

Integers. In addition to ordinary decimal integers like 42, Squeak also
provides a radix notation. 2r101 is 101 in radix 2 (i.e., binary), which is
equal to decimal 5.

Floating point numbers can be specified with their base-ten exponent:
2.4e71s 2.4 x 107.

Characters. A dollar sign introduces a literal character: $a is the literal for
‘a’. Instances of non-printing characters can be obtained by sending
appropriately named messages to the Character class, such as Character

space and Character tab.

Strings. Single quotes are used to define a literal string. If you want a
string with a quote inside, just double the quote, as in 'G"day".

Symbols are like Strings, in that they contain a sequence of characters.
However, unlike a string, a literal symbol is guaranteed to be globally
unique. There is only one Symbol object #Hello but there may be
multiple String objects with the value 'Hello'.

Run-time arrays. Curly braces {} define a (dynamic) array at run-time.
Elements are expressions separated by periods. So {1 . 2. 1 + 2} defines
an array with elements 1, 2, and the result of evaluating 1+2. (The
curly-brace notation is peculiar to the Squeak dialect of Smalltalk! In
other Smalltalks you must build up dynamic arrays explicitly.)

Literal arrays are defined by #(), surrounding space-separated literals. Ev-
erything within the parentheses must be a compile-time constant.
These arrays are created at compile-time of the method. For example,
#(27 #(true false) abc) is a literal array of three elements: the integer 27,
the literal array containing the two booleans, and the symbol #abc.
Whenever a method including such an array is executed the same
instance is used. That is why these arrays are often used to represent
constant values and avoid repeated array instantiations.

Byte arrays are defined by #]], surrounding integers between 0 and 255.
This creates an instance of ByteArray which can be used to work with
binary data.

Comments are enclosed in double quotes. "hello”is a comment, not a string,
and is ignored by the Squeak compiler. Comments may span multiple
lines.

Local variable definitions. Vertical bars | | enclose the declaration of one
or more local variables in a method (and also in a block).

52 Syntax in a nutshell

Assignment. := assigns an object to a variable. Sometimes you will see +
used instead. Unfortunately, since this is not an ASCII character, it
will appear as an underscore unless you are using a special font. So,
x :=1is the same as x < 1 or x _ 1. You should use := since the other
representations have been deprecated since Squeak 3.9.

Blocks. Square brackets [] define a block, also known as a block closure or a
lexical closure, which is a first-class object representing a function. As
we shall see, blocks may take arguments and can have local variables.

Pragmas. Angle brackets < > right after a method header denote a pragma
which is a possibility to add static annotations to a method. The kind
of pragma you will probably see most frequently in Squeak are primi-
tive pragmas which are indicated by the pragma selector #primitive: and
its siblings #primitive:error:, #primitive:module: etc.. Primitives denote an
invocation of a virtual machine primitive. For instance, <primitive: 1> is
the VM primitive for Smallinteger»+. Any code following the primitive
is executed only if the primitive fails.

Unary messages consist of a single word (such as factorial) sent to a receiver
(like the number 3).

Binary messages are operators (like +) sent to a receiver and taking a single
argument. In 3 + 4, the receiver is 3 and the argument is 4.

Keyword messages consist of multiple keywords (like raisedTo:modulo:),
each ending with a colon and taking a single argument. In the expres-
sion 2 raisedTo: 6 modulo: 10, the message selector raisedTo:modulo: takes
the two arguments 6 and 10, one following each colon. We send the
message to the receiver 2.

Method return. *is used to return a value from a method.

Sequences of statements. A period or full-stop (.) is the statement separator.
Putting a period between two expressions turns them into indepen-
dent statements.

Cascades. Semicolons can be used to send a cascade of messages to a single
receiver. In Transcript show: 'hello’; cr we first send the keyword mes-
sage show: 'hello’ to the receiver Transcript, and then we send the unary
message cr to the same receiver.

The classes Number, Character, String, and Boolean are described in more
detail in Chapter 8.

Pseudo-variables 53

3.2 Pseudo-variables

In Smalltalk, there are six reserved keywords, or pseudo-variables: true, false,
nil, self, super, and thisContext. They are called pseudo-variables because
they are predefined and cannot be assigned to. true, false, and nil are
constants while the values of self, super, and thisContext vary dynamically
as code is executed.

true and false are the unique instances of the Boolean classes True and
False. See Chapter 8 for more details.

nil is the undefined object. Instance variables, class variables, and lo-
cal variables are initialized to nil. It is the unique instance of the class
UndefinedObject.

self always refers to the receiver of the currently executing method.

super also refers to the receiver of the current method, but when you
send a message to super, the method-lookup changes so that it starts from
the superclass of the class containing the method that uses super. For
further details see Chapter 5.

thisContext is a pseudo-variable that represents the top frame of the
run-time stack. In other words, it represents the currently executing
MethodContext or BlockContext. thisContext is normally not of interest to most
programmers, but it is essential for implementing development tools like
the debugger and it is also used to implement exception handling and
continuations.

3.3 Message sends

There are three kinds of messages in Squeak.

1. Unary messages take no argument. 1 factorial sends the message
factorial to the object 1.

2. Binary messages take exactly one argument. 1 + 2 sends the message
+ with argument 2 to the object 1.

3. Keyword messages take an arbitrary number of arguments. 2 raisedTo:
6 modulo: 10 sends the message consisting of the message selector
raisedTo:modulo: and the arguments 6 and 10 to the object 2.

Unary message selectors consist of alphanumeric characters, and start
with a lower case letter.

54 Syntax in a nutshell

Binary message selectors consist of one or more special characters. The
following set are the most commonly used characters for binary message
selectors:

+-/\+~v<>=@%| & ?,

Keyword message selectors consist of a series of alphanumeric keywords,
where each keyword starts with a lower-case letter and ends with a colon.

Unary messages have the highest precedence, then binary messages,
and finally keyword messages, so:

2 raisedTo: 1 + 3 factorial —— 128

(First we send factorial to 3, then we send +6 to 1, and finally we send
raisedTo: 7 to 2.) Recall that we use the notation expression — result to
show the result of evaluating an expression.

Precedence aside, evaluation is strictly from left to right, so

1+42+«3 — 9

not 7. Parentheses must be used to alter the order of evaluation:

14243 — 7

Message sends may be composed using periods and semi-colons. A
period-separated sequence of expressions causes each expression in the
series to be evaluated as a statement, one after the other.

Transcript cr.
Transcript show: 'hello world'.
Transcript cr.

This will send cr to the Transcript object, then send it show: 'hello world', and
finally send it another cr.

When a series of messages is being sent to the same receiver, then this
can be expressed more succinctly as a cascade. The receiver is specified just
once, and the sequence of messages is separated by semi-colons:

Transcript
cr;
show: 'hello world';
cr.

This has precisely the same effect as the previous example.

© ©o N o a & @ N =

Method syntax 55

3.4 Method syntax

Whereas expressions may be evaluated anywhere in Squeak (for example,
in a workspace, in a debugger, or in a browser), methods are normally
defined in a browser or debugger window. (Methods can also be filed
in from an external medium, but this is not the usual way to program in
Squeak.)

Programs are developed one method at a time, in the context of a given
class. (A class is defined by sending a message to an existing class, asking
it to create a subclass, so there is no special syntax required for defining
classes.)

Here is the method lineCount in the class String. (The usual convention
is to refer to methods as ClassName»methodName, so we call this method
String»lineCount.)

Method 3.1: Line count.
String»lineCount
"Answer the number of lines represented by the receiver,
where every cr adds one line."

| cr count |
cr := Character cr.
count := 1 min: self size.
self do: [:eachChar |
eachChar = cr ifTrue: [count := count + 1]].
A count

Syntactically, a method consists of:

1. the method pattern, containing the name (i.e., lineCount) and any argu-
ments (none in this example);

2. comments (these may occur anywhere, but the convention is to put
one at the top that explains what the method does);

3. declarations of local variables (i.e., cr and count); and

4. any number of expressions separated by dots; here there are four.

The evaluation of any expression preceded by a * (typed as ~) will cause
the method to exit at that point, returning the value of that expression. A
method that terminates without explicitly returning some expression will
implicitly return self.

Arguments and local variables should always start with lower case
letters. Names starting with upper-case letters are assumed to be global

56 Syntax in a nutshell

variables. Class names, like Character, for example, are simply global vari-
ables referring to the object representing that class.

However, you are discouraged to define your own global variables since
they introduce global state which is often considered a code smell because
it is hard to keep the overview of all global variables. In most cases, best
practice is to define a class variable and implement accessor methods on its
class-side instead.

3.5 Block syntax

Blocks provide a mechanism to defer the evaluation of expressions. A block
is essentially an anonymous function. A block is evaluated by sending it
the message value. The block answers the value of the last expression in its
body unless there is an explicit return (with #), in which case it does not
answer any value.

[1+2]value —» 3

Blocks may take parameters, each of which is declared with a leading
colon. A vertical bar separates the parameter declaration(s) from the body
of the block. To evaluate a block with one parameter, you must send it the
message value: with one argument. A two-parameter block must be sent
value:value:, and so on, up to 4 arguments.

[x]1+x]value:2 — 3
[x:y|x+y]value: 1value:2 — 3

If you have a block with more than four parameters, you must use
valueWithArguments: and pass the arguments in an array. (A block with a
large number of parameters is often a sign of a design problem..)

Blocks may also declare local variables, which are surrounded by verti-
cal bars, just like local variable declarations in a method. Locals are declared
after any arguments:

[x:y]||z|z:=x+y.z]value: 1value:2 — 3

Blocks are actually lexical closures since they can refer to variables of the
surrounding environment. The following block refers to the variable x of
its enclosing environment:

[x|
x:=1.
[ly|x+y]value:2 — 3

[SRS T N SR VR

Conditionals and loops in a nutshell 57

Blocks are instances of the class BlockContext. This means that they are
objects, so they can be assigned to variables and passed as arguments just
like any other object.

Returning inside blocks. Returning inside blocks acts as an escaping
mechanism. Return expressions inside a nested block expression will
terminate the lexically enclosing method. In the following example (see
method 3.2), when the expression * foundBlock value: element is executed, the
method detect:ifFound:ifNone: escapes the current iteration and returns it.

Method 3.2: The method detect:ifFound:ifNone: illustrating how returning inside
blocks can be used.

Collection»detect: aBlock ifFound: foundBlock ifNone: exceptionBlock
"foundBlock takes one argument, the found object."”

self do: [:element |
(aBlock value: element) ifTrue: [* foundBlock value: element]].
A exceptionBlock value

3.6 Conditionals and loops in a nutshell

Smalltalk offers no special syntax for control constructs. Instead, these
are typically expressed by sending messages to booleans, numbers, and
collections, with blocks as arguments.

Conditionals are expressed by sending one of the messages ifTrue:, ifFalse:
or ifTrue:ifFalse: to the result of a boolean expression. See Chapter 8 for more
about booleans.

17 » 13 > 220
ifTrue: ['bigger']
ifFalse: ['not bigger'] —— ‘'bigger'.

Loops are typically expressed by sending messages to blocks, integers,
or collections. Since the exit condition for a loop may be repeatedly evalu-
ated, it should be a block rather than a boolean value. Here is an example
of a very procedural loop:

n:=1.
[n < 1000] whileTrue: [n :=n = 2].
n — 1024

whileFalse: reverses the exit condition.

58 Syntax in a nutshell

n:=1.
[n > 1000] whileFalse: [n := n = 2].
n — 1024

timesRepeat: offers a simple way to implement a fixed iteration:
n:=1.

10 timesRepeat: [n :=n = 2].

n — 1024

We can also send the message to:do: to a number which then acts as the
initial value of a loop counter. The two arguments are the upper bound,
and a block that takes the current value of the loop counter as its argument:

result := String new.
1 to: 10 do: [:n | result := result, n printString , ' '].
resut — '12345678910"'

Higher-order iterators. Collections comprise a large number of different
classes, many of which support the same protocol. The most important
messages for iterating over collections include do:, collect:, select:, reject;,
detect: and injectiinto:. These messages define high-level iterators that allow
one to write very compact code.

An Interval is a collection that lets one iterate over a sequence of numbers
from the starting point to the end. 1 to: 10 represents the interval from 1 to
10. Since it is a collection, we can send the message do: to it. The argument
is a block that is evaluated for each element of the collection.

result := String new.
(1 to: 10) do: [:n | result := result , n printString , ' "].
result — '12345678910"'

collect: builds a new collection of the same size, transforming each ele-
ment.

(1 to: 10) collect: [:each | each « each] — #(1 49 16 25 36 49 64 81 100)

select: and reject: build new collections, each containing a subset of the
elements satisfying (or not) the boolean block condition. detect: returns
the first element satisfying the condition. Don’t forget that strings are also
collections, so you can iterate over all the characters.

'hello there' select: [:char | char isVowel] — 'eoee’
'hello there' reject: [:char | char isVowel] —— 'hll thr'
'hello there' detect: [:char | charisVowel] — $e

N o o A @ N =

Primitives and pragmas 59

Finally, you should be aware that collections also support a functional-
style generic fold message called injectiinto:. This lets you generate a cumula-
tive result using an expression that starts with a seed value and injects each
element of the collection. Sums and products are typical examples.

(1 to: 10) inject: 0 into: [:sum :each | sum + each] —— 55

This is equivalent to 0+1+2+3+4+5+6+7+8+9+10.

More about collections can be found in Chapter 9.

3.7 Primitives and pragmas

In Smalltalk everything is an object, and everything happens by sending
messages. Nevertheless, at certain points, we hit rock bottom. Certain
objects can only get work done by invoking virtual machine primitives.

For example, the following are all implemented as primitives: memory
allocation (new, new:), bit manipulation (bitAnd:, bitOr:, bitShift:), pointer and
integer arithmetic (+, -, <, >, +,/, =, ==...), and array access (at;, at:put:).

Primitives are invoked with the syntax <primitive: aNumber>. A method
that invokes such a primitive may also include Smalltalk code, which will
be evaluated only if the primitive fails.

Here we see the code for Smallinteger»+. If the primitive fails, the expres-
sion super + aNumber will be evaluated and returned.

Method 3.3: A primitive method.

+ aNumber
"Primitive. Add the receiver to the argument and answer with the result
if it is a Smalllnteger. Fail if the argument or the result is not a
Smalllnteger Essential No Lookup. See Object documentation whatlsAPrimitive."

<primitive: 1>
A super + aNumber

The angle bracket syntax is also used for method annotations called
pragmas. A pragma basically looks like a message, it consists of a selector
symbol, filled up with argument values if the selector has keyword argu-
ments. Pragma selectors can be unary (<generated>) or keyword (generatedBy:

‘compiler' level: 42) but not binary selectors. Argument values must be con-
stant literals such as symbols, numbers, or arrays, but you must not evaluate
any code in a pragma value. Pragmas don’t have any effect on the method
by themselves, but other objects can read and handle those pragmas to

60

Syntax in a nutshell

perform arbitrary actions such as querying methods or modifying the way
a method is compiled when you accept it.

3.8

Chapter summary

Squeak has (only) six reserved identifiers also called pseudo-variables:
true, false, nil, self, super, and thisContext.

There are five kinds of literal objects: numbers (5, 2.5, 1.9e15, 2r111),
characters ($a), strings (‘hello’), symbols (#hello), and arrays (#(hello'
#hello))

Strings are delimited by single quotes, comments by double quotes.
To get a quote inside a string, double it.

Unlike strings, symbols are guaranteed to be globally unique.

Use #(...) to define a literal array. Use { ... } to define a dynamic array.
Note that #(1 + 2) size — 3,but{1 +2}size — 1

There are three kinds of messages: unary (e.g., 1 asString, Array new),
binary (e.g., 3 + 4, 'hi', ' there"), and keyword (e.g., 'hi" at: 2 put: $o)

A cascaded message send is a sequence of messages sent to the same
target, separated by semi-colons: OrderedCollection new add: #calvin; add:
#hobbes; size — 2

Local variables are declared with vertical bars. Use := for assignment.
[x|x:=1

Expressions consist of message sends, cascades and assignments, pos-
sibly grouped with parentheses. Statements are expressions separated
by periods.

Block closures are expressions enclosed in square brackets. Blocks
may take arguments and can contain temporary variables. The ex-
pressions in the block are not evaluated until you send the block a
value... message with the correct number of arguments.
[(x|x+2]value:4 — 6.

There is no dedicated syntax for control constructs, just messages that
conditionally evaluate blocks.
(Smalltalk includes: Class) ifTrue: [Transcript show: Class superclass]

Chapter 4

Understanding message
syntax

Although Smalltalk’s message syntax is very simple, it is unconventional
and it can take some time to get used to it. This chapter offers some
guidance to help you get accustomed to this special syntax for sending
messages. If you already feel comfortable with the syntax, you may choose
to skip this chapter or come back to it later.

4.1 Identifying messages

In Smalltalk, except for the syntactic elements listed in Chapter 3 (:=* . ; # () {}
[:]]), everything is a message send. Even operations such as + are message
sends and you can implement methods for these operations in your classes.
At the same time, the arity of a method is set. “-” is always a binary message;
there is no way to have a unary “-” with different overloading.

In Smalltalk the order in which messages are sent is determined by the
kind of message. There are just three kinds of messages: unary, binary,
and keyword messages. Unary messages are always sent first, then binary
messages and finally keyword ones. As in most languages, parentheses can
be used to change the order of evaluation. These rules make Smalltalk code
as easy to read as possible. We discuss the rules in detail in Section 4.2.

As most computation in Smalltalk is done by message passing, correctly
identifying messages is crucial. The following terminology will help us:

* A message is composed of the message selector and the optional
message arguments.

62 Understanding message syntax

* A message is sent to a receiver.

¢ The combination of a message and its receiver is called a message send
as shown in Figure 4.1.

message

total <= max

T

receiver message selector message arguments

N\ 7

Colorr: 1g 0b:0

| message |
a message send

Figure 4.1: Two messages composed of ~ Figure 4.2: aMorph color: Color

a receiver, a method selector, and a set yellow is composed of two mes-

of arguments. sage sends: Coloryellow and
aMorph color: Color yellow.

A message is always sent to a receiver, which can be
a single literal, a block or a variable or the result of
evaluating another message.

To help you identify the receiver of a message send, we will underline
it for you in the following examples. We will also surround each message
send with an ellipse and number message sends starting from the first one
that will be sent to help you see the order in which messages are sent.

Figure 4.2 represents two message sends, Color yellow and aMorph color:
Color yellow, hence there are two ellipses. The message send Color yellow is
executed first so its ellipse is numbered 1. There are two receivers: aMorph
which receives the message color: ... and Color which receives the message
yellow. Both receivers are underlined.

A receiver can be the first element of a message, such as 100 in the
message send 100 + 200 or Color in the message send Color yellow. However,
a receiver can also be the result of other messages. For example in the
message Pen new go: 100, the receiver of the message go: 100 is the object
returned by the message send Pen new. In all the cases, a message is sent
to an object called the receiver which may be the result of another message
send.

Three kinds of messages 63

Message send Message type Result

Color yellow unary Creates a color.

aPen go: 100 keyword The receiving pen moves for-
ward 100 pixels.

100 + 20 binary The number 100 receives the
message + with the number
20.

Pennew go: 100 unary and keyword A pen is created and moved
100 pixels.

aPengo: 100 + 20 keyword and binary = The receiving pen moves for-
ward 120 pixels.

Table 4.1: Examples of message sends and their types.

4.2 Three kinds of messages

Smalltalk defines a few simple rules to determine the order in which the
messages are sent. These rules are based on the distinction between 3
different kinds of messages:

* Unary messages are messages that are sent to an object without argu-
ments. For example in 3 factorial, factorial is a unary message.

* Binary messages are messages consisting of operators (often arithmetic).
They are binary because they always involve only two objects: the
receiver and the argument object. For example in 10 + 20, + is a binary
message sent to the receiver 10 with argument 20.

* Keyword messages are messages consisting of one or more keywords,
each ending with a colon (;) and taking an argument. For example
in anArray at: 1 put: 10, the keyword at: takes the argument 1 and the
keyword put: takes the argument 10.

Table 4.1 shows several examples of simple message sends and com-
posed ones. Color yellow and 100 + 20 are simple: A message is sent to an
object, while the message send aPen go: 100 + 20 is composed of two mes-
sages: + 20 is sent to 100 and go: is sent to aPen with the argument being
the result of the first message. A receiver can be an expression (such as
an assignment, a message send, or a literal) which returns an object. In
Pen new go: 100, the message go: 100 is sent to the object that results from the
execution of the message send Pen new. We will now take a closer look at
the three kinds of messages.

64 Understanding message syntax

Unary messages

Unary messages are messages that do not require any argument. They
follow the syntactic template: receiver messageName. The selector is simply
made up of a succession of characters not containing : (e.g., factorial, open,
class).

89 sin — 0.8600694058124533

3 sqrt — 1.7320508075688772

Float pi — 3.141592653589793

'blop' size — 4

true not — false

Objectclass —— Object class "The class of Object is Object class (!)"

Unary messages are messages that do not require any
argument.
They follow the syntactic template: receiver selector

Binary messages

Binary messages are messages that require exactly one argument and whose
selector consists of a sequence of one or more characters from the set: +, -, »,
/,& =,>,|,<, ~,and @. Note that -- is not allowed for parsing reasons.

100 @ 100 — 100@100 "creates a Point object"

3+4 — 7
10-1 — 9
4<=3 — false

(4/3)«3=4 — true "equality is a binary message; Fractions are exact"
(3/4)==(3/4) —— false "two equal Fractions are not the same object"

Binary messages are messages that require exactly one
argument and whose selector is composed of a sequence
of characters from: +, -, +,/, &, =,>,|, <, ~, and @. -- is not
possible.

They follow the syntactic template: receiver selector argu-
ment

Keyword messages

Keyword messages are messages that require one or more arguments and
whose selector consists of one or more keywords each ending in :. Keyword

Message composition 65

messages follow the syntactic template: receiver selectorWordOne: argument-
One wordTwo: argumentTwo

Each keyword takes an argument. Hence r:g:b: is a method with three
arguments, playFileNamed: and at: are both methods with one argument, and
at:put: is a method with two arguments. To create an instance of the class
Color one can use the method r:g:b: as in Color r: 1 g: 0 b: 0, which creates the
color red. Note that the colons are part of the selector.

In Java-style syntax, the Smalltalk method invocation
Color r: 1 g: 0 b: 0 would be written Color.rgb(1,0,0).

1to: 10 — (1to: 10) "creates an interval”
Colorr:1g:0b:0 — Colorred "creates a new color"
12 between: 8 and: 15 —— true

nums := Array newFrom: (1 to: 5).
nums at: 1 put: 6.
nums —> #(62345)

Keyword based messages are messages that require one
or more arguments. Their selector consists of one or
more keywords each ending in a colon (:). They follow
the syntactic template:

receiver selectorWordOne: argumentOne wordTwo: argu-
mentTwo

4.3 Message composition

The three kinds of messages each have different precedence, which allows
them to be composed in an elegant way.

1. Unary messages are always sent first, then binary messages and
finally keyword messages.

2. Messages in parentheses are sent prior to any kind of message.

3. Messages of the same kind are evaluated from left to right.

These rules lead to a very natural reading order. Now, if you want to be
sure that your messages are sent in the order that you want you can always

66 Understanding message syntax

put more parentheses as shown in Figure 4.3. In this figure, the message
yellow is a unary message and the message color: a keyword message, there-
fore the message send Color yellow is sent first. However as message sends
in parentheses are sent first, putting (unnecessary) parentheses around
Color yellow just emphasizes that it will be sent first. The rest of the section
illustrates each of these points.

N
\
v
/
.

aPen color: Color yellow;

is equivalent to (aPen color: { (Color yellow

D
)
’
’

Figure 4.3: Unary messages are sent first so Color yellow is sent first. This
returns a Color object which is passed as an argument of the message aPen
color:.

Unary > Binary > Keywords

Unary messages are sent first, then binary messages, and finally, keyword
messages. We also say that unary messages have a higher priority over
other kinds of messages.

Rule One. Unary messages are sent first, then binary
messages, and finally keyword-based messages.
Unary > Binary > Keyword

As the following examples show, Smalltalk’s syntax rules generally
ensure that message sends can be read in a natural way:

1000 factorial / 999 factorial —— 1000
2 raisedTo: 1 + 3 factorial — 128

Unfortunately, the rules are a bit too simplistic for arithmetic message
sends, so you need to introduce parentheses whenever you want to impose
a priority over binary operators:

1+42+3 — 9
1+(2+8) — 7

The following example, which is a bit more complex (!), offers a nice
illustration that even complicated Smalltalk expressions can be read natu-
rally:

Message composition 67

[:aClass | aClass methodDict keys sorted select: [:aMethod | (aClass>>aMethod)
isAbstract]] value: Boolean — #(#& #==> #and: #asBit #ifFalse:
#ifFalse:ifTrue: #ifTrue: #ifTrue:ifFalse: #not #or: #|)

Here we want to know which methods of the Boolean class are abstract. We
ask some argument class, aClass, for the keys of its method dictionary, sort
them, and select those methods of that class that are abstract. Then we bind
the argument aClass to the concrete value Boolean. We need parentheses
only to send the binary message >>, which selects a method from a class,
before sending the unary message isAbstract to that method The result shows
us which methods must be implemented by Boolean’s concrete subclasses
True and False.

Example. Inthe message aPen color: Color yellow, there is one unary message
yellow sent to the class Color and a keyword message color: sent to aPen. Unary
messages are sent first so the message send Color yellow is sent (1). This
returns a Color object, which is used as an argument in the message send
aPen color: aColor (2) as shown in example 4.1. Figure 4.3 shows graphically
how messages are sent.

Example 4.1: Decomposing the evaluation of aPen color: Color yellow.
aPen color: Color yellow.

(1) Color yellow "unary message is sent first"
— aColor
(2) aPen color: aColor "keyword message is sent next"

Example. Example 4.2 shows an example of a combination of a keyword
and binary message send and how it is executed. In the message send
aPen go: 100 + 20, there is a binary message + 20 and a keyword message go:.
Binary messages are sent prior to keyword messages, so 100 + 20 is sent first
(1): The message + 20 is sent to the object 100 and returns the number 120.
Then the message send aPen go: 120 is sent with 120 as argument (2).

Example 4.2: Decomposing aPen go: 100 + 20.
aPen go: 100 + 20.

(1) 100 + 20 "binary message first"
— 120
(2) aPen go: 120 "then keyword message”

Example. As an exercise, we let you decompose the evaluation of the
message send Pen new go: 100 + 20, which is composed of one unary, one
keyword, and one binary message (see Figure 4.5).

68 Understanding message syntax

: Pen new; go:

Figure 4.4: Binary messages are sent Figure 4.5: Decomposing Pen new go:
before keyword messages. 100 + 20.

Parentheses first

Rule Two. Parenthesised messages are sent prior to
other messages.
(Msg) > Unary > Binary > Keyword

1.5 tan rounded asString = (((1.5 tan) rounded) asString) —— true
"parentheses not needed for the sends above"

3 + 4 factorial — 27 "not 5040"

(3 + 4) factorial —— 5040

In the following example, we need the parentheses to force sending
lowMajorScaleOn: before play.

(FMSound lowMajorScaleOn: FMSound clarinet) play

"(1) send the message clarinet to the FMSound class to create a clarinet sound.

(2) send this sound to FMSound as an argument to the lowMajorScaleOn: keyword
message.

(3) play the resulting sound."

Example. The message (65 @ 325 extent: 134 @ 100) center returns the center
of a rectangle whose top-left point is (65, 325) and whose size is 134x100.
Example 4.3 shows how the message is decomposed and sent. First, the
message between parentheses is sent: It contains two binary messages
65 @ 325 and 134 @ 100 that are sent first and return points, and a keyword
message extent: which is then sent and returns a rectangle. Finally, the unary
message center is sent to the rectangle and a point is returned. Evaluating
the message without parentheses would lead to an error because the object
100 does not understand the message center.

Message composition 69

2

|

Figure 4.6: Decomposing Pen new down.

Example 4.3: Example of Parentheses.
(65 @ 325 extent: 134 @ 100) center.

(1) 65 @ 325 "binary"
— aPoint
(2) 134 @ 100 "binary"
— anotherPoint
(3) aPoint extent: anotherPoint "keyword"
— aRectangle
(4) aRectangle center "unary”

— 132 @ 375

From left to right

Now we know how messages of different kinds or priorities are handled.
The final question to be addressed is how messages with the same priority
are sent: The answer is from the left to the right. Note that you already saw
this behavior in example 4.3 where the two point creation messages (@)
were sent first.

Rule Three. When the messages are of the same kind,
the order of evaluation is from left to right.

Example. In the message sends Pen new down all messages are unary mes-
sages, so the leftmost one, Pen new, is sent first. This returns a newly created
pen to which the second message down is sent, as shown in Figure 4.6.

The absence of arithmetic precedence

The message composition rules are simple, but, as they apply to all message
sends, might not always match your expectations. In particular, arithmetic
message sends, such as + and » are also subject to the same set of rules.
Thus, there is no special precedence between these message sends. Here,
we see the common situations where extra parentheses are needed:

70 Understanding message syntax

3+4+5 — 35 "(not 23) Binary messages sent from left to right”
3+ (4+5) — 23

1+1/3 — (2/3) '"not 4/3"

1+(1/3) — (4/3)

1/3+2/3 — (7/9) ‘"not 1"

(1/3)+(2/3) — 1

Example. Inthe message sends 20 + 2 » 5, there are only binary messages +
and ». However, in Smalltalk there is no specific priority for the operations
+and . They are just binary messages, hence « does not have priority over
+. S0, the leftmost message + is sent first (1) and then the « is sent to the
result as shown in example 4.4.

Example 4.4: Decomposing 20 + 2 « 5.

"As there is no priority among binary messages, the leftmost message + is evaluated
first even if by the rules of arithmetic the + should be sent first."

20 + 2 « 5.
(1) 20+2 — 22
(@ 22 +«5 —s 110

As shown in example 4.4, the result of this message send is not 30 but
110. Even though the result may be unexpected, it follows directly from
the rules for the ordering of message sends. This is somehow the price to
pay for the simplicity of the Smalltalk model. To get the correct result, we
should use parentheses. When messages are enclosed in parentheses, they
are evaluated first. Hence the message send 20 + (2 « 5) returns the result as
shown in example 4.5.

Example 4.5: Decomposing 20 + (2 « 5).

"The messages surrounded by parentheses are evaluated first. Therefore = is sent
prior to +, which produces the correct behavior."

20 + (2 + 5).
(1) (2«5 — 10
(2) 20 + 10 — 30

Hints for identifying keyword messages 71

2 1
20 +
Implicit precedence Explicitly parenthesized equivalent
aPen color: Color yellow aPen color: (Color yellow)
aPen go: 100 + 20 aPen go: (100 + 20)
aPen penSize: aPen penSize + 2 aPen penSize: ((aPen penSize) + 2)
2 factorial + 4 (2 factorial) + 4

Figure 4.7: Message sends and their fully parenthesized equivalents.

In Smalltalk, arithmetic operators such as + and * do not
have different priorities. + and « are just binary messages,
therefore « does not have priority over +. Use parentheses
to obtain the desired result.

Note that the first rule stating that unary messages are sent prior to
binary and keyword messages avoids the need to put explicit parentheses
around them. Table 4.7 shows message sends written following the rules
and equivalent message sends if the rules would not exist. Both message
sends result in the same effect or return the same value.

4.4 Hints for identifying keyword messages

Often beginners face the challenge of when they need to add parentheses.
Let’s see how keywords messages are recognized by the compiler.

Parentheses or not?

The characters [] and () delimit distinct areas. Whatever is in these areas
is evaluated before the result is used in any other evaluation, as you have
seen in examples of arithmetic messages. Further, parentheses are also
necessary to keep the parts of nested keyword messages apart.

In the following example, there are two distinct keyword messages:
includes: and ifTrue:. Without the parenthesis we would actually send the
unknown message includes:ifTrue: to the collection. By adding parenthesis

72 Understanding message syntax

we make it clear where one keyword message ends and where another one
starts.

ord := OrderedCollection new.
(ord includes: $a) ifTrue: [...]

The same applies to the following example, in which we use the result
of the keyword message send rotateBy:magnify:smoothing: as an argument in
the keyword message send at:put:.

aDict
at: (rotatingForm
rotateBy: angle
magnify: 2
smoothing: 1)
put: 3.

Hints. If you have problems with these precedence rules, you may start
simply by putting parentheses whenever you want to distinguish two
messages having the same precedence. To keep your code short and clear
you should however try to use them less often when you become more
experienced.

When messages have different precedence, you do not have to use
parentheses. For example, the following piece of code does not require
parentheses because the message send x isNil is unary, hence it is always
sent prior to the keyword message ifTrue:.

x isNil ifTrue: [...]

When to use [] or ()

Another challenge you might face is understanding the difference between
square brackets and parentheses. The basic principle is that you should use
[1 when you do not know how many times, potentially zero, an expression
should be evaluated. [expression] will create a block closure (i.e., an object)
from expression which may be evaluated any number of times (possibly
zero), depending on the context. The expression can be any code.

Hence the conditional branches of ifTrue: or ifTrue:ifFalse: require blocks,
as depending on the condition, the code after the ifTrue: or after the ifFalse:
might be executed. Following the same principle, both the receiver and the
argument of a whileTrue: message require the use of square brackets since we
do not know how many times either the receiver or the argument should
be evaluated.

Expression sequences 73

Parentheses, on the other hand, only affect the order of sending mes-
sages. So in (expression), the expression will always be evaluated exactly
once.

"both the receiver and the argument must be blocks"

[x isReady] whileTrue: [y doSomething].

"the argument is evaluated more than once, so must be a block"
4 timesRepeat: [Beeper beep].

"the receiver is evaluated once, so it is not a block”

(x isReady) ifTrue: [y doSomething].

4.5 Expression sequences

Expressions (i.e., messages sends, assignments...) separated by periods
are evaluated in sequence. Note that there is no period between a variable
definition and the following expression. The value of a sequence is the
value of the last expression. The values returned by all the expressions
except the last one are ignored. Note that the period is a separator and not
a terminator. Therefore a final period is optional.

| box |
box := 20 @ 30 corner: 60 @ 90.
box containsPoint: 40 @ 50 —— true

4.6 Cascaded messages

Smalltalk offers a way to send multiple messages to the same receiver using
a semicolon (;). This is called the cascade in Smalltalk jargon.

Expression msgl; msg?2

Transcript
show: 'Squeak is';
is equivalent to: show: 'fun ';
cr.

Transcript show: 'Squeak is '.
Transcript show: 'fun '.
Transcript cr.

Note that the object receiving the cascaded messages can itself be the
result of a message send. In fact, the receiver of all the cascaded messages
is the receiver of the first message involved in a cascade. In the following
example, the first cascaded message is setX:setY since it is followed by

74 Understanding message syntax

a cascade. The receiver of the cascaded message setX:setY: is the newly
created point resulting from the evaluation of Point new, and not Point. The
subsequent message isZero is sent to that same receiver.

Point new setX: 25 setY: 35; isZero —— false

4.7 Chapter summary

* A message is always sent to an object named the receiver which may
be the result of other message sends.

¢ Unary messages are messages that do not require any argument.
They are of the form of receiver selector.

¢ Binary messages are messages that involve two objects, the receiver
and another object and whose selector is composed of one or more
characters from the following list: +,-, =, /,|, &, =, >, <, 7, and @. They
are of the form: receiver selector argument

¢ Keyword messages are messages that involve more than one object
and that contain at least one colon character (:).
They are of the form: receiver selectorWordOne: argumentOne wordTwo:
argumentTwo

* Rule One. Unary messages are sent first, then binary messages, and
finally keyword messages.

* Rule Two. Messages in parentheses are sent before any others.

* Rule Three. When the messages are of the same kind, the order of
evaluation is from left to right.

¢ In Smalltalk, traditional arithmetic operators such as + and * have the
same priority. + and « are just binary messages, therefore « does not
have priority over +. You must use parentheses to obtain a different
result.

Part II

Developing in Squeak

Chapter 5
The Smalltalk object model

Smalltalk’s programming model is simple and uniform: Everything is an
object, and objects communicate only by sending each other messages.
However, this simplicity and uniformity can be a source of difficulty for
programmers used to other languages. In this chapter, we present the
core concepts of the Smalltalk object model; in particular we discuss the
consequences of representing classes as objects.

5.1 The rules of the model

The Smalltalk object model is based on a set of simple rules that are applied
uniformly. The rules are as follows:

Rule 1. Everything is an object.

Rule 2. Every object is an instance of a class.

Rule 3. Every class has a superclass.

Rule 4. Everything happens by message sends.

Rule 5. Method lookup follows the inheritance chain.

Let us look at each of these rules in some detail.
5.2 Everything is an object

The mantra “everything is an object” is highly contagious. After only a
short while working with Smalltalk, you will start to be surprised at how

78 The Smalltalk object model

this rule simplifies everything you do. Integers, for example, are true
objects, so you can send messages to them, just as you do to any other
object.

3+4 — 7 "send '+ 4'to 3, yielding 7"
20 factorial —— 2432902008176640000 "send factorial, yielding a big number"

The representation of a number as large as 20 factorial is different from
the representation of a number as small as 7, but because they are both
objects, none of the code —not even the implementation of factorial —needs
to know about this.

Perhaps the most fundamental consequence of this rule is the following:

Classes are objects too.

Furthermore, classes are not second-class objects: they are really first-class
objects that you can send messages to, inspect, and so on. This means that
Squeak is a truly reflective system, which gives a great deal of expressive
power to developers.

Deep in the implementation of Smalltalk, there are three different kinds
of objects. There are (1) ordinary objects with instance variables that are
passed by references, there are (2) immediate objects such as Smallinteger s
that are passed by value, and there are (3) indexable objects like arrays that
hold a contiguous portion of memory. The beauty of Smalltalk is that you
normally do not need to care about the differences between these three
kinds of objects.

5.3 Every object is an instance of a class

Every object has a class; you can find out which by sending it the message
class.

1 class — Smallinteger

20 factorial class —— LargePositivelnteger
'hello’ class — ByteString

#(1 2 3) class — Array

(4 @ 5) class — Point

Object new class —— Object

A class defines the structure of its instances via instance variables, and
the behavior of its instances via methods. Each method has a name, called
its selector, which is unique within the class.

Every object is an instance of a class 79

Since classes are objects, and every object is an instance of a class, it follows
that classes must also be instances of classes. A class whose instances are
classes is called a metaclass. Whenever you create a class, the system auto-
matically creates a metaclass for you. The metaclass defines the structure
and behavior of the class that is its instance. Most of the time you will not
need to think about metaclasses, and may happily ignore them. (We will
have a closer look at metaclasses in Chapter 12.)

Instance variables

Instance variables in Smalltalk are private to the instance itself. This is in
contrast to Java and C++, which allow instance variables (also known as
“fields” or “member variables”) to be accessed by any other instance that
happens to be of the same class. We say that the encapsulation boundary of
objects in Java and C++ is the class, whereas in Smalltalk it is the instance.

In Smalltalk, two instances of the same class cannot access each other’s
instance variables unless the class defines “accessor methods”. There is
no language syntax that provides direct access to the instance variables
of any other object. (Actually, a mechanism called reflection does provide
a way to ask another object for the values of its instance variables; meta-
programming is intended for writing tools like the object inspector, whose
sole purpose is to look inside other objects.)

Instance variables can be accessed by name in any of the instance meth-
ods of the class that defines them, and also in the methods defined in its
subclasses. This means that Smalltalk instance variables are similar to pro-
tected variables in C++ and Java. However, we prefer to say that they are
private because it is considered bad style in Smalltalk to access an instance
variable directly from a subclass.

Example

Method Point»dist: (see Method 5.1) computes the distance between the
receiver and another point. The instance variables x and y of the receiver
are accessed directly by the method body. However, the instance variables
of the other point must be accessed by sending it the messages x and y.

N o o & w N o=

80 The Smalltalk object model

Method 5.1: The distance between two points.

Point»dist: aPoint
"Answer the distance between aPoint and the receiver."

| dx dy |

dx := aPoint x - x.

dy := aPointy -y.

A ((dx = dx) + (dy = dy)) sqrt

1@1distt4@5 — 5

The key reason to prefer instance-based encapsulation to class-based
encapsulation is that it enables different implementations of the same
abstraction to coexist. For example, method Point»dist:;, need not know or
care whether the argument aPoint is an instance of the same class as the
receiver. The argument object might be represented in polar coordinates, or
as a record in a database, or on another computer in a distributed system;
as long as it can respond to the messages x and y, the code in Method 5.1
will still work.

Methods

All methods are public. Methods are grouped into categories that indi-
cate their intent. Some common category names have been established by
convention, for example, accessing for all accessor methods, and initializa-
tion for establishing a consistent initial state for the object. The protocol
private is sometimes used to group methods that should not be seen from
outside. Nothing, however, prevents you from sending a message that is
implemented by such a “private” method.

Methods can access all instance variables of the object. Some Smalltalk
developers prefer to access instance variables only through their accessors.
This practice has some value, but it also clutters the interface of your classes,
and worse, exposes some private state to the world.

The instance side and the class side

Since classes are objects, they can have their own instance variables and
their own methods. We call these class instance variables and class meth-
ods, but they are really no different from ordinary instance variables and
methods: Class instance variables are just instance variables defined by a
metaclass, and class methods are just methods defined by a metaclass.

Every object is an instance of a class 81

A class and its metaclass are two separate classes, even though the
former is an instance of the latter. However, this is largely irrelevant to you
as a programmer: You are concerned with defining the behavior of your
objects and the classes that create them.

Color Color class

m / Key

instance of
—

© System Browser: Color / -1+
Balloon-Fills BitBit —ail— +alpha
Balloon-Geometry Pen “Etoys-ties blue
Balloon-Simulation penpoingfcorde || *Morphic brightness
Graphics-Display Objec ‘WarpBj *Morp hicExtras-Posts¢ green
Graphics-External-Fler |- Bitmay +nebraska-Morphic-Re | hue
Graphics-Files Col *ston-core luminance
Graphics-Fonts Morphic menu red
Graphics-Primitives | (_instance | clsz) (7) accessing saturation
(browse)((_senders) (implementor) _versions _)((nhertance)(_ierarcy)(__vars) [source
hue © System Browser: c+r o0
“Return the hue of this color, an angle in the range [0.0..360.01." Balloon-Fils BB —ail-
Balloon-Geometry Pen “Etoys-Squeadand-Ty | hotColdShades:
| rg b max minspan h | P otColdShade:
1= self privateRed. Graphics-Display Objec WarpBit | ston-core showCalors:
= Graphics-External-ffer ||*{aitmap class initialization showHSVPalettes
9 i= sefl prvateGreen. Graphice Fles or cdor from user Showh vesinieracti
= colormaps wheel:
10 timeStamp - accessing - 2 implementors - in no change set Graphics Primitives | Cinstance) chss (1) examples wheelisaturation:br.|

"Color showColors: (Color wheel: 12)"

~ Color wheel: thisMany saturation: 0.9 brightness: 0.7

no timeStamp - examples - 2 implementors - in no change set.

Figure 5.1: Browsing a class and its metaclass.

For this reason, the browser helps you to browse both class and meta-
class as if they were a single thing with two “sides”: the “instance side”
and the “class side”, as shown in Figure 5.1. Clicking on the button
browses the class Color, i.e., you browse the methods that are executed when
messages are sent to an instance of Color, like the color blue. Pressing the
button browses the class Color class, i.e., you see the methods that will
be executed when messages are sent to the class Color itself. For example,
Color blue sends the message blue to the class Color. You will therefore find
the method blue defined on the class side of Color, not on the instance side.

aColor := Color blue. "Class side method blue"

aColor — Color blue

aColorred — 0.0 "Instance side accessor method red"
aColorblue — 1.0 "Instance side accessor method blue"

You define a class by filling in the template proposed on the instance
side. When you accept this template, the system creates not just the class
that you defined, but also the corresponding metaclass. You can browse the
metaclass by clicking on the button. The only part of the metaclass
creation template that makes sense for you to edit directly is the list of
instance variable names.

Once a class has been created, clicking the button lets you edit
and browse the methods that will be possessed by instances of that class

82 The Smalltalk object model

(and of its subclasses). For example, we can see in Figure 5.1 that the
method hue is defined on instances of the class Color. In contrast, the
button lets you browse and edit the metaclass (in this case Color class).

Class methods

Class methods can be quite useful; browse Color class for some good exam-
ples. You will see that there are two kinds of method defined on a class:
those that create instances of the class, like Color class»blue and those that
perform a utility function, like Color class»showColorCube. This is typical,
although you will occasionally find class methods used in other ways.

It is convenient to place utility methods on the class side because they
can be executed without having to create any additional objects first. In-
deed, many of them will contain a comment designed to make it easy to
execute them.

J Browse method Color class»showColorCube, double-click just inside the quotes

on the comment "Color showColorCube" and type CMD—d.

You will see the effect of executing this method directly within the
world. (Select World ©>restore display (r) to undo the effects.)

For those familiar with Java and C++, class methods may seem similar
to static methods. However, the uniformity of Smalltalk means that they are
somewhat different: Whereas Java static methods are really just statically-
resolved procedures, Smalltalk class methods are dynamically-dispatched
methods. This means that inheritance, overriding, and super-sends work
for class methods in Smalltalk, whereas they do not work for static methods
in Java.

Class instance variables

With ordinary instance variables, all the instances of a class have the same
set of variable names, and the instances of its subclasses inherit those
names. However, each instance has its own private set of values. The story
is exactly the same with class instance variables: each class has its own
private class instance variables. A subclass will inherit those class instance
variables, but it has its own private copies of those variables. Just as objects do
not share instance variables, neither do classes and their subclasses share
class instance variables.

You could use a class instance variable called count to keep track of
how many instances you create of a given class. However, any subclass

Every object is an instance of a class 83

would have its own count variable, so subclass instances would be counted
separately.

Example: Class instance variables are not shared with subclasses. Sup-
pose we define classes Dog and Hyena, where Hyena inherits the class instance
variable count from Dog.

Class 5.2: Dogs and Hyenas.

Object subclass: #Dog
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: 'SBE-CIV'

Dog class
instanceVariableNames: 'count’

Dog subclass: #Hyena
instanceVariableNames: "
classVariableNames: "

poolDictionaries: "
category: 'SBE-CIV'

Now suppose we define class methods for Dog to initialize its count to 0,
and to increment it when new instances are created:

Methods 5.3: Keeping count of new dogs.
Dog class»initialize

super initialize.
count := 0.

Dog class»new
count := count +1.
A super new

Dog class»count

A count

Now when we create a new Dog its count is incremented, and so is that
of every Hyena, but they are counted separately:

84 The Smalltalk object model

Dog initialize.
Hyena initialize.
Dog count
Hyena count
Dog new.

Dog count

Dog new.

Dog count
Hyena new.
Hyena count — 1

Ll

Note also that class instance variables are private to a class in exactly the
same way that instance variables are private to the instance. Since classes
and their instances are different objects, this has the following immediate
consequences:

A class does not have access to the instance variables of
its own instances.

An instance of a class does not have access to the class
instance variables of its class.

For this reason, instance initialization methods must always be defined on
the instance side — the class side has no access to instance variables, so
it cannot initialize them! All that the class can do is to send initialization
messages, possibly using accessors, to newly created instances.

Similarly, instances can only access class instance variables indirectly,
by sending accessor messages to their class.

Java has nothing equivalent to class instance variables. Java and C++
static variables are more like Smalltalk class variables, which we will discuss
in Section 5.7: all of the subclasses and all of their instances share the same
static variable.

Example: Defining a Singleton. The Singleton pattern! provides a typical
example of the use of class instance variables and class methods. Imagine
that we would like to implement a class SBEWebServer and use the Singleton
pattern to ensure that it has only one instance.

ISherman R. Alpert, Kyle Brown and Bobby Woolf, The Design Patterns Smalltalk Companion.
Addison Wesley, 1998, ISBN 0-201-18462-1.

Every object is an instance of a class 85

Clicking on the button in the browser, we define the class
SBEWebServer as follows (class 5.4).

Class 5.4: A singleton class.
Object subclass: #SBEWebServer
instanceVariableNames: 'sessions'
classVariableNames: "
poolDictionaries: "
category: 'Web'

Then, clicking on the [class|button, we add the instance variable uniquelnstance
to the class side.

Class 5.5: The class side of the singleton class.

SBEWebServer class
instanceVariableNames: 'uniquelnstance’

The consequence of this is that the class SBEWebServer now has an-
other instance variable, in addition to the variables that it inherits, such as
superclass and methodDict.

We can now define a class method named uniquelnstance as shown in
method 5.6. This method first checks whether uniquelnstance has been initial-
ized. If it has not, the method creates an instance and assigns it to the class
instance variable uniquelnstance. We use a super send, as we have forbidden
the use of new for our web server class. Finally the value of uniquelnstance is
returned. Since uniquelnstance is a class instance variable, this method can
directly access it.

Method 5.6: uniquelnstance and new (on the class side).
SBEWebServer class»uniquelnstance

uniquelnstance ifNil: [uniquelnstance := super new].
A uniquelnstance

SBEWebServer class»new

A self error: 'Singleton: use #uniquelnstance'

The first time that SBEWebServer uniquelnstance is executed, an instance
of the class SBEWebServer will be created and assigned to the uniquelnstance
variable. The next time, the previously created instance will be returned
instead of creating a new one.

Note that the instance creation code inside the conditional in method 5.6
is written as self new and not as SBEWebServer new. What is the difference?

86 The Smalltalk object model

Since the uniquelnstance method is defined in SBEWebServer class, you might

think that they were the same. And indeed, until someone creates a subclass

of SBEWebServer, they are the same. But suppose that SBEReliableWebServer

is a subclass of SBEWebServer and inherits the uniquelnstance method. We

would clearly expect SBEReliableWebServer uniquelnstance to answer a SBERe-
liableWebServer. Using self ensures that this will happen since it will be bound

to the respective class. Note also that SBEWebServer and SBEReliableWebServer
will each have their own class instance variable called uniquelnstance. These

two variables will of course have different values.

5.4 Every class has a superclass

Each class in Smalltalk inherits its behavior and the description of its
structure from a single superclass. This means that Smalltalk has single
inheritance.

Smallinteger superclass — Integer
Integer superclass — Number
Number superclass — Magnitude
Magnitude superclass — Object
Object superclass — ProtoObject
ProtoObject superclass — nil

Traditionally, the root of the Smalltalk inheritance hierarchy is the class
Object (since everything is an object). In Squeak, the root is actually a
class called ProtoObject, but you will normally not pay any attention to
this class. ProtoObject encapsulates the minimal set of messages that all
objects must have. However, most classes inherit from Object, which defines
many additional messages that almost all objects ought to understand and
respond to. Unless you have a very good reason to do otherwise, when
creating application classes, you should normally subclass Object, or one of
its subclasses.”

N A new class is normally created by sending a message to an existing class,
most often the message subclass:instanceVariableNames: There are a few other
methods to create classes. Have a look at the protocol Kernel-Classes >Class
I>subclass creation to see what they are.

Although Squeak does not provide multiple inheritance, it incorporates
a mechanism called traits for sharing behavior across unrelated classes.
Traits are collections of methods that can be reused by multiple classes

2 Actually, the only use case for directly subclassing ProtoObject is when you write a transpar-
ent decorator that implements message forwarding by overriding #doesNotUnderstand:. In Squeak,
see MessageCatcher for a simple example.

Every class has a superclass 87

that are not related by inheritance. Using traits allows one to share code
between different classes without duplicating code.

Abstract methods and abstract classes

An abstract class is a class that exists to be subclassed, rather than to be
instantiated. An abstract class is usually incomplete, in the sense that it does
not define all of the methods that it uses. The “missing” methods — those
that the other methods assume, but which are not themselves defined — are
called abstract methods.

Smalltalk has no dedicated syntax to specify that a method or a class
is abstract. By convention, the body of an abstract method consists of the
expression self subclassResponsibility. This is known as a “marker method”,
and indicates that subclasses have the responsibility to define a concrete
version of the method. self subclassResponsibility methods should always be
overridden, and thus should never be executed. If you forget to override
one, and it is executed, an exception will be raised.

A class is considered abstract if one of its methods is abstract. Noth-
ing actually prevents you from creating an instance of an abstract class;
everything will work until an abstract method is invoked.

Example: the class Magnitude

Magnitude is an abstract class that helps us to define objects that can be com-
pared to each other. Subclasses of Magnitude should implement the methods
<, = and hash. Using such messages Magnitude defines other methods such
as >, >=, <=, max:, min: between:and: and others for comparing objects. Such
methods are inherited by subclasses. The method < is abstract and defined
as shown in method 5.7.

Method 5.7: Magnitude»<.

Magnitude»< aMagnitude
"Answer whether the receiver is less than the argument.”

A self subclassResponsibility

By contrast, the method >= is concrete; it is defined in terms of <:

Method 5.8: Magnitude»>=.

Magnitude»>= aMagnitude
"Answer whether the receiver is greater than or equal to the argument.”

A (self < aMagnitude) not

FNE R

FNE R R

88 The Smalltalk object model

The same is true of the other comparison methods.

Character is a subclass of Magnitude; it overrides the subclassResponsibility
method for < with its own version of < (see method 5.9). Character also
defines methods = and hash; it inherits from Magnitude the methods >=, <=,
~= and others.

Method 5.9: Character»<.

Character»< aCharacter
"Answer true if the receiver's value < aCharacter's value."

A self asciiValue < aCharacter asciiValue

Traits

A trait is a collection of methods that can be included in the behavior of
a class without the need for inheritance. This makes it easy for classes to
have a unique superclass, yet still share useful methods with otherwise
unrelated classes.

To define a new trait, simply replace the subclass creation template by a
message to the class Trait.

Class 5.10: Defining a new trait.

Trait named: #TAuthor
uses: {}
category: 'SBE-Quinto'

Here, we define the trait TAuthor in the category SBE-Quinto. This trait does
not use any other existing traits. In general, we can specify a trait composition
expression of other traits to use as part of the uses: keyword argument. Here
we simply provide an empty array.

Traits may contain methods, but no instance variables. Suppose we
would like to be able to add an author method to various classes, indepen-
dent of where they occur in the hierarchy. We might do this as follows:

Method 5.11: An author method.

TAuthor»author
"Returns author initials"

N'taa' "the anonymous author”

Now we can use this trait in a class that already has its own superclass,
for instance the SBEGame class that we defined in Chapter 2. We simply

o o A @ N =

Everything happens by sending messages 89

modify the class creation template for SBEGame to include a uses: keyword
argument that specifies that TAuthor should be used.

Class 5.12: Using a trait.
BorderedMorph subclass: #SBEGame
uses: TAuthor
instanceVariableNames: 'cells’
classVariableNames: "
poolDictionaries: "
category: 'SBE-Quinto’

If we now instantiate SBEGame, it will respond to the author message as
expected.

SBEGame new author — ‘'ta@’

Trait composition expressions may combine multiple traits using the +
operator. In case of conflicts (i.e., if multiple traits define methods with the
same name), these conflicts can be resolved by explicitly removing these
methods (with -), or by redefining these methods in the class or trait that
you are defining. It is also possible to alias methods (with @), providing a
new name for them.

5.5 Everything happens by sending messages

This rule captures the essence of programming in Smalltalk.

In procedural programming, the choice of which piece of code to execute
when a procedure is called is made by the caller. The caller chooses the
procedure or function to execute statically, by name.

In object-oriented programming, we do not “call methods”: we “send
messages.” The choice of terminology is significant. Each object has its
own responsibilities. We do not tell an object what to do by applying some
procedure to it. Instead, we politely ask an object to do something for us by
sending it a message. The message is not a piece of code: it is nothing but a
name and a list of arguments. The receiver then decides how to respond
by selecting its own method for doing what was asked. Since different
objects may have different methods for responding to the same message,
the method must be chosen dynamically, when the message is received.

3+4 — 7 "send message + with argument 4 to integer 3"
1@2)+4 — b5@6 "sendmessage + with argument 4 to point (1@2)"

As a consequence, we can send the same message to different objects, each
of which may have its own method for responding to the message. We do

90 The Smalltalk object model

not tell the Smallinteger 3 or the Point 1@2 how to respond to the message + 4.
Each has its own method for +, and responds to + 4 accordingly.

One of the consequences of Smalltalk’s model of message sending is that
it encourages a style in which objects tend to have very small methods and
delegate tasks to other objects, rather than implementing huge, procedural
methods that assume too much responsibility. Joseph Pelrine expresses this
principle succinctly as follows:

Don not do anything that you can push off onto someone
else.

Many object-oriented languages provide both static and dynamic op-
erations for objects; in Smalltalk there are only dynamic message sends.
Instead of providing static class operations, for instance, classes are objects
and we simply send messages to classes.

Nearly everything in Smalltalk happens by message sends. At some
point, action must take place:

* Variable declarations are not message sends. In fact, variable declara-
tions are not even executable. Declaring a variable just causes space
to be allocated for an object reference.

* Assignments are not message sends. An assignment to a variable
causes that variable name to be freshly bound in the scope of its
definition.

* Returns are not message sends. A return simply causes the computed
result to be returned to the sender.

* Primitives are not message sends. They are implemented in the virtual
machine.

Other than these few exceptions, pretty much everything else does truly
happen by sending messages. In particular, since there are no “public
fields” in Smalltalk, the only way to update an instance variable of another
object is to send it a message asking that it update its own field. Of course,
providing setter and getter methods for all the instance variables of an
object is no good object-oriented style. Joseph Pelrine also states this very
nicely:

Do not let anyone else play with your data.

Method lookup follows the inheritance chain 91

5.6 Method lookup follows the inheritance chain

What exactly happens when an object receives a message?

The process is quite simple: The class of the receiver looks up the
method to use to handle the message. If this class does not have a method,
it asks its superclass, and so on, up the inheritance chain. When the method
is found, the arguments are bound to the parameters of the method, and
the virtual machine executes it.

It is essentially as simple as this. Nevertheless, there are a few questions
that need some care to answer:

o What happens when a method does not explicitly return a value?
* What happens when a class reimplements a superclass method?
o What is the difference between self and super sends?

* What happens when no method is found?

The rules for method lookup that we present here are conceptual: Virtual
machine implementors use all kinds of tricks and optimizations to speed-up
method lookup. That is their job, but you should never be able to detect
that they are doing something different from the rules mentioned above.

First let us look at the basic lookup strategy, and then consider these
further questions.

Method lookup

Suppose we create an instance of EllipseMorph.

anEllipse := EllipseMorph new.

If we now send this object the message defaultColor, we get the result Color
yellow:

anEllipse defaultColor — Color yellow
The class EllipseMorph implements defaultColor, so the appropriate method is
found immediately.

Method 5.13: A locally implemented method.

EllipseMorph»defaultColor
"answer the default color/fill style for the receiver”

A Color yellow

92 The Smalltalk object model

In contrast, if we send the message openinWorld to anEllipse, the method
is not immediately found, since the class EllipseMorph does not implement
openinWorld. The search therefore continues in the superclass, BorderedMorph,
and so on, until an openinWorld method is found in the class Morph (see
Figure 5.2).

Method 5.14: An inherited method.

Morph»openInWorld
"Add this morph to the world."

self openInWorld: self currentWorld.

Morph
initialize
et > defaultColor
openinWorld
fullPrintOn:

___________ BorderedMorph
________ initialize
anEllipse openinWorld 3"' fullPrintOn:
L 2 [EllipseMorph Key
defaultColor instance-of >
\ . message send ————=>
anEllipse lookup eeceeeed >

Figure 5.2: Method lookup follows the inheritance hierarchy.

Returning self

Notice that EllipseMorph»defaultColor (method 5.13) explicitly returns Color
yellow whereas Morph»openinWorld (method 5.14) does not appear to return
anything.

Actually, a method always answers a message with a value —which is,
of course, an object. The answer may be defined by the * construct in the
method, but if execution reaches the end of the method without executing
a ", the method still answers a value: It answers the object that received
the message. We usually say that the method “answers self”, because in
Smalltalk the pseudo-variable self represents the receiver of the message,
rather like this in Java.

This suggests that method 5.14 is equivalent to method 5.15:

12 B N R OO

Method lookup follows the inheritance chain 93

Method 5.15: Explicitly returning self.

Morph»openinWorld
"Add this morph to the world."

self openInWorld: self currentWorld.
Nself "Don't do this unless you mean it

Why is writing * self explicitly not a good thing to do? Well, when you
return something explicitly, you are communicating that you are returning
something of interest to the sender. When you explicitly return self, you are
saying that you expect the sender to use the returned value. This is not the
case here, so it is best not to explicitly return self.

This is a common idiom in Smalltalk, which Kent Beck refers to as
“Interesting return value”:

Return a value only when you intend for the sender to
use the value.

Overriding and extension

If we look again at the EllipseMorph class hierarchy in Figure 5.2, we see that
the classes Morph and EllipseMorph both implement defaultColor. In fact, if we
open a new morph (Morph new openinWorld) we see that we get a blue morph,
whereas an ellipse will be yellow by default.

We say that EllipseMorph overrides the defaultColor method that it inherits
from Morph. The inherited method no longer exists from the point of view
of anEllipse.

Sometimes, we do not want to override inherited methods, but rather
extend them with some new functionality, that is, we would like to be able
to invoke the overridden method in addition to the new functionality we are
defining in the subclass. In Smalltalk, as in many object-oriented languages
that support single inheritance, this can be done with the help of super
sends.

The most important application of this mechanism is in the initialize
method. Whenever a new instance of a class is initialized, it is critical to
also initialize any inherited instance variables. However, the knowledge
of how to do this is already captured in the initialize methods of each of
the superclass in the inheritance chain. The subclass has no business even
trying to initialize inherited instance variables!

SKent Beck, Smalltalk Best Practice Patterns. Prentice-Hall, 1997.

1

2

3

94 The Smalltalk object model

It is therefore good practice whenever implementing an initialize method
to send super initialize before performing any further initialization:

Method 5.16: Super initialize.

BorderedMorph»initialize
"Initialize the state of the receiver."

super initialize.
self initializeBorder.

An initialize method should always start by sending super
initialize.

Self sends and super sends

We need super sends to compose inherited behavior that would otherwise
be overridden. The usual way to compose methods, whether inherited or
not, however, is using self sends.

How do self sends differ from super sends? Like self, super represents
the receiver of the message. The only thing that changes is the method
lookup. Instead of lookup starting in the class of the receiver, it starts in the
superclass of the class of the method where the super send occurs.

Note that super is not the superclass! It is a common and natural mistake
to think so. It is also a mistake to think that lookup starts in the superclass
of the receiver. We shall see with the following example precisely how this
works.

Consider the message initString, which we can send to any morph:

anEllipse initString —— '(EllipseMorph newBounds: (0@0 corner: 50@40) color:
Color yellow) setBorderWidth: 1 borderColor: Color black'

The return value is a string that can be evaluated to recreate the morph.

How exactly is this result obtained through a combination of self and
super sends? First, anEllipse initString will cause the method initString to be
found in the class Morph, as shown in Figure 5.3.

Method 5.17: A self send.
Morph»initString

A String streamContents: [:stream | self fullPrintOn: stream]

® N o o A » N

Method lookup follows the inheritance chain 95

Figure 5.3: self and super sends.

The method Morph»initString performs a self send of fullPrintOn:. This causes a
second lookup to take place, starting in the class EllipseMorph, and finding
fullPrintOn: in BorderedMorph (see Figure 5.3 once again). What is critical to
notice is that the self send causes the method lookup to start again in the
class of the receiver, namely the class of anEllipse.

A self send triggers a dynamic method lookup starting in
the class of the receiver.

Method 5.18: Combining super and self sends.
BorderedMorph»fullPrintOn: aStream

aStream nextPutAll: '(".
super fullPrintOn: aStream.
aStream
nextPutAll: ') setBorderWidth: ';
print: self borderWidth;
nextPutAll: ' borderColor: ', (self colorString: self borderColor).

At this point, BorderedMorph»fullPrintOn: does a super send to extend the
fullPrintOn: behavior it inherits from its superclass. Because this is a su-
per send, the lookup now starts in the superclass of the class where the
super send occurs, namely in Morph. We then immediately find and evaluate
Morph»fullPrintOn:.

96 The Smalltalk object model

Note that the super lookup did not start in the superclass of the receiver.
This would have caused lookup to start from BorderedMorph, resulting in an
infinite loop!

A super send triggers a static method lookup starting in
the superclass of the class of the method performing the
super send.

If you think carefully about super sends and Figure 5.3, you will re-
alize that super bindings are static: all that matters is the class in which
the text of the super send is found. By contrast, the meaning of self is dy-
namic: It always represents the receiver of the currently executing message.
This means that all messages sent to self are looked-up by starting in the
receiver’s class.

Message not understood

What happens if the method we are looking for is not found?

Suppose we send the message foo to our ellipse. First, the normal
method lookup would go through the inheritance chain all the way up
to Object (or rather ProtoObject) looking for this method. When this method is
not found, the virtual machine will cause the object to send self doesNotUnderstand:
#foo. (See Figure 5.4.)

© MessageNotUnderstood: EllipseMorph>>foo oc

yyyyyyy

proceed (Db
+ EllipseMorph(Oblect tUnderstand: #100

Figure 5.4: Message foo is not understood.

Now, this is an ordinary, dynamic message send, so the lookup starts
again from the class EllipseMorph, but this time searching for the method

Shared variables 97

doesNotUnderstand:. As it turns out, Object implements doesNotUnderstand:.
This method will create a new MessageNotUnderstood object which is capable
of starting a Debugger in the current execution context.

Why do we take this convoluted path to handle such an obvious error?
Well, this offers developers an easy way to intercept such errors and take
alternative action. One could easily override the method doesNotUnderstand:
in any subclass of Object and provide a different way of handling the error.

In fact, this can be an easy way to implement automatic delegation
of messages from one object to another. A Delegator object could simply
delegate all messages it does not understand to another object whose re-
sponsibility it is to handle them, or raise an error itself!

5.7 Shared variables

Next, we will look at an aspect of Smalltalk that is not so easily covered by
our five rules: shared variables.

Smalltalk provides three kinds of shared variables: (1) globally shared
variables; (2) variables shared between instances and classes (class variables),
and (3) variables shared amongst a group of classes (pool variables). The
names of all of these shared variables start with a capital letter, to warn us
that they are indeed shared between multiple objects.

Global variables

In Squeak, all global variables are stored in a namespace called Smalltalk
which is an instance of the class Smalltalkimage. Global variables are accessi-
ble from anywhere. Every class is named by a global variable; in addition,
a few globals are used to name special or commonly useful objects.

However, what may sound so handy and convenient at the first glance
has turned out as bad practice during the evolution of Squeak. While we
state in rule 4 that “everything happens by message sends”, the concept of
globals is a violation of this rule. Accessing a global allows you to exchange
information between two objects — without sending any message. As a
consequence, when using globals, we lose an important advantage of the
Smalltalk object model, which is the encapsulation of every object’s state.
Furthermore, global variables introduce global state as mentioned earlier
which impedes the modularity of Smalltalk objects and hinders us to use a
Smalltalk object directly without taking care of its environment.

For these reasons, current practice is to strictly limit the use of global
variables; it is usually better to use class instance variables or class variables

98 The Smalltalk object model

and to provide class methods to access them. Still, there are a number
of globals defined in Squeak, but for most of them, there is a preferred
alternative too, which is a message that usually can be sent to a particular
class.

For example, the variable Transcript names an instance of TranscriptStream,
a stream that writes to a scrolling window. The following code displays
some information in a new of the Transcript.

Transcript show: 'Squeak is fun and powerful'; cr

Before you doit, open a transcript from the world menu.

Writing to the Transcript is slow, especially when the transcript window
is open. So, if you experience some sluggishness and are writing to the Transcript,
think about collapsing it.

Transcript outputs are mostly used for debugging and experimenting
purposes where code quality is not the most important thing. If you want to
use a transcript in a real application, you should use Project current transcript
instead, which makes sure that the transcript you are using actually matches
your current Squeak environment.

Another useful global variable is Smalltalk which is the single instance
of Smalltalkimage that, inter alia, provides access to all globals —including
Smalltalk itself. Smalltalk globals answers an Environment instance which defines
all of the globals and provides a Dictionary-like interface. The keys for these
declarations are the symbols that name the global objects in Smalltalk code.
So, for example,

Smalltalk globals at: #Boolean — Boolean

Or even shorter, using a convenience method defined on Smalltalkimage:

Smalltalk at: #Boolean — Boolean

Since Smalltalk is itself a global variable,

Smalltalk at: #Smalltalk — Smalltalk

and

(Smalltalk at: #Smalltalk) == Smalltalkk — true

There is also a dictionary that contains all the undeclared variables,
which can be retrieved via Smalltalk globals undeclared. If you write a method
that references an undeclared variable, the browser will normally prompt
you to declare it, for example, as a global or as an instance variable of

Shared variables 99

the class. However, if you later delete the declaration, the code will then
reference an undeclared variable. Inspecting the undeclared dictionary can
sometimes help explain strange behavior!

In case you really need to define a new global, the common way to do
so is just to do it on an assignment to a capitalized but undeclared identifier.
The parser will then offer to declare the global for you. If you want to define
a global programmatically, just execute Smalltalk at: #AGlobalName put: nil. To
remove it, execute Smalltalk removeKey: #AGlobalName.

Class variables

Sometimes, we need to share some data amongst all the instances of a class
and the class itself. This is possible using class variables. The term class
variable indicates that the lifetime of the variable is the same as that of
the class. However, what the term does not convey is that these variables
are shared amongst all the instances of a class as well as the class itself, as
shown in Figure 5.5. Indeed, a better name would have been shared variables
since this expresses more clearly their role, and also warns of the danger of
using them, particularly if they are modified.

Color Color class
-rgb -superclass
-cachedDepth -subclass
CachedColormaps -methodDict
ColorNames initializeNames
name
isBlack y

.... ColorNames...

...ColorNames... shared

L....rgb...] ColorNames

CachedColormaps

private private
rgb superclass

cachedDepth subclass

Figure 5.5: Instance and class methods accessing different variables.

In Figure 5.5 we see that rgb and cachedDepth are instance variables of
Color, hence only accessible to instances of Color. We also see that superclass,
subclass, methodDict and so on are class instance variables, i.e., instance
variables only accessible to the Color class.

But we can also see something new: ColorNames and CachedColormaps

100 The Smalltalk object model

are class variables defined for Color. The capitalization of these variables
gives us a hint that they are shared. In fact, not only may all instances of
Color access these shared variables, but also the Color class itself, and any of
its subclasses. Both instance methods and class methods can access these
shared variables.

A class variable is declared in the class definition template. For example,
the class Color defines a large number of class variables to speed up color
creation; its definition is shown below (class 5.19).

Class 5.19: Color and its class variables.

Object subclass: #Color
instanceVariableNames: 'rgb cachedDepth cachedBitPattern'
classVariableNames: 'Black Blue BlueShift Brown CachedColormaps ColorChart
ColorNames ComponentMask ComponentMax Cyan DarkGray Gray
GrayTolndexMap Green GreenShift HalfComponentMask HighLightBitmaps
IndexedColors LightBlue LightBrown LightCyan LightGray LightGreen
LightMagenta LightOrange LightRed LightYellow Magenta MaskingMap Orange
PaleBlue PaleBuff PaleGreen PaleMagenta PaleOrange PalePeach PaleRed
PaleTan PaleYellow PureBlue PureCyan PureGreen PureMagenta PureRed
PureYellow RandomStream Red RedShift TranslucentPatterns Transparent
VeryDarkGray VeryLightGray VeryPaleRed VeryVeryDarkGray
VeryVeryLightGray White Yellow'
poolDictionaries: "
category: 'Graphics-Primitives'

The class variable ColorNames is an array containing the name of frequently-
used colors. This array is shared by all the instances of Color and its subclass
TranslucentColor. It is accessible from all the instance and class methods.

ColorNames is initialized once in Color class»initializeNames, but it is ac-
cessed from instances of Color. The method Color»name uses the variable
to find the name of a color. Since most colors do not have names, it was
thought inappropriate to add an instance variable name to every color.

Class initialization

The presence of class variables raises the question: How do we initialize
them? One solution is lazy initialization. This can be done by introducing
an accessor method which, when executed, initializes the variable if it has
not yet been initialized. This implies that we must use the accessor all the
time and never use the class variable directly. This furthermore imposes the
cost of the accessor send and the initialization test. It also arguably defeats
the point of using a class variable, since in fact it is no longer shared.

F SR R

F SR R

1 T S R

Shared variables 101

Method 5.20: Color class»colorNames.
Color class»colorNames

ColorNames ifNil: [self initializeNames].
A ColorNames

Another solution is to override the class method initialize.

Method 5.21: Color class»initialize.
Color class»initialize

self initializeNames

If you adopt this solution, you need to remember to invoke the initialize
method after you define it, .., by evaluating Color initialize. Although class
side initialize methods are executed automatically when code is loaded into
memory, they are not executed automatically when they are first typed into
the browser and compiled, or when they are edited and re-compiled.

Pool variables

Pool variables are variables that are shared between several classes that
may not be related by inheritance. Pool variables were originally stored
in pool dictionaries; now they should be defined as class variables of
dedicated classes (subclasses of SharedPool). Our advice is to avoid them;
you will need them only in rare and specific circumstances. Our goal here is
therefore to explain pool variables just enough so that you can understand
them when you are reading code.

A class that accesses a pool variable must mention the pool in its class
definition. For example, the class Text indicates that it is using the pool
dictionary TextConstants, which contains all the text constants such as CR
and LF. This dictionary has a key #CR that is bound to the value Character cr,
i.e., the carriage return character.

Class 5.22: Pool dictionaries in the Text class.
ArrayedCollection subclass: #Text
instanceVariableNames: 'string runs'
classVariableNames: "
poolDictionaries: 'TextConstants’
category: 'Collections-Text'

This allows methods of the class Text to access the keys of the dictio-
nary in the method body directly, i.e., by using variable syntax rather than

102 The Smalltalk object model

an explicit dictionary lookup. For example, we can write the following
method.

Method 5.23: Text»testCR.
Text»testCR

A CR == Character cr

Once again, we recommend that you avoid the use of pool variables
and pool dictionaries.

5.8 Chapter summary

The object model of Squeak is both simple and uniform. Everything is an
object, and pretty much everything happens by message sends.

¢ Everything is an object. Primitive entities like integers are objects, but
also classes are first-class objects.

¢ Every object is an instance of a class. Classes define the structure
of their instances via private instance variables and the behavior of
their instances via public methods. Each class is the unique instance
of its metaclass. Class variables are private variables shared by the
class and all the instances of the class. Classes cannot directly access
instance variables of their instances, and instances cannot access
instance variables of their class. Accessors must be defined if this is
needed.

e Every class has a superclass. The root of the single inheritance hier-
archy is ProtoObject. Classes you define, however, should normally
inherit from Object or its subclasses. There is no syntax for defining
abstract classes. An abstract class is simply a class with an abstract
method — one whose implementation consists of the expression self
subclassResponsibility. Although Squeak supports only single inheri-
tance, it is easy to share implementations of methods by packaging
them as traits.

e Everything happens by message sends. We do not “call methods”,
we “send messages”. The receiver then chooses its own method for
responding to the message.

* Method lookup follows the inheritance chain; self sends are dynamic
and start the method lookup again in the class of the receiver, whereas
super sends are static, and start in the superclass of class in which the
super send is written.

Chapter summary 103

¢ There are three kinds of shared variables. Global variables are acces-
sible everywhere in the system. Class variables are shared between
a class, its subclasses and its instances. Pool variables are shared
between a selected set of classes. You should avoid shared variables
as much as possible.

Chapter 6

The Squeak programming
environment

The goal of this chapter is to show you how to develop programs in the
Squeak programming environment. You have already seen how to define
methods and classes using the system browser; this chapter will show you
more of the features of the system browser, and introduce you to some of
the other browsers.

Sometimes your program does not work as you expect. Squeak has an
excellent debugger, but like most powerful tools, it can be confusing on
first use. We will walk you through a debugging session and demonstrate
some of the features of the debugger.

One of the unique features of Smalltalk is that while you are program-
ming, you are living in a world of live objects, not in a world of static
program text. This makes it possible to get very rapid feedback while pro-
gramming, which makes you more productive. There are two tools that let
you look at, and indeed change, live objects: the inspector and the explorer.

The consequence of programming in a world of live objects rather than
with files and a text editor is that you have to do something explicit to
export your program from your Smalltalk image. The old way of doing
this, also supported by all Smalltalk dialects, is by creating a fileout or a
change set, which are essentially encoded text files that can be imported
into another system. The new way of doing this in Squeak is to upload
your code to a versioned repository on a server. This is done using a tool
called Monticello, and is a much more powerful and effective way to work,
especially when working in a team.

106 The Squeak programming environment

6.1 Overview

Smalltalk and modern graphical interfaces were developed together. Even
before the first public release of Smalltalk in 1983, Smalltalk had a self-
hosting graphical development environment, and all Smalltalk develop-
ment was taking place in it. Let’s start by looking at the main tools in
Squeak, all of which can be opened through the Tools menu in the world
docking bar at the top of the screen. Some of the tools can also be opened
directly from the world menu.

* The Browser is the central development tool. You will use it to create,
define, and organize your classes and methods. Using it you can also
navigate through all the library classes: Unlike other environments
where the source code is stored in separate files, in Smalltalk, all
classes and methods are contained in the image.

* The Workspace is a window into which you can type input. It can be
used for any purpose, but is most often used for typing Smalltalk
expressions and executing them as doits. The use of the workspace
was also illustrated in Section 1.4.

® The Transcript is a window on the Transcript output stream, which is
useful for writing log messages and has already been described in
Section 1.4.

® The Test Runner lets you run and debug SUnit tests, and is described
in Chapter 7.

* The Method Finder tool will also let you find methods, but according
to what they do as well as what they are called.

¢ The Message Names tool is used to look at all of the methods with a
particular selector, or with a selector containing a substring.

* The Monticello Browser is the starting point for loading code from, and
saving code in, Monticello packages.

* The Process Browser provides a view on all of the processes (threads)
executing in Smalltalk.

The Debugger has an obvious role but you will discover that it has a more
central place compared to debuggers for other programming languages,
because in Smalltalk you can program in the debugger. The debugger is
not launched from a menu or from the Tools flap; it is normally entered by
running a failing test, by typing CMD-. to interrupt a running process, or
by inserting a self halt expression in code.

The system browser 107

6.2 The system browser

There are actually several browsers in Squeak: the standard system browser,
the package browser, and the Monticello snapshot browser. We will take a
look at the standard system browser first since the others are variations on
it. Figure 6.1 shows the browser as it appears when you first open it from
the world menu.

) System Browser [+ I +]
—all - [

Kernel-Classes
Kernel-Exceptions
Kernel-Exceptions-Ker
Kernel-Methods
Kernel-Models
Kernel-Numbers

Kerne-Numbers-Excey | (instance | class (7]

[browse :](senders j(implementmj (hierarchy j(vars j | sOuUrce

Figure 6.1: The system browser.

The four small panes at the top of the browser represent a hierarchic
view of the methods in the system, much in the same way as the Mac OS
X Finder in column mode provide a view of the files on the disk (or the
original NeXTstep File Viewer). The leftmost pane lists categories of classes;
select one (say Kernel-Objects) and the pane immediately to the right will
then show all of the classes in that category.

Similarly, if you select one of the classes in the second pane, say, Model
(see Figure 6.2), the third pane will show all of the protocols defined for that
class, as well as a virtual protocol --all--, which is selected by default (the
browser sometimes refers to protocols as “message categories”). Protocols
help organizing methods; they make it easier to find and think about the
behavior of a class by breaking it up into smaller, conceptually coherent
pieces. The fourth pane shows the names of all of the methods defined
in the selected protocol. If you then select a method name, the source
code of the corresponding method appears in the large pane at the bottom
of the browser, where you can view it, edit it, and save the edited ver-
sion. If you select the class Model, the protocol dependents, and the method

108 The Squeak programming environment

) System Browser: Model (v J+]1-]
—all - (]| ** DependentsArray —all - + aboutToStyle: L
Kernel-Classes Model *51Deprecated + aboutToStyle:reque
Kernel-Exceptions StringHolder *ShoutCore = additem:
Kernel-Exceptions-Ker ValueHolder *System-preferences i applyUserinterface’
Kernel-Methods *Tools + arrowKey:from:
Kernel-Models *Tools-keyboard buildMenu:withBuil
Kernel-Numbers *Tools-menus + buildWindowWith:
Kernel-Mumbers-Exceg |(instance | class]@ *Tools-pluggable men buildWindowWith:s

[browse :](senders j(implementmj(versions j[inhc.’itzn:c :](hierarchy j(wars j | sOuUrce
Object subclass: #Model

instanceVariableNames; 'dependents’

classVariableNames: 'UseColorfulWindows WindowActiveOnFirstClick'

poolDictionaries; "

category: 'Kernel-Models'

Provides a superclass for classes that function as models. The only behavior provided is fast dep

Figure 6.2: System Browser with the class Model selected.

myDependents, the browser should look like Figure 6.3.

) System Browser: Model 009
—all - I][** DependentsArray *Tools # canDiscardEdits
Kernel-Classes Model *Tools-keyboard -+ containingWindow
Kernel-Exceptions StringHolder *Tools-menus 4+ hasUnacceptedEdits)
Kernel-Exceptions-Ker ValueHolder *Tools-pluggable me «+ myDependents
Kernel-Methods *morphic + myDependents:
Kernel-Models *services-base topView
Kernel-Numbers copying

Kerne-Numbers-Excep | [instance | class |7} | dependents

[browse :](senders j(implementmj(wersions j[inheritance:](hierarchy j(wars j | sOuUrce
myDependents
~ dependents

sma 2/29/2000 19:54 - dependents - 2 implementors - in no change set -

Figure 6.3: System Browser showing the myDependents method in class
Model.

Unlike directories in the Mac OS X Finder, the four top panes of the
browser are not quite equal. Whereas classes and methods are part of the
Smalltalk language, system categories and protocols are not: They are a
convenience introduced by the programming tools to limit the amount of
information that needs to be shown in each pane. For example, if there
were no categories, the browser would have to show a list of all of the

The system browser 109

methods in the selected class; for many classes, this list would be too large
to navigate conveniently.

Because of this, the way that you create a new class category or protocol
is different from the way that you create a new class or a new method. To
create a new class category, select new category from the yellow button menu
in the class category pane; to create a new protocol, select new category from
the yellow button menu in the protocol pane. Enter the name of the new
thing in the dialog, and you are done: there is nothing more to a class
category or a protocol than its name and its contents.

) System Browser [+ I +]
Kernel-Classes (1| ProtoObject
Kernel-Exceptions Object
Kernel-Exceptions-Ker Boolean
Kernel-Methods False
Kernel-Models True
Kernel-Numbers MessageSend
Kernel-Numbers-Excef Lo afinndOihinet
I(ernel—()hjects instance class @
[browse :](senders j(implementmj (hierarchy j(vars j | sOuUrce

Object subclass; #NameOfSubclass
instanceVariableNames: "
classVariableNames: "
poolDictionaries; "
category: 'Kernel-Objects’

Figure 6.4: System Browser showing the class-creation template.

Finally, you can influence what kind of information you want to see
about a class, through the three buttons below the second pane. By de-
fault, the view is selected, that shows you the ordinary methods
provided by the class. The button changes the view to show the
methods understood by the class itself (for more details see Chapter 5 and
Chapter 12). The |?| button changes the view to show the class comment of
the class in the bottom pane, where you can edit and save it as you would
with a method.

In contrast to creating categories or protocols, to create a new class or a
new method, you will actually have to write some Smalltalk code. If you
deselect the currently selected category (most left pane) and then reselect
it again, the main browser pane will display a class creation template
(Figure 6.4).

You create a new class by editing this template: replace Object by the
name of the existing class of which you wish to create a subclass, replace
NameOfSubclass by the name that you would like to give to your new sub-

110 The Squeak programming environment

class, and fill in the instance variable names if you want some. The category
for the new class is by default the currently selected category, but you can
change this too if you like. If you already have the browser focussed on the
class that you wish to subclass, you can get the same template with slightly
different initialization by using the yellow button menu in the class pane,
and selecting more ... >subclass template. You can also just edit the defini-
tion of an existing class, changing the class name to something new. In all
cases, when you accept the new definition, the new class (the one whose
name follows the #) is created (as is the corresponding metaclass). Creating
a class also creates a global variable that references the class, which is why
you can refer to all of the existing classes by using their names.

The process of creating a new method is similar. First select the class in
which you want the method to live, and then select a protocol. The browser
will display a method-creation template, as shown in Figure 6.5, which you
can fill-in or edit.

) System Browser: Model (v J+]
—all - (]| ** DependentsArray *Tools-keyboard -+ aboutToStyle:
Kernel-Classes Model *Tools-menus + aboutToStyle:reques
Kernel-Exceptions StringHolder *Tools-pluggable men_|| & applyUserinterfaceT
Kernel-Exceptions-Ker ValueHolder *morphic 4t canApplyUserinterfa
Kernel-Methods *services-base -+ postAcceptBrowseFag
Kernel-Models copying -+ representsSameBrov
Kernel-Numbers dependents

Kerne-Numbers-Excep | [instance | class (7)) morphic ui

[browse :](senders j(implementmj (hierarchy j(vars j | sOuUrce

messageSelectorAndArgumentNames
"comment stating purpose of message”

| temporary variable names |
statements

Figure 6.5: System Browser showing the method-creation template.

The button bar

The system browser provides several tools for exploring and analyzing
code. Those tools are most simply accessed from the horizontal button
bar in the middle of the browser window. The buttons are labeled ,

|senders], [implementors]. .. Figure 6.5 shows the complete set.

4

The system browser 111

Browsing code

The button opens a new system browser on the class or method that
is currently selected. It’s often useful to have multiple browsers open at the
same time. When you are writing code you will almost certainly need at
least two: one for the method that you are typing, and another to browse
around the system to see what to type. You can also open a browser on a
class named by any selected text using the CMD—b keyboard shortcut.

N Try this: in a workspace window, type the name of a class (for instance

ScaleMorph), select it, and then press CMD—b. This trick is often useful; it works
in any text window.

Senders and implementors of a message

The button will give you a list of all methods that may use the se-
lected method. With the browser open on ScaleMorph, click on the checkExtent:
method in the method pane near the top right corner of the browser; the
body of checkExtent: displays in the bottom part of the browser. If you
now press the |senders|button, a menu will appear with checkExtent: as the
topmost item, and below it, all the messages that checkExtent: sends (see
Figure 6.6). Selecting an item in this menu will open a browser with the list
of all methods in the image that send the selected message. You can also
quickly access the senders of messages by typing CMD—-n (for senders).

The button works similarly, but instead of listing the

senders of a message, it lists all of the classes that implement a method
with the same selector. To see this, select drawOn: in the message pane and
then bring up the “implementors of drawOn:” browser, either using the
button, or the yellow button menu on the method pane, or just
by typing CMD-m (for implementors) in the method pane with drawOn: se-
lected. You should get a method list window showing a scrolling list of 108
classes that implement a drawOn: method. It shouldn’t be all that surprising
that so many classes implement this method: drawOn: is the message that is
understood by every object that is capable of drawing itself on the screen.
While viewing any one of these methods, try browsing the senders of the
drawOn: message: We found 72 methods that send this message. You can
also bring up an implementors browser at any time by selecting a message
(including the arguments if it is a keyword message) and typing CMD—m.

The senders button lists all methods that send the chosen message: not
all of these sends will necessarily result in the execution of the method you
are currently looking at.. Indeed, much of the power of object-oriented
programming comes from the fact that every message send is potentially

112 The Squeak programming environment

) System Browser: ScaleMorph (v J+]
T TS S TG R T TS O T =
MorphicExtras-Postscr ||] ProgressMorph —all— chtecktE_xtent.
MorphicExtras-Postscr || =1RetaryDialMorph gcceﬁfs'”g extent:
MorphicExtras-5oundl |21 BarometerMorph ! x| Please choose: v

MorphicExtras-Squeak || ClackDialMorph ge
MorphicExtras-SupporC =] CompassDialMorp n

MorphicExtras-Text Su-||&] HygrometerDialM :f

MorphicExtras-Undo =] ThermometerDial .

MorphicExtras-Widget || ScaleMorph Ehec KExtent:

Etoys-Buttons =|ScrollableField +

Eoysusonevents | Qe _ave ()| | - _

[browse)[senders)[:implementnr)[VErsions) inh 'Ir@ :|

checkExtent: newExtent asFloat N
| pixPerTick newWidth | borderWidth

pixPerTick := newExtent x - (self borderWidth = |detentBy:atMultiplesOf:snap:

pixPerTick = pixPerTick x
detentBy: 0.1
atMultiplesOf: 1.0

snap: false.
newWidth 1= pixPerTick * ((stop - start) asFloat

~ [newWidth @ newExtent y).

¥

RCS 3/16/2000 13:58 - geometry - 1 implementor - in no change set -

Figure 6.6: A Class Browser opened on the ScaleMorph class. Note the
horizontal bar of buttons at the center of the browser; here we are using the
senders button.

polymorphic, that is, it can work equally well on objects of any class. Some-
times it is easy to figure out which method will be executed as result of a
particular message send, and sometimes it is impossible; the senders and
implementors tools don't try.

As an example, we can look at the method Canvas»draw, shown in Fig-
ure 6.7. You can see that this method sends drawOn: to whatever object is
passed to it as an argument, which could potentially be an instance of any
class at all. In general, there is no simple way for the browser to know
which message sends might cause which methods to be executed!. For this
reason, the “senders” browser shows exactly what its name suggests: all of
the senders of the message with the chosen selector. The button is
nevertheless extremely useful when you need to understand how you can
use a method: it lets you navigate quickly through example uses. Since all
of the methods with the same selector ought to be used in the same way, all
of the uses of a given message ought to be similar.

Another way to determine implementors of a message is to browse

dataflow analysis can generally help figure out the class of the receiver of some messages,
but it is not applied in the Smalltalk tools

The system browser 113

3 Senders of drawOn: (v J+]
O T Ty A O SO T T WO UrawWiy F MO pimc TR tras=oemmoy
4+ CachingMorph drawOn: {drawing} {Etoys-Squeakland-Morphic-Kernel} d

+ Canvas draw: {drawing-general} {Morphic-Support}

4+ ChineseCheckers drawOn: {drawing} {Etoys-Squeakland-Morphic-Games}

«+ ColorPickerMorph drawOn: {drawing} {Morphic-Widgets}

+ EmbeddedWorldBorderMorph drawOn: {drawing} {MorphicExtras-AdditionalSupport}

[browse :](senders j[:implementm)(VErsions)[inheritam:e:](hierarchy jl: wars) | source

draw: anObject
“~anObject drawOn: self

ar 5/29/1999 05:14 - drawing-general - 2 implementors - in no change set -

Figure 6.7: The Senders Browser showing that the Canvas»draw method
sends the drawOn: message to its argument.

the hierarchy. If you look at the send of drawOn: in AtomMorph»drawOn:, you
will see that it is a super send. So we know that the method that will be
executed will be in AtomMorph’s superclass. What class is that? Click the

button and you will see that it is EllipseMorph.

Versions of a method

When you save a new version of a method, the old one is not lost. Squeak
keeps all of the old versions, and allows you to compare different versions
and to go back (“revert”) to an old version.

The button gives access to the successive modifications made to
the selected method. In Figure 6.8 we can see the versions of the mouseUp:
method that one of the authors created while writing the Quinto game
described in Chapter 2.

The top pane displays one line for each version of the method, listing
the initials of the programmer who wrote it, the date and time at which
it was saved, the names of the class and the method, and the protocol
in which it was defined. The current (active) version is at the top of the
list; whichever version is selected is displayed in the bottom pane. If the
showDiffs view is selected from the right most button, as it is in Figure 6.8,
the display also shows the differences between the selected version and
the one immediately older. The prettyDiffs view is useful if there have been
changes to the layout: It pretty-prints both versions before differencing so

114 The Squeak programming environment

) Recent versions of mouseUp: (v 1 +]

xyz 7/12/2022 13:39 SBECell mouseUp: {event handling}
Xyz 7/12/2022 13:39 SBECell mouseUp: {as yet unclassified }

l:revert :II: browse :Ilzsenders:][implemE:l[HErsinns:llzinheritarjllzhierarch::llz Vars :] |showDiFf|

mouselp: anEvent
(self containsPoint: anEvent position)
ifTrue: [mouseAction value]
mogsedction valia

|current version: xyz 7/12/2022 13:39 - event handling - 63 implementors - in‘

Figure 6.8: The versions browser showing several versions of the SBECell»
mouseUp: method.

that the differences that are displayed exclude formatting changes. Through
the leftmost button you can revert the method to the selected version. The
yellow button menu in the list of versions provides you further actions,
such as comparing any version to the current one.

The existence of the versions browser means that you never have to
worry about preserving code that you think might no longer be needed:
Just delete it. If you find that you do need it, you can always revert to the old
version, or copy the needed code fragment out of the old version and paste
it into another method. Get into the habit of using versions; “commenting
out” code that is no longer needed is a bad practice because it makes the
current code harder to read. Smalltalkers rate code readability extremely
highly.

What if you delete a method entirely, and then decide that you want it
back? You can find the deletion in a change set, where you can ask to see versions
with the yellow button menu. The change set browser is described in Section 6.8.
If you do not have a change set for the method, you can also browse your changes
log using the Recover changes dialog from the Extras menu in the main docking
bar, see Section 6.10.

The system browser 115

£} Implementors of defaultColor (v [+1=]
4+ Morph defaultColor {initialization} {Morphic-Kernel}

EI3 RectangleMorph defaultColor {initialization} {Morphic-Basic}

A ScaleMarph defaultColor {initialization} {MorphicExtras-Widgets}

I: browse :II: senders][implemen][VErsions :lI:inheritanc:H:hiErari:hy:H: Vars :] | source |

defaultColor
"answer the default color/fill style for the receiver”
~ Color lightGreen

|dgd 271472003 22:30 - initialization - 128 implementors - in no change set - |

Figure 6.9: ScaleMorph»defaultColor and the methods that it overrides, in
inheritance order. The inheritance button is gold because the displayed
method is overridden in a subclass.

Method overridings

The button opens a specialized browser that displays all the
methods overridden by the displayed method. To see how it works, dis-
play the ScaleMorph»defaultColor method and click [inheritance]. This method
definition overrides RectangleMorph»defaultColor, which itself overrides Morph
»defaultColor, as shown in Figure 6.9. The color of the button
depends on how the overriding occurs. The colors are explained in a help
balloon:

pink: the displayed method overrides another method but does
not call super;

green: the displayed method overrides another method and uses
it via super;

tan: the displayed method is itself overridden in a subclass;

mauve: the displayed method overrides another method, and it

itself overridden;
pink tan: the displayed method overrides, is overridden, and makes
a super-send.

The hierarchy browser

The button opens a hierarchy browser on the current class; this
browser can also be opened by using the browse hierarchy menu item in the

116 The Squeak programming environment

) MorphicExtras-Widgets: ScaleMorph (v]+]
ProtoObject —all - buildLabels
Object accessing caption
1 Morph drawing caption:
3| BorderedMorph geometry captionAbove:
=2 RectangleMorph initialization checkExtent:
5 ScaleMorph objects from disk «+ convertToCurrentVersion:re
stepping and presenter 4+ defaultBorderWidth
C instance I class) @ &* default(_:ololf
[browse)(senders)[:implementnlj (hierarchy)[: vars j | source

RectangleMorph subclass: #ScaleMorph

instanceVariableNames: 'caption start stop minorTick minorTickLength majorTick
majorTickLength tickPrintBlock labelsAbove captionAbove'

classVariableNames: "

poolDictionaries: "

category: 'MorphicExtras-Widgets'

Rewrite of ScaleMorph - March 2000 (Russell Swan). Added accessors. Added two Booleans, label

Figure 6.10: A hierarchy browser open on ScaleMorph.

class pane. The hierarchy browser is similar to the system browser, but
instead of displaying the system categories and the classes in each category,
it shows a single list of classes, indented to represent inheritance. The
category of the selected class is displayed in the small annotation pane at
the top of the browser. The hierarchy browser is designed to make it easy
to navigate through the inheritance hierarchy, but does not show all of the
classes in the system: only the superclasses and subclasses of the initial
class are shown. In Figure 6.10, the hierarchy browser reveals that the direct
superclass of ScaleMorph is RectangleMorph.

Finding variable or class references

The button helps you find where an instance variable or a class variable
is used; the same information is accessible from the yellow button menu
item references in the class pane. The menu also includes assignments,
which shows the subset of the instance variable references that assign to the
variable. Once you click on the button or select the menu item, you will be
presented with a dialog that invites you to choose a variable from all of the
variables defined in the current class, and all of the variables that it inherits.
The list is in inheritance order; it can often be useful to bring up this list just

The system browser 117

to remind yourself of the name of an instance variable. If you click outside
the list, it will go away and no variable browser will be created.

Another interesting action in the yellow button menu of the class pane
is class refs (N), which displays a list of all of the methods that directly
reference the current class.

Source

The button brings up the “what to show” menu, which allows you
to choose what the browser shows in the source pane. Options include the
source code, documentation, prettyPrinted source code, show diffs, byteCodes,
and source code decompiled from the byte codes. The label on the button
changes if you select one of the other modes. There are other options too; if
you let the mouse linger over the names, a help balloon will appear. Try
some of them.

Note that selecting prettyPrint in the “what to show” menu is not the
same as prettyPrinting a method before you save it. The menu controls only
what the browser displays, and does not affect the code stored in the system.
You can verify this by opening two browsers, and selecting prettyPrint in
one and source in the other. Focussing two browsers on the same method
and selecting byteCodes in one and decompile in another is a good way to
learn about the Squeak virtual machine’s byte-coded instruction set.

The browser menus

Many additional functions are available from the browser’s yellow button
menu. Since yellow button menus are context-sensitive, each pane in the
browser has its own menu. Even if the labels on the menu items are the
same, their meaning depends on the context. For example, the category
pane, the class pane, the protocol pane, and the messages pane all have a
file out menu item. However, they do different things: The category pane’s
file out menu files out the whole category, the class pane’s file out menu files-
out the whole class, the protocol pane’s file out menu files out the whole
protocol, and the method pane’s file out menu files-out just the displayed
method. Although this may seem obvious, it can be a source of confusion
for beginners.

Possibly the most useful menu item for navigating is find class... (f) in
the category pane. Although the categories are useful for the code that we
are actively developing, most of us do not know the categorization of the
whole system, and it is much faster to type CMD—f followed by the first few
characters of the name of a class than to guess which category it might be

118 The Squeak programming environment

in. recent classes...(r) can also help you quickly go back to a class that you
have browsed recently, even if you have forgotten its name.

In the class pane, there are two menu items usefule for browsing a
particular method: find method and find method wildcard. .. . However, unless
the list of methods is very long, it is often quicker to browse the --all--
protocol (which is the default), place the mouse in the method pane, and
type the first letter of the name of the method that you are looking for. This
will filter the elements in the list so that the sought-for method name is
visible.

N Try both ways of navigating to OrderedCollection»removeAt:

There are many other options available in the menus. It pays to spend a
few minutes working with the browser and seeing what is there.

N Compare the result of the following three menu items in the class pane:

Browse Protocol, Browse Hierarchy, and Show Hierarchy .

In general, the common navigation functions, such as searching for a
class, browsing senders, or browsing implementors have keyboard short-
cuts, which you can find in parentheses after the corresponding menu
items. Further, the feature that you can filter the list of methods by typing
while having the list selected is a general feature of all lists in Squeak. Even
in menus, such as the world menu, you can simply start typing to filter
entries.

Other class browsers

At the beginning of this section we mentioned another class browser:
the package pane browser. This browser can be opened from the world
menu: World >open... >package pane browser It’s basically the same as the
class browser, but it knows about the naming convention for system cate-
gories. You will have noticed that the names of categories have two parts.
For example, the ScaleMorph class belongs to the Morphic-Widgets category.
The package browser assumes that the part before the hyphen, Morphic is
the name of a “package”, and adds a fifth pane that allows you to browse
only those categories in a particular package. However, if you select no
package at all, then all the categories are available, just as with the ordinary
four-pane browser.

Note that the meaning of the term package as used in the package pane
browser is different from the concept of Monticello packages. To browse all
classes of a Monticello package, you can open a Snapshot Browser from the
Monticello Browser by selecting a package and then pressing [Browse|.

The system browser 119

Browsing programmatically

The class SystemNavigation provides a number of utility methods that are
useful for navigating around the system. Many of the functions offered by
the classic browser are implemented by SystemNavigation.

NJ Open a workspace and do it the following code to browse the senders of
checkExtent::

SystemNavigation default browseAllCallsOn: #checkExtent:.

To restrict the search for senders to the methods of a specific class:

SystemNavigation default browseAllCallsOn: #drawOn: from: ScaleMorph.

Because the development tools are objects, they are completely accessible
from programs and you can develop your own tools or adapt the existing
tools to your needs.

The programmatic equivalent to the button is:

SystemNavigation default browseAlllmplementorsOf: #checkExtent:.

To learn more about what is available, explore the class SystemNavigation
with the browser. Further navigation examples can be found in the FAQ
(Appendix A).

Besides SystemNavigation, there are also several subclasses of Categorizer
that manage the categories in which classes or methods are organized.
In particular, a ClassOrganizer records the organization of methods in a
class, and analogously, a SystemOrganizer records the organization of classes
within system categories. For example, you can retrieve all classes that are
in the system category Collections-Strings by sending classesin: to the default
SystemOrganizer instance:

SystemOrganizer default classesin: 'Collections-Strings' — an
OrderedCollection(ByteString ByteSymbol Character String Symbol WideString
WideSymbol)

Summary

As you have seen, there are many ways to navigate around Smalltalk
code. You may find this confusing at first, in which case you can always
fall back to the traditional system browser. However, we usually find
that once beginners gain more experience with Squeak, the availability of
different browsers becomes one of its most valued features, because they

120 The Squeak programming environment

provide many ways to help you to understand and organize your code.
The problem of understanding code is one of the greatest challenges of
large-scale software development.

6.3 Monticello

We gave you a quick overview of Monticello, Squeak’s packaging tool, in
Section 2.9. However, Monticello has many more features than were dis-
cussed there. Monticello manages Packages. Before telling you more about
Monticello, we will first explain exactly what a package is, as Monticello is
centered around this concept.

Packages: declarative categorization of Squeak code

The package system is a simple, lightweight way of organizing Smalltalk
source code. It leverages the long-used naming convention mentioned
above (Section 6.2), but adds to it in an important way.

Let’s look at this in an example. Suppose that you are developing a
framework to facilitate the use of relational databases from Squeak. You
have decided to call your framework SqueakLink, and have created a series
of system categories to contain all of the classes that you have written, e.g.,

* The category 'SqueakLink-Connections' contains classes OracleConnection,
MySQLConnection, PostgresConnection

e The category 'SqueakLink-Model' contains DBTable, DBRow, DBQuery

However, not all of your code will reside in these classes. For example,
you may also have a series of methods to convert objects into an SQL-
friendly format:

Object»asSQL
String»asSQL
Date»asSQL

These methods belong in the same package as the classes in the categories
SqueakLink-Connections and SqueakLink-Model. But clearly the whole of class
Object does not belong in your package! So you need a way of putting
certain methods in a package, even though the rest of the class is in another
package.

The way that you do this is by placing those methods in a protocol (of
Object, String, Date, and so on) named *SqueakLink (note the initial asterisk).

Monticello 121

The combination of the SqueakLink-... categories and the *SqueakLink proto-
cols form a package named SqueakLink. To be precise, the rules for what
goes in a package are as follows.

A package named Foo contains:

1. all class definitions of classes in the category Foo, or in categories with
names starting with Foo-, and

2. all method definitions in any class in a protocol named *Foo or whose
name starts with *Foo- (When performing this name comparison, the
case of the letters in the names is actually ignored), and

3. all methods in classes in the category Foo or in a category whose name
starts with Foo-, except for those methods in protocols whose names
start with *.

A consequence of these rules is that each class definition and each method
belongs to exactly one package. The exception in the last rule takes care of
excluding methods that belong to other packages.

The class Packagelnfo implements these rules, and one way to get a feel
for them is to experiment with this class.

%4 Try this in your image, which should contain the classes Packagelnfo and

Morph.

The Morphic code uses these package naming conventions, with Morphic
as the package name. In a workspace, create a model of this package with

morphic := Packagelnfo named: 'Morphic'.

It is now possible to introspect on this package. For example, morphic
classes will return the long list of classes from the core of Morphic as
well as a number of specific Morph classes. morphic coreMethods will return
a list of MethodReferences for all of the methods in those classes. morphic
extensionMethods is perhaps one of the most interesting queries: It will return
a list of all methods contained in the Morphic package but not contained
within a Morphic class. This includes, for example, Object»asDraggableMorph:
and Text»embeddedMorphs.

%¢1 Evaluate (Packagelnfo named: 'Collections') externalSubclasses; this expres-
sion will answer a list of all subclasses of Collection that are not in the Collections
package.

You can send fileOut to an instance of Packagelnfo to get a change set of
the entire package. For more sophisticated versioning of packages, we use
Monticello.

122 The Squeak programming environment

7 Monticello Browser (v 1+
45Deprecated (ct.27) [fhomefrunner/.smalltalkCl/_builds/packag
d6Deprecated (ct.9) http://source.squeak.org/squeak53
51Deprecated (mt.57) http:/isource.squeak.org/inbox
60Deprecated (topa.68) http:/fwww.squeaksource.com/Metacellol
Balloon (dtl.32) http:/fwww.hpi.uni-potsdam.defhirschfel
BalloonTests (egp.2) http:/iseaside.gemtalksystems.com/ss/m
BaselineOfFileSystem (cypress.1) http://ss3.gemtalksystems.com/ss/FileTn
BaselineOfFileTree (dkh.4) http:/ismalltalkhub.com/mc/dkh/metacell
BaselineOfMetacello (ct.103) github://Metacello/metacello:master/repos
BaselineOfSBE (cypress.1) github://dalehenrich/filetree:squeakd.3/re

Figure 6.11: The Monticello browser.

Basic Monticello

Monticello is named after the mountaintop home of Thomas Jefferson,
third president of the United States and author of the Statute of Virginia for
Religious Freedom. The name means “little mountain” in Italian and so it
is always pronounced with an Italian “c”, which sounds like the “ch” in
chair: Mont-y’-che-llo.

When you open the Monticello browser, you will see two list panes and
a row of buttons, as shown in Figure 6.11. The left-hand pane lists all of the
packages that have been loaded into the image that you are running; the
particular version of the package is shown in parentheses after the name.

The right-hand pane lists all of the source-code repositories that Monti-
cello knows about, usually because it has loaded code from them. If you
select a package in the left pane, the right pane is filtered to show only
those repositories that contain versions of the selected package.

One of the repositories is a directory named package-cache, which is a
sub-directory of the directory in which your image is running. When you
load code from or write code to a remote repository, a copy is also saved in
the package cache. This can be useful if the network is not available and
you need to access a package. Also, if you are given a Monticello (.mcz) file
directly, for example as an email attachment, the most convenient way to
access it is to place it in the package-cache directory.

To add a new repository to the list, click the , and choose the
kind of repository from the pop-up menu. Let’s add an HTTP repository.

L Open Monticello, click on [+Repository|, and select HTTP. Edit the dialog to
read:

Monticello 123

) Repository: /home/runner/.smalltalkCl/_builds/package-cache-a SBEWorldHel &

[Refresh][Browse j[Z Histary j(ChangesJ[Load J[Merge][Adopt J[:Reparent](Capy J[Diff]

SBE-QuickTour SBE-QuickTour-xyz.2.mcz
SBE-Streams

Name: SBE-QuickTour-xyz.2

Author: xyz

Time: 12 July 2022, 1:39:24.408007 pm

UUID: a79cB8bf9-b7bb-4dc3-ad8f-fbfe676d991a
Ancestors: SBE-QuickTour-cypress.1

Figure 6.12: A repository browser.

MCHTttpRepository
location: 'http://squeaksource.com/SqueakByExample'
user: "
password: "

Then click on to open a repository browser on this repository. You
should see something like Figure 6.12. On the left is a list of all of the
packages in the repository; if you select one, then the pane on the right will
show all of the versions of the selected package in this repository.

If you select one of the versions, you can |Browse| it (without loading

it into your image), it, or look at the |Changes| that will be made to
your image by loading the selected version. If you have local changes to
the package you want to load, you should use , as will fully
load the selected version and thereby delete your own changes. You can
also make a of a version of a package, which you can then write to
another repository.

As you can see, the names of versions contain the name of the package,
the initials of the author of the version, and a version number. The version
name is also the name of the file in the repository. Never change these
names; the correct functionality of Monticello depends on them! Monticello
version files are just zip archives, and if you are curious you can unpack
them with a zip tool, but the best way to look at their contents is using
Monticello itself.

To create a package with Monticello, you have to do two things: write

124 The Squeak programming environment

£ System Browser: SBEGoodClass (v I+1=]
F5-Tests-Core SBEBetterClass —all - trialMethod
FS-Tests-Disk SBEGoodClass. as yet unclassified

FS-Tests-Memory
FS-Tests-AnsiStreams
FS-FileDirectory-Adapt
SBE-Environment
SBE-Extract

SBE-Monticello C instance class @
[browse :](senders j(implementmj(wersions j[inheritance :](hierarchy j(wars j | sOuUrce
trialMethod

"This method is here just so the class won't be empty”

ct 11/5/2019 09:08 - as yet unclassified - 1 implementor - only in change set SBE-Monticello-cyp

Figure 6.13: Two classes in the “SBE” package.

) System Browser: Object (v J+]1-]
Kernel-Classes 1| ProtoObject *Morphic-Events-Filte exampleMethod
Kernel-Exceptions Object *Morphic-Explorer g
Kernel-Exceptions-Ker Boolean *Morphic-Kernel

Kernel-Methods False *MorphicExtras-Partsk

Kernel-Models True *MorphicExtras-Undo

Kernel-Numbers MessageSend *Protocols

Kernel-Numbers-Excef LindnfinadOhinet || *SBE-Extract-transfor

Kernel-Objects (Tinstance | class (7} | *SBE-Monticello

[browse :](senders j(implementmj(wersions j[inheritance :](hierarchy j(wars j | sOuUrce
exampleMethod

"This is here just to demonstrate the idea of class extension”

~ 42

ct 11/5/2019 09:12 - *SBE-Monticello - 1 implementor - only in change set SBE-Monticello-cypresg

Figure 6.14: An extension method that will also be in the “SBE” package.

some code, and tell Monticello about it.

NJ Create a category called SBE-Monticello, and put a couple of classes in it, as
shown in Figure 6.13. Also, create a method in an existing class, and put it in the
same package as your classes, using the rules from page 121 —see Figure 6.14.

To tell Monticello about your package, click on |+Package|, and type the
name of the package, in this case “SBE”. Monticello will add SBE to its list
of packages; the package entry will be marked with an asterisk to show

Monticello 125

7 Monticello Browser (v 1+
[1-?;:]‘;;9!][: Browse][: Scripts j[History j
Protocols (eem.6B) fhomefrunner/.smalltalkCl/_builds/package-|

Regex-Core (eem.54)

Regex-Tests-Core (pre.7)

ReleaseBuilder (mt.208)

SBE ()

SBE-Environment (cypress.1) C
SBE-Extract {cypress.1l)

SBE-Maonticello (cypress.1)

SBE-Morphic (cypress.1)

SBE-QuickTour (cypress.1)

Figure 6.15: The as-yet-unsaved SBE package in Monticello.

that the changes in the image have not yet been written to any repository.

Initially, the only repository associated with this package will be your
package cache, as shown in Figure 6.15. That’s OK: You can still save the
code, which will cause it to be written to the package cache. Just click
and you will be invited to provide a log message for the version of the
package that you are about to save, as shown in Figure 6.16; when you
accept the message, Monticello will save your package. To indicate this, the
asterisk decorating the name in Monticello’s package pane will be removed,
and the version number added.

If you then make a change to the package —say by adding a method
to one of the classes — the asterisk will re-appear, showing that you have
unsaved changes. If you open a repository browser on the package cache,
you can select the saved version, and use and the other buttons.
You can of course save the new version to the repository too; once you
the repository view, it should look like Figure 6.17.

To save the new package to a repository other than the package cache,
you need to first make sure that Monticello knows about the repository,
adding it if necessary. Then you can use the in the package-cache
repository browser, and select the repository to which the package should
be copied. You can also associate the desired repository with the package
by using the yellow button menu item add to package... on the repository,
as shown in Figure 6.18. Once the package knows about a repository, you
can save a new version by selecting the repository and the package in
the Monticello Browser, and clicking [Save]. Of course, you must have
permission to write to a repository. The SqueakByExample repository on
SqueakSource is world readable but not world writable, so if you try and
save there, you will see an error message. However, you can create your
own repository on SqueakSource by using the web interface at http:/www.

http://www.squeaksource.com
http://www.squeaksource.com
http://www.squeaksource.com

126

The Squeak programming environment

) Edit Version Name and Message: SBE-xyz.20 &)

SBEGoodClass>>trialMethod

Object==>exampleMethod SBE-xyz.2 |
SBEBetterClass

SBEBetterClass>=>bar Change a few things| G
SBEBetterClass=>=>foo

SBEGoodClass

=== text below is ignored

Ancestors: SBE-xyz.1

ct 11/5/2019 09:12
*SBE-Monticello

Accept H Cancel

exampleMethod
extension"

~ 42

"This is here just to demonstrate the idea of class

Figure 6.16: Providing a log message for a new version of a package.

' Repository: /h /.smalltalkCl/_builds/p& <o
SBE

MName: SBE-xyz.1
Author: xyz

Ancestors:

Time: 12 July 2022, 1:39:21.526585 pm
UUID: BBcB62ae-Tfa3-4cd9-a365-454b863dd129

Figure 6.17: Two versions of our package are now in the package cache.

squeaksource.com, and use this to save your work. This is especially useful
as a mechanism to share your code with friends, or if you use multiple

computers.

If you do try and save to a repository where you don’t have write
permission, a version will nevertheless be written to the package-cache.
So you can recover by editing the repository information (yellow button
menu in the Monticello Browser) or choosing a different repository, and

then using from the package-cache browser.

http://www.squeaksource.com
http://www.squeaksource.com
http://www.squeaksource.com
http://www.squeaksource.com

The inspector and the explorer 127

7 Monticello Browser

v I+

45Deprecated (ct.27) [fhome/runner/.smalltalkCl/ buildsipackag
46Deprecated (ct.9) http://s{open repository
gégepreca*t;eg E[nt-S?ﬁlm :'&p:ﬁs edit repository info i
eprecated (topa. WIS 8d to package... acello
Balloon (dtl.32) AELD /W e o e chiel
BalloonTests (egp.2) http:/is P ik fss/m
BaselineOfFileSystem (cypress.1) http://s{demote to bottom FileTr
BaselineOfFileTree (dkh.4) http://s| COPY image versions here btacells
BaselineOfMetacello (ct.103) github:,store diffs r/repos
BaselineOfSBE (cypress.1) githubi|oad repositories 4.3/re

save repositories
flush cached versions

Figure 6.18: Adding a repository to the set of repositories associated with a
package.

6.4 The inspector and the explorer

One of the things that make Smalltalk so different from many other pro-
gramming environments is that it provides you with a window onto a
world of live objects, not a world of static code. Any of those objects can be
examined by the programmer, and even changed —although some care is
necessary when changing the basic objects that support the system. By all
means experiment, but save your image first!

The inspector

NJ Asan illustration of what you can do with an inspector, type TimeStamp now
in a workspace, and then choose inspect it from the yellow button menu. (It’s not
necessary to select the text before using the menu; if no text is selected, the menu
operations work on the whole of the current line. You can also type CMD—i for

inspect it.)

A window like that shown in Figure 6.19 will appear. This is an inspec-
tor, and can be thought of as a window onto the internals of a particular
object —in this case, the particular instance of TimeStamp that was created
when you evaluated the expression TimeStamp now. The title bar of the win-
dow shows the class of the object that is being inspected. If you select self
at the top of the left pane, the right pane will show the print string of the
object. If you select all inst vars in the left pane, the right pane will show a
list of the instance variables in the object, and the print string for each one.

128 The Squeak programming environment

£ TimeStamp (v J 4]

self 1657633154802830
all inst vars

utcMicrosecon
localOffsetSec

explore

Figure 6.19: Inspecting TimeStamp now.

The remaining items in the left pane represent the instance variables; this
makes it easy to examine them one at a time, and also to change them.

The horizontal pane at the bottom of the inspector is a small workspace
window. In this window, the pseudo-variable self is bound to the very
object that you are inspecting. So, if you inspect it on

self - TimeStamp today

in the workspace pane, the result will be a Duration object that represents
the time interval between midnight today and the instant at which you
evaluated TimeStamp now and created the TimeStamp object that you are in-
specting. You can also try evaluating TimeStamp now - self; this will tell you
how long you have spent reading this section of this book!

In addition to self, all the instance variables of the object are in scope
in the workspace pane, so you can use them in expressions or even as-
sign values to them. For example, if you evaluate localOffsetSeconds :=
localOffsetSeconds - 1 in the workspace pane, you will see that the value of
the localOffsetSeconds instance variable will indeed change, and the value of
TimeStamp now - self will increase by one second.

You can change instance variables directly by selecting them, replacing
the old value in the right-hand pane by a Squeak expression, and accepting.
Squeak will evaluate the expression and assign the result to the instance
variable.

There are special variants of the inspector for Dictionaries, OrderedCol-
lections, CompiledMethods, and a few other classes that make it easier to
examine the contents of these special objects.

The inspector and the explorer 129

€ 12 July 2022 1:39:07.208765 pm [+ 1 +] € 12 July 2022 1:39:07.208765 pm [+ 1 +]
= root 12 July 2022 1:39:07.20 = root 12 July 2022 1:39:07.20
- utcMicroseconds 1657633147208765 - utcMicroseconds 1657633147208765
b localOffsetSeconds 0 + localOffsetSeconds 0
4] 'hexadecimal'
0 ‘octal’
1] 'binary’

Figure 6.20: Exploring TimeStamp Figure 6.21: Exploring the instance
now. variables.

The object explorer

The object explorer is conceptually similar to the inspector, but presents its
information in a different way. To see the difference, we’ll explore the same
object that we were just inspecting.

N Select self in the inspector’s left-hand pane, and choose explore (I) from the

yellow button menu.

The explorer window looks like Figure 6.20. If you click on the small
triangle next to root, the view will change to Figure 6.21, which shows the
instance variables of the object that you are exploring. Click on the triangle
next to localOffsetSeconds, and you will see its instance variables. (Actually,
in this example hexadecimal, octal etc. are no instance variables of the Integer
object, but rather different representations.) The explorer is really useful
when you need to explore a complex hierarchic structure —hence the name.

The workspace pane of the object explorer works slightly differently to
that of the inspector. self is not bound to the root object, but rather to the
object that is currently selected; the instance variables of the selected object
are also in scope.

To see the value of the explorer, let’s use it to explore a deeply-nested
structure of objects.

54 Open a browser, and blue-click twice on the method pane to bring-up the
Morphic halo on the PluggableListMorph that is used to represent the list of messages.
Click on the debug handle * and select explore morph from the menu that appears.
This will open an Explorer on the PluggableListMorph object that represents the
method list on the screen. Open the root object (by clicking in its triangle), open its
submorphs, and continue exploring the structure of the objects that underlie this
Morph, as shown in Figure 6.22.

130 The Squeak programming environment

) a PluggableListMorphPlus(3291717) (v 1+]
= root a PluggableListMorphPlus{3291717)
b bounds 605@27 corner: 7T48@182
F-owner Cla PluggableSystemWindow=System Browser>
+ submorphs {a TransformMorph({3662344)}
=1 a TransformMorph(3662344)
b bounds 606@28 corner: 747@181
F-owner a PluggableListMorphPlus(3291717)
p-submorphs {a LazyListMorph(140537)}
b fullBounds 606@28 corner: 747@181
- color Color transparent
- extension a MorphExtension (3735070) [other: (layoutf
- transform a MorphicTransform(angle = 0.0; scale = 1.0;
F smoothing 1
p-localBounds 0@0 corner: 141@14
- fullBounds 605@27 corner: 748@182
- color Color white

inspect

Figure 6.22: Exploring a PluggableListMorph.

6.5 The debugger

The debugger is arguably the most powerful tool in the Squeak tool suite.
It is used not just for debugging, but also for writing new code. To demon-
strate the debugger, let’s start by writing a bug!

NJ Using the browser, add the following method to the class String:

Method 6.1: A buggy method.

suffix
"assumes that I'm a file name, and answers my suffix, the part after the last dot"

| dot dotPosition |

dot := FileDirectory dot.

dotPosition := (self size to: 1 by: -1) detect: [:i | (self at: i) = dot].
A self copyFrom: dotPosition to: self size

Of course, we are sure that such a trivial method will work, so instead
of writing an SUnit test, we just type 'readme.txt' suffix into a workspace and
printit (). What a surprise! Instead of getting the expected answer 'txt, a
PreDebugWindow pops up, as shown in Figure 6.23.

The PreDebugWindow has a title-bar that tells us what error occurred, and
shows us a stack trace of the messages that led up to the error. Starting
from the bottom of the trace, UndefinedObject»Dolt represents the code that
was compiled and run when we selected 'readme.txt' suffix in the workspace
and asked Squeak to printit. This code, of course, sent the message suffix

The debugger 131

) NotFound: Object is not in the collection. (v N+ 1]
(Proceed)C Abandon)(Debug :]

Interval(Collection)==>errorNotFound:
[1in Interval{Collection)>>detect:
Interval(Collection)=>detect:ifFound:ifNone:
Interval{Collection)>>detect:
ByteString(String)= =>suffix
@ [lin[]in[]in SBEEnvironmentFigureBuilder==>buildDebuggers
[] in BlockClosure>=>newProcess

Figure 6.23: A PreDebugWindow notifies us of a bug.

£) NotFound: Object is not in the collection. [+ I+

Interval(Collection)>=>erraorNotFound:
[1in Interval{Collection)>>detect:
Interval{Collection)=>=>detect:ifFound:ifNone:
Interval{Collection)>>detect:
ByteString(String)=>suffix

a [1in [1in [1in SBREFEnvirnnmentFinnreRuilder==huildNehiinners.

(Proceed)(Restart)(Into)(Owver)(Through)(Full Stack)(Where)(Tally It)

detect: aBlock ifFound: foundBlock ifNone: exceptionBlock
"Evaluate aBlock with each of the receiver's elements as the argument.
If there is any element for which aBlock evaluates to true, then evaluate
foundBlock with that element and answer the result of that foundBlock.
If aBlock does never evaluate to true, evaluate exceptionBlock, which
may or may not raise an error."”

self do: [:each | (aBlock value: each) ifTrue: [~ foundBlock value: each]].
~ exceptionBlock value

self {10 to: 1 by: -1) thisContext
all inst vars stack top
start all temp vars
stop aBlock

step foundBlock

Figure 6.24: The debugger.

to a ByteString object (‘readme.txt’). This caused the inherited suffix method in
class String to execute; all this information is encoded in the next line of the
stack trace, ByteString(String)»suffix. Working up the stack, we can see that
suffix sent detect:. .. and eventually detect:ifFound:ifNone: sent errorNotFound.

To find out why the dot was not found, we need the debugger itself, so

click on .

¢ You can also open the debugger by clicking on any of the lines on the stack

trace. If you do this, the debugger will open already focussed on the corresponding
method.

132 The Squeak programming environment

The debugger is shown in Figure 6.24; it looks intimidating at first, but
it is quite easy to use. The title-bar and the top pane are very similar to
those that we saw in the PreDebugWindow. However, the debugger combines
the stack trace with a method browser, so when you select a line in the stack
trace, the corresponding method is shown in the pane below. It’s important
to realize that the execution that caused the error is still in your image, but
in a suspended state. Each line of the stack trace represents a frame on the
execution stack that contains all of the information necessary to continue
the execution. This includes all of the objects involved in the computation,
with their instance variables, and all of the temporary variables of the
executing methods.

In Figure 6.24 we have selected the detect:ifFound:ifNone: method in the top
pane. The method body is displayed in the center pane; the blue highlight
in the source code around the message value shows that the current method
has sent the message value and is waiting for an answer.

The four panes at the bottom of the debugger are really two mini-
inspectors (without workspace panes). The inspector on the left shows
the current object, that is, the object named self in the center pane. As you
select different stack frames, the identity of self may change, and so will the
contents of the self-inspector. If you click on self in the bottom-left pane, you
will see that self is the interval (10 to: 1 by -1), which is what we expect. The
workspace panes are not needed in the debugger’s mini-inspectors because
all of the variables are also in scope in the method pane; you should feel
free to type or select expressions in this pane and evaluate them. You can
always cancel (I) your changes using the menu or CMD-1.

The inspector on the right shows the temporary variables of the current
context. In Figure 6.24, value was sent to the parameter exceptionBlock.
NJ To see the current value of this parameter, click on exceptionBlock in the
context inspector. This will tell you that exceptionBlock is [self errorNotFound: ...].
So, it is not surprising that we see the corresponding error message.

Incidentally, if you want to open a full inspector or explorer on one of
the variables shown in the mini-inspectors, select the name of the variable
and choose inspect (i) or explore (I) from the yellow button menu. This can
be useful if you want to watch how a variable changes while you execute
other code.

Looking back at the method window, we see that we expected the
penultimate line of the method to find dot in the string 'readme.txt, and that
execution should never have reached the final line. Squeak does not let
us run an execution backward, but it does let us start a method again,
which works very well in code such as this that does not mutate objects,
but instead creates new ones.

The debugger 133

3 NotFound: Object is not in the collection. v I+ 1=

Interval{Collection)==detect:ifFound:ifNone:
Interval{Collection)=>>detect:
ByteString(5tring)= =>suffix
o [Tin [Tin [] in SBEEnvironmentFigureBuilder>>buildDebuggers
[]1in BlockClosure=>newProcess

[Proceed [Restart J(Into [Over [Through || FullStack |[Where || Talylt |

detect: aBlock ifFound: foundBlock ifNone: exceptionBlock
"Evaluate aBlock with each of the receiver's elements as the argument
If there is any element for which aBlock evaluates to true, then evaluate
foundBlock with that element and answer the result of that foundBlock
If aBlock does never evaluate to true, evaluate exceptionBlock, which
may or may not raise an error.”

self do: [:each | (aBlock value: each) ifTrue: [~ foundBlock value: each]].
~ exceptionBlock value

self (10 to: 1 by: -1) thisContext
all inst vars stack top

start all temp vars

stop aBlock

step foundBlock

Figure 6.25: The debugger after restarting the detect:ifFound:ifNone: method.

g Click , and you will see that the locus of execution returns to the first

statement of the current method. The blue highlight shows that the next message
to be sent will be do: (see Figure 6.25).

The and buttons give us two different ways to step through
the execution. If you click , Squeak executes the current message send
(in this case the do:) in one step, unless there is an error. So will take
us to the next message send in the current method, which is value: This is
exactly where we started, and not much help. What we need to do is to
find out why the do: is not finding the character that we are looking for.

L Click and then click to get back to the situation shown in
Figure 6.25.

&g Click Squeak will go into the method corresponding to the highlighted

message send, in this case, Collection»do:.

However, it turns out that this is not much help either: We can be fairly
confident that Collection»do: is not broken. The bug is much more likely to
be in what we asked Squeak to do. is the appropriate button to use
in this case: We want to ignore the details of the do: itself and focus on the
execution of the argument block.

134 The Squeak programming environment

) NotFound: Object is not in the collection. (v N +]

[1in Interval{Collection)>>detect:ifFound:ifNone:
4+ Interval>>do:
Interval{Collection)>>detect:ifFound:ifNone:
Interval{Collection)=>>detect:
ByteString{5tring)= =>suffix
1lin [Tin [1in SREFEnvirnnmentFinureRuilder==hnildNehinner
[Proceed j(Restart j[Into j(Over j[Through j(Full Stack j[Where j(Tally It j

detect: aBlock ifFound: foundBlock ifNone: exceptionBlock
"Evaluate aBlock with each of the receiver's elements as the argument
If there is any element for which aBlock evaluates to true, then evaluate
foundBlock with that element and answer the result of that foundBlock
If aBlock does never evaluate to true, evaluate exceptionBlock, which
may or may not raise an error.”

self do: [:each | (aBlock value: each) ifTrue: [* foundBlock value: each]].
~ exceptionBlock value

self (10 to: 1 by: -1) all temp vars 7
all inst vars aBlock

start foundBlock

stop exceptionBlock (
step each

Figure 6.26: The debugger after stepping Through the do: method several
times.

¢ Click on |Through|a few times. Select each in the context window as you do

=

s0. You should see each count down from 10 as the do: method executes.

When each is 7 we expect the ifTrue: block to be executed because the dot
is at position 7, but the ifTrue: block is not executed. To see what is going
wrong, go the execution of value: as illustrated in Figure 6.26.

After clicking , we find ourselves in the position shown in Fig-
ure 6.27. It looks at first that we have gone back to the suffix method, but this
is because we are now executing the block that suffix provided as argument
to detect:. If you select i in the context inspector, you can see its current value,
which should be 7 if you have been following along. You can then select
the corresponding element of self from the self-inspector. In Figure 6.27 you
can see that element 7 of the string is character 46, which is indeed a dot. If
you select dot in the context inspector, you will see that its value is '.". And
now you see why they are not equal: the seventh character of 'readme.txt' is
a Character, while dot is a String.

Now that we see the bug, the fix is obvious: we have to convert dot to a
character before starting to search for it.

sl Change the code right in the debugger so that the assignment reads dot :=

The debugger 135
) NotFound: Object is not in the collection. (v +1—]
[1in ByteString(String)=>suffix
[1in Interval{Collection)=>>detect:ifFound:ifNone;
Interval==>do:
Interval{Collection)>>detect;ifFound:ifNone:
Interval{Collection)==>detect:
ButeStrinal Strinml= =ciiffi¥
[Proceed |[Restart | into || Over |[Through || FullStack |[Where || Talylt |
suffix
"assumes that I'm a file name, and answers my suffix, the part after the last dot"
| dot dotPosition |
dot := FileDirectory dot.
dotPosition 1= (self size to: 1 by: -1) detect: [:i | (self at: i) = dot 1.
-~ self copyFrom: dotPosition to: self size
self L 'readme. txt' stack top 7
all inst vars all temp vars
1 dot
2 IdotPosition
3

Figure 6.27: The debugger showing why 'readme.txt' at: 7 is not equal to dot.

) NotFound: Object is not in the collection. (v N +]

e

[1in ByteString(String)==>suffix

[1in Interval{Collection)=>detect:ifFound:ifNone:
4+ Interval==>do:

Interval{Collection)>>detect:ifFound:ifNone:

Interval{Collection)>>detect:

ButeStrinal Strinml= =i ffix [} Please Confirm Qo
[Proceed j(Restart j[Into j(Over jC
suffix I will have to revert to the method from

“assumes that I'm a file name, and answerg Which this block originated. Is that OK?
| dot dotPosition | -‘r'es [y} 'iﬂm

dot := FileDirectory dot asCharacter. - -
dotPosition 1= (self size to: 1 by: -1) detect: [:i | (self at: i) = dot].
“~ self copyFrom: dotPosition to; self size

self L readme.txt' stack top 7
all inst vars all temp vars

1 dot

2 dotPosition

3 i

Figure 6.28: Changing the suffix method in the debugger: asking for confir-

mation of the exit from an inner block.

136 The Squeak programming environment

FileDirectory dot asCharacter and accept the change.

Because we are executing code inside a block that is inside a detect;,
several stack frames will have to be abandoned in order to make this
change. Squeak asks us if this is what we want (see Figure 6.28), and,
assuming that we click yes, will save (and compile) the new method.

N4 Click and then the debugger window will vanish, and the

evaluation of the expression 'readme.txt' suffix will complete, and print the answer
"ixt'

From the debugger to tests and back again

Is the answer correct? Unfortunately, we can’t say for sure. Should the
suffix be .txt or txt? The method comment in suffix is not very precise. A good
way to avoid this kind of problem is to write an SUnit test that defines the
answer. As you will see in the following example, we can also use the tests
to advance our debugging sessions quickly.

We start by adding the following test method method 6.2 to StringTest.

Method 6.2: A simple test for the suffix method
testSuffixFound

self assert: 'txt' equals: 'readme.txt' suffix.

The effort required to do that was little more than to run the same code
in the workspace, but by creating a test, we save the code as executable
documentation, and make it easy for others to run. Moreover, if you now
run that test suite with SUnit, you can very quickly get back to debugging
the error. SUnit opens the debugger on the failing assertion, but you need
only go back down the stack one frame, the test and go the

suffix method, and you can correct the error, as we are doing in Figure 6.29.
It is then only a second of work to click on the button in the
SUnit Test Runner, and confirm that the test now passes.

Here is a better test:

Method 6.3: A better test for the suffix method.
testSuffixFound

self
assert: 'txt' equals: 'readme.txt' suffix;
assert: 'txt' equals: 'read.me.txt' suffix.

The debugger

137

KernelTests-Classes Ch-?TﬂCtel'TGSt (11 tests)f| 84 run in 0:00:00:00.261, 83 passes, 0 expected
KernelTests-Methods StringTest (B4 tests, 261 5j|yres, 1 failures, 0 errors, 0 unexpected passes
KernelTests-Numbers SymbolTest (10 tests)
KernelTests-Objects) TestFailure: Expected "txt' but was '.txt'. o0s
KernelTests-Processes
CollectionsTests-Abstra ByteString(String)=>=>suffix [&
CollectionsTests-Array: o StringTest>>testSuffixFound
CollectionsTests-Sequer # StringTest(TestCase)>>performTest
CollectionsTests-SortFu [1in [] in StringTest{TestCase)>=>runCase
CollectionsTests-Stack || TextkernT{| ¢ BlockClosure>>on:do:
CollectionsTests-Stream: || HtmIRead\ L—[1in StrinaTect{TactCacel= >timeniit-after:
CollectionsTests-Suppor || TextAndTe[Proceed || Restart || Inte || Over |[Through || FullStack || Where [Tallylt |
CollectionsTests-Text TextAttribi Suffix
CollectionsTests-Unorde [| TextLineEl
CollectionsTests-Weak
GraphicsTests-Files "assumes that I'm a file name, and answers my suffix, the part after the last dot"
GraphicsTests-Primitives | dot dotPosition |
GraphicsTests-Text dot = FileDirectory dot asCharacter.
morvnicrﬂggasic‘s dotPosition := {self size to: 1 by: -1) detect: [:i | (self at: i} = dot].
lorphicTests-Even ~ . d . i
MorphicTeste.Kernel self copyFrom: dotPosition + 1 to:self size
MorphicTests-Layouts
MorphicTests-Support
MorphicTests-Text Supp
MorphicTests-ToolBuilde
MorphicTests-Widgets
MorphicTests-Warlds self thisContext
Nebraska-Network-Objec all inst vars. [J stack top
NetworkTests-Kernel 1 all temp vars
2 dot
Run Selected Run Profiled (L3 dotPosition
A B e

Figure 6.29: Changing the suffix method in the debugger: fixing the off-by-
one error after an SUnit assertion failure.

Why is this test better? Because it tells the reader what the method should
do if there is more than one dot in the target String.

There are a few other ways to get into the debugger in addition to
catching errors and assertion failures. If you execute code that goes into an
infinite loop, you can interrupt it and open a debugger on the computation
by typing CMD-. (that’s a full stop or a period, depending on where you
learned English). You can also just edit the suspect code to insert self halt.
So, for example, we might edit the suffix method to read as follows:

Method 6.4: Inserting a halt into the suffix method.

suffix
"assumes that I'm a file name, and answers my suffix, the part after the last dot"

| dot dotPosition |

dot := FileDirectory dot asCharacter.

dotPosition := (self size to: 1 by: -1) detect: [:i | (self at: i) = dot].
self halt.

A self copyFrom: dotPosition to: self size

When we run this method, the execution of the self halt will bring up the
pre-debugger, from where we can proceed, or go into the debugger and
look at variables, step the computation, and edit the code.

That'’s all there is to the debugger, but it’s not all there is to the suffix

138 The Squeak programming environment

method. The initial bug should have made you realize that if there is no
dot in the target string, the suffix method will raise an error. This isn’t the
behavior that we want, so let’s add a second test to specify what should
happen in this case.

Method 6.5: A second test for the suffix method: the target has no suffix.
testSuffixNotFound

self assert: 'readme’ suffix =".

54 Add method 6.5 to the test suite in class StringTest, and watch the test raise
an error. Enter the debugger by selecting the erroneous test in SUnit, and edit the
code so that the test passes. The easiest and clearest way to do this is to replace
the detect: message by detect: ifNone:, where the second argument is a block that
simply returns the string size.

We will learn more about SUnit in Chapter 7.

6.6 The process browser

Smalltalk is a multi-threaded system: there are many lightweight processes
(also known as threads) running concurrently in your image. The Squeak
virtual machine implements concurrency by time-slicing.

The process browser is a cousin of the debugger that lets you look at the
various processes running inside Squeak. Figure 6.30 shows a screenshot.
The top-left pane lists all of the processes in Squeak, in priority order, from
the timer interrupt watcher at priority 80 to the idle process at priority 10.
Of course, on a uniprocessor, when you look which program is running,
the only process that can be running is the Ul process, as it is currently
displaying the information to you; all of the other will be waiting for
some kind of event. By default, the display of processes is static; it can be
updated using the yellow button menu, which also provides an option to
turn on auto-update (a)

If you select a process in the top-left pane, its stack trace is displayed
in the top-right pane, just as with the debugger. If you select a stack
frame, the corresponding method is displayed in the bottom pane. The
process browser is not equipped with mini-inspectors for self and thisContext,
but yellow button menu items on the stack frames provide equivalent
functionality.

Finding methods 139

3 Process Browser o
(80) 28437: the timer interrupt watch | ProcessBrowser=>updateStackList:
(79) 15174: [] in Delay=>wait ProcessBrowser=>>updateStackList
(60) 56927; the user interrupt watche | | ProcessBrowser>>processListindex:
(60) 81999; the event tickler PluggableListMorphPlus{PluggableList
(60) 20909: the low space watcher PluggableListMorphPlus{FluggableList
(50) 10574: the WeakArray finalizatior ||PluggableListMarphPlus{PluggableList
(40) 72429: the Ul process PluggableListMorphPlus{Morph)==hai
(30) 26596: [] in BlockClosure>=>newl || KeyboardEvent>=>sentTo:

(30) 88827: [] in BlockClosure>=>newl_| | PluggableListMorphPlusiMorph)==hai

updateStackList: depth
| suspendedContext oldHighlight |
selectedProcess
ifNil: [~ self changeStackListTo: nil].
(stackList notMil and: [stackListindex = 0]}
ifTrue: [oldHighlight := stackList at: stackListindex].
selectedProcess == Processor activeProcess
ifTrue: [self

Figure 6.30: The process browser.

6.7 Finding methods

There are three tools in Squeak to help you find messages. You can open the
first two, MethodFinder and MessageNames from World docking bar>Tools .
The third one is the global search in the right corner of the world docking
bar. They differ in both interface and functionality.

The method finder was described at some length in Section 1.8; you can
use it to find methods by name or by functionality. However, to look at
the body of a method, the method finder opens a new browser. This can
quickly become overwhelming.

The message names browser has more limited search functionality: You
type a fragment of a message selector in the search box, and the browser
lists all methods that contain that fragment in their names, as shown in
Figure 6.31. However, it is a full-fledged browser: If you select one of
the names in the left pane, all of the methods with that name are listed in
the right pane and can be browsed in the bottom pane. As with the class
browser, the message names browser has a button bar that can be used to
open other browsers on the selected method or its class.

The search bar in the top right corner allows you to quickly access any
method in the system. You can either directly enter the full selector of the
method, which will open a class browser, or enter a search term including

140 The Squeak programming environment

£) Message names containing "random” (v 1+]

random ‘[SEM:,.,] + Collection atRandom:

+ Integer atRandom:
addTurtlesCount:ofPrototype:for:randomizé_| | + LargePositivelnteger atRandom:
atRandom #+ Matrix atRandom:
atRandom: #+ SeguenceableCollection atRandom:
buildMethodNamesRandom
ColorTileRandom
createRandomPassward

(browse)(senders)l:implernent{j(versions)[:inheritancej(hierarchy)l: vars j | sOUrce

atRandom: aGenerator
"Answer a random integer from 1 to self picked from aGenerator.”

~ aGenerator nextint: self

sma 5/12/2000 12:35 - truncation and round off - 5 implementors - in no change set -

Figure 6.31: The method names browser showing all methods containing
the substring random in their selectors.

117

wildcards represented by “*”, which will open a message names browser.
You can also use the search bar to search for classes also using wildcards. As
this search bar allows you to quickly jump to methods, it is also accessible
via the keyboard shortcut CMD-0.

6.8 Change sets and the change sorter

Whenever you are working in Squeak, any changes that you make to
methods and classes are recorded in a change set. This includes creating
new classes, re-naming classes, changing categories, adding methods to
existing classes —just about everything of significance. However, arbitrary
doits are not included, so if, for example, you create a new global variable
by assigning to it in a workspace, the variable creation will not make it into
a change set.

At any time, many change sets exist, but only one of them — ChangeSet
current—is collecting the changes that are being made to the image. You can
see which change set is current and can examine all of the change sets using
the change set browser, available from World>open...>simple change sorter or
World docking bar > Tools .

Figure 6.32 shows this browser. The title bar shows which change set is
current, and this change set is selected when the browser opens.

Change sets and the change sorter 141

) Changes go to "My cool changeset” (v I+]

Squeak by Example [
SBE-Tests-cypress.1

SBE-Testing-cypress.1

SBE-Streams-cypress.1

suffix
"assumes that I'm a file name, and answers my suffix, the part after the last dot"
| dot dotPosition |
dot := FileDirectory dot asCharacter.
dotPosition := {self size to: 1 by: -1) detect: [:i | {self at: |) = dot] ifNone: [self size].
~ self copyFrom: dotPosition + 1 to: self size

Figure 6.32: The change set browser.

Other change sets can be selected in the top-left pane; the yellow button
menu allows you to make a different change set current, or to create a new
change set. The top-right pane lists all of the classes affected by the selected
change set (with their categories). Selecting one of the classes displays the
names of those of its methods that are also in the change set (1ot all of the
methods in the class) in the central pane, and selecting a method name
displays the method definition in the bottom pane. Note that the browser
does not show you whether the creation of the class itself is part of the
change set.

The change set browser also lets you delete classes and methods from
the change set using the yellow button menu on the corresponding items.
However, for more elaborate editing of change sets, you should use a
second tool, the change sorter, available under World docking bar>Tools or by
selecting World>open...1>dual change sorter, which is shown in Figure 6.33.

The change sorter is essentially two change set browsers side by side;
each side can focus on a different change set, class, or method. This layout
supports the change sorter’s main feature, which is the ability to move
or copy changes from one change set to another, as shown by the yellow
button menu in Figure 6.33. It is also possible to copy individual methods
from one side to the other.

You may be wondering why you should care about the composition of
a change set. The answer is that change sets provide a simple mechanism
for exporting code from Squeak to the file system, from where it can be
imported into another Squeak image, or into another non-Squeak Smalltalk.
Change set export is known as “filing-out”, and can be accomplished using

142

The Squeak programming environment

£ Changes go to "String enhancements”

String enhancements (]
My cool changeset
Squeak by Example

string {Collections-Strings
stringTest {CollectionsTes

String enhancements (]
My cool changeset
Squeak by Example

5tring {Colle
stringTest {

class list »
copy class chgs to other side

move class chgs to other side

[delete class from change set (d)
T remove class from system (x)
browse full (b)
browse hierarchy (h)
browse protocol (p)
printOut
fileOut
references... (r)
assignments... (a)
class refs (N)
more...
find test case

SBE-Tests-cypress.1

SBE-Testing-cypress.1
RE.Ct |

SBE-Tests-cypress.1
SBE-Testing-cypress.1

RE.St 1
suffix {*SBE-Environment}

suffix

"assumes that I'm a file name, and
suffix, the part after the last dot"

| dot dotPosition |

dot := FileDirectory dot asCharacte

dotPosition ;= (self size to: 1 by: -1) detect: [:i|
(self at: i) = dot] ifNone: [self size].
~ self copyFrom: dotPosition + 1 to: self size

Figure 6.33: The change sorter.

the yellow button menu on any change set, class, or method in either
browser. Repeated file-outs create new versions of the file, but change
sets are not a versioning tool like Monticello: They do not keep track of
dependencies.

Before the advent of Monticello, change sets were the main means
for exchanging code between Squeak users. They have the advantage of
simplicity (the file-out is just a text file, although we don’t recommend that
you try to edit it with a text editor), and a degree of portability. It’s also quite
easy to create a change set that makes changes to many different, unrelated
parts of the system — something that Monticello is not yet equipped to do.

The main drawback of change sets, compared to Monticello packages,
is that they do not support the notion of dependencies. A filed-out change
set is a set of actions that change any image into which it is loaded. To
successfully load a change set requires that the image be in an appropriate
state. For example, the change set might contain an action to add a method
to a class; this can only be accomplished if the class is already defined in
the image. Similarly, the change set might rename or re-categorize a class,
which obviously will only work if the class is present in the image; methods
may use instance variables that were declared when they were filed out,
but which do not exist in the image into which they are imported. The
problem is that change sets do not explicitly describe the conditions under
which they can be filed in: The file-in process just hopes for the best, usually
resulting in a cryptic error message and a stack trace when things go wrong.
Even if the file-in works, one change set might silently undo a change made
by another change set.

In contrast, Monticello packages represent code in a declarative fashion:

The file list browser 143

) /home/runner/.smalltalkCl/_builds (v |+
[fhome/runner/.smalltalkCl/ builds/* |
ok Coame | deie [sioe | cose) comnae cottc | msat] %0 J__eai | i
perflog {2022.07.12 13:39:08 858) my cool changeset.1.cs
warmup (2022.07.12 13:39:08 21,028,482) TravisCl.changes
B runners {2022.07.12 13:39:04 2,398) SqueakDebug.log
v .smalltalkCl (2022.07.12 13:38:57 432) test.st
squeak {2022.07.12 13:38:57 50,400,456) TravisCl.image
tests (2022.07.12 13:38:36 482) load.st
~ _builds {2022.07.12 13:38:36 81) v
»-github-cach |{({2020.05.15 12:18:59 35,184,983) SqueakV50.50urces
package-cai
bin B
b .github ;
gemstone From Squeak5.3 of B May 2020 [latest update: #19438] on 12 July
b repository 2022 at 1:39:08 pm'!
docs
pharo |SearchBar methodsFor: 'toolbuilder' stamp: 'xyz 7/12/2022 13:39'!
lib buildWith: builder
b _cache
_S;g'lfmlm|_tew ~ (builder build: (builder pluggableinputFieldSpec new
b .ghcup g model: self;
b .rustup getText: #searchTerm;
Eo.vm setText: #smartSearch:in:;
- .cargo editText: #searchTermSilently:;

Figure 6.34: A file list browser.

They describe the state of the image should be in after they have been
loaded. This permits Monticello to warn you about conflicts (when two
packages require contradictory final states) and to offer to load a series of
packages in their dependency order.

In spite of these shortcomings, change sets still have their uses; in
particular, you may find change sets on the Internet that you want to look
at and perhaps use. So, having filed-out a change set using the change
sorter, we will now tell you how to file one in. This requires the use of
another tool, the file list browser.

6.9 The file list browser

The file list browser is in fact a general-purpose tool for browsing the
file system (and also FTP servers) from Squeak. You can open it from
the World>open...>file list menu, or World docking bar>Tools. What you see of
course depends on the contents of your local file system, but a typical view
is shown in Figure 6.34.

When you first open a file list browser it will be focused on the current
directory, that is, the one from which you started Squeak. The title bar

144 The Squeak programming environment

) File Contents Browser my cool changeset.l.cs (v]+

|my cool changeset.1.cs |

SearchBar —all - buildWith:
TheWorldMainDockingBar toolbuilder

C instance I class) @

[browse][senders][implementnr][wersions)[inheritance)[hierarchy][Vars) | showDiffs
buildWith: builder

~ {builder build: (builder pluggablelnputFieldSpec new
model: self;
getText: #searchTerm;
setText: #smartSearch:in:;
editText: #searchTermSilently:;
menu: #menu:shifted:;

xyz 7/12/2022 13:39 - Method already exists - modified

Figure 6.35: A file contents browser.

shows the path to this directory. The larger pane on the left-hand side
can be used to navigate the file system in the conventional way. When a
directory is selected, the files that it contains (but not the directories) are
displayed on the right. This list of files can be filtered by entering a Unix-
style pattern in the small box at the top-left of the window. Initially, this
pattern is the current folder followed by a «, which matches all file names in
the folder, but you can type a different string there and accept it, changing
the pattern. (Note that a « is implicitly prepended and appended to the
pattern that you type.) The sort order of the files can be changed using the
[name|, [date| and [size| buttons. The rest of the buttons depends on the name
of the file selected in the browser. In Figure 6.34, the file name has the suffix
.cs, so the browser assumes that it is a change set, and provides buttons to
it (which files it in to a new change set whose name is derived from

the name of the file), to browse the in the file, to examine the

in the file, and to the code into the current change set.

Because the choice of buttons to display depends on the file’s name, and
not on its contents, sometimes the button that you want won’t be on the
screen. However, the full set of options is always available from the yellow
button more... menu, so you can easily work around this problem.

The button is perhaps the most useful for working with change
sets; it opens a browser on the contents of the change set file; an example
is shown in Figure 6.35. The file contents browser is similar to the system
browser except that it does not show categories, just classes, protocols
and methods. For each class, the browser will tell you whether the class

In Smalltalk, you can’t lose code 145

already exists in the system and whether it is defined in the file. It will
show the methods in each class, and (as shown in Figure 6.35) will show
you the differences between the current version and the version in the file.
Yellow-button menu items in each of the top four panes will also let you
file in the whole of the change set, or the corresponding class, protocol or
method.

6.10 In Smalltalk, you can’t lose code

It is quite possible to crash Squeak: as an system designed to be open to
experimenting, Squeak lets you change anything, including things that are
vital to make Squeak work!

%J To maliciously crash Squeak, try Object become: nil.

The good news is that you need never lose any work, even if you crash
and go back to the last saved version of your image, which might be hours
old. This is because all of the code that you executed is saved in the .changes
file. All of it! This includes one-liners that you evaluate in a workspace, as
well as code that you add to a class while programming.

So here are the instructions on how to get your code back. There is no
need to read this until you need it. However, when you do need it, you'll
find it here waiting for you.

In the worst case, you can use a text editor on the .changes file, but since
it is many megabytes in size, this can be slow and is not recommended.
Squeak offers you better ways.

How to get your code back

To start recovering, restart Squeak from the most recent snapshot. Then
select World Docking Bar > Extras > Recover Changes . This will ask you how far
back in history you wish to browse. The list includes snapshots that get
older the further down they are in the list. The topmost snapshot is the most
recent one. Selecting it will give you all changes that have been recorded
since this snapshot. Normally, it’s sufficient to browse changes as far back
as the last snapshot.

Once you have a recent changes browser, showing, say, changes back as
far as your last snapshot, you will have a list of everything that you have
done in Squeak during that time. You can delete items from this list using
the yellow button menu. When you are satisfied, you can file-in what is

146 The Squeak programming environment

left also using the yellow button menu, thus incorporating the changes into
your new image.

One useful thing to do in the recent changes browser is to remove dolts.
Usually, you won’t want to file in (and thus re-execute) dolts. However,
there is an exception. Creating a class shows up as a dolt. Before you can file
in the methods for a class, the class must exist. So, if you have created any new
classes, first file-in the class creation dolts, then remove dolts and file in the
methods.

6.11 Other interesting tools

Beyond the common tools introduced in this chapter, Squeak also provides
a number of other interesting and rich tools. We briefly introduce some of
these tools which you might want to use when you are more proficient in
using Squeak:

Dependency browser Whenever you use a class in a method, the method
then depends on the presence of this class. If the class is not in the envi-
ronment, running the method will result in an exception, as Squeak does
not know who should receive the message. This is relevant, for example,
whenever you use a class that is not part of the base system but stems from
a project you installed. Using the dependency browser you can see the
dependencies of your package. You can open the dependency browser
through world main docking bar >Apps > Dependency Browser .

Git tools Git is a commonly used version control system. For sharing you
projects via Git on platforms such as GitHub, GitLab, or Bitbucket, you
can use the Squeak Git tools. The Git tools are not part of the standard
environment and you have to install them. You can do so by clicking
world docking bar > Tools > Git Browser (click to install). The Git Browser allows
you to manage a local Git repository directly from within the image using
parts of the gitless?> semantic.

Lexicon Objects understand all messages for which their class or their
super classes have methods. The system browser introduced earlier can
only show you the methods of one class. If you want to know all the
methods an instance of a class understands you can open the lexicon. You
can get the lexicon from the system browser by opening the yellow button
menu for the class and selecting browse protocol (p).

2 https://gitless.com/

https://gitless.com/

Chapter summary 147

Message tally Sometimes you might write code that is too slow. The
Message Tally tool, sometimes also called profiler, can help you to deter-
mine which parts of your program are slow. You can start it to record
the execution times for all processes in the image from the menu item
world main docking bar > Extras > Start Profiler. Alternatively, you can also let it
observe sections of code by selecting the code, opening the yellow button
menu, and choosing spy onit. Note, that the message tally is a sampling
profiler, so for detailed information, you will have to let your code run for
some seconds (e.g. by running it 1000 times if it only takes little time).

6.12 Chapter summary

In order to develop effectively with Squeak, it is important to invest some
effort into learning the tools available in the environment.

* The standard system browser is your main interface for browsing exist-
ing class categories, classes, method protocols and methods, and for
defining new ones. The system browser offers several useful buttons
to directly jump to senders or implementors of a message, versions of
a method, and so on.

¢ There exist several different class browsers (such as the System Browser
and the Snapshot Browser from Monticello), and several specialized
browsers (such as the hierarchy browser) which provide different
views of classes and methods.

¢ From any of the tools, you can highlight the name of a class or a
method and immediately jump to a browser by using the keyboard
shortcut CMD-b.

* You can also browse the Smalltalk system programmatically by send-
ing messages to SystemNavigation default.

* Monticello is a tool for exporting, importing, versioning and sharing
packages of classes and methods. A Monticello package consists of
a system category, subcategories, and related methods protocols in
other categories.

® The inspector (CMD—1i) and the explorer (CMD-I) are two tools that are
useful for exploring and interacting with live objects in your image.
You can even inspect tools by blue-clicking to bring up their morphic
halo and selecting the debug handle = .

148

The Squeak programming environment

The debugger is a tool that not only lets you inspect the run-time stack
of your program when an error is raised, but it also enables you
to interact with all of the objects of your application, including the
source code. In many cases, you can modify your source code from
the debugger and continue executing. The debugger is especially
effective as a tool to support test-first development in tandem with
SUnit (Chapter 7).

The process browser lets you monitor, query and interact with the
processes that currently exist in your image.

The method finder, the message names browser, and the search bar are
three tools for locating methods. The first is more useful when you
are not sure of the name, but you know the expected behavior. The
second offers a more advanced browsing interface when you know at
least a fragment of the name. The third allows you to quickly navigate
to methods.

Change sets are automatically generated logs of all changes to the
source code of your image. They have largely been superseded by
Monticello as a means to store and exchange versions of your source
code, but are still useful, especially for recovering from catastrophic
failures, however rare these may be.

The file list browser is a tool for browsing the file system. It also allows
you to filein source code from the file system.

In case your image crashes before you could save it or backup your
source code with Monticello, you can always recover your most recent
changes using a change list browser. You can then select the changes
you want to replay and file them into the most recent copy of your
image.

Chapter 7
SUnit

7.1 Introduction

SUnit is a minimal yet powerful framework that supports the creation and
deployment of tests. As might be guessed from its name, the design of
SUnit focussed on Unit Tests, but in fact it can be used for integration tests
and functional tests as well. SUnit was originally developed by Kent Beck
and subsequently extended by Joseph Pelrine and others to incorporate the
notion of a resource, which we will describe in Section 7.6.

The interest in testing and Test Driven Development is not limited to
Squeak or Smalltalk. Automated testing has become a hallmark of the agile
software development movement, and any software developer concerned
with improving software quality would do well to adopt it. Indeed, de-
velopers in many languages have come to appreciate the power of unit
testing, and versions of xUnit now exist for many languages, including
Java, Python, and .NET.

Neither testing, nor the building of test suites, is new: Everybody knows
that tests are a good way to catch errors. eXtreme Programming, by making
testing a core practice and by emphasizing automated tests, has helped to
make testing productive and fun, rather than a chore that programmers
dislike. The Smalltalk community has a long tradition of testing because
of the incremental style of development supported by its programming
environment. In traditional Smalltalk development, the programmer would
write tests in a workspace as soon as a method was finished. Sometimes a
test would be incorporated as a comment at the head of the method that it
exercised, or tests that needed some setup would be included as example
methods in the class. The problem with these practices is that tests in a

150 SUnit

workspace are not available to other programmers who modify the code;
comments and example methods are better in this respect, but there is still
no easy way to keep track of them and to run them automatically. Tests that
are not run do not help you to find bugs! Moreover, an example method
does not inform the reader of the expected result: You can run the example
and see the — perhaps surprising — result, but you will not know if the
observed behavior is correct.

SUnit is valuable because it allows us to write self-checking tests: The
test itself defines what the correct result should be. It also helps us to
organize tests into groups, to describe the context in which the tests must
run, and to run a group of tests automatically. In less than two minutes you
can write tests using SUnit, so instead of writing small code snippets in a
workspace, we encourage you to use SUnit and get all the advantages of
stored and automatically executable tests.

In this chapter we start by discussing why we test, and what makes a
good test. We then present a series of small examples showing how to use
SUnit. Finally, we look at the implementation of SUnit, so that you can
understand how Smalltalk uses the power of reflection for its tools.

7.2 Why testing is important

Unfortunately, many developers believe that tests require to much of their
time. After all, they do not write bugs — only other programmers do that.
Most of us have said, at some time or other: “I would write tests if I had
more time.” If you never write a bug, and if your code will never be
changed in the future, then indeed you do not need tests. However, this
most likely also means that your application is trivial, or that it is not
used by you or anyone else. Think of tests as an investment for the future:
Having a suite of tests will be quite useful now, but it will be extremely
useful when your application, or the environment in which it executes,
changes in the future.

Tests play several roles. First, they provide documentation of the func-
tionality that they cover, and, moreover, the documentation is active: Watch-
ing the tests pass tells you that the documentation is up-to-date. Second,
tests help developers to confirm that some changes that they have just
made to a package have not broken anything else in the system —and to
find the parts that break when that confidence turns out to be misplaced.
Finally, writing tests at the same time as— or even before — programming
forces you to think about the functionality that you want to design, and
how it should appear to the client, rather than about how to implement it. By
writing the tests first—before the code —you are compelled to state the

What makes a good test? 151

context in which your functionality will run, the way it will interact with
the client code, and the expected results. Your code will improve: Try it.

We cannot test all aspects of any realistic application. Covering a com-
plete application is simply impossible and should not be the goal of testing.
Even with a good test suite some bugs will still creep into the application,
where they can lay dormant waiting for an opportunity to damage your
system. If you find that this has happened, take advantage of it! As soon as
you uncover the bug, write a test that exposes it, run the test, and watch it
fail. Now you can start to fix the bug: The test will tell you when you are
done.

7.3 What makes a good test?

Writing good tests is a skill that can be learned most easily by practicing.
Let us look at the properties that tests should have to get a maximum
benefit.

1. Tests should be repeatable. You should be able to run a test as often
as you want, and always get the same answer.

2. Tests should run without human intervention. You should even be
able to run them during the night.

3. Tests should tell a story. Each test should cover one aspect of a piece
of code. A test should act as a scenario that you or someone else can
read to understand a piece of functionality.

4. Tests should have a change frequency lower than that of the function-
ality they cover: You do not want to have to change all your tests
every time you modify your application. One way to achieve this is
to write tests based on the public interfaces of the class that you are
testing. It is OK to write a test for a private “helper” method if you
feel that the method is complicated enough to need the test, but you
should be aware that such a test may have to be changed, or thrown
away entirely when you think of a better implementation.

A consequence of property (3) is that the number of tests should be
somewhat proportional to the number of functions to be tested: Changing
one aspect of the system should not break all the tests but only a limited
number. This is important because having 100 tests fail should send a much
stronger message than having 10 tests fail. However, it is not always possi-
ble to achieve this ideal: In particular, if a change breaks the initialization
of an object, or the setup of a test, it is likely to cause all of the tests to fail.

12 T N R

152 SUnit

eXtreme Programming advocates writing tests before writing code. This
may seem to go against our deep instincts as software developers. All we
can say is: Go ahead and try it. We have found that writing the tests
before the code helps us to know what we want to code, helps us know
when we are done, and helps us conceptualize the functionality of a class
and to design its interface. Moreover, test-first development gives us the
courage to go fast, because we are not afraid that we will forget something
important.

7.4 SUnit by example

Before going into the details of SUnit, we will show a step by step example
testing the class Set. Try entering the code as we go along.

Step 1: create the test class

¢ First you should create a new subclass of TestCase called ExampleSetTest.

Add two instance variables so that your new class looks like this:

Class 7.1: An Example Set Test class.
TestCase subclass: #ExampleSetTest
instanceVariableNames: 'full empty'
classinstanceVariableNames: "
poolDictionaries: "
category: 'MyTest'

We will use the class ExampleSetTest to group all the tests related to the
class Set. It defines the context in which the tests will run. Here the context
is described by the two instance variables full and empty that we will use to
represent a full and an empty set.

The name of the class is not critical, but by convention, it should end
in Test. If you define a class called Pattern and call the corresponding test
class PatternTest, the two classes will be alphabetized together in the browser
(assuming that they are in the same category). It is critical that your class
be a subclass of TestCase.

Step 2: initialize the test context

The method setUp defines the context in which the tests will run, a bit like
an initialize method. setUp is invoked before the execution of each test
method defined in the test class.

o o A @ N =

12 T N R O

SUnit by example 153

NJ - Define the setUp method as follows, to initialize the empty variable to refer to

an empty set and the full variable to refer to a set containing two elements. Never
forget to call super setUp as the very first operation in a setUp method!

Method 7.2: Setting up a fixture.
ExampleSetTest»setUp

super setUp.

empty := Set new.
full := Set with: 5 with: 6.

In testing jargon the context is called the fixture for the test. You can also
clean up the fixture of the test again in the tearDown method.

Step 3: write some test methods

Let’s create some tests by defining some methods in the class ExampleSetTest.
Each method represents one test; the name of the method should start with
the string ‘test’ so that SUnit will collect them into test suites. Test methods
take no arguments.

N Define the following test methods.

The first test, named testincludes, tests the includes: method of Set. The
test says that sending the message includes: 5 to a set containing 5 should
return true. Clearly, this test relies on the fact that the setUp method has
already run.

Method 7.3: Testing set membership.
ExampleSetTest»testIncludes

self
assert: (full includes: 5);
assert: (full includes: 6).

The second test, named testOccurrences, verifies that the number of oc-
currences of 5 in full set is equal to one, even if we add another element 5 to
the set. Here we make use of the specific assertion assert:equals: that asserts
whether the two arguments are equal in value.

[S T N R ORI

154 SUnit

Method 7.4: Testing occurrences.
ExampleSetTest»testOccurrences

self
assert: 0 equals: (empty occurrencesOf: 0);
assert: 1 equals: (full occurrencesOf: 5).
full add: 5.
self assert: 1 equals: (full occurrencesOf: 5).

Finally, we test that the set no longer contains the element 5 after we
have removed it.

Method 7.5: Testing removal.
ExampleSetTest»testRemove

full remove: 5.

self
assert: (full includes: 6);
deny: (full includes: 5).

Note the use of the method deny: to assert something that should not be
true. aTest deny: anExpression is equivalent to aTest assert: anExpression not, but
is much more readable.

Step 4: run the tests

The easiest way to execute the tests is with the SUnit Test Runner, which you
can open from the World >Test Runner menu, or from World docking bar > Tools .
The TestRunner, shown in Figure 7.1, is designed to make it easy to exe-
cute groups of tests. The left-most pane lists all of the system categories
that contain test classes (i.e., subclasses of TestCase); when some of these
categories are selected, the test classes that they contain appear in the pane
to the right. Abstract classes are italicized, and the test class hierarchy is
shown by indentation, so subclasses of ClassTestCase are indented more
than subclasses of TestCase.

NJ - Open a Test Runner, select the category MyTest, and click the |Run Selected
button.

You can also run your test by executing a print it on the following code:
ExampleSetTest run: #testRemove. Finally, you can also run a test directly from
the method pane in the browser by opening the yellow button menu on the
test method and selecting run test.

SUnit by example

KernelTests-Classes
KernelTests-Methods
KernelTests-Numbers
KernelTests-Objects
KernelTests-Processes
CollectionsTests-Abstr:
CollectionsTests-Arraye
CollectionsTests-Seque
CollectionsTests-SortFi
CollectionsTests-Stack
CollectionsTests-Streat
CollectionsTests-Suppt
CollectionsTests-Text
CollectionsTests-Unord
CollectionsTests-Weak
GraphicsTests-Files
GraphicsTests-Primitiv

Run Selected

Ascii85ConverterTest
BagTest {13 tests)
Base64MimeConve
BitSetTest (7 tests)
ChainedSortFunction’
CharacterSetTest (13
ArrayTest (13 tests)

AssociationTest (7 tes
ByteArrayTest (11 tes
CharacterSetCompler
CharacterTest (11 tec
DoubleByteArrayTest
DoubleWordArrayTest
FloatArrayTest (8 test
FloatCollectionTest (6
HeapTest (22 tests)

t

Run Profiled

o cuv_

Figure 7.1: The Squeak SUnit test runner.

g1 Introduce a bug in ExampleSetTest»testRemove and run the tests again. For
example, change 5 to 4.

The tests that did not pass (if any) are listed in the right-hand panes of
the Test Runner; if you want to debug one, to see why it failed, just click on
the name. Alternatively, you can also directly start debugging the test from
the browser by opening the yellow button menu on the test method and
selecting debug test. If you prefer working with scripts, you can execute the
following expression:

ExampleSetTest debug: #testRemove

Step 5: interpret the results

The method assert: , which is defined in the class TestCase, expects a boolean
argument, usually the value of a tested expression. When the argument is
true, the test passes; when the argument is false, the test fails.

There are actually three possible outcomes of a test and corresponding
visualizations in the test runner. The outcome that we hope for is that all of
the assertions in the test are true, in which case the test passes. When all of
the tests pass, the bar at the top of the test runner turns green. However,
there are also two kinds of things that can go wrong when you run a test.
Most obviously, one of the assertions can be false, causing the test to fail.
This will turn the bar at the top of the test runner yellow and the failed
tests are listed at the middle pane on the right. However, it is also possible

156 SUnit

that some kind of error occurs during the execution of the test, such as a
message not understood error or an index out of bounds error. If an error occurs,
the assertions in the test method may not have been executed at all, so we
can’t say that the test has failed; nevertheless, something is clearly wrong!
Erroneous tests cause the bar at the top of the test runner to turn red and
the erroneous tests are listed in the bottom pane on the right.

N Modify your tests to provoke both errors and failures.

7.5 The SUnit cook book

This section will give you more details on how to use SUnit. If you have
used another testing framework such as JUnit!, much of this will be familiar,
since all these frameworks have their roots in SUnit. Normally you will use
SUnit’s GUI to run tests, but there are situations where you may not want
to use it.

Other assertions

In addition to assert: and deny:, several other methods can be used to make
assertions.

First, assert:description: and deny:description: take a second argument which
is a message string that can be used to describe the reason for the failure if
it is not obvious from the test itself. These methods are described in Sec-
tion 7.7. Next, SUnit provides two additional methods, should:raise: and
shouldnt:raise: for testing exception propagation. For example, you would
use (self should: aBlock raise: anException) to test that a particular exception is
raised during the execution of aBlock. Method 7.6 illustrates the use of
should:raise:.

N Try running this test.

Note that the first argument of the should: and shouldnt: methods is a block
that contains the expression to be evaluated.

Method 7.6: Testing error raising.
ExampleSetTest»testlllegal

self
should: [empty at: 5] raise: Error;
should: [empty at: 5 put: #zork] raise: Error.

1junit.org

junit.org

12 T N R

The SUnit cook book 157

SUnit is portable: it can be used from all dialects of Smalltalk. To make
SUnit portable, its developers factored-out the dialect-dependent aspects.
The class method TestResult class»error answers the system’s error class in a
dialect-independent fashion. You can take advantage of this: If you want to
write tests that will work in any dialect of Smalltalk, instead of method 7.6
you would write:

Method 7.7: Portable error handling.
ExampleSetTest»testlllegal

self
should: [empty at: 5] raise: TestResult error;
should: [empty at: 5 put: #zork] raise: TestResult error.

5d Give it a try.

Running a single test

Normally, you will run your tests using the Test Runner. If you don’t want
to launch the Test Runner from the menus, you can execute TestRunner open
as a printit.

You can run a single test as follows:

ExampleSetTest run: #testRemove — 1 runin 0:00:00:00, 1 passes, 0
expected failures, 0 failures, 0 errors, 0 unexpected passes

Running all the tests in a test class

Any subclass of TestCase responds to the message suite, which will build a
test suite that contains all the methods in the class whose names start with
the string “test”. To run the tests in the suite, send it the message run. For
example:

ExampleSetTest suite run — 5 runin 0:00:00:01, 5 passes, 0 expected failures,
0 failures, 0 errors, 0 unexpected passes

Must I subclass TestCase?

In JUnit you can build a TestSuite from an arbitrary class containing tests
methods. In Smalltalk you can do the same but you will then have to create
a suite by hand and your class will have to implement all the essential

158 SUnit

TestCase methods like assert:. We recommend that you not try to do this.
The framework is there, use it.

7.6 The SUnit framework

The core of SUnit consists of four main classes: TestCase, TestSuite, TestResult
, and TestResource, as shown in Figure 7.2. The notion of a test resource
represents a resource that is expensive to set-up but which can be used
by a whole series of tests. A TestResource specifies a setUp method that
is executed just once before a suite of tests; this is in distinction to the
TestCase»setUp method, which is executed before each test.

Figure 7.2: The four classes representing the core of SUnit.

TestCase

TestCase is an abstract class that is designed to be subclassed; each of its
subclasses represents a group of tests that share a common context (that
is, a test suite). Each test is run by creating a new instance of a subclass of
TestCase, running setUp, running the test method itself, and then running
tearDown.

The context is specified by instance variables of the subclass and by
the specialization of the method setUp, which initializes those instance

The SUnit framework 159

variables. Subclasses of TestCase can also override method tearDown, which
is invoked after the execution of each test, and can be used to release any
objects allocated during setUp.

TestSuite

Instances of the class TestSuite contain a collection of test cases. An instance
of TestSuite contains tests, and other test suites. That is, a test suite con-
tains sub-instances of TestCase and TestSuite. Both individual TestCases and
TestSuites understand the same protocol, so they can be treated in the same
way; for example, both can be run. This is in fact an application of the
composite pattern in which TestSuite is the composite and the TestCases are
the leaves — see Design Patterns for more information on this pattern.

TestResult

The class TestResult represents the results of a TestSuite execution. It records
the number of tests passed, the number of tests failed, and the number of
errors raised.

TestResource

One of the important features of a suite of tests is that they should be
independent of each other: The failure of one test should not cause an
avalanche of failures of other tests that depend upon it, nor should the
order in which the tests are run matter. Performing setUp before each test
and tearDown afterwards helps to reinforce this independence.

However, there are occasions where setting up the necessary context is
just too time-consuming for it to be practical to do once before the execution
of each test. Moreover, if it is known that the test cases do not disrupt the
resources used by the tests, then it is wasteful to set them up afresh for
each test; it is sufficient to set them up once for each suite of tests. Suppose,
for example, that a suite of tests need to query a database, or do some
analysis on some compiled code. In such cases, it may make sense to set up
the database and open a connection to it, or to compile some source code,
before any of the tests start to run.

Where should we cache these resources, so that they can be shared
by a suite of tests? The instance variables of a particular TestCase sub-
instance won’t do, because such an instance persists only for the duration

2Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software. Reading,
Mass.: Addison Wesley Professional, 1995, ISBN 978-0201633610.

N o o s o N =

160 SUnit

of a single test. A global variable would work, but using too many global
variables pollutes the namespace, and the binding between the global
and the tests that depend on it will not be explicit. A better solution is
to put the necessary resources in a singleton object of some class. The
class TestResource exists to be subclassed by such resource classes. Each
subclass of TestResource understands the message current, which will answer
a singleton instance of that subclass. Methods setUp and tearDown should
be overridden in the subclass to ensure that the resource is initialized and
finalized.

One thing remains: Somehow, SUnit has to be told which resources are
associated with which test suite. A resource is associated with a particular
subclass of TestCase by overriding the class method resources. By default,
the resources of a TestSuite are the union of the resources of the TestCases
that it contains.

Here is an example. We define our own subclass of TestResource called
MyTestResource and we associate it with MyTestCase by specializing the class
method resources to return an array of the test classes that it will use.

Class 7.8: An example of a TestResource subclass.

TestResource subclass: #MyTestResource
instanceVariableNames: "

MyTestCase class»resources
"associate the resource with this class of test cases”

A {MyTestResource}

In your tests, you can now access the test resource through MyTestCase
current. This message will return the test resource instance that is initialized
for the current run of the test suite.

7.7 Advanced features of SUnit

In addition to TestResource, the current version of SUnit contains assertion
description strings, logging support, and resumable test failures.

Assertion description strings

The TestCase assertion protocol includes a number of methods that allow
the programmer to supply a description of the assertion. The description is
a String; if the test case fails, this string will be displayed by the test runner.
Of course, this string can be constructed dynamically.

Advanced features of SUnit 161

lel
e =42
self
assert: e =23
description: 'expected 23, got ', e printString.

The relevant methods in TestCase are:

#assert:description:
#deny:description:
#should:description:
#shouldnt:description:

Logging support

The description strings described above may also be logged to a Stream
such as the Transcript, or a file stream. You can choose whether to log by
overriding TestCase»isLogging in your test class; you must also choose where
to log by overriding TestCase~failureLog to answer an appropriate stream.

Continuing after a failure

SUnit also allows us to specify whether or not a test should continue
after a failure. This is a really powerful feature that uses the exception
mechanisms offered by Smalltalk. To see what this can be used for, let’s
look at an example. Consider the following test expression:

(1 to: 10) do: [:each | self assert: each even]

In this case, as soon as the test finds the first element of the collection that
isn’t even, the test stops. However, we would usually like to continue, and
see both how many elements, and which elements, aren’t even, and maybe
also log this information. You can do this as follows:

(1 to: 10) do: [:each |
self
assert: each even
description: each printString , ' is not even'
resumable: true].

This will print out a message on your logging stream for each element that
fails. It doesn’t accumulate failures, i.e., if the assertion fails 10 times in your
test method, you'll still only see one failure. All the other assertion methods

162 SUnit

that we have seen are not resumable; assert: p description: s is equivalent to
assert: p description: s resumable: false.

7.8 The implementation of SUnit

The implementation of SUnit makes an interesting case study of a Smalltalk
framework. Let’s look at some key aspects of the implementation by fol-
lowing the execution of a test.

Running one test

To execute one test, we evaluate the expression (aTestClass selector: aSymbol)
run.

% | :TestCase | | :TestResult |
1 I]

|

!

|
] run |
P —

run: C: runCase: .-
i) .

runCase

Figure 7.3: Running one test.

The method TestCase»run creates an instance of TestResult that will accu-
mulate the results of the tests. Then the TestCase instance sends itself the
message run:. (See Figure 7.3.)

The implementation of SUnit 163

Method 7.9: Running a test case.
TestCase»run

| result |

result := TestResult new.
self run: result.

A result

The method TestCase»run: sends the message runCase: to the test result:

Method 7.10: Passing the test case to the test result.
TestCase~»run: aResult

aResult runCase: self.

The method TestResult»runCase: sends the message runCase to an individ-
ual test, to execute the test. TestResult»runCase deals with any exceptions
that may be raised during the execution of a test, runs a TestCase by sending
it the message runCase, and counts the errors, failures, and passes.

Method 7.11: Catching test case errors and failures.
TestResult»runCase: aTestCase

| testCasePassed timeToRun |
testCasePassed := true.

[timeToRun := [aTestCase runCase] timeToRunWithoutGC]

on: self class failure

do: [:signal |
failures add: aTestCase.
testCasePassed := false.
signal return: false]

on: self class error

do: [:signal |
errors add: aTestCase.
testCasePassed := false.
signal return: false].

testCasePassed ifTrue: [passed add: aTestCase].
self durations at: aTestCase put: timeToRun.

The method TestCase»runCase sends the messages setUp and tearDown as
shown below.

164 SUnit

Method 7.12: Test case template method.

TestCase»runCase
"Run this TestCase. Time out if the test takes too long."

[self timeout: [self setUp] after: self timeoutForSetUp.
self timeout: [self performTest] after: self timeoutForTest]
ensure: [self tearDown].

Running a TestSuite

To run more than one test, we send the message run to a TestSuite that con-
tains the relevant tests. TestCase class provides some functionality to build a
test suite from its methods. The expression MyTestCase buildSuiteFromSelectors
returns a suite containing all the tests defined in the MyTestCase class. The
core of this process is:

Method 7.13: Auto-building the test suite.
TestCase class»testSelectors

A (self selectors asArray select: [:each |
(each beginsWith: 'test') and: [each numArgs isZero]]) sort

The method TestSuite»run creates an instance of TestResult, verifies that
all the resources are available, and then sends itself the message run:, which
runs all the tests in the suite. All the resources are then released.

Method 7.14: Running a test suite.
TestSuite»run

| result |
result := self resultClass new.
self resources do: [:resource |

res isAvailable ifFalse: [* resource signallnitializationError]].
[self run: result] ensure: [self resources do: [:each | each reset]].
A result

Method 7.15: Passing the test suite to the test result.
TestSuite»run: aResult

self tests do: [:each |
self sunitChanged: each.
each run: aResult].

Some advice on testing 165

The class TestResource and its subclasses keep track of their currently created
instances (one per class) that can be accessed and created using the class
method current. This instance is cleared when the tests have finished running
and the resources are reset.

The resource availability check makes it possible for the resource to
be re-created if needed, as shown in the class method TestResource class»
isAvailable. During the TestResource instance creation, it is initialized and the
method setUp is invoked.

Method 7.16: Test resource availability.
TestResource class»isAvailable

A self current notNil

Method 7.17: Test resource creation.
TestResource class»current

current ifNil: [current := self new].

A current

Method 7.18: Test resource initialization.
TestResource»initialize

self setUp.

7.9 Some advice on testing

While the mechanics of testing are easy, writing good tests is not. Here is
some advice on how to design tests.

Feathers’ Rules for Unit tests. Michael Feathers, an agile process consul-
tant and author, writes:?

A test is not a unit test if:
o it talks to the database,
o it communicates across the network,
e it touches the file system,

3See https://web.archive.org/web/20060212020903/http://www.artima.com/weblogs/viewpost.jsp?thread=
126923.

https://web.archive.org/web/20060212020903/http://www.artima.com/weblogs/viewpost.jsp?thread=126923
https://web.archive.org/web/20060212020903/http://www.artima.com/weblogs/viewpost.jsp?thread=126923

166 SUnit

e it can’t run at the same time as any of your other unit tests,
or
* you have to do special things to your environment (such as
editing config files) to run it.
Tests that do these things aren’t bad. Often they are worth writing,
and they can be written in a unit test harness. However, it is
important to be able to separate them from true unit tests so that
we can keep a set of tests that we can run fast whenever we make
our changes.

Never get yourself into a situation where you don’t want to run your
unit test suite because it takes too long.

Unit Tests vs. Acceptance Tests. Unit tests capture one piece of function-
ality, and as such make it easier to identify bugs in that functionality.
As far as possible try to have unit tests for each method that could
possibly fail, and group them per class. However, for certain deeply
recursive or complex setup situations, it is easier to write tests that
represent a scenario in the larger application; these are called accep-
tance tests or functional tests. Tests that break Feathers’ rules may
make good acceptance tests. Group acceptance tests according to the
functionality that they test. For example, if you are writing a com-
piler, you might write acceptance tests that make assertions about the
code generated for each possible source language statement. Such
tests might exercise many classes, and might take a long time to run
because they touch the file system. You can write them using SUnit,
but you won't want to run them each time you make a small change,
so they should be separated from the true unit tests.

Black’s Rule of Testing. For every test in the system, you should be able
to identify some property for which the test increases your confidence.
Obviously there should be no important property that you are not
testing. This rule states the less obvious fact that there should be
no test that does not add value to the system by increasing your
confidence that a useful property holds. For example, several tests
of the same property do no good. In fact they do harm: They make
it harder to infer the behavior of the class by reading the tests, and
because one bug in the code might then break many tests at the same
time. Have a property in mind when you write a test.

710 Chapter summary

This chapter explained why tests are an important investment in the future
of your code. We explained in a step by step fashion how to define a

Chapter summary 167

few tests for the class Set. Then we gave an overview of the core of the
SUnit framework by presenting the classes TestCase, TestResult, TestSuite,
and TestResources. Finally, we looked deep inside SUnit by following the
execution of a test and a test suite.

* To maximize their potential, unit tests should be fast, repeatable,
independent of any direct human interaction, and cover a single unit
of functionality.

¢ Tests for a class called MyClass belong in a class classed MyClassTest,
which should be introduced as a subclass of TestCase.

¢ Initialize your test data in a setUp method.
¢ Each test method should start with the word test.
e Use the TestCase methods assert:, deny: and others to make assertions.

* Run tests using the SUnit test runner tool (in the tool bar).

Chapter 8

Basic Classes

Most of the power of Smalltalk is not in the language but the class libraries.
To program effectively with Smalltalk, you need to learn how the class
libraries support the language and environment. The class libraries are
entirely written in Smalltalk and we can easily extend them since a package
may add new functionality to a class even if it does not define this class.

Our goal here is not to present in tedious detail the whole of the Squeak
class library, but rather to point out the key classes and methods that you
will need to use or override to program effectively. In this chapter we cover
the basic classes that you will need for nearly every application: Object,
Number and its subclasses, Character, String, Symbol, Boolean, and Exception. In
the following chapter Chapter 9, we will discuss the equally important
Collection subclasses.

8.1 Object

Object is the root of the inheritance hierarchy. Actually, in Squeak the true
root of the hierarchy is ProtoObject, which is used to define minimal entities
that masquerade as objects, but we can ignore this point for the time being.

Object can be found in the Kernel-Objects category. Astonishingly, there
are almost 500 methods to be found here (including extensions). In other
words, every class that you define will automatically provide these meth-
ods, whether you know what they do or not.

The class comment for the Object states:

170 Basic Classes

Object is the root class for almost all of the other classes in the class
hierarchy. The exceptions are ProtoObject (the superclass of Object)
and its subclasses.

Class Object provides default behavior common to all normal objects,
such as access, copying, comparison, error handling, message sending,
and reflection. Also, utility messages that all objects should respond
to are defined here.

Object has no instance variables, nor should any be added. This is due
to several classes of objects that inherit from Object that have special
implementations (Smallinteger and UndefinedObject for example) or
the VM knows about and depends on the structure and layout of
certain standard classes.

If we begin to browse the protocols on the instance side of Object we
start to see some of the key behavior it provides.

Printing

Every object in Smalltalk can return a printed form of itself. You can
select any expression in a workspace and select the print it menu item: This
executes the expression and asks the returned object to print itself. In
fact, this sends the message printString to the returned object. The method
printString, which is a template method, at its core sends the message printOn:
to its receiver. The message printOn: is a hook that can be specialized.

Object»printOn: is very likely one of the methods that you will most fre-
quently override. This method takes as its argument a Stream (for more
on streams see Chapter 10) on which a String representation of the object
will be written. The default implementation simply writes the class name

“u_

preceded by “a” or “an”. Object»printString returns the String that is written.

For example, the class Browser does not redefine the method printOn: and
sending the message printString to a Browser instance executes the method
defined in Object.

Browser new printString —> 'a Browser'

In contrast, the class Packagelnfo shows an example of printOn: specializa-
tion. In addition to the usual name of the class, it prints the name of the
package as shown by the code below which prints an instance of the class.

o o A @ p o=

Object 171

Method 8.1: printOn: redefinition.
PackaglInfo»printOn: aStream
super printOn: aStream.
aStream
nextPut: $(;
nextPutAll: self packageName;
nextPut: $)

Object packagelnfo printString —— 'a Packagelnfo(Kernel)'

Note that the message printOn: is not the same as storeOn:. The message
storeOn: puts an expression that can be used to recreate the receiver on its
argument stream . This expression is evaluated when the stream is read
using the message readFrom:. printOn: just returns a textual version of the
receiver that may or may not be a self-evaluating expression.

A word about representation and self-evaluation. In functional program-
ming, expressions return values when executed. In Smalltalk, messages
(expressions) return objects (values). Some objects have the nice properties
that their value is themselves. For example, the value of the object true
is itself i.e., the object true. We call such objects self-evaluating objects. You
can see a printed version of an object value when you print the object in a
workspace. Here are some examples of such self-evaluating expressions.

true — true
3@4 — 3@4
$a — $a

#123) — #(123)

Note that some objects, such as arrays, are self-evaluating or not de-
pending on the objects they contain. For example, an array of booleans is
self-evaluating whereas an array of persons is not. The following example
shows that a dynamic array is self-evaluating only if its elements are:

{10 @ 10 . 100 @ 100} — {10@10 . 100@100}
{Browser new . 100 @ 100} —— {a Browser. 100@100}

Remember that literal arrays can only contain literals. Hence the follow-
ing array does not contain two points but rather six literal elements.

#(10 @ 10100 @ 100) —— #(10 #@ 10 100 #@ 100)

Lots of printOn: method specializations implement self-evaluating be-
havior. The implementations of Point»printOn: and Interval»printOn: are self-
evaluating.

172 Basic Classes

Method 8.2: Point print string definition that enables self-evaluation.

Point»printOn: aStream
"The receiver prints on aStream in terms of infix notation."

x printOn: aStream.
aStream nextPut: $@.

y printOn: aStream.

Method 8.3: Interval print string definition that enables self-evaluation.
Interval»printOn: aStream

aStream nextPut: $(;

print: start;

nextPutAll: ' to: ';

print: stop.
step ~= 1 ifTrue: [aStream nextPutAll: ' by: '; print: step].
aStream nextPut: $).

1t0: 10 — (1to:10) ‘intervals are self-evaluating”

Identity and equality

In Smalltalk, the message = tests object equality (i.e., whether two objects
represent the same value) whereas == tests object identity (i.e., whether two
expressions represent the same object).

The default implementation of object equality is to test for object iden-
tity:

Method 8.4: Object equality.

Object»= anObject
"Answer whether the receiver and the argument represent the same object.
If = is redefined in any subclass, consider also redefining the message hash.”

A self == anObject

This is a method that you will frequently want to override. Consider
the case of Complex numbers:

(1+2i)=(1+2i) — true "same value"
(1+2i)==(1+2i) —— false 'but different objects"

This works because Complex overrides = as follows:

[TS R N SR PR

FNE SR R

Object 173

Method 8.5: Equality for complex numbers.
Complex»= anObject

anObject isNumber ifFalse: [* false].

anObject isComplex
ifTrue: [* real = anObject real and: [imaginary = anObject imaginary]]
ifFalse: [* anObject adaptToComplex: self andSend: #=]

The default implementation of Object»~= simply negates Object»=, and
should not normally need to be changed.

(1+2i))~=(1+4i) — true

If you override =, you should override hash.

If instances of your class are ever used as keys in a Dictionary, then you
should make sure that instances that are considered to be equal have the
same hash value. This is because the implementation of Dictionary will only
use the hash to determine whether it includes an object as a key:

Method 8.6: Hash must be reimplemented for complex numbers.

Complex»hash
"Hash is reimplemented because = is implemented.”

A real hash bitXor: imaginary hash

Although you should override = and hash together, you should never
override ==. (The semantics of object identity is the same for all classes.) ==
is a primitive method of ProtoObject.

Class membership

Several methods allow you to query the class of an object.

class. You can ask any object about its class using the message class.

1class —— Smallinteger

Conversely, you can ask if an object is an instance of a specific class:

1 isMemberOf: Smallinteger —— true "must be precisely this class"
1 isMemberOf: Integer — false
1 isMemberOf: Number — false
1 isMemberOf: Object — false

174 Basic Classes

Since Smalltalk is written in itself, you can really navigate through its
structure using the right combination of superclass and class messages (see
Chapter 12).

isKindOf:. Object»isKindOf: answers whether the receiver’s class is either the
same as, or a subclass of the argument class.

isKindOf: Smalllnteger —— true

1
1 isKindOf: Integer — true

1 isKindOf: Number — true

1 isKindOf: Object — true

1 isKindOf: String — false

1/ 3 isKindOf: Number — true
1/ 3 isKindOf: Integer — false

1 /3 which is a Fraction is a kind of Number, since the class Number is a
superclass of the class Fraction, but 1/3 is not a Integer.

respondsTo:. Object»respondsTo: answers whether the receiver understands
the message selector given as an argument.

1 respondsTo: #, — false

Normally, it is a bad idea to query an object for its class, or to ask it which
messages it understands. Instead of making decisions based on the class
of object, you should simply send a message to the object and let it decide
(i.e., based on its class) how it should behave.

Copying

There are several ways to copy objects in Squeak, depending on what you
want to copy. For example, when you copy a collection, you might want
to or might not want to copy all its elements. If you are not sure what the
right way to copy an object is, the first message to send is copy, as it takes
care of copying the right instance variables for you.

To understand the other messages for copying, we will discuss different
ways at looking at copying one after another. In general, copying objects
introduces some subtle issues. Since instance variables are accessed by
reference, a shallow copy of an object would share its references to instance
variables with the original object:

array1 := {{'harry'} }.
arrayl — #(#('harry"))

Object 175

array2 := array1 shallowCopy.

array2 — #(#('harry")

(array1 at: 1) at: 1 put: 'sally".

arrayl — #(#('sally")

array2 — #(#('sally')) "the subarray is shared"

Object»shallowCopy creates a shallow copy of an object, which means that
the content of the object is not copied. Since a2 is only a shallow copy of at,
the two arrays share a reference to the nested Array that they contain.

For some classes even a shallow copy does not make sense if instances
are unique, for example for the classes Boolean, Character, Smallinteger, Symbol
and UndefinedObject. These classes override Object»shallowCopy and instances
simply return themselves.

Object»copyTwoLevel can be used when a simple shallow copy does not
suffice. It copies the object and its contents, but not deeper.

array1 :={{'harry'} }.

array?2 := array1 copyTwolLevel.

(array1 at: 1) at: 1 put: 'sally’.

arrayl — #(#('sally")

array2 — #(#('harry')) "fully independent state”

Object»deepCopy makes an arbitrarily deep copy of an object.

arrayl :={{{'harry'}}}.
array2 := array1 deepCopy.
(array1 at: 1) at: 1 put: 'sally".
arrayl —— #(#('sally")
array2 —— #(##('harry")))

However, deepCopy does not keep track of previously copied objects.
This means that it does not preserve the identity of re-occurring objects.
When the object to be copied contains another object twice in its contents,
there will be two new objects.
object := {harry'}.
array := {object . object}.
array first == array second — true
copiedArray := array deepCopy.
copiedArray first == copiedArray second — false

Also, not keeping track of previously copied objects, means that deepCopy
will not terminate when applied to a mutually recursive structure.
array1 := {'harry'}.
array?2 := {array1}.
array1 at: 1 put: array2.

F N R CR

176 Basic Classes

array1 deepCopy — ... does not terminate!

Another way to copy an object is provided by Object»deepCopy: It creates
arbitrarily deep copies of objects but preserves object identities and cycles.
array1 := {'harry'}.
array2 := {array1}.
array1 at: 1 put: array2.
copiedArray := array1 veryDeepCopy.
copiedArray first first = copiedArray — true

Whether any of these four copy methods is the right one depends on
the meaning of the object and its instance variables. As this can not be
decided in general for all objects and all use cases, Object»copy delegates
this decision to specific subclasses. Object»copy first creates a shallow copy,
and then asks this shallow copy to copy any instance variables that should
be copied by sending postCopy to it.

Method 8.7: Copying objects as a template method.
Object»copy
"Answer another instance just like the receiver. Subclasses typically override
postCopy; they typically do not override shallowCopy."

A self shallowCopy postCopy

You should override postCopy to copy any instance variables that should
not be shared. postCopy should always do a super postCopy. For example,
a Form object has instance variables for width, height, bit depth, an offset,
and the actual bits. As the first four instance variables are all described by
numbers, there is no need to copy them as you can see in postCopy.

Method 8.8: Copying objects as a template method.
Form»postCopy

super postCopy.
bits := bits copy.

Debugging

The most important method here is halt. In order to set a breakpoint in a
method, simply insert the message send self halt at some point in the body
of the method. When this message is sent, execution will be interrupted
and a debugger will open to this point in your program. (See Chapter 6 for
more details about the debugger.)

12 B N R OO

Object 177

The next most important message is assert:, which takes a block as its
argument. If the block returns true, execution continues. Otherwise, an
AssertionFailure exception will be raised, which is a subclass of Error. If this
exception is not otherwise caught, the debugger will open to this point in
the execution. assert: is especially useful to support design by contract. The
most typical usage is to check non-trivial pre-conditions to public methods
of objects. Stack»pop could easily have been implemented as follows:

Method 8.9: Checking a pre-condition.

Stack»pop
"Return the first element and remove it from the stack."

self assert: [self isEmpty not].
A self linkedList removeFirst element

Do not confuse Object»assert: with TestCase»assert:, which occurs in the
SUnit testing framework (see Chapter 7). While the former expects a block
as its argument!, the latter expects a Boolean. Although both are useful for
debugging, they each serve a very different intent.

Error handling

This protocol contains several methods useful for signaling run-time errors.

Sending self deprecated: anExplanationString signals that the current method
should no longer be used, if deprecation has been turned on in the debug
protocol of the preference browser. The String argument should offer an
alternative.

Object new exploreAndYourself — "Object>>#exploreAndYourself has been
deprecated. Use #explore because it does not return the tool window anymore.
Only calls via ToolSet do so.”

doesNotUnderstand: is sent whenever a message lookup fails. The default
implementation, i.e., Object»doesNotUnderstand: will trigger the debugger at
this point. It may be useful to override doesNotUnderstand: to provide some
other behavior.

Object»error and Object»error: are generic methods that can be used to raise
exceptions. (Generally, it is better to raise your own custom exceptions, so
you can distinguish errors arising from your code from those coming from
kernel classes.)

Abstract methods in Smalltalk are implemented by convention with the
body self subclassResponsibility. Should an abstract class be instantiated by ac-

1Actually, it will take any argument that understands value, including a Boolean.

N o o & w N o=

178 Basic Classes

cident, then calls to abstract methods will result in Object»subclassResponsibility
being evaluated.

Method 8.10: Signaling that a method is abstract.

Object»subclassResponsibility
"This message sets up a framework for the behavior of the class’ subclasses.
Announce that the subclass should have implemented this message."

A SubclassResponsibility
signal: ('My {1} subclass should have overridden {2}'
format: {self className. thisContext sender selector})

Magnitude, Number and Boolean are classical examples of abstract classes
that we shall see shortly in this chapter.

Numbernew + 1 — Error: My subclass should have overridden #+

self shouldNotimplement is sent by convention to signal that an inherited
method is not appropriate for this subclass. This is generally a sign that
something is not quite right with the design of the class hierarchy. Due to
the limitations of single inheritance, however, sometimes it is very hard
to avoid such workarounds. A typical example is Collection»remove: which
is inherited by Dictionary but flagged as not implemented. (A Dictionary
provides removeKey: instead.)

Testing

The methods in testing are not related to unit tests! A testing method lets
you ask a question about the state of the receiver and returns a Boolean.

Numerous testing methods are provided by Object. We have already
seen isComplex. Others include isArray, isBoolean, isBlock, isCollection, and so
on. Generally, such methods are to be avoided since querying an object for
its class is a form of violation of encapsulation. Instead of testing an object
for its class, one should simply send a request and let the object decide how
to handle it.

Nevertheless, some of these testing methods are undeniably useful.
The most useful are probably ProtoObject»isNil and Object»notNil (though the
Null Object’* design pattern can obviate the need for even these methods).

2Bobby Woolf, Null Object. In Robert Martin, Dirk Riehle and Frank Buschmann, editors,
Pattern Languages of Program Design 3. Addison Wesley, 1998.

Numbers 179

Initialize-release
A final key method that occurs not in Object but in ProtoObject is initialize.

Method 8.11: initialize as an empty hook method.

ProtoObject»initialize
"Subclasses should redefine this method to perform initializations on instance
creation”

The reason this is important is that in Squeak, the default new method
defined for every class in the system will send initialize to newly created
instances.

Method 8.12: new as a class-side template method.
Behavior»new

"Answer a new initialized instance of the receiver (which is a class) with no
indexable variables. Fail if the class is indexable."

A self basicNew initialize

This means that simply by overriding the initialize hook method, new
instances of your class will automatically be initialized. The initialize method
should normally perform a super initialize to establish the class invariant for
any inherited instance variables. (Note that this is not the standard behavior
of other Smalltalks.)

8.2 Numbers

Remarkably, numbers in Smalltalk are not primitive data values but true
objects. Of course, numbers are implemented efficiently in the virtual
machine, but the Number hierarchy is as perfectly accessible and extensible
as any other portion of the Smalltalk class hierarchy.

Numbers are found in the Kernel-Numbers category. The abstract root
of this hierarchy is Magnitude, which represents all kinds of classes sup-
porting comparison operators. Number adds various arithmetic and other
operators as mostly abstract methods. Float and Fraction represent, respec-
tively, floating-point numbers and fractional values. Integer is also abstract,
thus distinguishing between subclasses Smallinteger, LargePositivelnteger and
LargeNegativelnteger. For the most part, users do not need to be aware of
the difference between the three Integer classes, as values are automatically
converted as needed.

© © N o o & o N =

180 Basic Classes

A

Magnitude]

A\

/ AV

|Float| |Fraction | | Integer

Smallinteger | | LargePositivelnteger |

| LargeNegativelnteger |

Figure 8.1: The Number Hierarchy .

Magnitude

Magnitude is the parent not only of the Number classes, but also of other
classes supporting comparison operations, such as Character, Duration and
Timespan. (Complex numbers are not comparable, and so do not inherit from
Number.)

Methods < and = are abstract. The remaining operators are defined
generically. For example:

Method 8.13: Abstract comparison methods.

Magnitude» < aMagnitude
"Answer whether the receiver is less than the argument.”

A self subclassResponsibility
Magnitude» > aMagnitude
"Answer whether the receiver is greater than the argument.”

A aMagnitude < self

Number

Similarly, Number defines +, -, +, and / to be abstract, but all other arithmetic
operators are generically defined.

Numbers 181

All Number objects support various converting operators, such as asFloat
and asinteger. There are also numerous shortcut constructor methods, such
as i, which converts a Number to an instance of Complex with a zero real
component, and others which generate Durations, such as hour, day and week.

Numbers directly support common math functions such as sin, log, raiseTo:,
squared, sqrt, and so on.

Number»printOn: is implemented in terms of the abstract method Number»
printOn:base:. (The default base is 10.)

Testing methods include even, odd, positive, and negative. Unsurprisingly,
Number overrides isNumber. More interesting, isInfinite is defined to return
false.

Truncation methods include floor, ceiling, integerPart, fractionPart, and so on.

1+25 — 35 "Addition of two numbers"

10-8.5 — 15 "Subtraction of two numbers"
3.4+5 — 17.0 "Multiplication of two numbers"
8/2 — 4 "Division of two numbers"

2+ 3 — 8 "Exponentiation of a number"

12 =11 — false "Equality between two numbers"
12 ~=11 — true "Test if two numbers are different"
12>9 — true "Greater than"

12>=10 — true "Greater or equal than"

12<10 — false "Smaller than"

100 @ 10 — 100@10 "Point creation"

The following example works very well in Smalltalk:

1000 factorial / 999 factorial —— 1000

Note that 1000 factorial is really calculated which in many other languages
can be quite difficult to compute. This is an excellent example of automatic
coercion and exact handling of a number.

N Try to display the result of 1000 factorial. It takes more time to display it than
to calculate it!

Float

Float implements the abstract Number methods for floating point numbers.

More interestingly, Float class (i.e., the class-side of Float) provides meth-
ods to return the following constants: e, infinity, nan, and pi.

Float pi — 3.141592653589793
Float infinity — Infinity

182 Basic Classes

Float infinity isInfinite ~— true

Fraction

Fraction s are represented by instance variables for the numerator and de-
nominator, which should be Integers. Fractions are normally created by Integer
division (rather than using the constructor method Fraction»numerator:denominator:

):

6/8 — (3/4)
(6/8)class —— Fraction

Multiplying a Fraction by an Integer or another Fraction may yield an
Integer:

6/8+4 —> 3

Integer

Integer is the abstract parent of three concrete integer implementations. In
addition to providing concrete implementations of many abstract Number
methods, it also adds a few methods specific to integers, such as factorial,
atRandom, isPrime, ged:, and many others.

Smallinteger is special in that its instances are represented compactly —
instead of being stored as a reference, a Smallinteger is represented directly
using the bits that would otherwise be used to hold a reference. The first
bit of an object reference indicates whether the object is a Smallinteger or not.

The class methods minVal and maxVal tell us the range of a Smallinteger,
which depends on the bit-width of your processor.

When a Smallinteger goes out of this range, it is automatically converted
to a LargePositivelnteger or a LargeNegativelnteger, as needed:

(Smallinteger maxVal + 1) class — LargePositivelnteger
(Smallinteger minVal - 1) class —— LargeNegativelnteger

Large integers are similarly converted back to small integers when
appropriate.

As in most programming languages, integers can be useful for spec-
ifying iterative behavior. There is a dedicated method timesRepeat: for
evaluating a block repeatedly. We have already seen a similar example in
Chapter 3:

Characters 183

n:i=2.
3 timesRepeat: [n := n « n].
n — 256

8.3 Characters

Character is defined in the Collections-Strings category as a subclass of Magnitude
. Printable characters are represented in Squeak as $(char). For example:

$a<$b —> true

Non-printing characters can be generated by various class methods.
Character class»value: takes the Unicode (or ASCII) integer value as argument
and returns the corresponding character. The protocol accessing untypeable
characters contains a number of convenience constructor methods such as
backspace, cr, escape, euro, space, tab, and so on.

Character space = (Character value: Character space asciiValue) — true

The printOn: method is clever enough to know which of the three ways
to generate characters offers the most appropriate representation:

Character value: 1 — Character value: 1
Character value: 32 —— Character space
Character value: 97 — $a

Various convenient testing methods are built in: isAlphaNumeric, isCharacter
, isDigit, isLowercase, isVowel, and so on.

To convert a Character to the string containing just that character, send
asString. In this case asString and printString yield different results:
$a asString — 'a

$a — $a
$a printString — '$a’

Every Character is an immediate object, meaning that they are managed

by the VM via special pointers. As a consequence, characters are unique,
immutable instances.

8.4 Strings

The String class is also defined in the category Collections-Strings. A String is
an indexed Collection that holds only Characters.

184 Basic Classes

£\

| SequenceableCollection |

| ArrayedCollection |

|Array | [String| |Text|
5/ \Z

Symbol

Figure 8.2: The String Hierarchy.

In fact, String is abstract, and Squeak Strings are usually instances of the
concrete class ByteString, or WideString if they contain any special character
that cannot be represented by a single byte. The distinction between the
two does not concern you most of the time, as the two classes convert their
instances between each other automatically.

'hello world' class —— ByteString
(String value: 16r1F388) class —— WideString

The other important subclass of String is Symbol. The key difference
is that there is only ever a single instance of Symbol with a given value.
(This is sometimes called “the unique instance property”). In contrast, two
separately constructed Strings that happen to contain the same sequence of
characters will often be different objects.

'hel','lo' == 'hello' —— false
('hel','lo') asSymbol == #hello — true

Another important difference is that a String is mutable, whereas a Symbol is
immutable. Still, strings that are part of a method need to be copied before
altering them because they are constants:

'hello’ copy at: 2 put: $u; yourself — 'hullo’

1

Booleans 185

#hello at: 2 put: Ju — error!

It is easy to forget that since strings are collections, but they understand
the same messages that other collections do:

#hello indexOf: $0 — 5

Although String does not inherit from Magnitude, it does support the
usual comparing methods, <, =, and so on. In addition, String»match: is useful
for some basic glob-style pattern-matching:

'sor+' match: 'zorro' —— true

Should you need more advanced support for regular expressions, you
can also use the Regex extension methods defined on String from the Regex
-Core package that was originally developed by Vassili Bykov’s. For
example:

'zorro' matchesRegex: 'z[or]{4}' — true
'foo, bar, baz' copyWithRegex: "w+' matchesTranslatedUsing: [:match | match
capitalized] —— 'Foo, Bar, Baz'

Strings support rather a large number of conversion methods. Many
of these are shortcut constructor methods for other classes, such as asDate,
asFileName, and so on. There are also a number of useful methods for con-
verting a string to another string, such as capitalized and translateToLowercase.

For more on strings and collections, see Chapter 9.

8.5 Booleans

The class Boolean offers a fascinating insight into how much of the Smalltalk
language has been pushed into the class library. Boolean is the abstract
superclass of the Singleton classes True and False.

Most of the behavior of Booleans can be understood by considering the
method ifTrue:ifFalse:, which takes two Blocks as arguments.

4 factorial > 20 ifTrue: ['bigger’] ifFalse: ['smaller] — 'bigger'

The method is abstract in Boolean. The implementations in its concrete
subclasses are both trivial:

Method 8.14: Implementations of ifTrueifFalse:.
True»ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

186 Basic Classes

Boolean
ifTrue:ilfFalse:
not
&

True False
ifTrue:IfFalse: ifTrue:IfFalse:
not not
& &

Figure 8.3: The Boolean Hierarchy.

A trueAlternativeBlock value

False»ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

A falseAlternativeBlock value

In fact, this is the essence of OOP: When a message is sent to an object,
the object itself determines which method will be used to respond. In
this case an instance of True simply evaluates the frue alternative, while
an instance of False evaluates the false alternative. All the abstract Boolean
methods are implemented in this way for True and False. For example:

Method 8.15: Implementing negation.
True»not
"Negation--answer false since the receiver is true."

A false

Booleans offer several useful convenience methods, such as ifTrue;, ifFalse:,
and ifFalse:ifTrue. You also have a choice between eager and lazy conjunc-
tions and disjunctions.

(1>2)&(3<4) — false "must evaluate both sides”

(1>2)and: [3<4] — false "only evaluate receiver”

(1>2)and:[(1/0)>0] —— false ‘"argument block is never evaluated, so no
exception”

Exceptions 187

In the first example, both Boolean subexpressions are evaluated, since &
takes a Boolean argument. In the second and third examples, only the first is
evaluated, since and: expects a Block as its argument. The Block is evaluated
only if the first argument is true. While you have the choice, by default you
should always use the lazy conjunction (and:) and disjunction (or:).

N Try to imagine how and: as well as or: are implemented. Check the implemen-
tations in Boolean, True, and False.

8.6 Exceptions

Exceptions might not be the first class you will need when starting to explore
Squeak. However, Exceptions provide a fundamental way to influence the
control flow in your application, thus we already introduce them with the
other basic classes.

Similar to ifTrue: and ifFalse:, exceptions are not part of the language, but
implemented as ordinary objects in the class library. Thus, we can work
with them as we would work with any other object.

The common superclass of all exceptions is the abstract class Exception.
There are numerous subclasses of Exception representing specific exceptions,
such as ZeroDivide, MessageNotUnderstood, or ProgressNotification. In particular,
subclasses of Error represent erroneous situations, subclasses of Notification
indicate that something interesting occurred.

To raise an exception you can use the method signal. If you want to
pass a message along to help users figure out what happened, you can use
Exception»signal:. When an exception is not handled by anyone, a debugger
will open.

Error signal —— "Will open a debugger”
Error signal: 'We wanted this to happen' — "Will open a debugger with a
message"

As we do not want to present users with debuggers every time some-
thing unexpected happens, we can also handle exceptions directly within
our code. The methods for handling exceptions are associated with blocks,
so you can find them in the exceptions protocol of the class BlockClosure. To
catch an exception you can use the method BlockClosure»on:do:®, which takes
an exception class (or ExceptionSet) as the first argument and a block as the
second.

[(10 to: -10 by: -1) collect: [:i | 100/ i]]

3This is similar to try...catch in other languages.

188 Basic Classes

on: ZeroDivide
do: [:ex | "do nothing"].

The code above does not return a collection, as the block was interrupted
by the ZeroDivide exception before it was able to return the result of the
#collect: send.

Sometimes you might not be interested in handling an exception. In-
stead you might only want to ensure that some code is always executed
after your block, regardless of whether an exception occurs, the block re-
turns early, or the block finishes normally. To achieve this, use the method
BlockClosure»ensure:* which will always execute the block passed to it.

[connectedSocket sendData: 'my network message']
ensure: [connectedSocket close].

[(1 to: 10) pairsDo: [:number1 :number2 | | sum |
sum := number1 + number2.

sum isPrime ifTrue: [* sum]]]
ensure: [Transcript showln: 'My execution is ensured.'].

Further, Exceptions have several rich features such as resuming, restart-
ing, or signaling other exceptions. Browse the class Exception to learn more.

8.7 Chapter summary

¢ If you override = then you should override hash as well.

¢ Override postCopy to correctly implement copying for your objects.

¢ Send self halt to set a breakpoint.

® Return self subclassResponsibility to make a method abstract.

¢ To give an object a String representation you should override printOn:.
¢ Override the hook method initialize to properly initialize instances.

* Number methods automatically convert between Floats, Fractions and
Integers.

* Fractions truly represent rational numbers rather than floats.

¢ Characters are unique instances.

4This is similar to finally in other languages.

Chapter summary 189
* Strings are mutable; Symbols are not. However, take care that string
literals must not be mutated!
® Symbols are unique; Strings are not.

* Strings and Symbols are Collections and therefore support the usual
Collection methods.

Chapter 9

Collections

9.1 Introduction

To make good use of the collection classes, Smalltalk programmers needs
at least an overview of the wide variety of collections, and their commonal-
ities and differences. Programming with collections rather than individual
elements is an important way to raise the level of abstraction of a pro-
gram. The Lisp function map, which applies an argument function to every
element of a list and returns a new list containing the results is an early
example of this style. Smalltalk-80 adopted collection-based programming
as a central tenet.

Why is this a good idea? Suppose you have a data structure containing
a collection of student records and wish to perform some action on all
of the students that meet a particular criterion. Programmers used to an
imperative language might reach for a loop. But Smalltalk programmers
will write:

students select: [:each | each gpa < threshold].

which evaluates to a new collection containing precisely those elements of
students for which the bracketed function returns true!. The Smalltalk code
has the simplicity and elegance of a domain-specific query language.

The message select: is understood by all collections in Smalltalk. There
is no need to find out if the student data structure is an array or a linked list:
select: is understood by both. Note that this is quite different from using a
loop, where one must know whether students is an array or a linked list.

IThe expression in brackets can be thought of as a A-expression defining an anonymous
function Az.x gpa < threshold.

192 Collections

Collection
Bag
IdentityBag
Bitset
CharacterSet ...
HashedCollection
Dictionary
IdentityDictionary
WeaklIdentityDictionary
PluggableDictionary
OrderedDictionary
WeakKeyDictionary
WeaklIdentityKeyDictionary ...
WeakValueDictionary
Set
IdentitySet
KeyedSet
KeyedIdentitySet
PluggableSet
WeakSet
Heap
Matrix
SequenceableCollection
ArrayedCollection ...
Array
WeakArray
RunArray
String
ByteString
Symbol
ByteSymbol
WideSymbol
WideString
Text
Interval
LinkedList
OrderedCollection ...
SortedCollection

WeakOrderedCollection

Figure 9.1: The collection classes in Squeak. Indentation indicates subclass-
ing. ltalicized classes are abstract. Bold classes are described in the “Blue
Book". If the class name is followed by ... than some or all subclasses have
been omitted.

Introduction 193

Object

Collection

[SequenceableCollection] [HashedCollection] Bag |

[Dictionary| | Set |

PluggableSet

[Array]| [String] [Text] [SortedCollection] [IdentityDictionary |

[ArrayedCollection| [OrderedCollection|

[ByteString] [Symbol] [PluggableDictionary|

Figure 9.2: Some of the key collection classes in Squeak.

Protocol Methods

accessing size, capacity, at: anindex, at: anindex put: anElement

testing isEmpty, includes: anElement, contains: aBlock,
occurrencesOf: anElement

adding add: anElement, addAll: aCollection

removing remove: anElement, remove: anElement ifAbsent: aBlock,

removeAll: aCollection

enumerating | do: aBlock, collect: aBlock, select: aBlock, reject: aBlock,
detect: aBlock, detect: aBlock ifNone: aNoneBlock,

inject: aValue into: aBinaryBlock

converting asBag, asSet, asOrderedCollection, asSortedCollection,
asArray, asSortedCollection: aBlock
creation with: anElement, with:with:, with:with:with:,

with:with:with:with:, withAll: aCollection

Figure 9.3: Standard collection protocols.

194 Collections

Smalltalk provides a number of different kinds of collections, that all are
represented as subclasses of Collection. In Squeak, the abstract class Collection
has 99 subclasses, but many of these (like Bitmap, or CompiledMethod) are
special-purpose classes crafted for use in other parts of the system or in
applications, and hence not categorized as “Collections” by the system
organization. For the purposes of this chapter, we use the term “Collection
Hierarchy” to mean Collection and its 64 subclasses that are also in the system
categories labeled Collections-*. The full list is shown in Figure 9.12. In this
chapter, we focus mainly on the subset of collection classes shown in
Figure 9.2.

In Smalltalk, when one speaks of a collection without being more
specific about the kind of collection, one means an object that supports
well-defined protocols for testing membership and enumerating the el-
ements. All collections understand the testing messages includes:, isEmpty,
and occurrencesOf:. All collections understand the enumeration messages do:,
select:, reject: (which is the opposite of select:), collect: (which is like lisp’s
map), detect:ifNone:, inject:into: (which performs a left fold), and many more.
It is the ubiquity of this protocol, as well as its variety, that makes it so
powerful.

Figure 9.3 summarizes the standard protocols supported by most of the
classes in the collection hierarchy. These methods are defined, redefined,
optimized, or occasionally even forbidden by subclasses of Collection.

Beyond this basic uniformity, the different kinds of collections support
different protocols or provide different behavior for the same requests. Let
us briefly survey some of the key differences:

* Sequenceable: Instances of all subclasses of SequenceableCollection
start from a first element and proceed in a well-defined order to a last
element. Examples are LinkedList and OrderedCollection. In contrast, Set,
Bag, and Dictionary are not sequenceable.

e Sortable: A SortedCollection maintains its elements in sort order.

* Indexable: Most sequenceable collections are also indexable, that is,
elements can be retrieved with at:. Array is the familiar indexable data
structure with a fixed size; anArray at: n retrieves the n‘ element of
anArray, and anArray at: n put: v changes the n" element to v. LinkedLists

2The group of classes that appears in the “Blue Book” Adele Goldberg and David Robson,
Smalltalk 80: the Language and its Implementation. Reading, Mass.: Addison Wesley, May
1983 (URL: https://dl.acm.org/doi/pdf/10.5555/273), ISBN 0-201-13688-0 contains 17 subclasses
of Collection, and had already been redesigned several times before the Smalltalk-80 system
was released. This group of classes is often considered to be a paradigmatic example of
object-oriented design.

https://dl.acm.org/doi/pdf/10.5555/273

Implementations of collections 195

are sequenceable but not indexable, that is, they understand first and
last but not at:.

* Keyed: Instances of Dictionary and its subclasses are accessed by keys
instead of indices.

¢ Mutable: Most collections are mutable, but Intervals and Symbols are
not. An Interval is an immutable collection representing a range of
Integers. For example, 5to: 16 by: 2 is an interval that contains the
elements 5,7,9, 11, 13, and 15. It is indexable with at:, but cannot be
changed with at:put:.

* Growable: Instances of Interval and Array are always of a fixed size.
Other kinds of collections (sorted collections, ordered collections, and
linked lists) can grow after creation.

The class OrderedCollection is more general than Array; the size of an
OrderedCollection grows on demand, and it has methods for addFirst:
and addLast: as well as at: and at:put:.

* Accepts duplicates: A Set will filter out duplicates, but a Bag will not.
Dictionary, Set, and Bag use the = method provided by the elements;
the Identity variants of these classes use the == method, which tests
whether the arguments are the same object, and the Pluggable variants
use an arbitrary equivalence relation supplied by the creator of the
collection.

¢ Heterogeneous: Most collections will hold any kind of element. A
String, CharacterArray or Symbol, however, only holds Characters. An
Array will hold any mix of objects, but a ByteArray only holds Bytes,
an IntegerArray only holds Integers and a FloatArray only holds Floats.
A LinkedList is constrained to hold elements that conform to the Link
> accessing protocol.

9.2 Implementations of collections

These categorizations by functionality are not our only concern; we must
also consider how the collection classes are implemented. As shown in
Figure 9.4, five main implementation techniques are employed.

1. Arrays store their elements in the (indexable) instance variables of
the collection object itself; as a consequence, arrays must be of a fixed
size, but can be created with a single memory allocation message.

196 Collections

Arrayed | Ordered Hashed Linked Interval
Array OrderedCollection | Set LinkedList Interval
String SortedCollection | IdentitySet
Symbol Heap PluggableSet
Text Bag
IdentityBag
Dictionary
IdentityDictionary
PluggableDictionary

Figure 9.4: Some collection classes categorized by implementation tech-
nique.

2. OrderedCollection s and SortedCollection s store their elements in an array
that is referenced by one of the instance variables of the collection.
Consequently, the internal array can be replaced with a larger one if
the collection grows beyond its storage capacity.

3. The various kinds of set and dictionary also reference a subsidiary
array for storage but use the array as a hash table. Bags use a sub-
sidiary Dictionary, with the elements of the bag as keys and the number
of occurrences as values.

4. LinkedLists use a standard singly-linked representation.

5. Intervals are represented by three integers that record the two end-
points and the step size.

In addition to these classes, there are also “weak” variants of Array, Set,
and of the various kinds of dictionary. These collections hold onto their
elements weakly, i.e., in a way that does not prevent the elements from
being garbage collected. The Squeak virtual machine is aware of these
classes and handles them specially.

Readers interested in learning more about the Smalltalk collections are
referred to LaLonde and Pugh’s excellent book®.

9.3 Examples of key classes

We present now the most common or important collection classes using
simple code examples. The main protocols of collections are: at:, at:put: —
to access an element, add:, remove: — to add or remove an element, size,

3Wilf LaLonde and John Pugh, Inside Smalltalk: Volume 1. Prentice Hall, 1990, ISBN 0-13—
468414-1.

Examples of key classes 197

isEmpty, include: — to get some information about the collection, do:, collect:,
and select: — to iterate over the collection. Each collection may implement
or not such protocols, and when they do, they interpret them to fit with
their semantics. We suggest you browse the classes themselves to identify
specific and more advanced protocols.

We will focus on the most common collection classes: OrderedCollection,
Set, SortedCollection, Dictionary, Interval, and Array.

Common creation protocol. There are several ways to create instances
of collections. The most generic ones use the methods new: and with:. new:
aninteger creates a collection of size aninteger whose elements will all be nil.
with: anObject creates a collection and adds anObject to the created collection.
Different collections will realize this behavior differently.

You can create collections with initial elements using the methods with:,
with:with: etc. for up to six elements.

Array with: 1 — #(1)

Array with: 1 with:2 — #(12)

Array with: 1 with: 2 with: 3 — #(123)

Array with: 1 with: 2 with: 3with: 4 — #(1234)

Array with: 1 with: 2 with: 3 with: 4 with:5 — #(12345)

Array with: 1 with: 2 with: 3 with: 4 with: 5with:6 — #(123456)

You can also use addAll: to add all elements of one kind of collection to
another kind:

(1 to: 5) asOrderedCollection addAll: '678'; yourself — an OrderedCollection(1
2345%6 $7 $8)

Take care that addAll: also returns its argument, and not the receiver!
You can also create many collections with withAll: or newFrom:

#(7 31 3)

an OrderedCollection(7 3 1 3)
a SortedCollection(1 3 3 7)

a Set(713)

aBag(7133)

Array withAll: #(7 3 1 3)
OrderedCollection withAll: #(7 3 1 3)
SortedCollection withAll: #(7 3 1 3)
Set withAll: #(7 3 1 3)

Bag withAll: #(7 3 1 3)

LI

Set newFrom: #(7 3 1 3)
Bag newFrom: #(7 3 1 3)

a Set(7 1 3)
aBag(7133)

Array newFrom: #(7 3 1 3) — #(7313)
OrderedCollection newFrom: #(7 3 1 3) — an OrderedCollection(7
313)
SortedCollection newFrom: #(7 3 1 3) — a SortedCollection(1 3 3
7)
—
—

198 Collections

Dictionary newFrom: {1 ->7.2->3.3->1.4->3} —— a Dictionary(1->7 2->3
3->14->3)

Note that these two methods are not identical. In particular, Dictionary class»
withAll: interprets its argument as a collection of values, whereas Dictionary
class»newFrom: expects a collection of associations.

Array

An Array is a fixed-sized collection of elements accessed by integer indices.
Contrary to the C convention, the first element of a Smalltalk array is at
position 1 and not 0. The main protocol to access array elements is the
method at: and at:put:. at: aninteger returns the element at index anlinteger. at:
aninteger put: anObject puts anObject at index aninteger. Arrays are fixed-size
collections, therefore we cannot add or remove elements at the end of an
array. The following code creates an array of size 5, puts values in the first
3 locations, and returns the first element.

anArray := Array new: 5.
anArray at: 1 put: 4.
anArray at: 2 put: 3/ 2.
anArray at: 3 put: 'ssss'.
anArray at: 1 — 4

There are several ways to create instances of the class Array. We can use
new:, with:, and the constructs #() and { }.

Creation with new:. new: aninteger creates an array of size aninteger. Array
new: 5 creates an array of size 5.

Creation with with:. with: methods allows one to specify the value of the
elements. The following code creates an array of three elements consisting
of the number 4, the fraction 3/2, and the string 'lulu'.

Array with: 4 with: 3 /2 with: 'lulu’" — {4 . (3/2) . 'lulu'}

Literal creation with #(). #() creates literal arrays with static (or “literal”)
elements that have to be known when the expression is compiled, and not
when it is executed. The following code creates an array of size 2 where
the first element is the (literal) number 1 and the second the (literal) string
‘here'.

#(1 'here') size — 2

Examples of key classes 199

Now, if you evaluate #(1 + 2), you do not get an array with a single
element 3 but instead you get the array #(1 #+ 2) i.e., with three elements: 1,
the symbol #+, and the number 2.

#1+2) — #(1#+2)

This occurs because the construct #() causes the compiler to interpret literally
the expressions contained in the array. The expression is scanned and the
resulting elements are fed to a new array. Literal arrays contain numbers,
nil, true, false, symbols, and strings.

Dynamic creation with { }. Finally, you can create a dynamic array using
the construct {}. {a.b} is equivalent to Array with: a with: b. This means in
particular that the expressions enclosed by { and } are executed.

{1+2} — #@Q)

{(1/2) asFloat} at: 1 — 0.5

{10 atRandom . 1/3}at:2 — (1/3)

Element Access. Elements of all sequenceable collections can be accessed
with at: and at:put:.

anArray = #(1 2 3 4 5 6) copy.
anArray at:3 —> 3
anArray at: 3 put: 33.

anArray at: 3 — 33

Be careful with code that modifies literal arrays! The compiler allocates
space just once for literal arrays. Unless you copy the array, the second
time you evaluate the code your “literal” array may not have the value you
expect. (Without cloning, the second time around, the literal #(1 23 4 56)
will actually be #(1 2 33 4 5 6)!) Actually, future Squeak versions will forbid
the manipulation of literal objects because it can have some really weird
consequences. Dynamic arrays do not have this problem.

OrderedCollection

OrderedCollection is one of the collections that can grow, and to which ele-
ments can be added sequentially. It offers a variety of methods such as add:;,
addFirst:, addLast:, and addAll:.

ordCol := OrderedCollection new.
ordCol add: 'Seaside'; add: 'SqueakSource'; addFirst: 'Monticello'.
ordCol —— an OrderedCollection('Monticello’ 'Seaside' 'SqueakSource')

200 Collections

Removing Elements. The method remove: anObject removes the first oc-
currence of an object from the collection. If the collection does not include
such an object, it raises an error.

ordCol add: 'Monticello'.

ordCol remove: 'Monticello'.

ordCol — an OrderedCollection('Seaside' 'SqueakSource' 'Monticello')

There is a variant of remove: named remove:ifAbsent: that allows one to
specify as second argument a block that is executed in case the element to
be removed is not in the collection.

res := ordCol remove: 'zork' ifAbsent: [33].
res — 33

Conversion. It is possible to get an OrderedCollection from an Array (or any
other collection) by sending the message asOrderedCollection:

#(1 2 3) asOrderedCollection — an OrderedCollection(1 2 3)
'hello’ asOrderedCollection — an OrderedCollection($h $e $I $I $o)

Interval

The class Interval represents ranges of numbers. For example, the interval of
numbers from 1 to 100 is defined as follows:

Interval from: 1 to: 100 — (1 to: 100)

The printString of this interval reveals that the class Number provides us with
a convenience method called to: to generate intervals:

(Interval from: 1 to: 100) = (1 to: 100) — true

We can use Interval class»from:to:by: or Number»to:by: to specify the step
between two numbers as follow:

(Interval from: 1 to: 100 by: 0.5) size — 199
(1to: 100 by: 0.5) at: 198 — 99.5
(1/2to:54/7by:1/3)last — (15/2)

Dictionary

Dictionaries are important collections whose elements are accessed using
keys. Among the most commonly used messages of dictionary you will
find at:, at:put:, at:ifAbsent:, keys, and values.

Examples of key classes 201

colors := Dictionary new.

colors at: #yellow put: Color yellow.

colors at: #blue put: Color blue.

colors at: #red put: Color red.

colors at: #yellow —— Color yellow

colors keys — #(#red #yellow #blue)

colors values — {Color red . Color yellow . Color blue}

Dictionaries compare keys by equality. Two keys are considered to
be the same if they return true when compared using =. A common and
difficult to spot bug is to use as key an object whose = method has been rede-
fined but not its hash method. Both methods are used in the implementation
of Dictionary and when comparing objects.

Even though Dictionary is a subclass of Collection, we would normally not
want to use a Dictionary where a Collection is expected. In its implementation,
however, a Dictionary can be seen as consisting of an unordered collection of
associations (key-value pairs) created using the message ->. We can create a
Dictionary from a collection of associations, or we may convert a dictionary
to an array of associations.

colors := Dictionary newFrom: {#blue -> Color blue . #red -> Color red . #yellow ->
Color yellow}.

colors removeKey: #blue.

colors associations — {#red->Color red . #yellow->Color yellow}

IdentityDictionary. While a dictionary uses the result of the messages
= and hash to determine if two keys are the same, the class IdentityDictionary
uses the identity (message ==) of the key instead of its values, i.e., it consid-
ers two keys to be equal only if they are the same object.

Often Symbols are used as keys, in which case it is natural to use an
IdentityDictionary since a Symbol is guaranteed to be globally unique. If, on
the other hand, your keys are Strings, it is better to use a plain Dictionary, or
you may get into trouble:

a := 'foobar'.
b := a copy.
trouble := IdentityDictionary new.
trouble
at: a put: ‘first value';
at: b put: 'second value'.
trouble at: a — 'first value'
trouble at: b — 'second value'
trouble at: 'foobar' — ‘'first value'

202 Collections

aand b both point to a string 'foobar'. However, due to the copying in the first
line, a and b are different objects. So, although we have used 'foobar' twice
as a key to add values to the dictionary, we did not overwrite the ‘first value'
with 'second value', but actually added two associations to the dictionary. A
plain Dictionary would give the same value for any key equal to *foobar'.

The last line of the example is the result of the way literals are repre-
sented. The string 'foobar' occurs two times in the source code, in the first
line and in the last line of the example. The compiler, however, only allo-
cates the literal once, so a and the literal string 'foobar' are actually the same
object. As this requires intricate knowledge about the implementation of
the language, you should not depend on this behavior.

Set

The class Set is a collection which behaves like a mathematical set, i.e., as
a collection with no duplicate elements and without any order. In a Set
elements are added using the message add: and they cannot be accessed
using the message at:. Objects put in a set should implement the methods
hash and =.

s := Set new.
s add: 4/ 2; add: 4; add:2.
ssize — 2

You can also create sets using Set class»newFrom: or the conversion mes-
sage Collection»asSet:

(Set newFrom: #(12314))=#(1234321)asSet — true

asSet offers us a convenient way to eliminate duplicates from a collec-
tion:

{Color black . Color white . (Color red + Color blue + Color green)} asSet size
— 2

The result of the example is 2, as the color white was included twice in the
collection. Once as the result of Color white, and once as the result of the
combination of red, blue, and green.

A Bag is much like a Set except that it does allow duplicates:

{Color black . Color white . (Color red + Color blue + Color green)} asBag size
— 3

The set operations union, intersection, and membership test are imple-
mented by the Collection messages union:, intersection:, and includes:. The re-

Examples of key classes 203

ceiver is first converted to a Set, so these operations work for all kinds of
collections!

(1 to: 6) union: (4t0:10) — aSet(12345678910)
'hello’ intersection: 'there’ —— 'he'
#Smalltalk includes: $k — true

As we explain below, elements of a set are accessed using iterators (see
Section 9.4).

Analogous to Dictionary and IdentityDictionary, there is also an IdentitySet
class, which uses equality of identity instead of equality of value to deter-
mine whether an element is in the set or not.

SortedCollection

In contrast to an OrderedCollection, a SortedCollection maintains its elements in
sort order. You can create a SortedCollection by creating a new instance and
adding elements to it:

SortedCollection new add: 5; add: 2; add: 50; add: -10; yourself. — a
SortedCollection(-10 2 5 50)

While SortedCollections are quite useful if the collection should always
be in sorted order, they should not be used to simply sort a collection once.
To achieve the latter, you can use the messages sorted and sorted: which are
introduced in Section 9.6.

'hello' sorted — #($e $h $I $I $0)

If you really want a SortedCollection, you can more easily create one by
sending the conversion message asSortedCollection to an existing collection:

#(5 2 50 -10) asSortedCollection — a SortedCollection(-10 2 5 50)
'hello’ asSortedCollection —— a SortedCollection($e $h $I $I $0)

How do you get a String back from this result? asString unfortunately
returns the printString representation, which is not what we want:

'hello’ asSortedCollection asString —— 'a SortedCollection($e $h $I $I $o)'

The correct answer is to either use String class»newFrom:, String class»withAll:,
or Object»as::

'hello’ asSortedCollection as: String — 'ehllo’
String newFrom: (‘hello' asSortedCollection) —— ‘'ehllo’
String withAll: (‘hello’ asSortedCollection) — 'ehllo’

204 Collections

It is possible to have different kinds of elements in a SortedCollection as
long as they are all comparable. For example, we can mix different kinds of
numbers such as integers, floats, and fractions:

{6.2/-3.5.21} asSortedCollection — a SortedCollection((-2/3) 5 5.21)

Imagine that you want to sort objects that do not define the method
<= or that you would like to have a different sorting criterion. You can do
this by supplying a two-argument block, called a sort block, to the sorted
collection. For example, the class Color is not a Magnitude and it does not
implement the method <=, but we can specify a block stating that the colors
should be sorted according to their luminance (a measure of brightness).

col := SortedCollection sortBlock: [:c1 :c2 | ¢1 luminance <= c2 luminance].
col addAll: { Color red . Color yellow . Color white . Color black }.
col — a SortedCollection(Color black Color red Color yellow Color white)

String

A Smalltalk String represents a collection of Characters. It is sequenceable,
indexable, mutable, and homogeneous, containing only Character instances.
Like Arrays, Strings have a dedicated syntax, and are normally created by di-
rectly specifying a String literal within single quotes, but the usual collection
creation methods will work as well.

'Hello' — 'Hello'
String with: $A — A
String with: $h with: $i with: $! — 'hil’

String newFrom: #($h $e $1 $I o) —— ‘'hello’

In actual fact, String is abstract. When we instantiate a String we actually
get either an 8-bit ByteString or a 32-bit WideString. To keep things simple, we
usually ignore the difference and just talk about instances of String.

Two instances of String can be concatenated with a comma.

s:='no',"'"', 'worries'.
s —> 'noworries'

Since a string is a mutable collection we can also change it using the
method at:put:.

s at: 4 put: $h; at: 5 put: $u.
s —— 'no hurries'

Note that the comma method is defined by Collection, so it will work for
any kind of collection!

Examples of key classes 205

(11t0:3),'45" — #(123 %4 $5)

We can also modify an existing string in place using replaceAll:with: or
replaceFrom:to:with: as shown below. Note that the number of characters and
the interval should have the same size.

s replaceAll: $n with: $N.

s — 'No hurries'

s replaceFrom: 4 to: 5 with: 'wo'.
s — 'Noworries'

In contrast to the methods described above, the method copyReplaceAll:
creates a new string. (Curiously, here the arguments are substrings rather
than individual characters, and their sizes do not have to match.)

s copyReplaceAll: 'rries' with: 'mbats' —— 'No wombats'

If you take a quick look at the implementation of these methods, you
can see that they are defined not only for Strings but for any kind of
SequenceableCollection, so the following also works:

(1 to: 6) copyReplaceAll: (3 to: 5) with: {'three' . 'etc.} —— #(1 2 'three''etc.' 6)

String matching. It is possible to ask whether a pattern matches a string
by sending the match: message. The pattern can specify « to match an
arbitrary series of characters and # to match a single character. Note that
match: is sent to the pattern and not the string to be matched.

‘Linux «" match: 'Linux mag' — true
'GNU/Linux #ag' match: '"GNU/Linux tag' — true

Another useful method is findString:.

'GNU/Linux mag' findString: 'Linux' — 5
'GNU/Linux mag' findString: 'linux' startingAt: 1 caseSensitive: false — 5

More advanced pattern matching facilities based on regular expressions
are provided by the regular expression package named Regex, based on
the package by Vassili Bykov.

Some tests on strings. The following examples illustrate the use of isEmpty,
includes:, and anySatisfy: which are further messages defined not only on
Strings but more generally on collections.

206 Collections

'Hello' isEmpty —— false

'Hello' includes: $a — false

'JOE' anySatisfy: [:c | c isLowercase] —— false
'Joe' anySatisfy: [:c | c isLowercase] — true

String templating. There are three messages that are useful to manage
string templating: format:, expandMacros, and expandMacrosWith:.

{1} is {2} format: {'Squeak’ . 'cool} — 'Squeak is cool'

The messages of the expandMacros family offer variable substitution, us-
ing <n> for carriage return, <t> for tabulation, <1s>, <2s>, <3s> for arguments

(<1p>, <2p>, surrounds the string with single quotes), and <1?value1:value2>
for conditional.

'look-<t>-here' expandMacros — 'look- -here'

'<1s> is <2s>' expandMacrosWith: 'Squeak’ with: 'cool’ — 'Squeak is cool'

'<2s> is <1s>' expandMacrosWith: 'Squeak’ with: 'cool'’ =~ — 'cool is Squeak'

'<1p> or <1s>' expandMacrosWith: 'Squeak'’ with: 'cool' — "Squeak" or
Squeak'

'<1?Quentin:Thibaut> plays' expandMacrosWith: true — 'Quentin plays'

'<1?Quentin:Thibaut> plays' expandMacrosWith: false — 'Thibaut plays'

Some other utility methods. The class String offers numerous other utili-
ties including the messages asLowercase, asUppercase, and capitalized.

'XYZ' asLowercase — 'xyz'

'xyz' asUppercase — 'XYZ

‘hilaire’ capitalized — 'Hilaire'

'1.54" asNumber — 154
'this sentence is without a doubt far too long' contractTo: 20 —— 'this sent...too
long'

Note that there is generally a difference between asking an object its
string representation by sending the message printString and converting it

to a string by sending the message asString. Here is an example of the
difference.

#ASymbol printString — '#ASymbol'
#ASymbol asString — 'ASymbol’

A symbol is similar to a string but is guaranteed to be globally unique.
For this reason, symbols are preferred to strings as keys for dictionaries,

in particular for instances of IdentityDictionary. See also Chapter 8 for more
about String and Symbol.

Collection iterators 207

9.4 Collection iterators

In Smalltalk loops and conditionals are simply messages sent to collections
or other objects such as integers or blocks (see also Chapter 3). In addition to
low-level messages such as to:do: which evaluates a block with an argument
ranging from an initial to a final number, the Smalltalk collection hierarchy
offers various high-level iterators. Using such iterators will make your code
more robust and compact.

Iterating (do:)

The method do: is the basic collection iterator. It applies its argument
(a block taking a single argument) to each element of the receiver. The
following example prints all the strings contained in the receiver to the
transcript.

#('bob' 'joe' 'toto') do: [:each | Transcript show: each; cr].

Variants. There are a lot of variants of do:, such as do:without:, withindexDo:,
and reverseDo:: For the indexed collections (Array, OrderedCollection, and
SortedCollection), the method withindexDo: also gives access to the current
index. This method is related to to:do: which is defined in class Number.

#('bob' 'joe' 'toto') withIndexDo: [:each :i | each = 'joe' ifTrue: [*i]] — 2

For ordered collections, reverseDo: walks the collection in the reverse
order.

The following code shows an interesting message: do:separatedBy: which
executes the second block only in between two elements.

res :=".
#('bob' 'joe' 'toto’) do: [:e | res :=res , €] separatedBy: [res :=res, ".].
res — 'bob.joe.toto'

Note that this code is not especially efficient since it creates intermediate
strings and it would be better to use a write stream to buffer the result (see
Chapter 10):

String streamContents: [:stream | #('bob’ 'joe’ 'toto’) asStringOn: stream delimiter: "."]
— 'bob.joe.toto’

208 Collections

Dictionaries. When the message do: is sent to a dictionary, the elements
taken into account are the values, not the associations. The proper methods
to use are keysDo:, valuesDo:, and associationsDo:, which iterate respectively
on keys, values or associations.

colors := Dictionary newFrom: {#yellow -> Color yellow . #blue -> Color blue . #red ->

Color red}.
colors keysDo: [:key | Transcript show: key; cr]. "displays keys"
colors valuesDo: [:value | Transcript show: value;cr]. "displays values"

colors associationsDo: [:value | Transcript show: value; cr]. "displays associations"

Collecting results (collect:)

If you want to process the elements of a collection and produce a new
collection as a result, rather than using do:, you are probably better off using
collect;, or one of the other iterator methods. Most of these can be found in
the enumerating protocol of Collection and its subclasses.

Imagine that we want a collection containing the doubles of the elements
in another collection. Using the method do: we must write the following;:

double := OrderedCollection new.
#(1 23 45 6) do: [:e | double add: 2 = e].
double —— an OrderedCollection(24 68 10 12)

The method collect: executes its argument block for each element and returns
a new collection containing the results. Using collect: instead, the code is
much simpler:

#(123456)collect:[[e|2+xe] — #(24681012)

The advantages of collect: over do: are even more dramatic in the follow-
ing example, where we take a collection of integers and generate as a result
a collection of absolute values of these integers:

aCol = #(2-34-354-11).

result := aCol species new: aCol size.

1 to: aCol size do: [:each | result at: each put: (aCol at: each) abs].
resut — #(23435411)

Contrast the above with the much simpler following expression:

#(2 -34-354 -11) collect: [:each | eachabs] — #(23435411)

A further advantage of the second solution is that it will also work for sets
and bags.

Collection iterators 209

Generally, you should only use do: when you only want to send mes-
sages to each of the elements of a collection.

Note that sending the message collect: returns the same kind of collection
as the receiver. For this reason, the following code fails. (A String cannot
hold integer values.)

'abc’ collect: [:each | each asciiValue]. “error!"

Instead we must first convert the string to an Array or an OrderedCollection:

'abc' asArray collect: [:each | each asciiValue] — #(97 98 99)

We can even save one redundant copy operation of the string by using
collect:as: instead:

'abc' collect: [:each | each asciiValue] as: Array —— #(97 98 99)

Actually collect: is not guaranteed to return a collection of exactly the
same class as the receiver, but only the same “species”. In the case of an
Interval, the species is actually Array!

(1 to: 5) collect: [:each |each »2] — #(246810)

Selecting and rejecting elements

select: returns the elements of the receiver that satisfy a particular condition:

(2 to: 20) select: [:each | each isPrime] — #2357 111317 19)

reject: does the opposite:

(2 to: 20) reject: [:each | each isPrime] — #(4689101214 1516 18 20)

Identifying an element with detect:
The method detect: returns the first element of the receiver that matches the
block argument.

‘through' detect: [:each | each isVowel] — $o

If detect: can not find an element, it will signal a NotFound error. The
method detect:ifNone: is a variant of the method detect:. Its second block is
evaluated when there is no element matching the block.

210 Collections

Smalltalk allClasses detect: [:each | 'sjava+' match: each asString] ifNone: [nil]
— nil

Correspondingly, there is also the variant detect:ifFound: that let’s you
handle the case when an element is found or otherwise returns nil:

'Smalltalk’ detect: [:each | each isVowel] ifFound: [:char | char asString capitalized]
— A

Accumulating results with inject:into:

Functional programming languages often provide a higher-order function
called fold or reduce to accumulate a result by applying some binary operator
iteratively over all elements of a collection. In Squeak this is done by
Collection»inject:into:.

The first argument is an initial value, and the second argument is a two-
argument block which is applied to the result this far, and each element in
turn.

A trivial application of inject:into: is to produce the sum of a collection of
numbers. For example, we could write this expression to sum the first 100
integers:

(1 to: 100) inject: 0 into: [:sum :each | sum + each] — 5050

Another example is the following one-argument block which computes
factorials:

factorial :=[:n | (1 to: n) inject: 1 into: [:product :each | product = each]].
factorial value: 10 —— 3628800

Other messages

count:. The message count: returns the number of elements satisfying a
condition. The condition is represented as a boolean block.

Smalltalk allClasses count: [:each | 'Collection«' match: each asString] — 2

includes:. The message includes: checks whether the argument is contained
in the collection.

colors := {Color white . Color yellow. Color red . Color blue . Color orange}.
colors includes: Color blue. — true

Some hints for using collections 211

anySatisfy:. The message anySatisfy: answers true if at least one element of
the collection satisfies the condition represented by the argument.

colors anySatisfy: [:color | colorred > 0.5] — true

gather:. The message gather: can be used to turn nested collections into a
flat collection while at the same time converting the values. Some languages
refer to this collection operation as flat map.

colors anySatisfy: [:color | colorred > 0.5] — true

9.5 Some hints for using collections

A common mistake with add:. The following error is one of the most
frequent Smalltalk mistakes.

collection := OrderedCollection new add: 1; add: 2.
collection — 2

Here the variable collection does not hold the newly created collection but
rather the last number added. This is because the method add: returns the
element added and not the receiver.

The following code yields the expected result:

collection := OrderedCollection new.
collection add: 1; add: 2.
collecton —— an OrderedCollection(1 2)

You can also use the message yourself to return the receiver of a cascade
of messages:

collection := OrderedCollection new add: 1; add: 2; yourself — an
OrderedCollection(1 2)

Removing an element of the collection you are iterating on. Another
mistake you may make is to remove an element from a collection you are
currently iterating over. remove:

range := (2 to: 20) asOrderedCollection.
range do: [:aNumber | aNumber isPrime ifFalse: [range remove: aNumber]].
range. — an OrderedCollection(23 57911131517 19)

© ® N o o & o N =

212 Collections

This result is clearly incorrect since 9 and 15 should have been filtered out!

The solution is to copy the collection before going over it.

range := (2 to: 20) asOrderedCollection.
range copy do: [:aNumber | aNumber isPrime ifFalse: [range remove: aNumber]].
range — an OrderedCollection(2357 11 1317 19)

Redefining both = and hash. A difficult error to spot is when you redefine
= but not hash. The symptoms are that you will lose elements that you put
in sets or other strange behavior. One solution proposed by Kent Beck is to
use xor: to redefine hash. Suppose that we want two books to be considered
equal if their titles and authors are the same. Then we would redefine not
only = but also hash as follows:

Method 9.1: Redefining = and hash.
Book»= aBook

self class = aBook class ifFalse: [* false].
A title = aBook title and: [authors = aBook authors]

Book»hash

A title hash xor: authors hash

Another nasty problem arises if you use a mutable object, i.e., an object
that can change its hash value over time, as an element of a Set or as a key
to a Dictionary. Don’t do this unless you love debugging!

9.6 Sorting collections

Basically, there are two selectors for sorting a collection: sort and sorted. So
when should you use which of them? Actually, sort is only defined on cer-
tain specializations of Collection, such as ArrayedCollection or OrderedCollection.
This message performs an in-place-sort on the collection, i.e., after sending
sort to a collection instance, the order of its elements will have been updated.
Conversely, sorted: performs an out-of-place sort that will not modify the
original collection but will answer a sorted copy of the receiver. While an
in-place-sort might reach higher performance in some situations, an out-of-
place sort is the preferable option in most situations because a) it helps you
avoid unintended side-effects that eventually can make your code harder

Sorting collections 213

to debug and understand* and b) it does not restrict the collection you use
to be an array or an ordered collection.

The following examples illustrates the difference between in-place and
out-of-place sorting:

array := {3. 5. 1}.

"Out-of-place sort"
array sorted. — #(135)
array. — #(351)

"In-place sort"
array sort.
array. — #(135)

Sort methods use the message <= to establish sort order, so by default,
they can sort magnitudes such as numbers, characters, timestamps, etc.
(see Chapter 8 on Magnitude), but also other objects such as strings or points.
However, what can you do if you want to sort objects that do not implement
<=, or if you would like to customize the sort order? For this purpose,
Collection also provides sorted: in addition to sorted (note the colon), and
analogously, arrays etc. also implement sort:. These messages take a two-
argument sort block or a sort function that, speaking formally, defines a
partial order on the collection to be sorted.” Here is a simple example of
how to use a sort block:

#('Foo' 'Bar' 'baz') sorted: [:a :b | a caselnsensitiveLessOrEqual: b] — #('Bar''
baz' 'Foo')

In many cases, you will need to sort a collection by a particular property
or transformation of each element. This is often realized by implementing
the property function twice, e.g. (beware, negative example!):

(1 to: 10) sorted: [:a :b | (a raisedTo: 2 modulo: 3) <= (b raisedTo: 2 modulo: 3)]
— #(36912457810)

However, the sort function protocol provides a much more elegant
solution to this problem by defining a dedicated PropertySortFunction class. It
can be instantiated from any unary block by sending the message ascending
or descending to it:

(1 to: 10) sorted: [:ea | ea raisedTo: 2 modulo: 3] ascending — #(36912457
8 10)

4Actually, it is dangerous to modify an inline array or string from your code in-place (and
thus forbidden since Squeak 5.3).
SFurther reading: Wikipedia — Partially ordered set

https://en.wikipedia.org/wiki/Partially_ordered_set

214 Collections

ascending and descending are defined on Symbol as well, so we could also
write the previous example in the following way (however, the former
version is more efficient, and it also would be considered better style):

#('Foo' 'Bar' 'baz') sorted: #asUppercase descending —— #('Foo' 'baz' 'Bar’)

Sort functions provide a bunch of other useful functionality. For ex-
ample, you can chain them by using ,, reverse the order of elements by
using reversed, or make sure that your code does not founder at nil values
in a collection by using undefinedFirst or undefinedLast. Let’s lump them all
together to demonstrate the overwhelming power of sort functions:

{1. 100. nil. 1000. 10} sorted: [:ea | ea ifNotNil: [ea asWords first]] ascending
undefinedLast , SortFunction default reversed. — #(1000 100 1 10 nil)

For further information on sort functions, you can browse the system
category Collections-SortFunctions and in particular its extension methods on
BlockClosure and Symbol.

9.7 Chapter summary

The Smalltalk collection hierarchy provides a common vocabulary for uni-
formly manipulating a variety of different kinds of collections.

¢ A key distinction is between SequenceableCollections, which maintain
their elements in a given order, Dictionary and its subclasses, which
maintain key-to-value associations, and Sets and Bags, which are
unordered.

* You can convert most collections to another kind of collection by
sending them the messages asArray, asOrderedCollection etc..

e To sort a collection, send it the message sorted or sorted:, to sort it
in-place, send sort or sort;, and to create a collection that always keeps
its element sorted send asSortedCollection.

¢ Literal Arrays are created with the special syntax #(...). Dynamic Arrays
are created with the syntax {...}.

* A Dictionary compares keys by equality. It is most useful when keys
are instances of String. An IdentityDictionary instead uses object identity
to compare keys. It is more suitable when Symbols are used as keys,
or when mapping object references to values.

Chapter summary 215

* Strings also understand the usual collection messages. In addition, a
String supports a simple form of pattern-matching. For more advanced
applications, look instead at the Regex package.

* The basic iteration message is do:. It is useful for imperative code, such
as modifying each element of a collection, or sending each element a
message.

¢ Instead of using do;, it is more common to use collect;, select;, reject;,
includes:, injectiinto:, and other higher-level messages to process collec-
tions in a uniform way.

* Never remove an element from a collection you are iterating over. If
you must modify it, iterate over a copy instead.

e If you override =, remember to override hash as well!

Chapter 10

Streams

Streams are used to iterate over sequences of elements such as sequenced
collections, files, and network streams. With Streams you can represent
different iterations on the same collection, speed up the creation of large
collections, and even iterate over potentially infinite collections without
running into an infinite loop. A Stream instance represents an iteration
for reading, writing, or both. Reading or writing is always relative to the
current position in the stream.

10.1 Two sequences of elements

A good model to understand a stream is the following: A stream can
be represented as two sequences of elements: a past element sequence
and a future element sequence. The stream is positioned between the
two sequences. Understanding this model is important since all stream
operations in Smalltalk rely on it. For this reason, most of the Stream classes
are subclasses of PositionableStream. Figure 10.1 presents a stream which
contains five characters. This stream is in its original position, i.e., there is
no element in the past. You can go back to this position using the message
reset.

ERERIEREDIES

past element ? future element
sequence sequence

Figure 10.1: A stream positioned at its beginning.

218 Streams

You can now read the next element from the stream using the message
next. Reading an element conceptually means removing the first element
of the future element sequence, returning it, and putting it after the last
element in the past element sequence. After having read one element using
the message next, the state of your stream is that shown in Figure 10.2.

L= Je e Jle]

past element future element
sequence sequence

Figure 10.2: The same stream after the execution of the method next. The
character a is “in the past” whereas b, ¢, d and e are “in the future”.

You can write an element to a stream using the message nextPut: anElement
. Writing an element means replacing the first element of the future se-
quence with the new one and moving it to the past. Figure 10.3 shows the
state of the same stream after having written an x.

L) Je Jle Jle]

past element future element
sequence sequence

Figure 10.3: The same stream after having written an x.

10.2 Streams vs. collections

The collection protocol supports the storage, removal, and enumeration
of the elements of a collection, but does not allow these operations to
be intermingled. For example, if the elements of an OrderedCollection are
processed by a do: method, it is not possible to add or remove elements
from inside the do: block. Nor does the collection protocol offer ways to
iterate over two collections at the same time, choosing which collection goes
forward and which does not. Procedures like these require that a traversal
index or position reference is maintained outside of the collection itself:
This is exactly the role of ReadStream, WriteStream, and ReadWriteStream.

These three classes are defined to stream over some collection. For exam-
ple, the following snippet creates a stream on an interval, then it reads two
elements.

Streaming over collections 219

r := ReadStream on: (1 to: 1000).
r next — 1

r next — 2

rattnd — false

WriteStreams can write data to the collection:

w = WriteStream on: (String new: 5).
w nextPut: $a; nextPut: $b.
wcontents — 'ab'

It is also possible to create ReadWriteStreams that support both the read-
ing and writing protocols.

Streams are not only meant for collections, they can be used for files or
sockets too. The following example creates a file named test.txt, writes two
strings to it, separated by a carriage return, and closes the file. After that,
the file contents are read again into the image.

StandardFileStream
fileNamed: 'someTestFile.txt'
do: [:stream | stream

nextPutAll: '123';
space;
nextPutAll: ‘abced’].

StandardFileStream readOnlyFileNamed: 'someTestFile.txt' do: [:stream | stream
contents] — '123 abcd'

The following sections present the protocols in more depth.

10.3 Streaming over collections

Streams are really useful when dealing with collections of elements. They
can be used for reading and writing elements in collections.

Reading collections

This section presents features used for reading collections. Using a stream
to read a collection essentially provides you a pointer into the collection.
That pointer will move forward on reading and you can place it wherever
you want. The class ReadStream should be used to read elements from
collections.

220 Streams

Methods next and next: are used to retrieve one or more elements from
the collection.

stream := ReadStream on: #(1 (a b c) false).
stream next — 1

streamnext — #(#a #b #c)

stream next — false

stream := ReadStream on: 'abcdef'.
stream next: 0 —
streamnext: 1 — ‘a’
stream next: 3 — 'bed'
streamnext:2 —> 'ef'

The message peek is used when you want to know what is the next
element in the stream without going forward.

stream := ReadStream on: '-143".

negative := stream peek = $-. "look at the first element without reading it"
negative — true

negative ifTrue: [stream next]. "ignores the minus character”

number := stream upToEnd.

number — '143'

This code sets the boolean variable negative according to the sign of the
number in the stream and number to its absolute value. The method upToEnd
returns everything from the current position to the end of the stream and
sets the stream to its end. This code can be simplified using peekFor:, which
moves forward if the following element equals the parameter and doesn’t
move otherwise.

stream :='-143' readStream.
stream peekFor: - — true
stream upToEnd — '143

peekFor: also returns a boolean indicating if the parameter equals the ele-
ment.

You might have noticed a new way of constructing a stream in the above
example: One can simply send readStream to a sequenceable collection to
get a reading stream on that particular collection.

Positioning. There are also methods to position the stream pointer di-
rectly. If you have the index, you can go directly to it using position:. You can
request the current position using position. Please remember that a stream
is not positioned on an element, but between two elements. The index
corresponding to the beginning of the stream is 0.

Streaming over collections 221

You can obtain the state of the stream depicted in Figure 10.4 with the
following code:

stream := 'abcde' readStream.
stream position: 2.
stream peek — $c

L= e Jle Jle]

past element future element
sequence sequence

Figure 10.4: A stream at position 2

To position the stream at the beginning or the end, you can use reset or
setToEnd. skip: and skipTo: are used to go forward to a location relative to the
current position: skip: accepts a number as argument and skips that number
of elements whereas skipTo: skips all elements in the stream until it finds an
element equal to its parameter. Note that it positions the stream after the
matched element.

stream := 'abcdef' readStream.

stream next — $a ‘"stream is now positioned just after the a"
stream skip: 3. "stream is now after the d"

stream position — 4

stream skip: -2. "stream is after the b"

stream positon — 2

stream reset.

stream positon — 0

stream skipTo: $e. "stream is just after the e now"
stream next — $f

stream contents —— ‘'abcdef’

As you can see, the letter e has been skipped. The method contents
always returns a copy of the entire stream.

Testing. Some methods allow you to test the state of the current stream:
atEnd returns true if and only if no more elements can be read whereas
isEmpty returns true if and only if there is no element at all in the collection.

Here is a possible implementation of an algorithm using atEnd that takes
two sorted collections as parameters and merges those collections into
another sorted collection:

222 Streams

stream1 :=#(1 4 9 11 12 13) readStream.
stream2 :=#(1 234510 13 14 15) readStream.

"The variable result will contain the sorted collection.”
result := OrderedCollection new.
[stream1 atEnd not and: [stream2 atEnd not]]
whileTrue: [stream1 peek < stream2 peek
"Remove the smallest element from either stream and add it to the result."”
ifTrue: [result add: stream1 next]
ifFalse: [result add: stream2 next]].

"One of the two streams might not be at its end. Copy whatever remains."
result

addAll: stream1 upToEnd;

addAll: stream2 upToEnd.

result. — an OrderedCollection(112344591011 1213 13 14 15)

Writing to collections

We have already seen how to read a collection by iterating over its ele-
ments using a ReadStream. We’ll now learn how to create collections using
WriteStreams.

WriteStreams are useful for appending a lot of data to a collection at
various locations. They are often used to construct strings that are based
on static and dynamic parts as in this example:

stream := String new writeStream.
stream
nextPutAll: 'This Smalltalk image contains: ';
print: Smalltalk allClasses size;
nextPutAll: ' classes.";
cr;
nextPutAll: 'This is really a lot.".

stream contents. —— 'This Smalltalk image contains: 2814 classes.
This is really a lot.'

This technique is used in the different implementations of the method
printOn: for example. There is a simpler and more efficient way of creating
streams if you are only interested in the content of the stream:

string := String streamContents: [:stream |
stream
print: #(1 2 3);

Streaming over collections 223

space;
nextPutAll: 'size';
space;
nextPut: $=;
space;
print: 3].
string — '#(1 2 3) size =3

The method streamContents: creates a collection and a stream on that
collection for you. It then executes the block you gave passing the stream
as a parameter. When the block ends, streamContents: returns the content of
the collection.

The following WriteStream methods are especially useful in this context:

nextPut: adds the parameter to the stream;

nextPutAll: adds each element of the collection, passed as a parameter, to
the stream;

print: adds the textual representation of the parameter to the stream.

There are also methods useful for printing different kinds of characters
to the stream like space, tab, and cr (carriage return). Another useful method
is ensureASpace which ensures that the last character in the stream is a space;
if the last character isn’t a space it adds one.

About Concatenation. Using nextPut: and nextPutAll: on a WriteStream is of-
ten the best way to concatenate characters. Using the comma concatenation
operator (,) is far less efficient:

[| temp |
temp := String new.
(1 to: 100000) do: [:i |
temp :=temp, i asString, ']] timeToRun. — 386381 "(milliseconds)”

[l temp |
temp := WriteStream on: String new.
(1 to: 100000) do: [:i |
temp nextPutAll: i asString; space].
temp contents] timeToRun. — 25 "(milliseconds)"

The reason that using a stream can be much more efficient is that the
comma creates a new string containing the concatenation of the receiver
and the argument, so it must copy both of them. When you repeatedly
concatenate onto the same receiver, it gets longer and longer each time, so

224 Streams

that the number of characters that must be copied goes up exponentially.
This also creates a lot of garbage, which must be collected. Using a stream
instead of string concatenation is a well-known optimization. In fact, you
can use streamContents: (mentioned on page 223) to help you do this:

String streamContents: [:tempStream |
(1 to: 100000) do: [:i |
tempStream nextPutAll: i asString; space]].

Reading and writing at the same time

It’s possible to use a stream to access a collection for reading and writing
at the same time. Imagine you want to create a SBEHistory class which will
manage backward and forward buttons in a web browser. A history would
react as in figures from 10.5 to 10.11.

?

Figure 10.5: A new history is empty. Nothing is displayed in the web
browser.

Figure 10.6: The user opens page 1.

Figure 10.7: The user clicks on a link to page 2.

This behavior can be implemented using a ReadWriteStream.

Streaming over collections 225

(per) (s ()

Figure 10.8: The user clicks on a link to page 3.

(per) (ose) ()

Figure 10.9: The user clicks on the back button. He is now viewing page 2
again.

(pser), (302 ()

Figure 10.10: The user clicks again the back button. Page 1 is now displayed.

o) (=0

Figure 10.11: From page 1, the user clicks on a link to page 4. The history
forgets pages 2 and 3.

Object subclass: #SBEHistory
instanceVariableNames: 'stream'
classVariableNames: "
poolDictionaries: "
category: 'SBE-Streams'

ENEE SR VRN

12 T N R

F SR R

o o A @ N =

226 Streams

Method 10.1: Initialization of SBEHistory instances.
SBEHistory»initialize

super initialize.
stream := ReadWriteStream on: Array new.

Nothing really difficult here, we define a new class which contains a
stream. The stream is created during the initialize method.

We need methods to go backward and forward:

Method 10.2: Method goBackward in SBEHistory.
SBEHistory»goBackward

self canGoBackward ifFalse: [self error: 'Already on the first element’].
stream skip: -2.
A stream next

Method 10.3: Method goForward in SBEHistory.
SBEHistory»goForward

self canGoForward ifFalse: [self error: 'Already on the last element'].
A stream next

Until then, the code was pretty straightforward. Now, we have to deal
with the goTo: method which should be activated when the user clicks on a
link. A possible solution is:

SBEHistory>>goTo: aPage

stream nextPut: aPage.

This version is incomplete however, as when the user clicks on the link,
there should be no more future pages to go to, i.e., the forward button must
be deactivated. To represent this, the simplest solution is to write nil after
adding the page to indicate the end of the history:

Method 10.4: Method goTo: in SBEHistory.
SBEHistory»goTo: anObject

stream
nextPut: anObject;
nextPut: nil;
back.

Using streams for file access 227

Now, only methods canGoBackward and canGoForward have to be imple-
mented.

A stream is always positioned between two elements. To go backward,
there must be two pages before the current position: One page is the current
page, and the other one is the page we want to go to.

Method 10.5: Method canGoBackward inn SBEHistory.
SBEHistory»canGoBackward

A stream position > 1

To go forward, the stream should not be at its end, and the next element
should not be nil, which we used to represent the end of the history.

Method 10.6: Method canGoForward in SBEHistory.
SBEHistory»canGoForward

A stream atEnd not and: [stream peek notNil]

Let us add a method to peek at the contents of the stream:

SBEHistory>>contents

A stream contents

And the history works as advertised:

SBEHistory new
goTo: #page1;
goTo: #page2;
goTo: #page3;
goBackward;
goBackward;
goTo: #page4;
contents. —— #(#pagel #page4 nil nil)

10.4 Using streams for file access

You have already seen how to stream over collections of elements. It’s also
possible to stream over files on your hard disk. Once created, a stream on a
file is really like a stream on a collection: You will be able to use the same
protocol to read, write, or position the stream. The main difference appears
in the creation of the stream. There are several different ways to create file
streams, as we shall now see.

228 Streams

Creating file streams

To create file streams, you will have to use one of the following instance
creation methods offered by the class FileStream:

fileNamed: Open a file with the given name for reading and writing. If the
file already exists, its prior contents may be modified or replaced, but
the file will not be truncated on close. If the name has no directory
part, then the file will be created in the default directory.

newFileNamed: Create a new file with the given name and answer a stream
opened for writing on that file. If the file already exists, ask the user
what to do.

forceNewFileNamed: Create a new file with the given name and answer a
stream opened for writing on that file. If the file already exists, delete
it without asking before creating the new file.

oldFileNamed: Open an existing file with the given name for reading and
writing. If the file already exists, its prior contents may be modified
or replaced, but the file will not be truncated on close. If the name has
no directory part, then the file will be created in the default directory.

readOnlyFileNamed: Open an existing file with the given name for reading.

You have to remember that each time you open a stream on a file, you
have to close it too. This is done through the close method.

stream := FileStream forceNewFileNamed: 'test.txt'.
stream
nextPutAll: 'This text is written in a file named ';
print: stream localName.
stream close.

stream := FileStream readOnlyFileNamed: 'test.txt'.
stream contents. —— 'This text is written in a file named "test.txt
stream close.

The method localName answers the last component of the name of the
file. You can also access the full pathname using the method fullName.

You will soon notice that manually closing the file stream is painful and
error-prone. That’s why FileStream offers varieties of the above messages,
that take care of opening and closing the FileStream before and after you
work with it. You pass the code that works with the stream as a block to
these methods, e.g., the second argument of forceNewFileNamed:do:.

Using streams for file access 229

FileStream
forceNewFileNamed: 'test.txt'
do: [:stream |
stream
nextPutAll: 'This text is written in a file named ;
print: stream localName].
string := FileStream
readOnlyFileNamed: 'test.txt'
do: [:stream | stream contents].
string —— 'This text is written in a file named "test.txt"

The stream-creation methods that take a block as an argument first
create a stream on a file, then execute the block with the stream as an
argument, and finally, close the stream. These methods return what is
returned by the block, which is to say, the value of the last expression in
the block. This is used in the previous example to get the content of the file
and put it in the variable string.

Binary streams

By default, file streams are text-based which means you will read and write
characters. If your stream must be binary, you have to send the message
binary to your stream.

When your stream is in binary mode, you can only write numbers from
0 to 255 (1 Byte). If you want to use nextPutAll: to write more than one
number at a time, you have to pass a ByteArray as an argument.

FileStream
forceNewFileNamed: 'test.bin'
do: [:stream |
stream
binary;
nextPutAll: #]145 250 139 98]].

FileStream
readOnlyFileNamed: 'test.bin
do: [:stream |

stream binary.

stream size. — 4

stream next. — 145

stream upToEnd — #[250 139 98]

]

Here is another example which creates a picture in a file named “test.pgm”
(portable graymap file format). You can open this file with your favorite

230

Streams

drawing program. If you do not have a relevant program, you can also
drag the file into your Squeak image to watch it.

Method 10.7: Writing a checkerboard file.

SBEFileStreams»exampleCheckerboard
"SBEFileStreams exampleCheckerboard”

FileStream

forceNewFileNamed: 'test.pgm’

do: [:stream |
stream

nextPutAll:
nextPutAll:
nextPutAll:

binary;

nextPutAll:
nextPutAll:
nextPutAll:
nextPutAll:

This creates a 4x4 checkerboard as shown in Figure 10.12.

'P5'; cr;
'4 4'; cr;
'255'; cr;

#[255 0 255 0];
#[0 255 0 255];
#[255 0 255 0];
#[0 255 0 255]].

Figure 10.12: A 4x4 checkerboard you can draw using binary streams.

10.5 Chapter summary

Streams offer a better way than collections to incrementally read and write
a sequence of elements. There are easy ways to convert back and forth
between streams and collections.

* Streams may be either readable, writeable, or both readable and

writeable.

Chapter summary 231

¢ To get a stream for a collection, create a stream “on” a collection, e.g.,
ReadStream on: (1 to: 1000), or send the messages readStream etc. to the
collection.

¢ To get the collection of a stream, send the message contents.

* To concatenate large collections, instead of using the comma operator,
it is more efficient to create a stream, append the collections to the
stream with nextPutAll;, and extract the result by sending contents.

¢ File streams are by default character-based. Send binary to explicitly
make them binary.

Chapter 11

Morphic

Morphic is the name given to Squeak’s graphical interface. Morphic is
written in Smalltalk, so it is fully portable between operating systems; as a
consequence, Squeak looks exactly the same on Unix, macOS, and Windows.
What distinguishes Morphic from most other user interface toolkits is that it
does not have separate modes for “composing” and “running” the interface:
All the graphical elements can be assembled and disassembled by the user,
at any time.!

11.1 The history of Morphic

Morphic was developed by John Maloney and Randy Smith for the Self
programming language, starting around 1993. Maloney later wrote a new
version of Morphic for Squeak, but the basic ideas behind the Self version
are still alive and well in Squeak Morphic: directness and liveness. Directness
means that the shapes on the screen are objects that can be examined or
changed directly, that is, by pointing at them using the mouse. Liveness
means that the user interface is always able to respond to user actions:
Information on the screen is continuously updated as the world that it
describes changes. A simple example of this is that you can detach a menu
item and keep it as a button.

J Bring up the world menu. Blue-click once on the world menu to bring up
its morphic halo, then blue-click again on the menu item you want to detach to
bring up its halo. Now drag that item elsewhere on the screen by grabbing the
black handle €, as shown in Fiqure 11.1.

IWe thank Hilaire Fernandes for permission to base this chapter on his original article in
French.

234 Morphic

@}help...

o —

do...
- nobjects (o)
% authoring tools...
new morph... options...

[projects...

talamnrnhic

Figure 11.1: Detaching a morph, here the new morph menu item, to make it
an independent button.

All of the objects that you see on the screen when you run Squeak are
Morphs, that is, they are instances of subclasses of class Morph. Morph itself
is a large class with many methods; this makes it possible for subclasses to
implement interesting behavior with little code. You can create a morph to
represent any object, although how good a representation you get depends
on whether the creators of the class of the object provided the necessary
methods.

¢ To create a morph to represent a string object, execute the following code in a

workspace, one line at a time.

s :='"Morph' asMorph openInWorld.
s explore.

The first line creates a Morph to represent the string 'Morph', and then
opens it (that is, displays it) in the “world”, which is the name that Squeak
gives to the screen. You should obtain a graphical element—a Morph —
which you can manipulate by blue-clicking. The second line opens an
explorer that shows you attributes of this Morph, such as its fullBounds and
color.

Of course, it is possible to define morphs that are more interesting
graphical representations than the one that you have just seen. The method
asMorph has a default implementation in class Object class that just creates a
StringMorph. For many objects, that is not a very useful graphical representa-
tion and thus the override it with a more interesting mapping.

NJ Open a browser on the Color class and browse the following method.

o o A @ N =

Manipulating morphs 235

Method 11.1: Getting a morph for an instance of Color.
Color»asMorph

A (RectangleMorph new)
fillStyle: self;
borderWidth: 0;
yourself

When you try this method by executing Color orange asMorph openinWorld
in a workspace, you get an orange rectangle, instead of a plain StringMorph!

11.2 Manipulating morphs

Morphs are objects, so we can manipulate them like any other object in
Smalltalk: By sending messages, we can change their properties, create new
subclasses of Morph, and so on.

Every morph, even if it is not currently open on the screen, has a posi-
tion and a size. For convenience, all morphs are considered to occupy a
rectangular region of the screen; if they are irregularly shaped, their posi-
tion and size are those of the smallest rectangular “box” that surrounds
them, which is known as the morph’s bounding box, or just its “bounds”.
The position method returns a Point that describes the location of the morph’s
upper left corner (which is also the upper left corner of its bounding box).
The origin of the coordinate system is the screen’s upper left corner, with
y coordinates increasing down the screen and = coordinates increasing to
the right. The extent method also returns a point, but this point specifies the
width and height of the morph rather than a location.

L Type the following code into a workspace and do it:

joe := Morph new color: Color blue.
joe openinWorld.
bill :== Morph new color: Color red .
bill openinWorld.

Then type joe position and print it. To move joe, execute joe position: joe position
+ (10 @ 3) repeatedly.

It is possible to do a similar thing with size. joe extent answers joe’s size;
to have joe grow, execute joe extent: joe extent « 1.1. To change the color of a
morph, send it the color: message with the desired Color object as argument,
for instance, joe color: Color orange. To add transparency, try joe color: (Color
orange alpha: 0.5).

236 Morphic

NJ To make bill follow joe, you can repeatedly execute this code:

bill position: joe position + (100 @ 0).

If you move joe using the mouse and then execute this code, bill will move
so that it is 100 pixels to the right of joe.

11.3 Composing morphs

One way of creating new graphical representations is by placing one morph
inside another. This is called composition; morphs can be composed to any
depth. You can place a morph inside another by sending the message
addMorph: to the container morph.

NJ Try adding a morph to another one:

star := StarMorph new color: Color yellow.
joe addMorph: star.
star position: joe position.

The last line positions the star at the same coordinates as joe. Notice that
the coordinates of the contained morph are still relative to the screen, not
to the containing morph. There are many methods available to position a
morph; browse the geometry protocol of class Morph to see for yourself. For
example, to center the star inside joe, execute star center: joe center.

Figure 11.2: The star is contained inside joe, the translucent blue morph.

If you now try to grab the star with the mouse, you will find that you
actually grab joe, and the two morphs move together: The star is embedded
inside joe. It is possible to embed more morphs inside joe. In addition
to doing this programmatically, you can also embed morphs by direct
manipulation.

N From the world menu select “objects” and click on the button labeled “Graph-
ics”. Drag an ellipse and a star from the Supplies flap. Place the star over the

Creating and drawing your own morphs 237

ellipse, and yellow-click the star to bring up a menu?. Select embed into > Ellipse .
Now the star and the ellipse move together.

To remove a sub-morph, do joe removeMorph: star or star delete. This can
also be done by direct manipulation:

¢ Blue click twice on the star. Drag the star away from the ellipse using the

grab handle @.

The first click brings up the morphic halo on the ellipse; the second click the
halo on the star. Each click moves the focus down one level of embedding.

114 Creating and drawing your own morphs

While it is possible to make many interesting and useful graphical rep-
resentations by composing morphs, sometimes you will need to create
something completely different. To do this you define a subclass of Morph
and override the drawOn: method to change its appearance.

The morphic framework sends the message drawOn: to a morph when
it needs to redisplay the morph on the screen. The parameter to drawOn: is
a kind of Canvas; the expected behavior is that the morph will draw itself
on that canvas, inside its bounds. Let’s use this knowledge to create a
cross-shaped morph.

NJ Using the class browser, define a new class SBECrossMorph inheriting from
Morph:

Class 11.2: Defining SBECrossMorph.

Morph subclass: #SBECrossMorph
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: 'SBE-Morphic'

We can define the drawOn: method like this:

Method 11.3: Drawing a SBECrossMorph.
drawOn: aCanvas

| crossHeight crossWidth horizontalBar verticalBar |
crossHeight := self height / 3.0 .

2You can also blue-click the star to bring up the morphic halo, and then click the red menu
handle.

© © N o

[S T N R ORI

238 Morphic

crossWidth := self width / 3.0 .

horizontalBar := self bounds insetBy: 0@crossHeight.
verticalBar := self bounds insetBy: crossWidth@O.
aCanvas fillRectangle: horizontalBar color: self color.
aCanvas fillRectangle: verticalBar color: self color.

- QOO0 E
o B
g

g

SBECross

Figure 11.3: A SBECrossMorph with its halo; you can resize it as you wish.

Sending the bounds message to a morph answers its bounding box,
which is an instance of Rectangle. Rectangles understand many messages
that create other rectangles of related geometry; here we use the insetBy:
message with a point as its argument to create first a rectangle with reduced
height, and then another rectangle with reduced width.

LJ To test your new morph, execute SBECrossMorph new openinWorld.

The result should look something like Figure 11.3. However, you will
notice that the sensitive zone — where you can click to grab the morph —is
still the whole bounding box. Let’s fix this.

When the Morphic framework needs to find out which Morphs lie
under the cursor, it sends the message containsPoint: to all the morphs whose
bounding boxes lie under the mouse pointer. So, to limit the sensitive
zone of the morph to the cross shape, we need to override the containsPoint:
method.

%J Define the following method in class SBECrossMorph:

Method 11.4: Shaping the sensitive zone of the SBECrossMorph.
containsPoint: aPoint

| crossHeight crossWidth horizontalBar verticalBar |
crossHeight := self height / 3.0.

crossWidth := self width / 3.0.

horizontalBar := self bounds insetBy: 0@crossHeight.

FNE SR R

FNE SR R

Creating and drawing your own morphs 239

verticalBar := self bounds insetBy: crossWidth@O.
A (horizontalBar containsPoint: aPoint)
or: [verticalBar containsPoint: aPoint]

This method uses the same logic as drawOn:, so we can be confident that
the points for which containsPoint: answers true are the same ones that will
be colored in by drawOn. Notice how we leverage the containsPoint: method
in class Rectangle to do the hard work.

There are two problems with the code in methods 11.3 and 11.4. The
most obvious is that we have duplicated code. This is a cardinal error: if
we find that we need to change the way that horizontalBar or verticalBar are
calculated, we are quite likely to forget to change one of the two occurrences.
The solution is to factor out these calculations into two new methods, which
we put in the private protocol:

Method 11.5: horizontalBar.
SBECrossMorph»horizontalBar

| crossHeight |
crossHeight := self height / 3.0.
A self bounds insetBy: 0 @ crossHeight

Method 11.6: verticalBar.
SBECrossMorph»verticalBar

| crossWidth |

crossWidth := self width / 3.0.
A self bounds insetBy: crossWidth @ 0

We can then define both drawOn: and containsPoint: using these methods:

Method 11.7: Refactored SBECrossMorph»drawOn:.
SBECrossMorph»drawOn: aCanvas

aCanvas fillRectangle: self horizontalBar color: self color.

aCanvas fillRectangle: self verticalBar color: self color.

Method 11.8: Refactored SBECrossMorph»containsPoint:.
SBECrossMorph»containsPoint: aPoint

A (self horizontalBar containsPoint: aPoint)
or: [self verticalBar containsPoint: aPoint]

o o A @ N =

240 Morphic

Figure 11.4: The center of the cross Figure 11.5: The cross-shaped
is filled twice with the color. morph, showing a row of unfilled
pixels.

This code is much simpler to understand, largely because we have given
meaningful names to the private methods. In fact, it is so simple that you
may have noticed the second problem: The area in the center of the cross,
which is under both the horizontal and the vertical bars, is drawn twice.
This doesn’t matter when we fill the cross with an opaque color, but the
bug becomes apparent immediately if we draw a semi-transparent cross,
as shown in Figure 11.4.

N Execute the following code in a workspace, line by line:

m := SBECrossMorph newBounds: (0 @ 0 corner: 300 @ 300).
m openinWorld.
m color: (Color blue alpha: 0.3).

The fix is to divide the vertical bar into three pieces, and to fill only the
top and bottom. Once again we find a method in class Rectangle that does
the hard work for us: r1 areasOutside: r2 answers an array of rectangles
comprising the parts of r1 outside r2. Here is the revised code:

Method 11.9: The revised drawOn: method, which fills the center of the cross once.
SBECrossMorph»drawOn: aCanvas

| topAndBottom |

aCanvas fillRectangle: self horizontalBar color: self color.
topAndBottom := self verticalBar areasOutside: self horizontalBar.
topAndBottom do: [:each | aCanvas fillRectangle: each color: self color].

This code seems to work, but if you try it on some crosses and resize
them, you may notice that at some sizes, a one-pixel wide line separates
the bottom of the cross from the remainder, as shown in Figure 11.5. This
is due to rounding: when the size of the rectangle to be filled is not an

12 B N R SR

12 T N R

Interaction and animation 241

integer, fillRectangle: color: seems to round inconsistently, leaving one row of
pixels unfilled. We can work around this by rounding explicitly when we
calculate the sizes of the bars.

Method 11.10: SBECrossMorph»horizontalBar with explicit rounding.
SBECrossMorph»horizontalBar

| crossHeight |
crossHeight := (self height / 3.0) rounded.
A self bounds insetBy: 0 @ crossHeight

Method 11.11: SBECrossMorph»verticalBar with explicit rounding.
SBECrossMorph»verticalBar

| crossWidth |
crossWidth := (self width / 3.0) rounded.
A self bounds insetBy: crossWidth @ 0

11.5 Interaction and animation

To build live user-interfaces using morphs, we need to be able to interact
with them using the mouse and the keyboard. Moreover, the morphs
need to be able to respond to user input by changing their appearance and
position —that is, by animating themselves.

Mouse events

When a mouse button is pressed, Morphic sends each morph under the
mouse pointer the message handlesMouseDown:. If a morph answers true,
then Morphic immediately sends it the mouseDown: message; it also sends
the mouseUp: message when the user releases the mouse button. If all
morphs answer false, then Morphic initiates a drag-and-drop operation. As
we will discuss below, the mouseDown: and mouseUp: messages are sent with
an argument — a MouseEvent object — that encodes the details of the mouse
action.

Let’s extend SBECrossMorph to handle mouse events. We start by ensur-
ing that all crossMorphs answer true to the handlesMouseDown: message.

¢ Add this method to SBECrossMorph:

N o o s~ ® N =

242 Morphic

Method 11.12: Declaring that SBECrossMorph will react to mouse clicks.
SBECrossMorph»handlesMouseDown: anEvent

A true

Suppose that when the red mouse button is clicked, we want to change
the color of the cross to red, and when the yellow button is clicked we want
to change the color to yellow. This can be accomplished by method 11.13.

Method 11.13: Reacting to mouse clicks by changing the morph’s color.
SBECrossMorph»mouseDown: anEvent

anEvent redButtonPressed
ifTrue: [self color: Color red)].
anEvent yellowButtonPressed
ifTrue: [self color: Color yellow].
self changed.

Notice that in addition to changing the color of the morph, this method
also sends self changed. This makes sure that morphic sends drawOn: in a
timely fashion. Note also that once the morph handles mouse events, you
can no longer grab it with the mouse and move it. Instead you have to use
the halo: blue-click on the morph to make the halo appear and grab either
the brown move handle @ or the black pickup handle @ at the top of the
morph.

The anEvent argument of mouseDown: is an instance of MouseEvent, which
is a subclass of MorphicEvent. MouseEvent defines the redButtonPressed and
yellowButtonPressed methods. Browse this class to see what other methods it
provides to interrogate the mouse event.

Keyboard events

To catch keyboard events, we need to take three steps.

1. Give the “keyboard focus” to a specific morph: For instance, we can
give focus to our morph when the mouse is over it.

2. Handle the keyboard event itself with the handleKeystroke: method:
This message is sent to the morph that has keyboard focus when the
user presses a key.

3. Release the keyboard focus when the mouse is no longer over our
morph.

Interaction and animation 243

Let’s extend SBECrossMorph so that it reacts to keystrokes. First, we need
to arrange to be notified when the mouse is over the morph. This will
happen if our morph answers true to the handlesMouseOver: message.

N

Declare that SBECrossMorph will react when it is under the mouse pointer.

Method 11.14: We want to handle “mouse over” events.
SBECrossMorph»handlesMouseOver: anEvent

A true

This message is the equivalent of handlesMouseDown: for the mouse position.
When the mouse pointer enters or leaves the morph, the mouseEnter: and
mouselLeave: messages are sent to it.

& Define two methods so that SBECrossMorph catches and releases the keyboard

focus, and a third method to actually handle the keystrokes.

Method 11.15: Getting the keyboard focus when the mouse enters the morph.
SBECrossMorph»mouseEnter: anEvent

anEvent hand newKeyboardFocus: self.

Method 11.16: Handing back the focus when the pointer goes away.
SBECrossMorph»mouselLeave: anEvent

anEvent hand releaseKeyboardFocus: self.

Method 11.17: Receiving and handling keyboard events.
SBECrossMorph»handleKeystroke: anEvent

| keyValue |
keyValue := anEvent keyValue.
keyValue =30 "up arrow"

ifTrue: [self position: self position - (0 @ 1)].
keyValue = 31 "down arrow”

ifTrue: [self position: self position + (0 @ 1)].
keyValue =29 "right arrow”

ifTrue: [self position: self position + (1 @ 0)].
keyValue = 28 "left arrow"”

ifTrue: [self position: self position - (1 @ 0)].

We have written this method so that you can move the morph using
the arrow keys. Note that when the mouse is no longer over the morph,

244 Morphic

the handleKeystroke: message is not sent, so the morph stops responding to
keyboard commands. To discover the key values, you can open a Tran-
script window and add Transcript show: anEvent keyValue to method 11.17. The
anEvent argument of handleKeystroke: is an instance of KeyboardEvent, another
subclass of MorphicEvent. Browse this class to learn more about keyboard
events.

Global accessors for Ul objects

In complex applications, one may need to refer to the currently processed
event without having it available in the current method. While we should
avoid such situations in general, there is an accessor message defined
on Object, currentEvent, that allows us to retrieve the event currently being
handled again from any method in any object. To do so, we can simply write
self currentEvent in an arbitrary method. Analogously, there are currentHand
and currentWorld to retrieve the current HandMorph (which represents your
cursor) or PasteUpMorph (which contains all other morphs displayed at your
screen).

In some cases, one may also want to directly control the user interaction
without following the usual event handling control flow. As an example,
we may want to track the mouse cursor and find out which point the user
clicks next. Implementing this via the usual event-handling protocol would
be complicated because we want to handle click events for morphs whose
methods we do not control.? For cases like this, there is the class EventSensor
an instance of which you can retrieve by evaluating EventSensor default. To
implement our example, we can do the following:

Method 11.18: Retrieving information about the cursor from EventSensor without
using events.

getPositionFromClick

| position |

[EventSensor default anyButtonPressed] whileFalse: [
position := EventSensor default cursorPoint].

A position

However, keep in mind that all these approaches use global state which
can lead to problems (just imagine a Squeak image that deals with multiple
cursors*, which cursor’s position are we retrieving now?). So whenever pos-

3Actually, there is an advanced mechanism called event-bubbling and -capturing filters that
would be applicable to this problem. However, this approach requires a bit more code and
thus is not optimally suited for our simple use case.

“This is actually the case in some multi-touch implementations for Squeak.

12 T N R

Interaction and animation 245

sible, try to avoid these accessors and stick with the usual event-handling
protocol instead.

Morphic animations

Morphic provides a simple animation system with two main methods: step
is sent to a morph at regular intervals of time, while stepTime specifies the
time in milliseconds between steps.’ In addition, startStepping turns on the
stepping mechanism, while stopStepping turns it off again; isStepping can be
used to find out whether a morph is currently being stepped.

Nd Make SBECrossMorph blink by defining these methods as follows:

Method 11.19: Defining the animation time interval.
SBECrossMorph»stepTime

100

Method 11.20: Making a step in the animation.
SBECrossMorph»step

(self color diff: Color black) < 0.1
ifTrue: [self color: Color red]
ifFalse: [self color: self color darker].

To start things off, you can open an inspector on a SBECrossMorph (using
the debug handle * in the morphic halo), type self startStepping in the small
workspace pane at the bottom, and do it. Alternatively, you can modify the
handleKeystroke: method so that you can use the + and — keys to start and

stop stepping.
N Add the following code to method 11.17:

keyValue = $+ asciiValue
ifTrue: [self startStepping].

keyValue = $- asciiValue
ifTrue: [self stopStepping].

246 Morphic

x| Input Requested Q

What's your name?

no name

%) Please Choose v

= 1 1 !]

Figure 11.6: Dialog Figure 11.7: Dialog displayed by
displayed by UIManager» UlManager»chooseFrom:.
request:initialAnswer:.

11.6 Dialog windows

To prompt the user for input, the UIManager class provides a few ready-to-
use dialog boxes. For instance, the request:initialAnswer: method returns the
string entered by the user (Figure 11.6). However, UlManager is an abstract
class that has several subclasses such as MorphicUIManager, MVCUIManager,
and others. What's the reason for this?

Squeak supports a wide range of different UI systems of which Morphic
is only one of many. For instance, another Ul system in Squeak is MVC
(named after its tripartite Model-View-Controller architecture) which was
the only available Ul system in classic Smalltalk-80. To allow developers to
write dialogs that work for any Ul system, Squeak provides the UIManager

class that defines a consistent interface to invoke user dialogs for any
Ul system. To get the UlManager for our Ul system, we can ask the class
Project which represents a running Ul system. The class Project takes care of
instantiating the UIManager corresponding to our Ul system. For this reason,
the most idiomatic and thus recommended way to retrieve a UlManager
instance is the method Project class»uiManager.

For example, to display the request dialog in Figure 11.6, you can send
the message request:initialAnswer::

Project uiManager
request: 'What"s your name?'
initialAnswer: 'no name'

To display the request dialog in Figure 11.7, send a chooseFrom::

Project uiManager
chooseFrom: #('circle' 'oval' 'square' 'rectangle’ 'triangle’)

SstepTime is actually the minimum time between steps. If you ask for a stepTime of 1 ms, don’t
be surprised if Squeak is too busy to step your morph that often.

12 B N R ORI

1 T S R O

Drag-and-drop 247

11.7 Drag-and-drop

Morphic also supports drag-and-drop. Let’s examine a simple example
with two morphs, a receiver morph and a dropped morph. The receiver
will accept a morph only if the dropped morph matches a given condition:
In our example, the morph should be blue. If it is rejected, the dropped
morph decides what to do.

NJ Let’s first define the receiver morph:

Class 11.21: Defining a morph on which we can drop other morphs.
Morph subclass: #ReceiverMorph
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: 'SBE-Morphic'

N Now define the initialization method in the usual way:

Method 11.22: Initializing ReceiverMorph.
ReceiverMorph»initialize

super initialize.
color := Color red.
bounds = 0 @ 0 extent: 200 @ 200.

How do we decide if the receiver morph will accept or repel the dropped
morph? In general, both of the morphs will have to agree to the interaction.
The receiver does this by responding to wantsDroppedMorph:event:; the first
argument is the dropped morph, and the second the mouse event, so that
the receiver can, for example, see if any modifier keys were held down at
the time of the drop. The dropped morph is also given the opportunity
to check and see if it likes the morph onto which it is being dropped; it is
sent the message wantsToBeDroppedinto:. The default implementation of this
method (in the class Morph) answers true.

Method 11.23: Accept dropped morphs based on their color.
ReceiverMorph»wantsDroppedMorph: aMorph event: anEvent

A aMorph color = Color blue

What happens to the dropped morph if the receiving morph doesn’t
want it? The default behavior is for it to do nothing, that is, to sit on top of

a A @ N =

o o A @ N o=

248 Morphic

the receiving morph, but without interacting with it. A more intuitive be-
havior is for the dropped morph to go back to its original position. This can
be achieved by the receiver answering true to the message repelsMorph:event:
when it doesn’t want the dropped morph:

Method 11.24: Changing the behavior of the dropped morph when it is rejected.

ReceiverMorph»repelsMorph: aMorph event: anEvent
A (self wantsDroppedMorph: aMorph event: anEvent) not

That’s all we need as far as the receiver is concerned.

LJ Create instances of ReceiverMorph and EllipseMorph in a workspace:

ReceiverMorph new openinWorld.
EllipseMorph new openinWorld.

Try to drag-and-drop the yellow EllipseMorph onto the receiver. It will be
rejected and sent back to its initial position.

NJ To change this behavior, change the color of the ellipse morph to Color blue
using an inspector. Blue morphs should be accepted by the ReceiverMorph.

Let’s create a specific subclass of Morph, named DroppedMorph, so we can
experiment a bit more:

Class 11.25: Defining a morph we can drag-and-drop onto ReceiverMorph.
Morph subclass: #DroppedMorph

instanceVariableNames: "

classVariableNames: "

poolDictionaries: "

category: 'SBE-Morphic'

Method 11.26: Initializing DroppedMorph.
DroppedMorph»initialize

super initialize.

self
color: Color blue;
position: 250 @ 100.

Now we can specify what the dropped morph should do when it is
rejected by the receiver; here it will stay attached to the mouse pointer:

[S T N SR ORI

A complete example 249

Method 11.27: Reacting when the morph was dropped but rejected.
DroppedMorph»rejectDropMorphEvent: anEvent

[hi

h := anEvent hand.

WorldState addDeferredUIMessage: [h grabMorph: self].
anEvent wasHandled: true.

Sending the hand message to an event answers the hand, an instance of
HandMorph that represents the mouse pointer and whatever it holds. Here
we tell the World that the hand should grab self, the rejected morph.

the receiver.

¢ Create two instances of DroppedMorph, and then drag-and-drop them onto

ReceiverMorph new openinWorld.
(DroppedMorph new color: Color blue) openinWorld.
(DroppedMorph new color: Color green) openinWorld.

The green morph is rejected and therefore stays attached to the mouse
pointer.

11.8 A complete example

Let’s design a morph to roll a die. Clicking on it will display the values of
all sides of the die in a quick loop, and another click will stop the animation.

=]

SBEDie

Figure 11.8: The die in Morphic.

¢ Define the die as a subclass of BorderedMorph instead of Morph because we

will make use of the border.

1 I S R SO

12 T N R

250 Morphic

Class 11.28: Defining the die morph.

BorderedMorph subclass: #SBEDieMorph
instanceVariableNames: 'faces dieValue isStopped’
classVariableNames: "
poolDictionaries: "
category: 'SBE-Morphic'

The instance variable faces records the number of faces on the die; we
allow dice with up to 9 faces! dieValue records the value of the face that is
currently displayed, and isStopped is true if the die animation has stopped
running. To create a die instance, we define the faces: n method on the class
side of SBEDieMorph to create a new die with n faces.

Method 11.29: Creating a new die with the number of faces we like.
SBEDieMorph class»faces: aNumber

A self new faces: aNumber

The initialize method is defined on the instance side in the usual way;
remember that new sends initialize to the newly-created instance.

Method 11.30: Initializing instances of SBEDieMorph.
SBEDieMorph»initialize

super initialize.
self
extent: 50 @ 50;
useGradientFill; borderWidth: 2; useRoundedCorners;
setBorderStyle: #complexRaised;
color: Color green.
dieValue = 1.
faces := 6.
isStopped := false.

We use a few methods of BorderedMorph to give a nice appearance to
the die: a thick border with a raised effect, rounded corners, and a color
gradient on the visible face. We define the instance method faces: to check
for a valid parameter as follows:

Method 11.31: Setting the number of faces of the die.

SBEDieMorph»faces: aNumber
"Set the number of faces"

(aNumber isInteger and: [aNumber > 0] and: [aNumber <= 9])
ifTrue: [faces := aNumber].

A complete example 251

It may be good to review the order in which the messages are sent when
a die is created. For instance, if we start by evaluating SBEDieMorph faces: 9:

1. The class method SBEDieMorph class»faces: sends new to SBEDieMorph
class.

2. The method for new (inherited by SBEDieMorph class from Behavior)
creates the new instance and sends it the initialize message.

3. The initialize method in SBEDieMorph sets faces to an initial value of 6.

4. SBEDieMorph class»new returns to the class method SBEDieMorph class»
faces:, which then sends the message faces: 9 to the new instance.

5. The instance method SBEDieMorph»faces: now executes, setting the
faces instance variable to 9.

Before defining drawOn:, we need a few methods to place the dots on the
displayed face:

Methods 11.32: Nine methods for placing points on the faces of the die.

SBEDieMorph~»face1
7 {0.5 @ 0.5}
SBEDieMorph»face2
7 {0.25 @ 0.25 . 0.75 @ 0.75}
SBEDieMorph»face3
7 {0.25@ 0.25.0.75 @ 0.75 . 0.5 @ 0.5}
SBEDieMorph»face4
7{0.25@ 0.25.0.75@ 0.25.0.75 @ 0.75 . 0.25 @ 0.75}
SBEDieMorph»face5
7{0.25@ 0.25.0.75@ 0.25.0.75@ 0.75.0.25 @ 0.75 . 0.5 @ 0.5}
SBEDieMorph~»face6
7{0.25@ 0.25.0.75@ 0.25.0.75@ 0.75.0.25 @ 0.75.0.25 @ 0.5 . 0.75 @
0.5}
SBEDieMorph~»face7
r025@0.25.0.75@0.25.0.75@ 0.75.0.25@ 0.75.0.25@ 0.5.0.75 @
0.5.0.5@ 0.5}
SBEDieMorph »face8
70.25@ 0.25.0.75@ 0.25.0.75@ 0.75.0.25 @ 0.75.0.25 @ 0.5 . 0.75 @
0.5.05@0.5.0.5@ 0.25}
SBEDieMorph »face9
rN025@0.25.0.75@0.25.0.75@ 0.75.0.25@ 0.75.0.25@ 0.5.0.75 @
05.05@0.5.05@0.25.0.5@ 0.75}

These methods define collections of the coordinates of dots for each face.
The coordinates are in a square of size 1 x 1; we will simply need to scale
them to place the actual dots.

12 T N R

N o o & o N =

® N o o A @ N =

252 Morphic

The drawOn: method does two things: It draws the die background with
the super-send, and then draws the dots.

Method 11.33: Drawing the die morph.
SBEDieMorph»drawOn: aCanvas

super drawOn: aCanvas.
(self perform: (‘face’, dieValue asString) asSymbol) do: [:aPoint |
self drawDotOn: aCanvas at: aPoint].

The second part of this method uses the reflective capacities of Smalltalk.
Drawing the dots of a face is a simple matter of iterating over the collection
given by the faceX method for that face, sending the drawDotOn:at: message
for each coordinate. To call the correct faceX method, we use the perform:
method which sends a message built from a string, here (face', dieValue
asString) asSymbol.

Method 11.34: Drawing a single dot on a face.
SBEDieMorph»drawDotOn: aCanvas at: aPoint

aCanvas
fillOval: (Rectangle
center: self position + (self extent « aPoint)
extent: self extent / 6)
color: Color black.

Since the coordinates are normalized to the [0:1] interval, we scale them
to the dimensions of our die: self extent « aPoint.

N We can already create a die instance from a workspace:

(SBEDieMorph faces: 6) openinWorld.

To change the displayed face, we create an accessor that we can use as
myDie dieValue: 4:

Method 11.35: Setting the current value of the die.
SBEDieMorph»dieValue: aNumber

(aNumber isInteger
and: [aNumber > 0]
and: [aNumber <= faces])
ifTrue: [
dieValue := aNumber.
self changed]

Now we will use the animation system to show quickly all the faces:

® N o o A @ N =

© ® N o o & © N =

More about the canvas 253

Methods 11.36: Animating the die.
SBEDieMorph»stepTime

~100

SBEDieMorph»step

isStopped ifFalse: [self dieValue: (1 to: faces) atRandom].

Now the die is rolling!

To start or stop the animation by clicking, we will use what we learned
previously about mouse events. First, activate the reception of mouse
events:

Methods 11.37: Handling mouse clicks to start and stop the animation.
SBEDieMorph»handlesMouseDown: anEvent

A true

SBEDieMorph»mouseDown: anEvent

anEvent redButtonPressed ifTrue: |
isStopped := isStopped not].

Now the die will roll or stop rolling when we click on it.

11.9 More about the canvas

The drawOn: method has an instance of Canvas as its sole argument; the
canvas is the area on which the morph draws itself. By using the graphics
methods of the canvas you are free to give the appearance you want to a
morph. If you browse the inheritance hierarchy of the Canvas class, you will
see that it has several variants. The default variant of Canvas is FormCanvas;
you will find the key graphics methods in Canvas and FormCanvas. These
methods can draw points, lines, polygons, rectangles, ellipses, text, and
images with rotation and scaling.

It is also possible to use other kinds of canvas, to obtain transparent
morphs, more graphics methods, antialiasing, and so on. To use these
features you will need an AlphaBlendingCanvas or a BalloonCanvas. But how
can you obtain such a canvas in a drawOn: method, when drawOn: receives

N o o s ® N =

254 Morphic

an instance of FormCanvas as its argument? Fortunately, you can transform
one kind of canvas into another.

% To use a canvas with a 0.5 alpha-transparency in SBEDieMorph, redefine
drawOn: like this:

Method 11.38: Drawing a translucent die.
SBEDieMorph»drawOn: aCanvas

| theCanvas |

theCanvas := aCanvas asAlphaBlendingCanvas: 0.5.

super drawOn: theCanvas.

(self perform: (‘face’, dieValue asString) asSymbol) do: [:aPoint |
self drawDotOn: theCanvas at: aPoint].

That’s all you need to do!

If you're curious, have a look at the asAlphaBlendingCanvas: method. You
can also get antialiasing by using BalloonCanvas and transforming the die
drawing methods as shown in methods 11.39.

Figure 11.9: The die displayed with alpha-transparency.

Methods 11.39: Drawing an antialiased die.
SBEDieMorph»drawOn: aCanvas

| theCanvas |

theCanvas := aCanvas asBalloonCanvas aalevel: 3.

super drawOn: aCanvas.

(self perform: (‘face', dieValue asString) asSymbol) do: [:aPoint |
self drawDotOn: theCanvas at: aPoint].

SBEDieMorph»drawDotOn: aCanvas at: aPoint

aCanvas
drawOval: (Rectangle
center: self position + (self extent = aPoint)
extent: self extent / 6)

Chapter summary 255

color: Color black
borderWidth: 0
borderColor: Color transparent.

11.10 Chapter summary

Morphic is a graphical framework in which graphical interface elements
can be dynamically composed.

* You can convert an object into a morph and display that morph on
the screen by sending it the messages asMorph openinWorld.

* You can manipulate a morph by blue-clicking on it and using the
handles that appear. (Handles have help balloons that explain what
they do.)

* You can compose morphs by sending the message addMorph: or by
using the embed into feature, either through the menu or via drag and
drop.

* You can subclass an existing morph class and redefine key methods,
like initialize and drawOn:.

* You can control how a morph reacts to mouse and keyboard events
by redefining the methods handlesMouseDown:, handlesMouseOver:, etc.

* You can animate a morph by defining the methods step (what to do)
and stepTime (the number of milliseconds between steps).

* Various pre-defined morphs, like PopUpMenu and FilllnTheBlank, are
available for interacting with users.

* Canvas objects provide basic drawing operations, advanced features
such as antialiasing support are provided by Canvas subclasses.

Part II1

Advanced Squeak

Chapter 12

Classes and metaclasses

As we saw in Chapter 5, in Smalltalk, everything is an object, and every
object is an instance of a class. Classes are no exception: Classes are objects,
and class objects are instances of other classes. This object model captures
the essence of object-oriented programming: It is lean, simple, elegant,
and uniform. However, the implications of this uniformity may confuse
newcomers. The goal of this chapter is to show that there is nothing
complex, “magic” or special here: just simple rules applied uniformly. By
following these rules you can always understand why the situation is the
way that it is.

12.1 Rules for classes and metaclasses

The Smalltalk object model is based on a limited number of concepts ap-
plied uniformly. Smalltalk’s designers applied Occam’s razor: Any consid-
eration leading to a model more complex than necessary was discarded.

To refresh your memory, here are the rules of the object model that we
explored in Chapter 5.

Rule 1. Everything is an object.

Rule 2. Every object is an instance of a class.
Rule 3. Every class has a superclass.

Rule 4. Everything happens by message sends.

Rule 5. Method lookup follows the inheritance chain.

260 Classes and metaclasses

As we mentioned in the introduction to this chapter, a consequence of
Rule 1 is that classes are objects too, so Rule 2 tells us that classes must also
be instances of classes. The class of a class is called a metaclass. A metaclass
is created automatically for you whenever you create a class. Most of the
time you do not need to care or think about metaclasses. However, every
time that you use the system browser to browse the “class side” of a class,
it is helpful to recall that you are actually browsing a different class. A class
and its metaclass are two separate classes, even though the former is an
instance of the latter.

To properly explain classes and metaclasses, we need to extend the rules
from Chapter 5 with the following additional rules.

Rule 6. Every class is an instance of a metaclass.

Rule 7. The metaclass hierarchy parallels the class hierarchy.

Rule 8. Every metaclass inherits from Class and therefore from Behavior.
Rule 9. Every metaclass is an instance of Metaclass.

Rule 10. The metaclass of Metaclass is an instance of Metaclass.

Together, these 10 rules complete Smalltalk’s object model.

We will first briefly revisit the 5 rules from Chapter 5 with a small
example. Then we will take a closer look at the new rules, using the same
example.

12.2 Revisiting the Smalltalk object model

Since everything is an object, the color blue in Smalltalk is also an object.

Color blue —— Color blue

Every object is an instance of a class. The class of the color blue is the class
Color:

Color blue class — Color

Interestingly, if we set the alpha value of a color, we get an instance of a
different class, namely TranslucentColor:

(Color blue alpha: 0.4) class — TranslucentColor

We can create a morph and set its color to this translucent color:

Revisiting the Smalltalk object model 261

EllipseMorph new color: (Color blue alpha: 0.4); openinWorld

You can see the effect in Figure 12.1.

£ Workspace o0

EllipseMorph new
color: (Color blue alpha: 0.4);
openinWorld

Figure 12.1: A translucent ellipse.

By Rule 3, every class has a superclass. The superclass of TranslucentColor
is Color, and the superclass of Color is Object:

TranslucentColor superclass —— Color
Color superclass — Object

Everything happens by message sends (Rule 4), so we can deduce that
blue is a message to Color, class and alpha: are messages to the color blue,
openinWorld is a message to an ellipse morph, and superclass is a message
to TranslucentColor and Color. The receiver in each case is an object since
everything is an object, but some of these objects are also classes.

Method lookup follows the inheritance chain (Rule 5), so when we send
the message class to the result of Color blue alpha: 0.4, the message is handled
when the corresponding method is found in the class Object, as shown in
Figure 12.2.

The figure captures the essence of the is-a relationship. Our translucent
blue object is a TranslucentColor instance, but we can also say that it is a Color
and that it is an Object since it responds to the messages defined in all of
these classes. In fact, there is a message, isKindOf:, that you can send to any
object to find out if it is in an is a relationship with a given class:

262 Classes and metaclasses

Until you
find the
~... |method.

\
\

\

\ IE
)

Color]_ ,
TranslucentColor S [Then look in==
S~ T © | the superclass.

|Trans|ucentCoI.or|

N
. | First look in the instance-of ——PP
. |class of the object. message send ———>
translucentBlue L reply TTTC >
looku T -

Figure 12.2: Sending a message to a translucent color.

translucentBlue := Color blue alpha: 0.4.
translucentBlue isKindOf: TranslucentColor — true

translucentBlue isKindOf: Color — true
translucentBlue isKindOf: Object — true
translucentBlue isKindOf: Collection — false

12.3 Every class is an instance of a metaclass

As we mentioned in Section 12.1, classes whose instances are themselves
classes are called metaclasses.

Metaclasses are implicit. Metaclasses are automatically created when
you define a class. We say that they are implicit since as a programmer you
never have to worry about them. An implicit metaclass is created for each
class you create, so each metaclass has only a single instance.

Whereas ordinary classes are named by global variables, metaclasses
are anonymous. However, we can always refer to them through the class
that is their instance. The class of Color, for instance, is Color class, and the
class of Object is Object class:

Color class — Color class
Objectclass —— Object class

Figure 12.3 shows how each class is an instance of its (anonymous) meta-
class.

The metaclass hierarchy parallels the class hierarchy 263

Object class

Color class
Color

[TranslucentColor class]

ransiucentBie |Trans|ucentCoIor i

—

Key
instance-of —pP

Figure 12.3: The metaclasses of Translucent and its superclasses.

The fact that classes are also objects makes it easy for us to query them
by sending messages. Let’s have a look:

Color subclasses

TranslucentColor subclasses

TranslucentColor allSuperclasses
ProtoObject)

TranslucentColor instVarNames

TranslucentColor alllnstVarNames
alpha'’)

TranslucentColor selectors sorted #(#addName: #alpha #alpha:
#asHTMLColor #asNontranslucentColor #balancedPatternForDepth:
#bitPatternForDepth: #convertToCurrentVersion:refStream: #hash #isOpaque
#isTranslucent #isTranslucentColor #isTransparent #name #pixelValueForDepth:
#pixelWordForDepth: #privateAlpha #scaledPixelValue32 #setRgb:alpha:
#storeArrayValuesOn: #storeOn:)

{TranslucentColor}

#()
an OrderedCollection(Color Object

#('alpha')
#('rgb’ 'cachedDepth' 'cachedBitPattern'

L L

12.4 The metaclass hierarchy parallels the class
hierarchy

Rule 7 says that the superclass of a metaclass cannot be an arbitrary class:
It is constrained to be the metaclass of the superclass of the metaclass’s
unique instance.

TranslucentColor class superclass —— Color class
TranslucentColor superclass class — Color class

This is what we mean by the metaclass hierarchy being parallel to the
class hierarchy; Figure 12.4 shows how this works in the TranslucentColor
hierarchy.

264 Classes and metaclasses

A

Object class
3

[TranslucentColor class]

ransiucentBie [TranslucentColor| >

—

Key
instance-of —pP

Figure 12.4: The metaclass hierarchy parallels the class hierarchy.

TranslucentColor class — TranslucentColor class
TranslucentColor class superclass — Color class
TranslucentColor class superclass superclass — Object class

Uniformity between classes and objects. It is interesting to step back a
moment and realize that there is no difference between sending a message
to an object and a class. In both cases, the search for the corresponding
method starts in the class of the receiver and proceeds up the inheritance
chain.

Thus, messages sent to classes must follow the metaclass inheritance
chain. Consider, for example, the method blue, which is implemented on
the class side of Color. If we send the message blue to TranslucentColor, then it
will be looked-up the same way as any other message. The lookup starts in
the class of the object named TranslucentColor, which is TranslucentColor class,
and proceeds up the metaclass hierarchy until it is found in Color class (see
Figure 12.5).

TranslucentColor blue —— Color blue

Note that we get as a result an ordinary Color blue and not a translucent
one — there is no magic!

Thus we see that there is one uniform kind of method lookup in Smalltalk.
Classes are just objects, and behave like any other objects. Classes have the
power to create new instances only because classes happen to respond to
the message new, and because the method for new knows how to create new

The metaclass hierarchy parallels the class hierarchy 265

Object class
)
N Then look in the
T Color class |< superclass, and so on,until
- A you find the method.
Color blue :
! [TranslucentColor class |
{ [TranslucentColor| ™ 7 S
,.') . . Key
' ... | First look in the™ instance-of —— PP
4 class of the object. message send —=>
reply 77 7C >
blue — S

Figure 12.5: Message lookup for classes is the same as for ordinary objects.

instances. Normally, non-class objects do not understand this message, but

if you have a good reason to do so, nothing is stopping you from adding a
new method to a non-metaclass.

Since classes are objects, we can also inspect them.

NJ Inspect Color blue and Color.

Notice that in one case you are inspecting an instance of Color and in the
other case the Color class itself. This can be a bit confusing because the title
bar of the inspector names the class of the object being inspected.

The inspector on Color allows you to see the superclass, instance vari-

ables, method dictionary, and so on, of the Color class, as shown in Fig-
ure 12.6.

Color £ Color class [+ 1+]
self self
all inst vars all inst vars
rgb superclass
cachedDepth methodDict
cachedBitPatter| format
instanceVariab
organization
subclasses
name
classPool
sharedPools
self class inspect
explore explare

Figure 12.6: Classes are objects too.

266 Classes and metaclasses

Behavior

[ClassDescription]
A

A

% Object class
A
Color class
Color

[TranslucentColor class |
|TranslucentColor ’

Key =
translucentBlue instance-of —pp

Figure 12.7: Metaclasses inherit from Class and Behavior.

12.5 Every metaclass inherits from Class and Be-
havior

Every metaclass is-a class, hence inherits from Class. Class in turn inherits
from its superclasses, ClassDescription and Behavior. Since everything in
Smalltalk is-an object, these classes all inherit eventually from Object. We
can see the complete picture in Figure 12.7.

Where is new defined? To understand the importance of the fact that
metaclasses inherit from Class and Behavior, it helps to ask where new is
defined and how it is found. When the message new is sent to a class it is
looked up in its metaclass chain and ultimately in its superclasses Class,
ClassDescription, and Behavior as shown in Figure 12.8.

The question “Where new is defined?” is crucial. new is first defined in the
class Behavior, and it can be redefined in its subclasses, including any of the
metaclasses of the classes we define, when this is necessary. Now when a
message new is sent to a class it is looked up, as usual, in the metaclass of
this class, continuing up the superclass chain right up to the class Behavior,
if it has not been redefined along the way.

Note that the result of sending TranslucentColor new is an instance of
TranslucentColor and not of Behavior, even though the method is looked-up

Every metaclass inherits from Class and Behavior 267

---1Behavior|< -

A B
aTranslucentColor e
ClassDescription |<- .

A

'

JAY <
A et
Colorclass <.

ﬁx
A

[TranslucentColor class] -
1

TranslucentColor

Key
instance-of

message send ————>
>

new [ETTPURTIR reply
lookup

Figure 12.8: new is an ordinary message looked up in the metaclass chain.

in the class Behavior! new always returns an instance of self, the class that
receives the message, even if it is implemented in another class.

TranslucentColor new class —— TranslucentColor "not Behavior'

A common mistake is to look for new in the superclass of the receiving
class. The same holds for new:, the standard message to create an object of
a given size. For example, Array new: 4 creates an array of 4 elements. You
will not find this method defined in Array or any of its superclasses. Instead,
you should look in Array class and its superclasses since that is where the
lookup will start.

Responsibilities of Behavior, ClassDescription, and Class. Behavior pro-
vides the minimum state necessary for objects that have instances: this
includes a superclass link, a method dictionary, and a description of the
instances (i.e., representation and number). Behavior inherits from Object, so
it, and all of its subclasses, can behave like objects.

Behavior is also the basic interface to the compiler. It provides meth-
ods for creating a method dictionary, compiling methods, creating in-
stances (i.e., new, basicNew, new:, and basicNew:), manipulating the class
hierarchy (i.e., superclass:, addSubclass:), accessing methods (i.e., selectors, allS-
electors, compiledMethodAt:), accessing instances and variables (i.e., alllnstances,
instVarNames ...), accessing the class hierarchy (i.e., superclass, subclasses),

268 Classes and metaclasses

A

ClassDescription

A AV,
A
% Object class
A
A
Color
A
[TranslucentColor class |
TranslucentColor

Key
translucentBlue instance-of — >

Figure 12.9: Every metaclass is a Metaclass.

and querying (i.e., hasMethods, includesSelector, canUnderstand:, inheritsFrom:,
isVariable).

ClassDescription is an abstract class that provides facilities needed by its
two direct subclasses, Class and Metaclass. ClassDescription adds a number of
facilities to the basis provided by Behavior: named instance variables, the
categorization of methods into protocols, the notion of a name (abstract),
the maintenance of change sets and the logging of changes, and most of the
mechanisms needed for filing-out changes.

Class represents the common behavior of all classes. It provides a class
name, compilation methods, method storage, and instance variables. It
provides a concrete representation for class variable names and shared pool
variables (addClassVarName:, addSharedPool:, initialize). Class knows how to
create instances, so all metaclasses should inherit ultimately from Class.

12.6 Every metaclass is an instance of Metaclass

Metaclasses are objects too; they are instances of the class Metaclass as
shown in Figure 12.9. The instances of class Metaclass are the anonymous
metaclasses, each of which has exactly one instance, which is a class.

Metaclass represents common metaclass behavior. It provides methods
for instance creation (subclassOf:) creating initialized instances of the meta-
class’s sole instance, initialization of class variables, metaclass instance,

The metaclass of Metaclass is an instance of Metaclass 269

Behavior class

Behavior
JAY

[ClassDescription class |<

ClassDescription
\ Class class

Metaclass class

Ob ect class

Color [Color class]

Color
|Trans|ucentCoIor class|

TranslucentColor

X —
translucentBlue instance-ofey—»

Figure 12.10: All metaclasses are instances of the class Metaclass, even the
metaclass of Metaclass.

method compilation, and class information (inheritance links, instance
variables, etc.).

12.7 The metaclass of Metaclass is an instance of
Metaclass

The final question to be answered is: What is the class of Metaclass class?

The answer is simple: It is a metaclass, so it must be an instance of
Metaclass, just like all the other metaclasses in the system (see Figure 12.10).

The figure shows how all metaclasses are instances of Metaclass, includ-
ing the metaclass of Metaclass itself. If you compare Figures Figure 12.9 and
Figure 12.10 you will see how the metaclass hierarchy perfectly mirrors the
class hierarchy, all the way up to Object class.

The following examples show us how we can query the class hierarchy
to demonstrate that Figure 12.10 is correct. (Actually, you will see that we
told a white lie — Object class superclass — ProtoObject class, not Class. In
Squeak, we must go one superclass higher to reach Class.)

270 Classes and metaclasses

Example 12.1: The class hierarchy.

TranslucentColor superclass —— Color
Color superclass — Object

Example 12.2: The parallel metaclass hierarchy.

Color class

Object class

Class "NB: skip ProtoObject class”
ClassDescription

Behavior

Object

TranslucentColor class superclass
Color class superclass

Object class superclass superclass
Class superclass

ClassDescription superclass
Behavior superclass

LILLLY

Example 12.3: Instances of Metaclass.

TranslucentColor class class — Metaclass
Color class class — Metaclass
Object class class — Metaclass
Behavior class class — Metaclass

Example 12.4: Metaclass class is a Metaclass.

Metaclass class class — Metaclass
Metaclass superclass —— ClassDescription

12.8 Chapter summary

Now you should understand better how classes are organized and the
impact of a uniform object model. If you get lost or confused, you should
always remember that message passing is the key: You look for the method
in the class of the receiver. This works on any receiver. If the method is not
found in the class of the receiver, it is looked up in its superclasses.

¢ Every class is an instance of a metaclass. Metaclasses are implicit. A
Metaclass is created automatically when you create the class that is
its sole instance.

¢ The metaclass hierarchy parallels the class hierarchy. Method lookup
for classes parallels method lookup for ordinary objects, and follows
the metaclass’s superclass chain.

¢ Every metaclass inherits from Class and Behavior. Every class is a Class.
Since metaclasses are classes too, they must also inherit from Class.
Behavior provides behavior common to all entities that have instances.

Chapter summary 271
e Every metaclass is an instance of Metaclass. ClassDescription provides
everything that is common to Class and Metaclass.

* The metaclass of Metaclass is an instance of Metaclass. The instance-of
relation forms a closed loop, so Metaclass class class — Metaclass.

Part IV

Appendices

Appendix A

Frequently asked questions

A.1 Getting started

FAQ 1 Where do I get the latest Squeak?

Answer https://squeak.org/downloads/

FAQ 2 Which Squeak image should I use with this book?

Answer We recommend that you use the standard image provided on
https://squeak.org/downloads/. You should also be able to use most other im-
ages, but you may find that the hands-on exercises behave differently in
surprising ways.

FAQ 3 [have destroyed my world docking bar at the top of the world in some way.
How do I get it back?

Answer Open the yellow button menu of the world (by clicking the yel-
low button in the world). There you find the menu item show main docking bar .
Click it once to deactivate it completely, and then click it a second time to

re-activate it.

FAQ 4 How do I install more than what is already in the image?

https://squeak.org/downloads/
https://squeak.org/downloads/

276 Frequently asked questions

Answer There are several ways to install additional packages. First, you
can always download sar- or mcz-files and simply drop them into Squeak.
Second, you can use the class Installer, which provides methods for installing
several kinds of packages from different sources, e.g., Squeaksource. To start
using the Installer you can take a look at the class comment. Finally, you can
currently find an increasing number of Squeak projects on GitHub, many of
them to be installed via Metacello. Metacello is a configuration management
project for specifying dependencies between Smalltalk projects. Before you
can install a project via Metacello you may have to setup Metacello in your
environment. You can do so via Installer ensureRecentMetacello.

FAQ 5 Some code triggered a lot of debuggers and my whole screen is filled with
them. How can I get rid of them?

Answer You can close all windows that look similar at once by selecting
World docking bar >Windows >Bad Window > Close all like this.

A.2 Collections

FAQ 6 How do I sort a Collection?

Answer If you want a sorted copy, you can use sorted. If you want to have
a collection that keeps the elements sorted, even when you add or remove
elements, send the message asSortedCollection. Finally, some collections can
be sorted in-place as they understand sort, which will not return a copy, but
re-order the collection.

collection :={7.2.6. 1}.
collection sorted. — #(1267)
collection sorted == collection. — false

collection asSortedCollection. — a SortedCollection(12 6 7)

collection sort. — #(1267)
collection. — #(1267)
collection sort == collection. — true

To define custom sort criteria, use a sort block or a function (see Sec-
tion 9.6):

collection := #('Foo' 'Bar' 'baz').
collection sorted. —— #('Bar' 'Foo' 'baz')

Browsing the system 277

collection sorted: [:a :b | a caselnsensitiveLessOrEqual: b]. — #('Bar' 'baz' 'Foo'

)

collection sorted: [:a | a asUppercase] ascending. — #('Bar' 'baz' 'Foo')
collection sorted: [:a | a asUppercase] descending. —— #('Foo' 'baz' 'Bar')

(#(1 02) @ #(2 0 1)) sorted: #r ascending , #x descending. — {0@0.2@1 .1
@2}

FAQ 7 How do I convert a collection of characters to a String?

Answer

collection :='hello’ asSet.
String newFrom: collection asArray. —— ‘oelh’

A.3 Browsing the system

FAQ 8 How do I search for a class?

Answer CMD-b (browse) on the class name, CMD—{ in the category pane
of the class browser, or the global search on the top right of the world.

FAQ 9 How do I browse all references to a given class?

Answer Select the class name and press CMD—N, or open the yellow
button menu and select more > references to it.

FAQ 10 How do I find/browse all sends to super?

Answer The second solution is much faster:

SystemNavigation default browseMethodsWithSourceString: 'super'.
SystemNavigation default browseAllSelect: [:method | method sendsToSuper].

FAQ 11 How do I browse all super sends within a hierarchy?

278 Frequently asked questions

Answer

browseSuperSends := [:aClass | SystemNavigation default
browseMessagelist: (aClass withAllSubclasses gather: [:each |
(each methodDict associations
select: [:assoc | assoc value sendsToSuper])
collect: [:assoc | MethodReference class: each selector: assoc key]])
name: 'Supersends of ', aClass name , ' and its subclasses'].
browseSuperSends value: OrderedCollection.

FAQ 12 How do I find out which new methods are introduced by a class? (i.e.,
not including overridden methods.)

Answer Here we ask which methods are introduced by TranslucentColor:

newMethods := [:aClass| aClass methodDict keys select:
[:aMethod | (aClass superclass canUnderstand: aMethod) not]].
newMethods value: TranslucentColor — #(#setRgb:alpha:)

FAQ 13 How do I tell which methods of a class are abstract?

Answer

abstractMethods =
[:aClass | aClass methodDict keys select:
[:aMethod | (aClass>>aMethod) isAbstract]].
abstractMethods value: Collection — #(#add: #remove:ifAbsent: #do:)

FAQ 14 How do I generate a view of the AST of an expression?

Answer Load AST from squeaksource.com. Then evaluate:

(RBParser parseExpression: '3 + 4') explore

Alternatively you can also directly explore it.

FAQ 15 How do I find all the Traits in the system?

Answer

Smalltalk allTraits

FAQ 16 How do I find which classes use traits?

Morphic 279

Answer

Smalltalk allClasses select: [:each | each hasTraitComposition]

A4 Morphic

FAQ 17 How can I show images in Morphic?

Answer An first and easy way to get an image into Squeak is by dragging
the image file into the environment and dropping it directly within the
world and selecting open graphic in a window . This will create an ImageMorph
in the world.

Alternatively you can also create an ImageMorph through code, for example
using the following expression, if the image file is in the default folder:

ImageMorph new
image: (Form fromFileNamed: 'animage.jpg');
openinHand.

FAQ 18 How do I center text in a TextMorph?

Answer The following expression will do this:

TextMorph new
contents: 'Hello';
hResizing: #rigid; "States that the morph should not change
its width to match the width of the content"
width: 300;
centered;
openinWorld.

FAQ 19 How do I add formatting to text?

Answer The relevant classes are Text and TextAttrioute. You can add
TextAttributes to section of text by using the messages in the emphasis protocol
of Text, for example:

text := 'yellow and green' asText.

text
addAttribute: TextColor yellow from: 1 to: 6;
addAttribute: TextEmphasis italic from: 1 to: 6;
addAttribute: TextColor green from: 12 to: 16;

280 Frequently asked questions

addAttribute: TextEmphasis bold from: 12 to: 16.
text asMorph openlnHand.

A.5 System

FAQ 20 How can I achieve concurrency?

Answer There are a number of classes to create and control concurrency.
You can find most of them, such as Process, Mutex, or Promise in the system
category Kernel-Processes. Starting new processes is done via the messages
in the scheduling protocol of BlockClosure. Note, that, like most interpreter-
based languages to date, the Squeak environment runs in a single operating
system process, so you will not benefit from parallel hardware. Writing
concurrent code might still be useful for background processing of long
computations or I/O.

FAQ 21 [have created concurrent behavior, but lost track of some of the processes
I started. What can I do?

Answer There is a tool called Process Browser which you can either open
from World menu >open or World docking bar >Tools. The process browser
lists all processes and the yellow button menu allows you to control the
process, e.g., terminate it.

FAQ 22 How do I express OS-independent file paths?

Answer A very manual way to achieve this is to construct paths using
OS-specific path delimiters by using slash. FileDirectory instances can be
created with any kind of path by sending the message uri:. Finally, if you
already have a FileDirectory instance you can send the message \ to navigate
it, for example:

(FileDirectory default / 'release-notes' / '5.0') readStream contents lines first.

A.6 Using Monticello and SqueakSource

FAQ 23 How do I load a Squeaksource project?

Using Monticello and SqueakSource 281

Answer

® N

Find the project you want in squeaksource.com

Copy the registration code snippet

Select World docking bar > Tools >Monticello browser

Select +Repository >HTTP

Paste and accept the Registration code snippet; enter your password
Select the new repository and Open it

Select and load the latest version

FAQ 24 How do I create a SqueakSource project?

Answer

W N

9.
10.

. Go to squeaksource.com
. Register yourself as a new member

. Register a project (name = category)

Copy the Registration code snippet

open >Monticello browser

+Package to add the category

Select the package

+Repository >HTTP

Paste and accept the Registration code snippet; enter your password

Save to save the first version

FAQ 25 How do I extend Number with Number»chf but have Monticello recognize
it as being part of my Money project?

Answer Putitin a method-category named «Money. Monticello gathers
all methods that are in other categories named like *package and includes
them in your package.

squeaksource.com
squeaksource.com

282 Frequently asked questions

A.7 Tools

FAQ 26 Doing everything with the mouse take so much time. Which keyboard
shortcuts are there?

Answer You can find a list of available keyboard shortcuts directly in the
environment at World docking bar > Help > Keyboard Shortcuts .

FAQ 27 Some menus are quite large and 1 struggle to find what I am looking for.

Answer Menus, like all panes, can be filtered by simply typing on your
keyboard. If you type the complete string of the menu item you can also
directly activate it by pressing return.

FAQ 28 Some message sends seem slow to me. How do I find out what makes
them slow?

Answer You can use the MessageTally tool that allows you to profile your
code. To profile all processes currently running in the process, you can
open the tool from World docking bar >Extras > Start Profiler. If you only want
to profile a specific message send, you can use spyOn:, for example:

MessageTally spyOn: [10000 timesRepeat: [1.23 printString]]

You can achieve the same by selecting an expression and select spy on it
from the yellow button menu.

FAQ 29 How do I programmatically open the SUnit TestRunner?

Answer Evaluate TestRunner open.

FAQ 30 Where can I find the Refactoring Browser?

Answer Load AST then Refactoring Engine from squeaksource.com:
www.squeaksource.com/AST www.squeaksource.com/RefactoringEngine

FAQ 31 How do I register the browser that I want to be the default?

Answer Click the menu icon in the top left of the Browser window.

www.squeaksource.com/AST
www.squeaksource.com/RefactoringEngine

Regular expressions and parsing 283

A.8 Regular expressions and parsing

FAQ 32 Where is the documentation for the RegEx package?

Answer Look at the DOCUMENTATION protocol of RxParser class in the
Regex-Core category.

FAQ 33 Are there tools for writing parsers?

Answer You can use SmaCC — the Smalltalk Compiler Compiler (load
it from https://www.squeaksource.com/SmaccDevelopment.html). Or you can use
Ohm/S, a Smalltalk implementation of Ohm/]JS (load it from https://www.
github.com/hpi-swa/Ohm-S).

https://www.squeaksource.com/SmaccDevelopment.html
https://www.github.com/hpi-swa/Ohm-S
https://www.github.com/hpi-swa/Ohm-S

Bibliography

Sherman R. Alpert, Kyle Brown and Bobby Woolf: The Design Patterns
Smalltalk Companion. Addison Wesley, 1998, ISBN 0-201-18462-1

Kent Beck: Smalltalk Best Practice Patterns. Prentice-Hall, 1997

Kent Beck: Test Driven Development: By Example. Addison-Wesley, 2003,
ISBN 0-321-14653-0

Erich Gamma et al.: Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, Mass.: Addison Wesley Professional, 1995, ISBN
978-0201633610

Adele Goldberg and David Robson: Smalltalk 80: the Language and its
Implementation. Reading, Mass.: Addison Wesley, May 1983 (URL:
https://dl.acm.org/doi/pdf/10.5555/273), ISBN 0-201-13688-0

Edward J. Klimas, Suzanne Skublics and David A. Thomas: Smalltalk
with Style. Prentice-Hall, 1996, ISBN 0-13-165549-3

Wilf LaLonde and John Pugh: Inside Smalltalk: Volume 1. Prentice Hall,
1990, ISBN 0-13-468414-1

Alec Sharp: Smalltalk by Example. McGraw-Hill, 1997

Bobby Woolf: Null Object. In Robert Martin, Dirk Riehle and Frank
Buschmann, editors: Pattern Languages of Program Design 3. Addi-
son Wesley, 1998, 5-18

https://dl.acm.org/doi/pdf/10.5555/273

	Preface
	Getting started
	A quick tour of Squeak
	Getting started
	The world menu
	Saving, quitting, and restarting a Squeak session
	Workspaces and transcripts
	Keyboard shortcuts
	The system browser
	Finding classes
	Finding methods
	Defining a new method
	Chapter summary

	Your first interactive object: the Quinto game
	The Quinto game
	Creating a new class category
	Defining the class SBECell
	Adding methods to a class
	Inspecting an object
	Defining the class SBEGame
	Organizing methods into protocols
	Let's try our code
	Saving and sharing Smalltalk code
	Chapter summary

	Syntax in a nutshell
	Syntactic elements
	Pseudo-variables
	Message sends
	Method syntax
	Block syntax
	Conditionals and loops in a nutshell
	Primitives and pragmas
	Chapter summary

	Understanding message syntax
	Identifying messages
	Three kinds of messages
	Message composition
	Hints for identifying keyword messages
	Expression sequences
	Cascaded messages
	Chapter summary

	Developing in Squeak
	The Smalltalk object model
	The rules of the model
	Everything is an object
	Every object is an instance of a class
	Every class has a superclass
	Everything happens by sending messages
	Method lookup follows the inheritance chain
	Shared variables
	Chapter summary

	The Squeak programming environment
	Overview
	The system browser
	Monticello
	The inspector and the explorer
	The debugger
	The process browser
	Finding methods
	Change sets and the change sorter
	The file list browser
	In Smalltalk, you can't lose code
	Other interesting tools
	Chapter summary

	SUnit
	Introduction
	Why testing is important
	What makes a good test?
	SUnit by example
	The SUnit cook book
	The SUnit framework
	Advanced features of SUnit
	The implementation of SUnit
	Some advice on testing
	Chapter summary

	Basic Classes
	Object
	Numbers
	Characters
	Strings
	Booleans
	Exceptions
	Chapter summary

	Collections
	Introduction
	Implementations of collections
	Examples of key classes
	Collection iterators
	Some hints for using collections
	Sorting collections
	Chapter summary

	Streams
	Two sequences of elements
	Streams vs. collections
	Streaming over collections
	Using streams for file access
	Chapter summary

	Morphic
	The history of Morphic
	Manipulating morphs
	Composing morphs
	Creating and drawing your own morphs
	Interaction and animation
	Dialog windows
	Drag-and-drop
	A complete example
	More about the canvas
	Chapter summary

	Advanced Squeak
	Classes and metaclasses
	Rules for classes and metaclasses
	Revisiting the Smalltalk object model
	Every class is an instance of a metaclass
	The metaclass hierarchy parallels the class hierarchy
	Every metaclass inherits from Class and Behavior
	Every metaclass is an instance of Metaclass
	The metaclass of Metaclass is an instance of Metaclass
	Chapter summary

	Appendices
	Frequently asked questions
	Getting started
	Collections
	Browsing the system
	Morphic
	System
	Using Monticello and SqueakSource
	Tools
	Regular expressions and parsing

	Bibliography

