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Release history

May, 2023

The book is now complete! Compared to the April pre-release, many small details have been
improved and minor mistakes have been fixed.

April, 2023

This release adds an interlude on writing proofs with tactics as well as a final chapter that
combines discussion of performance and cost models with proofs of termination and
program equivalence. This is the last release prior to the final release.

March, 2023

This release adds a chapter on programming with dependent types and indexed families.

January, 2023

This release adds a chapter on monad transformers that includes a description of the
imperative features that are available in do -notation.

December, 2022

This release adds a chapter on applicative functors that additionally describes structures
and type classes in more detail. This is accompanied with improvements to the description
of monads. The December 2022 release was delayed until January 2023 due to winter
holidays.
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November, 2022

This release adds a chapter on programming with monads. Additionally, the example of
using JSON in the coercions section has been updated to include the complete code.

October, 2022

This release completes the chapter on type classes. In addition, a short interlude
introducing propositions, proofs, and tactics has been added just before the chapter on
type classes, because a small amount of familiarity with the concepts helps to understand
some of the standard library type classes.

September, 2022

This release adds the first half of a chapter on type classes, which are Lean's mechanism for
overloading operators and an important means of organizing code and structuring libraries.
Additionally, the second chapter has been updated to account for changes in Lean's stream
API.

August, 2022

This third public release adds a second chapter, which describes compiling and running
programs along with Lean's model for side effects.

July, 2022

The second public release completes the first chapter.

June, 2022

This was the first public release, consisting of an introduction and part of the first chapter.
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Lean is an interactive theorem prover developed at Microsoft Research, based on
dependent type theory. Dependent type theory unites the worlds of programs and proofs;
thus, Lean is also a programming language. Lean takes its dual nature seriously, and it is
designed to be suitable for use as a general-purpose programming language—Lean is even
implemented in itself. This book is about writing programs in Lean.

When viewed as a programming language, Lean is a strict pure functional language with
dependent types. A large part of learning to program with Lean consists of learning how
each of these attributes affects the way programs are written, and how to think like a
functional programmer. Strictness means that function calls in Lean work similarly to the
way they do in most languages: the arguments are fully computed before the function's
body begins running. Purity means that Lean programs cannot have side effects such as
modifying locations in memory, sending emails, or deleting files without the program's type
saying so. Lean is a functional language in the sense that functions are first-class values like
any other and that the execution model is inspired by the evaluation of mathematical
expressions. Dependent types, which are the most unusual feature of Lean, make types into
a first-class part of the language, allowing types to contain programs and programs to
compute types.

This book is intended for programmers who want to learn Lean, but who have not
necessarily used a functional programming language before. Familiarity with functional
languages such as Haskell, OCaml, or F# is not required. On the other hand, this book does
assume knowledge of concepts like loops, functions, and data structures that are common
to most programming languages. While this book is intended to be a good first book on
functional programming, it is not a good first book on programming in general.

Mathematicians who are using Lean as a proof assistant will likely need to write custom
proof automation tools at some point. This book is also for them. As these tools become
more sophisticated, they begin to resemble programs in functional languages, but most
working mathematicians are trained in languages like Python and Mathematica. This book
can help bridge the gap, empowering more mathematicians to write maintainable and
understandable proof automation tools.

This book is intended to be read linearly, from the beginning to the end. Concepts are
introduced one at a time, and later sections assume familiarity with earlier sections.
Sometimes, later chapters will go into depth on a topic that was only briefly addressed
earlier on. Some sections of the book contain exercises. These are worth doing, in order to
cement your understanding of the section. It is also useful to explore Lean as you read the
book, finding creative new ways to use what you have learned.

Getting Lean
Before writing and running programs written in Lean, you'll need to set up Lean on your
own computer. The Lean tooling consists of the following:
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elan  manages the Lean compiler toolchains, similarly to rustup  or ghcup .
lake  builds Lean packages and their dependencies, similarly to cargo , make , or

Gradle.
lean  type checks and compiles individual Lean files as well as providing information

to programmer tools about files that are currently being written. Normally, lean  is
invoked by other tools rather than directly by users.
Plugins for editors, such as Visual Studio Code or Emacs, that communicate with lean
and present its information conveniently.

Please refer to the Lean manual for up-to-date instructions for installing Lean.

Typographical Conventions
Code examples that are provided to Lean as input are formatted like this:

The last line above (beginning with #eval ) is a command that instructs Lean to calculate an
answer. Lean's replies are formatted like this:

Error messages returned by Lean are formatted like this:

Warnings are formatted like this:

Unicode
Idiomatic Lean code makes use of a variety of Unicode characters that are not part of ASCII.
For instance, Greek letters like α  and β  and the arrow →  both occur in the first chapter of
this book. This allows Lean code to more closely resemble ordinary mathematical notation.

def add1 (n : Nat) : Nat := n + 1

#eval add1 7

8

application type mismatch
  add1 "seven"
argument
  "seven"
has type
  String : Type
but is expected to have type
  Nat : Type

declaration uses 'sorry'

https://leanprover.github.io/lean4/doc/quickstart.html
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With the default Lean settings, both Visual Studio Code and Emacs allow these characters to
be typed with a backslash ( \ ) followed by a name. For example, to enter α , type \alpha .
To find out how to type a character in Visual Studio Code, point the mouse at it and look at
the tooltip. In Emacs, use C-c C-k  with point on the character in question.
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According to tradition, a programming language should be introduced by compiling and
running a program that displays "Hello, world!"  on the console. This simple program
ensures that the language tooling is installed correctly and that the programmer is able to
run the compiled code.

Since the 1970s, however, programming has changed. Today, compilers are typically
integrated into text editors, and the programming environment offers feedback as the
program is written. Lean is no exception: it implements an extended version of the
Language Server Protocol that allows it to communicate with a text editor and provide
feedback as the user types.

Languages as varied as Python, Haskell, and JavaScript offer a read-eval-print-loop (REPL),
also known as an interactive toplevel or a browser console, in which expressions or
statements can be entered. The language then computes and displays the result of the
user's input. Lean, on the other hand, integrates these features into the interaction with the
editor, providing commands that cause the text editor to display feedback integrated into
the program text itself. This chapter provides a short introduction to interacting with Lean in
an editor, while Hello, World! describes how to use Lean traditionally from the command
line in batch mode.

It is best if you read this book with Lean open in your editor, following along and typing in
each example. Please play with the examples, and see what happens!

https://leanprover.github.io/functional_programming_in_lean/print.html
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Evaluating Expressions
The most important thing to understand as a programmer learning Lean is how evaluation
works. Evaluation is the process of finding the value of an expression, just as one does in
arithmetic. For instance, the value of 15 - 6 is 9 and the value of 2 × (3 + 1) is 8. To find the
value of the latter expression, 3 + 1 is first replaced by 4, yielding 2 × 4, which itself can be
reduced to 8. Sometimes, mathematical expressions contain variables: the value of x + 1
cannot be computed until we know what the value of x is. In Lean, programs are first and
foremost expressions, and the primary way to think about computation is as evaluating
expressions to find their values.

Most programming languages are imperative, where a program consists of a series of
statements that should be carried out in order to find the program's result. Programs have
access to mutable memory, so the value referred to by a variable can change over time. In
addition to mutable state, programs may have other side effects, such as deleting files,
making outgoing network connections, throwing or catching exceptions, and reading data
from a database. "Side effects" is essentially a catch-all term for describing things that may
happen in a program that don't follow the model of evaluating mathematical expressions.

In Lean, however, programs work the same way as mathematical expressions. Once given a
value, variables cannot be reassigned. Evaluating an expression cannot have side effects. If
two expressions have the same value, then replacing one with the other will not cause the
program to compute a different result. This does not mean that Lean cannot be used to
write Hello, world!  to the console, but performing I/O is not a core part of the experience
of using Lean in the same way. Thus, this chapter focuses on how to evaluate expressions
interactively with Lean, while the next chapter describes how to write, compile, and run the
Hello, world!  program.

To ask Lean to evaluate an expression, write #eval  before it in your editor, which will then
report the result back. Typically, the result is found by putting the cursor or mouse pointer
over #eval . For instance,

yields the value 3 .

Lean obeys the ordinary rules of precedence and associativity for arithmetic operators. That
is,

yields the value 11  rather than 15 .

While both ordinary mathematical notation and the majority of programming languages use
parentheses (e.g. f(x) ) to apply a function to its arguments, Lean simply writes the

#eval 1 + 2

#eval 1 + 2 * 5
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function next to its arguments (e.g. f x ). Function application is one of the most common
operations, so it pays to keep it concise. Rather than writing

to compute "Hello, Lean!" , one would instead write

where the function's two arguments are simply written next to it with spaces.

Just as the order-of-operations rules for arithmetic demand parentheses in the expression
(1 + 2) * 5 , parentheses are also necessary when a function's argument is to be

computed via another function call. For instance, parentheses are required in

because otherwise the second String.append  would be interpreted as an argument to the
first, rather than as a function being passed "oak "  and "tree"  as arguments. The value
of the inner String.append  call must be found first, after which it can be appended to
"great " , yielding the final value "great oak tree" .

Imperative languages often have two kinds of conditional: a conditional statement that
determines which instructions to carry out based on a Boolean value, and a conditional
expression that determines which of two expressions to evaluate based on a Boolean value.
For instance, in C and C++, the conditional statement is written using if  and else , while
the conditional expression is written with a ternary operator ?  and : . In Python, the
conditional statement begins with if , while the conditional expression puts if  in the
middle. Because Lean is an expression-oriented functional language, there are no
conditional statements, only conditional expressions. They are written using if , then , and
else . For instance,

evaluates to

which evaluates to

which finally evaluates to "it is no" .

For the sake of brevity, a series of evaluation steps like this will sometimes be written with
arrows between them:

#eval String.append("Hello, ", "Lean!")

#eval String.append "Hello, " "Lean!"

#eval String.append "great " (String.append "oak " "tree")

String.append "it is " (if 1 > 2 then "yes" else "no")

String.append "it is " (if false then "yes" else "no")

String.append "it is " "no"
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Messages You May Meet

Asking Lean to evaluate a function application that is missing an argument will lead to an
error message. In particular, the example

yields a quite long error message:

This message occurs because Lean functions that are applied to only some of their
arguments return new functions that are waiting for the rest of the arguments. Lean cannot
display functions to users, and thus returns an error when asked to do so.

Exercises

What are the values of the following expressions? Work them out by hand, then enter them
into Lean to check your work.

42 + 19

String.append "A" (String.append "B" "C")

String.append (String.append "A" "B") "C"

if 3 == 3 then 5 else 7

if 3 == 4 then "equal" else "not equal"

String.append "it is " (if 1 > 2 then "yes" else "no")
===>
String.append "it is " (if false then "yes" else "no")
===>
String.append "it is " "no"
===>
"it is no"

#eval String.append "it is "

expression
  String.append "it is "
has type
  String → String
but instance
  Lean.MetaEval (String → String)
failed to be synthesized, this instance instructs Lean on how to display the 
resulting value, recall that any type implementing the `Repr` class also 
implements the `Lean.MetaEval` class
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Types
Types classify programs based on the values that they can compute. Types serve a number
of roles in a program:

1. They allow the compiler to make decisions about the in-memory representation of a
value.

2. They help programmers to communicate their intent to others, serving as a lightweight
specification for the inputs and outputs of a function that the compiler can ensure the
program adheres to.

3. They prevent various potential mistakes, such as adding a number to a string, and thus
reduce the number of tests that are necessary for a program.

4. They help the Lean compiler automate the production of auxiliary code that can save
boilerplate.

Lean's type system is unusually expressive. Types can encode strong specifications like "this
sorting function returns a permutation of its input" and flexible specifications like "this
function has different return types, depending on the value of its argument". The type
system can even be used as a full-blown logic for proving mathematical theorems. This
cutting-edge expressive power doesn't obviate the need for simpler types, however, and
understanding these simpler types is a prerequisite for using the more advanced features.

Every program in Lean must have a type. In particular, every expression must have a type
before it can be evaluated. In the examples so far, Lean has been able to discover a type on
its own, but it is sometimes necessary to provide one. This is done using the colon operator:

Here, Nat  is the type of natural numbers, which are arbitrary-precision unsigned integers. In
Lean, Nat  is the default type for non-negative integer literals. This default type is not always
the best choice. In C, unsigned integers underflow to the largest representable numbers
when subtraction would otherwise yield a result less than zero. Nat , however, can
represent arbitrarily-large unsigned numbers, so there is no largest number to underflow
to. Thus, subtraction on Nat  returns 0  when the answer would have otherwise been
negative. For instance,

evaluates to 0  rather than -1 . To use a type that can represent the negative integers,
provide it directly:

#eval (1 + 2 : Nat)

#eval 1 - 2
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With this type, the result is -1 , as expected.

To check the type of an expression without evaluating it, use #check  instead of #eval . For
instance:

reports 1 - 2 : Int  without actually performing the subtraction.

When a program can't be given a type, an error is returned from both #check  and #eval .
For instance:

outputs

because the second argument to String.append  is expected to be a string, but a list of
strings was provided instead.

#eval (1 - 2 : Int)

#check (1 - 2 : Int)

#check String.append "hello" [" ", "world"]

application type mismatch
  String.append "hello" [" ", "world"]
argument
  [" ", "world"]
has type
  List String : Type
but is expected to have type
  String : Type
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Functions and Definitions
In Lean, definitions are introduced using the def  keyword. For instance, to define the name
hello  to refer to the string "Hello" , write:

In Lean, new names are defined using the colon-equal operator :=  rather than = . This is
because =  is used to describe equalities between existing expressions, and using two
different operators helps prevent confusion.

In the definition of hello , the expression "Hello"  is simple enough that Lean is able to
determine the definition's type automatically. However, most definitions are not so simple,
so it will usually be necessary to add a type. This is done using a colon after the name being
defined.

Now that the names have been defined, they can be used, so

outputs

In Lean, defined names may only be used after their definitions.

In many languages, definitions of functions use a different syntax than definitions of other
values. For instance, Python function definitions begin with the def  keyword, while other
definitions are defined with an equals sign. In Lean, functions are defined using the same
def  keyword as other values. Nonetheless, definitions such as hello  introduce names that

refer directly to their values, rather than to zero-argument functions that return equivalent
results each time they are called.

Defining Functions

There are a variety of ways to define functions in Lean. The simplest is to place the
function's arguments before the definition's type, separated by spaces. For instance, a
function that adds one to its argument can be written:

def hello := "Hello"

def lean : String := "Lean"

#eval String.append hello (String.append " " lean)

"Hello Lean"

def add1 (n : Nat) : Nat := n + 1
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Testing this function with #eval  gives 8 , as expected:

Just as functions are applied to multiple arguments by writing spaces between each
argument, functions that accept multiple arguments are defined with spaces between the
arguments' names and types. The function maximum , whose result is equal to the greatest of
its two arguments, takes two Nat  arguments n  and k  and returns a Nat .

When a defined function like maximum  has been provided with its arguments, the result is
determined by first replacing the argument names with the provided values in the body,
and then evaluating the resulting body. For example:

Expressions that evaluate to natural numbers, integers, and strings have types that say this
( Nat , Int , and String , respectively). This is also true of functions. A function that accepts
a Nat  and returns a Bool  has type Nat → Bool , and a function that accepts two Nat s and
returns a Nat  has type Nat → Nat → Nat .

As a special case, Lean returns a function's signature when its name is used directly with
#check . Entering #check add1  yields add1 (n : Nat) : Nat . However, Lean can be

"tricked" into showing the function's type by writing the function's name in parentheses,
which causes the function to be treated as an ordinary expression, so #check (add1)  yields
add1 : Nat → Nat  and #check (maximum)  yields maximum : Nat → Nat → Nat . This arrow

can also be written with an ASCII alternative arrow -> , so the preceding function types can
be written Nat -> Nat  and Nat -> Nat -> Nat , respectively.

Behind the scenes, all functions actually expect precisely one argument. Functions like
maximum  that seem to take more than one argument are in fact functions that take one

argument and then return a new function. This new function takes the next argument, and
the process continues until no more arguments are expected. This can be seen by providing
one argument to a multiple-argument function: #check maximum 3  yields maximum 3 : Nat 
→ Nat  and #check String.append "Hello "  yields String.append "Hello " : String → 
String . Using a function that returns a function to implement multiple-argument functions

#eval add1 7

def maximum (n : Nat) (k : Nat) : Nat :=
  if n < k then
    k
  else n

maximum (5 + 8) (2 * 7)
===>
maximum 13 14
===>
if 13 < 14 then 14 else 13
===>
14
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is called currying after the mathematician Haskell Curry. Function arrows associate to the
right, which means that Nat → Nat → Nat  should be parenthesized Nat → (Nat → Nat) .

Exercises

Define the function joinStringsWith  with type String -> String -> String -> 
String  that creates a new string by placing its first argument between its second and
third arguments. joinStringsWith ", " "one" "and another"  should evaluate to
"one, and another" .

What is the type of joinStringsWith ": " ? Check your answer with Lean.
Define a function volume  with type Nat → Nat → Nat → Nat  that computes the
volume of a rectangular prism with the given height, width, and depth.

Defining Types

Most typed programming languages have some means of defining aliases for types, such as
C's typedef . In Lean, however, types are a first-class part of the language - they are
expressions like any other. This means that definitions can refer to types just as well as they
can refer to other values.

For instance, if String  is too much to type, a shorter abbreviation Str  can be defined:

It is then possible to use Str  as a definition's type instead of String :

The reason this works is that types follow the same rules as the rest of Lean. Types are
expressions, and in an expression, a defined name can be replaced with its definition.
Because Str  has been defined to mean String , the definition of aStr  makes sense.

Messages You May Meet

Experimenting with using definitions for types is made more complicated by the way that
Lean supports overloaded integer literals. If Nat  is too short, a longer name
NaturalNumber  can be defined:

def Str : Type := String

def aStr : Str := "This is a string."

def NaturalNumber : Type := Nat
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However, using NaturalNumber  as a definition's type instead of Nat  does not have the
expected effect. In particular, the definition:

results in the following error:

This error occurs because Lean allows number literals to be overloaded. When it makes
sense to do so, natural number literals can be used for new types, just as if those types
were built in to the system. This is part of Lean's mission of making it convenient to
represent mathematics, and different branches of mathematics use number notation for
very different purposes. The specific feature that allows this overloading does not replace all
defined names with their definitions before looking for overloading, which is what leads to
the error message above.

One way to work around this limitation is by providing the type Nat  on the right-hand side
of the definition, causing Nat 's overloading rules to be used for 38 :

The definition is still type-correct because NaturalNumber  is the same type as Nat —by
definition!

Another solution is to define an overloading for NaturalNumber  that works equivalently to
the one for Nat . This requires more advanced features of Lean, however.

Finally, defining the new name for Nat  using abbrev  instead of def  allows overloading
resolution to replace the defined name with its definition. Definitions written using abbrev
are always unfolded. For instance,

and

are accepted without issue.

Behind the scenes, some definitions are internally marked as being unfoldable during
overload resolution, while others are not. Definitions that are to be unfolded are called
reducible. Control over reducibility is essential to allow Lean to scale: fully unfolding all
definitions can result in very large types that are slow for a machine to process and difficult
for users to understand. Definitions produced with abbrev  are marked as reducible.

def thirtyEight : NaturalNumber := 38

failed to synthesize instance
  OfNat NaturalNumber 38

def thirtyEight : NaturalNumber := (38 : Nat)

abbrev N : Type := Nat

def thirtyNine : N := 39
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Structures
The first step in writing a program is usually to identify the problem domain's concepts, and
then find suitable representations for them in code. Sometimes, a domain concept is a
collection of other, simpler, concepts. In that case, it can be convenient to group these
simpler components together into a single "package", which can then be given a meaningful
name. In Lean, this is done using structures, which are analogous to struct s in C or Rust
and record s in C#.

Defining a structure introduces a completely new type to Lean that can't be reduced to any
other type. This is useful because multiple structures might represent different concepts
that nonetheless contain the same data. For instance, a point might be represented using
either Cartesian or polar coordinates, each being a pair of floating-point numbers. Defining
separate structures prevents API clients from confusing one for another.

Lean's floating-point number type is called Float , and floating-point numbers are written in
the usual notation.

When floating point numbers are written with the decimal point, Lean will infer the type
Float . If they are written without it, then a type annotation may be necessary.

A Cartesian point is a structure with two Float  fields, called x  and y . This is declared
using the structure  keyword.

#check 1.2

1.2 : Float

#check -454.2123215

-454.2123215 : Float

#check 0.0

0.0 : Float

#check 0

0 : Nat

#check (0 : Float)

0 : Float
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After this declaration, Point  is a new structure type. The final line, which says deriving 
Repr , asks Lean to generate code to display values of type Point . This code is used by
#eval  to render the result of evaluation for consumption by programmers, analogous to

the repr  function in Python. It is also possible to override the compiler's generated display
code.

The typical way to create a value of a structure type is to provide values for all of its fields
inside of curly braces. The origin of a Cartesian plane is where x  and y  are both zero:

If the deriving Repr  line in Point 's definition were omitted, then attempting #eval 
origin  would yield an error similar to that which occurs when omitting a function's
argument:

That message is saying that the evaluation machinery doesn't know how to communicate
the result of evaluation back to the user.

Happily, with deriving Repr , the result of #eval origin  looks very much like the
definition of origin .

Because structures exist to "bundle up" a collection of data, naming it and treating it as a
single unit, it is also important to be able to extract the individual fields of a structure. This is
done using dot notation, as in C, Python, or Rust.

structure Point where
  x : Float
  y : Float
deriving Repr

def origin : Point := { x := 0.0, y := 0.0 }

expression
  origin
has type
  Point
but instance
  Lean.MetaEval Point
failed to be synthesized, this instance instructs Lean on how to display the 
resulting value, recall that any type implementing the `Repr` class also 
implements the `Lean.MetaEval` class

{ x := 0.000000, y := 0.000000 }

#eval origin.x

0.000000

#eval origin.y
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This can be used to define functions that take structures as arguments. For instance,
addition of points is performed by adding the underlying coordinate values. It should be the
case that #eval addPoints { x := 1.5, y := 32 } { x := -8, y := 0.2 }  yields

The function itself takes two Points  as arguments, called p1  and p2 . The resulting point is
based on the x  and y  fields of both p1  and p2 :

Similarly, the distance between two points, which is the square root of the sum of the
squares of the differences in their x  and y  components, can be written:

For example, the distance between (1, 2) and (5, -1) is 5:

Multiple structures may have fields with the same names. For instance, a three-dimensional
point datatype may share the fields x  and y , and be instantiated with the same field
names:

This means that the structure's expected type must be known in order to use the curly-
brace syntax. If the type is not known, Lean will not be able to instantiate the structure. For
instance,

leads to the error

0.000000

{ x := -6.500000, y := 32.200000 }

def addPoints (p1 : Point) (p2 : Point) : Point :=
  { x := p1.x + p2.x, y := p1.y + p2.y }

def distance (p1 : Point) (p2 : Point) : Float :=
  Float.sqrt (((p2.x - p1.x) ^ 2.0) + ((p2.y - p1.y) ^ 2.0))

#eval distance { x := 1.0, y := 2.0 } { x := 5.0, y := -1.0 }

5.000000

structure Point3D where
  x : Float
  y : Float
  z : Float
deriving Repr

def origin3D : Point3D := { x := 0.0, y := 0.0, z := 0.0 }

#check { x := 0.0, y := 0.0 }

invalid {...} notation, expected type is not known
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As usual, the situation can be remedied by providing a type annotation.

To make programs more concise, Lean also allows the structure type annotation inside the
curly braces.

Updating Structures

Imagine a function zeroX  that replaces the x  field of a Point  with 0.0 . In most
programming language communities, this sentence would mean that the memory location
pointed to by x  was to be overwritten with a new value. However, Lean does not have
mutable state. In functional programming communities, what is almost always meant by
this kind of statement is that a fresh Point  is allocated with the x  field pointing to the new
value, and all other fields pointing to the original values from the input. One way to write
zeroX  is to follow this description literally, filling out the new value for x  and manually

transferring y :

This style of programming has drawbacks, however. First off, if a new field is added to a
structure, then every site that updates any field at all must be updated, causing
maintenance difficulties. Secondly, if the structure contains multiple fields with the same
type, then there is a real risk of copy-paste coding leading to field contents being duplicated
or switched. Finally, the program becomes long and bureaucratic.

Lean provides a convenient syntax for replacing some fields in a structure while leaving the
others alone. This is done by using the with  keyword in a structure initialization. The
source of unchanged fields occurs before the with , and the new fields occur after. For
instance, zeroX  can be written with only the new x  value:

Remember that this structure update syntax does not modify existing values—it creates
new values that share some fields with old values. For instance, given the point
fourAndThree :

#check ({ x := 0.0, y := 0.0 } : Point)

{ x := 0.0, y := 0.0 } : Point

#check { x := 0.0, y := 0.0 : Point}

{ x := 0.0, y := 0.0 } : Point

def zeroX (p : Point) : Point :=
  { x := 0, y := p.y }

def zeroX (p : Point) : Point :=
  { p with x := 0 }
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evaluating it, then evaluating an update of it using zeroX , then evaluating it again yields the
original value:

One consequence of the fact that structure updates do not modify the original structure is
that it becomes easier to reason about cases where the new value is computed from the old
one. All references to the old structure continue to refer to the same field values in all of the
new values provided.

Behind the Scenes

Every structure has a constructor. Here, the term "constructor" may be a source of
confusion. Unlike constructors in languages such as Java or Python, constructors in Lean are
not arbitrary code to be run when a datatype is initialized. Instead, constructors simply
gather the data to be stored in the newly-allocated data structure. It is not possible to
provide a custom constructor that pre-processes data or rejects invalid arguments. This is
really a case of the word "constructor" having different, but related, meanings in the two
contexts.

By default, the constructor for a structure named S  is named S.mk . Here, S  is a
namespace qualifier, and mk  is the name of the constructor itself. Instead of using curly-
brace initialization syntax, the constructor can also be applied directly.

However, this is not generally considered to be good Lean style, and Lean even returns its
feedback using the standard structure initializer syntax.

def fourAndThree : Point :=
  { x := 4.3, y := 3.4 }

#eval fourAndThree

{ x := 4.300000, y := 3.400000 }

#eval zeroX fourAndThree

{ x := 0.000000, y := 3.400000 }

#eval fourAndThree

{ x := 4.300000, y := 3.400000 }

#check Point.mk 1.5 2.8
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Constructors have function types, which means they can be used anywhere that a function
is expected. For instance, Point.mk  is a function that accepts two Float s (respectively x
and y ) and returns a new Point .

To override a structure's constructor name, write it with two colons at the beginning. For
instance, to use Point.point  instead of Point.mk , write:

In addition to the constructor, an accessor function is defined for each field of a structure.
These have the same name as the field, in the structure's namespace. For Point , accessor
functions Point.x  and Point.y  are generated.

In fact, just as the curly-braced structure construction syntax is converted to a call to the
structure's constructor behind the scenes, the syntax p1.x  in the prior definition of
addPoints  is converted into a call to the Point.x  accessor. That is, #eval origin.x  and
#eval Point.x origin  both yield

Accessor dot notation is usable with more than just structure fields. It can also be used for
functions that take any number of arguments. More generally, accessor notation has the
form TARGET.f ARG1 ARG2 ... . If TARGET  has type T , the function named T.f  is called.
TARGET  becomes its leftmost argument of type T , which is often but not always the first

one, and ARG1 ARG2 ...  are provided in order as the remaining arguments. For instance,
String.append  can be invoked from a string with accessor notation, even though String  is

not a structure with an append  field.

{ x := 1.5, y := 2.8 } : Point

#check (Point.mk)

Point.mk : Float → Float → Point

structure Point where
  point ::
  x : Float
  y : Float
deriving Repr

#check (Point.x)

Point.x : Point → Float

#check (Point.y)

Point.y : Point → Float

0.000000
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In that example, TARGET  represents "one string"  and ARG1  represents " and another" .

The function Point.modifyBoth  (that is, modifyBoth  defined in the Point  namespace)
applies a function to both fields in a Point :

Even though the Point  argument comes after the function argument, it can be used with
dot notation as well:

In this case, TARGET  represents fourAndThree , while ARG1  is Float.floor . This is because
the target of the accessor notation is used as the first argument in which the type matches,
not necessarily the first argument.

Exercises

Define a structure named RectangularPrism  that contains the height, width, and
depth of a rectangular prism, each as a Float .
Define a function named volume : RectangularPrism → Float  that computes the
volume of a rectangular prism.
Define a structure named Segment  that represents a line segment by its endpoints,
and define a function length : Segment → Float  that computes the length of a line
segment. Segment  should have at most two fields.
Which names are introduced by the declaration of RectangularPrism ?
Which names are introduced by the following declarations of Hamster  and Book ?
What are their types?

#eval "one string".append " and another"

"one string and another"

def Point.modifyBoth (f : Float → Float) (p : Point) : Point :=
  { x:= f p.x, y := f p.y }

#eval fourAndThree.modifyBoth Float.floor

{ x := 4.000000, y := 3.000000 }

structure Hamster where
  name : String
  fluffy : Bool
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structure Book where
  makeBook ::
  title : String
  author : String
  price : Float
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Datatypes and Patterns
Structures enable multiple independent pieces of data to be combined into a coherent
whole that is represented by a brand new type. Types such as structures that group
together a collection of values are called product types. Many domain concepts, however,
can't be naturally represented as structures. For instance, an application might need to
track user permissions, where some users are document owners, some may edit
documents, and others may only read them. A calculator has a number of binary operators,
such as addition, subtraction, and multiplication. Structures do not provide an easy way to
encode multiple choices.

Similarly, while a structure is an excellent way to keep track of a fixed set of fields, many
applications require data that may contain an arbitrary number of elements. Most classic
data structures, such as trees and lists, have a recursive structure, where the tail of a list is
itself a list, or where the left and right branches of a binary tree are themselves binary trees.
In the aforementioned calculator, the structure of expressions themselves is recursive. The
summands in an addition expression may themselves be multiplication expressions, for
instance.

Datatypes that allow choices are called sum types and datatypes that can include instances
of themselves are called recursive datatypes. Recursive sum types are called inductive
datatypes, because mathematical induction may be used to prove statements about them.
When programming, inductive datatypes are consumed through pattern matching and
recursive functions.

Many of the built-in types are actually inductive datatypes in the standard library. For
instance, Bool  is an inductive datatype:

This definition has two main parts. The first line provides the name of the new type ( Bool ),
while the remaining lines each describe a constructor. As with constructors of structures,
constructors of inductive datatypes are mere inert receivers of and containers for other
data, rather than places to insert arbitrary initialization and validation code. Unlike
structures, inductive datatypes may have multiple constructors. Here, there are two
constructors, true  and false , and neither takes any arguments. Just as a structure
declaration places its names in a namespace named after the declared type, an inductive
datatype places the names of its constructors in a namespace. In the Lean standard library,
true  and false  are re-exported from this namespace so that they can be written alone,

rather than as Bool.true  and Bool.false , respectively.

From a data modeling perspective, inductive datatypes are used in many of the same
contexts where a sealed abstract class might be used in other languages. In languages like

inductive Bool where
  | false : Bool
  | true : Bool
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C# or Java, one might write a similar definition of Bool :

However, the specifics of these representations are fairly different. In particular, each non-
abstract class creates both a new type and new ways of allocating data. In the object-
oriented example, True  and False  are both types that are more specific than Bool , while
the Lean definition introduces only the new type Bool .

The type Nat  of non-negative integers is an inductive datatype:

Here, zero  represents 0, while succ  represents the successor of some other number. The
Nat  mentioned in succ 's declaration is the very type Nat  that is in the process of being

defined. Successor means "one greater than", so the successor of five is six and the
successor of 32,185 is 32,186. Using this definition, 4  is represented as Nat.succ 
(Nat.succ (Nat.succ (Nat.succ Nat.zero))) . This definition is almost like the definition of
Bool  with slightly different names. The only real difference is that succ  is followed by (n : 
Nat) , which specifies that the constructor succ  takes an argument of type Nat  which
happens to be named n . The names zero  and succ  are in a namespace named after their
type, so they must be referred to as Nat.zero  and Nat.succ , respectively.

Argument names, such as n , may occur in Lean's error messages and in feedback provided
when writing mathematical proofs. Lean also has an optional syntax for providing
arguments by name. Generally, however, the choice of argument name is less important
than the choice of a structure field name, as it does not form as large a part of the API.

In C# or Java, Nat  could be defined as follows:

Just as in the Bool  example above, this defines more types than the Lean equivalent.
Additionally, this example highlights how Lean datatype constructors are much more like
subclasses of an abstract class than they are like constructors in C# or Java, as the
constructor shown here contains initialization code to be executed.

abstract class Bool {}
class True : Bool {}
class False : Bool {}

inductive Nat where
  | zero : Nat
  | succ (n : Nat) : Nat

abstract class Nat {}
class Zero : Nat {}
class Succ : Nat {
  public Nat n;
  public Succ(Nat pred) {
    n = pred;
  }
}



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 28/432

Sum types are also similar to using a string tag to encode discriminated unions in
TypeScript. In TypeScript, Nat  could be defined as follows:

Just like C# and Java, this encoding ends up with more types than in Lean, because Zero
and Succ  are each a type on their own. It also illustrates that Lean constructors correspond
to objects in JavaScript or TypeScript that include a tag that identifies the contents.

Pattern Matching

In many languages, these kinds of data are consumed by first using an instance-of operator
to check which subclass has been received and then reading the values of the fields that are
available in the given subclass. The instance-of check determines which code to run,
ensuring that the data needed by this code is available, while the fields themselves provide
the data. In Lean, both of these purposes are simultaneously served by pattern matching.

An example of a function that uses pattern matching is isZero , which is a function that
returns true  when its argument is Nat.zero , or false otherwise.

The match  expression is provided the function's argument n  for destructuring. If n  was
constructed by Nat.zero , then the first branch of the pattern match is taken, and the result
is true . If n  was constructed by Nat.succ , then the second branch is taken, and the result
is false .

Step-by-step, evaluation of isZero Nat.zero  proceeds as follows:

interface Zero {
    tag: "zero";
}

interface Succ {
    tag: "succ";
    predecessor: Nat;
}

type Nat = Zero | Succ;

def isZero (n : Nat) : Bool :=
  match n with
  | Nat.zero => true
  | Nat.succ k => false
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Evaluation of isZero 5  proceeds similarly:

The k  in the second branch of the pattern in isZero  is not decorative. It makes the Nat
that is the argument to succ  visible, with the provided name. That smaller number can
then be used to compute the final result of the expression.

Just as the successor of some number  is one greater than  (that is, ), the
predecessor of a number is one less than it. If pred  is a function that finds the predecessor
of a Nat , then it should be the case that the following examples find the expected result:

Because Nat  cannot represent negative numbers, 0  is a bit of a conundrum. Usually, when
working with Nat , operators that would ordinarily produce a negative number are
redefined to produce 0  itself:

To find the predecessor of a Nat , the first step is to check which constructor was used to
create it. If it was Nat.zero , then the result is Nat.zero . If it was Nat.succ , then the name
k  is used to refer to the Nat  underneath it. And this Nat  is the desired predecessor, so the

result of the Nat.succ  branch is k .

isZero Nat.zero
===>
match Nat.zero with
| Nat.zero => true
| Nat.succ k => false
===>
true

isZero 5
===>
isZero (Nat.succ (Nat.succ (Nat.succ (Nat.succ (Nat.succ Nat.zero)))))
===>
match Nat.succ (Nat.succ (Nat.succ (Nat.succ (Nat.succ Nat.zero)))) with
| Nat.zero => true
| Nat.succ k => false
===>
false

n n n + 1

#eval pred 5

4

#eval pred 839

838

#eval pred 0

0
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Applying this function to 5  yields the following steps:

Pattern matching can be used with structures as well as with sum types. For instance, a
function that extracts the third dimension from a Point3D  can be written as follows:

In this case, it would have been much simpler to just use the z  accessor, but structure
patterns are occasionally the simplest way to write a function.

Recursive Functions

Definitions that refer to the name being defined are called recursive definitions. Inductive
datatypes are allowed to be recursive; indeed, Nat  is an example of such a datatype
because succ  demands another Nat . Recursive datatypes can represent arbitrarily large
data, limited only by technical factors like available memory. Just as it would be impossible
to write down one constructor for each natural number in the datatype definition, it is also
impossible to write down a pattern match case for each possibility.

Recursive datatypes are nicely complemented by recursive functions. A simple recursive
function over Nat  checks whether its argument is even. In this case, zero  is even. Non-
recursive branches of the code like this one are called base cases. The successor of an odd
number is even, and the successor of an even number is odd. This means that a number
built with succ  is even if and only if its argument is not even.

def pred (n : Nat) : Nat :=
  match n with
  | Nat.zero => Nat.zero
  | Nat.succ k => k

pred 5
===>
pred (Nat.succ 4)
===>
match Nat.succ 4 with
| Nat.zero => Nat.zero
| Nat.succ k => k
===>
4

def depth (p : Point3D) : Float :=
  match p with
  | { x:= h, y := w, z := d } => d

def even (n : Nat) : Bool :=
  match n with
  | Nat.zero => true
  | Nat.succ k => not (even k)
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This pattern of thought is typical for writing recursive functions on Nat . First, identify what
to do for zero . Then, determine how to transform a result for an arbitrary Nat  into a result
for its successor, and apply this transformation to the result of the recursive call. This
pattern is called structural recursion.

Unlike many languages, Lean ensures by default that every recursive function will eventually
reach a base case. From a programming perspective, this rules out accidental infinite loops.
But this feature is especially important when proving theorems, where infinite loops cause
major difficulties. A consequence of this is that Lean will not accept a version of even  that
attempts to invoke itself recursively on the original number:

The important part of the error message is that Lean could not determine that the recursive
function always reaches a base case (because it doesn't).

Even though addition takes two arguments, only one of them needs to be inspected. To add
zero to a number , just return . To add the successor of  to , take the successor of the
result of adding  to .

In the definition of plus , the name k'  is chosen to indicate that it is connected to, but not
identical with, the argument k . For instance, walking through the evaluation of plus 3 2
yields the following steps:

def evenLoops (n : Nat) : Bool :=
  match n with
  | Nat.zero => true
  | Nat.succ k => not (evenLoops n)

fail to show termination for
  evenLoops
with errors
structural recursion cannot be used

well-founded recursion cannot be used, 'evenLoops' does not take any (non-fixed) 
arguments

n n k n

k n

def plus (n : Nat) (k : Nat) : Nat :=
  match k with
  | Nat.zero => n
  | Nat.succ k' => Nat.succ (plus n k')
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One way to think about addition is that  applies Nat.succ   times to . Similarly,
multiplication  adds  to itself  times and subtraction  takes 's predecessor 
times.

Not every function can be easily written using structural recursion. The understanding of
addition as iterated Nat.succ , multiplication as iterated addition, and subtraction as
iterated predecessor suggests an implementation of division as iterated subtraction. In this
case, if the numerator is less than the divisor, the result is zero. Otherwise, the result is the
successor of dividing the numerator minus the divisor by the divisor.

As long as the second argument is not 0 , this program terminates, as it always makes
progress towards the base case. However, it is not structurally recursive, because it doesn't
follow the pattern of finding a result for zero and transforming a result for a smaller Nat

plus 3 2
===>
plus 3 (Nat.succ (Nat.succ Nat.zero))
===>
match Nat.succ (Nat.succ Nat.zero) with
| Nat.zero => 3
| Nat.succ k' => Nat.succ (plus 3 k')
===>
Nat.succ (plus 3 (Nat.succ Nat.zero))
===>
Nat.succ (match Nat.succ Nat.zero with
| Nat.zero => 3
| Nat.succ k' => Nat.succ (plus 3 k'))
===>
Nat.succ (Nat.succ (plus 3 Nat.zero))
===>
Nat.succ (Nat.succ (match Nat.zero with
| Nat.zero => 3
| Nat.succ k' => Nat.succ (plus 3 k')))
===>
Nat.succ (Nat.succ 3)
===>
5

n + k k n

n × k n k n − k n k

def times (n : Nat) (k : Nat) : Nat :=
  match k with
  | Nat.zero => Nat.zero
  | Nat.succ k' => plus n (times n k')

def minus (n : Nat) (k : Nat) : Nat :=
  match k with
  | Nat.zero => n
  | Nat.succ k' => pred (minus n k')

def div (n : Nat) (k : Nat) : Nat :=
  if n < k then
    0
  else Nat.succ (div (n - k) k)
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into a result for its successor. In particular, the recursive invocation of the function is
applied to the result of another function call, rather than to an input constructor's
argument. Thus, Lean rejects it with the following message:

This message means that div  requires a manual proof of termination. This topic is
explored in the final chapter.

fail to show termination for
  div
with errors
argument #1 was not used for structural recursion
  failed to eliminate recursive application
    div (n - k) k

argument #2 was not used for structural recursion
  failed to eliminate recursive application
    div (n - k) k

structural recursion cannot be used

failed to prove termination, use `termination_by` to specify a well-founded 
relation

https://leanprover.github.io/functional_programming_in_lean/programs-proofs/inequalities.html#division-as-iterated-subtraction
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Polymorphism
Just as in most languages, types in Lean can take arguments. For instance, the type List 
Nat  describes lists of natural numbers, List String  describes lists of strings, and List 
(List Point)  describes lists of lists of points. This is very similar to List<Nat> ,
List<String> , or List<List<Point>>  in a language like C# or Java. Just as Lean uses a

space to pass an argument to a function, it uses a space to pass an argument to a type.

In functional programming, the term polymorphism typically refers to datatypes and
definitions that take types as arguments. This is different from the object-oriented
programming community, where the term typically refers to subclasses that may override
some behavior of their superclass. In this book, "polymorphism" always refers to the first
sense of the word. These type arguments can be used in the datatype or definition, which
allows the same datatype or definition to be used with any type that results from replacing
the arguments' names with some other types.

The Point  structure requires that both the x  and y  fields are Float s. There is, however,
nothing about points that require a specific representation for each coordinate. A
polymorphic version of Point , called PPoint , can take a type as an argument, and then
use that type for both fields:

Just as a function definition's arguments are written immediately after the name being
defined, a structure's arguments are written immediately after the structure's name. It is
customary to use Greek letters to name type arguments in Lean when no more specific
name suggests itself. Type  is a type that describes other types, so Nat , List String , and
PPoint Int  all have type Type .

Just like List , PPoint  can be used by providing a specific type as its argument:

In this example, both fields are expected to be Nat s. Just as a function is called by replacing
its argument variables with its argument values, providing PPoint  with the type Nat  as an
argument yields a structure in which the fields x  and y  have the type Nat , because the
argument name α  has been replaced by the argument type Nat . Types are ordinary
expressions in Lean, so passing arguments to polymorphic types (like PPoint ) doesn't
require any special syntax.

structure PPoint (α : Type) where
  x : α
  y : α
deriving Repr

def natOrigin : PPoint Nat :=
  { x := Nat.zero, y := Nat.zero }
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Definitions may also take types as arguments, which makes them polymorphic. The function
replaceX  replaces the x  field of a PPoint  with a new value. In order to allow replaceX  to

work with any polymorphic point, it must be polymorphic itself. This is achieved by having
its first argument be the type of the point's fields, with later arguments referring back to the
first argument's name.

In other words, when the types of the arguments point  and newX  mention α , they are
referring to whichever type was provided as the first argument. This is similar to the way that
function argument names refer to the values that were provided when they occur in the
function's body.

This can be seen by asking Lean to check the type of replaceX , and then asking it to check
the type of replaceX Nat .

This function type includes the name of the first argument, and later arguments in the type
refer back to this name. Just as the value of a function application is found by replacing the
argument name with the provided argument value in the function's body, the type of a
function application is found by replacing the argument's name with the provided value in
the function's return type. Providing the first argument, Nat , causes all occurrences of α  in
the remainder of the type to be replaced with Nat :

Because the remaining arguments are not explicitly named, no further substitution occurs
as more arguments are provided:

The fact that the type of the whole function application expression was determined by
passing a type as an argument has no bearing on the ability to evaluate it.

def replaceX (α : Type) (point : PPoint α) (newX : α) : PPoint α :=
  { point with x := newX }

#check (replaceX)

replaceX : (α : Type) → PPoint α → α → PPoint α

#check replaceX Nat

replaceX Nat : PPoint Nat → Nat → PPoint Nat

#check replaceX Nat natOrigin

replaceX Nat natOrigin : Nat → PPoint Nat

#check replaceX Nat natOrigin 5

replaceX Nat natOrigin 5 : PPoint Nat
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Polymorphic functions work by taking a named type argument and having later types refer
to the argument's name. However, there's nothing special about type arguments that allows
them to be named. Given a datatype that represents positive or negative signs:

it is possible to write a function whose argument is a sign. If the argument is positive, the
function returns a Nat , while if it's negative, it returns an Int :

Because types are first class and can be computed using the ordinary rules of the Lean
language, they can be computed by pattern-matching against a datatype. When Lean is
checking this function, it uses the fact that the match -expression in the function's body
corresponds to the match -expression in the type to make Nat  be the expected type for the
pos  case and to make Int  be the expected type for the neg  case.

Applying posOrNegThree  to Sign.pos  results in the argument name s  in both the body of
the function and its return type being replaced by Sign.pos . Evaluation can occur both in
the expression and its type:

Linked Lists

Lean's standard library includes a canonical linked list datatype, called List , and special
syntax that makes it more convenient to use. Lists are written in square brackets. For

#eval replaceX Nat natOrigin 5

{ x := 5, y := 0 }

inductive Sign where
  | pos
  | neg

def posOrNegThree (s : Sign) : match s with | Sign.pos => Nat | Sign.neg => Int 
:=
  match s with
  | Sign.pos => (3 : Nat)
  | Sign.neg => (-3 : Int)

(posOrNegThree Sign.pos : match Sign.pos with | Sign.pos => Nat | Sign.neg => 
Int)
===>
((match Sign.pos with
  | Sign.pos => (3 : Nat)
  | Sign.neg => (-3 : Int)) :
 match Sign.pos with | Sign.pos => Nat | Sign.neg => Int)
===>
((3 : Nat) : Nat)
===>
3
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instance, a list that contains the prime numbers less than 10 can be written:

Behind the scenes, List  is an inductive datatype, defined like this:

The actual definition in the standard library is slightly different, because it uses features that
have not yet been presented, but it is substantially similar. This definition says that List
takes a single type as its argument, just as PPoint  did. This type is the type of the entries
stored in the list. According to the constructors, a List α  can be built with either nil  or
cons . The constructor nil  represents empty lists and the constructor cons  is used for

non-empty lists. The first argument to cons  is the head of the list, and the second
argument is its tail. A list that contains  entries contains  cons  constructors, the last of
which has nil  as its tail.

The primesUnder10  example can be written more explicitly by using List 's constructors
directly:

These two definitions are completely equivalent, but primesUnder10  is much easier to read
than explicitPrimesUnder10 .

Functions that consume List s can be defined in much the same way as functions that
consume Nat s. Indeed, one way to think of a linked list is as a Nat  that has an extra data
field dangling off each succ  constructor. From this point of view, computing the length of a
list is the process of replacing each cons  with a succ  and the final nil  with a zero . Just
as replaceX  took the type of the fields of the point as an argument, length  takes the type
of the list's entries. For example, if the list contains strings, then the first argument is
String : length String ["Sourdough", "bread"] . It should compute like this:

def primesUnder10 : List Nat := [2, 3, 5, 7]

inductive List (α : Type) where
  | nil : List α
  | cons : α → List α → List α

n n

def explicitPrimesUnder10 : List Nat :=
  List.cons 2 (List.cons 3 (List.cons 5 (List.cons 7 List.nil)))

length String ["Sourdough", "bread"]
===>
length String (List.cons "Sourdough" (List.cons "bread" List.nil))
===>
Nat.succ (length String (List.cons "bread" List.nil))
===>
Nat.succ (Nat.succ (length String List.nil))
===>
Nat.succ (Nat.succ Nat.zero)
===>
2
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The definition of length  is both polymorphic (because it takes the list entry type as an
argument) and recursive (because it refers to itself). Generally, functions follow the shape of
the data: recursive datatypes lead to recursive functions, and polymorphic datatypes lead to
polymorphic functions.

Names such as xs  and ys  are conventionally used to stand for lists of unknown values.
The s  in the name indicates that they are plural, so they are pronounced "exes" and "whys"
rather than "x s" and "y s".

To make it easier to read functions on lists, the bracket notation []  can be used to pattern-
match against nil , and an infix ::  can be used in place of cons :

Implicit Arguments

Both replaceX  and length  are somewhat bureaucratic to use, because the type argument
is typically uniquely determined by the later values. Indeed, in most languages, the compiler
is perfectly capable of determining type arguments on its own, and only occasionally needs
help from users. This is also the case in Lean. Arguments can be declared implicit by
wrapping them in curly braces instead of parentheses when defining a function. For
instance, a version of replaceX  with an implicit type argument looks like this:

It can be used with natOrigin  without providing Nat  explicitly, because Lean can infer the
value of α  from the later arguments:

Similarly, length  can be redefined to take the entry type implicitly:

def length (α : Type) (xs : List α) : Nat :=
  match xs with
  | List.nil => Nat.zero
  | List.cons y ys => Nat.succ (length α ys)

def length (α : Type) (xs : List α) : Nat :=
  match xs with
  | [] => 0
  | y :: ys => Nat.succ (length α ys)

def replaceX {α : Type} (point : PPoint α) (newX : α) : PPoint α :=
  { point with x := newX }

#eval replaceX natOrigin 5

{ x := 5, y := 0 }
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This length  function can be applied directly to primesUnder10 :

In the standard library, Lean calls this function List.length , which means that the dot
syntax that is used for structure field access can also be used to find the length of a list:

Just as C# and Java require type arguments to be provided explicitly from time to time, Lean
is not always capable of finding implicit arguments. In these cases, they can be provided
using their names. For instance, a version of List.length  that only works for lists of
integers can be specified by setting α  to Int :

More Built-In Datatypes

In addition to lists, Lean's standard library contains a number of other structures and
inductive datatypes that can be used in a variety of contexts.

Option

Not every list has a first entry—some lists are empty. Many operations on collections may
fail to find what they are looking for. For instance, a function that finds the first entry in a list
may not find any such entry. It must therefore have a way to signal that there was no first
entry.

Many languages have a null  value that represents the absence of a value. Instead of
equipping existing types with a special null  value, Lean provides a datatype called Option
that equips some other type with an indicator for missing values. For instance, a nullable
Int  is represented by Option Int , and a nullable list of strings is represented by the type

def length {α : Type} (xs : List α) : Nat :=
  match xs with
  | [] => 0
  | y :: ys => Nat.succ (length ys)

#eval length primesUnder10

4

#eval primesUnder10.length

4

#check List.length (α := Int)

List.length : List Int → Nat
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Option (List String) . Introducing a new type to represent nullability means that the type
system ensures that checks for null  cannot be forgotten, because an Option Int  can't be
used in a context where an Int  is expected.

Option  has two constructors, called some  and none , that respectively represent the non-
null and null versions of the underlying type. The non-null constructor, some , contains the
underlying value, while none  takes no arguments:

The Option  type is very similar to nullable types in languages like C# and Kotlin, but it is not
identical. In these languages, if a type (say, Boolean ) always refers to actual values of the
type ( true  and false ), the type Boolean?  or Nullable<Boolean>  additionally admits the
null  value. Tracking this in the type system is very useful: the type checker and other

tooling can help programmers remember to check for null, and APIs that explicitly describe
nullability through type signatures are more informative than ones that don't. However,
these nullable types differ from Lean's Option  in one very important way, which is that they
don't allow multiple layers of optionality. Option (Option Int)  can be constructed with
none , some none , or some (some 360) . C#, on the other hand, forbids multiple layers of

nullability by only allowing ?  to be added to non-nullable types, while Kotlin treats T??  as
being equivalent to T? . This subtle difference is rarely relevant in practice, but it can matter
from time to time.

To find the first entry in a list, if it exists, use List.head? . The question mark is part of the
name, and is not related to the use of question marks to indicate nullable types in C# or
Kotlin. In the definition of List.head? , an underscore is used to represent the tail of the
list. In patterns, underscores match anything at all, but do not introduce variables to refer to
the matched data. Using underscores instead of names is a way to clearly communicate to
readers that part of the input is ignored.

A Lean naming convention is to define operations that might fail in groups using the suffixes
?  for a version that returns an Option , !  for a version that crashes when provided with

invalid input, and D  for a version that returns a default value when the operation would
otherwise fail. For instance, head  requires the caller to provide mathematical evidence that
the list is not empty, head?  returns an Option , head!  crashes the program when passed
an empty list, and headD  takes a default value to return in case the list is empty. The
question mark and exclamation mark are part of the name, not special syntax, as Lean's
naming rules are more liberal than many languages.

inductive Option (α : Type) : Type where
  | none : Option α
  | some (val : α) : Option α

def List.head? {α : Type} (xs : List α) : Option α :=
  match xs with
  | [] => none
  | y :: _ => some y
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Because head?  is defined in the List  namespace, it can be used with accessor notation:

However, attempting to test it on the empty list leads to two errors:

This is because Lean was unable to fully determine the expression's type. In particular, it
could neither find the implicit type argument to List.head? , nor could it find the implicit
type argument to List.nil . In Lean's output, ?m.XYZ  represents a part of a program that
could not be inferred. These unknown parts are called metavariables, and they occur in
some error messages. In order to evaluate an expression, Lean needs to be able to find its
type, and the type was unavailable because the empty list does not have any entries from
which the type can be found. Explicitly providing a type allows Lean to proceed:

The type can also be provided with a type annotation:

The error messages provide a useful clue. Both messages use the same metavariable to
describe the missing implicit argument, which means that Lean has determined that the two
missing pieces will share a solution, even though it was unable to determine the actual
value of the solution.

#eval primesUnder10.head?

some 2

#eval [].head?

don't know how to synthesize implicit argument
  @List.nil ?m.20368
context:
⊢ Type ?u.20365

don't know how to synthesize implicit argument
  @_root_.List.head? ?m.20368 []
context:
⊢ Type ?u.20365

#eval [].head? (α := Int)

none

#eval ([] : List Int).head?

none
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Prod

The Prod  structure, short for "Product", is a generic way of joining two values together. For
instance, a Prod Nat String  contains a Nat  and a String . In other words, PPoint Nat
could be replaced by Prod Nat Nat . Prod  is very much like C#'s tuples, the Pair  and
Triple  types in Kotlin, and tuple  in C++. Many applications are best served by defining

their own structures, even for simple cases like Point , because using domain terminology
can make it easier to read the code. Additionally, defining structure types helps catch more
errors by assigning different types to different domain concepts, preventing them from
being mixed up.

On the other hand, there are some cases where it is not worth the overhead of defining a
new type. Additionally, some libraries are sufficiently generic that there is no more specific
concept than "pair". Finally, the standard library contains a variety of convenience functions
that make it easier to work with the built-in pair type.

The standard pair structure is called Prod .

Lists are used so frequently that there is special syntax to make them more readable. For
the same reason, both the product type and its constructor have special syntax. The type
Prod α β  is typically written α × β , mirroring the usual notation for a Cartesian product of

sets. Similarly, the usual mathematical notation for pairs is available for Prod . In other
words, instead of writing:

it suffices to write:

Both notations are right-associative. This means that the following definitions are
equivalent:

In other words, all products of more than two types, and their corresponding constructors,
are actually nested products and nested pairs behind the scenes.

structure Prod (α : Type) (β : Type) : Type where
  fst : α
  snd : β

def fives : String × Int := { fst := "five", snd := 5 }

def fives : String × Int := ("five", 5)

def sevens : String × Int × Nat := ("VII", 7, 4 + 3)

def sevens : String × (Int × Nat) := ("VII", (7, 4 + 3))
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Sum

The Sum  datatype is a generic way of allowing a choice between values of two different
types. For instance, a Sum String Int  is either a String  or an Int . Like Prod , Sum
should be used either when writing very generic code, for a very small section of code
where there is no sensible domain-specific type, or when the standard library contains
useful functions. In most situations, it is more readable and maintainable to use a custom
inductive type.

Values of type Sum α β  are either the constructor inl  applied to a value of type α  or the
constructor inr  applied to a value of type β :

These names are abbreviations for "left injection" and "right injection", respectively. Just as
the Cartesian product notation is used for Prod , a "circled plus" notation is used for Sum ,
so α ⊕ β  is another way to write Sum α β . There is no special syntax for Sum.inl  and
Sum.inr .

For instance, if pet names can either be dog names or cat names, then a type for them can
be introduced as a sum of strings:

In a real program, it would usually be better to define a custom inductive datatype for this
purpose with informative constructor names. Here, Sum.inl  is to be used for dog names,
and Sum.inr  is to be used for cat names. These constructors can be used to write a list of
animal names:

Pattern matching can be used to distinguish between the two constructors. For instance, a
function that counts the number of dogs in a list of animal names (that is, the number of
Sum.inl  constructors) looks like this:

Function calls are evaluated before infix operators, so howManyDogs morePets + 1  is the
same as (howManyDogs morePets) + 1 . As expected, #eval howManyDogs animals  yields
3 .

inductive Sum (α : Type) (β : Type) : Type where
  | inl : α → Sum α β
  | inr : β → Sum α β

def PetName : Type := String ⊕ String

def animals : List PetName :=
  [Sum.inl "Spot", Sum.inr "Tiger", Sum.inl "Fifi", Sum.inl "Rex", Sum.inr 
"Floof"]

def howManyDogs (pets : List PetName) : Nat :=
  match pets with
  | [] => 0
  | Sum.inl _ :: morePets => howManyDogs morePets + 1
  | Sum.inr _ :: morePets => howManyDogs morePets
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Unit

Unit  is a type with just one argumentless constructor, called unit . In other words, it
describes only a single value, which consists of said constructor applied to no arguments
whatsoever. Unit  is defined as follows:

On its own, Unit  is not particularly useful. However, in polymorphic code, it can be used as
a placeholder for data that is missing. For instance, the following inductive datatype
represents arithmetic expressions:

The type argument ann  stands for annotations, and each constructor is annotated.
Expressions coming from a parser might be annotated with source locations, so a return
type of ArithExpr SourcePos  ensures that the parser put a SourcePos  at each
subexpression. Expressions that don't come from the parser, however, will not have source
locations, so their type can be ArithExpr Unit .

Additionally, because all Lean functions have arguments, zero-argument functions in other
languages can be represented as functions that take a Unit  argument. In a return position,
the Unit  type is similar to void  in languages derived from C. In the C family, a function
that returns void  will return control to its caller, but it will not return any interesting value.
By being an intentionally uninteresting value, Unit  allows this to be expressed without
requiring a special-purpose void  feature in the type system. Unit's constructor can be
written as empty parentheses: () : Unit .

Empty

The Empty  datatype has no constructors whatsoever. Thus, it indicates unreachable code,
because no series of calls can ever terminate with a value at type Empty .

Empty  is not used nearly as often as Unit . However, it is useful in some specialized
contexts. Many polymorphic datatypes do not use all of their type arguments in all of their
constructors. For instance, Sum.inl  and Sum.inr  each use only one of Sum 's type
arguments. Using Empty  as one of the type arguments to Sum  can rule out one of the
constructors at a particular point in a program. This can allow generic code to be used in
contexts that have additional restrictions.

inductive Unit : Type where
  | unit : Unit

inductive ArithExpr (ann : Type) : Type where
  | int : ann → Int → ArithExpr ann
  | plus : ann → ArithExpr ann → ArithExpr ann → ArithExpr ann
  | minus : ann → ArithExpr ann → ArithExpr ann → ArithExpr ann
  | times : ann → ArithExpr ann → ArithExpr ann → ArithExpr ann
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Naming: Sums, Products, and Units

Generally speaking, types that offer multiple constructors are called sum types, while types
whose single constructor takes multiple arguments are called product types. These terms are
related to sums and products used in ordinary arithmetic. The relationship is easiest to see
when the types involved contain a finite number of values. If α  and β  are types that
contain  and  distinct values, respectively, then α ⊕ β  contains  distinct values and
α × β  contains  distinct values. For instance, Bool  has two values: true  and false ,

and Unit  has one value: Unit.unit . The product Bool × Unit  has the two values (true, 
Unit.unit)  and (false, Unit.unit) , and the sum Bool ⊕ Unit  has the three values
Sum.inl true , Sum.inl false , and Sum.inr unit . Similarly, , and .

Messages You May Meet

Not all definable structures or inductive types can have the type Type . In particular, if a
constructor takes an arbitrary type as an argument, then the inductive type must have a
different type. These errors usually state something about "universe levels". For example,
for this inductive type:

Lean gives the following error:

A later chapter describes why this is the case, and how to modify definitions to make them
work. For now, try making the type an argument to the inductive type as a whole, rather
than to the constructor.

Similarly, if a constructor's argument is a function that takes the datatype being defined as
an argument, then the definition is rejected. For example:

yields the message:

n k n + k

n × k

2 × 1 = 2 2 + 1 = 3

inductive MyType : Type where
  | ctor : (α : Type) → α → MyType

invalid universe level in constructor 'MyType.ctor', parameter 'α' has type
  Type
at universe level
  2
it must be smaller than or equal to the inductive datatype universe level
  1

inductive MyType : Type where
  | ctor : (MyType → Int) → MyType

(kernel) arg #1 of 'MyType.ctor' has a non positive occurrence of the datatypes 
being declared
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For technical reasons, allowing these datatypes could make it possible to undermine Lean's
internal logic, making it unsuitable for use as a theorem prover.

Forgetting an argument to an inductive type can also yield a confusing message. For
example, when the argument α  is not passed to MyType  in ctor 's type:

Lean replies with the following error:

The error message is saying that MyType 's type, which is Type → Type , does not itself
describe types. MyType  requires an argument to become an actual honest-to-goodness
type.

The same message can appear when type arguments are omitted in other contexts, such as
in a type signature for a definition:

Exercises

Write a function to find the last entry in a list. It should return an Option .
Write a function that finds the first entry in a list that satisfies a given predicate. Start
the definition with def List.findFirst? {α : Type} (xs : List α) (predicate : α 
→ Bool) : Option α :=

Write a function Prod.swap  that swaps the two fields in a pair. Start the definition with
def Prod.swap {α β : Type} (pair : α × β) : β × α :=

Rewrite the PetName  example to use a custom datatype and compare it to the version
that uses Sum .
Write a function zip  that combines two lists into a list of pairs. The resulting list
should be as long as the shortest input list. Start the definition with def zip {α β : 
Type} (xs : List α) (ys : List β) : List (α × β) := .
Write a polymorphic function take  that returns the first  entries in a list, where  is
a Nat . If the list contains fewer than n  entries, then the resulting list should be the
input list. #eval take 3 ["bolete", "oyster"]  should yield ["bolete", "oyster"] ,
and #eval take 1 ["bolete", "oyster"]  should yield ["bolete"] .

inductive MyType (α : Type) : Type where
  | ctor : α → MyType

type expected, got
  (MyType : Type → Type)

inductive MyType (α : Type) : Type where
  | ctor : α → MyType α

def ofFive : MyType := ctor 5

n n
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Using the analogy between types and arithmetic, write a function that distributes
products over sums. In other words, it should have type α × (β ⊕ γ) → (α × β) ⊕ (α 
× γ) .
Using the analogy between types and arithmetic, write a function that turns
multiplication by two into a sum. In other words, it should have type Bool × α → α ⊕ 
α .
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Additional Conveniences
Lean contains a number of convenience features that make programs much more concise.

Automatic Implicit Arguments

When writing polymorphic functions in Lean, it is typically not necessary to list all the
implicit arguments. Instead, they can simply be mentioned. If Lean can determine their type,
then they are automatically inserted as implicit arguments. In other words, the previous
definition of length :

can be written without {α : Type} :

This can greatly simplify highly polymorphic definitions that take many implicit arguments.

Pattern-Matching Definitions

When defining functions with def , it is quite common to name an argument and then
immediately use it with pattern matching. For instance, in length , the argument xs  is used
only in match . In these situations, the cases of the match  expression can be written
directly, without naming the argument at all.

The first step is to move the arguments' types to the right of the colon, so the return type is
a function type. For instance, the type of length  is List α → Nat . Then, replace the :=
with each case of the pattern match:

This syntax can also be used to define functions that take more than one argument. In this
case, their patterns are separated by commas. For instance, drop  takes a number  and a

def length {α : Type} (xs : List α) : Nat :=
  match xs with
  | [] => 0
  | y :: ys => Nat.succ (length ys)

def length (xs : List α) : Nat :=
  match xs with
  | [] => 0
  | y :: ys => Nat.succ (length ys)

def length : List α → Nat
  | [] => 0
  | y :: ys => Nat.succ (length ys)

n
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list, and returns the list after removing the first  entries.

Named arguments and patterns can also be used in the same definition. For instance, a
function that takes a default value and an optional value, and returns the default when the
optional value is none , can be written:

This function is called Option.getD  in the standard library, and can be called with dot
notation:

Local Definitions

It is often useful to name intermediate steps in a computation. In many cases, intermediate
values represent useful concepts all on their own, and naming them explicitly can make the
program easier to read. In other cases, the intermediate value is used more than once. As in
most other languages, writing down the same code twice in Lean causes it to be computed
twice, while saving the result in a variable leads to the result of the computation being saved
and re-used.

For instance, unzip  is a function that transforms a list of pairs into a pair of lists. When the
list of pairs is empty, then the result of unzip  is a pair of empty lists. When the list of pairs
has a pair at its head, then the two fields of the pair are added to the result of unzipping the
rest of the list. This definition of unzip  follows that description exactly:

n

def drop : Nat → List α → List α
  | Nat.zero, xs => xs
  | _, [] => []
  | Nat.succ n, x :: xs => drop n xs

def fromOption (default : α) : Option α → α
  | none => default
  | some x => x

#eval (some "salmonberry").getD ""

"salmonberry"

#eval none.getD ""

""

def unzip : List (α × β) → List α × List β
  | [] => ([], [])
  | (x, y) :: xys =>
    (x :: (unzip xys).fst, y :: (unzip xys).snd)
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Unfortunately, there is a problem: this code is slower than it needs to be. Each entry in the
list of pairs leads to two recursive calls, which makes this function take exponential time.
However, both recursive calls will have the same result, so there is no reason to make the
recursive call twice.

In Lean, the result of the recursive call can be named, and thus saved, using let . Local
definitions with let  resemble top-level definitions with def : it takes a name to be locally
defined, arguments if desired, a type signature, and then a body following := . After the
local definition, the expression in which the local definition is available (called the body of
the let -expression) must be on a new line, starting at a column in the file that is less than
or equal to that of the let  keyword. For instance, let  can be used in unzip  like this:

To use let  on a single line, separate the local definition from the body with a semicolon.

Local definitions with let  may also use pattern matching when one pattern is enough to
match all cases of a datatype. In the case of unzip , the result of the recursive call is a pair.
Because pairs have only a single constructor, the name unzipped  can be replaced with a
pair pattern:

Judicious use of patterns with let  can make code easier to read, compared to writing the
accessor calls by hand.

The biggest difference between let  and def  is that recursive let  definitions must be
explicitly indicated by writing let rec . For instance, one way to reverse a list involves a
recursive helper function, as in this definition:

The helper function walks down the input list, moving one entry at a time over to soFar .
When it reaches the end of the input list, soFar  contains a reversed version of the input.

def unzip : List (α × β) → List α × List β
  | [] => ([], [])
  | (x, y) :: xys =>
    let unzipped : List α × List β := unzip xys
    (x :: unzipped.fst, y :: unzipped.snd)

def unzip : List (α × β) → List α × List β
  | [] => ([], [])
  | (x, y) :: xys =>
    let (xs, ys) : List α × List β := unzip xys
    (x :: xs, y :: ys)

def reverse (xs : List α) : List α :=
  let rec helper : List α → List α → List α
    | [], soFar => soFar
    | y :: ys, soFar => helper ys (y :: soFar)
  helper xs []
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Type Inference

In many situations, Lean can automatically determine an expression's type. In these cases,
explicit types may be omitted from both top-level definitions (with def ) and local
definitions (with let ). For instance, the recursive call to unzip  does not need an
annotation:

As a rule of thumb, omitting the types of literal values (like strings and numbers) usually
works, although Lean may pick a type for literal numbers that is more specific than the
intended type. Lean can usually determine a type for a function application, because it
already knows the argument types and the return type. Omitting return types for function
definitions will often work, but function arguments typically require annotations. Definitions
that are not functions, like unzipped  in the example, do not need type annotations if their
bodies do not need type annotations, and the body of this definition is a function
application.

Omitting the return type for unzip  is possible when using an explicit match  expression:

Generally speaking, it is a good idea to err on the side of too many, rather than too few, type
annotations. First off, explicit types communicate assumptions about the code to readers.
Even if Lean can determine the type on its own, it can still be easier to read code without
having to repeatedly query Lean for type information. Secondly, explicit types help localize
errors. The more explicit a program is about its types, the more informative the error
messages can be. This is especially important in a language like Lean that has a very
expressive type system. Thirdly, explicit types make it easier to write the program in the first
place. The type is a specification, and the compiler's feedback can be a helpful tool in writing
a program that meets the specification. Finally, Lean's type inference is a best-effort system.
Because Lean's type system is so expressive, there is no "best" or most general type to find
for all expressions. This means that even if you get a type, there's no guarantee that it's the
right type for a given application. For instance, 14  can be a Nat  or an Int :

def unzip : List (α × β) → List α × List β
  | [] => ([], [])
  | (x, y) :: xys =>
    let unzipped := unzip xys
    (x :: unzipped.fst, y :: unzipped.snd)

def unzip (pairs : List (α × β)) :=
  match pairs with
  | [] => ([], [])
  | (x, y) :: xys =>
    let unzipped := unzip xys
    (x :: unzipped.fst, y :: unzipped.snd)

#check 14

14 : Nat
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Missing type annotations can give confusing error messages. Omitting all types from the
definition of unzip :

leads to a message about the match  expression:

This is because match  needs to know the type of the value being inspected, but that type
was not available. A "metavariable" is an unknown part of a program, written ?m.XYZ  in
error messages—they are described in the section on Polymorphism. In this program, the
type annotation on the argument is required.

Even some very simple programs require type annotations. For instance, the identity
function just returns whatever argument it is passed. With argument and type annotations,
it looks like this:

Lean is capable of determining the return type on its own:

Omitting the argument type, however, causes an error:

In general, messages that say something like "failed to infer" or that mention metavariables
are often a sign that more type annotations are necessary. Especially while still learning
Lean, it is useful to provide most types explicitly.

#check (14 : Int)

14 : Int

def unzip pairs :=
  match pairs with
  | [] => ([], [])
  | (x, y) :: xys =>
    let unzipped := unzip xys
    (x :: unzipped.fst, y :: unzipped.snd)

invalid match-expression, pattern contains metavariables
  []

def id (x : α) : α := x

def id (x : α) := x

def id x := x

failed to infer binder type

https://leanprover.github.io/functional_programming_in_lean/getting-to-know/polymorphism.html
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Simultaneous Matching

Pattern-matching expressions, just like pattern-matching definitions, can match on multiple
values at once. Both the expressions to be inspected and the patterns that they match
against are written with commas between them, similarly to the syntax used for definitions.
Here is a version of drop  that uses simultaneous matching:

Natural Number Patterns

In the section on datatypes and patterns, even  was defined like this:

Just as there is special syntax to make list patterns more readable than using List.cons
and List.nil  directly, natural numbers can be matched using literal numbers and + . For
instance, even  can also be defined like this:

In this notation, the arguments to the +  pattern serve different roles. Behind the scenes,
the left argument ( n  above) becomes an argument to some number of Nat.succ  patterns,
and the right argument ( 1  above) determines how many Nat.succ s to wrap around the
pattern. The explicit patterns in halve , which divides a Nat  by two and drops the
remainder:

can be replaced by numeric literals and + :

def drop (n : Nat) (xs : List α) : List α :=
  match n, xs with
  | Nat.zero, ys => ys
  | _, [] => []
  | Nat.succ n , y :: ys => drop n ys

def even (n : Nat) : Bool :=
  match n with
  | Nat.zero => true
  | Nat.succ k => not (even k)

def even : Nat → Bool
  | 0 => true
  | n + 1 => not (even n)

def halve : Nat → Nat
  | Nat.zero => 0
  | Nat.succ Nat.zero => 0
  | Nat.succ (Nat.succ n) => halve n + 1

https://leanprover.github.io/functional_programming_in_lean/getting-to-know/datatypes-and-patterns.html
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Behind the scenes, both definitions are completely equivalent. Remember: halve n + 1  is
equivalent to (halve n) + 1 , not halve (n + 1) .

When using this syntax, the second argument to +  should always be a literal Nat . Even
though addition is commutative, flipping the arguments in a pattern can result in errors like
the following:

This restriction enables Lean to transform all uses of the +  notation in a pattern into uses
of the underlying Nat.succ , keeping the language simpler behind the scenes.

Anonymous Functions

Functions in Lean need not be defined at the top level. As expressions, functions are
produced with the fun  syntax. Function expressions begin with the keyword fun , followed
by one or more arguments, which are separated from the return expression using => . For
instance, a function that adds one to a number can be written:

Type annotations are written the same way as on def , using parentheses and colons:

Similarly, implicit arguments may be written with curly braces:

def halve : Nat → Nat
  | 0 => 0
  | 1 => 0
  | n + 2 => halve n + 1

def halve : Nat → Nat
  | 0 => 0
  | 1 => 0
  | 2 + n => halve n + 1

invalid patterns, `n` is an explicit pattern variable, but it only occurs in 
positions that are inaccessible to pattern matching
  .(Nat.add 2 n)

#check fun x => x + 1

fun x => x + 1 : Nat → Nat

#check fun (x : Int) => x + 1

fun x => x + 1 : Int → Int

#check fun {α : Type} (x : α) => x
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This style of anonymous function expression is often referred to as a lambda expression,
because the typical notation used in mathematical descriptions of programming languages
uses the Greek letter λ (lambda) where Lean has the keyword fun . Even though Lean does
permit λ  to be used instead of fun , it is most common to write fun .

Anonymous functions also support the multiple-pattern style used in def . For instance, a
function that returns the predecessor of a natural number if it exists can be written:

Note that Lean's own description of the function has a named argument and a match
expression. Many of Lean's convenient syntactic shorthands are expanded to simpler syntax
behind the scenes, and the abstraction sometimes leaks.

Definitions using def  that take arguments may be rewritten as function expressions. For
instance, a function that doubles its argument can be written as follows:

When an anonymous function is very simple, like fun x => x + 1 , the syntax for creating
the function can be fairly verbose. In that particular example, six non-whitespace characters
are used to introduce the function, and its body consists of only three non-whitespace
characters. For these simple cases, Lean provides a shorthand. In an expression surrounded
by parentheses, a centered dot character ·  can stand for an argument, and the expression
inside the parentheses becomes the function's body. That particular function can also be
written (· + 1) .

The centered dot always creates a function out of the closest surrounding set of
parentheses. For instance, (· + 5, 3)  is a function that returns a pair of numbers, while
((· + 5), 3)  is a pair of a function and a number. If multiple dots are used, then they

become arguments from left to right:

fun {α} x => x : {α : Type} → α → α

#check fun
  | 0 => none
  | n + 1 => some n

fun x =>
  match x with
  | 0 => none
  | Nat.succ n => some n : Nat → Option Nat

def double : Nat → Nat := fun
  | 0 => 0
  | k + 1 => double k + 2

(· , ·) 1 2
===>
(1, ·) 2
===>
(1, 2)
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Anonymous functions can be applied in precisely the same way as functions defined using
def  or let . The command #eval (fun x => x + x) 5  results in:

while #eval (· * 2) 5  results in:

Namespaces

Each name in Lean occurs in a namespace, which is a collection of names. Names are placed
in namespaces using . , so List.map  is the name map  in the List  namespace. Names in
different namespaces do not conflict with each other, even if they are otherwise identical.
This means that List.map  and Array.map  are different names. Namespaces may be
nested, so Project.Frontend.User.loginTime  is the name loginTime  in the nested
namespace Project.Frontend.User .

Names can be directly defined within a namespace. For instance, the name double  can be
defined in the Nat  namespace:

Because Nat  is also the name of a type, dot notation is available to call Nat.double  on
expressions with type Nat :

In addition to defining names directly in a namespace, a sequence of declarations can be
placed in a namespace using the namespace  and end  commands. For instance, this defines
triple  and quadruple  in the namespace NewNamespace :

To refer to them, prefix their names with NewNamespace. :

10

10

def Nat.double (x : Nat) : Nat := x + x

#eval (4 : Nat).double

8

namespace NewNamespace
def triple (x : Nat) : Nat := 3 * x
def quadruple (x : Nat) : Nat := 2 * x + 2 * x
end NewNamespace

#check NewNamespace.triple
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Namespaces may be opened, which allows the names in them to be used without explicit
qualification. Writing open MyNamespace in  before an expression causes the contents of
MyNamespace  to be available in the expression. For example, timesTwelve  uses both
quadruple  and triple  after opening NewNamespace :

Namespaces can also be opened prior to a command. This allows all parts of the command
to refer to the contents of the namespace, rather than just a single expression. To do this,
place the open ... in  prior to the command.

Function signatures show the name's full namespace. Namespaces may additionally be
opened for all following commands for the rest of the file. To do this, simply omit the in
from a top-level usage of open .

if let

When consuming values that have a sum type, it is often the case that only a single
constructor is of interest. For instance, given this type that represents a subset of Markdown
inline elements:

a function that recognizes string elements and extracts their contents can be written:

NewNamespace.triple (x : Nat) : Nat

#check NewNamespace.quadruple

NewNamespace.quadruple (x : Nat) : Nat

def timesTwelve (x : Nat) :=
  open NewNamespace in
  quadruple (triple x)

open NewNamespace in
#check quadruple

NewNamespace.quadruple (x : Nat) : Nat

inductive Inline : Type where
  | lineBreak
  | string : String → Inline
  | emph : Inline → Inline
  | strong : Inline → Inline
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An alternative way of writing this function's body uses if  together with let :

This is very much like the pattern-matching let  syntax. The difference is that it can be used
with sum types, because a fallback is provided in the else  case. In some contexts, using if 
let  instead of match  can make code easier to read.

Positional Structure Arguments

The section on structures presents two ways of constructing structures:

1. The constructor can be called directly, as in Point.mk 1 2 .
2. Brace notation can be used, as in { x := 1, y := 2 } .

In some contexts, it can be convenient to pass arguments positionally, rather than by name,
but without naming the constructor directly. For instance, defining a variety of similar
structure types can help keep domain concepts separate, but the natural way to read the
code may treat each of them as being essentially a tuple. In these contexts, the arguments
can be enclosed in angle brackets ⟨  and ⟩ . A Point  can be written ⟨1, 2⟩ . Be careful!
Even though they look like the less-than sign <  and greater-than sign > , these brackets are
different. They can be input using \<  and \> , respectively.

Just as with the brace notation for named constructor arguments, this positional syntax can
only be used in a context where Lean can determine the structure's type, either from a type
annotation or from other type information in the program. For instance, #eval ⟨1, 2⟩
yields the following error:

The metavariable in the error is because there is no type information available. Adding an
annotation, such as in #eval (⟨1, 2⟩ : Point) , solves the problem:

def Inline.string? (inline : Inline) : Option String :=
  match inline with
  | Inline.string s => some s
  | _ => none

def Inline.string? (inline : Inline) : Option String :=
  if let Inline.string s := inline then
    some s
  else none

invalid constructor ⟨...⟩, expected type must be an inductive type 
  ?m.35347

{ x := 1.000000, y := 2.000000 }

https://leanprover.github.io/functional_programming_in_lean/getting-to-know/structures.html
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String Interpolation

In Lean, prefixing a string with s!  triggers interpolation, where expressions contained in
curly braces inside the string are replaced with their values. This is similar to f -strings in
Python and $ -prefixed strings in C#. For instance,

yields the output

Not all expressions can be interpolated into a string. For instance, attempting to interpolate
a function results in an error.

yields the output

This is because there is no standard way to convert functions into strings. The Lean
compiler maintains a table that describes how to convert values of various types into
strings, and the message failed to synthesize instance  means that the Lean compiler
didn't find an entry in this table for the given type. This uses the same language feature as
the deriving Repr  syntax that was described in the section on structures.

#eval s!"three fives is {NewNamespace.triple 5}"

"three fives is 15"

#check s!"three fives is {NewNamespace.triple}"

failed to synthesize instance
  ToString (Nat → Nat)

https://leanprover.github.io/functional_programming_in_lean/getting-to-know/structures.html
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Summary

Evaluating Expressions

In Lean, computation occurs when expressions are evaluated. This follows the usual rules of
mathematical expressions: sub-expressions are replaced by their values following the usual
order of operations, until the entire expression has become a value. When evaluating an if
or a match , the expressions in the branches are not evaluated until the value of the
condition or the match subject has been found.

Once they have been given a value, variables never change. Similarly to mathematics but
unlike most programming languages, Lean variables are simply placeholders for values,
rather than addresses to which new values can be written. Variables' values may come from
global definitions with def , local definitions with let , as named arguments to functions, or
from pattern matching.

Functions

Functions in Lean are first-class values, meaning that they can be passed as arguments to
other functions, saved in variables, and used like any other value. Every Lean function takes
exactly one argument. To encode a function that takes more than one argument, Lean uses
a technique called currying, where providing the first argument returns a function that
expects the remaining arguments. To encode a function that takes no arguments, Lean uses
the Unit  type, which is the least informative possible argument.

There are three primary ways of creating functions:

1. Anonymous functions are written using fun . For instance, a function that swaps the
fields of a Point  can be written fun (point : Point) => { x := point.y, y := 
point.x : Point}

2. Very simple anonymous functions are written by placing one or more centered dots ·
inside of parentheses. Each centered dot becomes an argument to the function, and
the parentheses delimit its body. For instance, a function that subtracts one from its
argument can be written as (· - 1)  instead of as fun x => x - 1 .

3. Functions can be defined using def  or let  by adding an argument list or by using
pattern-matching notation.



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 61/432

Types

Lean checks that every expression has a type. Types, such as Int , Point , {α : Type} → 
Nat → α → List α , and Option (String ⊕ (Nat × String)) , describe the values that may
eventually be found for an expression. Like other languages, types in Lean can express
lightweight specifications for programs that are checked by the Lean compiler, obviating the
need for certain classes of unit test. Unlike most languages, Lean's types can also express
arbitrary mathematics, unifying the worlds of programming and theorem proving. While
using Lean for proving theorems is mostly out of scope for this book, Theorem Proving in
Lean 4 contains more information on this topic.

Some expressions can be given multiple types. For instance, 3  can be an Int  or a Nat . In
Lean, this should be understood as two separate expressions, one with type Nat  and one
with type Int , that happen to be written in the same way, rather than as two different
types for the same thing.

Lean is sometimes able to determine types automatically, but types must often be provided
by the user. This is because Lean's type system is so expressive. Even when Lean can find a
type, it may not find the desired type— 3  could be intended to be used as an Int , but Lean
will give it the type Nat  if there are no further constraints. In general, it is a good idea to
write most types explicitly, only letting Lean fill out the very obvious types. This improves
Lean's error messages and helps make programmer intent more clear.

Some functions or datatypes take types as arguments. They are called polymorphic.
Polymorphism allows programs such as one that calculates the length of a list without
caring what type the entries in the list have. Because types are first class in Lean,
polymorphism does not require any special syntax, so types are passed just like other
arguments. Giving an argument a name in a function type allows later types to mention that
argument, and the type of applying that function to an argument is found by replacing the
argument's name with the argument's value.

Structures and Inductive Types

Brand new datatypes can be introduced to Lean using the structure  or inductive
features. These new types are not considered to be equivalent to any other type, even if
their definitions are otherwise identical. Datatypes have constructors that explain the ways in
which their values can be constructed, and each constructor takes some number of
arguments. Constructors in Lean are not the same as constructors in object-oriented
languages: Lean's constructors are inert holders of data, rather than active code that
initializes an allocated object.

Typically, structure  is used to introduce a product type (that is, a type with just one
constructor that takes any number of arguments), while inductive  is used to introduce a

https://leanprover.github.io/theorem_proving_in_lean4/
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sum type (that is, a type with many distinct constructors). Datatypes defined with
structure  are provided with one accessor function for each of the constructor's

arguments. Both structures and inductive datatypes may be consumed with pattern
matching, which exposes the values stored inside of constructors using a subset of the
syntax used to call said constructors. Pattern matching means that knowing how to create a
value implies knowing how to consume it.

Recursion

A definition is recursive when the name being defined is used in the definition itself.
Because Lean is an interactive theorem prover in addition to being a programming
language, there are certain restrictions placed on recursive definitions. In Lean's logical side,
circular definitions could lead to logical inconsistency.

In order to ensure that recursive definitions do not undermine the logical side of Lean, Lean
must be able to prove that all recursive functions terminate, no matter what arguments
they are called with. In practice, this means either that recursive calls are all performed on a
structurally-smaller piece of the input, which ensures that there is always progress towards
a base case, or that users must provide some other evidence that the function always
terminates. Similarly, recursive inductive types are not allowed to have a constructor that
takes a function from the type as an argument, because this would make it possible to
encode non-terminating functions.
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Hello, World!
While Lean has been designed to have a rich interactive environment in which programmers
can get quite a lot of feedback from the language without leaving the confines of their
favorite text editor, it is also a language in which real programs can be written. This means
that it also has a batch-mode compiler, a build system, a package manager, and all the other
tools that are necessary for writing programs.

While the previous chapter presented the basics of functional programming in Lean, this
chapter explains how to start a programming project, compile it, and run the result.
Programs that run and interact with their environment (e.g. by reading input from standard
input or creating files) are difficult to reconcile with the understanding of computation as
the evaluation of mathematical expressions. In addition to a description of the Lean build
tools, this chapter also provides a way to think about functional programs that interact with
the world.

https://leanprover.github.io/functional_programming_in_lean/getting-to-know.html
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Running a Program
The simplest way to run a Lean program is to use the --run  option to the Lean executable.
Create a file called Hello.lean  and enter the following contents:

Then, from the command line, run:

The program displays Hello, world!  and exits.

Anatomy of a Greeting

When Lean is invoked with the --run  option, it invokes the program's main  definition. In
programs that do not take command-line arguments, main  should have type IO Unit . This
means that main  is not a function, because there are no arrows ( → ) in its type. Instead of
being a function that has side effects, main  consists of a description of effects to be carried
out.

As discussed in the preceding chapter, Unit  is the simplest inductive type. It has a single
constructor called unit  that takes no arguments. Languages in the C tradition have a
notion of a void  function that does not return any value at all. In Lean, all functions take an
argument and return a value, and the lack of interesting arguments or return values can be
signaled by using the Unit  type instead. If Bool  represents a single bit of information,
Unit  represents zero bits of information.

IO α  is the type of a program that, when executed, will either throw an exception or return
a value of type α . During execution, this program may have side effects. These programs
are referred to as IO  actions. Lean distinguishes between evaluation of expressions, which
strictly adheres to the mathematical model of substitution of values for variables and
reduction of sub-expressions without side effects, and execution of IO  actions, which rely
on an external system to interact with the world. IO.println  is a function from strings to
IO  actions that, when executed, write the given string to standard output. Because this

action doesn't read any interesting information from the environment in the process of
emitting the string, IO.println  has type String → IO Unit . If it did return something
interesting, then that would be indicated by the IO  action having a type other than Unit .

def main : IO Unit := IO.println "Hello, world!"

lean --run Hello.lean

https://leanprover.github.io/functional_programming_in_lean/getting-to-know/polymorphism.html
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Functional Programming vs Effects

Lean's model of computation is based on the evaluation of mathematical expressions, in
which variables are given exactly one value that does not change over time. The result of
evaluating an expression does not change, and evaluating the same expression again will
always yield the same result.

On the other hand, useful programs must interact with the world. A program that performs
neither input nor output can't ask a user for data, create files on disk, or open network
connections. Lean is written in itself, and the Lean compiler certainly reads files, creates
files, and interacts with text editors. How can a language in which the same expression
always yields the same result support programs that read files from disk, when the contents
of these files might change over time?

This apparent contradiction can be resolved by thinking a bit differently about side effects.
Imagine a café that sells coffee and sandwiches. This café has two employees: a cook who
fulfills orders, and a worker at the counter who interacts with customers and places order
slips. The cook is a surly person, who really prefers not to have any contact with the world
outside, but who is very good at consistently delivering the food and drinks that the café is
known for. In order to do this, however, the cook needs peace and quiet, and can't be
disturbed with conversation. The counter worker is friendly, but completely incompetent in
the kitchen. Customers interact with the counter worker, who delegates all actual cooking to
the cook. If the cook has a question for a customer, such as clarifying an allergy, they send a
little note to the counter worker, who interacts with the customer and passes a note back to
the cook with the result.

In this analogy, the cook is the Lean language. When provided with an order, the cook
faithfully and consistently delivers what is requested. The counter worker is the surrounding
run-time system that interacts with the world and can accept payments, dispense food, and
have conversations with customers. Working together, the two employees serve all the
functions of the restaurant, but their responsibilities are divided, with each performing the
tasks that they're best at. Just as keeping customers away allows the cook to focus on
making truly excellent coffee and sandwiches, Lean's lack of side effects allows programs to
be used as part of formal mathematical proofs. It also helps programmers understand the
parts of the program in isolation from each other, because there are no hidden state
changes that create subtle coupling between components. The cook's notes represent IO
actions that are produced by evaluating Lean expressions, and the counter worker's replies
are the values that are passed back from effects.

This model of side effects is quite similar to how the overall aggregate of the Lean language,
its compiler, and its run-time system (RTS) work. Primitives in the run-time system, written
in C, implement all the basic effects. When running a program, the RTS invokes the main
action, which returns new IO  actions to the RTS for execution. The RTS executes these
actions, delegating to the user's Lean code to carry out computations. From the internal
perspective of Lean, programs are free of side effects, and IO  actions are just descriptions
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of tasks to be carried out. From the external perspective of the program's user, there is a
layer of side effects that create an interface to the program's core logic.

Real-World Functional Programming

The other useful way to think about side effects in Lean is by considering IO  actions to be
functions that take the entire world as an argument and return a value paired with a new
world. In this case, reading a line of text from standard input is a pure function, because a
different world is provided as an argument each time. Writing a line of text to standard
output is a pure function, because the world that the function returns is different from the
one that it began with. Programs do need to be careful to never re-use the world, nor to fail
to return a new world—this would amount to time travel or the end of the world, after all.
Careful abstraction boundaries can make this style of programming safe. If every primitive
IO  action accepts one world and returns a new one, and they can only be combined with

tools that preserve this invariant, then the problem cannot occur.

This model cannot be implemented. After all, the entire universe cannot be turned into a
Lean value and placed into memory. However, it is possible to implement a variation of this
model with an abstract token that stands for the world. When the program is started, it is
provided with a world token. This token is then passed on to the IO primitives, and their
returned tokens are similarly passed to the next step. At the end of the program, the token
is returned to the operating system.

This model of side effects is a good description of how IO  actions as descriptions of tasks
to be carried out by the RTS are represented internally in Lean. The actual functions that
transform the real world are behind an abstraction barrier. But real programs typically
consist of a sequence of effects, rather than just one. To enable programs to use multiple
effects, there is a sub-language of Lean called do  notation that allows these primitive IO
actions to be safely composed into a larger, useful program.

Combining IO Actions

Most useful programs accept input in addition to producing output. Furthermore, they may
take decisions based on input, using the input data as part of a computation. The following
program, called HelloName.lean , asks the user for their name and then greets them:
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In this program, the main  action consists of a do  block. This block contains a sequence of
statements, which can be both local variables (introduced using let ) and actions that are to
be executed. Just as SQL can be thought of as a special-purpose language for interacting
with databases, the do  syntax can be thought of as a special-purpose sub-language within
Lean that is dedicated to modeling imperative programs. IO  actions that are built with a
do  block are executed by executing the statements in order.

This program can be run in the same manner as the prior program:

If the user responds with David , a session of interaction with the program reads:

The type signature line is just like the one for Hello.lean :

The only difference is that it ends with the keyword do , which initiates a sequence of
commands. Each indented line following the keyword do  is part of the same sequence of
commands.

The first two lines, which read:

retrieve the stdin  and stdout  handles by executing the library actions IO.getStdin  and
IO.getStdout , respectively. In a do  block, let  has a slightly different meaning than in an

ordinary expression. Ordinarily, the local definition in a let  can be used in just one
expression, which immediately follows the local definition. In a do  block, local bindings
introduced by let  are available in all statements in the remainder of the do  block, rather
than just the next one. Additionally, let  typically connects the name being defined to its
definition using := , while some let  bindings in do  use a left arrow ( ←  or <- ) instead.
Using an arrow means that the value of the expression is an IO  action that should be

def main : IO Unit := do
  let stdin ← IO.getStdin
  let stdout ← IO.getStdout

  stdout.putStrLn "How would you like to be addressed?"
  let input ← stdin.getLine
  let name := input.dropRightWhile Char.isWhitespace

  stdout.putStrLn s!"Hello, {name}!"

lean --run HelloName.lean

How would you like to be addressed?
David
Hello, David!

def main : IO Unit := do

  let stdin ← IO.getStdin
  let stdout ← IO.getStdout
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executed, with the result of the action saved in the local variable. In other words, if the
expression to the right of the arrow has type IO α , then the variable has type α  in the
remainder of the do  block. IO.getStdin  and IO.getStdout  are IO  actions in order to
allow stdin  and stdout  to be locally overridden in a program, which can be convenient. If
they were global variables as in C, then there would be no meaningful way to override them,
but IO  actions can return different values each time they are executed.

The next part of the do  block is responsible for asking the user for their name:

The first line writes the question to stdout , the second line requests input from stdin ,
and the third line removes the trailing newline (plus any other trailing whitespace) from the
input line. The definition of name  uses := , rather than ← , because
String.dropRightWhile  is an ordinary function on strings, rather than an IO  action.

Finally, the last line in the program is:

It uses string interpolation to insert the provided name into a greeting string, writing the
result to stdout .

  stdout.putStrLn "How would you like to be addressed?"
  let input ← stdin.getLine
  let name := input.dropRightWhile Char.isWhitespace

  stdout.putStrLn s!"Hello, {name}!"

https://leanprover.github.io/functional_programming_in_lean/getting-to-know/conveniences.html#string-interpolation
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Step By Step
A do  block can be executed one line at a time. Start with the program from the prior
section:

Standard IO

The first line is   let stdin ← IO.getStdin , while the remainder is:

To execute a let  statement that uses a ← , start by evaluating the expression to the right of
the arrow (in this case, IO.getStdIn ). Because this expression is just a variable, its value is
looked up. The resulting value is a built-in primitive IO  action. The next step is to execute
this IO  action, resulting in a value that represents the standard input stream, which has
type IO.FS.Stream . Standard input is then associated with the name to the left of the arrow
(here stdin ) for the remainder of the do  block.

Executing the second line,   let stdout ← IO.getStdout , proceeds similarly. First, the
expression IO.getStdout  is evaluated, yielding an IO  action that will return the standard
output. Next, this action is executed, actually returning the standard output. Finally, this
value is associated with the name stdout  for the remainder of the do  block.

Asking a Question

Now that stdin  and stdout  have been found, the remainder of the block consists of a
question and an answer:

  let stdin ← IO.getStdin
  let stdout ← IO.getStdout
  stdout.putStrLn "How would you like to be addressed?"
  let input ← stdin.getLine
  let name := input.dropRightWhile Char.isWhitespace
  stdout.putStrLn s!"Hello, {name}!"

  let stdout ← IO.getStdout
  stdout.putStrLn "How would you like to be addressed?"
  let input ← stdin.getLine
  let name := input.dropRightWhile Char.isWhitespace
  stdout.putStrLn s!"Hello, {name}!"
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The first statement in the block,   stdout.putStrLn "How would you like to be 
addressed?" , consists of an expression. To execute an expression, it is first evaluated. In
this case, IO.FS.Stream.putStrLn  has type IO.FS.Stream → String → IO Unit . This
means that it is a function that accepts a stream and a string, returning an IO  action. The
expression uses accessor notation for a function call. This function is applied to two
arguments: the standard output stream and a string. The value of the expression is an IO
action that will write the string and a newline character to the output stream. Having found
this value, the next step is to execute it, which causes the string and newline to actually be
written to stdout . Statements that consist only of expressions do not introduce any new
variables.

The next statement in the block is   let input ← stdin.getLine . IO.FS.Stream.getLine
has type IO.FS.Stream → IO String , which means that it is a function from a stream to an
IO  action that will return a string. Once again, this is an example of accessor notation. This
IO  action is executed, and the program waits until the user has typed a complete line of

input. Assume the user writes " David ". The resulting line ( "David\n" ) is associated with
input , where the escape sequence \n  denotes the newline character.

The next line,   let name := input.dropRightWhile Char.isWhitespace , is a let
statement. Unlike the other let  statements in this program, it uses :=  instead of ← . This
means that the expression will be evaluated, but the resulting value need not be an IO
action and will not be executed. In this case, String.dropRightWhile  takes a string and a
predicate over characters and returns a new string from which all the characters at the end
of the string that satisfy the predicate have been removed. For example,

yields

and

yields

  stdout.putStrLn "How would you like to be addressed?"
  let input ← stdin.getLine
  let name := input.dropRightWhile Char.isWhitespace
  stdout.putStrLn s!"Hello, {name}!"

  let name := input.dropRightWhile Char.isWhitespace
  stdout.putStrLn s!"Hello, {name}!"

#eval "Hello!!!".dropRightWhile (· == '!')

"Hello"

#eval "Hello...   ".dropRightWhile (fun c => not (c.isAlphanum))

"Hello"

https://leanprover.github.io/functional_programming_in_lean/getting-to-know/structures.html#behind-the-scenes
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in which all non-alphanumeric characters have been removed from the right side of the
string. In the current line of the program, whitespace characters (including the newline) are
removed from the right side of the input string, resulting in "David" , which is associated
with name  for the remainder of the block.

Greeting the User

All that remains to be executed in the do  block is a single statement:

The string argument to putStrLn  is constructed via string interpolation, yielding the string
"Hello, David!" . Because this statement is an expression, it is evaluated to yield an IO

action that will print this string with a newline to standard output. Once the expression has
been evaluated, the resulting IO  action is executed, resulting in the greeting.

IO Actions as Values

In the above description, it can be difficult to see why the distinction between evaluating
expressions and executing IO  actions is necessary. After all, each action is executed
immediately after it is produced. Why not simply carry out the effects during evaluation, as
is done in other languages?

The answer is twofold. First off, separating evaluation from execution means that programs
must be explicit about which functions can have side effects. Because the parts of the
program that do not have effects are much more amenable to mathematical reasoning,
whether in the heads of programmers or using Lean's facilities for formal proof, this
separation can make it easier to avoid bugs. Secondly, not all IO  actions need be executed
at the time that they come into existence. The ability to mention an action without carrying
it out allows ordinary functions to be used as control structures.

For instance, the function twice  takes an IO  action as its argument, returning a new action
that will execute the first one twice.

For instance, executing

  stdout.putStrLn s!"Hello, {name}!"

def twice (action : IO Unit) : IO Unit := do
  action
  action

twice (IO.println "shy")
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results in

being printed. This can be generalized to a version that runs the underlying action any
number of times:

In the base case for Nat.zero , the result is pure () . The function pure  creates an IO
action that has no side effects, but returns pure 's argument, which in this case is the
constructor for Unit . As an action that does nothing and returns nothing interesting, pure 
()  is at the same time utterly boring and very useful. In the recursive step, a do  block is
used to create an action that first executes action  and then executes the result of the
recursive call. Executing nTimes (IO.println "Hello") 3  causes the following output:

In addition to using functions as control structures, the fact that IO  actions are first-class
values means that they can be saved in data structures for later execution. For instance, the
function countdown  takes a Nat  and returns a list of unexecuted IO  actions, one for each
Nat :

This function has no side effects, and does not print anything. For example, it can be applied
to an argument, and the length of the resulting list of actions can be checked:

This list contains six elements (one for each number, plus a "Blast off!"  action for zero):

The function runActions  takes a list of actions and constructs a single action that runs
them all in order:

shy
shy

def nTimes (action : IO Unit) : Nat → IO Unit
  | 0 => pure ()
  | n + 1 => do
    action
    nTimes action n

Hello
Hello
Hello

def countdown : Nat → List (IO Unit)
  | 0 => [IO.println "Blast off!"]
  | n + 1 => IO.println s!"{n + 1}" :: countdown n

def from5 : List (IO Unit) := countdown 5

#eval from5.length

6
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Its structure is essentially the same as that of nTimes , except instead of having one action
that is executed for each Nat.succ , the action under each List.cons  is to be executed.
Similarly, runActions  does not itself run the actions. It creates a new action that will run
them, and that action must be placed in a position where it will be executed as a part of
main :

Running this program results in the following output:

What happens when this program is run? The first step is to evaluate main . That occurs as
follows:

The resulting IO  action is a do  block. Each step of the do  block is then executed, one at a
time, yielding the expected output. The final step, pure () , does not have any effects, and
it is only present because the definition of runActions  needs a base case.

def runActions : List (IO Unit) → IO Unit
  | [] => pure ()
  | act :: actions => do
    act
    runActions actions

def main : IO Unit := runActions from5

5
4
3
2
1
Blast off!

main
===>
runActions from5
===>
runActions (countdown 5)
===>
runActions
  [IO.println "5",
   IO.println "4",
   IO.println "3",
   IO.println "2",
   IO.println "1",
   IO.println "Blast off!"]
===>
do IO.println "5"
   IO.println "4"
   IO.println "3"
   IO.println "2"
   IO.println "1"
   IO.println "Blast off!"
   pure ()



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 74/432

Exercise

Step through the execution of the following program on a piece of paper:

While stepping through the program's execution, identify when an expression is being
evaluated and when an IO  action is being executed. When executing an IO  action results
in a side effect, write it down. After doing this, run the program with Lean and double-check
that your predictions about the side effects were correct.

def main : IO Unit := do
  let englishGreeting := IO.println "Hello!"
  IO.println "Bonjour!"
  englishGreeting
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Starting a Project
As a program written in Lean becomes more serious, an ahead-of-time compiler-based
workflow that results in an executable becomes more attractive. Like other languages, Lean
has tools for building multiple-file packages and managing dependencies. The standard
Lean build tool is called Lake (short for "Lean Make"), and it is configured in Lean. Just as
Lean contains a special-purpose language for writing programs with effects (the do
language), Lake contains a special-purpose language for configuring builds. These languages
are referred to as embedded domain-specific languages (or sometimes domain-specific
embedded languages, abbreviated EDSL or DSEL). They are domain-specific in the sense that
they are used for a particular purpose, with concepts from some sub-domain, and they are
typically not suitable for general-purpose programming. They are embedded because they
occur inside another language's syntax. While Lean contains rich facilities for creating
EDSLs, they are beyond the scope of this book.

First steps

To get started with a project that uses Lake, use the command lake new greeting  in a
directory that does not already contain a file or directory called greeting . This creates a
directory called greeting  that contains the following files:

Main.lean  is the file in which the Lean compiler will look for the main  action.
Greeting.lean  is the scaffolding of a support library for the program.
lakefile.lean  contains the configuration that lake  needs to build the application.
lean-toolchain  contains an identifier for the specific version of Lean that is used for

the project.

Additionally, lake new  initializes the project as a Git repository and configures its
.gitignore  file to ignore intermediate build products. Typically, the majority of the

application logic will be in a collection of libraries for the program, while Main.lean  will
contain a small wrapper around these pieces that does things like parsing command lines
and executing the central application logic. To create a project in an already-existing
directory, run lake init  instead of lake new .

By default, the library file Greeting.lean  contains a single definition:

while the executable source Main.lean  contains:

def hello := "world"
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The import  line makes the contents of Greeting.lean  available in Main.lean . Placing
guillemets around a name, as in «Greeting» , allow it to contain spaces or other characters
that are normally not allowed in Lean names, and it allows reserved keywords such as if
or def  to be used as ordinary names by writing «if»  or «def» . This prevents issues when
the package name provided to lake new  contains such characters.

To build the package, run the command lake build . After a number of build commands
scroll by, the resulting binary has been placed in build/bin . Running
./build/bin/greeting  results in Hello, world! .

Lakefiles

A lakefile.lean  describes a package, which is a coherent collection of Lean code for
distribution, analogous to an npm  or nuget  package or a Rust crate. A package may contain
any number of libraries or executables. While the documentation for Lake describes the
available options in a lakefile, it makes use of a number of Lean features that have not yet
been described here. The generated lakefile.lean  contains the following:

This initial Lakefile consists of three items:

a package declaration, named greeting ,
a library declaration, named Greeting , and
an executable, also named greeting .

Each of these names is enclosed in guillemets to allow users more freedom in picking
package names.

import «Greeting»

def main : IO Unit :=
  IO.println s!"Hello, {hello}!"

import Lake
open Lake DSL

package «greeting» {
  -- add package configuration options here
}

lean_lib «Greeting» {
  -- add library configuration options here
}

@[default_target]
lean_exe «greeting» {
  root := `Main
}

https://github.com/leanprover/lake#readme
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Each Lakefile will contain exactly one package, but any number of libraries or executables.
Additionally, Lakefiles may contain external libraries, which are libraries not written in Lean
to be statically linked with the resulting executable, custom targets, which are build targets
that don't fit naturally into the library/executable taxonomy, dependencies, which are
declarations of other Lean packages (either locally or from remote Git repositories), and
scripts, which are essentially IO  actions (similar to main ), but that additionally have access
to metadata about the package configuration. The items in the Lakefile allow things like
source file locations, module hierarchies, and compiler flags to be configured. Generally
speaking, however, the defaults are reasonable.

Libraries, executables, and custom targets are all called targets. By default, lake build
builds those targets that are annotated with @[default_target] . This annotation is an
attribute, which is metadata that can be associated with a Lean declaration. Attributes are
similar to Java annotations or C# and Rust attributes. They are used pervasively throughout
Lean. To build a target that is not annotated with @[default_target] , specify the target's
name as an argument after lake build .

Libraries and Imports

A Lean library consists of a hierarchically organized collection of source files from which
names can be imported, called modules. By default, a library has a single root file that
matches its name. In this case, the root file for the library Greeting  is Greeting.lean . The
first line of Main.lean , which is import Greeting , makes the contents of Greeting.lean
available in Main.lean .

Additional module files may be added to the library by creating a directory called Greeting
and placing them inside. These names can be imported by replacing the directory separator
with a dot. For instance, creating the file Greeting/Smile.lean  with the contents:

means that Main.lean  can use the definition as follows:

The module name hierarchy is decoupled from the namespace hierarchy. In Lean, modules
are units of code distribution, while namespaces are units of code organization. That is,
names defined in the module Greeting.Smile  are not automatically in a corresponding
namespace Greeting.Smile . Modules may place names into any namespace they like, and
the code that imports them may open  the namespace or not. import  is used to make the

def expression : String := "a big smile"

import Greeting
import Greeting.Smile

def main : IO Unit :=
  IO.println s!"Hello, {hello}, with {expression}!"
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contents of a source file available, while open  makes names from a namespace available in
the current context without prefixes. In the Lakefile, the line import Lake  makes the
contents of the Lake  module available, while the line open Lake DSL  makes the contents
of the Lake  and Lake.DSL  namespaces available without any prefixes. Lake.DSL  is opened
because opening Lake  makes Lake.DSL  available as just DSL , just like all other names in
the Lake  namespace. The Lake  module places names into both the Lake  and Lake.DSL
namespaces.

Namespaces may also be opened selectively, making only some of their names available
without explicit prefixes. This is done by writing the desired names in parentheses. For
example, Nat.toFloat  converts a natural number to a Float . It can be made available as
toFloat  using open Nat (toFloat) .
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Worked Example: cat
The standard Unix utility cat  takes a number of command-line options, followed by zero or
more input files. If no files are provided, or if one of them is a dash ( - ), then it takes the
standard input as the corresponding input instead of reading a file. The contents of the
inputs are written, one after the other, to the standard output. If a specified input file does
not exist, this is noted on standard error, but cat  continues concatenating the remaining
inputs. A non-zero exit code is returned if any of the input files do not exist.

This section describes a simplified version of cat , called feline . Unlike commonly-used
versions of cat , feline  has no command-line options for features such as numbering
lines, indicating non-printing characters, or displaying help text. Furthermore, it cannot read
more than once from a standard input that's associated with a terminal device.

To get the most benefit from this section, follow along yourself. It's OK to copy-paste the
code examples, but it's even better to type them in by hand. This makes it easier to learn
the mechanical process of typing in code, recovering from mistakes, and interpreting
feedback from the compiler.

Getting started

The first step in implementing feline  is to create a package and decide how to organize
the code. In this case, because the program is so simple, all the code will be placed in
Main.lean . The first step is to run lake new feline . Edit the Lakefile to remove the library,

and delete the generated library code and the reference to it from Main.lean . Once this
has been done, lakefile.lean  should contain:

and Main.lean  should contain something like:

import Lake
open Lake DSL

package «feline» {
  -- add package configuration options here
}

@[default_target]
lean_exe «feline» {
  root := `Main
}

def main : IO Unit :=
  IO.println s!"Hello, cats!"
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Alternatively, running lake new feline exe  instructs lake  to use a template that does not
include a library section, making it unnecessary to edit the file.

Ensure that the code can be built by running lake build .

Concatenating Streams

Now that the basic skeleton of the program has been built, it's time to actually enter the
code. A proper implementation of cat  can be used with infinite IO streams, such as
/dev/random , which means that it can't read its input into memory before outputting it.

Furthermore, it should not work one character at a time, as this leads to frustratingly slow
performance. Instead, it's better to read contiguous blocks of data all at once, directing the
data to the standard output one block at a time.

The first step is to decide how big of a block to read. For the sake of simplicity, this
implementation uses a conservative 20 kilobyte block. USize  is analogous to size_t  in C—
it's an unsigned integer type that is big enough to represent all valid array sizes.

Streams

The main work of feline  is done by dump , which reads input one block at a time, dumping
the result to standard output, until the end of the input has been reached:

The dump  function is declared partial , because it calls itself recursively on input that is not
immediately smaller than an argument. When a function is declared to be partial, Lean does
not require a proof that it terminates. On the other hand, partial functions are also much
less amenable to proofs of correctness, because allowing infinite loops in Lean's logic would
make it unsound. However, there is no way to prove that dump  terminates, because infinite
input (such as from /dev/random ) would mean that it does not, in fact, terminate. In cases
like this, there is no alternative to declaring the function partial .

The type IO.FS.Stream  represents a POSIX stream. Behind the scenes, it is represented as
a structure that has one field for each POSIX stream operation. Each operation is

def bufsize : USize := 20 * 1024

partial def dump (stream : IO.FS.Stream) : IO Unit := do
  let buf ← stream.read bufsize
  if buf.isEmpty then
    pure ()
  else
    let stdout ← IO.getStdout
    stdout.write buf
    dump stream
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represented as an IO action that provides the corresponding operation:

The Lean compiler contains IO  actions (such as IO.getStdout , which is called in dump ) to
get streams that represent standard input, standard output, and standard error. These are
IO  actions rather than ordinary definitions because Lean allows these standard POSIX

streams to be replaced in a process, which makes it easier to do things like capturing the
output from a program into a string by writing a custom IO.FS.Stream .

The control flow in dump  is essentially a while  loop. When dump  is called, if the stream has
reached the end of the file, pure ()  terminates the function by returning the constructor
for Unit . If the stream has not yet reached the end of the file, one block is read, and its
contents are written to stdout , after which dump  calls itself directly. The recursive calls
continue until stream.read  returns an empty byte array, which indicates that the end of the
file has been reached.

When an if  expression occurs as a statement in a do , as in dump , each branch of the if
is implicitly provided with a do . In other words, the sequence of steps following the else
are treated as a sequence of IO  actions to be executed, just as if they had a do  at the
beginning. Names introduced with let  in the branches of the if  are visible only in their
own branches, and are not in scope outside of the if .

There is no danger of running out of stack space while calling dump  because the recursive
call happens as the very last step in the function, and its result is returned directly rather
than being manipulated or computed with. This kind of recursion is called tail recursion, and
it is described in more detail later in this book. Because the compiled code does not need to
retain any state, the Lean compiler can compile the recursive call to a jump.

If feline  only redirected standard input to standard output, then dump  would be
sufficient. However, it also needs to be able to open files that are provided as command-line
arguments and emit their contents. When its argument is the name of a file that exists,
fileStream  returns a stream that reads the file's contents. When the argument is not a file,
fileStream  emits an error and returns none .

structure Stream where
  flush   : IO Unit
  read    : USize → IO ByteArray
  write   : ByteArray → IO Unit
  getLine : IO String
  putStr  : String → IO Unit

https://leanprover.github.io/functional_programming_in_lean/programs-proofs/tail-recursion.html
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Opening a file as a stream takes two steps. First, a file handle is created by opening the file
in read mode. A Lean file handle tracks an underlying file descriptor. When there are no
references to the file handle value, a finalizer closes the file descriptor. Second, the file
handle is given the same interface as a POSIX stream using IO.FS.Stream.ofHandle , which
fills each field of the Stream  structure with the corresponding IO  action that works on file
handles.

Handling Input

The main loop of feline  is another tail-recursive function, called process . In order to
return a non-zero exit code if any of the inputs could not be read, process  takes an
argument exitCode  that represents the current exit code for the whole program.
Additionally, it takes a list of input files to be processed.

Just as with if , each branch of a match  that is used as a statement in a do  is implicitly
provided with its own do .

There are three possibilities. One is that no more files remain to be processed, in which case
process  returns the error code unchanged. Another is that the specified filename is "-" ,

in which case process  dumps the contents of the standard input and then processes the
remaining filenames. The final possibility is that an actual filename was specified. In this
case, fileStream  is used to attempt to open the file as a POSIX stream. Its argument is
encased in ⟨ ... ⟩  because a FilePath  is a single-field structure that contains a string. If

def fileStream (filename : System.FilePath) : IO (Option IO.FS.Stream) := do
  let fileExists ← filename.pathExists
  if not fileExists then
    let stderr ← IO.getStderr
    stderr.putStrLn s!"File not found: {filename}"
    pure none
  else
    let handle ← IO.FS.Handle.mk filename IO.FS.Mode.read
    pure (some (IO.FS.Stream.ofHandle handle))

def process (exitCode : UInt32) (args : List String) : IO UInt32 := do
  match args with
  | [] => pure exitCode
  | "-" :: args =>
    let stdin ← IO.getStdin
    dump stdin
    process exitCode args
  | filename :: args =>
    let stream ← fileStream ⟨filename⟩
    match stream with
    | none =>
      process 1 args
    | some stream =>
      dump stream
      process exitCode args
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the file could not be opened, it is skipped, and the recursive call to process  sets the exit
code to 1 . If it could, then it is dumped, and the recursive call to process  leaves the exit
code unchanged.

process  does not need to be marked partial  because it is structurally recursive. Each
recursive call is provided with the tail of the input list, and all Lean lists are finite. Thus,
process  does not introduce any non-termination.

Main

The final step is to write the main  action. Unlike prior examples, main  in feline  is a
function. In Lean, main  can have one of three types:

main : IO Unit  corresponds to programs that cannot read their command-line
arguments and always indicate success with an exit code of 0 ,
main : IO UInt32  corresponds to int main(void)  in C, for programs without

arguments that return exit codes, and
main : List String → IO UInt32  corresponds to int main(int argc, char 
**argv)  in C, for programs that take arguments and signal success or failure.

If no arguments were provided, feline  should read from standard input as if it were called
with a single "-"  argument. Otherwise, the arguments should be processed one after the
other.

Meow!

To check whether feline  works, the first step is to build it with lake build . First off, when
called without arguments, it should emit what it receives from standard input. Check that

emits It works! .

Secondly, when called with files as arguments, it should print them. If the file test1.txt
contains

def main (args : List String) : IO UInt32 :=
  match args with
  | [] => process 0 ["-"]
  | _ =>  process 0 args

echo "It works!" | ./build/bin/feline

It's time to find a warm spot
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and test2.txt  contains

then the command

should emit

Finally, the -  argument should be handled appropriately.

should yield

Exercise

Extend feline  with support for usage information. The extended version should accept a
command-line argument --help  that causes documentation about the available command-
line options to be written to standard output.

and curl up!

./build/bin/feline test1.txt test2.txt

It's time to find a warm spot
and curl up!

echo "and purr" | ./build/bin/feline test1.txt - test2.txt

It's time to find a warm spot
and purr
and curl up!
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Additional Conveniences

Nested Actions

Many of the functions in feline  exhibit a repetitive pattern in which an IO  action's result
is given a name, and then used immediately and only once. For instance, in dump :

the pattern occurs for stdout :

Similarly, fileStream  contains the following snippet:

When Lean is compiling a do  block, expressions that consist of a left arrow immediately
under parentheses are lifted to the nearest enclosing do , and their results are bound to a
unique name. This unique name replaces the origin of the expression. This means that
dump  can also be written as follows:

This version of dump  avoids introducing names that are used only once, which can greatly
simplify a program. IO  actions that Lean lifts from a nested expression context are called
nested actions.

fileStream  can be simplified using the same technique:

partial def dump (stream : IO.FS.Stream) : IO Unit := do
  let buf ← stream.read bufsize
  if buf.isEmpty then
    pure ()
  else
    let stdout ← IO.getStdout
    stdout.write buf
    dump stream

    let stdout ← IO.getStdout
    stdout.write buf

  let fileExists ← filename.pathExists
  if not fileExists then

partial def dump (stream : IO.FS.Stream) : IO Unit := do
  let buf ← stream.read bufsize
  if buf.isEmpty then
    pure ()
  else
    (← IO.getStdout).write buf
    dump stream
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In this case, the local name of handle  could also have been eliminated using nested
actions, but the resulting expression would have been long and complicated. Even though
it's often good style to use nested actions, it can still sometimes be helpful to name
intermediate results.

It is important to remember, however, that nested actions are only a shorter notation for
IO  actions that occur in a surrounding do  block. The side effects that are involved in

executing them still occur in the same order, and execution of side effects is not
interspersed with the evaluation of expressions. For an example of where this might be
confusing, consider the following helper definitions that return data after announcing to the
world that they have been executed:

These definitions are intended to stand in for more complicated IO  code that might
validate user input, read a database, or open a file.

A program that prints 0  when number A is five, or number B  otherwise, can be written as
follows:

However, this program probably has more side effects (such as prompting for user input or
reading a database) than was intended. The definition of getNumA  makes it clear that it will
always return 5 , and thus the program should not read number B. However, running the
program results in the following output:

getNumB  was executed because test  is equivalent to this definition:

def fileStream (filename : System.FilePath) : IO (Option IO.FS.Stream) := do
  if not (← filename.pathExists) then
    (← IO.getStderr).putStrLn s!"File not found: {filename}"
    pure none
  else
    let handle ← IO.FS.Handle.mk filename IO.FS.Mode.read
    pure (some (IO.FS.Stream.ofHandle handle))

def getNumA : IO Nat := do
  (← IO.getStdout).putStrLn "A"
  pure 5

def getNumB : IO Nat := do
  (← IO.getStdout).putStrLn "B"
  pure 7

def test : IO Unit := do
  let a : Nat := if (← getNumA) == 5 then 0 else (← getNumB)
  (← IO.getStdout).putStrLn s!"The answer is {a}"

A
B
The answer is 0
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This is due to the rule that nested actions are lifted to the closest enclosing do  block. The
branches of the if  were not implicitly wrapped in do  blocks because the if  is not itself a
statement in the do  block—the statement is the let  that defines a . Indeed, they could
not be wrapped this way, because the type of the conditional expression is Nat , not IO 
Nat .

Flexible Layouts for do

In Lean, do  expressions are whitespace-sensitive. Each IO  action or local binding in the do
is expected to start on its own line, and they should all have the same indentation. Almost
all uses of do  should be written this way. In some rare contexts, however, manual control
over whitespace and indentation may be necessary, or it may be convenient to have
multiple small actions on a single line. In these cases, newlines can be replaced with a
semicolon and indentation can be replaced with curly braces.

For instance, all of the following programs are equivalent:

def test : IO Unit := do
  let x ← getNumA
  let y ← getNumB
  let a : Nat := if x == 5 then 0 else y
  (← IO.getStdout).putStrLn s!"The answer is {a}"
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Idiomatic Lean code uses curly braces with do  very rarely.

Running IO Actions With #eval

Lean's #eval  command can be used to execute IO  actions, rather than just evaluating
them. Normally, adding a #eval  command to a Lean file causes Lean to evaluate the
provided expression, convert the resulting value to a string, and provide that string as a
tooltip and in the info window. Rather than failing because IO  actions can't be converted to
strings, #eval  executes them, carrying out their side effects. If the result of execution is the
Unit  value () , then no result string is shown, but if it is a type that can be converted to a

string, then Lean displays the resulting value.

This means that, given the prior definitions of countdown  and runActions ,

displays

-- This version uses only whitespace-sensitive layout
def main : IO Unit := do
  let stdin ← IO.getStdin
  let stdout ← IO.getStdout

  stdout.putStrLn "How would you like to be addressed?"
  let name := (← stdin.getLine).trim
  stdout.putStrLn s!"Hello, {name}!"

-- This version is as explicit as possible
def main : IO Unit := do {
  let stdin ← IO.getStdin;
  let stdout ← IO.getStdout;

  stdout.putStrLn "How would you like to be addressed?";
  let name := (← stdin.getLine).trim;
  stdout.putStrLn s!"Hello, {name}!"
}

-- This version uses a semicolon to put two actions on the same line
def main : IO Unit := do
  let stdin ← IO.getStdin; let stdout ← IO.getStdout

  stdout.putStrLn "How would you like to be addressed?"
  let name := (← stdin.getLine).trim
  stdout.putStrLn s!"Hello, {name}!"

#eval runActions (countdown 3)

3
2
1
Blast off!
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This is the output produced by running the IO  action, rather than some opaque
representation of the action itself. In other words, for IO  actions, #eval  both evaluates the
provided expression and executes the resulting action value.

Quickly testing IO  actions with #eval  can be much more convenient that compiling and
running whole programs. However, there are some limitations. For instance, reading from
standard input simply returns empty input. Additionally, the IO  action is re-executed
whenever Lean needs to update the diagnostic information that it provides to users, and
this can happen at unpredictable times. An action that reads and writes files, for instance,
may do so at inconvenient times.
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Summary

Evaluation vs Execution

Side effects are aspects of program execution that go beyond the evaluation of
mathematical expressions, such as reading files, throwing exceptions, or triggering
industrial machinery. While most languages allow side effects to occur during evaluation,
Lean does not. Instead, Lean has a type called IO  that represents descriptions of programs
that use side effects. These descriptions are then executed by the language's run-time
system, which invokes the Lean expression evaluator to carry out specific computations.
Values of type IO α  are called IO  actions. The simplest is pure , which returns its argument
and has no actual side effects.

IO  actions can also be understood as functions that take the whole world as an argument
and return a new world in which the side effect has occurred. Behind the scenes, the IO
library ensures that the world is never duplicated, created, or destroyed. While this model of
side effects cannot actually be implemented, as the whole universe is too big to fit in
memory, the real world can be represented by a token that is passed around through the
program.

An IO  action main  is executed when the program starts. main  can have one of three
types:

main : IO Unit  is used for simple programs that cannot read their command-line
arguments and always return exit code 0 ,
main : IO UInt32  is used for programs without arguments that may signal success or

failure, and
main : List String → IO UInt32  is used for programs that take command-line

arguments and signal success or failure.

do Notation

The Lean standard library provides a number of basic IO  actions that represent effects
such as reading from and writing to files and interacting with standard input and standard
output. These base IO  actions are composed into larger IO  actions using do  notation,
which is a built-in domain-specific language for writing descriptions of programs with side
effects. A do  expression contains a sequence of statements, which may be:

expressions that represent IO  actions,
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ordinary local definitions with let  and := , where the defined name refers to the
value of the provided expression, or
local definitions with let  and ← , where the defined name refers to the result of
executing the value of the provided expression.

IO  actions that are written with do  are executed one statement at a time.

Furthermore, if  and match  expressions that occur immediately under a do  are implicitly
considered to have their own do  in each branch. Inside of a do  expression, nested actions
are expressions with a left arrow immediately under parentheses. The Lean compiler
implicitly lifts them to the nearest enclosing do , which may be implicitly part of a branch of
a match  or if  expression, and gives them a unique name. This unique name then replaces
the origin site of the nested action.

Compiling and Running Programs

A Lean program that consists of a single file with a main  definition can be run using lean -
-run FILE . While this can be a nice way to get started with a simple program, most
programs will eventually graduate to a multiple-file project that should be compiled before
running.

Lean projects are organized into packages, which are collections of libraries and executables
together with information about dependencies and a build configuration. Packages are
described using Lake, a Lean build tool. Use lake new  to create a Lake package in a new
directory, or lake init  to create one in the current directory. Lake package configuration
is another domain-specific language. Use lake build  to build a project.

Partiality

One consequence of following the mathematical model of expression evaluation is that
every expression must have a value. This rules out both incomplete pattern matches that
fail to cover all constructors of a datatype and programs that can fall into an infinite loop.
Lean ensures that all match  expressions cover all cases, and that all recursive functions are
either structurally recursive or have an explicit proof of termination.

However, some real programs require the possibility of looping infinitely, because they
handle potentially-infinite data, such as POSIX streams. Lean provides an escape hatch:
functions whose definition is marked partial  are not required to terminate. This comes at
a cost. Because types are a first-class part of the Lean language, functions can return types.
Partial functions, however, are not evaluated during type checking, because an infinite loop
in a function could cause the type checker to enter an infinite loop. Furthermore,
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mathematical proofs are unable to inspect the definitions of partial functions, which means
that programs that use them are much less amenable to formal proof.
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Interlude: Propositions, Proofs, and
Indexing
Like many languages, Lean uses square brackets for indexing into arrays and lists. For
instance, if woodlandCritters  is defined as follows:

then the individual components can be extracted:

However, attempting to extract the fourth element results in a compile-time error, rather
than a run-time error:

This error message is saying Lean tried to automatically mathematically prove that 3 < 
List.length woodlandCritters , which would mean that the lookup was safe, but that it
could not do so. Out-of-bounds errors are a common class of bugs, and Lean uses its dual
nature as a programming language and a theorem prover to rule out as many as possible.

Understanding how this works requires an understanding of three key ideas: propositions,
proofs, and tactics.

Propositions and Proofs

A proposition is a statement that can be true or false. All of the following are propositions:

1 + 1 = 2
Addition is commutative
There are infinitely many prime numbers

def woodlandCritters : List String :=
  ["hedgehog", "deer", "snail"]

def hedgehog := woodlandCritters[0]
def deer := woodlandCritters[1]
def snail := woodlandCritters[2]

def oops := woodlandCritters[3]

failed to prove index is valid, possible solutions:
  - Use `have`-expressions to prove the index is valid
  - Use `a[i]!` notation instead, runtime check is perfomed, and 'Panic' error 
message is produced if index is not valid
  - Use `a[i]?` notation instead, result is an `Option` type
  - Use `a[i]'h` notation instead, where `h` is a proof that index is valid
⊢ 3 < List.length woodlandCritters
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1 + 1 = 15
Paris is the capital of France
Buenos Aires is the capital of South Korea
All birds can fly

On the other hand, nonsense statements are not propositions. None of the following are
propositions:

1 + green = ice cream
All capital cities are prime numbers
At least one gorg is a fleep

Propositions come in two varieties: those that are purely mathematical, relying only on our
definitions of concepts, and those that are facts about the world. Theorem provers like Lean
are concerned with the former category, and have nothing to say about the flight
capabilities of penguins or the legal status of cities.

A proof is a convincing argument that a proposition is true. For mathematical propositions,
these arguments make use of the definitions of the concepts that are involved as well as the
rules of logical argumentation. Most proofs are written for people to understand, and leave
out many tedious details. Computer-aided theorem provers like Lean are designed to allow
mathematicians to write proofs while omitting many details, and it is the software's
responsibility to fill in the missing explicit steps. This decreases the likelihood of oversights
or mistakes.

In Lean, a program's type describes the ways it can be interacted with. For instance, a
program of type Nat → List String  is a function that takes a Nat  argument and produces
a list of strings. In other words, each type specifies what counts as a program with that type.

In Lean, propositions are in fact types. They specify what counts as evidence that the
statement is true. The proposition is proved by providing this evidence. On the other hand,
if the proposition is false, then it will be impossible to construct this evidence.

For example, the proposition "1 + 1 = 2" can be written directly in Lean. The evidence for this
proposition is the constructor rfl , which is short for reflexivity:

On the other hand, rfl  does not prove the false proposition "1 + 1 = 15":

def onePlusOneIsTwo : 1 + 1 = 2 := rfl

def onePlusOneIsFifteen : 1 + 1 = 15 := rfl



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 95/432

This error message indicates that rfl  can prove that two expressions are equal when both
sides of the equality statement are already the same number. Because 1 + 1  evaluates
directly to 2 , they are considered to be the same, which allows onePlusOneIsTwo  to be
accepted. Just as Type  describes types such as Nat , String , and List (Nat × String × 
(Int → Float))  that represent data structures and functions, Prop  describes propositions.

When a proposition has been proven, it is called a theorem. In Lean, it is conventional to
declare theorems with the theorem  keyword instead of def . This helps readers see which
declarations are intended to be read as mathematical proofs, and which are definitions.
Generally speaking, with a proof, what matters is that there is evidence that a proposition is
true, but it's not particularly important which evidence was provided. With definitions, on
the other hand, it matters very much which particular value is selected—after all, a
definition of addition that always returns 0  is clearly wrong.

The prior example could be rewritten as follows:

Tactics

Proofs are normally written using tactics, rather than by providing evidence directly. Tactics
are small programs that construct evidence for a proposition. These programs run in a proof
state that tracks the statement that is to be proved (called the goal) along with the
assumptions that are available to prove it. Running a tactic on a goal results in a new proof
state that contains new goals. The proof is complete when all goals have been proven.

To write a proof with tactics, begin the definition with by . Writing by  puts Lean into tactic
mode until the end of the next indented block. While in tactic mode, Lean provides ongoing
feedback about the current proof state. Written with tactics, onePlusOneIsTwo  is still quite
short:

The simp  tactic, short for "simplify", is the workhorse of Lean proofs. It rewrites the goal to
as simple a form as possible, taking care of parts of the proof that are small enough. In

type mismatch
  rfl
has type
  1 + 1 = 1 + 1 : Prop
but is expected to have type
  1 + 1 = 15 : Prop

def OnePlusOneIsTwo : Prop := 1 + 1 = 2

theorem onePlusOneIsTwo : OnePlusOneIsTwo := rfl

theorem onePlusOneIsTwo : 1 + 1 = 2 := by
  simp
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particular, it proves simple equality statements. Behind the scenes, a detailed formal proof
is constructed, but using simp  hides this complexity.

Tactics are useful for a number of reasons:

1. Many proofs are complicated and tedious when written out down to the smallest
detail, and tactics can automate these uninteresting parts.

2. Proofs written with tactics are easier to maintain over time, because flexible
automation can paper over small changes to definitions.

3. Because a single tactic can prove many different theorems, Lean can use tactics
behind the scenes to free users from writing proofs by hand. For instance, an array
lookup requires a proof that the index is in bounds, and a tactic can typically construct
that proof without the user needing to worry about it.

Behind the scenes, indexing notation uses a tactic to prove that the user's lookup operation
is safe. This tactic is simp , configured to take certain arithmetic identities into account.

Connectives

The basic building blocks of logic, such as "and", "or", "true", "false", and "not", are called
logical connectives. Each connective defines what counts as evidence of its truth. For
example, to prove a statement "A and B", one must prove both A and B. This means that
evidence for "A and B" is a pair that contains both evidence for A and evidence for B.
Similarly, evidence for "A or B" consists of either evidence for A or evidence for B.

In particular, most of these connectives are defined like datatypes, and they have
constructors. If A  and B  are propositions, then " A  and B " (written A ∧ B ) is a
proposition. Evidence for A ∧ B  consists of the constructor And.intro , which has the type
A → B → A ∧ B . Replacing A  and B  with concrete propositions, it is possible to prove 1 + 
1 = 2 ∧ "Str".append "ing" = "String"  with And.intro rfl rfl . Of course, simp  is
also powerful enough to find this proof:

Similarly, " A  or B " (written A ∨ B ) has two constructors, because a proof of " A  or B "
requires only that one of the two underlying propositions be true. There are two
constructors: Or.inl , with type A → A ∨ B , and Or.inr , with type B → A ∨ B .

Implication (if A then B) is represented using functions. In particular, a function that
transforms evidence for A into evidence for B is itself evidence that A implies B. This is
different from the usual description of implication, in which A → B  is shorthand for ¬A ∨ B ,
but the two formulations are equivalent.

theorem addAndAppend : 1 + 1 = 2 ∧ "Str".append "ing" = "String" := by simp
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Because evidence for an "and" is a constructor, it can be used with pattern matching. For
instance, a proof that A and B implies A or B is a function that pulls the evidence of A (or of B)
out of the evidence for A and B, and then uses this evidence to produce evidence of A or B:

Connective
Lean

Syntax
Evidence

True True True.intro : True

False False No evidence

A and B A ∧ B And.intro : A → B → A ∧ B

A or B A ∨ B
Either Or.inl : A → A ∨ B  or Or.inr : B → A ∨ 
B

A implies B A → B
A function that transforms evidence of A into
evidence of B

not A ¬A
A function that would transform evidence of A into
evidence of False

The simp  tactic can prove theorems that use these connectives. For example:

Evidence as Arguments

While simp  does a great job proving propositions that involve equalities and inequalities of
specific numbers, it is not very good at proving statements that involve variables. For
instance, simp  can prove that 4 < 15 , but it can't easily tell that because x < 4 , it's also
true that x < 15 . Because index notation uses simp  behind the scenes to prove that array
access is safe, it can require a bit of hand-holding.

One of the easiest ways to make indexing notation work well is to have the function that
performs a lookup into a data structure take the required evidence of safety as an
argument. For instance, a function that returns the third entry in a list is not generally safe
because lists might contain zero, one, or two entries:

theorem andImpliesOr : A ∧ B → A ∨ B :=
  fun andEvidence =>
    match andEvidence with
    | And.intro a b => Or.inl a

theorem onePlusOneAndLessThan : 1 + 1 = 2 ∨ 3 < 5 := by simp
theorem notTwoEqualFive : ¬(1 + 1 = 5) := by simp
theorem trueIsTrue : True := True.intro
theorem trueOrFalse : True ∨ False := by simp
theorem falseImpliesTrue : False → True := by simp

def third (xs : List α) : α := xs[2]
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However, the obligation to show that the list has at least three entries can be imposed on
the caller by adding an argument that consists of evidence that the indexing operation is
safe:

In this example, xs.length > 2  is not a program that checks whether xs  has more than 2
entries. It is a proposition that could be true or false, and the argument ok  must be
evidence that it is true.

When the function is called on a concrete list, its length is known. In these cases, by simp
can construct the evidence automatically:

Indexing Without Evidence

In cases where it's not practical to prove that an indexing operation is in bounds, there are
other alternatives. Adding a question mark results in an Option , where the result is some  if
the index is in bounds, and none  otherwise. For example:

There is also a version that crashes the program when the index is out of bounds, rather
than returning an Option :

failed to prove index is valid, possible solutions:
  - Use `have`-expressions to prove the index is valid
  - Use `a[i]!` notation instead, runtime check is perfomed, and 'Panic' error 
message is produced if index is not valid
  - Use `a[i]?` notation instead, result is an `Option` type
  - Use `a[i]'h` notation instead, where `h` is a proof that index is valid
α : Type ?u.3900
xs : List α
⊢ 2 < List.length xs

def third (xs : List α) (ok : xs.length > 2) : α := xs[2]

#eval third woodlandCritters (by simp)

"snail"

def thirdOption (xs : List α) : Option α := xs[2]?

#eval thirdOption woodlandCritters

some "snail"

#eval thirdOption ["only", "two"]

none
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Be careful! Because code that is run with #eval  runs in the context of the Lean compiler,
selecting the wrong index can crash your IDE.

Messages You May Meet

In addition to the error that occurs when Lean is unable to find compile-time evidence that
an indexing operation is safe, polymorphic functions that use unsafe indexing may produce
the following message:

This is due to a technical restriction that is part of keeping Lean usable as both a logic for
proving theorems and a programming language. In particular, only programs whose types
contain at least one value are allowed to crash. This is because a proposition in Lean is a
kind of type that classifies evidence of its truth. False propositions have no such evidence. If
a program with an empty type could crash, then that crashing program could be used as a
kind of fake evidence for a false proposition.

Internally, Lean contains a table of types that are known to have at least one value. This
error is saying that some arbitrary type α  is not necessarily in that table. The next chapter
describes how to add to this table, and how to successfully write functions like
unsafeThird .

Adding whitespace between a list and the brackets used for lookup can cause another
message:

Adding a space causes Lean to treat the expression as a function application, and the index
as a list that contains a single number. This error message results from having Lean attempt
to treat woodlandCritters  as a function.

#eval woodlandCritters[1]!

"deer"

def unsafeThird (xs : List α) : α := xs[2]!

failed to synthesize instance
  Inhabited α

#eval woodlandCritters [1]

function expected at
  woodlandCritters
term has type
  List String
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Exercises

Prove the following theorems using rfl : 2 + 3 = 5 , 15 - 8 = 7 , "Hello, ".append 
"world" = "Hello, world" . What happens if rfl  is used to prove 5 < 18 ? Why?
Prove the following theorems using by simp : 2 + 3 = 5 , 15 - 8 = 7 , "Hello, 
".append "world" = "Hello, world" , 5 < 18 .
Write a function that looks up the fifth entry in a list. Pass the evidence that this lookup
is safe as an argument to the function.
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Overloading and Type Classes
In many languages, the built-in datatypes get special treatment. For example, in C and Java,
+  can be used to add float s and int s, but not arbitrary-precision numbers from a third-

party library. Similarly, numeric literals can be used directly for the built-in types, but not for
user-defined number types. Other languages provide an overloading mechanism for
operators, where the same operator can be given a meaning for a new type. In these
languages, such as C++ and C#, a wide variety of built-in operators can be overloaded, and
the compiler uses the type checker to select a particular implementation.

In addition to numeric literals and operators, many languages allow overloading of
functions or methods. In C++, Java, C# and Kotlin, multiple implementations of a method are
allowed, with differing numbers and types of arguments. The compiler uses the number of
arguments and their types to determine which overload was intended.

Function and operator overloading has a key limitation: polymorphic functions can't restrict
their type arguments to types for which a given overload exists. That is, there is no way to
write a function that works for any type that has addition defined. Instead, this function
must itself be overloaded for each type that has addition, resulting in many boilerplate
definitions instead of a single polymorphic definition. Another consequence of this
restriction is that some operators (such as equality in Java) end up being defined for every
combination of arguments, even when it is not necessarily sensible to do so. If
programmers are not very careful, this can lead to programs that crash at runtime or
silently compute an incorrect result.

Lean implements overloading using a mechanism called type classes, pioneered in Haskell,
that allows overloading of operators, functions, and literals in a manner that works well with
polymorphism. A type class describes a collection of overloadable operations. To overload
these operations for a new type, an instance is created that contains an implementation of
each operation for the new type. For example, a type class named Add  describes types that
allow addition, and an instance of Add  for Nat  provides an implementation of addition for
Nat .

The terms class and instance can be confusing for those who are used to object-oriented
languages, because they are not closely related to classes and instances in object-oriented
languages. However, they do share common roots: in everyday language, the term "class"
refers to a group that shares some common attributes. While classes in object-oriented
programming certainly describe groups of objects with common attributes, the term
additionally refers to a specific mechanism in a programming language for describing such a
group. Type classes are also a means of describing types that share common attributes
(namely, implementations of certain operations), but they don't really have anything else in
common with classes as found in object-oriented programming.
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A Lean type class is much more analogous to a Java or C# interface. Both type classes and
interfaces describe a conceptually related set of operations that are implemented for a type
or collection of types. Similarly, an instance of a type class is akin to the code in a Java or C#
class that is prescribed by the implemented interfaces, rather than an instance of a Java or
C# class. Unlike Java or C#'s interfaces, types can be given instances for type classes that the
author of the type does not have access to. In this way, they are very similar to Rust traits.
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Positive Numbers
In some applications, only positive numbers make sense. For example, compilers and
interpreters typically use one-indexed line and column numbers for source positions, and a
datatype that represents only non-empty lists will never report a length of zero. Rather than
relying on natural numbers, and littering the code with assertions that the number is not
zero, it can be useful to design a datatype that represents only positive numbers.

One way to represent positive numbers is very similar to Nat , except with one  as the base
case instead of zero :

This datatype represents exactly the intended set of values, but it is not very convenient to
use. For example, numeric literals are rejected:

Instead, the constructors must be used directly:

Similarly, addition and multiplication are not easy to use:

Each of these error messages begins with failed to synthesize instance . This indicates
that the error is due to an overloaded operation that has not been implemented, and it
describes the type class that must be implemented.

inductive Pos : Type where
  | one : Pos
  | succ : Pos → Pos

def seven : Pos := 7

failed to synthesize instance
  OfNat Pos 7

def seven : Pos :=
  Pos.succ (Pos.succ (Pos.succ (Pos.succ (Pos.succ (Pos.succ Pos.one)))))

def fourteen : Pos := seven + seven

failed to synthesize instance
  HAdd Pos Pos ?m.291

def fortyNine : Pos := seven * seven

failed to synthesize instance
  HMul Pos Pos ?m.291
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Classes and Instances

A type class consists of a name, some parameters, and a collection of methods. The
parameters describe the types for which overloadable operations are being defined, and
the methods are the names and type signatures of the overloadable operations. Once
again, there is a terminology clash with object-oriented languages. In object-oriented
programming, a method is essentially a function that is connected to a particular object in
memory, with special access to the object's private state. Objects are interacted with via
their methods. In Lean, the term "method" refers to an operation that has been declared to
be overloadable, with no special connection to objects or values or private fields.

One way to overload addition is to define a type class named Plus , with an addition
method named plus . Once an instance of Plus  for Nat  has been defined, it becomes
possible to add two Nat s using Plus.plus :

Adding more instances allows Plus.plus  to take more types of arguments.

In the following type class declaration, Plus  is the name of the class, α : Type  is the only
argument, and plus : α → α → α  is the only method:

This declaration says that there is a type class Plus  that overloads operations with respect
to a type α . In particular, there is one overloaded operation called plus  that takes two α s
and returns an α .

Type classes are first class, just as types are first class. In particular, a type class is another
kind of type. The type of Plus  is Type → Type , because it takes a type as an argument ( α )
and results in a new type that describes the overloading of Plus 's operation for α .

To overload plus  for a particular type, write an instance:

The colon after instance  indicates that Plus Nat  is indeed a type. Each method of class
Plus  should be assigned a value using := . In this case, there is only one method: plus .

By default, type class methods are defined in a namespace with the same name as the type
class. It can be convenient to open  the namespace so that users don't need to type the

#eval Plus.plus 5 3

8

class Plus (α : Type) where
  plus : α → α → α

instance : Plus Nat where
  plus := Nat.add
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name of the class first. Parentheses in an open  command indicate that only the indicated
names from the namespace are to be made accessible:

Defining an addition function for Pos  and an instance of Plus Pos  allows plus  to be used
to add both Pos  and Nat  values:

Because there is not yet an instance of Plus Float , attempting to add two floating-point
numbers with plus  fails with a familiar message:

These errors mean that Lean was unable to find an instance for a given type class.

Overloaded Addition

Lean's built-in addition operator is syntactic sugar for a type class called HAdd , which
flexibly allows the arguments to addition to have different types. HAdd  is short for
heterogeneous addition. For example, an HAdd  instance can be written to allow a Nat  to be
added to a Float , resulting in a new Float . When a programmer writes x + y , it is
interpreted as meaning HAdd.hAdd x y .

While an understanding of the full generality of HAdd  relies on features that are discussed
in another section in this chapter, there is a simpler type class called Add  that does not
allow the types of the arguments to be mixed. The Lean libraries are set up so that an
instance of Add  will be found when searching for an instance of HAdd  in which both
arguments have the same type.

Defining an instance of Add Pos  allows Pos  values to use ordinary addition syntax:

open Plus (plus)

#eval plus 5 3

8

def Pos.plus : Pos → Pos → Pos
  | Pos.one, k => Pos.succ k
  | Pos.succ n, k => Pos.succ (n.plus k)

instance : Plus Pos where
  plus := Pos.plus

def fourteen : Pos := plus seven seven

#eval plus 5.2 917.25861

failed to synthesize instance
  Plus Float

https://leanprover.github.io/functional_programming_in_lean/type-classes/out-params.html
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Conversion to Strings

Another useful built-in class is called ToString . Instances of ToString  provide a standard
way of converting values from a given type into strings. For example, a ToString  instance is
used when a value occurs in an interpolated string, and it determines how the IO.println
function used at the beginning of the description of IO  will display a value.

For example, one way to convert a Pos  into a String  is to reveal its inner structure. The
function posToString  takes a Bool  that determines whether to parenthesize uses of
Pos.succ , which should be true  in the initial call to the function and false  in all recursive

calls.

Using this function for a ToString  instance:

results in informative, yet overwhelming, output:

On the other hand, every positive number has a corresponding Nat . Converting it to a Nat
and then using the ToString Nat  instance (that is, the overloading of toString  for Nat ) is
a quick way to generate much shorter output:

instance : Add Pos where
  add := Pos.plus

def fourteen : Pos := seven + seven

def posToString (atTop : Bool) (p : Pos) : String :=
  let paren s := if atTop then s else "(" ++ s ++ ")"
  match p with
  | Pos.one => "Pos.one"
  | Pos.succ n => paren s!"Pos.succ {posToString false n}"

instance : ToString Pos where
  toString := posToString true

#eval s!"There are {seven}"

"There are Pos.succ (Pos.succ (Pos.succ (Pos.succ (Pos.succ (Pos.succ 
Pos.one)))))"

https://leanprover.github.io/functional_programming_in_lean/hello-world/running-a-program.html#running-a-program
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When more than one instance is defined, the most recent takes precedence. Additionally, if
a type has a ToString  instance, then it can be used to display the result of #eval  even if
the type in question was not defined with deriving Repr , so #eval seven  outputs 7 .

Overloaded Multiplication

For multiplication, there is a type class called HMul  that allows mixed argument types, just
like HAdd . Just as x + y  is interpreted as HAdd.hAdd x y , x * y  is interpreted as
HMul.hMul x y . For the common case of multiplication of two arguments with the same

type, a Mul  instance suffices.

An instance of Mul  allows ordinary multiplication syntax to be used with Pos :

With this instance, multiplication works as expected:

Literal Numbers

It is quite inconvenient to write out a sequence of constructors for positive numbers. One
way to work around the problem would be to provide a function to convert a Nat  into a
Pos . However, this approach has downsides. First off, because Pos  cannot represent 0 ,

def Pos.toNat : Pos → Nat
  | Pos.one => 1
  | Pos.succ n => n.toNat + 1

instance : ToString Pos where
  toString x := toString (x.toNat)

#eval s!"There are {seven}"

"There are 7"

def Pos.mul : Pos → Pos → Pos
  | Pos.one, k => k
  | Pos.succ n, k => n.mul k + k

instance : Mul Pos where
  mul := Pos.mul

#eval [seven * Pos.one,
       seven * seven,
       Pos.succ Pos.one * seven]

[7, 49, 14]
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the resulting function would either convert a Nat  to a bigger number, or it would return
Option Nat . Neither is particularly convenient for users. Secondly, the need to call the

function explicitly would make programs that use positive numbers much less convenient to
write than programs that use Nat . Having a trade-off between precise types and
convenient APIs means that the precise types become less useful.

In Lean, natural number literals are interpreted using a type class called OfNat :

This type class takes two arguments: α  is the type for which a natural number is
overloaded, and the unnamed Nat  argument is the actual literal number that was
encountered in the program. The method ofNat  is then used as the value of the numeric
literal. Because the class contains the Nat  argument, it becomes possible to define only
instances for those values where the number makes sense.

OfNat  demonstrates that the arguments to type classes do not need to be types. Because
types in Lean are first-class participants in the language that can be passed as arguments to
functions and given definitions with def  and abbrev , there is no barrier that prevents non-
type arguments in positions where a less-flexible language could not permit them. This
flexibility allows overloaded operations to be provided for particular values as well as
particular types.

For example, a sum type that represents natural numbers less than four can be defined as
follows:

While it would not make sense to allow any literal number to be used for this type, numbers
less than four clearly make sense:

class OfNat (α : Type) (_ : Nat) where
  ofNat : α

inductive LT4 where
  | zero
  | one
  | two
  | three
deriving Repr

instance : OfNat LT4 0 where
  ofNat := LT4.zero

instance : OfNat LT4 1 where
  ofNat := LT4.one

instance : OfNat LT4 2 where
  ofNat := LT4.two

instance : OfNat LT4 3 where
  ofNat := LT4.three
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With these instances, the following examples work:

On the other hand, out-of-bounds literals are still not allowed:

For Pos , the OfNat  instance should work for any Nat  other than Nat.zero . Another way
to phrase this is to say that for all natural numbers n , the instance should work for n + 1 .
Just as names like α  automatically become implicit arguments to functions that Lean fills
out on its own, instances can take automatic implicit arguments. In this instance, the
argument n  stands for any Nat , and the instance is defined for a Nat  that's one greater:

Because n  stands for a Nat  that's one less than what the user wrote, the helper function
natPlusOne  returns a Pos  that's one greater than its argument. This makes it possible to

use natural number literals for positive numbers, but not for zero:

#eval (3 : LT4)

LT4.three

#eval (0 : LT4)

LT4.zero

#eval (4 : LT4)

failed to synthesize instance
OfNat LT4 4

instance : OfNat Pos (n + 1) where
  ofNat :=
    let rec natPlusOne : Nat → Pos
      | 0 => Pos.one
      | k + 1 => Pos.succ (natPlusOne k)
    natPlusOne n

def eight : Pos := 8

def zero : Pos := 0

failed to synthesize instance
  OfNat Pos 0
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Exercises

Another Representation

An alternative way to represent a positive number is as the successor of some Nat . Replace
the definition of Pos  with a structure whose constructor is named succ  that contains a
Nat :

Define instances of Add , Mul , ToString , and OfNat  that allow this version of Pos  to be
used conveniently.

Even Numbers

Define a datatype that represents only even numbers. Define instances of Add , Mul , and
ToString  that allow it to be used conveniently. OfNat  requires a feature that is introduced

in the next section.

HTTP Requests

An HTTP request begins with an identification of a HTTP method, such as GET  or POST ,
along with a URI and an HTTP version. Define an inductive type that represents an
interesting subset of the HTTP methods, and a structure that represents HTTP responses.
Responses should have a ToString  instance that makes it possible to debug them. Use a
type class to associate different IO  actions with each HTTP method, and write a test
harness as an IO  action that calls each method and prints the result.

structure Pos where
  succ ::
  pred : Nat

https://leanprover.github.io/functional_programming_in_lean/type-classes/polymorphism.html
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Type Classes and Polymorphism
It can be useful to write functions that work for any overloading of a given function. For
instance, IO.println  works for any type that has an instance of ToString . This is indicated
using square brackets around the required instance: the type of IO.println  is {α : Type} 
→ [ToString α] → α → IO Unit . This type says that IO.println  accepts an argument of
type α , which Lean should determine automatically, and that there must be a ToString
instance available for α . It returns an IO  action.

Checking Polymorphic Functions' Types

Checking the type of a function that takes implicit arguments or uses type classes requires
the use of some additional syntax. Simply writing

yields a type with metavariables:

This is because Lean does its best to discover implicit arguments, and the presence of
metavariables indicates that it did not yet discover enough type information to do so. To
understand the signature of a function, this feature can be suppressed with an at-sign ( @ )
before the function's name:

In this output, the instance itself has been given the name inst . Additionally, there is a
u_1  after Type , which uses a feature of Lean that has not yet been introduced. For now,

ignore these parameters to Type .

Defining Polymorphic Functions with Instance Implicits

A function that sums all entries in a list needs two instances: Add  allows the entries to be
added, and an OfNat  instance for 0  provides a sensible value to return for the empty list:

#check (IO.println)

IO.println : ?m.3659 → IO Unit

#check @IO.println

@IO.println : {α : Type u_1} → [inst : ToString α] → α → IO Unit
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This function can be used for a list of Nat s:

but not for a list of Pos  numbers:

Specifications of required instances in square brackets are called instance implicits. Behind
the scenes, every type class defines a structure that has a field for each overloaded
operation. Instances are values of that structure type, with each field containing an
implementation. At a call site, Lean is responsible for finding an instance value to pass for
each instance implicit argument. The most important difference between ordinary implicit
arguments and instance implicits is the strategy that Lean uses to find an argument value.
In the case of ordinary implicit arguments, Lean uses a technique called unification to find a
single unique argument value that would allow the program to pass the type checker. This
process relies only on the specific types involved in the function's definition and the call site.
For instance implicits, Lean instead consults a built-in table of instance values.

Just as the OfNat  instance for Pos  took a natural number n  as an automatic implicit
argument, instances may also take instance implicit arguments themselves. The section on
polymorphism presented a polymorphic point type:

Addition of points should add the underlying x  and y  fields. Thus, an Add  instance for
PPoint  requires an Add  instance for whatever type these fields have. In other words, the
Add  instance for PPoint  requires a further Add  instance for α :

def List.sum [Add α] [OfNat α 0] : List α → α
  | [] => 0
  | x :: xs => x + xs.sum

def fourNats : List Nat := [1, 2, 3, 4]

#eval fourNats.sum

10

def fourPos : List Pos := [1, 2, 3, 4]

#eval fourPos.sum

failed to synthesize instance
  OfNat Pos 0

structure PPoint (α : Type) where
  x : α
  y : α
deriving Repr

instance [Add α] : Add (PPoint α) where
  add p1 p2 := { x := p1.x + p2.x, y := p1.y + p2.y }

https://leanprover.github.io/functional_programming_in_lean/getting-to-know/polymorphism.html
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When Lean encounters an addition of two points, it searches for and finds this instance. It
then performs a further search for the Add α  instance.

The instance values that are constructed in this way are values of the type class's structure
type. A successful recursive instance search results in a structure value that has a reference
to another structure value. An instance of Add (PPoint Nat)  contains a reference to the
instance of Add Nat  that was found.

This recursive search process means that type classes offer significantly more power than
plain overloaded functions. A library of polymorphic instances is a set of code building
blocks that the compiler will assemble on its own, given nothing but the desired type.
Polymorphic functions that take instance arguments are latent requests to the type class
mechanism to assemble helper functions behind the scenes. The API's clients are freed
from the burden of plumbing together all of the necessary parts by hand.

Methods and Implicit Arguments

The type of @OfNat.ofNat  may be surprising. It is {α : Type} → (n : Nat) → [OfNat α n] 
→ α , in which the Nat  argument n  occurs as an explicit function argument. In the
declaration of the method, however, ofNat  simply has type α . This seeming discrepancy is
because declaring a type class really results in the following:

A structure type to contain the implementation of each overloaded operation
A namespace with the same name as the class
For each method, a function in the class's namespace that retrieves its implementation
from an instance

This is analogous to the way that declaring a new structure also declares accessor functions.
The primary difference is that a structure's accessors take the structure value as an explicit
argument, while the type class methods take the instance value as an instance implicit to be
found automatically by Lean.

In order for Lean to find an instance, its arguments must be available. This means that each
argument to the type class must be an argument to the method that occurs before the
instance. It is most convenient when these arguments are implicit, because Lean does the
work of discovering their values. For example, @Add.add  has the type {α : Type} → [Add 
α] → α → α → α . In this case, the type argument α  can be implicit because the arguments
to Add.add  provide information about which type the user intended. This type can then be
used to search for the Add  instance.

In the case of ofNat , however, the particular Nat  literal to be decoded does not appear as
part of any other argument. This means that Lean would have no information to use when
attempting to figure out the implicit argument n . The result would be a very inconvenient
API. Thus, in these cases, Lean uses an explicit argument for the class's method.
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Exercises

Even Number Literals

Write an instance of OfNat  for the even number datatype from the previous section's
exercises that uses recursive instance search. For the base instance, it is necessary to write
OfNat Even Nat.zero  instead of OfNat Even 0 .

Recursive Instance Search Depth

There is a limit to how many times the Lean compiler will attempt a recursive instance
search. This places a limit on the size of even number literals defined in the previous
exercise. Experimentally determine what the limit is.

https://leanprover.github.io/functional_programming_in_lean/type-classes/pos.html#even-numbers
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Controlling Instance Search
An instance of the Add  class is sufficient to allow two expressions with type Pos  to be
conveniently added, producing another Pos . However, in many cases, it can be useful to be
more flexible and allow heterogeneous operator overloading, where the arguments may
have different types. For example, adding a Nat  to a Pos  or a Pos  to a Nat  will always
yield a Pos :

These functions allow natural numbers to be added to positive numbers, but they cannot be
used with the Add  type class, which expects both arguments to add  to have the same type.

Heterogeneous Overloadings

As mentioned in the section on overloaded addition, Lean provides a type class called HAdd
for overloading addition heterogeneously. The HAdd  class takes three type parameters: the
two argument types and the return type. Instances of HAdd Nat Pos Pos  and HAdd Pos Nat 
Pos  allow ordinary addition notation to be used to mix the types:

Given the above two instances, the following examples work:

def addNatPos : Nat → Pos → Pos
  | 0, p => p
  | n + 1, p => Pos.succ (addNatPos n p)

def addPosNat : Pos → Nat → Pos
  | p, 0 => p
  | p, n + 1 => Pos.succ (addPosNat p n)

instance : HAdd Nat Pos Pos where
  hAdd := addNatPos

instance : HAdd Pos Nat Pos where
  hAdd := addPosNat

#eval (3 : Pos) + (5 : Nat)

8

#eval (3 : Nat) + (5 : Pos)

8

https://leanprover.github.io/functional_programming_in_lean/type-classes/pos.html#overloaded-addition
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The definition of the HAdd  type class is very much like the following definition of HPlus
with the corresponding instances:

However, instances of HPlus  are significantly less useful than instances of HAdd . When
attempting to use these instances with #eval , an error occurs:

This happens because there is a metavariable in the type, and Lean has no way to solve it.

As discussed in the initial description of polymorphism, metavariables represent unknown
parts of a program that could not be inferred. When an expression is written following
#eval , Lean attempts to determine its type automatically. In this case, it could not. Because

the third type parameter for HPlus  was unknown, Lean couldn't carry out type class
instance search, but instance search is the only way that Lean could determine the
expression's type. That is, the HPlus Pos Nat Pos  instance can only apply if the expression
should have type Pos , but there's nothing in the program other than the instance itself to
indicate that it should have this type.

One solution to the problem is to ensure that all three types are available by adding a type
annotation to the whole expression:

However, this solution is not very convenient for users of the positive number library.

Output Parameters

This problem can also be solved by declaring γ  to be an output parameter. Most type class
parameters are inputs to the search algorithm: they are used to select an instance. For
example, in an OfNat  instance, both the type and the natural number are used to select a

class HPlus (α : Type) (β : Type) (γ : Type) where
  hPlus : α → β → γ

instance : HPlus Nat Pos Pos where
  hPlus := addNatPos

instance : HPlus Pos Nat Pos where
  hPlus := addPosNat

#eval HPlus.hPlus (3 : Pos) (5 : Nat)

typeclass instance problem is stuck, it is often due to metavariables
  HPlus Pos Nat ?m.7602

#eval (HPlus.hPlus (3 : Pos) (5 : Nat) : Pos)

8

https://leanprover.github.io/functional_programming_in_lean/getting-to-know/polymorphism.html
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particular interpretation of a natural number literal. However, in some cases, it can be
convenient to start the search process even when some of the type parameters are not yet
known, and use the instances that are discovered in the search to determine values for
metavariables. The parameters that aren't needed to start instance search are outputs of
the process, which is declared with the outParam  modifier:

With this output parameter, type class instance search is able to select an instance without
knowing γ  in advance. For instance:

It might be helpful to think of output parameters as defining a kind of function. Any given
instance of a type class that has one or more output parameters provides Lean with
instructions for determining the outputs from the inputs. The process of searching for an
instance, possibly recursively, ends up being more powerful than mere overloading. Output
parameters can determine other types in the program, and instance search can assemble a
collection of underlying instances into a program that has this type.

Default Instances

Deciding whether a parameter is an input or an output controls the circumstances under
which Lean will initiate type class search. In particular, type class search does not occur until
all inputs are known. However, in some cases, output parameters are not enough, and
instance search should also occur when some inputs are unknown. This is a bit like default
values for optional function arguments in Python or Kotlin, except default types are being
selected.

Default instances are instances that are available for instance search even when not all their
inputs are known. When one of these instances can be used, it will be used. This can cause
programs to successfully type check, rather than failing with errors related to unknown
types and metavariables. On the other hand, default instances can make instance selection
less predictable. In particular, if an undesired default instance is selected, then an
expression may have a different type than expected, which can cause confusing type errors
to occur elsewhere in the program. Be selective about where default instances are used!

One example of where default instances can be useful is an instance of HPlus  that can be
derived from an Add  instance. In other words, ordinary addition is a special case of
heterogeneous addition in which all three types happen to be the same. This can be
implemented using the following instance:

class HPlus (α : Type) (β : Type) (γ : outParam Type) where
  hPlus : α → β → γ

#eval HPlus.hPlus (3 : Pos) (5 : Nat)

8
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With this instance, hPlus  can be used for any addable type, like Nat :

However, this instance will only be used in situations where the types of both arguments are
known. For example,

yields the type

as expected, but

yields a type that contains two metavariables, one for the remaining argument and one for
the return type:

In the vast majority of cases, when someone supplies one argument to addition, the other
argument will have the same type. To make this instance into a default instance, apply the
default_instance  attribute:

With this default instance, the example has a more useful type:

yields

Each operator that exists in overloadable heterogeneous and homogeneous versions
follows the pattern of a default instance that allows the homogeneous version to be used in
contexts where the heterogeneous is expected. The infix operator is replaced with a call to

instance [Add α] : HPlus α α α where
  hPlus := Add.add

#eval HPlus.hPlus (3 : Nat) (5 : Nat)

8

#check HPlus.hPlus (5 : Nat) (3 : Nat)

HPlus.hPlus 5 3 : Nat

#check HPlus.hPlus (5 : Nat)

HPlus.hPlus 5 : ?m.7783 → ?m.7785

@[default_instance]
instance [Add α] : HPlus α α α where
  hPlus := Add.add

#check HPlus.hPlus (5 : Nat)

HPlus.hPlus 5 : Nat → Nat
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the heterogeneous version, and the homogeneous default instance is selected when
possible.

Similarly, simply writing 5  gives a Nat  rather than a type with a metavariable that is waiting
for more information in order to select an OfNat  instance. This is because the OfNat
instance for Nat  is a default instance.

Default instances can also be assigned priorities that affect which will be chosen in situations
where more than one might apply. For more information on default instance priorities,
please consult the Lean manual.

Exercises

Define an instance of HMul (PPoint α) α (PPoint α)  that multiplies both projections by
the scalar. It should work for any type α  for which there is a Mul α  instance. For example,

should yield

#eval {x := 2.5, y := 3.7 : PPoint Float} * 2.0

{ x := 5.000000, y := 7.400000 }
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Arrays and Indexing
The Interlude describes how to use indexing notation in order to look up entries in a list by
their position. This syntax is also governed by a type class, and it can be used for a variety of
different types.

Arrays

For instance, Lean arrays are much more efficient than linked lists for most purposes. In
Lean, the type Array α  is a dynamically-sized array holding values of type α , much like a
Java ArrayList , a C++ std::vector , or a Rust Vec . Unlike List , which has a pointer
indirection on each use of the cons  constructor, arrays occupy a contiguous region of
memory, which is much better for processor caches. Also, looking up a value in an array
takes constant time, while lookup in a linked list takes time proportional to the index being
accessed.

In pure functional languages like Lean, it is not possible to mutate a given position in a data
structure. Instead, a copy is made that has the desired modifications. When using an array,
the Lean compiler and runtime contain an optimization that can allow modifications to be
implemented as mutations behind the scenes when there is only a single unique reference
to an array.

Arrays are written similarly to lists, but with a leading # :

The number of values in an array can be found using Array.size . For instance,
northernTrees.size  evaluates to 4 . For indices that are smaller than an array's size,

indexing notation can be used to find the corresponding value, just as with lists. That is,
northernTrees[2]  evaluates to "elm" . Similarly, the compiler requires a proof that an

index is in bounds, and attempting to look up a value outside the bounds of the array
results in a compile-time error, just as with lists. For instance, northernTrees[8]  results in:

def northernTrees : Array String :=
  #["sloe", "birch", "elm", "oak"]

failed to prove index is valid, possible solutions:
  - Use `have`-expressions to prove the index is valid
  - Use `a[i]!` notation instead, runtime check is perfomed, and 'Panic' error 
message is produced if index is not valid
  - Use `a[i]?` notation instead, result is an `Option` type
  - Use `a[i]'h` notation instead, where `h` is a proof that index is valid
⊢ 8 < Array.size northernTrees

https://leanprover.github.io/functional_programming_in_lean/props-proofs-indexing.html
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Non-Empty Lists

A datatype that represents non-empty lists can be defined as a structure with a field for the
head of the list and a field for the tail, which is an ordinary, potentially empty list:

For example, the non-empty list idahoSpiders  (which contains some spider species native
to the US state of Idaho) consists of "Banded Garden Spider"  followed by four other
spiders, for a total of five spiders:

Looking up the value at a specific index in this list with a recursive function should consider
three possibilities:

1. The index is 0 , in which case the head of the list should be returned.
2. The index is n + 1  and the tail is empty, in which case the index is out of bounds.
3. The index is n + 1  and the tail is non-empty, in which case the function can be called

recursively on the tail and n .

For example, a lookup function that returns an Option  can be written as follows:

Each case in the pattern match corresponds to one of the possibilities above. The recursive
call to get?  does not require a NonEmptyList  namespace qualifier because the body of the
definition is implicitly in the definition's namespace. Another way to write this function uses
get?  for lists when the index is greater than zero:

If the list contains one entry, then only 0  is a valid index. If it contains two entries, then
both 0  and 1  are valid indices. If it contains three entries, then 0 , 1 , and 2  are valid

structure NonEmptyList (α : Type) : Type where
  head : α
  tail : List α

def idahoSpiders : NonEmptyList String := {
  head := "Banded Garden Spider",
  tail := [
    "Long-legged Sac Spider",
    "Wolf Spider",
    "Hobo Spider",
    "Cat-faced Spider"
  ]
}

def NonEmptyList.get? : NonEmptyList α → Nat → Option α
  | xs, 0 => some xs.head
  | {head := _, tail := []}, _ + 1 => none
  | {head := _, tail := h :: t}, n + 1 => get? {head := h, tail := t} n

def NonEmptyList.get? : NonEmptyList α → Nat → Option α
  | xs, 0 => some xs.head
  | xs, n + 1 => xs.tail.get? n
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indices. In other words, the valid indices into a non-empty list are natural numbers that are
strictly less than the length of the list, which are less than or equal to the length of the tail.

The definition of what it means for an index to be in bounds should be written as an
abbrev  because the tactics used to find evidence that indices are acceptable are able to

solve inequalities of numbers, but they don't know anything about the name
NonEmptyList.inBounds :

This function returns a proposition that might be true or false. For instance, 2  is in bounds
for idahoSpiders , while 5  is not:

The logical negation operator has a very low precedence, which means that
¬idahoSpiders.inBounds 5  is equivalent to ¬(idahoSpiders.inBounds 5) .

This fact can be used to write a lookup function that requires evidence that the index is
valid, and thus need not return Option , by delegating to the version for lists that checks the
evidence at compile time:

It is, of course, possible to write this function to use the evidence directly, rather than
delegating to a standard library function that happens to be able to use the same evidence.
This requires techniques for working with proofs and propositions that are described later
in this book.

Overloading Indexing

Indexing notation for a collection type can be overloaded by defining an instance of the
GetElem  type class. For the sake of flexiblity, GetElem  has four parameters:

The type of the collection
The type of the index
The type of elements that are extracted from the collection
A function that determines what counts as evidence that the index is in bounds

abbrev NonEmptyList.inBounds (xs : NonEmptyList α) (i : Nat) : Prop :=
  i ≤ xs.tail.length

theorem atLeastThreeSpiders : idahoSpiders.inBounds 2 := by simp

theorem notSixSpiders : ¬idahoSpiders.inBounds 5 := by simp

def NonEmptyList.get (xs : NonEmptyList α) (i : Nat) (ok : xs.inBounds i) : α :=
  match i with
  | 0 => xs.head
  | n + 1 => xs.tail[n]
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The element type and the evidence function are both output parameters. GetElem  has a
single method, getElem , which takes a collection value, an index value, and evidence that
the index is in bounds as arguments, and returns an element:

In the case of NonEmptyList α , these parameters are:

The collection is NonEmptyList α
Indices have type Nat
The type of elements is α
An index is in bounds if it is less than or equal to the length of the tail

In fact, the GetElem  instance can delegate directly to NonEmptyList.get :

With this instance, NonEmptyList  becomes just as convenient to use as List . Evaluating
idahoSpiders[0]  yields "Banded Garden Spider" , while idahoSpiders[9]  leads to the

compile-time error:

Because both the collection type and the index type are input parameters to the GetElem
type class, new types can be used to index into existing collections. The positive number
type Pos  is a perfectly reasonable index into a List , with the caveat that it cannot point at
the first entry. The follow instance of GetElem  allows Pos  to be used just as conveniently as
Nat  to find a list entry:

Indexing can also make sense for non-numeric indices. For example, Bool  can be used to
select between the fields in a point, with false  corresponding to x  and true
corresponding to y :

class GetElem (coll : Type) (idx : Type) (item : outParam Type) (inBounds : 
outParam (coll → idx → Prop)) where
  getElem : (c : coll) → (i : idx) → inBounds c i → item

instance : GetElem (NonEmptyList α) Nat α NonEmptyList.inBounds where
  getElem := NonEmptyList.get

failed to prove index is valid, possible solutions:
  - Use `have`-expressions to prove the index is valid
  - Use `a[i]!` notation instead, runtime check is perfomed, and 'Panic' error 
message is produced if index is not valid
  - Use `a[i]?` notation instead, result is an `Option` type
  - Use `a[i]'h` notation instead, where `h` is a proof that index is valid
⊢ NonEmptyList.inBounds idahoSpiders 9

instance : GetElem (List α) Pos α (fun list n => list.length > n.toNat) where
  getElem (xs : List α) (i : Pos) ok := xs[i.toNat]
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In this case, both Booleans are valid indices. Because every possible Bool  is in bounds, the
evidence is simply the true proposition True .

instance : GetElem (PPoint α) Bool α (fun _ _ => True) where
  getElem (p : PPoint α) (i : Bool) _ :=
    if not i then p.x else p.y
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Standard Classes
This section presents a variety of operators and functions that can be overloaded using type
classes in Lean. Each operator or function corresponds to a method of a type class. Unlike
C++, infix operators in Lean are defined as abbreviations for named functions; this means
that overloading them for new types is not done using the operator itself, but rather using
the underlying name (such as HAdd.hAdd ).

Arithmetic

Most arithmetic operators are available in a heterogeneous form, where the arguments
may have different type and an output parameter decides the type of the resulting
expression. For each heterogeneous operator, there is a corresponding homogeneous
version that can found by removing the letter h , so that HAdd.hAdd  becomes Add.add . The
following arithmetic operators are overloaded:

Expression Desugaring Class Name

x + y HAdd.hAdd x y HAdd

x - y HSub.hSub x y HSub

x * y HMul.hMul x y HMul

x / y HDiv.hDiv x y HDiv

x % y HMod.hMod x y HMod

x ^ y HPow.hPow x y HPow

(- x) Neg.neg x Neg

Bitwise Operators

Lean contains a number of standard bitwise operators that are overloaded using type
classes. There are instances for fixed-width types such as UInt8 , UInt16 , UInt32 , UInt64 ,
and USize . The latter is the size of words on the current platform, typically 32 or 64 bits.
The following bitwise operators are overloaded:

Expression Desugaring Class Name

x &&& y HAnd.hAnd x y HAnd

x ||| y HOr.hOr x y HOr

x ^^^ y HXor.hXor x y HXor
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Expression Desugaring Class Name

~~~ x Complement.complement x Complement

x >>> y HShiftRight.hShiftRight x y HShiftRight

x <<< y HShiftLeft.hShiftLeft x y HShiftLeft

Because the names And  and Or  are already taken as the names of logical connectives, the
homogeneous versions of HAnd  and HOr  are called AndOp  and OrOp  rather than And  and
Or .

Equality and Ordering

Testing equality of two values typically uses the BEq  class, which is short for "Boolean
equality". Due to Lean's use as a theorem prover, there are really two kinds of equality
operators in Lean:

Boolean equality is the same kind of equality that is found in other programming
languages. It is a function that takes two values and returns a Bool . Boolean equality
is written with two equals signs, just as in Python and C#. Because Lean is a pure
functional language, there's no separate notions of reference vs value equality—
pointers cannot be observed directly.
Propositional equality is the mathematical statement that two things are equal.
Propositional equality is not a function; rather, it is a mathematical statement that
admits proof. It is written with a single equals sign. A statement of propositional
equality is like a type that classifies evidence of this equality.

Both notions of equality are important, and used for different purposes. Boolean equality is
useful in programs, when a decision needs to be made about whether two values are equal.
For example, "Octopus" ==  "Cuttlefish"  evaluates to false , and "Octopodes" ==  
"Octo".append "podes"  evaluates to true . Some values, such as functions, cannot be
checked for equality. For example, (fun (x : Nat) => 1 + x) == (Nat.succ ·)  yields the
error:

As this message indicates, ==  is overloaded using a type class. The expression x == y  is
actually shorthand for BEq.beq x y .

Propositional equality is a mathematical statement rather than an invocation of a program.
Because propositions are like types that describe evidence for some statement,
propositional equality has more in common with types like String  and Nat → List Int
than it does with Boolean equality. This means that it can't automatically be checked.
However, the equality of any two expressions can be stated in Lean, so long as they have

failed to synthesize instance
  BEq (Nat → Nat)
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the same type. The statement (fun (x : Nat) => 1 + x) = (Nat.succ ·)  is a perfectly
reasonable statement. From the perspective of mathematics, two functions are equal if they
map equal inputs to equal outputs, so this statement is even true, though it requires a two-
line proof to convince Lean of this fact.

Generally speaking, when using Lean as a programming language, it's easiest to stick to
Boolean functions rather than propositions. However, as the names true  and false  for
Bool 's constructors suggest, this difference is sometimes blurred. Some propositions are

decidable, which means that they can be checked just like a Boolean function. The function
that checks whether the proposition is true or false is called a decision procedure, and it
returns evidence of the truth or falsity of the proposition. Some examples of decidable
propositions include equality and inequality of natural numbers, equality of strings, and
"ands" and "ors" of propositions that are themselves decidable.

In Lean, if  works with decidable propositions. For example, 2 < 4  is a proposition:

Nonetheless, it is perfectly acceptable to write it as the condition in an if . For example, if 
2 < 4 then 1 else 2  has type Nat  and evaluates to 1 .

Not all propositions are decidable. If they were, then computers would be able to prove any
true proposition just by running the decision procedure, and mathematicians would be out
of a job. More specifically, decidable propositions have an instance of the Decidable  type
class which has a method that is the decision procedure. Trying to use a proposition that
isn't decidable as if it were a Bool  results in a failure to find the Decidable  instance. For
example, if (fun (x : Nat) => 1 + x) = (Nat.succ ·) then "yes" else "no"  results in:

The following propositions, that are usually decidable, are overloaded with type classes:

Expression Desugaring Class Name

x < y LT.lt x y LT

x ≤ y LE.le x y LE

x > y LT.lt y x LT

x ≥ y LE.le y x LE

Because defining new propositions hasn't yet been demonstrated, it may be difficult to
define new instances of LT  and LE .

#check 2 < 4

2 < 4 : Prop

failed to synthesize instance
  Decidable ((fun x => 1 + x) = fun x => Nat.succ x)
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Additionally, comparing values using < , == , and >  can be inefficient. Checking first
whether one value is less than another, and then whether they are equal, can require two
traversals over large data structures. To solve this problem, Java and C# have standard
compareTo  and CompareTo  methods (respectively) that can be overridden by a class in

order to implement all three operations at the same time. These methods return a negative
integer if the receiver is less than the argument, zero if they are equal, and a positive integer
if the receiver is greater than the argument. Rather than overload the meaning of integers,
Lean has a built-in inductive type that describes these three possibilities:

The Ord  type class can be overloaded to produce these comparisons. For Pos , an
implementation can be:

In situations where compareTo  would be the right approach in Java, use Ord.compare  in
Lean.

Hashing

Java and C# have hashCode  and GetHashCode  methods, respectively, that compute a hash
of a value for use in data structures such as hash tables. The Lean equivalent is a type class
called Hashable :

If two values are considered equal according to a BEq  instance for their type, then they
should have the same hashes. In other words, if x == y  then hash x == hash y . If x ≠ y ,
then hash x  won't necessarily differ from hash y  (after all, there are infinitely more Nat
values than there are UInt64  values), but data structures built on hashing will have better
performance if unequal values are likely to have unequal hashes. This is the same
expectation as in Java and C#.

inductive Ordering where
| lt
| eq
| gt

def Pos.comp : Pos → Pos → Ordering
  | Pos.one, Pos.one => Ordering.eq
  | Pos.one, Pos.succ _ => Ordering.lt
  | Pos.succ _, Pos.one => Ordering.gt
  | Pos.succ n, Pos.succ k => comp n k

instance : Ord Pos where
  compare := Pos.comp

class Hashable (α : Type) where
  hash : α → UInt64
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The standard library contains a function mixHash  with type UInt64 → UInt64 → UInt64
that can be used to combine hashes for different fields for a constructor. A reasonable hash
function for an inductive datatype can be written by assigning a unique number to each
constructor, and then mixing that number with the hashes of each field. For example, a
Hashable  instance for Pos  can be written:

Hashable  instances for polymorphic types can use recursive instance search. Hashing a
NonEmptyList α  is only possible when α  can be hashed:

Binary trees use both recursion and recursive instance search in the implementations of
BEq  and Hashable :

def hashPos : Pos → UInt64
  | Pos.one => 0
  | Pos.succ n => mixHash 1 (hashPos n)

instance : Hashable Pos where
  hash := hashPos

instance [Hashable α] : Hashable (NonEmptyList α) where
  hash xs := mixHash (hash xs.head) (hash xs.tail)

inductive BinTree (α : Type) where
  | leaf : BinTree α
  | branch : BinTree α → α → BinTree α → BinTree α

def eqBinTree [BEq α] : BinTree α → BinTree α → Bool
  | BinTree.leaf, BinTree.leaf =>
    true
  | BinTree.branch l x r, BinTree.branch l2 x2 r2 =>
    x == x2 && eqBinTree l l2 && eqBinTree r r2
  | _, _ =>
    false

instance [BEq α] : BEq (BinTree α) where
  beq := eqBinTree

def hashBinTree [Hashable α] : BinTree α → UInt64
  | BinTree.leaf =>
    0
  | BinTree.branch left x right =>
    mixHash 1 (mixHash (hashBinTree left) (mixHash (hash x) (hashBinTree 
right)))

instance [Hashable α] : Hashable (BinTree α) where
  hash := hashBinTree
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Deriving Standard Classes

Instance of classes like BEq  and Hashable  are often quite tedious to implement by hand.
Lean includes a feature called instance deriving that allows the compiler to automatically
construct well-behaved instances of many type classes. In fact, the deriving Repr  phrase
in the definition of Point  in the section on structures is an example of instance deriving.

Instances can be derived in two ways. The first can be used when defining a structure or
inductive type. In this case, add deriving  to the end of the type declaration followed by the
names of the classes for which instances should be derived. For a type that is already
defined, a standalone deriving  command can be used. Write deriving instance C1, C2, 
... for T  to derive instances of C1, C2, ...  for the type T  after the fact.

BEq  and Hashable  instances can be derived for Pos  and NonEmptyList  using a very small
amount of code:

Instances can be derived for at least the following classes:

Inhabited

BEq

Repr

Hashable

Ord

In some cases, however, the derived Ord  instance may not produce precisely the ordering
desired in an application. When this is the case, it's fine to write an Ord  instance by hand.
The collection of classes for which instances can be derived can be extended by advanced
users of Lean.

Aside from the clear advantages in programmer productivity and code readability, deriving
instances also makes code easier to maintain, because the instances are updated as the
definitions of types evolve. Changesets involving updates to datatypes are easier to read
without line after line of formulaic modifications to equality tests and hash computation.

Appending

Many datatypes have some sort of append operator. In Lean, appending two values is
overloaded with the type class HAppend , which is a heterogeneous operation like that used
for arithmetic operations:

deriving instance BEq, Hashable for Pos
deriving instance BEq, Hashable, Repr for NonEmptyList

https://leanprover.github.io/functional_programming_in_lean/getting-to-know/structures.html
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The syntax xs ++ ys  desugars to HAppend.hAppend xs ys . For homogeneous cases, it's
enough to implement an instance of Append , which follows the usual pattern:

After defining the above instance,

has the following output:

Similarly, a definition of HAppend  allows non-empty lists to be appended to ordinary lists:

With this instance available,

results in

Functors

A polymorphic type is a functor if it has an overload for a function named map  that
transforms every element contained in it by a function. While most languages use this

class HAppend (α : Type) (β : Type) (γ : outParam Type) where
  hAppend : α → β → γ

instance : Append (NonEmptyList α) where
  append xs ys :=
    { head := xs.head, tail := xs.tail ++ ys.head :: ys.tail }

#eval idahoSpiders ++ idahoSpiders

{ head := "Banded Garden Spider",
tail := ["Long-legged Sac Spider",
         "Wolf Spider",
         "Hobo Spider",
         "Cat-faced Spider",
         "Banded Garden Spider",
         "Long-legged Sac Spider",
         "Wolf Spider",
         "Hobo Spider",
         "Cat-faced Spider"] }

instance : HAppend (NonEmptyList α) (List α) (NonEmptyList α) where
  hAppend xs ys :=
    { head := xs.head, tail := xs.tail ++ ys }

#eval idahoSpiders ++ ["Trapdoor Spider"]

{ head := "Banded Garden Spider",
  tail := ["Long-legged Sac Spider", "Wolf Spider", "Hobo Spider", "Cat-faced 
Spider", "Trapdoor Spider"] }
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terminology, C#'s equivalent to map  is called System.Linq.Enumerable.Select . For
example, mapping a function over a list constructs a new list in which each entry from the
starting list has been replaced by the result of the function on that entry. Mapping a
function f  over an Option  leaves none  untouched, and replaces some x  with some (f 
x) .

Here are some examples of functors and how their Functor  instances overload map :

Functor.map (· + 5) [1, 2, 3]  evaluates to [6, 7, 8]
Functor.map toString (some (List.cons 5 List.nil))  evaluates to some "[5]"
Functor.map List.reverse [[1, 2, 3], [4, 5, 6]]  evaluates to [[3, 2, 1], [6, 
5, 4]]

Because Functor.map  is a bit of a long name for this common operation, Lean also
provides an infix operator for mapping a function, namely <$> . The prior examples can be
rewritten as follows:

(· + 5) <$> [1, 2, 3]  evaluates to [6, 7, 8]
toString <$> (some (List.cons 5 List.nil))  evaluates to some "[5]"
List.reverse <$> [[1, 2, 3], [4, 5, 6]]  evaluates to [[3, 2, 1], [6, 5, 4]]

An instance of Functor  for NonEmptyList  requires specifying the map  function.

Here, map  uses the Functor  instance for List  to map the function over the tail. This
instance is defined for NonEmptyList  rather than for NonEmptyList α  because the
argument type α  plays no role in resolving the type class. A NonEmptyList  can have a
function mapped over it no matter what the type of entries is. If α  were a parameter to the
class, then it would be possible to make versions of Functor  that only worked for
NonEmptyList Nat , but part of being a functor is that map  works for any entry type.

Here is an instance of Functor  for PPoint :

In this case, f  has been applied to both x  and y .

Even when the type contained in a functor is itself a functor, mapping a function only goes
down one layer. That is, when using map  on a NonEmptyList (PPoint Nat) , the function
being mapped should take PPoint Nat  as its argument rather than Nat .

The definition of the Functor  class uses one more language feature that has not yet been
discussed: default method definitions. Normally, a class will specify some minimal set of
overloadable operations that make sense together, and then use polymorphic functions

instance : Functor NonEmptyList where
  map f xs := { head := f xs.head, tail := f <$> xs.tail }

instance : Functor PPoint where
  map f p := { x := f p.x, y := f p.y }
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with instance implicit arguments that build on the overloaded operations to provide a larger
library of features. For example, the function concat  can concatenate any non-empty list
whose entries are appendable:

However, for some classes, there are operations that can be more efficiently implemented
with knowledge of the internals of a datatype.

In these cases, a default method definition can be provided. A default method definition
provides a default implementation of a method in terms of the other methods. However,
instance implementors may choose to override this default with something more efficient.
Default method definitions contain :=  in a class  definition.

In the case of Functor , some types have a more efficient way of implementing map  when
the function being mapped ignores its argument. Functions that ignore their arguments are
called constant functions because they always return the same value. Here is the definition of
Functor , in which mapConst  has a default implementation:

Just as a Hashable  instance that doesn't respect BEq  is buggy, a Functor  instance that
moves around the data as it maps the function is also buggy. For example, a buggy Functor
instance for List  might throw away its argument and always return the empty list, or it
might reverse the list. A bad instance for PPoint  might place f x  in both the x  and the y
fields. Specifically, Functor  instances should follow two rules:

1. Mapping the identity function should result in the original argument.
2. Mapping two composed functions should have the same effect as composing their

mapping.

More formally, the first rule says that id <$> x  equals x . The second rule says that map 
(fun y => f (g y)) x  equals map f (map g x) . The composition fun y => f (g y)  can
also be written f ∘ g . These rules prevent implementations of map  that move the data
around or delete some of it.

def concat [Append α] (xs : NonEmptyList α) : α :=
  let rec catList (start : α) : List α → α
    | [] => start
    | (z :: zs) => catList (start ++ z) zs
  catList xs.head xs.tail

class Functor (f : Type → Type) where
  map : {α β : Type} → (α → β) → f α → f β

  mapConst {α β : Type} (x : α) (coll : f β) : f α :=
    map (fun _ => x) coll
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Messages You May Meet

Lean is not able to derive instances for all classes. For example, the code

results in the following error:

Invoking deriving instance  causes Lean to consult an internal table of code generators
for type class instances. If the code generator is found, then it is invoked on the provided
type to create the instance. This message, however, means that no code generator was
found for ToString .

Exercises

Write an instance of HAppend (List α) (NonEmptyList α) (NonEmptyList α)  and test
it.
Implement a Functor  instance for the binary tree datatype.

deriving instance ToString for NonEmptyList

default handlers have not been implemented yet, class: 'ToString' types: 
[NonEmptyList]
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Coercions
In mathematics, it is common to use the same symbol to stand for different aspects of some
object in different contexts. For example, if a ring is referred to in a context where a set is
expected, then it is understood that the ring's underlying set is what's intended. In
programming languages, it is common to have rules to automatically translate values of one
type into values of another type. For instance, Java allows a byte  to be automatically
promoted to an int , and Kotlin allows a non-nullable type to be used in a context that
expects a nullable version of the type.

In Lean, both purposes are served by a mechanism called coercions. When Lean encounters
an expression of one type in a context that expects a different type, it will attempt to coerce
the expression before reporting a type error. Unlike Java, C, and Kotlin, the coercions are
extensible by defining instances of type classes.

Positive Numbers

For example, every positive number corresponds to a natural number. The function
Pos.toNat  that was defined earlier converts a Pos  to the corresponding Nat :

The function List.drop , with type {α : Type} → Nat → List α → List α , removes a
prefix of a list. Applying List.drop  to a Pos , however, leads to a type error:

Because the author of List.drop  did not make it a method of a type class, it can't be
overridden by defining a new instance.

The type class Coe  describes overloaded ways of coercing from one type to another:

def Pos.toNat : Pos → Nat
  | Pos.one => 1
  | Pos.succ n => n.toNat + 1

[1, 2, 3, 4].drop (2 : Pos)

application type mismatch
  List.drop 2
argument
  2
has type
  Pos : Type
but is expected to have type
  Nat : Type
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An instance of Coe Pos Nat  is enough to allow the prior code to work:

Using #check  shows the result of the instance search that was used behind the scenes:

Chaining Coercions

When searching for coercions, Lean will attempt to assemble a coercion out of a chain of
smaller coercions. For example, there is already a coercion from Nat  to Int . Because of
that instance, combined with the Coe Pos Nat  instance, the following code is accepted:

This definition uses two coercions: from Pos  to Nat , and then from Nat  to Int .

The Lean compiler does not get stuck in the presence of circular coercions. For example,
even if two types A  and B  can be coerced to one another, their mutual coercions can be
used to find a path:

class Coe (α : Type) (β : Type) where
  coe : α → β

instance : Coe Pos Nat where
  coe x := x.toNat

#eval [1, 2, 3, 4].drop (2 : Pos)

[3, 4]

#check [1, 2, 3, 4].drop (2 : Pos)

List.drop (Pos.toNat 2) [1, 2, 3, 4] : List Nat

def oneInt : Int := Pos.one
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Remember: the double parentheses ()  is short for the constructor Unit.unit . After
deriving a Repr B  instance,

results in:

The Option  type can be used similarly to nullable types in C# and Kotlin: the none
constructor represents the absence of a value. The Lean standard library defines a coercion
from any type α  to Option α  that wraps the value in some . This allows option types to be
used in a manner even more similar to nullable types, because some  can be omitted. For
instance, the function List.getLast?  that finds the last entry in a list can be written
without a some  around the return value x :

Instance search finds the coercion, and inserts a call to coe , which wraps the argument in
some . These coercions can be chained, so that nested uses of Option  don't require nested
some  constructors:

Coercions are only activated automatically when Lean encounters a mismatch between an
inferred type and a type that is imposed from the rest of the program. In cases with other
errors, coercions are not activated. For example, if the error is that an instance is missing,
coercions will not be used:

inductive A where
  | a

inductive B where
  | b

instance : Coe A B where
  coe _ := B.b

instance : Coe B A where
  coe _ := A.a

instance : Coe Unit A where
  coe _ := A.a

def coercedToB : B := ()

#eval coercedToB

B.b

def List.last? : List α → Option α
  | [] => none
  | [x] => x
  | _ :: x :: xs => last? (x :: xs)

def perhapsPerhapsPerhaps : Option (Option (Option String)) :=
  "Please don't tell me"
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This can be worked around by manually indicating the desired type to be used for OfNat :

Additionally, coercions can be manually inserted using an up arrow:

In some cases, this can be used to ensure that Lean finds the right instances. It can also
make the programmer's intentions more clear.

Non-Empty Lists and Dependent Coercions

An instance of Coe α β  makes sense when the type β  has a value that can represent each
value from the type α . Coercing from Nat  to Int  makes sense, because the type Int
contains all the natural numbers. Similarly, a coercion from non-empty lists to ordinary lists
makes sense because the List  type can represent every non-empty list:

This allows non-empty lists to be used with the entire List  API.

On the other hand, it is impossible to write an instance of Coe (List α) (NonEmptyList α) ,
because there's no non-empty list that can represent the empty list. This limitation can be
worked around by using another version of coercions, which are called dependent coercions.
Dependent coercions can be used when the ability to coerce from one type to another
depends on which particular value is being coerced. Just as the OfNat  type class takes the
particular Nat  being overloaded as a parameter, dependent coercion takes the value being
coerced as a parameter:

This is a chance to select only certain values, either by imposing further type class
constraints on the value or by writing certain constructors directly. For example, any List

def perhapsPerhapsPerhapsNat : Option (Option (Option Nat)) :=
  392

failed to synthesize instance
  OfNat (Option (Option (Option Nat))) 392

def perhapsPerhapsPerhapsNat : Option (Option (Option Nat)) :=
  (392 : Nat)

def perhapsPerhapsPerhapsNat : Option (Option (Option Nat)) :=
  ↑(392 : Nat)

instance : Coe (NonEmptyList α) (List α) where
  coe
    | { head := x, tail := xs } => x :: xs

class CoeDep (α : Type) (x : α) (β : Type) where
  coe : β
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that is not actually empty can be coerced to a NonEmptyList :

Coercing to Types

In mathematics, it is common to have a concept that consists of a set equipped with
additional structure. For example, a monoid is some set S, an element s of S, and an
associative binary operator on S, such that s is neutral on the left and right of the operator. S
is referred to as the "carrier set" of the monoid. The natural numbers with zero and addition
form a monoid, because addition is associative and adding zero to any number is the
identity. Similarly, the natural numbers with one and multiplication also form a monoid.
Monoids are also widely used in functional programming: lists, the empty list, and the
append operator form a monoid, as do strings, the empty string, and string append:

Given a monoid, it is possible to write the foldMap  function that, in a single pass,
transforms the entries in a list into a monoid's carrier set and then combines them using the
monoid's operator. Because monoids have a neutral element, there is a natural result to
return when the list is empty, and because the operator is associative, clients of the function
don't have to care whether the recursive function combines elements from left to right or
from right to left.

Even though a monoid consists of three separate pieces of information, it is common to just
refer to the monoid's name in order to refer to its set. Instead of saying "Let A be a monoid

instance : CoeDep (List α) (x :: xs) (NonEmptyList α) where
  coe := { head := x, tail := xs }

structure Monoid where
  Carrier : Type
  neutral : Carrier
  op : Carrier → Carrier → Carrier

def natMulMonoid : Monoid :=
  { Carrier := Nat, neutral := 1, op := (· * ·) }

def natAddMonoid : Monoid :=
  { Carrier := Nat, neutral := 0, op := (· + ·) }

def stringMonoid : Monoid :=
  { Carrier := String, neutral := "", op := String.append }

def listMonoid (α : Type) : Monoid :=
  { Carrier := List α, neutral := [], op := List.append }

def foldMap (M : Monoid) (f : α → M.Carrier) (xs : List α) : M.Carrier :=
  let rec go (soFar : M.Carrier) : List α → M.Carrier
    | [] => soFar
    | y :: ys => go (M.op soFar (f y)) ys
  go M.neutral xs
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and let x and y be elements of its carrier set", it is common to say "Let A be a monoid and let
x and y be elements of A". This practice can be encoded in Lean by defining a new kind of
coercion, from the monoid to its carrier set.

The CoeSort  class is just like the Coe  class, with the exception that the target of the
coercion must be a sort, namely Type  or Prop . The term sort in Lean refers to these types
that classify other types— Type  classifies types that themselves classify data, and Prop
classifies propositions that themselves classify evidence of their truth. Just as Coe  is
checked when a type mismatch occurs, CoeSort  is used when something other than a sort
is provided in a context where a sort would be expected.

The coercion from a monoid into its carrier set extracts the carrier:

With this coercion, the type signatures become less bureaucratic:

Another useful example of CoeSort  is used to bridge the gap between Bool  and Prop . As
discussed in the section on ordering and equality, Lean's if  expression expects the
condition to be a decidable proposition rather than a Bool . Programs typically need to be
able to branch based on Boolean values, however. Rather than have two kinds of if
expression, the Lean standard library defines a coercion from Bool  to the proposition that
the Bool  in question is equal to true :

In this case, the sort in question is Prop  rather than Type .

Coercing to Functions

Many datatypes that occur regularly in programming consist of a function along with some
extra information about it. For example, a function might be accompanied by a name to
show in logs or by some configuration data. Additionally, putting a type in a field of a
structure, similarly to the Monoid  example, can make sense in contexts where there is more
than one way to implement an operation and more manual control is needed than type
classes would allow. For example, the specific details of values emitted by a JSON serializer

instance : CoeSort Monoid Type where
  coe m := m.Carrier

def foldMap (M : Monoid) (f : α → M) (xs : List α) : M :=
  let rec go (soFar : M) : List α → M
    | [] => soFar
    | y :: ys => go (M.op soFar (f y)) ys
  go M.neutral xs

instance : CoeSort Bool Prop where
  coe b := b = true

https://leanprover.github.io/functional_programming_in_lean/type-classes/standard-classes.html#equality-and-ordering
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may be important because another application expects a particular format. Sometimes, the
function itself may be derivable from just the configuration data.

A type class called CoeFun  can transform values from non-function types to function types.
CoeFun  has two parameters: the first is the type whose values should be transformed into

functions, and the second is an output parameter that determines exactly which function
type is being targeted.

The second parameter is itself a function that computes a type. In Lean, types are first-class
and can be passed to functions or returned from them, just like anything else.

For example, a function that adds a constant amount to its argument can be represented as
a wrapper around the amount to add, rather than by defining an actual function:

A function that adds five to its argument has a 5  in the howMuch  field:

This Adder  type is not a function, and applying it to an argument results in an error:

Defining a CoeFun  instance causes Lean to transform the adder into a function with type
Nat → Nat :

Because all Adder s should be transformed into Nat → Nat  functions, the argument to
CoeFun 's second parameter was ignored.

When the value itself is needed to determine the right function type, then CoeFun 's second
parameter is no longer ignored. For example, given the following representation of JSON

class CoeFun (α : Type) (makeFunctionType : outParam (α → Type)) where
  coe : (x : α) → makeFunctionType x

structure Adder where
  howMuch : Nat

def add5 : Adder := ⟨5⟩

#eval add5 3

function expected at
  add5
term has type
  Adder

instance : CoeFun Adder (fun _ => Nat → Nat) where
  coe a := (· + a.howMuch)

#eval add5 3

8
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values:

a JSON serializer is a structure that tracks the type it knows how to serialize along with the
serialization code itself:

A serializer for strings need only wrap the provided string in the JSON.string  constructor:

Viewing JSON serializers as functions that serialize their argument requires extracting the
inner type of serializable data:

Given this instance, a serializer can be applied directly to an argument:

The serializer can be passed directly to buildResponse :

inductive JSON where
  | true : JSON
  | false : JSON
  | null : JSON
  | string : String → JSON
  | number : Float → JSON
  | object : List (String × JSON) → JSON
  | array : List JSON → JSON
deriving Repr

structure Serializer where
  Contents : Type
  serialize : Contents → JSON

def Str : Serializer :=
  { Contents := String,
    serialize := JSON.string
  }

instance : CoeFun Serializer (fun s => s.Contents → JSON) where
  coe s := s.serialize

def buildResponse (title : String) (R : Serializer) (record : R.Contents) : JSON 
:=
  JSON.object [
    ("title", JSON.string title),
    ("status", JSON.number 200),
    ("record", R record)
  ]

#eval buildResponse "Functional Programming in Lean" Str "Programming is fun!"

JSON.object
  [("title", JSON.string "Functional Programming in Lean"),
   ("status", JSON.number 200.000000),
   ("record", JSON.string "Programming is fun!")]
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Aside: JSON as a String

It can be a bit difficult to understand JSON when encoded as Lean objects. To help make
sure that the serialized response was what was expected, it can be convenient to write a
simple converter from JSON  to String . The first step is to simplify the display of numbers.
JSON  doesn't distinguish between integers and floating point numbers, and the type Float

is used to represent both. In Lean, Float.toString  includes a number of trailing zeros:

The solution is to write a little function that cleans up the presentation by dropping all
trailing zeros, followed by a trailing decimal point:

With this definition, #eval dropDecimals (5 : Float).toString  yields "5" , and #eval 
dropDecimals (5.2 : Float).toString  yields "5.2" .

The next step is to define a helper function to append a list of strings with a separator in
between them:

This function is useful to account for comma-separated elements in JSON arrays and
objects. #eval ", ".separate ["1", "2"]  yields "1, 2" , #eval ", ".separate ["1"]
yields "1" , and #eval ", ".separate []  yields "" .

Finally, a string escaping procedure is needed for JSON strings, so that the Lean string
containing "Hello!"  can be output as "\"Hello!\"" . Happily, Lean contains a function for
escaping JSON strings already, called Lean.Json.escape .

The function that emits a string from a JSON  value is declared partial  because Lean
cannot see that it terminates. This is because recursive calls to asString  occur in functions
that are being applied by List.map , and this pattern of recursion is complicated enough
that Lean cannot see that the recursive calls are actually being performed on smaller values.
In an application that just needs to produce JSON strings and doesn't need to
mathematically reason about the process, having the function be partial  is not likely to
cause problems.

#eval (5 : Float).toString

"5.000000"

def dropDecimals (numString : String) : String :=
  if numString.contains '.' then
    let noTrailingZeros := numString.dropRightWhile (· == '0')
    noTrailingZeros.dropRightWhile (· == '.')
  else numString

def String.separate (sep : String) (strings : List String) : String :=
  match strings with
  | [] => ""
  | x :: xs => String.join (x :: xs.map (sep ++ ·))
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With this definition, the output of serialization is easier to read:

Messages You May Meet

Natural number literals are overloaded with the OfNat  type class. Because coercions fire in
cases where types don't match, rather than in cases of missing instances, a missing OfNat
instance for a type does not cause a coercion from Nat  to be applied:

Design Considerations

Coercions are a powerful tool that should be used responsibly. On the one hand, they can
allow an API to naturally follow the everyday rules of the domain being modeled. This can
be the difference between a bureaucratic mess of manual conversion functions and a clear
program. As Abelson and Sussman wrote in the preface to Structure and Interpretation of
Computer Programs (MIT Press, 1996),

partial def JSON.asString (val : JSON) : String :=
  match val with
  | true => "true"
  | false => "false"
  | null => "null"
  | string s => "\"" ++ Lean.Json.escape s ++ "\""
  | number n => dropDecimals n.toString
  | object members =>
    let memberToString mem :=
      "\"" ++ Lean.Json.escape mem.fst ++ "\": " ++ asString mem.snd
    "{" ++ ", ".separate (members.map memberToString) ++ "}"
  | array elements =>
    "[" ++ ", ".separate (elements.map asString) ++ "]"

#eval (buildResponse "Functional Programming in Lean" Str "Programming is 
fun!").asString

"{\\"title\\": \\"Functional Programming in Lean\\", \\"status\\": 200, 
\\"record\\": \\"Programming is fun!\\"}"

def perhapsPerhapsPerhapsNat : Option (Option (Option Nat)) :=
  392

failed to synthesize instance
  OfNat (Option (Option (Option Nat))) 392
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Programs must be written for people to read, and only incidentally for machines to
execute.

Coercions, used wisely, are a valuable means of achieving readable code that can serve as
the basis for communication with domain experts. APIs that rely heavily on coercions have a
number of important limitations, however. Think carefully about these limitations before
using coercions in your own libraries.

First off, coercions are only applied in contexts where enough type information is available
for Lean to know all of the types involved, because there are no output parameters in the
coercion type classes. This means that a return type annotation on a function can be the
difference between a type error and a successfully applied coercion. For example, the
coercion from non-empty lists to lists makes the following program work:

On the other hand, if the type annotation is omitted, then the result type is unknown, so
Lean is unable to find the coercion:

More generally, when a coercion is not applied for some reason, the user receives the
original type error, which can make it difficult to debug chains of coercions.

Finally, coercions are not applied in the context of field accessor notation. This means that
there is still an important difference between expressions that need to be coerced and
those that don't, and this difference is visible to users of your API.

def lastSpider : Option String :=
  List.getLast? idahoSpiders

def lastSpider :=
  List.getLast? idahoSpiders

application type mismatch
  List.getLast? idahoSpiders
argument
  idahoSpiders
has type
  NonEmptyList String : Type
but is expected to have type
  List ?m.34580 : Type
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Additional Conveniences

Constructor Syntax for Instances

Behind the scenes, type classes are structure types and instances are values of these types.
The only differences are that Lean stores additional information about type classes, such as
which parameters are output parameters, and that instances are registered for searching.
While values that have structure types are typically defined using either ⟨...⟩  syntax or
with braces and fields, and instances are typically defined using where , both syntaxes work
for both kinds of definition.

For example, a forestry application might represent trees as follows:

All three syntaxes are equivalent.

Similarly, type class instances can be defined using all three syntaxes:

Generally speaking, the where  syntax should be used for instances, and the curly-brace
syntax should be used for structures. The ⟨...⟩  syntax can be useful when emphasizing

structure Tree : Type where
  latinName : String
  commonNames : List String

def oak : Tree :=
  ⟨"Quercus robur", ["common oak", "European oak"]⟩

def birch : Tree :=
  { latinName := "Betula pendula",
    commonNames := ["silver birch", "warty birch"]
  }

def sloe : Tree where
  latinName := "Prunus spinosa"
  commonNames := ["sloe", "blackthorn"]

class Display (α : Type) where
  displayName : α → String

instance : Display Tree :=
  ⟨Tree.latinName⟩

instance : Display Tree :=
  { displayName := Tree.latinName }

instance : Display Tree where
  displayName t := t.latinName
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that a structure type is very much like a tuple in which the fields happen to be named, but
the names are not important at the moment. However, there are situations where it can
make sense to use other alternatives. In particular, a library might provide a function that
constructs an instance value. Placing a call to this function after :=  in an instance
declaration is the easiest way to use such a function.

Examples

When experimenting with Lean code, definitions can be more convenient to use than #eval
or #check  commands. First off, definitions don't produce any output, which can help keep
the reader's focus on the most interesting output. Secondly, it's easiest to write most Lean
programs by starting with a type signature, allowing Lean to provide more assistance and
better error messages while writing the program itself. On the other hand, #eval  and
#check  are easiest to use in contexts where Lean is able to determine the type from the

provided expression. Thirdly, #eval  cannot be used with expressions whose types don't
have ToString  or Repr  instances, such as functions. Finally, multi-step do  blocks, let -
expressions, and other syntactic forms that take multiple lines are particularly difficult to
write with a type annotation in #eval  or #check , simply because the required
parenthesization can be difficult to predict.

To work around these issues, Lean supports the explicit indication of examples in a source
file. An example is like a definition without a name. For instance, a non-empty list of birds
commonly found in Copenhagen's green spaces can be written:

Examples may define functions by accepting arguments:

While this creates a function behind the scenes, this function has no name and cannot be
called. Nonetheless, this is useful for demonstrating how a library can be used with arbitrary
or unknown values of some given type. In source files, example  declarations are best paired
with comments that explain how the example illustrates the concepts of the library.

example : NonEmptyList String :=
  { head := "Sparrow",
    tail := ["Duck", "Swan", "Magpie", "Eurasian coot", "Crow"]
  }

example (n : Nat) (k : Nat) : Bool :=
  n + k == k + n
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Summary

Type Classes and Overloading

Type classes are Lean's mechanism for overloading functions and operators. A polymorphic
function can be used with multiple types, but it behaves in the same manner no matter
which type it is used with. For example, a polymorphic function that appends two lists can
be used no matter the type of the entries in the list, but it is unable to have different
behavior depending on which particular type is found. An operation that is overloaded with
type classes, on the other hand, can also be used with multiple types. However, each type
requires its own implementation of the overloaded operation. This means that the behavior
can vary based on which type is provided.

A type class has a name, parameters, and a body that consists of a number of names with
types. The name is a way to refer to the overloaded operations, the parameters determine
which aspects of the definitions can be overloaded, and the body provides the names and
type signatures of the overloadable operations. Each overloadable operation is called a
method of the type class. Type classes may provide default implementations of some
methods in terms of the others, freeing implementors from defining each overload by hand
when it is not needed.

An instance of a type class provides implementations of the methods for given parameters.
Instances may be polymorphic, in which case they can work for a variety of parameters, and
they may optionally provide more specific implementations of default methods in cases
where a more efficient version exists for some particular type.

Type class parameters are either input parameters (the default), or output parameters
(indicated by an outParam  modifier). Lean will not begin searching for an instance until all
input parameters are no longer metavariables, while output parameters may be solved
while searching for instances. Parameters to a type class need not be types—they may also
be ordinary values. The OfNat  type class, used to overload natural number literals, takes
the overloaded Nat  itself as a parameter, which allows instances to restrict the allowed
numbers.

Instances may be marked with a @[default_instance]  attribute. When an instance is a
default instance, then it will be chosen as a fallback when Lean would otherwise fail to find
an instance due to the presence of metavariables in the type.
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Type Classes for Common Syntax

Most infix operators in Lean are overridden with a type class. For instance, the addition
operator corresponds to a type class called Add . Most of these operators have a
corresponding heterogeneous version, in which the two arguments need not have the same
type. These heterogenous operators are overloaded using a version of the class whose
name starts with H , such as HAdd .

Indexing syntax is overloaded using a type class called GetElem , which involves proofs.
GetElem  has two output parameters, which are the type of elements to be extracted from

the collection and a function that can be used to determine what counts as evidence that
the index value is in bounds for the collection. This evidence is described by a proposition,
and Lean attempts to prove this proposition when array indexing is used. When Lean is
unable to check that list or array access operations are in bounds at compile time, the check
can be deferred to run time by appending a ?  to the indexing operation.

Functors

A functor is a polymorphic type that supports a mapping operation. This mapping operation
transforms all elements "in place", changing no other structure. For instance, lists are
functors and the mapping operation may neither drop, duplicate, nor mix up entries in the
list.

While functors are defined by having map , the Functor  type class in Lean contains an
additional default method that is responsible for mapping the constant function over a
value, replacing all values whose type are given by polymorphic type variable with the same
new value. For some functors, this can be done more efficiently than traversing the entire
structure.

Deriving Instances

Many type classes have very standard implementations. For instance, the Boolean equality
class BEq  is usually implemented by first checking whether both arguments are built with
the same constructor, and then checking whether all their arguments are equal. Instances
for these classes can be created automatically.

When defining an inductive type or a structure, a deriving  clause at the end of the
declaration will cause instances to be created automatically. Additionally, the deriving 
instance ... for ...  command can be used outside of the definition of a datatype to
cause an instance to be generated. Because each class for which instances can be derived
requires special handling, not all classes are derivable.



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 150/432

Coercions

Coercions allow Lean to recover from what would normally be a compile-time error by
inserting a call to a function that transforms data from one type to another. For example,
the coercion from any type α  to the type Option α  allows values to be written directly,
rather than with the some  constructor, making Option  work more like nullable types from
object-oriented languages.

There are multiple kinds of coercion. They can recover from different kinds of errors, and
they are represented by their own type classes. The Coe  class is used to recover from type
errors. When Lean has an expression of type α  in a context that expects something with
type β , Lean first attempts to string together a chain of coercions that can transform α s
into β s, and only displays the error when this cannot be done. The CoeDep  class takes the
specific value being coerced as an extra parameter, allowing either further type class search
to be done on the value or allowing constructors to be used in the instance to limit the
scope of the conversion. The CoeFun  class intercepts what would otherwise be a "not a
function" error when compiling a function application, and allows the value in the function
position to be transformed into an actual function if possible.
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Monads
In C# and Kotlin, the ?.  operator is a way to look up a property or call a method on a
potentially-null value. If the reciever is null , the whole expression is null. Otherwise, the
underlying non- null  value receives the call. Uses of ?.  can be chained, in which case the
first null  result terminates the chain of lookups. Chaining null-checks like this is much
more convenient than writing and maintaining deeply nested if s.

Similarly, exceptions are significantly more convenient than manually checking and
propagating error codes. At the same time, logging is easiest to accomplish by having a
dedicated logging framework, rather than having each function return both its log results
and its return value. Chained null checks and exceptions typically require language
designers to anticipate this use case, while logging frameworks typically make use of side
effects to decouple code that logs from the accumulation of the logs.

All these features and more can be implemented in library code as instances of a common
API called Monad . Lean provides dedicated syntax that makes this API convenient to use, but
can also get in the way of understanding what is going on behind the scenes. This chapter
begins with the nitty-gritty presentation of manually nesting null checks, and builds from
there to the convenient, general API. Please suspend your disbelief in the meantime.

Checking for none: Don't Repeat Yourself

In Lean, pattern matching can be used to chain checks for null. Getting the first entry from a
list can just use the optional indexing notation:

The result must be an Option  because empty lists have no first entry. Extracting the first
and third entries requires a check that each is not none :

Similarly, extracting the first, third, and fifth entries requires more checks that the values are
not none :

def first (xs : List α) : Option α :=
  xs[0]?

def firstThird (xs : List α) : Option (α × α) :=
  match xs[0]? with
  | none => none
  | some first =>
    match xs[2]? with
    | none => none
    | some third =>
      some (first, third)
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And adding the seventh entry to this sequence begins to become quite unmanageable:

The fundamental problem with this code is that it addresses two concerns: extracting the
numbers and checking that all of them are present, but the second concern is addressed by
copying and pasting the code that handles the none  case. It is often good style to lift a
repetitive segment into a helper function:

This helper, which is used similarly to ?.  in C# and Kotlin, takes care of propagating none
values. It takes two arguments: an optional value and a function to apply when the value is
not none . If the first argument is none , then the helper returns none . If the first argument
is not none , then the function is applied to the contents of the some  constructor.

Now, firstThird  can be rewritten to use andThen  instead of pattern matching:

def firstThirdFifth (xs : List α) : Option (α × α × α) :=
  match xs[0]? with
  | none => none
  | some first =>
    match xs[2]? with
    | none => none
    | some third =>
      match xs[4]? with
      | none => none
      | some fifth =>
        some (first, third, fifth)

def firstThirdFifthSeventh (xs : List α) : Option (α × α × α × α) :=
  match xs[0]? with
  | none => none
  | some first =>
    match xs[2]? with
    | none => none
    | some third =>
      match xs[4]? with
      | none => none
      | some fifth =>
        match xs[6]? with
        | none => none
        | some seventh =>
          some (first, third, fifth, seventh)

def andThen (opt : Option α) (next : α → Option β) : Option β :=
  match opt with
  | none => none
  | some x => next x

def firstThird (xs : List α) : Option (α × α) :=
  andThen xs[0]? fun first =>
  andThen xs[2]? fun third =>
  some (first, third)
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In Lean, functions don't need to be enclosed in parentheses when passed as arguments.
The following equivalent definition uses more parentheses and indents the bodies of
functions:

The andThen  helper provides a sort of "pipeline" through which values flow, and the version
with the somewhat unusual indentation is more suggestive of this fact. Improving the
syntax used to write andThen  can make these computations even easier to understand.

Infix Operators

In Lean, infix operators can be declared using the infix , infixl , and infixr  commands,
which create (respectively) non-associative, left-associative, and right-associative operators.
When used multiple times in a row, a left associative operator stacks up the opening
parentheses on the left side of the expression. The addition operator +  is left associative,
so w + x + y + z  is equivalent to (((w + x) + y) + z) . The exponentiation operator ^
is right associative, so w ^ x ^ y ^ z  is equivalent to (w ^ (x ^ (y ^ z))) . Comparison
operators such as <  are non-associative, so x < y < z  is a syntax error and requires
manual parentheses.

The following declaration makes andThen  into an infix operator:

The number following the colon declares the precedence of the new infix operator. In
ordinary mathematical notation, x + y * z  is equivalent to x + (y * z)  even though
both +  and *  are left associative. In Lean, +  has precedence 65 and *  has precedence 70.
Higher-precedence operators are applied before lower-precedence operators. According to
the declaration of ~~> , both +  and *  have higher precedence, and thus apply first.
Typically, figuring out the most convenient precedences for a group of operators requires
some experimentation and a large collection of examples.

Following the new infix operator is a double arrow => , which specifies the named function
to be used for the infix operator. Lean's standard library uses this feature to define +  and
*  as infix operators that point at HAdd.hAdd  and HMul.hMul , respectively, allowing type

classes to be used to overload the infix operators. Here, however, andThen  is just an
ordinary function.

Having defined an infix operator for andThen , firstThird  can be rewritten in a way that
brings the "pipeline" feeling of none -checks front and center:

def firstThird (xs : List α) : Option (α × α) :=
  andThen xs[0]? (fun first =>
    andThen xs[2]? (fun third =>
      some (first, third)))

infixl:55 " ~~> " => andThen
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This style is much more concise when writing larger functions:

Propagating Error Messages

Pure functional languages such as Lean have no built-in exception mechanism for error
handling, because throwing or catching an exception is outside of the step-by-step
evaluation model for expressions. However, functional programs certainly need to handle
errors. In the case of firstThirdFifthSeventh , it is likely relevant for a user to know just
how long the list was and where the lookup failed.

This is typically accomplished by defining a datatype that can be either an error or a result,
and translating functions with exceptions into functions that return this datatype:

The type variable ε  stands for the type of errors that can be produced by the function.
Callers are expected to handle both errors and successes, which makes the type variable ε
play a role that is a bit like that of a list of checked exceptions in Java.

Similarly to Option , Except  can be used to indicate a failure to find an entry in a list. In this
case, the error type is a String :

Looking up an in-bounds value yields an Except.ok :

def firstThirdInfix (xs : List α) : Option (α × α) :=
  xs[0]? ~~> fun first =>
  xs[2]? ~~> fun third =>
  some (first, third)

def firstThirdFifthSeventh (xs : List α) : Option (α × α × α × α) :=
  xs[0]? ~~> fun first =>
  xs[2]? ~~> fun third =>
  xs[4]? ~~> fun fifth =>
  xs[6]? ~~> fun seventh =>
  some (first, third, fifth, seventh)

inductive Except (ε : Type) (α : Type) where
  | error : ε → Except ε α
  | ok : α → Except ε α
deriving BEq, Hashable, Repr

def get (xs : List α) (i : Nat) : Except String α :=
  match xs[i]? with
  | none => Except.error s!"Index {i} not found (maximum is {xs.length - 1})"
  | some x => Except.ok x
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Looking up an out-of-bounds value yields an Except.failure :

A single list lookup can conveniently return a value or an error:

However, performing two list lookups requires handling potential failures:

Adding another list lookup to the function requires still more error handling:

And one more list lookup begins to become quite unmanageable:

def ediblePlants : List String :=
  ["ramsons", "sea plantain", "sea buckthorn", "garden nasturtium"]

#eval get ediblePlants 2

Except.ok "sea buckthorn"

#eval get ediblePlants 4

Except.error "Index 4 not found (maximum is 3)"

def first (xs : List α) : Except String α :=
  get xs 0

def firstThird (xs : List α) : Except String (α × α) :=
  match get xs 0 with
  | Except.error msg => Except.error msg
  | Except.ok first =>
    match get xs 2 with
    | Except.error msg => Except.error msg
    | Except.ok third =>
      Except.ok (first, third)

def firstThirdFifth (xs : List α) : Except String (α × α × α) :=
  match get xs 0 with
  | Except.error msg => Except.error msg
  | Except.ok first =>
    match get xs 2 with
    | Except.error msg => Except.error msg
    | Except.ok third =>
      match get xs 4 with
      | Except.error msg => Except.error msg
      | Except.ok fifth =>
        Except.ok (first, third, fifth)
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Once again, a common pattern can be factored out into a helper. Each step through the
function checks for an error, and only proceeds with the rest of the computation if the result
was a success. A new version of andThen  can be defined for Except :

Just as with Option , this version of andThen  allows a more concise definition of
firstThird :

In both the Option  and Except  case, there are two repeating patterns: there is the
checking of intermediate results at each step, which has been factored out into andThen ,
and there is the final successful result, which is some  or Except.ok , respectively. For the
sake of convenience, success can be factored out into a helper called ok :

Similarly, failure can be factored out into a helper called fail :

Using ok  and fail  makes get  a little more readable:

def firstThirdFifthSeventh (xs : List α) : Except String (α × α × α × α) :=
  match get xs 0 with
  | Except.error msg => Except.error msg
  | Except.ok first =>
    match get xs 2 with
    | Except.error msg => Except.error msg
    | Except.ok third =>
      match get xs 4 with
      | Except.error msg => Except.error msg
      | Except.ok fifth =>
        match get xs 6 with
        | Except.error msg => Except.error msg
        | Except.ok seventh =>
          Except.ok (first, third, fifth, seventh)

def andThen (attempt : Except e α) (next : α → Except e β) : Except e β :=
  match attempt with
  | Except.error msg => Except.error msg
  | Except.ok x => next x

def firstThird' (xs : List α) : Except String (α × α) :=
  andThen (get xs 0) fun first  =>
  andThen (get xs 2) fun third =>
  Except.ok (first, third)

def ok (x : α) : Except ε α := Except.ok x

def fail (err : ε) : Except ε α := Except.error err

def get (xs : List α) (i : Nat) : Except String α :=
  match xs[i]? with
  | none => fail s!"Index {i} not found (maximum is {xs.length - 1})"
  | some x => ok x
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After adding the infix declaration for andThen , firstThird  can be just as concise as the
version that returns an Option :

The technique scales similarly to larger functions:

Logging

A number is even if dividing it by 2 leaves no remainder:

The function sumAndFindEvens  computes the sum of a list while remembering the even
numbers encountered along the way:

This function is a simplified example of a common pattern. Many programs need to traverse
a data structure once, while both computing a main result and accumulating some kind of
tertiary extra result. One example of this is logging: a program that is an IO  action can
always log to a file on disk, but because the disk is outside of the mathematical world of
Lean functions, it becomes much more difficult to prove things about logs based on IO .
Another example is a function that computes the sum of all the nodes in a tree with an
inorder traversal, while simultaneously recording each nodes visited:

infixl:55 " ~~> " => andThen

def firstThird (xs : List α) : Except String (α × α) :=
  get xs 0 ~~> fun first =>
  get xs 2 ~~> fun third =>
  ok (first, third)

def firstThirdFifthSeventh (xs : List α) : Except String (α × α × α × α) :=
  get xs 0 ~~> fun first =>
  get xs 2 ~~> fun third =>
  get xs 4 ~~> fun fifth =>
  get xs 6 ~~> fun seventh =>
  ok (first, third, fifth, seventh)

def isEven (i : Int) : Bool :=
  i % 2 == 0

def sumAndFindEvens : List Int → List Int × Int
  | [] => ([], 0)
  | i :: is =>
    let (moreEven, sum) := sumAndFindEvens is
    (if isEven i then i :: moreEven else moreEven, sum + i)
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Both sumAndFindEvens  and inorderSum  have a common repetitive structure. Each step of
computation returns a pair that consists of a list of data that have been saved along with the
primary result. The lists are then appended, and the primary result is computed and paired
with the appended lists. The common structure becomes more apparent with a small
rewrite of sumAndFindEvens  that more cleanly separates the concerns of saving even
numbers and computing the sum:

For the sake of clarity, a pair that consists of an accumulated result together with a value
can be given its own name:

Similarly, the process of saving a list of accumulated results while passing a value on to the
next step of a computation can be factored out into a helper, once again named andThen :

In the case of errors, ok  represents an operation that always succeeds. Here, however, it is
an operation that simply returns a value without logging anything:

Just as Except  provides fail  as a possibility, WithLog  should allow items to be added to a
log. This has no interesting return value associated with it, so it returns Unit :

def inorderSum : BinTree Int → List Int × Int
  | BinTree.leaf => ([], 0)
  | BinTree.branch l x r =>
    let (leftVisited, leftSum) := inorderSum l
    let (hereVisited, hereSum) := ([x], x)
    let (rightVisited, rightSum) := inorderSum r
    (leftVisited ++ hereVisited ++ rightVisited, leftSum + hereSum + rightSum)

def sumAndFindEvens : List Int → List Int × Int
  | [] => ([], 0)
  | i :: is =>
    let (moreEven, sum) := sumAndFindEvens is
    let (evenHere, ()) := (if isEven i then [i] else [], ())
    (evenHere ++ moreEven, sum + i)

structure WithLog (logged : Type) (α : Type) where
  log : List logged
  val : α

def andThen (result : WithLog α β) (next : β → WithLog α γ) : WithLog α γ :=
  let {log := thisOut, val := thisRes} := result
  let {log := nextOut, val := nextRes} := next thisRes
  {log := thisOut ++ nextOut, val := nextRes}

def ok (x : β) : WithLog α β := {log := [], val := x}

def save (data : α) : WithLog α Unit :=
  {log := [data], val := ()}



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 159/432

WithLog , andThen , ok , and save  can be used to separate the logging concern from the
summing concern in both programs:

And, once again, the infix operator helps put focus on the correct steps:

Numbering Tree Nodes

An inorder numbering of a tree associates each data point in the tree with the step it would
be visited at in an inorder traversal of the tree. For example, consider aTree :

def sumAndFindEvens : List Int → WithLog Int Int
  | [] => ok 0
  | i :: is =>
    andThen (if isEven i then save i else ok ()) fun () =>
    andThen (sumAndFindEvens is) fun sum =>
    ok (i + sum)

def inorderSum : BinTree Int → WithLog Int Int
  | BinTree.leaf => ok 0
  | BinTree.branch l x r =>
    andThen (inorderSum l) fun leftSum =>
    andThen (save x) fun () =>
    andThen (inorderSum r) fun rightSum =>
    ok (leftSum + x + rightSum)

infixl:55 " ~~> " => andThen

def sumAndFindEvens : List Int → WithLog Int Int
  | [] => ok 0
  | i :: is =>
    (if isEven i then save i else ok ()) ~~> fun () =>
    sumAndFindEvens is ~~> fun sum =>
    ok (i + sum)

def inorderSum : BinTree Int → WithLog Int Int
  | BinTree.leaf => ok 0
  | BinTree.branch l x r =>
    inorderSum l ~~> fun leftSum =>
    save x ~~> fun () =>
    inorderSum r ~~> fun rightSum =>
    ok (leftSum + x + rightSum)
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Its inorder numbering is:

Trees are most naturally processed with recursive functions, but the usual pattern of
recursion on trees makes it difficult to compute an inorder numbering. This is because the
highest number assigned anywhere in the left subtree is used to determine the numbering
of a node's data value, and then again to determine the starting point for numbering the
right subtree. In an imperative language, this issue can be worked around by using a
mutable variable that contains the next number to be assigned. The following Python
program computes an inorder numbering using a mutable variable:

open BinTree in
def aTree :=
  branch
    (branch
       (branch leaf "a" (branch leaf "b" leaf))
       "c"
       leaf)
    "d"
    (branch leaf "e" leaf)

BinTree.branch
  (BinTree.branch
    (BinTree.branch (BinTree.leaf) (0, "a") (BinTree.branch (BinTree.leaf) (1, 
"b") (BinTree.leaf)))
    (2, "c")
    (BinTree.leaf))
  (3, "d")
  (BinTree.branch (BinTree.leaf) (4, "e") (BinTree.leaf))

class Branch:
    def __init__(self, value, left=None, right=None):
        self.left = left
        self.value = value
        self.right = right
    def __repr__(self):
        return f'Branch({self.value!r}, left={self.left!r}, right=
{self.right!r})'

def number(tree):
    num = 0
    def helper(t):
        nonlocal num
        if t is None:
            return None
        else:
            new_left = helper(t.left)
            new_value = (num, t.value)
            num += 1
            new_right = helper(t.right)
            return Branch(left=new_left, value=new_value, right=new_right)

    return helper(tree)
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The numbering of the Python equivalent of aTree  is:

and its numbering is:

Even though Lean does not have mutable variables, a workaround exists. From the point of
view of the rest of the world, the mutable variable can be thought of as having two relevant
aspects: its value when the function is called, and its value when the function returns. In
other words, a function that uses a mutable variable can be seen as a function that takes
the mutable variable's starting value as an argument, returning a pair of the variable's final
value and the function's result. This final value can then be passed as an argument to the
next step.

Just as the Python example uses an outer function that establishes a mutable variable and
an inner helper function that changes the variable, a Lean version of the function uses an
outer function that provides the variable's starting value and explicitly returns the function's
result along with an inner helper function that threads the variable's value while computing
the numbered tree:

This code, like the none -propagating Option  code, the error -propagating Except  code,
and the log-accumulating WithLog  code, commingles two concerns: propagating the value
of the counter, and actually traversing the tree to find the result. Just as in those cases, an
andThen  helper can be defined to propagate state from one step of a computation to

another. The first step is to give a name to the pattern of taking an input state as an
argument and returning an output state together with a value:

a_tree = Branch("d",
                left=Branch("c",
                            left=Branch("a", left=None, right=Branch("b")),
                            right=None),
                right=Branch("e"))

>>> number(a_tree)
Branch((3, 'd'), left=Branch((2, 'c'), left=Branch((0, 'a'), left=None, 
right=Branch((1, 'b'), left=None, right=None)), right=None), right=Branch((4, 
'e'), left=None, right=None))

def number (t : BinTree α) : BinTree (Nat × α) :=
  let rec helper (n : Nat) : BinTree α → (Nat × BinTree (Nat × α))
    | BinTree.leaf => (n, BinTree.leaf)
    | BinTree.branch left x right =>
      let (k, numberedLeft) := helper n left
      let (i, numberedRight) := helper (k + 1) right
      (i, BinTree.branch numberedLeft (k, x) numberedRight)
  (helper 0 t).snd

def State (σ : Type) (α : Type) : Type :=
  σ → (σ × α)
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In the case of State , ok  is a function that returns the input state unchanged, along with
the provided value:

When working with a mutable variable, there are two fundamental operations: reading the
value and replacing it with a new one. Reading the current value is accomplished with a
function that places the input state unmodified into the output state, and also places it into
the value field:

Writing a new value consists of ignoring the input state, and placing the provided new value
into the output state:

Finally, two computations that use state can be sequenced by finding both the output state
and return value of the first function, then passing them both into the next function:

Using State  and its helpers, local mutable state can be simulated:

Because State  simulates only a single local variable, get  and set  don't need to refer to
any particular variable name.

def ok (x : α) : State σ α :=
  fun s => (s, x)

def get : State σ σ :=
  fun s => (s, s)

def set (s : σ) : State σ Unit :=
  fun _ => (s, ())

def andThen (first : State σ α) (next : α → State σ β) : State σ β :=
  fun s =>
    let (s', x) := first s
    next x s'

infixl:55 " ~~> " => andThen

def number (t : BinTree α) : BinTree (Nat × α) :=
  let rec helper : BinTree α → State Nat (BinTree (Nat × α))
    | BinTree.leaf => ok BinTree.leaf
    | BinTree.branch left x right =>
      helper left ~~> fun numberedLeft =>
      get ~~> fun n =>
      set (n + 1) ~~> fun () =>
      helper right ~~> fun numberedRight =>
      ok (BinTree.branch numberedLeft (n, x) numberedRight)
  (helper t 0).snd
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Monads: A Functional Design Pattern

Each of these examples has consisted of:

A polymorphic type, such as Option , Except ε , WithLog logged , or State σ
An operator andThen  that takes care of some repetitive aspect of sequencing
programs that have this type
An operator ok  that is (in some sense) the most boring way to use the type
A collection of other operations, such as none , fail , save , and get , that name ways
of using the type

This style of API is called a monad. While the idea of monads is derived from a branch of
mathematics called category theory, no understanding of category theory is needed in
order to use them for programming. The key idea of monads is that each monad encodes a
particular kind of side effect using the tools provided by the pure functional language Lean.
For example, Option  represents programs that can fail by returning none , Except
represents programs that can throw exceptions, WithLog  represents programs that
accumulate a log while running, and State  represents programs with a single mutable
variable.
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The Monad Type Class
Rather than having to import an operator like ok  or andThen  for each type that is a monad,
the Lean standard library contains a type class that allow them to be overloaded, so that the
same operators can be used for any monad. Monads have two operations, which are the
equivalent of ok  and andThen :

This definition is slightly simplified. The actual definition in the Lean library is somewhat
more involved, and will be presented later.

The Monad  instances for Option  and Except  can be created by adapting the definitions of
their respective andThen  operations:

As an example, firstThirdFifthSeventh  was defined separately for Option α  and Except 
String α  return types. Now, it can be defined polymorphically for any monad. It does,
however, require a lookup function as an argument, because different monads might fail to
find a result in different ways. The infix version of bind  is >>= , which plays the same role
as ~~>  in the examples.

Given example lists of slow mammals and fast birds, this implementation of
firstThirdFifthSeventh  can be used with Option :

class Monad (m : Type → Type) where
  pure : α → m α
  bind : m α → (α → m β) → m β

instance : Monad Option where
  pure x := some x
  bind opt next :=
    match opt with
    | none => none
    | some x => next x

instance : Monad (Except ε) where
  pure x := Except.ok x
  bind attempt next :=
    match attempt with
    | Except.error e => Except.error e
    | Except.ok x => next x

def firstThirdFifthSeventh [Monad m] (lookup : List α → Nat → m α) (xs : List α) 
: m (α × α × α × α) :=
  lookup xs 0 >>= fun first =>
  lookup xs 2 >>= fun third =>
  lookup xs 4 >>= fun fifth =>
  lookup xs 6 >>= fun seventh =>
  pure (first, third, fifth, seventh)
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After renaming Except 's lookup function get  to something more specific, the very same
implementation of firstThirdFifthSeventh  can be used with Except  as well:

The fact that m  must have a Monad  instance means that the >>=  and pure  operations are
available.

General Monad Operations

Because many different types are monads, functions that are polymorphic over any monad
are very powerful. For example, the function mapM  is a version of map  that uses a Monad  to
sequence and combine the results of applying a function:

def slowMammals : List String :=
  ["Three-toed sloth", "Slow loris"]

def fastBirds : List String := [
  "Peregrine falcon",
  "Saker falcon",
  "Golden eagle",
  "Gray-headed albatross",
  "Spur-winged goose",
  "Swift",
  "Anna's hummingbird"
]

#eval firstThirdFifthSeventh (fun xs i => xs[i]?) slowMammals

none

#eval firstThirdFifthSeventh (fun xs i => xs[i]?) fastBirds

some ("Peregrine falcon", "Golden eagle", "Spur-winged goose", "Anna's 
hummingbird")

def getOrExcept (xs : List α) (i : Nat) : Except String α :=
  match xs[i]? with
  | none => Except.error s!"Index {i} not found (maximum is {xs.length - 1})"
  | some x => Except.ok x

#eval firstThirdFifthSeventh getOrExcept slowMammals

Except.error "Index 2 not found (maximum is 1)"

#eval firstThirdFifthSeventh getOrExcept fastBirds

Except.ok ("Peregrine falcon", "Golden eagle", "Spur-winged goose", "Anna's 
hummingbird")
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The return type of the function argument f  determines which Monad  instance will be used.
In other words, mapM  can be used for functions that produce logs, for functions that can fail,
or for functions that use mutable state. Because f 's type determines the available effects,
they can be tightly controlled by API designers.

As described in this chapter's introduction, State σ α  represents programs that make use
of a mutable variable of type σ  and return a value of type α . These programs are actually
functions from a starting state to a pair of a value and a final state. The Monad  class
requires that its parameter expect a single type argument—that is, it should be a Type → 
Type . This means that the instance for State  should mention the state type σ , which
becomes a parameter to the instance:

This means that the type of the state cannot change between calls to get  and set  that are
sequenced using bind , which is a reasonable rule for stateful computations. The operator
increment  increases a saved state by a given amount, returning the old value:

Using mapM  with increment  results in a program that computes the sum of the entries in a
list. More specifically, the mutable variable contains the sum so far, while the resulting list
contains a running sum. In other words, mapM increment  has type List Int → State Int 
(List Int) , and expanding the definition of State  yields List Int → Int → (Int × List 
Int) . It takes an initial sum as an argument, which should be 0 :

A logging effect can be represented using WithLog . Just like State , its Monad  instance is
polymorphic with respect to the type of the logged data:

def mapM [Monad m] (f : α → m β) : List α → m (List β)
  | [] => pure []
  | x :: xs =>
    f x >>= fun hd =>
    mapM f xs >>= fun tl =>
    pure (hd :: tl)

instance : Monad (State σ) where
  pure x := fun s => (s, x)
  bind first next :=
    fun s =>
      let (s', x) := first s
      next x s'

def increment (howMuch : Int) : State Int Int :=
  get >>= fun i =>
  set (i + howMuch) >>= fun () =>
  pure i

#eval mapM increment [1, 2, 3, 4, 5] 0

(15, [0, 1, 3, 6, 10])

https://leanprover.github.io/functional_programming_in_lean/monads.html#numbering-tree-nodes
https://leanprover.github.io/functional_programming_in_lean/monads.html#logging
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saveIfEven  is a function that logs even numbers but returns its argument unchanged:

Using this function with mapM  results in a log containing even numbers paired with an
unchanged input list:

The Identity Monad

Monads encode programs with effects, such as failure, exceptions, or logging, into explicit
representations as data and functions. Sometimes, however, an API will be written to use a
monad for flexibility, but the API's client may not require any encoded effects. The identity
monad is a monad that has no effects, and allows pure code to be used with monadic APIs:

The type of pure  should be α → Id α , but Id α  reduces to just α . Similarly, the type of
bind  should be α → (α → Id β) → Id β . Because this reduces to α → (α → β) → β , the

second argument can be applied to the first to find the result.

With the identity monad, mapM  becomes equivalent to map . To call it this way, however,
Lean requires a hint that the intended monad is Id :

instance : Monad (WithLog logged) where
  pure x := {log := [], val := x}
  bind result next :=
    let {log := thisOut, val := thisRes} := result
    let {log := nextOut, val := nextRes} := next thisRes
    {log := thisOut ++ nextOut, val := nextRes}

def saveIfEven (i : Int) : WithLog Int Int :=
  (if isEven i then
    save i
   else pure ()) >>= fun () =>
  pure i

#eval mapM saveIfEven [1, 2, 3, 4, 5]

{ log := [2, 4], val := [1, 2, 3, 4, 5] }

def Id (t : Type) : Type := t

instance : Monad Id where
  pure x := x
  bind x f := f x

#eval mapM (m := Id) (· + 1) [1, 2, 3, 4, 5]

[2, 3, 4, 5, 6]
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Omitting the hint results in an error:

In this error, the application of one metavariable to another indicates that Lean doesn't run
the type-level computation backwards. The return type of the function is expected to be the
monad applied to some other type. Similarly, using mapM  with a function whose type
doesn't provide any specific hints about which monad is to be used results in an "instance
problem stuck" message:

The Monad Contract

Just as every pair of instances of BEq  and Hashable  should ensure that any two equal
values have the same hash, there is a contract that each instance of Monad  should obey.
First, pure  should be a left identity of bind . That is, bind (pure v) f  should be the same
as f v . Secondly, pure  should be a right identity of bind , so bind v pure  is the same as
v . Finally, bind  should be associative, so bind (bind v f) g  is the same as bind v (fun 
x => bind (f x) g) .

This contract specifies the expected properties of programs with effects more generally.
Because pure  has no effects, sequencing its effects with bind  shouldn't change the result.
The associative property of bind  basically says that the sequencing bookkeeping itself
doesn't matter, so long as the order in which things are happening is preserved.

Exercises

Mapping on a Tree

Define a function BinTree.mapM . By analogy to mapM  for lists, this function should apply a
monadic function to each data entry in a tree, as a preorder traversal. The type signature
should be:

#eval mapM (· + 1) [1, 2, 3, 4, 5]

failed to synthesize instance
  HAdd Nat Nat (?m.9319 ?m.9321)

#eval mapM (fun x => x) [1, 2, 3, 4, 5]

typeclass instance problem is stuck, it is often due to metavariables
  Monad ?m.9319
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The Option Monad Contract

First, write a convincing argument that the Monad  instance for Option  satisfies the monad
contract. Then, consider the following instance:

Both methods have the correct type. Why does this instance violate the monad contract?

def BinTree.mapM [Monad m] (f : α → m β) : BinTree α → m (BinTree β)

instance : Monad Option where
  pure x := some x
  bind opt next := none
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Example: Arithmetic in Monads

Monads are a way of encoding programs with side effects into a language that does not
have them. It would be easy to read this as a sort of admission that pure functional
programs are missing something important, requiring programmers to jump through hoops
just to write a normal program. However, while using the Monad  API does impose a
syntactic cost on a program, it brings two important benefits:

1. Programs must be honest about which effects they use in their types. A quick glance at
a type signature describes everything that the program can do, rather than just what it
accepts and what it returns.

2. Not every language provides the same effects. For example, only some language have
exceptions. Other languages have unique, exotic effects, such as Icon's searching over
multiple values and Scheme or Ruby's continuations. Because monads can encode any
effect, programmers can choose which ones are the best fit for a given application,
rather than being stuck with what the language developers provided.

One example of a program that can make sense in a variety of monads is an evaluator for
arithmetic expressions.

Arithmetic Expressions

An arithmetic expression is either a literal integer or a primitive binary operator applied to
two expressions. The operators are addition, subtraction, multiplication, and division:

The expression 2 + 3  is represented:

and 14 / (45 - 5 * 9)  is represented:

inductive Expr (op : Type) where
  | const : Int → Expr op
  | prim : op → Expr op → Expr op → Expr op

inductive Arith where
  | plus
  | minus
  | times
  | div

open Expr in
open Arith in
def twoPlusThree : Expr Arith :=
  prim plus (const 2) (const 3)

https://www2.cs.arizona.edu/icon/


02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 171/432

Evaluating Expressions

Because expressions include division, and division by zero is undefined, evaluation might
fail. One way to represent failure is to use Option :

This definition uses the Monad Option  instance to propagate failures from evaluating both
branches of a binary operator. However, the function mixes two concerns: evaluating
subexpressions and applying a binary operator to the results. It can be improved by splitting
it into two functions:

Running #eval evaluateOption fourteenDivided  yields none , as expected, but this is not
a very useful error message. Because the code was written using >>=  rather than by
explicitly handling the none  constructor, only a small modification is required for it to
provide an error message on failure:

open Expr in
open Arith in
def fourteenDivided : Expr Arith :=
  prim div (const 14) (prim minus (const 45) (prim times (const 5) (const 9)))

def evaluateOption : Expr Arith → Option Int
  | Expr.const i => pure i
  | Expr.prim p e1 e2 =>
    evaluateOption e1 >>= fun v1 =>
    evaluateOption e2 >>= fun v2 =>
    match p with
    | Arith.plus => pure (v1 + v2)
    | Arith.minus => pure (v1 - v2)
    | Arith.times => pure (v1 * v2)
    | Arith.div => if v2 == 0 then none else pure (v1 / v2)

def applyPrim : Arith → Int → Int → Option Int
  | Arith.plus, x, y => pure (x + y)
  | Arith.minus, x, y => pure (x - y)
  | Arith.times, x, y => pure (x * y)
  | Arith.div, x, y => if y == 0 then none else pure (x / y)

def evaluateOption : Expr Arith → Option Int
  | Expr.const i => pure i
  | Expr.prim p e1 e2 =>
    evaluateOption e1 >>= fun v1 =>
    evaluateOption e2 >>= fun v2 =>
    applyPrim p v1 v2
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The only difference is that the type signature mentions Except String  instead of Option ,
and the failing case uses Except.error  instead of none . By making evaluate  polymorphic
over its monad and passing it applyPrim  as an argument, a single evaluator becomes
capable of both forms of error reporting:

Using it with applyPrimOption  works just like the first version of evaluate :

def applyPrim : Arith → Int → Int → Except String Int
  | Arith.plus, x, y => pure (x + y)
  | Arith.minus, x, y => pure (x - y)
  | Arith.times, x, y => pure (x * y)
  | Arith.div, x, y =>
    if y == 0 then
      Except.error s!"Tried to divide {x} by zero"
    else pure (x / y)

def evaluateExcept : Expr Arith → Except String Int
  | Expr.const i => pure i
  | Expr.prim p e1 e2 =>
    evaluateExcept e1 >>= fun v1 =>
    evaluateExcept e2 >>= fun v2 =>
    applyPrim p v1 v2

def applyPrimOption : Arith → Int → Int → Option Int
  | Arith.plus, x, y => pure (x + y)
  | Arith.minus, x, y => pure (x - y)
  | Arith.times, x, y => pure (x * y)
  | Arith.div, x, y =>
    if y == 0 then
      none
    else pure (x / y)

def applyPrimExcept : Arith → Int → Int → Except String Int
  | Arith.plus, x, y => pure (x + y)
  | Arith.minus, x, y => pure (x - y)
  | Arith.times, x, y => pure (x * y)
  | Arith.div, x, y =>
    if y == 0 then
      Except.error s!"Tried to divide {x} by zero"
    else pure (x / y)

def evaluateM [Monad m] (applyPrim : Arith → Int → Int → m Int): Expr Arith → m 
Int
  | Expr.const i => pure i
  | Expr.prim p e1 e2 =>
    evaluateM applyPrim e1 >>= fun v1 =>
    evaluateM applyPrim e2 >>= fun v2 =>
    applyPrim p v1 v2

#eval evaluateM applyPrimOption fourteenDivided

none
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Similarly, using it with applyPrimExcept  works just like the version with error messages:

The code can still be improved. The functions applyPrimOption  and applyPrimExcept
differ only in their treatment of division, which can be extracted into another parameter to
the evaluator:

In this refactored code, the fact that the two code paths differ only in their treatment of
failure has been made fully apparent.

Further Effects

Failure and exceptions are not the only kinds of effects that can be interesting when
working with an evaluator. While division's only side effect is failure, adding other primitive
operators to the expressions make it possible to express other effects.

The first step is an additional refactoring, extracting division from the datatype of primitives:

#eval evaluateM applyPrimExcept fourteenDivided

Except.error "Tried to divide 14 by zero"

def applyDivOption (x : Int) (y : Int) : Option Int :=
    if y == 0 then
      none
    else pure (x / y)

def applyDivExcept (x : Int) (y : Int) : Except String Int :=
    if y == 0 then
      Except.error s!"Tried to divide {x} by zero"
    else pure (x / y)

def applyPrim [Monad m] (applyDiv : Int → Int → m Int) : Arith → Int → Int → m 
Int
  | Arith.plus, x, y => pure (x + y)
  | Arith.minus, x, y => pure (x - y)
  | Arith.times, x, y => pure (x * y)
  | Arith.div, x, y => applyDiv x y

def evaluateM [Monad m] (applyDiv : Int → Int → m Int): Expr Arith → m Int
  | Expr.const i => pure i
  | Expr.prim p e1 e2 =>
    evaluateM applyDiv e1 >>= fun v1 =>
    evaluateM applyDiv e2 >>= fun v2 =>
    applyPrim applyDiv p v1 v2
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The name CanFail  suggests that the effect introduced by division is potential failure.

The second step is to broaden the scope of the division handler argument to evaluateM  so
that it can process any special operator:

No Effects

The type Empty  has no constructors, and thus no values, like the Nothing  type in Scala or
Kotlin. In Scala and Kotlin, Nothing  can represent computations that never return a result,
such as functions that crash the program, throw exceptions, or always fall into infinite loops.
An argument to a function or method of type Nothing  indicates dead code, as there will
never be a suitable argument value. Lean doesn't support infinite loops and exceptions, but
Empty  is still useful as an indication to the type system that a function cannot be called.

Using the syntax nomatch E  when E  is an expression whose type has no constructors
indicates to Lean that the current expression need not return a result, because it could
never have been called.

inductive Prim (special : Type) where
  | plus
  | minus
  | times
  | other : special → Prim special

inductive CanFail where
  | div

def divOption : CanFail → Int → Int → Option Int
  | CanFail.div, x, y => if y == 0 then none else pure (x / y)

def divExcept : CanFail → Int → Int → Except String Int
  | CanFail.div, x, y =>
    if y == 0 then
      Except.error s!"Tried to divide {x} by zero"
    else pure (x / y)

def applyPrim [Monad m] (applySpecial : special → Int → Int → m Int) : Prim 
special → Int → Int → m Int
  | Prim.plus, x, y => pure (x + y)
  | Prim.minus, x, y => pure (x - y)
  | Prim.times, x, y => pure (x * y)
  | Prim.other op, x, y => applySpecial op x y

def evaluateM [Monad m] (applySpecial : special → Int → Int → m Int): Expr (Prim 
special) → m Int
  | Expr.const i => pure i
  | Expr.prim p e1 e2 =>
    evaluateM applySpecial e1 >>= fun v1 =>
    evaluateM applySpecial e2 >>= fun v2 =>
    applyPrim applySpecial p v1 v2
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Using Empty  as the parameter to Prim  indicates that there are no additional cases beyond
Prim.plus , Prim.minus , and Prim.times , because it is impossible to come up with a value

of type Empty  to place in the Prim.other  constructor. Because a function to apply an
operator of type Empty  to two integers can never be called, it doesn't need to return a
result. Thus, it can be used in any monad:

This can be used together with Id , the identity monad, to evaluate expressions that have
no effects whatsoever:

Nondeterministic Search

Instead of simply failing when encountering division by zero, it would also be sensible to
backtrack and try a different input. Given the right monad, the very same evaluateM  can
perform a nondeterministic search for a set of answers that do not result in failure. This
requires, in addition to division, some means of specifying a choice of results. One way to
do this is to add a function choose  to the language of expressions that instructs the
evaluator to pick either of its arguments while searching for non-failing results.

The result of the evaluator is now a multiset of values, rather than a single value. The rules
for evaluation into a multiset are:

Constants  evaluate to singleton sets .
Arithmetic operators other than division are called on each pair from the Cartesian
product of the operators, so  evaluates to .
Division  evaluates to . In other words, all 
values in  are thrown out.
A choice  evaluates to .

For example,  evaluates to ,  evaluates to , and
 evaluates to . Using multisets instead of true sets simplifies

the code by removing the need to check for uniqueness of elements.

A monad that represents this non-deterministic effect must be able to represent a situation
in which there are no answers, and a situation in which there is at least one answer together
with any remaining answers:

def applyEmpty [Monad m] (op : Empty) (_ : Int) (_ : Int) : m Int :=
  nomatch op

open Expr Prim in
#eval evaluateM (m := Id) applyEmpty (prim plus (const 5) (const (-14)))

-9

n n

X + Y {x + y ∣ x ∈ X, y ∈ Y }
X/Y {x/y ∣ x ∈ X, y ∈ Y , y ≠ 0} 0
Y

choose(x, y) {x, y}

1 + choose(2, 5) {3, 6} 1 + 2/0 {}
90/(choose(−5, 5) + 5) {9}
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This datatype looks very much like List . The difference is that where cons  stores the rest
of the list, more  stores a function that should compute the next value on demand. This
means that a consumer of Many  can stop the search when some number of results have
been found.

A single result is represented by a more  constructor that returns no further results:

The union of two multisets of results can be computed by checking whether the first
multiset is empty. If so, the second multiset is the union. If not, the union consists of the
first element of the first multiset followed by the union of the rest of the first multiset with
the second multiset:

It can be convenient to start a search process with a list of values. Many.fromList  converts
a list into a multiset of results:

Similarly, once a search has been specified, it can be convenient to extract either a number
of values, or all the values:

A Monad Many  instance requires a bind  operator. In a nondeterministic search, sequencing
two operations consists of taking all possibilities from the first step and running the rest of
the program on each of them, taking the union of the results. In other words, if the first step
returns three possible answers, the second step needs to be tried for all three. Because the
second step can return any number of answers for each input, taking their union represents
the entire search space.

inductive Many (α : Type) where
  | none : Many α
  | more : α → (Unit → Many α) → Many α

def Many.one (x : α) : Many α := Many.more x (fun () => Many.none)

def Many.union : Many α → Many α → Many α
  | Many.none, ys => ys
  | Many.more x xs, ys => Many.more x (fun () => union (xs ()) ys)

def Many.fromList : List α → Many α
  | [] => Many.none
  | x :: xs => Many.more x (fun () => fromList xs)

def Many.take : Nat → Many α → List α
  | 0, _ => []
  | _ + 1, Many.none => []
  | n + 1, Many.more x xs => x :: (xs ()).take n

def Many.takeAll : Many α → List α
  | Many.none => []
  | Many.more x xs => x :: (xs ()).takeAll
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Many.one  and Many.bind  obey the monad contract. To check that Many.bind (Many.one 
v) f  is the same as f v , start by evaluating the expression as far as possible:

The empty multiset is a right identity of union , so the answer is equivalent to f v . To
check that Many.bind v Many.one  is the same as v , consider that bind  takes the union of
applying Many.one  to each element of v . In other words, if v  has the form {v1, v2, v3, 
..., vn} , then Many.bind v Many.one  is {v1} ∪ {v2} ∪ {v3} ∪ ... ∪ {vn} , which is
{v1, v2, v3, ..., vn} .

Finally, to check that Many.bind  is associative, check that Many.bind (Many.bind bind v f) 
g  is the same as Many.bind v (fun x => Many.bind (f x) g) . If v  has the form {v1, v2, 
v3, ..., vn} , then:

which means that

Similarly,

def Many.bind : Many α → (α → Many β) → Many β
  | Many.none, _ =>
    Many.none
  | Many.more x xs, f =>
    (f x).union (bind (xs ()) f)

Many.bind (Many.one v) f
===>
Many.bind (Many.more v (fun () => Many.none)) f
===>
(f v).union (Many.bind Many.none f)
===>
(f v).union Many.none

Many.bind v f
===>
f v1 ∪ f v2 ∪ f v3 ∪ ... ∪ f vn

Many.bind (Many.bind bind v f) g
===>
Many.bind (f v1) g ∪
Many.bind (f v2) g ∪
Many.bind (f v3) g ∪
... ∪
Many.bind (f vn) g
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Thus, both sides are equal, so Many.bind  is associative.

The resulting monad instance is:

An example search using this monad finds all the combinations of numbers in a list that add
to 15:

The search process is recursive over the list. The empty list is a successful search when the
goal is 0 ; otherwise, it fails. When the list is non-empty, there are two possibilities: either
the head of the list is greater than the goal, in which case it cannot participate in any
successful searches, or it is not, in which case it can. If the head of the list is not a candidate,
then the search proceeds to the tail of the list. If the head is a candidate, then there are two
possibilities to be combined with Many.union : either the solutions found contain the head,
or they do not. The solutions that do not contain the head are found with a recursive call on
the tail, while the solutions that do contain it result from subtracting the head from the goal,
and then attaching the head to the solutions that result from the recursive call.

Returning to the arithmetic evaluator that produces multisets of results, the both  and
neither  operators can be written as follows:

Many.bind v (fun x => Many.bind (f x) g)
===>
(fun x => Many.bind (f x) g) v1 ∪
(fun x => Many.bind (f x) g) v2 ∪
(fun x => Many.bind (f x) g) v3 ∪
... ∪
(fun x => Many.bind (f x) g) vn
===>
Many.bind (f v1) g ∪
Many.bind (f v2) g ∪
Many.bind (f v3) g ∪
... ∪
Many.bind (f vn) g

instance : Monad Many where
  pure := Many.one
  bind := Many.bind

def addsTo (goal : Nat) : List Nat → Many (List Nat)
  | [] =>
    if goal == 0 then
      pure []
    else
      Many.none
  | x :: xs =>
    if x > goal then
      addsTo goal xs
    else
      (addsTo goal xs).union
        (addsTo (goal - x) xs >>= fun answer =>
         pure (x :: answer))
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Using these operators, the earlier examples can be evaluated:

Custom Environments

The evaluator can be made user-extensible by allowing strings to be used as operators, and
then providing a mapping from strings to a function that implements them. For example,
users could extend the evaluator with a remainder operator or with one that returns the
maximum of its two arguments. The mapping from function names to function
implementations is called an environment.

The environments needs to be passed in each recursive call. Initially, it might seem that
evaluateM  needs an extra argument to hold the environment, and that this argument

should be passed to each recursive invocation. However, passing an argument like this is
another form of monad, so an appropriate Monad  instance allows the evaluator to be used
unchanged.

Using functions as a monad is typically called a reader monad. When evaluating expressions
in the reader monad, the following rules are used:

inductive NeedsSearch
  | div
  | choose

def applySearch : NeedsSearch → Int → Int → Many Int
  | NeedsSearch.choose, x, y =>
    Many.fromList [x, y]
  | NeedsSearch.div, x, y =>
    if y == 0 then
      Many.none
    else Many.one (x / y)

open Expr Prim NeedsSearch

#eval (evaluateM applySearch (prim plus (const 1) (prim (other choose) (const 2) 
(const 5)))).takeAll

[3, 6]

#eval (evaluateM applySearch (prim plus (const 1) (prim (other div) (const 2) 
(const 0)))).takeAll

[]

#eval (evaluateM applySearch (prim (other div) (const 90) (prim plus (prim 
(other choose) (const (-5)) (const 5)) (const 5)))).takeAll

[9]
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Constants  evaluate to constant functions ,
Arithmetic operators evaluate to functions that pass their arguments on, so 
evaluates to , and
Custom operators evaluate to the result of applying the custom operator to the
arguments, so  evaluates to

with  serving as a fallback in case an unknown operator is applied.

To define the reader monad in Lean, the first step is to define the Reader  type and the
effect that allows users to get ahold of the environment:

By convention, the Greek letter ρ , which is pronounced "rho", is used for environments.

The fact that constants in arithmetic expressions evaluate to constant functions suggests
that the appropriate definition of pure  for Reader  is a a constant function:

On the other hand, bind  is a bit tricker. Its type is Reader ρ α → (α → Reader ρ β) → 
Reader ρ β . This type can be easier to understand by expanding the definitions of Reader ,
which yields (ρ → α) → (α → ρ → β) → ρ → β . It should take an environment-accepting
function as its first argument, while the second argument should transform the result of the
environment-accepting function into yet another environment-accepting function. The
result of combining these is itself a function, waiting for an environment.

It's possible to use Lean interactively to get help writing this function. The first step is to
write down the arguments and return type, being very explicit in order to get as much help
as possible, with an underscore for the definition's body:

Lean provides a message that describes which variables are available in scope, and the type
that's expected for the result. The ⊢  symbol, called a turnstile due to its resemblance to
subway entrances, separates the local variables from the desired type, which is ρ → β  in
this message:

n λe.n
f + g

λe. f(e) + g(e)

f OP g

λe.{
h(f(e), g(e))
0

if e contains (OP,h)
otherwise

0

def Reader (ρ : Type) (α : Type) : Type := ρ → α

def read : Reader ρ ρ := fun env => env

def Reader.pure (x : α) : Reader ρ α := fun _ => x

def Reader.bind {ρ : Type} {α : Type} {β : Type}
  (result : ρ → α) (next : α → ρ → β) : ρ → β :=
  _
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Because the return type is a function, a good first step is to wrap a fun  around the
underscore:

The resulting message now shows the function's argument as a local variable:

The only thing in the context that can produce a β  is next , and it will require two
arguments to do so. Each argument can itself be an underscore:

The two underscores have the following respective messages associated with them:

Attacking the first underscore, only one thing in the context can produce an α , namely
result :

don't know how to synthesize placeholder
context:
ρ α β : Type
result : ρ → α
next : α → ρ → β
⊢ ρ → β

def Reader.bind {ρ : Type} {α : Type} {β : Type}
  (result : ρ → α) (next : α → ρ → β) : ρ → β :=
  fun env => _

don't know how to synthesize placeholder
context:
ρ α β : Type
result : ρ → α
next : α → ρ → β
env : ρ
⊢ β

def Reader.bind {ρ : Type} {α : Type} {β : Type}
  (result : ρ → α) (next : α → ρ → β) : ρ → β :=
  fun env => next _ _

don't know how to synthesize placeholder
context:
ρ α β : Type
result : ρ → α
next : α → ρ → β
env : ρ
⊢ α

don't know how to synthesize placeholder
context:
ρ α β : Type
result : ρ → α
next : α → ρ → β
env : ρ
⊢ ρ
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Now, both underscores have the same error:

Happily, both underscores can be replaced by env , yielding:

The final version can be obtained by undoing the expansion of Reader  and cleaning up the
explicit details:

It's not always possible to write correct functions by simply "following the types", and it
carries the risk of not understanding the resulting program. However, it can also be easier
to understand a program that has been written than one that has not, and the process of
filling in the underscores can bring insights. In this case, Reader.bind  works just like bind
for Id , except it accepts an additional argument that it then passes down to its arguments,
and this intuition can help in understanding how it works.

Reader.pure , which generates constant functions, and Reader.bind  obey the monad
contract. To check that Reader.bind (Reader.pure v) f  is the same as f v , it's enough to
replace definitions until the last step:

For every function f , fun x => f x  is the same as f , so the first part of the contract is
satisfied. To check that Reader.bind r Reader.pure  is the same as r , a similar technique
works:

def Reader.bind {ρ : Type} {α : Type} {β : Type}
  (result : ρ → α) (next : α → ρ → β) : ρ → β :=
  fun env => next (result _) _

don't know how to synthesize placeholder
context:
ρ α β : Type
result : ρ → α
next : α → ρ → β
env : ρ
⊢ ρ

def Reader.bind {ρ : Type} {α : Type} {β : Type}
  (result : ρ → α) (next : α → ρ → β) : ρ → β :=
  fun env => next (result env) env

def Reader.bind (result : Reader ρ α) (next : α → Reader ρ β) : Reader ρ β :=
  fun env => next (result env) env

Reader.bind (Reader.pure v) f
===>
fun env => f ((Reader.pure v) env) env
===>
fun env => f ((fun _ => v) env) env
===>
fun env => f v env
===>
f v
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Because reader actions r  are themselves functions, this is the same as r . To check
associativity, the same thing can be done for both Reader.bind (Reader.bind r f) g  and
Reader.bind r (fun x => Reader.bind (f x) g) :

Thus, a Monad (Reader ρ)  instance is justified:

The custom environments that will be passed to the expression evaluator can be
represented as lists of pairs:

For instance, exampleEnv  contains maximum and modulus functions:

Lean already has a function List.lookup  that finds the value associated with a key in a list
of pairs, so applyPrimReader  needs only check whether the custom function is present in
the environment. It returns 0  if the function is unknown:

Reader.bind r Reader.pure
===>
fun env => Reader.pure (r env) env
===>
fun env => (fun _ => (r env)) env
===>
fun env => r env

Reader.bind (Reader.bind r f) g
===>
fun env => g ((Reader.bind r f) env) env
===>
fun env => g ((fun env' => f (r env') env') env) env
===>
fun env => g (f (r env) env) env

Reader.bind r (fun x => Reader.bind (f x) g)
===>
Reader.bind r (fun x => fun env => g (f x env) env)
===>
fun env => (fun x => fun env' => g (f x env') env') (r env) env
===>
fun env => (fun env' => g (f (r env) env') env') env
===>
fun env => g (f (r env) env) env

instance : Monad (Reader ρ) where
  pure x := fun _ => x
  bind x f := fun env => f (x env) env

abbrev Env : Type := List (String × (Int → Int → Int))

def exampleEnv : Env := [("max", max), ("mod", (· % ·))]
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Using evaluateM  with applyPrimReader  and an expression results in a function that
expects an environment. Luckily, exampleEnv  is available:

Like Many , Reader  is an example of an effect that is difficult to encode in most languages,
but type classes and monads make it just as convenient as any other effect. The dynamic or
special variables found in Common Lisp, Clojure, and Emacs Lisp can be used like Reader .
Similarly, Scheme and Racket's parameter objects are an effect that exactly correspond to
Reader . The Kotlin idiom of context objects can solve a similar problem, but they are

fundamentally a means of passing function arguments automatically, so this idiom is more
like the encoding as a reader monad than it is an effect in the language.

Exercises

Checking Contracts

Check the monad contract for State σ  and Except ε .

Readers with Failure

Adapt the reader monad example so that it can also indicate failure when the custom
operator is not defined, rather than just returning zero. In other words, given these
definitions:

do the following:

1. Write suitable pure  and bind  functions
2. Check that these functions satisfy the Monad  contract

def applyPrimReader (op : String) (x : Int) (y : Int) : Reader Env Int :=
  read >>= fun env =>
  match env.lookup op with
  | none => pure 0
  | some f => pure (f x y)

open Expr Prim in
#eval evaluateM applyPrimReader (prim (other "max") (prim plus (const 5) (const 
4)) (prim times (const 3) (const 2))) exampleEnv

9

def ReaderOption (ρ : Type) (α : Type) : Type := ρ → Option α

def ReaderExcept (ε : Type) (ρ : Type) (α : Type) : Type := ρ → Except ε α
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3. Write Monad  instances for ReaderOption  and ReaderExcept
4. Define suitable applyPrim  operators and test them with evaluateM  on some

example expressions

A Tracing Evaluator

The WithLog  type can be used with the evaluator to add optional tracing of some
operations. In particular, the type ToTrace  can serve as a signal to trace a given operator:

For the tracing evaluator, expressions should have type Expr (Prim (ToTrace (Prim 
Empty))) . This says that the operators in the expression consist of addition, subtraction,
and multiplication, augmented with traced versions of each. The innermost argument is
Empty  to signal that there are no further special operators inside of trace , only the three

basic ones.

Do the following:

1. Implement a Monad (WithLog logged)  instance
2. Write an applyTraced  function to apply traced operators to their arguments, logging

both the operator and the arguments, with type ToTrace (Prim Empty) → Int → Int 
→ WithLog (Prim Empty × Int × Int) Int

If the exercise has been completed correctly, then

should result in

Hint: values of type Prim Empty  will appear in the resulting log. In order to display them as
a result of #eval , the following instances are required:

inductive ToTrace (α : Type) : Type where
  | trace : α → ToTrace α

open Expr Prim ToTrace in
#eval evaluateM applyTraced (prim (other (trace times)) (prim (other (trace 
plus)) (const 1) (const 2)) (prim (other (trace minus)) (const 3) (const 4)))

{ log := [(Prim.plus, 1, 2), (Prim.minus, 3, 4), (Prim.times, 3, -1)], val := -3 
}

deriving instance Repr for WithLog
deriving instance Repr for Empty
deriving instance Repr for Prim



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 186/432

do-Notation for Monads
While APIs based on monads are very powerful, the explicit use of >>=  with anonymous
functions is still somewhat noisy. Just as infix operators are used instead of explicit calls to
HAdd.hAdd , Lean provides a syntax for monads called do -notation that can make programs

that use monads easier to read and write. This is the very same do -notation that is used to
write programs in IO , and IO  is also a monad.

In Hello, World!, the do  syntax is used to combine IO  actions, but the meaning of these
programs is explained directly. Understanding how to program with monads means that
do  can now be explained in terms of how it translates into uses of the underlying monad

operators.

The first translation of do  is used when the only statement in the do  is a single expression
E . In this case, the do  is removed, so

translates to

The second translation is used when the first statement of the do  is a let  with an arrow,
binding a local variable. This translates to a use of >>=  together with a function that binds
that very same variable, so

translates to

When the first statement of the do  block is an expression, then it is considered to be a
monadic action that returns Unit , so the function matches the Unit  constructor and

do E

E

do let x ← E1
   Stmt
   ...
   En

E1 >>= fun x =>
do Stmt
   ...
   En

do E1
   Stmt
   ...
   En

https://leanprover.github.io/functional_programming_in_lean/hello-world.html
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translates to

Finally, when the first statement of the do  block is a let  that uses := , the translated form
is an ordinary let expression, so

translates to

The definition of firstThirdFifthSeventh  that uses the Monad  class looks like this:

Using do -notation, it becomes significantly more readable:

Without the Monad  type class, the function number  that numbers the nodes of a tree was
written:

E1 >>= fun () =>
do Stmt
   ...
   En

do let x := E1
   Stmt
   ...
   En

let x := E1
do Stmt
   ...
   En

def firstThirdFifthSeventh [Monad m] (lookup : List α → Nat → m α) (xs : List α) 
: m (α × α × α × α) :=
  lookup xs 0 >>= fun first =>
  lookup xs 2 >>= fun third =>
  lookup xs 4 >>= fun fifth =>
  lookup xs 6 >>= fun seventh =>
  pure (first, third, fifth, seventh)

def firstThirdFifthSeventh [Monad m] (lookup : List α → Nat → m α) (xs : List α) 
: m (α × α × α × α) := do
  let first ← lookup xs 0
  let third ← lookup xs 2
  let fifth ← lookup xs 4
  let seventh ← lookup xs 6
  pure (first, third, fifth, seventh)
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With Monad  and do , its definition is much less noisy:

All of the conveniences from do  with IO  are also available when using it with other
monads. For example, nested actions also work in any monad. The original definition of
mapM  was:

With do -notation, it can be written:

Using nested actions makes it almost as short as the original non-monadic map :

Using nested actions, number  can be made much more concise:

def number (t : BinTree α) : BinTree (Nat × α) :=
  let rec helper : BinTree α → State Nat (BinTree (Nat × α))
    | BinTree.leaf => ok BinTree.leaf
    | BinTree.branch left x right =>
      helper left ~~> fun numberedLeft =>
      get ~~> fun n =>
      set (n + 1) ~~> fun () =>
      helper right ~~> fun numberedRight =>
      ok (BinTree.branch numberedLeft (n, x) numberedRight)
  (helper t 0).snd

def number (t : BinTree α) : BinTree (Nat × α) :=
  let rec helper : BinTree α → State Nat (BinTree (Nat × α))
    | BinTree.leaf => pure BinTree.leaf
    | BinTree.branch left x right => do
      let numberedLeft ← helper left
      let n ← get
      set (n + 1)
      let numberedRight ← helper right
      ok (BinTree.branch numberedLeft (n, x) numberedRight)
  (helper t 0).snd

def mapM [Monad m] (f : α → m β) : List α → m (List β)
  | [] => pure []
  | x :: xs =>
    f x >>= fun hd =>
    mapM f xs >>= fun tl =>
    pure (hd :: tl)

def mapM [Monad m] (f : α → m β) : List α → m (List β)
  | [] => pure []
  | x :: xs => do
    let hd ← f x
    let tl ← mapM f xs
    pure (hd :: tl)

def mapM [Monad m] (f : α → m β) : List α → m (List β)
  | [] => pure []
  | x :: xs => do
    pure ((← f x) :: (← mapM f xs))
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Exercises

Rewrite evaluateM , its helpers, and the different specific use cases using do -notation
instead of explicit calls to >>= .
Rewrite firstThirdFifthSeventh  using nested actions.

def increment : State Nat Nat := do
  let n ← get
  set (n + 1)
  pure n

def number (t : BinTree α) : BinTree (Nat × α) :=
  let rec helper : BinTree α → State Nat (BinTree (Nat × α))
    | BinTree.leaf => pure BinTree.leaf
    | BinTree.branch left x right => do
      pure (BinTree.branch (← helper left) ((← increment), x) (← helper right))
  (helper t 0).snd
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The IO Monad
IO  as a monad can be understood from two perspectives, which were described in the

section on running programs. Each can help to understand the meanings of pure  and
bind  for IO .

From the first perspective, an IO  action is an instruction to Lean's run-time system. For
example, the instruction might be "read a string from this file descriptor, then re-invoke the
pure Lean code with the string". This perspective is an exterior one, viewing the program
from the perspective of the operating system. In this case, pure  is an IO  action that does
not request any effects from the RTS, and bind  instructs the RTS to first carry out one
potentially-effectful operation and then invoke the rest of the program with the resulting
value.

From the second perspective, an IO  action transforms the whole world. IO  actions are
actually pure, because they receive a unique world as an argument and then return the
changed world. This perspective is an interior one that matches how IO  is represented
inside of Lean. The world is represented in Lean as a token, and the IO  monad is structured
to make sure that each token is used exactly once.

To see how this works, it can be helpful to peel back one definition at a time. The #print
command reveals the internals of Lean datatypes and definitions. For example,

results in

and

results in

Sometimes, the output of #print  includes Lean features that have not yet been presented
in this book. For example,

#print Nat

inductive Nat : Type
number of parameters: 0
constructors:
Nat.zero : Nat
Nat.succ : Nat → Nat

#print Char.isAlpha

def Char.isAlpha : Char → Bool :=
fun c => Char.isUpper c || Char.isLower c

https://leanprover.github.io/functional_programming_in_lean/hello-world/running-a-program.html
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produces

which includes a .{u}  after the definition's name, and annotates types as Type u  rather
than just Type . This can be safely ignored for now.

Printing the definition of IO  shows that it's defined in terms of simpler structures:

IO.Error  represents all the errors that could be thrown by an IO  action:

EIO ε α  represents IO  actions that will either terminate with an error of type ε  or
succeed with a value of type α . This means that, like the Except ε  monad, the IO  monad
includes the ability to define error handling and exceptions.

#print List.isEmpty

def List.isEmpty.{u} : {α : Type u} → List α → Bool :=
fun {α} x =>
  match x with
  | [] => true
  | head :: tail => false

#print IO

@[reducible] def IO : Type → Type :=
EIO IO.Error

#print IO.Error

inductive IO.Error : Type
number of parameters: 0
constructors:
IO.Error.alreadyExists : Option String → UInt32 → String → IO.Error
IO.Error.otherError : UInt32 → String → IO.Error
IO.Error.resourceBusy : UInt32 → String → IO.Error
IO.Error.resourceVanished : UInt32 → String → IO.Error
IO.Error.unsupportedOperation : UInt32 → String → IO.Error
IO.Error.hardwareFault : UInt32 → String → IO.Error
IO.Error.unsatisfiedConstraints : UInt32 → String → IO.Error
IO.Error.illegalOperation : UInt32 → String → IO.Error
IO.Error.protocolError : UInt32 → String → IO.Error
IO.Error.timeExpired : UInt32 → String → IO.Error
IO.Error.interrupted : String → UInt32 → String → IO.Error
IO.Error.noFileOrDirectory : String → UInt32 → String → IO.Error
IO.Error.invalidArgument : Option String → UInt32 → String → IO.Error
IO.Error.permissionDenied : Option String → UInt32 → String → IO.Error
IO.Error.resourceExhausted : Option String → UInt32 → String → IO.Error
IO.Error.inappropriateType : Option String → UInt32 → String → IO.Error
IO.Error.noSuchThing : Option String → UInt32 → String → IO.Error
IO.Error.unexpectedEof : IO.Error
IO.Error.userError : String → IO.Error
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Peeling back another layer, EIO  is itself defined in terms of a simpler structure:

The EStateM  monad includes both errors and state—it's a combination of Except  and
State . It is defined using another type, EStateM.Result :

In other words, a program with type EStateM ε σ α  is a function that accepts an initial
state of type σ  and returns an EStateM.Result ε σ α .

EStateM.Result  is very much like the definition of Except , with one constructor that
indicates a successful termination and one constructor that indicates an error:

Just like Except ε α , the ok  constructor includes a result of type α , and the error
constructor includes an exception of type ε . Unlike Except , both constructors have an
additional state field that includes the final state of the computation.

The Monad  instance for EStateM ε σ  requires pure  and bind . Just as with State , the
implementation of pure  for EStateM  accepts an initial state and returns it unchanged, and
just as with Except , it returns its argument in the ok  constructor:

protected  means that the full name EStateM.pure  is needed even if the EStateM
namespace has been opened.

Similarly, bind  for EStateM  takes an initial state as an argument. It passes this initial state
to its first action. Like bind  for Except , it then checks whether the result is an error. If so,

#print EIO

def EIO : Type → Type → Type :=
fun ε => EStateM ε IO.RealWorld

#print EStateM

def EStateM.{u} : Type u → Type u → Type u → Type u :=
fun ε σ α => σ → EStateM.Result ε σ α

#print EStateM.Result

inductive EStateM.Result.{u} : Type u → Type u → Type u → Type u
number of parameters: 3
constructors:
EStateM.Result.ok : {ε σ α : Type u} → α → σ → EStateM.Result ε σ α
EStateM.Result.error : {ε σ α : Type u} → ε → σ → EStateM.Result ε σ α

#print EStateM.pure

protected def EStateM.pure.{u} : {ε σ α : Type u} → α → EStateM ε σ α :=
fun {ε σ α} a s => EStateM.Result.ok a s
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the error is returned unchanged and the second argument to bind  remains unused. If the
result was a success, then the second argument is applied to both the returned value and to
the resulting state.

Putting all of this together, IO  is a monad that tracks state and errors at the same time. The
collection of available errors is that given by the datatype IO.Error , which has constructors
that describe many things that can go wrong in a program. The state is a type that
represents the real world, called IO.RealWorld . Each basic IO  action receives this real
world and returns another one, paired either with an error or a result. In IO , pure  returns
the world unchanged, while bind  passes the modified world from one action into the next
action.

Because the entire universe doesn't fit in a computer's memory, the world being passed
around is just a representation. So long as world tokens are not re-used, the representation
is safe. This means that world tokens do not need to contain any data at all:

#print EStateM.bind

protected def EStateM.bind.{u} : {ε σ α β : Type u} → EStateM ε σ α → (α → 
EStateM ε σ β) → EStateM ε σ β :=
fun {ε σ α β} x f s =>
  match x s with
  | EStateM.Result.ok a s => f a s
  | EStateM.Result.error e s => EStateM.Result.error e s

#print IO.RealWorld

def IO.RealWorld : Type :=
Unit
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Additional Conveniences

Shared Argument Types

When defining a function that takes multiple arguments that have the same type, both can
be written before the same colon. For example,

can be written

This is especially useful when the type signature is large.

Leading Dot Notation

The constructors of an inductive type are in a namespace. This allows multiple related
inductive types to use the same constructor names, but it can lead to programs becoming
verbose. In contexts where the inductive type in question is known, the namespace can be
omitted by preceding the constructor's name with a dot, and Lean uses the expected type to
resolve the constructor names. For example, a function that mirrors a binary tree can be
written:

Omitting the namespaces makes it significantly shorter, at the cost of making the program
harder to read in contexts like code review tools that don't include the Lean compiler:

def equal? [BEq α] (x : α) (y : α) : Option α :=
  if x == y then
    some x
  else
    none

def equal? [BEq α] (x y : α) : Option α :=
  if x == y then
    some x
  else
    none

def BinTree.mirror : BinTree α → BinTree α
  | BinTree.leaf => BinTree.leaf
  | BinTree.branch l x r => BinTree.branch (mirror r) x (mirror l)

def BinTree.mirror : BinTree α → BinTree α
  | .leaf => .leaf
  | .branch l x r => .branch (mirror r) x (mirror l)
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Using the expected type of an expression to disambiguate a namespace is also applicable to
names other than constructors. If BinTree.empty  is defined as an alternative way of
creating BinTree s, then it can also be used with dot notation:

Or-Patterns

In contexts that allow multiple patterns, such as match -expressions, multiple patterns may
share their result expressions. The datatype Weekday  that represents days of the week:

Pattern matching can be used to check whether a day is a weekend:

This can already be simplified by using constructor dot notation:

Because both weekend patterns have the same result expression ( true ), they can be
condensed into one:

def BinTree.empty : BinTree α := .leaf

#check (.empty : BinTree Nat)

BinTree.empty : BinTree Nat

inductive Weekday where
  | monday
  | tuesday
  | wednesday
  | thursday
  | friday
  | saturday
  | sunday
  deriving Repr

def Weekday.isWeekend (day : Weekday) : Bool :=
  match day with
  | Weekday.saturday => true
  | Weekday.sunday => true
  | _ => false

def Weekday.isWeekend (day : Weekday) : Bool :=
  match day with
  | .saturday => true
  | .sunday => true
  | _ => false
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This can be further simplified into a version in which the argument is not named:

Behind the scenes, the result expression is simply duplicated across each pattern. This
means that patterns can bind variables, as in this example that removes the inl  and inr
constructors from a sum type in which both contain the same type of value:

Because the result expression is duplicated, the variables bound by the patterns are not
required to have the same types. Overloaded functions that work for multiple types may be
used to write a single result expression that works for patterns that bind variables of
different types:

In practice, only variables shared in all patterns can be referred to in the result expression,
because the result must make sense for each pattern. In getTheNat , only n  can be
accessed, and attempts to use either x  or y  lead to errors.

Attempting to access x  in a similar definition causes an error because there is no x
available in the second pattern:

The fact that the result expression is essentially copy-pasted to each branch of the pattern
match can lead to some surprising behavior. For example, the following definitions are
acceptable because the inr  version of the result expression refers to the global definition
of str :

def Weekday.isWeekend (day : Weekday) : Bool :=
  match day with
  | .saturday | .sunday => true
  | _ => false

def Weekday.isWeekend : Weekday → Bool
  | .saturday | .sunday => true
  | _ => false

def condense : α ⊕ α → α
  | .inl x | .inr x => x

def stringy : Nat ⊕ Weekday → String
  | .inl x | .inr x => s!"It is {repr x}"

def getTheNat : (Nat × α) ⊕ (Nat × β) → Nat
  | .inl (n, x) | .inr (n, y) => n

def getTheAlpha : (Nat × α) ⊕ (Nat × α) → α
  | .inl (n, x) | .inr (n, y) => x

unknown identifier 'x'
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Calling this function on both constructors reveals the confusing behavior. In the first case, a
type annotation is needed to tell Lean which type β  should be:

In the second case, the global definition is used:

Using or-patterns can vastly simplify some definitions and increase their clarity, as in
Weekday.isWeekend . Because there is a potential for confusing behavior, it's a good idea to

be careful when using them, especially when variables of multiple types or disjoint sets of
variables are involved.

def str := "Some string"

def getTheString : (Nat × String) ⊕ (Nat × β) → String
  | .inl (n, str) | .inr (n, y) => str

#eval getTheString (.inl (20, "twenty") : (Nat × String) ⊕ (Nat × String))

"twenty"

#eval getTheString (.inr (20, "twenty"))

"Some string"
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Summary

Encoding Side Effects

Lean is a pure functional language. This means that it does not include side effects such as
mutable variables, logging, or exceptions. However, most side effects can be encoded using
a combination of functions and inductive types or structures. For example, mutable state
can be encoded as a function from an initial state to a pair of a final state and a result, and
exceptions can be encoded as an inductive type with constructors for successful
termination and errors.

Each set of encoded effects is a type. As a result, if a program uses these encoded effects,
then this is apparent in its type. Functional programming does not mean that programs
can't use effects, it simply requires that they be honest about which effects they use. A Lean
type signature describes not only the types of arguments that a function expects and the
type of result that it returns, but also which effects it may use.

The Monad Type Class

It's possible to write purely functional programs in languages that allow effects anywhere.
For example, 2 + 3  is a valid Python program that has no effects at all. Similarly, combining
programs that have effects requires a way to state the order in which the effects must
occur. It matters whether an exception is thrown before or after modifying a variable, after
all.

The type class Monad  captures these two important properties. It has two methods: pure
represents programs that have no effects, and bind  sequences effectful programs. The
contract for Monad  instances ensures that bind  and pure  actually capture pure
computation and sequencing.

do-Notation for Monads

Rather than being limited to IO , do -notation works for any monad. It allows programs that
use monads to be written in a style that is reminiscent of statement-oriented languages,
with statements sequenced after one another. Additionally, do -notation enables a number
of additional convenient shorthands, such as nested actions. A program written with do  is
translated to applications of >>=  behind the scenes.



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 199/432

Custom Monads

Different languages provide different sets of side effects. While most languages feature
mutable variables and file I/O, not all have features like exceptions. Other languages offer
effects that are rare or unique, like Icon's search-based program execution, Scheme and
Ruby's continuations, and Common Lisp's resumable exceptions. An advantage to encoding
effects with monads is that programs are not limited to the set of effects that are provided
by the language. Because Lean is designed to make programming with any monad
convenient, programmers are free to choose exactly the set of side effects that make sense
for any given application.

The IO Monad

Programs that can affect the real world are written as IO  actions in Lean. IO  is one monad
among many. The IO  monad encodes state and exceptions, with the state being used to
keep track of the state of the world and the exceptions modeling failure and recovery.



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 200/432

Functors, Applicative Functors, and
Monads
Functor  and Monad  both describe operations for types that are still waiting for a type

argument. One way to understand them is that Functor  describes containers in which the
contained data can be transformed, and Monad  describes an encoding of programs with
side effects. This understanding is incomplete, however. After all, Option  has instances for
both Functor  and Monad , and simultaneously represents an optional value and a
computation that might fail to return a value.

From the perspective of data structures, Option  is a bit like a nullable type or like a list that
can contain at most one entry. From the perspective of control structures, Option
represents a computation that might terminate early without a result. Typically, programs
that use the Functor  instance are easiest to think of as using Option  as a data structure,
while programs that use the Monad  instance are easiest to think of as using Option  to allow
early failure, but learning to use both of these perspectives fluently is an important part of
becoming proficient at functional programming.

There is a deeper relationship between functors and monads. It turns out that every monad
is a functor. Another way to say this is that the monad abstraction is more powerful than the
functor abstraction, because not every functor is a monad. Furthermore, there is an
additional intermediate abstraction, called applicative functors, that has enough power to
write many interesting programs and yet permits libraries that cannot use the Monad
interface. The type class Applicative  provides the overloadable operations of applicative
functors. Every monad is an applicative functor, and every applicative functor is a functor,
but the converses do not hold.
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Structures and Inheritance
In order to understand the full definitions of Functor , Applicative , and Monad , another
Lean feature is necessary: structure inheritance. Structure inheritance allows one structure
type to provide the interface of another, along with additional fields. This can be useful
when modeling concepts that have a clear taxonomic relationship. For example, take a
model of mythical creatures. Some of them are large, and some are small:

Behind the scenes, defining the MythicalCreature  structure creates an inductive type with
a single constructor called mk :

Similarly, a function MythicalCreature.large  is created that actually extracts the field from
the constructor:

In most old stories, each monster can be defeated in some way. A description of a monster
should include this information, along with whether it is large:

The extends MythicalCreature  in the heading states that every monster is also mythical.
To define a Monster , both the fields from MythicalCreature  and the fields from Monster
should be provided. A troll is a large monster that is vulnerable to sunlight:

Behind the scenes, inheritance is implemented using composition. The constructor
Monster.mk  takes a MythicalCreature  as its argument:

structure MythicalCreature where
  large : Bool
deriving Repr

#check MythicalCreature.mk

MythicalCreature.mk (large : Bool) : MythicalCreature

#check MythicalCreature.large

MythicalCreature.large (self : MythicalCreature) : Bool

structure Monster extends MythicalCreature where
  vulnerability : String
deriving Repr

def troll : Monster where
  large := true
  vulnerability := "sunlight"

#check Monster.mk
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In addition to defining functions to extract the value of each new field, a function
Monster.toMythicalCreature  is defined with type Monster → MythicalCreature . This can

be used to extract the underlying creature.

Moving up the inheritance hierarchy in Lean is not the same thing as upcasting in object-
oriented languages. An upcast operator causes a value from a derived class to be treated as
an instance of the parent class, but the value retains its identity and structure. In Lean,
however, moving up the inheritance hierarchy actually erases the underlying information.
To see this in action, consider the result of evaluating troll.toMythicalCreature :

Only the fields of MythicalCreature  remain.

Just like the where  syntax, curly-brace notation with field names also works with structure
inheritance:

However, the anonymous angle-bracket notation that delegates to the underlying
constructor reveals the internal details:

An extra set of angle brackets is required, which invokes MythicalCreature.mk  on true :

Lean's dot notation is capable of taking inheritance into account. In other words, the
existing MythicalCreature.large  can be used with a Monster , and Lean automatically
inserts the call to Monster.toMythicalCreature  before the call to
MythicalCreature.large . However, this only occurs when using dot notation, and applying

the field lookup function using normal function call syntax results in a type error:

Monster.mk (toMythicalCreature : MythicalCreature) (vulnerability : String) : 
Monster

#eval troll.toMythicalCreature

{ large := true }

def troll : Monster := {large := true, vulnerability := "sunlight"}

def troll : Monster := ⟨true, "sunlight"⟩

application type mismatch
  Monster.mk true
argument
  true
has type
  Bool : Type
but is expected to have type
  MythicalCreature : Type

def troll : Monster := ⟨⟨true⟩, "sunlight"⟩
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Dot notation can also take inheritance into account for user-defined functions. A small
creature is one that is not large:

Evaluating troll.small  yields false , while attempting to evaluate
MythicalCreature.small troll  results in:

Multiple Inheritance

A helper is a mythical creature that can provide assistance when given the correct payment:

For example, a nisse is a kind of small elf that's known to help around the house when
provided with tasty porridge:

If domesticated, trolls make excellent helpers. They are strong enough to plow a whole field
in a single night, though they require model goats to keep them satisfied with their lot in
life. A monstrous assistant is a monster that is also a helper:

#eval MythicalCreature.large troll

application type mismatch
  troll.large
argument
  troll
has type
  Monster : Type
but is expected to have type
  MythicalCreature : Type

def MythicalCreature.small (c : MythicalCreature) : Bool := !c.large

application type mismatch
  MythicalCreature.small troll
argument
  troll
has type
  Monster : Type
but is expected to have type
  MythicalCreature : Type

structure Helper extends MythicalCreature where
  assistance : String
  payment : String
deriving Repr

def nisse : Helper where
  large := false
  assistance := "household tasks"
  payment := "porridge"
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A value of this structure type must fill in all of the fields from both parent structures:

Both of the parent structure types extend MythicalCreature . If multiple inheritance were
implemented naïvely, then this could lead to a "diamond problem", where it would be
unclear which path to large  should be taken from a given MonstrousAssistant . Should it
take large  from the contained Monster  or from the contained Helper ? In Lean, the
answer is that the first specified path to the grandparent structure is taken, and the
additional parent structures' fields are copied rather than having the new structure include
both parents directly.

This can be seen by examining the signature of the constructor for MonstrousAssistant :

It takes a Monster  as an argument, along with the two fields that Helper  introduces on top
of MythicalCreature . Similarly, while MonstrousAssistant.toMonster  merely extracts the
Monster  from the constructor, MonstrousAssistant.toHelper  has no Helper  to extract.

The #print  command exposes its implementation:

This function constructs a Helper  from the fields of MonstrousAssistant . The
@[reducible]  attribute has the same effect as writing abbrev .

Default Declarations

When one structure inherits from another, default field definitions can be used to
instantiate the parent structure's fields based on the child structure's fields. If more size
specificity is required than whether a creature is large or not, a dedicated datatype

structure MonstrousAssistant extends Monster, Helper where
deriving Repr

def domesticatedTroll : MonstrousAssistant where
  large := false
  assistance := "heavy labor"
  payment := "toy goats"
  vulnerability := "sunlight"

#check MonstrousAssistant.mk

MonstrousAssistant.mk (toMonster : Monster) (assistance payment : String) : 
MonstrousAssistant

#print MonstrousAssistant.toHelper

@[reducible] def MonstrousAssistant.toHelper : MonstrousAssistant → Helper :=
fun self =>
  { toMythicalCreature := self.toMonster.toMythicalCreature, assistance := 
self.assistance, payment := self.payment }
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describing sizes can be used together with inheritance, yielding a structure in which the
large  field is computed from the contents of the size  field:

This default definition is only a default definition, however. Unlike property inheritance in a
language like C# or Scala, the definitions in the child structure are only used when no
specific value for large  is provided, and nonsensical results can occur:

If the child structure should not deviate from the parent structure, there are a few options:

1. Documenting the relationship, as is done for BEq  and Hashable
2. Defining a proposition that the fields are related appropriately, and designing the API

to require evidence that the proposition is true where it matters
3. Not using inheritance at all

The second option could look like this:

Note that a single equality sign is used to indicate the equality proposition, while a double
equality sign is used to indicate a function that checks equality and returns a Bool .
SizesMatch  is defined as an abbrev  because it should automatically be unfolded in proofs,

so that simp  can see the equality that should be proven.

A huldre is a medium-sized mythical creature—in fact, they are the same size as humans.
The two sized fields on huldre  match one another:

inductive Size where
  | small
  | medium
  | large
deriving BEq

structure SizedCreature extends MythicalCreature where
  size : Size
  large := size == Size.large

def nonsenseCreature : SizedCreature where
  large := false
  size := .large

abbrev SizesMatch (sc : SizedCreature) : Prop :=
  sc.large = (sc.size == Size.large)

def huldre : SizedCreature where
  size := .medium

example : SizesMatch huldre := by
  simp
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Type Class Inheritance

Behind the scenes, type classes are structures. Defining a new type class defines a new
structure, and defining an instance creates a value of that structure type. They are then
added to internal tables in Lean that allow it to find the instances upon request. A
consequence of this is that type classes may inherit from other type classes.

Because it uses precisely the same language features, type class inheritance supports all the
features of structure inheritance, including multiple inheritance, default implementations of
parent types' methods, and automatic collapsing of diamonds. This is useful in many of the
same situations that multiple interface inheritance is useful in languages like Java, C# and
Kotlin. By carefully designing type class inheritance hierarchies, programmers can get the
best of both worlds: a fine-grained collection of independently-implementable abstractions,
and automatic construction of these specific abstractions from larger, more general
abstractions.
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Applicative Functors
An applicative functor is a functor that has two additional operations available: pure  and
seq . pure  is the same operator used in Monad , because Monad  in fact inherits from
Applicative . seq  is much like map : it allows a function to be used in order to transform

the contents of a datatype. However, with seq , the function is itself contained in the
datatype: f (α → β) → (Unit → f α) → f β . Having the function under the type f  allows
the Applicative  instance to control how the function is applied, while Functor.map
unconditionally applies a function. The second argument has a type that begins with Unit 
→  to allow the definition of seq  to short-circuit in cases where the function will never be
applied.

The value of this short-circuiting behavior can be seen in the instance of Applicative 
Option :

In this case, if there is no function for seq  to apply, then there is no need to compute its
argument, so x  is never called. The same consideration informs the instance of
Applicative  for Except :

This short-circuiting behavior depends only on the Option  or Except  structures that
surround the function, rather than on the function itself.

Monads can be seen as a way of capturing the notion of sequentially executing statements
into a pure functional language. The result of one statement can affect which further
statements run. This can be seen in the type of bind : m α → (α → m β) → m β . The first
statement's resulting value is an input into a function that computes the next statement to
execute. Successive uses of bind  are like a sequence of statements in an imperative
programming language, and bind  is powerful enough to implement control structures like
conditionals and loops.

Following this analogy, Applicative  captures function application in a language that has
side effects. The arguments to a function in languages like Kotlin or C# are evaluated from

instance : Applicative Option where
  pure x := .some x
  seq f x :=
    match f with
    | none => none
    | some g => g <$> x ()

instance : Applicative (Except ε) where
  pure x := .ok x
  seq f x :=
    match f with
    | .error e => .error e
    | .ok g => g <$> x ()
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left to right. Side effects performed by earlier arguments occur before those performed by
later arguments. A function is not powerful enough to implement custom short-circuiting
operators that depend on the specific value of an argument, however.

Typically, seq  is not invoked directly. Instead, the operator <*>  is used. This operator
wraps its second argument in fun () => ... , simplifying the call site. In other words, E1 
<*> E2  is syntactic sugar for Seq.seq E1 (fun () => E2) .

The key feature that allows seq  to be used with multiple arguments is that a multiple-
argument Lean function is really a single-argument function that returns another function
that's waiting for the rest of the arguments. In other words, if the first argument to seq  is
awaiting multiple arguments, then the result of the seq  will be awaiting the rest. For
example, some Plus.plus  can have the type Option (Nat → Nat → Nat) . Providing one
argument, some Plus.plus <*> some 4 , results in the type Option (Nat → Nat) . This can
itself be used with seq , so some Plus.plus <*> some 4 <*> some 7  has the type Option 
Nat .

Not every functor is applicative. Pair  is like the built-in product type Prod :

Like Except , Pair  has type Type → Type → Type . This means that Pair α  has type Type 
→ Type , and a Functor  instance is possible:

This instance obeys the Functor  contract.

The two properties to check are that id <$> Pair.mk x y = Pair.mk x y  and that f <$> g 
<$> Pair.mk x y = (f ∘ g) <$> Pair.mk x y . The first property can be checked by just
stepping through the evaluation of the left side, and noticing that it evaluates to the right
side:

The second can be checked by stepping through both sides, and noting that they yield the
same result:

structure Pair (α β : Type) : Type where
  first : α
  second : β

instance : Functor (Pair α) where
  map f x := ⟨x.first, f x.second⟩

id <$> Pair.mk x y
===>
Pair.mk x (id y)
===>
Pair.mk x y
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Attempting to define an Applicative  instance, however, does not work so well. It will
require a definition of pure :

There is a value with type β  in scope (namely x ), and the error message from the
underscore suggests that the next step is to use the constructor Pair.mk :

Unfortunately, there is no α  available. Because pure  would need to work for all possible
types α to define an instance of Applicative (Pair α) , this is impossible. After all, a caller
could choose α  to be Empty , which has no values at all.

A Non-Monadic Applicative

When validating user input to a form, it's generally considered to be best to provide many
errors at once, rather than one error at a time. This allows the user to have an overview of
what is needed to please the computer, rather than feeling badgered as they correct the
errors field by field.

Ideally, validating user input will be visible in the type of the function that's doing the
validating. It should return a datatype that is specific—checking that a text box contains a

f <$> g <$> Pair.mk x y
===>
f <$> Pair.mk x (g y)
===>
Pair.mk x (f (g y))

(f ∘ g) <$> Pair.mk x y
===>
Pair.mk x ((f ∘ g) y)
===>
Pair.mk x (f (g y))

def Pair.pure (x : β) : Pair α β := _

don't know how to synthesize placeholder
context:
β α : Type
x : β
⊢ Pair α β

def Pair.pure (x : β) : Pair α β := Pair.mk _ x

don't know how to synthesize placeholder for argument 'first'
context:
β α : Type
x : β
⊢ α
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number should return an actual numeric type, for instance. A validation routine could throw
an exception when the input does not pass validation. Exceptions have a major drawback,
however: they terminate the program at the first error, making it impossible to accumulate
a list of errors.

On the other hand, the common design pattern of accumulating a list of errors and then
failing when it is non-empty is also problematic. A long nested sequences of if  statements
that validate each sub-section of the input data is hard to maintain, and it's easy to lose
track of an error message or two. Ideally, validation can be performed using an API that
enables a new value to be returned yet automatically tracks and accumulates error
messages.

An applicative functor called Validate  provides one way to implement this style of API. Like
the Except  monad, Validate  allows a new value to be constructed that characterizes the
validated data accurately. Unlike Except , it allows multiple errors to be accumulated,
without a risk of forgetting to check whether the list is empty.

User Input

As an example of user input, take the following structure:

The business logic to be implemented is the following:

1. The name may not be empty
2. The birth year must be numeric and non-negative
3. The birth year must be greater than 1900, and less than or equal to the year in which

the form is validated

Representing these as a datatype will require a new feature, called subtypes. With this tool in
hand, a validation framework can be written that uses an applicative functor to track errors,
and these rules can be implemented in the framework.

Subtypes

Representing these conditions is easiest with one additional Lean type, called Subtype :

structure RawInput where
  name : String
  birthYear : String

structure Subtype {α : Type} (p : α → Prop) where
  val : α
  property : p val
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This structure has two type parameters: an implicit parameter that is the type of data α ,
and an explicit parameter p  that is a predicate over α . A predicate is a logical statement
with a variable in it that can be replaced with a value to yield an actual statement, like the
parameter to GetElem  that describes what it means for an index to be in bounds for a
lookup. In the case of Subtype , the predicate slices out some subset of the values of α  for
which the predicate holds. The structure's two fields are, respectively, a value from α  and
evidence that the value satisfies the predicate p . Lean has special syntax for Subtype . If p
has type α → Prop , then the type Subtype p  can also be written {x : α // p x} , or even
{x // p x}  when the type can be inferred automatically.

Representing positive numbers as inductive types is clear and easy to program with.
However, it has a key disadvantage. While Nat  and Int  have the structure of ordinary
inductive types from the perspective of Lean programs, the compiler treats them specially
and uses fast arbitrary-precision number libraries to implement them. This is not the case
for additional user-defined types. However, a subtype of Nat  that restricts it to non-zero
numbers allows the new type to use the efficient representation while still ruling out zero at
compile time:

The smallest fast positive number is still one. Now, instead of being a constructor of an
inductive type, it's an instance of a structure that's constructed with angle brackets. The first
argument is the underlying Nat , and the second argument is the evidence that said Nat  is
greater than zero:

The OfNat  instance is very much like that for Pos , except it uses a short tactic proof to
provide evidence that n + 1 > 0 :

The simp_arith  tactic is a version of simp  that takes additional arithmetic identities into
account.

Subtypes are a two-edged sword. They allow efficient representation of validation rules, but
they transfer the burden of maintaining these rules to the users of the library, who have to
prove that they are not violating important invariants. Generally, it's a good idea to use them
internally to a library, providing an API to users that automatically ensures that all invariants
are satisfied, with any necessary proofs being internal to the library.

Checking whether a value of type α  is in the subtype {x : α // p x}  usually requires that
the proposition p x  be decidable. The section on equality and ordering classes describes
how decidable propositions can be used with if . When if  is used with a decidable
proposition, a name can be provided. In the then  branch, the name is bound to evidence

def FastPos : Type := {x : Nat // x > 0}

def one : FastPos := ⟨1, by simp⟩

instance : OfNat FastPos (n + 1) where
  ofNat := ⟨n + 1, by simp_arith⟩

https://leanprover.github.io/functional_programming_in_lean/type-classes/indexing.html#overloading-indexing
https://leanprover.github.io/functional_programming_in_lean/type-classes/pos.html
https://leanprover.github.io/functional_programming_in_lean/type-classes/standard-classes.html#equality-and-ordering
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that the proposition is true, and in the else  branch, it is bound to evidence that the
proposition is false. This comes in handy when checking whether a given Nat  is positive:

In the then  branch, h  is bound to evidence that n > 0 , and this evidence can be used as
the second argument to Subtype 's constructor.

Validated Input

The validated user input is a structure that expresses the business logic using multiple
techniques:

The structure type itself encodes the year in which it was checked for validity, so that
CheckedInput 2019  is not the same type as CheckedInput 2020

The birth year is represented as a Nat  rather than a String
Subtypes are used to constrain the allowed values in the name and birth year fields

An input validator should take the current year and a RawInput  as arguments, returning
either a checked input or at least one validation failure. This is represented by the Validate
type:

It looks very much like Except . The only difference is that the error  constructor may
contain more than one failure.

Validate is a functor. Mapping a function over it transforms any successful value that might
be present, just as in the Functor  instance for Except :

The Applicative  instance for Validate  has an important difference from the instance for
Except : while the instance for Except  terminates at the first error encountered, the

def Nat.asFastPos? (n : Nat) : Option FastPos :=
  if h : n > 0 then
    some ⟨n, h⟩
  else none

structure CheckedInput (thisYear : Nat) : Type where
  name : {n : String // n ≠ ""}
  birthYear : {y : Nat // y > 1900 ∧ y ≤ thisYear}

inductive Validate (ε α : Type) : Type where
  | ok : α → Validate ε α
  | errors : NonEmptyList ε → Validate ε α

instance : Functor (Validate ε) where
  map f
   | .ok x => .ok (f x)
   | .errors errs => .errors errs
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instance for Validate  is careful to accumulate all errors from both the function and the
argument branches:

Using .errors  together with the constructor for NonEmptyList  is a bit verbose. Helpers
like reportError  make code more readable. In this application, error reports will consist of
field names paired with messages:

The Applicative  instance for Validate  allows the checking procedures for each field to
be written independently and then composed. Checking a name consists of ensuring that a
string is non-empty, then returning evidence of this fact in the form of a Subtype . This uses
the evidence-binding version of if :

In the then  branch, h  is bound to evidence that name = "" , while it is bound to evidence
that ¬name = ""  in the else  branch.

It's certainly the case that some validation errors make other checks impossible. For
example, it makes no sense to check whether the birth year field is greater than 1900 if a
confused user wrote the word "syzygy"  instead of a number. Checking the allowed range
of the number is only meaningful after ensuring that the field in fact contains a number.
This can be expressed using the function andThen :

While this function's type signature makes it suitable to be used as bind  in a Monad
instance, there are good reasons not to do so. They are described in the section that

instance : Applicative (Validate ε) where
  pure := .ok
  seq f x :=
    match f with
    | .ok g => g <$> (x ())
    | .errors errs =>
      match x () with
      | .ok _ => .errors errs
      | .errors errs' => .errors (errs ++ errs')

def Field := String

def reportError (f : Field) (msg : String) : Validate (Field × String) α :=
  .errors { head := (f, msg), tail := [] }

def checkName (name : String) : Validate (Field × String) {n : String // n ≠ ""} 
:=
  if h : name = "" then
    reportError "name" "Required"
  else pure ⟨name, h⟩

def Validate.andThen (val : Validate ε α) (next : α → Validate ε β) : Validate ε 
β :=
  match val with
  | .errors errs => .errors errs
  | .ok x => next x

https://leanprover.github.io/functional_programming_in_lean/functor-applicative-monad/applicative-contract.html#additional-stipulations
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describes the Applicative  contract.

To check that the birth year is a number, a built-in function called String.toNat? : String 
→ Option Nat  is useful. It's most user-friendly to eliminate leading and trailing whitespace
first using String.trim :

To check that the provided year is in the expected range, nested uses of the evidence-
providing form of if  are in order:

Finally, these three components can be combined using seq :

Testing checkInput  shows that it can indeed return multiple pieces of feedback:

Form validation with checkInput  illustrates a key advantage of Applicative  over Monad .
Because >>=  provides enough power to modify the rest of the program's execution based

def checkYearIsNat (year : String) : Validate (Field × String) Nat :=
  match year.trim.toNat? with
  | none => reportError "birth year" "Must be digits"
  | some n => pure n

def checkBirthYear (thisYear year : Nat) : Validate (Field × String) {y : Nat // 
y > 1900 ∧ y ≤ thisYear} :=
  if h : year > 1900 then
    if h' : year ≤ thisYear then
      pure ⟨year, by simp [*]⟩
    else reportError "birth year" s!"Must be no later than {thisYear}"
  else reportError "birth year" "Must be after 1900"

def checkInput (year : Nat) (input : RawInput) : Validate (Field × String) 
(CheckedInput year) :=
  pure CheckedInput.mk <*>
    checkName input.name <*>
    (checkYearIsNat input.birthYear).andThen fun birthYearAsNat =>
      checkBirthYear year birthYearAsNat

#eval checkInput 2023 {name := "David", birthYear := "1984"}

Validate.ok { name := "David", birthYear := 1984 }

#eval checkInput 2023 {name := "", birthYear := "2045"}

Validate.errors { head := ("name", "Required"), tail := [("birth year", "Must be 
no later than 2023")] }

#eval checkInput 2023 {name := "David", birthYear := "syzygy"}

Validate.errors { head := ("birth year", "Must be digits"), tail := [] }

https://leanprover.github.io/functional_programming_in_lean/functor-applicative-monad/applicative-contract.html#additional-stipulations
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on the value from the first step, it must receive a value from the first step to pass on. If no
value is received (e.g. because an error has occurred), then >>=  cannot execute the rest of
the program. Validate  demonstrates why it can be useful to run the rest of the program
anyway: in cases where the earlier data isn't needed, running the rest of the program can
yield useful information (in this case, more validation errors). Applicative 's <*>  may run
both of its arguments before recombining the results. Similarly, >>=  forces sequential
execution. Each step must complete before the next may run. This is generally useful, but it
makes it impossible to have parallel execution of different threads that naturally emerges
from the program's actual data dependencies. A more powerful abstraction like Monad
increases the flexibility that's available to the API consumer, but it decreases the flexibility
that is available to the API implementor.
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The Applicative Contract
Just like Functor , Monad , and types that implement BEq  and Hashable , Applicative  has
a set of rules that all instances should adhere to.

There are four rules that an applicative functor should follow:

1. It should respect identity, so pure id <*> v = v
2. It should respect function composition, so pure (· ∘ ·) <*> u <*> v <*> w = u <*> 

(v <*> w)

3. Sequencing pure operations should be a no-op, so pure f <*> pure x = pure (f x)
4. The ordering of pure operations doesn't matter, so u <*> pure x = pure (fun f => 

f x) <*> u

To check these for the Applicative Option  instance, start by expanding pure  into some .

The first rule states that some id <*> v = v . The definition of seq  for Option  states that
this is the same as id <$> v = v , which is one of the Functor  rules that have already been
checked.

The second rule states that some (· ∘ ·) <*> u <*> v <*> w = u <*> (v <*> w) . If any of
u , v , or w  is none , then both sides are none , so the property holds. Assuming that u  is
some f , that v  is some g , and that w  is some x , then this is equivalent to saying that some 
(· ∘ ·) <*> some f <*> some g <*> some x = some f <*> (some g <*> some x) .
Evaluating the two sides yields the same result:

The third rule follows directly from the definition of seq :

some (· ∘ ·) <*> some f <*> some g <*> some x
===>
some (f ∘ ·) <*> some g <*> some x
===>
some (f ∘ g) <*> some x
===>
some ((f ∘ g) x)
===>
some (f (g x))

some f <*> (some g <*> some x)
===>
some f <*> (some (g x))
===>
some (f (g x))
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In the fourth case, assume that u  is some f , because if it's none , both sides of the
equation are none . some f <*> some x  evaluates directly to some (f x) , as does some 
(fun g => g x) <*> some f .

All Applicatives are Functors

The two operators for Applicative  are enough to define map :

This can only be used to implement Functor  if the contract for Applicative  guarantees
the contract for Functor , however. The first rule of Functor  is that id <$> x = x , which
follows directly from the first rule for Applicative . The second rule of Functor  is that map 
(f ∘ g) x = map f (map g x) . Unfolding the definition of map  here results in pure (f ∘ 
g) <*> x = pure f <*> (pure g <*> x) . Using the rule that sequencing pure operations is
a no-op, the left side can be rewritten to pure (· ∘ ·) <*> pure f <*> pure g <*> x . This
is an instance of the rule that states that applicative functors respect function composition.

This justifies a definition of Applicative  that extends Functor , with a default definition of
map  given in terms of pure  and seq :

All Monads are Applicative Functors

An instance of Monad  already requires an implementation of pure . Together with bind ,
this is enough to define seq :

some f <*> some x
===>
f <$> some x
===>
some (f x)

def map [Applicative f] (g : α → β) (x : f α) : f β :=
  pure g <*> x

class Applicative (f : Type → Type) extends Functor f where
  pure : α → f α
  seq : f (α → β) → (Unit → f α) → f β
  map g x := seq (pure g) (fun () => x)

def seq [Monad m] (f : m (α → β)) (x : Unit → m α) : m β := do
  let g ← f
  let y ← x ()
  pure (g y)
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Once again, checking that the Monad  contract implies the Applicative  contract will allow
this to be used as a default definition for seq  if Monad  extends Applicative .

The rest of this section consists of an argument that this implementation of seq  based on
bind  in fact satisfies the Applicative  contract. One of the beautiful things about

functional programming is that this kind of argument can be worked out on a piece of paper
with a pencil, using the kinds of evaluation rules from the initial section on evaluating
expressions. Thinking about the meanings of the operations while reading these arguments
can sometimes help with understanding.

Replacing do -notation with explicit uses of >>=  makes it easier to apply the Monad  rules:

To check that this definition respects identity, check that seq (pure id) (fun () => v) = 
v . The left hand side is equivalent to pure id >>= fun g => (fun () => v) () >>= fun y 
=> pure (g y) . The unit function in the middle can be eliminated immediately, yielding
pure id >>= fun g => v >>= fun y => pure (g y) . Using the fact that pure  is a left

identity of >>= , this is the same as v >>= fun y => pure (id y) , which is v >>= fun y => 
pure y . Because fun x => f x  is the same as f , this is the same as v >>= pure , and the
fact that pure  is a right identity of >>=  can be used to get v .

This kind of informal reasoning can be made easier to read with a bit of reformatting. In the
following chart, read "EXPR1 ={ REASON }= EXPR2" as "EXPR1 is the same as EXPR2 because
REASON":

={ pure  is a left identity of >>=  }=

={ Reduce the call to id  }=

={ fun x => f x  is the same as f  }=

={ pure  is a right identity of >>=  }=

To check that it respects function composition, check that pure (· ∘ ·) <*> u <*> v <*> 
w = u <*> (v <*> w) . The first step is to replace <*>  with this definition of seq . After that,
a (somewhat long) series of steps that use the identity and associativity rules from the
Monad  contract is enough to get from one to the other:

def seq [Monad m] (f : m (α → β)) (x : Unit → m α) : m β := do
  f >>= fun g =>
  x () >>= fun y =>
  pure (g y)

pure id >>= fun g => v >>= fun y => pure (g y)

v >>= fun y => pure (id y)

v >>= fun y => pure y

v >>= pure

v

https://leanprover.github.io/functional_programming_in_lean/getting-to-know/evaluating.html
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={ Definition of seq  }=

={ pure  is a left identity of >>=  }=

={ Insertion of parentheses for clarity }=

={ Associativity of >>=  }=

={ pure  is a left identity of >>=  }=

={ Associativity of >>=  }=

={ pure  is a left identity of >>=  }=

={ Definition of function composition }=

seq (seq (seq (pure (· ∘ ·)) (fun _ => u))
      (fun _ => v))
  (fun _ => w)

((pure (· ∘ ·) >>= fun f =>
   u >>= fun x =>
   pure (f x)) >>= fun g =>
  v >>= fun y =>
  pure (g y)) >>= fun h =>
 w >>= fun z =>
 pure (h z)

((u >>= fun x =>
   pure (x ∘ ·)) >>= fun g =>
   v >>= fun y =>
  pure (g y)) >>= fun h =>
 w >>= fun z =>
 pure (h z)

((u >>= fun x =>
   pure (x ∘ ·)) >>= (fun g =>
   v >>= fun y =>
  pure (g y))) >>= fun h =>
 w >>= fun z =>
 pure (h z)

(u >>= fun x =>
  pure (x ∘ ·) >>= fun g =>
 v  >>= fun y => pure (g y)) >>= fun h =>
 w >>= fun z =>
 pure (h z)

(u >>= fun x =>
  v >>= fun y =>
  pure (x ∘ y)) >>= fun h =>
 w >>= fun z =>
 pure (h z)

u >>= fun x =>
v >>= fun y =>
pure (x ∘ y) >>= fun h =>
w >>= fun z =>
pure (h z)

u >>= fun x =>
v >>= fun y =>
w >>= fun z =>
pure ((x ∘ y) z)
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={ Time to start moving backwards! pure  is a left identity of >>=  }=

={ Associativity of >>=  }=

={ Associativity of >>=  }=

={ This includes the definition of seq  }=

={ This also includes the definition of seq  }=

To check that sequencing pure operations is a no-op:

={ Replacing seq  with its definition }=

={ pure  is a left identity of >>=  }=

={ pure  is a left identity of >>=  }=

And finally, to check that the ordering of pure operations doesn't matter:

={ Definition of seq  }=

u >>= fun x =>
v >>= fun y =>
w >>= fun z =>
pure (x (y z))

u >>= fun x =>
v >>= fun y =>
w >>= fun z =>
pure (y z) >>= fun q =>
pure (x q)

u >>= fun x =>
v >>= fun y =>
 (w >>= fun p =>
  pure (y p)) >>= fun q =>
 pure (x q)

u >>= fun x =>
 (v >>= fun y =>
  w >>= fun q =>
  pure (y q)) >>= fun z =>
 pure (x z)

u >>= fun x =>
seq v (fun () => w) >>= fun q =>
pure (x q)

seq u (fun () => seq v (fun () => w))

seq (pure f) (fun () => pure x)

pure f >>= fun g =>
pure x >>= fun y =>
pure (g y)

pure f >>= fun g =>
pure (g x)

pure (f x)

seq u (fun () => pure x)
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={ pure  is a left identity of >>=  }=

={ Clever replacement of one expression by an equivalent one that makes
the rule match }=

={ pure  is a left identity of >>=  }=

={ Definition of seq  }=

This justifies a definition of Monad  that extends Applicative , with a default definition of
seq :

Applicative 's own default definition of map  means that every Monad  instance
automatically generates Applicative  and Functor  instances as well.

Additional Stipulations

In addition to adhering to the individual contracts associated with each type class, combined
implementations Functor , Applicative  and Monad  should work equivalently to these
default implementations. In other words, a type that provides both Applicative  and
Monad  instances should not have an implementation of seq  that works differently from the

version that the Monad  instance generates as a default implementation. This is important
because polymorphic functions may be refactored to replace a use of >>=  with an
equivalent use of <*> , or a use of <*>  with an equivalent use of >>= . This refactoring
should not change the meaning of programs that use this code.

This rule explains why Validate.andThen  should not be used to implement bind  in a
Monad  instance. On its own, it obeys the monad contract. However, when it is used to

implement seq , the behavior is not equivalent to seq  itself. To see where they differ, take

u >>= fun f =>
pure x >>= fun y =>
pure (f y)

u >>= fun f =>
pure (f x)

u >>= fun f =>
pure ((fun g => g x) f)

pure (fun g => g x) >>= fun h =>
u >>= fun f =>
pure (h f)

seq (pure (fun f => f x)) (fun () => u)

class Monad (m : Type → Type) extends Applicative m where
  bind : m α → (α → m β) → m β
  seq f x :=
    bind f fun g =>
    bind (x ()) fun y =>
    pure (g y)
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the example of two computations, both of which return errors. Start with an example of a
case where two errors should be returned, one from validating a function (which could have
just as well resulted from a prior argument to the function), and one from validating an
argument:

Combining them with the version of <*>  from Validate 's Applicative  instance results in
both errors being reported to the user:

Using the version of seq  that was implemented with >>= , here rewritten to andThen ,
results in only the first error being available:

def notFun : Validate String (Nat → String) :=
  .errors { head := "First error", tail := [] }

def notArg : Validate String Nat :=
  .errors { head := "Second error", tail := [] }

notFun <*> notArg
===>
match notFun with
| .ok g => g <$> notArg
| .errors errs =>
  match notArg with
  | .ok _ => .errors errs
  | .errors errs' => .errors (errs ++ errs')
===>
match notArg with
| .ok _ => .errors { head := "First error", tail := [] }
| .errors errs' => .errors ({ head := "First error", tail := [] } ++ errs')
===>
.errors ({ head := "First error", tail := [] } ++ { head := "Second error", tail 
:= []})
===>
.errors { head := "First error", tail := ["Second error"]}

seq notFun (fun () => notArg)
===>
notFun.andThen fun g =>
notArg.andThen fun y =>
pure (g y)
===>
match notFun with
| .errors errs => .errors errs
| .ok val =>
  (fun g =>
    notArg.andThen fun y =>
    pure (g y)) val
===>
.errors { head := "First error", tail := [] }
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Alternatives

Recovery from Failure

Validate  can also be used in situations where there is more than one way for input to be
acceptable. For the input form RawInput , an alternative set of business rules that
implement conventions from a legacy system might be the following:

1. All human users must provide a birth year that is four digits.
2. Users born prior to 1970 do not need to provide names, due to incomplete older

records.
3. Users born after 1970 must provide names.
4. Companies should enter "FIRM"  as their year of birth and provide a company name.

No particular provision is made for users born in 1970. It is expected that they will either
give up, lie about their year of birth, or call. The company considers this an acceptable cost
of doing business.

The following inductive type captures the values that can be produced from these stated
rules:

A validator for these rules is more complicated, however, as it must address all three cases.
While it can be written as a series of nested if  expressions, it's easier to design the three
cases independently and then combine them. This requires a means of recovering from
failure while preserving error messages:

abbrev NonEmptyString := {s : String // s ≠ ""}

inductive LegacyCheckedInput where
  | humanBefore1970 :
    (birthYear : {y : Nat // y > 999 ∧ y < 1970}) →
    String →
    LegacyCheckedInput
  | humanAfter1970 :
    (birthYear : {y : Nat // y > 1970}) →
    NonEmptyString →
    LegacyCheckedInput
  | company :
    NonEmptyString →
    LegacyCheckedInput
deriving Repr
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This pattern of recovery from failures is common enough that Lean has built-in syntax for it,
attached to a type class named OrElse :

The expression E1 <|> E2  is short for OrElse.orElse E1 (fun () => E2) . An instance of
OrElse  for Validate  allows this syntax to be used for error recovery:

The validator for LegacyCheckedInput  can be built from a validator for each constructor.
The rules for a company state that the birth year should be the string "FIRM"  and that the
name should be non-empty. The constructor LegacyCheckedInput.company , however, has
no representation of the birth year at all, so there's no easy way to carry it out using <*> .
The key is to use a function with <*>  that ignores its argument.

Checking that a Boolean condition holds without recording any evidence of this fact in a
type can be accomplished with checkThat :

This definition of checkCompany  uses checkThat , and then throws away the resulting Unit
value:

However, this definition is quite noisy. It can be simplified in two ways. The first is to replace
the first use of <*>  with a specialized version that automatically ignores the value returned
by the first argument, called *> . This operator is also controlled by a type class, called
SeqRight , and E1 *> E2  is syntactic sugar for SeqRight.seqRight E1 (fun () => E2) :

def Validate.orElse (a : Validate ε α) (b : Unit → Validate ε α) : Validate ε α 
:=
  match a with
  | .ok x => .ok x
  | .errors errs1 =>
    match b () with
    | .ok x => .ok x
    | .errors errs2 => .errors (errs1 ++ errs2)

class OrElse (α : Type) where
  orElse : α → (Unit → α) → α

instance : OrElse (Validate ε α) where
  orElse := Validate.orElse

def checkThat (condition : Bool) (field : Field) (msg : String) : Validate 
(Field × String) Unit :=
  if condition then pure () else reportError field msg

def checkCompany (input : RawInput) : Validate (Field × String) 
LegacyCheckedInput :=
  pure (fun () name => .company name) <*>
    checkThat (input.birthYear == "FIRM") "birth year" "FIRM if a company" <*>
    checkName input.name
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There is a default implementation of seqRight  in terms of seq : seqRight (a : f α) (b : 
Unit → f β) : f β := pure (fun _ x => x) <*> a <*> b () .

Using seqRight , checkCompany  becomes simpler:

One more simplification is possible. For every Applicative , pure F <*> E  is equivalent to
f <$> E . In other words, using seq  to apply a function that was placed into the
Applicative  type using pure  is overkill, and the function could have just been applied

using Functor.map . This simplification yields:

The remaining two constructors of LegacyCheckedInput  use subtypes for their fields. A
general-purpose tool for checking subtypes will make these easier to read:

In the function's argument list, it's important that the type class [Decidable (p v)]  occur
after the specification of the arguments v  and p . Otherwise, it would refer to an additional
set of automatic implicit arguments, rather than to the manually-provided values. The
Decidable  instance is what allows the proposition p v  to be checked using if .

The two human cases do not need any additional tools:

class SeqRight (f : Type → Type) where
  seqRight : f α → (Unit → f β) → f β

def checkCompany (input : RawInput) : Validate (Field × String) 
LegacyCheckedInput :=
  checkThat (input.birthYear == "FIRM") "birth year" "FIRM if a company" *>
  pure .company <*> checkName input.name

def checkCompany (input : RawInput) : Validate (Field × String) 
LegacyCheckedInput :=
  checkThat (input.birthYear == "FIRM") "birth year" "FIRM if a company" *>
  .company <$> checkName input.name

def checkSubtype {α : Type} (v : α) (p : α → Prop) [Decidable (p v)] (err : ε) : 
Validate ε {x : α // p x} :=
  if h : p v then
    pure ⟨v, h⟩
  else
    .errors { head := err, tail := [] }
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The validators for the three cases can be combined using <|> :

The successful cases return constructors of LegacyCheckedInput , as expected:

The worst possible input returns all the possible failures:

def checkHumanBefore1970 (input : RawInput) : Validate (Field × String) 
LegacyCheckedInput :=
  (checkYearIsNat input.birthYear).andThen fun y =>
    .humanBefore1970 <$>
      checkSubtype y (fun x => x > 999 ∧ x < 1970) ("birth year", "less than 
1970") <*>
      pure input.name

def checkHumanAfter1970 (input : RawInput) : Validate (Field × String) 
LegacyCheckedInput :=
  (checkYearIsNat input.birthYear).andThen fun y =>
    .humanAfter1970 <$>
      checkSubtype y (· > 1970) ("birth year", "greater than 1970") <*>
      checkName input.name

def checkLegacyInput (input : RawInput) : Validate (Field × String) 
LegacyCheckedInput :=
  checkCompany input <|> checkHumanBefore1970 input <|> checkHumanAfter1970 
input

#eval checkLegacyInput ⟨"Johnny's Troll Groomers", "FIRM"⟩

Validate.ok (LegacyCheckedInput.company "Johnny's Troll Groomers")

#eval checkLegacyInput ⟨"Johnny", "1963"⟩

Validate.ok (LegacyCheckedInput.humanBefore1970 1963 "Johnny")

#eval checkLegacyInput ⟨"", "1963"⟩

Validate.ok (LegacyCheckedInput.humanBefore1970 1963 "")

#eval checkLegacyInput ⟨"", "1970"⟩

Validate.errors
  { head := ("birth year", "FIRM if a company"),
    tail := [("name", "Required"),
             ("birth year", "less than 1970"),
             ("birth year", "greater than 1970"),
             ("name", "Required")] }
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The Alternative Class

Many types support a notion of failure and recovery. The Many  monad from the section on
evaluating arithmetic expressions in a variety of monads is one such type, as is Option .
Both support failure without providing a reason (unlike, say, Except  and Validate , which
require some indication of what went wrong).

The Alternative  class describes applicative functors that have additional operators for
failure and recovery:

Just as implementors of Add α  get HAdd α α α  instances for free, implementors of
Alternative  get OrElse  instances for free:

The implementation of Alternative  for Option  keeps the first none- none  argument:

Similarly, the implementation for Many  follows the general structure of Many.union , with
minor differences due to the laziness-inducing Unit  parameters being placed differently:

Like other type classes, Alternative  enables the definition of a variety of operations that
work for any applicative functor that implements Alternative . One of the most important
is guard , which causes failure  when a decidable proposition is false:

class Alternative (f : Type → Type) extends Applicative f where
  failure : f α
  orElse : f α → (Unit → f α) → f α

instance [Alternative f] : OrElse (f α) where
  orElse := Alternative.orElse

instance : Alternative Option where
  failure := none
  orElse
    | some x, _ => some x
    | none, y => y ()

def Many.orElse : Many α → (Unit → Many α) → Many α
  | .none, ys => ys ()
  | .more x xs, ys => .more x (fun () => orElse (xs ()) ys)

instance : Alternative Many where
  failure := .none
  orElse := Many.orElse

def guard [Alternative f] (p : Prop) [Decidable p] : f Unit :=
  if p then
    pure ()
  else failure

https://leanprover.github.io/functional_programming_in_lean/monads/arithmetic.html#nondeterministic-search
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It is very useful in monadic programs to terminate execution early. In Many , it can be used
to filter out a whole branch of a search, as in the following program that computes all even
divisors of a natural number:

Running it on 20  yields the expected results:

Exercises

Improve Validation Friendliness

The errors returned from Validate  programs that use <|>  can be difficult to read,
because inclusion in the list of errors simply means that the error can be reached through
some code path. A more structured error report can be used to guide the user through the
process more accurately:

Replace the NonEmptyList  in Validate.error  with a bare type variable, and then
update the definitions of the Applicative (Validate ε)  and OrElse (Validate ε 
α)  instances to require only that there be an Append ε  instance available.
Define a function Validate.mapErrors : Validate ε α → (ε → ε') → Validate ε' α
that transforms all the errors in a validation run.
Using the datatype TreeError  to represent errors, rewrite the legacy validation
system to track its path through the three alternatives.
Write a function report : TreeError → String  that outputs a user-friendly view of
the TreeError 's accumulated warnings and errors.

def Many.countdown : Nat → Many Nat
  | 0 => .none
  | n + 1 => .more n (fun () => countdown n)

def evenDivisors (n : Nat) : Many Nat := do
  let k ← Many.countdown (n + 1)
  guard (k % 2 = 0)
  guard (n % k = 0)
  pure k

#eval (evenDivisors 20).takeAll

[20, 10, 4, 2]
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inductive TreeError where
  | field : Field → String → TreeError
  | path : String → TreeError → TreeError
  | both : TreeError → TreeError → TreeError

instance : Append TreeError where
  append := .both
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Universes
In the interests of simplicity, this book has thus far papered over an important feature of
Lean: universes. A universe is a type that classifies other types. Two of them are familiar:
Type  and Prop . Type  classifies ordinary types, such as Nat , String , Int → String × 
Char , and IO Unit . Prop  classifies propositions that may be true or false, such as "nisse" 
= "elf"  or 3 > 2 . The type of Prop  is Type :

For technical reasons, more universes than these two are needed. In particular, Type
cannot itself be a Type . This would allow a logical paradox to be constructed and
undermine Lean's usefulness as a theorem prover.

The formal argument for this is known as Girard's Paradox. It related to a better-known
paradox known as Russell's Paradox, which was used to show that early versions of set
theory were inconsistent. In these set theories, a set can be defined by a property. For
example, one might have the set of all red things, the set of all fruit, the set of all natural
numbers, or even the set of all sets. Given a set, one can ask whether a given element is
contained in it. For instance, a bluebird is not contained in the set of all red things, but the
set of all red things is contained in the set of all sets. Indeed, the set of all sets even contains
itself.

What about the set of all sets that do not contain themselves? It contains the set of all red
things, as the set of all red things is not itself red. It does not contain the set of all sets,
because the set of all sets contains itself. But does it contain itself? If it does contain itself,
then it cannot contain itself. But if it does not, then it must.

This is a contradiction, which demonstrates that something was wrong with the initial
assumptions. In particular, allowing sets to be constructed by providing an arbitrary
property is too powerful. Later versions of set theory restrict the formation of sets to
remove the paradox.

A related paradox can be constructed in versions of dependent type theory that assign the
type Type  to Type . To ensure that Lean has consistent logical foundations and can be used
as a tool for mathematics, Type  needs to have some other type. This type is called Type 1 :

Similarly, Type 1  is a Type 2 , Type 2  is a Type 3 , Type 3  is a Type 4 , and so forth.

#check Prop

Prop : Type

#check Type

Type : Type 1
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Function types occupy the smallest universe that can contain both the argument type and
the return type. This means that Nat → Nat  is a Type , Type → Type  is a Type 1 , and Type 
1 → Type 2  is a Type 3 .

There is one exception to this rule. If the return type of a function is a Prop , then the whole
function type is in Prop , even if the argument is in a larger universe such as Type  or even
Type 1 . In particular, this means that predicates over values that have ordinary types are in
Prop . For example, the type (n : Nat) → n = n + 0  represents a function from a Nat  to

evidence that it is equal to itself plus zero. Even though Nat  is in Type , this function type is
in Prop  due to this rule. Similarly, even though Type  is in Type 1 , the function type Type 
→ 2 + 2 = 4  is still in Prop .

User Defined Types

Structures and inductive datatypes can be declared to inhabit particular universes. Lean
then checks whether each datatype avoids paradoxes by being in a universe that's large
enough to prevent it from containing its own type. For instance, in the following declaration,
MyList  is declared to reside in Type , and so is its type argument α :

MyList  itself is a Type → Type . This means that it cannot be used to contain actual types,
because then its argument would be Type , which is a Type 1 :

Updating MyList  so that its argument is a Type 1  results in a definition rejected by Lean:

inductive MyList (α : Type) : Type where
  | nil : MyList α
  | cons : α → MyList α → MyList α

def myListOfNat : MyList Type :=
  .cons Nat .nil

application type mismatch
  MyList Type
argument
  Type
has type
  Type 1 : Type 2
but is expected to have type
  Type : Type 1

inductive MyList (α : Type 1) : Type where
  | nil : MyList α
  | cons : α → MyList α → MyList α
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This error occurs because the argument to cons  with type α  is from a larger universe than
MyList . Placing MyList  itself in Type 1  solves this issue, but at the cost of MyList  now

being itself inconvenient to use in contexts that expect a Type .

The specific rules that govern whether a datatype is allowed are somewhat complicated.
Generally speaking, it's easiest to start with the datatype in the same universe as the largest
of its arguments. Then, if Lean rejects the definition, increase its level by one, which will
usually go through.

Universe Polymorphism

Defining a datatype in a specific universe can lead to code duplication. Placing MyList  in
Type → Type  means that it can't be used for an actual list of types. Placing it in Type 1 → 
Type 1  means that it can't be used for a list of lists of types. Rather than copy-pasting the
datatype to create versions in Type , Type 1 , Type 2 , and so on, a feature called universe
polymorphism can be used to write a single definition that can be instantiated in any of
these universes.

Ordinary polymorphic types use variables to stand for types in a definition. This allows Lean
to fill in the variables differently, which enables these definitions to be used with a variety of
types. Similarly, universe polymorphism allows variables to stand for universes in a
definition, enabling Lean to fill them in differently so that they can be used with a variety of
universes. Just as type arguments are conventionally named with Greek letters, universe
arguments are conventionally named u , v , and w .

This definition of MyList  doesn't specify a particular universe level, but instead uses a
variable u  to stand for any level. If the resulting datatype is used with Type , then u  is 0 ,
and if it's used with Type 3 , then u  is 3 :

With this definition, the same definition of MyList  can be used to contain both actual
natural numbers and the natural number type itself:

invalid universe level in constructor 'MyList.cons', parameter has type
  α
at universe level
  2
it must be smaller than or equal to the inductive datatype universe level
  1

inductive MyList (α : Type u) : Type u where
  | nil : MyList α
  | cons : α → MyList α → MyList α
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It can even contain itself:

It would seem that this would make it possible to write a logical paradox. After all, the whole
point of the universe system is to rule out self-referential types. Behind the scenes,
however, each occurrence of MyList  is provided with a universe level argument. In
essence, the universe-polymorphic definition of MyList  created a copy of the datatype at
each level, and the level argument selects which copy is to be used. These level arguments
are written with a dot and curly braces, so MyList.{0} : Type → Type , MyList.{1} : Type 
1 → Type 1 , and MyList.{2} : Type 2 → Type 2 .

Writing the levels explicitly, the prior example becomes:

When a universe-polymorphic definition takes multiple types as arguments, it's a good idea
to give each argument its own level variable for maximum flexibility. For example, a version
of Sum  with a single level argument can be written as follows:

This definition can be used at multiple levels:

However, it requires that both arguments be in the same universe:

def myListOfNumbers : MyList Nat :=
  .cons 0 (.cons 1 .nil)

def myListOfNat : MyList Type :=
  .cons Nat .nil

def myListOfList : MyList (Type → Type) :=
  .cons MyList .nil

def myListOfNumbers : MyList.{0} Nat :=
  .cons 0 (.cons 1 .nil)

def myListOfNat : MyList.{1} Type :=
  .cons Nat .nil

def myListOfList : MyList.{1} (Type → Type) :=
  .cons MyList.{0} .nil

inductive Sum (α : Type u) (β : Type u) : Type u where
  | inl : α → Sum α β
  | inr : β → Sum α β

def stringOrNat : Sum String Nat := .inl "hello"

def typeOrType : Sum Type Type := .inr Nat

def stringOrType : Sum String Type := .inr Nat
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This datatype can be made more flexible by using different variables for the two type
arguments' universe levels, and then declaring that the resulting datatype is in the largest of
the two:

This allows Sum  to be used with arguments from different universes:

In positions where Lean expects a universe level, any of the following are allowed:

A concrete level, like 0  or 1
A variable that stands for a level, such as u  or v
The maximum of two levels, written as max  applied to the levels
A level increase, written with + 1

Writing Universe-Polymorphic Definitions

Until now, every datatype defined in this book has been in Type , the smallest universe of
data. When presenting polymorphic datatypes from the Lean standard library, such as
List  and Sum , this book created non-universe-polymorphic versions of them. The real

versions use universe polymorphism to enable code re-use between type-level and non-
type-level programs.

There are a few general guidelines to follow when writing universe-polymorphic types. First
off, independent type arguments should have different universe variables, which enables
the polymorphic definition to be used with a wider variety of arguments, increasing the
potential for code reuse. Secondly, the whole type is itself typically either in the maximum of
all the universe variables, or one greater than this maximum. Try the smaller of the two first.
Finally, it's a good idea to put the new type in as small of a universe as possible, which
allows it to be used more flexibly in other contexts. Non-polymorphic types, such as Nat
and String , can be placed directly in Type 0 .

application type mismatch
  Sum String Type
argument
  Type
has type
  Type 1 : Type 2
but is expected to have type
  Type : Type 1

inductive Sum (α : Type u) (β : Type v) : Type (max u v) where
  | inl : α → Sum α β
  | inr : β → Sum α β

def stringOrType : Sum String Type := .inr Nat
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Prop and Polymorphism

Just as Type , Type 1 , and so on describe types that classify programs and data, Prop
classifies logical propositions. A type in Prop  describes what counts as convincing evidence
for the truth of a statement. Propositions are like ordinary types in many ways: they can be
declared inductively, they can have constructors, and functions can take propositions as
arguments. However, unlike datatypes, it typically doesn't matter which evidence is provided
for the truth of a statement, only that evidence is provided. On the other hand, it is very
important that a program not only return a Nat , but that it's the correct Nat .

Prop  is at the bottom of the universe hierarchy, and the type of Prop  is Type . This means
that Prop  is a suitable argument to provide to List , for the same reason that Nat  is. Lists
of propositions have type List Prop :

Filling out the universe argument explicitly demonstrates that Prop  is a Type :

Behind the scenes, Prop  and Type  are united into a single hierarchy called Sort . Prop  is
the same as Sort 0 , Type 0  is Sort 1 , Type 1  is Sort 2 , and so forth. In fact, Type u  is
the same as Sort (u+1) . When writing programs with Lean, this is typically not relevant,
but it may occur in error messages from time to time, and it explains the name of the
CoeSort  class. Additionally, having Prop  as Sort 0  allows one more universe operator to

become useful. The universe level imax u v  is 0  when v  is 0 , or the larger of u  or v
otherwise. Together with Sort , this allows the special rule for functions that return Prop s
to be used when writing code that should be as portable as possible between Prop  and
Type  universes.

Polymorphism in Practice

In the remainder of the book, definitions of polymorphic datatypes, structures, and classes
will use universe polymorphism in order to be consistent with the Lean standard library.
This will enable the complete presentation of the Functor , Applicative , and Monad
classes to be completely consistent with their actual definitions.

def someTruePropositions : List Prop := [
  1 + 1 = 2,
  "Hello, " ++ "world!" = "Hello, world!"
]

def someTruePropositions : List.{0} Prop := [
  1 + 1 = 2,
  "Hello, " ++ "world!" = "Hello, world!"
]
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The Complete Definitions
Now that all the relevant language features have been presented, this section describes the
complete, honest definitions of Functor , Applicative , and Monad  as they occur in the
Lean standard library. For the sake of understanding, no details are omitted.

Functor

The complete definition of the Functor  class makes use of universe polymorphism and a
default method implementation:

In this definition, Function.comp  is function composition, which is typically written with the
∘  operator. Function.const  is the constant function, which is a two-argument function that

ignores its second argument. Applying this function to only one argument produces a
function that always returns the same value, which is useful when an API demands a
function but a program doesn't need to compute different results for different arguments. A
simple version of Function.const  can be written as follows:

Using it with one argument as the function argument to List.map  demonstrates its utility:

The actual function has the following signature:

Here, the type argument β  is an explicit argument, so the default definition of
Functor.mapConst  provides an _  argument that instructs Lean to find a unique type to

pass to Function.const  that would cause the program to type check. (Function.comp map 
(Function.const _) : α → f β → f α)  is equivalent to fun (x : α) (y : f β) => map 
(fun _ => x) y .

class Functor (f : Type u → Type v) : Type (max (u+1) v) where
  map : {α β : Type u} → (α → β) → f α → f β
  mapConst : {α β : Type u} → α → f β → f α :=
    Function.comp map (Function.const _)

def simpleConst  (x : α) (_ : β) : α := x

#eval [1, 2, 3].map (simpleConst "same")

["same", "same", "same"]

Function.const.{u, v} {α : Sort u} (β : Sort v) (a : α) (a✝ : β) : α
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The Functor  type class inhabits a universe that is the greater of u+1  and v . Here, u  is the
level of universes accepted as arguments to f , while v  is the universe returned by f . To
see why the structure that implements the Functor  type class must be in a universe that's
larger than u , begin with a simplified definition of the class:

This type class's structure type is equivalent to the following inductive type:

The implementation of the map  method that is passed as an argument to Functor.mk
contains a function that takes two types in Type u  as arguments. This means that the type
of the function itself is in Type (u+1) , so Functor  must also be at a level that is at least
u+1 . Similarly, other arguments to the function have a type built by applying f , so it must

also have a level that is at least v . All the type classes in this section share this property.

Applicative

The Applicative  type class is actually built from a number of smaller classes that each
contain some of the relevant methods. The first are Pure  and Seq , which contain pure
and seq  respectively:

In addition to these, Applicative  also depends on SeqRight  and an analogous SeqLeft
class:

The seqRight  function, which was introduced in the section about alternatives and
validation, is easiest to understand from the perspective of effects. E1 *> E2 , which
desugars to SeqRight.seqRight E1 (fun () => E2) , can be understood as first executing
E1 , and then E2 , resulting only in E2 's result. Effects from E1  may result in E2  not being

run, or being run multiple times. Indeed, if f  has a Monad  instance, then E1 *> E2  is

class Functor (f : Type u → Type v) : Type (max (u+1) v) where
  map : {α β : Type u} → (α → β) → f α → f β

inductive Functor (f : Type u → Type v) : Type (max (u+1) v) where
  | mk : ({α β : Type u} → (α → β) → f α → f β) → Functor f

class Pure (f : Type u → Type v) : Type (max (u+1) v) where
  pure {α : Type u} : α → f α

class Seq (f : Type u → Type v) : Type (max (u+1) v) where
  seq : {α β : Type u} → f (α → β) → (Unit → f α) → f β

class SeqRight (f : Type u → Type v) : Type (max (u+1) v) where
  seqRight : {α β : Type u} → f α → (Unit → f β) → f β

class SeqLeft (f : Type u → Type v) : Type (max (u+1) v) where
  seqLeft : {α β : Type u} → f α → (Unit → f β) → f α

https://leanprover.github.io/functional_programming_in_lean/functor-applicative-monad/alternative.html
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equivalent to do let _ ← E1; E2 , but seqRight  can be used with types like Validate  that
are not monads.

Its cousin seqLeft  is very similar, except the leftmost expression's value is returned. E1 <* 
E2  desugars to SeqLeft.seqLeft E1 (fun () => E2) . SeqLeft.seqLeft  has type f α → 
(Unit → f β) → f α , which is identical to that of seqRight  except for the fact that it
returns f α . E1 <* E2  can be understood as a program that first executes E1 , and then
E2 , returning the original result for E1 . If f  has a Monad  instance, then E1 <* E2  is

equivalent to do let x ← E1; _ ← E2; pure x . Generally speaking, seqLeft  is useful for
specifying extra conditions on a value in a validation or parser-like workflow without
changing the value itself.

The definition of Applicative  extends all these classes, along with Functor :

A complete definition of Applicative  requires only definitions for pure  and seq . This is
because there are default definitions for all of the methods from Functor , SeqLeft , and
SeqRight . The mapConst  method of Functor  has its own default implementation in terms

of Functor.map . These default implementations should only be overridden with new
functions that are behaviorally equivalent, but more efficient. The default implementations
should be seen as specifications for correctness as well as automatically-created code.

The default implementation for seqLeft  is very compact. Replacing some of the names
with their syntactic sugar or their definitions can provide another view on it, so:

becomes

How should (fun x _ => x) <$> a  be understood? Here, a  has type f α , and f  is a
functor. If f  is List , then (fun x _ => x) <$> [1, 2, 3]  evaluates to [fun _ => 1, fun 
_ => 2, fun _ => 3] . If f  is Option , then (fun x _ => x) <$> some "hello"  evaluates
to some (fun _ => "hello") . In each case, the values in the functor are replaced by
functions that return the original value, ignoring their argument. When combined with seq ,
this function discards the values from seq 's second argument.

The default implementation for seqRight  is very similar, except const  has an additional
argument id . This definition can be understood similarly, by first introducing some
standard syntactic sugar and then replacing some names with their definitions:

class Applicative (f : Type u → Type v) extends Functor f, Pure f, Seq f, 
SeqLeft f, SeqRight f where
  map      := fun x y => Seq.seq (pure x) fun _ => y
  seqLeft  := fun a b => Seq.seq (Functor.map (Function.const _) a) b
  seqRight := fun a b => Seq.seq (Functor.map (Function.const _ id) a) b

fun a b => Seq.seq (Functor.map (Function.const _) a) b

fun a b => Seq.seq ((fun x _ => x) <$> a) b
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How should (fun _ x => x) <$> a  be understood? Once again, examples are useful. (fun 
_ x => x) <$> [1, 2, 3]  is equivalent to [fun x => x, fun x => x, fun x => x] , and
(fun _ x => x) <$> some "hello"  is equivalent to some (fun x => x) . In other words,
(fun _ x => x) <$> a  preserves the overall shape of a , but each value is replaced by the

identity function. From the perspective of effects, the side effects of a  occur, but the values
are thrown out when it is used with seq .

Monad

Just as the constituent operations of Applicative  are split into their own type classes,
Bind  has its own class as well:

Monad  extends Applicative  with Bind :

Tracing the collection of inherited methods and default methods from the entire hierarchy
shows that a Monad  instance requires only implementations of bind  and pure . In other
words, Monad  instances automatically yield implementations of seq , seqLeft , seqRight ,
map , and mapConst . From the perspective of API boundaries, any type with a Monad

instance gets instances for Bind , Pure , Seq , Functor , SeqLeft , and SeqRight .

Exercises

1. Understand the default implementations of map , seq , seqLeft , and seqRight  in
Monad  by working through examples such as Option  and Except . In other words,

subsitute their definitions for bind  and pure  into the default definitions, and simplify

fun a b => Seq.seq (Functor.map (Function.const _ id) a) b
===>
fun a b => Seq.seq ((fun _ => id) <$> a) b
===>
fun a b => Seq.seq ((fun _ => fun x => x) <$> a) b
===>
fun a b => Seq.seq ((fun _ x => x) <$> a) b

class Bind (m : Type u → Type v) where
  bind : {α β : Type u} → m α → (α → m β) → m β

class Monad (m : Type u → Type v) extends Applicative m, Bind m : Type (max 
(u+1) v) where
  map      f x := bind x (Function.comp pure f)
  seq      f x := bind f fun y => Functor.map y (x ())
  seqLeft  x y := bind x fun a => bind (y ()) (fun _ => pure a)
  seqRight x y := bind x fun _ => y ()
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them to recover the versions map , seq , seqLeft , and seqRight  that would be
written by hand.

2. On paper or in a text file, prove to yourself that the default implementations of map
and seq  satisfy the contracts for Functor  and Applicative . In this argument, you're
allowed to use the rules from the Monad  contract as well as ordinary expression
evaluation.
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Summary

Type Classes and Structures

Behind the scenes, type classes are represented by structures. Defining a class defines a
structure, and additionally creates an empty table of instances. Defining an instance creates
a value that either has the structure as its type or is a function that can return the structure,
and additionally adds an entry to the table. Instance search consists of constructing an
instance by consulting the instance tables. Both structures and classes may provide default
values for fields (which are default implementations of methods).

Structures and Inheritance

Structures may inherit from other structures. Behind the scenes, a structure that inherits
from another structure contains an instance of the original structure as a field. In other
words, inheritance is implemented with composition. When multiple inheritance is used,
only the unique fields from the additional parent structures are used to avoid a diamond
problem, and the functions that would normally extract the parent value are instead
organized to construct one. Record dot notation takes structure inheritance into account.

Because type classes are just structures with some additional automation applied, all of
these features are available in type classes. Together with default methods, this can be used
to create a fine-grained hierarchy of interfaces that nonetheless does not impose a large
burden on clients, because the small classes that the large classes inherit from can be
automatically implemented.

Applicative Functors

An applicative functor is a functor with two additional operations:

pure , which is the same operator as that for Monad
seq , which allows a function to be applied in the context of the functor.

While monads can represent arbitrary programs with control flow, applicative functors can
only run function arguments from left to right. Because they are less powerful, they provide
less control to programs written against the interface, while the implementor of the method
has a greater degree of freedom. Some useful types can implement Applicative  but not
Monad .
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In fact, the type classes Functor , Applicative , and Monad  form a hierarchy of power.
Moving up the hierarchy, from Functor  towards Monad , allows more powerful programs to
be written, but fewer types implement the more powerful classes. Polymorphic programs
should be written to use as weak of an abstraction as possible, while datatypes should be
given instances that are as powerful as possible. This maximizes code re-use. The more
powerful type classes extend the less powerful ones, which means that an implementation
of Monad  provides implementations of Functor  and Applicative  for free.

Each class has a set of methods to be implemented and a corresponding contract that
specifies additional rules for the methods. Programs that are written against these
interfaces expect that the additional rules are followed, and may be buggy if they are not.
The default implementations of Functor 's methods in terms of Applicative 's, and of
Applicative 's in terms of Monad 's, will obey these rules.

Universes

To allow Lean to be used as both a programming language and a theorem prover, some
restrictions on the language are necessary. This includes restrictions on recursive functions
that ensure that they all either terminate or are marked as partial  and written to return
types that are not uninhabited. Additionally, it must be impossible to represent certain kinds
of logical paradoxes as types.

One of the restrictions that rules out certain paradoxes is that every type is assigned to a
universe. Universes are types such as Prop , Type , Type 1 , Type 2 , and so forth. These
types describe other types—just as 0  and 17  are described by Nat , Nat  is itself described
by Type , and Type  is described by Type 1 . The type of functions that take a type as an
argument must be a larger universe than the argument's universe.

Because each declared datatype has a universe, writing code that uses types like data would
quickly become annoying, requiring each polymorphic type to be copy-pasted to take
arguments from Type 1 . A feature called universe polymorphism allows Lean programs and
datatypes to take universe levels as arguments, just as ordinary polymorphism allows
programs to take types as arguments. Generally speaking, Lean libraries should use
universe polymorphism when implementing libraries of polymorphic operations.
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Monad Transformers
A monad is a way to encode some collection of side effects in a pure language. Different
monads provide different effects, such as state and error handling. Many monads even
provide useful effects that aren't available in most languages, such as nondeterministic
searches, readers, and even continuations.

A typical application has a core set of easily testable functions written without monads
paired with an outer wrapper that uses a monad to encode the necessary application logic.
These monads are constructed from well-known components. For example:

Mutable state is encoded with a function parameter and a return value that have the
same type
Error handling is encoded by having a return type that is similar to Except , with
constructors for success and failure
Logging is encoded by pairing the return value with the log

Writing each monad by hand is tedious, however, involving boilerplate definitions of the
various type classes. Each of these components can also be extracted to a definition that
modifies some other monad to add an additional effect. Such a definition is called a monad
transformer. A concrete monad can be build from a collection of monad transformers, which
enables much more code re-use.
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Combining IO and Reader
One case where a reader monad can be useful is when there is some notion of the "current
configuration" of the application that is passed through many recursive calls. An example of
such a program is tree , which recursively prints the files in the current directory and its
subdirectories, indicating their tree structure using characters. The version of tree  in this
chapter, called doug  after the mighty Douglas Fir tree that adorns the west coast of North
America, provides the option of Unicode box-drawing characters or their ASCII equivalents
when indicating directory structure.

For example, the following commands create a directory structure and some empty files in a
directory called doug-demo :

Running doug  results in the following:

Implementation

Internally, doug  passes a configuration value downwards as it recursively traverses the
directory structure. This configuration contains two fields: useASCII  determines whether to
use Unicode box-drawing characters or ASCII vertical line and dash characters to indicate
structure, and currentPrefix  contains a string to prepend to each line of output. As the
current directory deepens, the prefix string accumulates indicators of being in a directory.
The configuration is a structure:

$ cd doug-demo
$ mkdir -p a/b/c
$ mkdir -p a/d
$ mkdir -p a/e/f
$ touch a/b/hello
$ touch a/d/another-file
$ touch a/e/still-another-file-again

$ doug
├── doug-demo/
│   ├── a/
│   │   ├── b/
│   │   │   ├── hello
│   │   │   ├── c/
│   │   ├── d/
│   │   │   ├── another-file
│   │   ├── e/
│   │   │   ├── still-another-file-again
│   │   │   ├── f/
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This structure has default definitions for both fields. The default Config  uses Unicode
display with no prefix.

Users who invoke doug  will need to be able to provide command-line arguments. The
usage information is as follows:

Accordingly, a configuration can be constructed by examining a list of command-line
arguments:

The main  function is a wrapper around an inner worker, called dirTree , that shows the
contents of a directory using a configuration. Before calling dirTree , main  is responsible
for processing command-line arguments. It must also return the appropriate exit code to
the operating system:

Not all paths should be shown in the directory tree. In particular, files named .  or ..
should be skipped, as they are actually features used for navigation rather than files per se.
Of those files that should be shown, there are two kinds: ordinary files and directories:

To determine whether a file should be shown, along with which kind of entry it is, doug
uses toEntry :

structure Config where
  useASCII : Bool := false
  currentPrefix : String := ""

def usage : String :=
  "Usage: doug [--ascii]
Options:
\t--ascii\tUse ASCII characters to display the directory structure"

def configFromArgs : List String → Option Config
  | [] => some {} -- both fields default
  | ["--ascii"] => some {useASCII := true}
  | _ => none

def main (args : List String) : IO UInt32 := do
  match configFromArgs args with
  | some config =>
    dirTree config (← IO.currentDir)
    pure 0
  | none =>
    IO.eprintln s!"Didn't understand argument(s) {" ".separate args}\n"
    IO.eprintln usage
    pure 1

inductive Entry where
  | file : String → Entry
  | dir : String → Entry
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System.FilePath.components  converts a path into a list of path components, splitting the
name at directory separators. If there is no last component, then the path is the root
directory. If the last component is a special navigation file ( .  or .. ), then the file should be
excluded. Otherwise, directories and files are wrapped in the corresponding constructors.

Lean's logic has no way to know that directory trees are finite. Indeed, some systems allow
the construction of circular directory structures. Thus, dirTree  is declared partial :

The call to toEntry  is a nested action—the parentheses are optional in positions where the
arrow couldn't have any other meaning, such as match . When the filename doesn't
correspond to an entry in the tree (e.g. because it is .. ), dirTree  does nothing. When the
filename points to an ordinary file, dirTree  calls a helper to show it with the current
configuration. When the filename points to a directory, it is shown with a helper, and then
its contents are recursively shown in a new configuration in which the prefix has been
extended to account for being in a new directory.

Showing the names of files and directories is achieved with showFileName  and
showDirName :

Both of these helpers delegate to functions on Config  that take the ASCII vs Unicode
setting into account:

def toEntry (path : System.FilePath) : IO (Option Entry) := do
  match path.components.getLast? with
  | none => pure (some (.dir ""))
  | some "." | some ".." => pure none
  | some name =>
    pure (some (if (← path.isDir) then .dir name else .file name))

partial def dirTree (cfg : Config) (path : System.FilePath) : IO Unit := do
  match ← toEntry path with
  | none => pure ()
  | some (.file name) => showFileName cfg name
  | some (.dir name) =>
    showDirName cfg name
    let contents ← path.readDir
    let newConfig := cfg.inDirectory
    doList contents.toList fun d =>
      dirTree newConfig d.path

def showFileName (cfg : Config) (file : String) : IO Unit := do
  IO.println (cfg.fileName file)

def showDirName (cfg : Config) (dir : String) : IO Unit := do
  IO.println (cfg.dirName dir)

https://leanprover.github.io/functional_programming_in_lean/hello-world/conveniences.html#nested-actions
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Similarly, Config.inDirectory  extends the prefix with a directory marker:

Iterating an IO action over a list of directory contents is achieved using doList . Because
doList  carries out all the actions in a list and does not base control-flow decisions on the

values returned by any of the actions, the full power of Monad  is not necessary, and it will
work for any Applicative :

Using a Custom Monad

While this implementation of doug  works, manually passing the configuration around is
verbose and error-prone. The type system will not catch it if the wrong configuration is
passed downwards, for instance. A reader effect ensures that the same configuration is
passed to all recursive calls, unless it is manually overridden, and it helps make the code
less verbose.

To create a version of IO  that is also a reader of Config , first define the type and its Monad
instance, following the recipe from the evaluator example:

def Config.preFile (cfg : Config) :=
  if cfg.useASCII then "|--" else "├──"

def Config.preDir (cfg : Config) :=
  if cfg.useASCII then "|  " else "│  "

def Config.fileName (cfg : Config) (file : String) : String :=
  s!"{cfg.currentPrefix}{cfg.preFile} {file}"

def Config.dirName (cfg : Config) (dir : String) : String :=
  s!"{cfg.currentPrefix}{cfg.preFile} {dir}/"

def Config.inDirectory (cfg : Config) : Config :=
  {cfg with currentPrefix := cfg.preDir ++ " " ++ cfg.currentPrefix}

def doList [Applicative f] : List α → (α → f Unit) → f Unit
  | [], _ => pure ()
  | x :: xs, action =>
    action x *>
    doList xs action

def ConfigIO (α : Type) : Type :=
  Config → IO α

instance : Monad ConfigIO where
  pure x := fun _ => pure x
  bind result next := fun cfg => do
    let v ← result cfg
    next v cfg

https://leanprover.github.io/functional_programming_in_lean/monads/arithmetic.html#custom-environments
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The difference between this Monad  instance and the one for Reader  is that this one uses
do -notation in the IO  monad as the body of the function that bind  returns, rather than

applying next  directly to the value returned from result . Any IO  effects performed by
result  must occur before next  is invoked, which is ensured by the IO  monad's bind

operator. ConfigIO  is not universe polymorphic because the underlying IO  type is also not
universe polymorphic.

Running a ConfigIO  action involves transforming it into an IO  action by providing it with a
configuration:

This function is not really necessary, as a caller could simply provide the configuration
directly. However, naming the operation can make it easier to see which parts of the code
are intended to run in which monad.

The next step is to define a means of accessing the current configuration as part of
ConfigIO :

This is just like read  from the evaluator example, except it uses IO 's pure  to return its
value rather than doing so directly. Because entering a directory modifies the current
configuration for the scope of a recursive call, it will be necessary to have a way to override
a configuration:

Much of the code used in doug  has no need for configurations, and doug  calls ordinary
Lean IO  actions from the standard library that certainly don't need a Config . Ordinary IO
actions can be run using runIO , which ignores the configuration argument:

With these components, showFileName  and showDirName  can be updated to take their
configuration arguments implicitly through the ConfigIO  monad. They use nested actions
to retrieve the configuration, and runIO  to actually execute the call to IO.println :

def ConfigIO.run (action : ConfigIO α) (cfg : Config) : IO α :=
  action cfg

def currentConfig : ConfigIO Config :=
  fun cfg => pure cfg

def locally (change : Config → Config) (action : ConfigIO α) : ConfigIO α :=
  fun cfg => action (change cfg)

def runIO (action : IO α) : ConfigIO α :=
  fun _ => action

def showFileName (file : String) : ConfigIO Unit := do
  runIO (IO.println ((← currentConfig).fileName file))

def showDirName (dir : String) : ConfigIO Unit := do
  runIO (IO.println ((← currentConfig).dirName dir))

https://leanprover.github.io/functional_programming_in_lean/monads/arithmetic.html#custom-environments
https://leanprover.github.io/functional_programming_in_lean/hello-world/conveniences.html#nested-actions
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In the new version of dirTree , the calls to toEntry  and System.FilePath.readDir  are
wrapped in runIO . Additionally, instead of building a new configuration and then requiring
the programmer to keep track of which one to pass to recursive calls, it uses locally  to
naturally delimit the modified configuration to only a small region of the program, in which
it is the only valid configuration:

The new version of main  uses ConfigIO.run  to invoke dirTree  with the initial
configuration:

This custom monad has a number of advantages over passing configurations manually:

1. It is easier to ensure that configurations are passed down unchanged, except when
changes are desired

2. The concern of passing the configuration onwards is more clearly separated from the
concern of printing directory contents

3. As the program grows, there will be more and more intermediate layers that do
nothing with configurations except propagate them, and these layers don't need to be
rewritten as the configuration logic changes

However, there are also some clear downsides:

1. As the program evolves and the monad requires more features, each of the basic
operators such as locally  and currentConfig  will need to be updated

2. Wrapping ordinary IO  actions in runIO  is noisy and distracts from the flow of the
program

3. Writing monads instances by hand is repetitive, and the technique for adding a reader
effect to another monad is a design pattern that requires documentation and
communication overhead

partial def dirTree (path : System.FilePath) : ConfigIO Unit := do
  match ← runIO (toEntry path) with
    | none => pure ()
    | some (.file name) => showFileName name
    | some (.dir name) =>
      showDirName name
      let contents ← runIO path.readDir
      locally (·.inDirectory)
        (doList contents.toList fun d =>
          dirTree d.path)

def main (args : List String) : IO UInt32 := do
    match configFromArgs args with
    | some config =>
      (dirTree (← IO.currentDir)).run config
      pure 0
    | none =>
      IO.eprintln s!"Didn't understand argument(s) {" ".separate args}\n"
      IO.eprintln usage
      pure 1
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Using a technique called monad transformers, all of these downsides can be addressed. A
monad transformer takes a monad as an argument and returns a new monad. Monad
transformers consist of:

1. A definition of the transformer itself, which is typically a function from types to types
2. A Monad  instance that assumes the inner type is already a monad
3. An operator to "lift" an action from the inner monad to the transformed monad, akin

to runIO

Adding a Reader to Any Monad

Adding a reader effect to IO  was accomplished in ConfigIO  by wrapping IO α  in a
function type. The Lean standard library contains a function that can do this to any
polymorphic type, called ReaderT :

Its arguments are as follows:

ρ  is the environment that is accessible to the reader
m  is the monad that is being transformed, such as IO
α  is the type of values being returned by the monadic computation Both α  and ρ  are

in the same universe because the operator that retrieves the environment in the
monad will have type m ρ .

With ReaderT , ConfigIO  becomes:

It is an abbrev  because ReaderT  has many useful features defined in the standard library
that a non-reducible definition would hide. Rather than taking responsibility for making
these work directly for ConfigIO , it's easier to simply have ConfigIO  behave identically to
ReaderT Config IO .

The manually-written currentConfig  obtained the environment out of the reader. This
effect can be defined in a generic form for all uses of ReaderT , under the name read :

However, not every monad that provides a reader effect is built with ReaderT . The type
class MonadReader  allows any monad to provide a read  operator:

def ReaderT (ρ : Type u) (m : Type u → Type v) (α : Type u) : Type (max u v) :=
  ρ → m α

abbrev ConfigIO (α : Type) : Type := ReaderT Config IO α

def read [Monad m] : ReaderT ρ m ρ :=
   fun env => pure env
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The type ρ  is an output parameter because any given monad typically only provides a
single type of environment through a reader, so automatically selecting it when the monad
is known makes programs more convenient to write.

The Monad  instance for ReaderT  is essentially the same as the Monad  instance for
ConfigIO , except IO  has been replaced by some arbitrary monad argument m :

The next step is to eliminate uses of runIO . When Lean encounters a mismatch in monad
types, it automatically attempts to use a type class called MonadLift  to transform the actual
monad into the expected monad. This process is similar to the use of coercions. MonadLift
is defined as follows:

The method monadLift  translates from the monad m  to the monad n . The process is
called "lifting" because it takes an action in the embedded monad and makes it into an
action in the surrounding monad. In this case, it will be used to "lift" from IO  to ReaderT 
Config IO , though the instance works for any inner monad m :

The implementation of monadLift  is very similar to that of runIO . Indeed, it is enough to
define showFileName  and showDirName  without using runIO :

One final operation from the original ConfigIO  remains to be translated to a use of
ReaderT : locally . The definition can be translated directly to ReaderT , but the Lean

class MonadReader (ρ : outParam (Type u)) (m : Type u → Type v) : Type (max (u + 
1) v) where
  read : m ρ

instance [Monad m] : MonadReader ρ (ReaderT ρ m) where
  read := fun env => pure env

export MonadReader (read)

instance [Monad m] : Monad (ReaderT ρ m) where
  pure x := fun _ => pure x
  bind result next := fun env => do
    let v ← result env
    next v env

class MonadLift (m : Type u → Type v) (n : Type u → Type w) where
  monadLift : {α : Type u} → m α → n α

instance : MonadLift m (ReaderT ρ m) where
  monadLift action := fun _ => action

def showFileName (file : String) : ConfigIO Unit := do
  IO.println s!"{(← read).currentPrefix} {file}"

def showDirName (dir : String) : ConfigIO Unit := do
  IO.println s!"{(← read).currentPrefix} {dir}/"
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standard library provides a more general version. The standard version is called
withReader , and it is part of a type class called MonadWithReader :

Just as in MonadReader , the environment ρ  is an outParam . The withReader  operation is
exported, so that it doesn't need to be written with the type class name before it:

The instance for ReaderT  is essentially the same as the definition of locally :

With these definitions in place, the new version of dirTree  can be written:

Aside from replacing locally  with withReader , it is the same as before.

Replacing the custom ConfigIO  type with ReaderT  did not save a large number of lines of
code in this section. However, rewriting the code using components from the standard
library does have long-term benefits. First, readers who know about ReaderT  don't need to
take time to understand the Monad  instance for ConfigIO , working backwards to the
meaning of monad itself. Instead, they can be confident in their initial understanding. Next,
adding further effects to the monad (such as a state effect to count the files in each
directory and display a count at the end) requires far fewer changes to the code, because
the monad transformers and MonadLift  instances provided in the library work well
together. Finally, using a set of type classes included in the standard library, polymorphic
code can be written in such a way that it can work with a variety of monads without having
to care about details like the order in which the monad transformers were applied. Just as
some functions work in any monad, others can work in any monad that provides a certain
type of state, or a certain type of exceptions, without having to specifically describe the way
in which a particular concrete monad provides the state or exceptions.

class MonadWithReader (ρ : outParam (Type u)) (m : Type u → Type v) where
  withReader {α : Type u} : (ρ → ρ) → m α → m α

export MonadWithReader (withReader)

instance : MonadWithReader ρ (ReaderT ρ m) where
  withReader change action :=
    fun cfg => action (change cfg)

partial def dirTree (path : System.FilePath) : ConfigIO Unit := do
  match ← toEntry path with
    | none => pure ()
    | some (.file name) => showFileName name
    | some (.dir name) =>
      showDirName name
      let contents ← path.readDir
      withReader (·.inDirectory)
        (doList contents.toList fun d =>
          dirTree d.path)
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Exercises

Controlling the Display of Dotfiles

Files whose names begin with a dot character ( '.' ) typically represent files that should
usually be hidden, such as source-control metadata and configuration files. Modify doug
with an option to show or hide filenames that begin with a dot. This option should be
controlled with a -a  command-line option.

Starting Directory as Argument

Modify doug  so that it takes a starting directory as an additional command-line argument.
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A Monad Construction Kit
ReaderT  is far from the only useful monad transformer. This section describes a number of

additional transformers. Each monad transformer consists of the following:

1. A definition or datatype T  that takes a monad as an argument. It should have a type
like (Type u → Type v) → Type u → Type v , though it may accept additional
arguments prior to the monad.

2. A Monad  instance for T m  that relies on an instance of Monad m . This enables the
transformed monad to be used as a monad.

3. A MonadLift  instance that translates actions of type m α  into actions of type T m α ,
for arbitrary monads m . This enables actions from the underlying monad to be used in
the transformed monad.

Furthermore, the Monad  instance for the transformer should obey the contract for Monad ,
at least if the underlying Monad  instance does. In addition, monadLift (pure x)  should be
equivalent to pure x  in the transformed monad, and monadLift  should distribute over
bind  so that monadLift (x >>= f)  is the same as monadLift x >>= fun y => monadLift 
(f y) .

Many monad transformers additionally define type classes in the style of MonadReader  that
describe the actual effects available in the monad. This can provide more flexibility: it allows
programs to be written that rely only on an interface, and don't constrain the underlying
monad to be implemented by a given transformer. The type classes are a way for programs
to express their requirements, and monad transformers are a convenient way to meet
these requirements.

Failure with OptionT

Failure, represented by the Option  monad, and exceptions, represented by the Except
monad, both have corresponding transformers. In the case of Option , failure can be added
to a monad by having it contain values of type Option α  where it would otherwise contain
values of type α . For example, IO (Option α)  represents IO  actions that don't always
return a value of type α . This suggests the definition of the monad transformer OptionT :

As an example of OptionT  in action, consider a program that asks the user questions. The
function getSomeInput  asks for a line of input and removes whitespace from both ends. If
the resulting trimmed input is non-empty, then it is returned, but the function fails if there
are no non-whitespace characters:

def OptionT (m : Type u → Type v) (α : Type u) : Type v :=
  m (Option α)
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This particular application tracks users with their name and their favorite species of beetle:

Asking the user for input is no more verbose than a function that uses only IO  would be:

However, because the function runs in an OptionT IO  context rather than just in IO ,
failure in the first call to getSomeInput  causes the whole getUserInfo  to fail, with control
never reaching the question about beetles. The main function, interact , invokes
getUserInfo  in a purely IO  context, which allows it to check whether the call succeeded or

failed by matching on the inner Option :

The Monad Instance

Writing the monad instance reveals a difficulty. Based on the types, pure  should use pure
from the underlying monad m  together with some . Just as bind  for Option  branches on
the first argument, propagating none , bind  for OptionT  should run the monadic action
that makes up the first argument, branch on the result, and then propagate none .
Following this sketch yields the following definition, which Lean does not accept:

def getSomeInput : OptionT IO String := do
  let input ← (← IO.getStdin).getLine
  let trimmed := input.trim
  if trimmed == "" then
    failure
  else pure trimmed

structure UserInfo where
  name : String
  favoriteBeetle : String

def getUserInfo : OptionT IO UserInfo := do
  IO.println "What is your name?"
  let name ← getSomeInput
  IO.println "What is your favorite species of beetle?"
  let beetle ← getSomeInput
  pure ⟨name, beetle⟩

def interact : IO Unit := do
  match ← getUserInfo with
  | none => IO.eprintln "Missing info"
  | some ⟨name, beetle⟩ => IO.println s!"Hello {name}, whose favorite beetle is 
{beetle}."

instance [Monad m] : Monad (OptionT m) where
  pure x := pure (some x)
  bind action next := do
    match (← action) with
    | none => pure none
    | some v => next v
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The error message shows a cryptic type mismatch:

The problem here is that Lean is selecting the wrong Monad  instance for the surrounding
use of pure . Similar errors occur for the definition of bind . One solution is to use type
annotations to guide Lean to the correct Monad  instance:

While this solution works, it is inelegant and the code becomes a bit noisy.

An alternative solution is to define functions whose type signatures guide Lean to the
correct instances. In fact, OptionT  could have been defined as a structure:

This would solve the problem, because the constructor OptionT.mk  and the field accessor
OptionT.run  would guide type class inference to the correct instances. The downside to

doing this is that structure values would need to be allocated and deallocated repeatedly
when running code that uses it, while the direct definition is a compile-time-only feature.
The best of both worlds can be achieved by defining functions that serve the same role as
OptionT.mk  and OptionT.run , but that work with the direct definition:

Both functions return their inputs unchanged, but they indicate the boundary between code
that is intended to present the interface of OptionT  and code that is intended to present
the interface of the underlying monad m . Using these helpers, the Monad  instance becomes
more readable:

application type mismatch
  pure (some x)
argument
  some x
has type
  Option α✝ : Type ?u.28
but is expected to have type
  α✝ : Type ?u.28

instance [Monad m] : Monad (OptionT m) where
  pure x := (pure (some x) : m (Option _))
  bind action next := (do
    match (← action) with
    | none => pure none
    | some v => next v : m (Option _))

structure OptionT (m : Type u → Type v) (α : Type u) : Type v where
  run : m (Option α)

def OptionT.mk (x : m (Option α)) : OptionT m α := x

def OptionT.run (x : OptionT m α) : m (Option α) := x
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Here, the use of OptionT.mk  indicates that its arguments should be considered as code that
uses the interface of m , which allows Lean to select the correct Monad  instances.

After defining the monad instance, it's a good idea to check that the monad contract is
satisfied. The first step is to show that bind (pure v) f  is the same as f v . Here's the
steps:

={ Unfolding the definitions of bind  and pure  }=

={ Desugaring nested action syntax }=

={ Desugaring do -notation }=

={ Using the first monad rule for m  }=

={ Reduce match  }=

={ Definition of OptionT.mk  }=

The second rule states that bind w pure  is the same as w . To demonstrate this, unfold the
definitions of bind  and pure , yielding:

instance [Monad m] : Monad (OptionT m) where
  pure x := OptionT.mk (pure (some x))
  bind action next := OptionT.mk do
    match ← action with
    | none => pure none
    | some v => next v

bind (pure v) f

OptionT.mk do
  match ← pure (some v) with
  | none => pure none
  | some x => f x

OptionT.mk do
  let y ← pure (some v)
  match y with
  | none => pure none
  | some x => f x

OptionT.mk
  (pure (some v) >>= fun y =>
    match y with
    | none => pure none
    | some x => f x)

OptionT.mk
  (match some v with
   | none => pure none
   | some x => f x)

OptionT.mk (f v)

f v
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In this pattern match, the result of both cases is the same as the pattern being matched,
just with pure  around it. In other words, it is equivalent to w >>= fun y => pure y , which
is an instance of m 's second monad rule.

The final rule states that bind (bind v f) g  is the same as bind v (fun x => bind (f x) 
g) . It can be checked in the same way, by expanding the definitions of bind  and pure  and
then delegating to the underlying monad m .

An Alternative Instance

One convenient way to use OptionT  is through the Alternative  type class. Successful
return is already indicated by pure , and the failure  and orElse  methods of
Alternative  provide a way to write a program that returns the first successful result from

a number of subprograms:

Lifting

Lifting an action from m  to OptionT m  only requires wrapping some  around the result of
the computation:

Exceptions

The monad transformer version of Except  is very similar to the monad transformer version
of Option . Adding exceptions of type ε  to some monadic action of type m α  can be
accomplished by adding exceptions to α , yielding type m (Except ε α) :

OptionT.mk do
    match ← w with
    | none => pure none
    | some v => pure (some v)

instance [Monad m] : Alternative (OptionT m) where
  failure := OptionT.mk (pure none)
  orElse x y := OptionT.mk do
    match ← x with
    | some result => pure (some result)
    | none => y ()

instance [Monad m] : MonadLift m (OptionT m) where
  monadLift action := OptionT.mk do
    pure (some (← action))
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OptionT  provides mk  and run  functions to guide the type checker towards the correct
Monad  instances. This trick is also useful for ExceptT :

The Monad  instance for ExceptT  is also very similar to the instance for OptionT . The only
difference is that it propagates a specific error value, rather than none :

The type signatures of ExceptT.mk  and ExceptT.run  contain a subtle detail: they annotate
the universe levels of α  and ε  explicitly. If they are not explicitly annotated, then Lean
generates a more general type signature in which they have distinct polymorphic universe
variables. However, the definition of ExceptT  expects them to be in the same universe,
because they can both be provided as arguments to m . This can lead to a problem in the
Monad  instance where the universe level solver fails to find a working solution:

This kind of error message is typically caused by underconstrained universe variables.
Diagnosing it can be tricky, but a good first step is to look for reused universe variables in
some definitions that are not reused in others.

def ExceptT (ε : Type u) (m : Type u → Type v) (α : Type u) : Type v :=
  m (Except ε α)

def ExceptT.mk {ε α : Type u} (x : m (Except ε α)) : ExceptT ε m α := x

def ExceptT.run {ε α : Type u} (x : ExceptT ε m α) : m (Except ε α) := x

instance {ε : Type u} {m : Type u → Type v} [Monad m] : Monad (ExceptT ε m) 
where
  pure x := ExceptT.mk (pure (Except.ok x))
  bind result next := ExceptT.mk do
    match ← result with
    | .error e => pure (.error e)
    | .ok x => next x

def ExceptT.mk (x : m (Except ε α)) : ExceptT ε m α := x

instance {ε : Type u} {m : Type u → Type v} [Monad m] : Monad (ExceptT ε m) 
where
  pure x := ExceptT.mk (pure (Except.ok x))
  bind result next := ExceptT.mk do
    match (← result) with
    | .error e => pure (.error e)
    | .ok x => next x

stuck at solving universe constraint
  max ?u.12286 ?u.12287 =?= u
while trying to unify
  ExceptT ε m α✝
with
  (ExceptT ε m α✝) ε m α✝



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 260/432

Unlike Option , the Except  datatype is typically not used as a data structure. It is always
used as a control structure with its Monad  instance. This means that it is reasonable to lift
Except ε  actions into ExceptT ε m , as well as actions from the underlying monad m .

Lifting Except  actions into ExceptT  actions is done by wrapping them in m 's pure ,
because an action that only has exception effects cannot have any effects from the monad
m :

Because actions from m  do not have any exceptions in them, their value should be wrapped
in Except.ok . This can be accomplished using the fact that Functor  is a superclass of
Monad , so applying a function to the result of any monadic computation can be

accomplished using Functor.map :

Type Classes for Exceptions

Exception handling fundamentally consists of two operations: the ability to throw
exceptions, and the ability to recover from them. Thus far, this has been accomplished using
the constructors of Except  and pattern matching, respectively. However, this ties a
program that uses exceptions to one specific encoding of the exception handling effect.
Using a type class to capture these operations allows a program that uses exceptions to be
used in any monad that supports throwing and catching.

Throwing an exception should take an exception as an argument, and it should be allowed
in any context where a monadic action is requested. The "any context" part of the
specification can be written as a type by writing m α —because there's no way to produce a
value of any arbitrary type, the throw  operation must be doing something that causes
control to leave that part of the program. Catching an exception should accept any monadic
action together with a handler, and the handler should explain how to get back to the
action's type from an exception:

The universe levels on MonadExcept  differ from those of ExceptT . In ExceptT , both ε  and
α  have the same level, while MonadExcept  imposes no such limitation. This is because
MonadExcept  never places an exception value inside of m . The most general universe

signature recognizes the fact that ε  and α  are completely independent in this definition.
Being more general means that the type class can be instantiated for a wider variety of
types.

instance [Monad m] : MonadLift (Except ε) (ExceptT ε m) where
  monadLift action := ExceptT.mk (pure action)

instance [Monad m] : MonadLift m (ExceptT ε m) where
  monadLift action := ExceptT.mk (.ok <$> action)

class MonadExcept (ε : outParam (Type u)) (m : Type v → Type w) where
  throw : ε → m α
  tryCatch : m α → (ε → m α) → m α
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An example program that uses MonadExcept  is a simple division service. The program is
divided into two parts: a frontend that supplies a user interface based on strings that
handles errors, and a backend that actually does the division. Both the frontend and the
backend can throw exceptions, the former for ill-formed input and the latter for division by
zero errors. The exceptions are an inductive type:

The backend checks for zero, and divides if it can:

The frontend's helper asNumber  throws an exception if the string it is passed is not a
number. The overall frontend converts its inputs to Int s and calls the backend, handling
exceptions by returning a friendly string error:

Throwing and catching exceptions is common enough that Lean provides a special syntax
for using MonadExcept . Just as +  is short for HAdd.hAdd , try  and catch  can be used as
shorthand for the tryCatch  method:

In addition to Except  and ExceptT , there are useful MonadExcept  instances for other
types that may not seem like exceptions at first glance. For example, failure due to Option
can be seen as throwing an exception that contains no data whatsoever, so there is an
instance of MonadExcept Unit Option  that allows try ... catch ...  syntax to be used
with Option .

inductive Err where
  | divByZero
  | notANumber : String → Err

def divBackend [Monad m] [MonadExcept Err m] (n k : Int) : m Int :=
  if k == 0 then
    throw .divByZero
  else pure (n / k)

def asNumber [Monad m] [MonadExcept Err m] (s : String) : m Int :=
  match s.toInt? with
  | none => throw (.notANumber s)
  | some i => pure i

def divFrontend [Monad m] [MonadExcept Err m] (n k : String) : m String :=
  tryCatch (do pure (toString (← divBackend (← asNumber n) (← asNumber k))))
    fun
      | .divByZero => pure "Division by zero!"
      | .notANumber s => pure s!"Not a number: \"{s}\""

def divFrontend [Monad m] [MonadExcept Err m] (n k : String) : m String :=
  try
    pure (toString (← divBackend (← asNumber n) (← asNumber k)))
  catch
    | .divByZero => pure "Division by zero!"
    | .notANumber s => pure s!"Not a number: \"{s}\""
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State

A simulation of mutable state is added to a monad by having monadic actions accept a
starting state as an argument and return a final state together with their result. The bind
operator for a state monad provides the final state of one action as an argument to the next
action, threading the state through the program. This pattern can also be expressed as a
monad transformer:

Once again, the monad instance is very similar to that for State . The only difference is that
the input and output states are passed around and returned in the underlying monad,
rather than with pure code:

The corresponding type class has get  and set  methods. One downside of get  and set  is
that it becomes too easy to set  the wrong state when updating it. This is because retrieving
the state, updating it, and saving the updated state is a natural way to write some programs.
For example, the following program counts the number of diacritic-free English vowels and
consonants in a string of letters:

def StateT (σ : Type u) (m : Type u → Type v) (α : Type u) : Type (max u v) :=
  σ → m (α × σ)

instance [Monad m] : Monad (StateT σ m) where
  pure x := fun s => pure (x, s)
  bind result next := fun s => do
    let (v, s') ← result s
    next v s'
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It would be very easy to write set st  instead of set st' . In a large program, this kind of
mistake can lead to difficult-to-diagnose bugs.

While using a nested action for the call to get  would solve this problem, it can't solve all
such problems. For example, a function might update a field on a structure based on the
values of two other fields. This would require two separate nested-action calls to get .
Because the Lean compiler contains optimizations that are only effective when there is a
single reference to a value, duplicating the references to the state might lead to code that is
significantly slower. Both the potential performance problem and the potential bug can be
worked around by using modify , which transforms the state using a function:

structure LetterCounts where
  vowels : Nat
  consonants : Nat
deriving Repr

inductive Err where
  | notALetter : Char → Err
deriving Repr

def vowels :=
  let lowerVowels := "aeiuoy"
  lowerVowels ++ lowerVowels.map (·.toUpper)

def consonants :=
  let lowerConsonants := "bcdfghjklmnpqrstvwxz"
  lowerConsonants ++ lowerConsonants.map (·.toUpper )

def countLetters (str : String) : StateT LetterCounts (Except Err) Unit :=
  let rec loop (chars : List Char) := do
    match chars with
    | [] => pure ()
    | c :: cs =>
      let st ← get
      let st' ←
        if c.isAlpha then
          if vowels.contains c then
            pure {st with vowels := st.vowels + 1}
          else if consonants.contains c then
            pure {st with consonants := st.consonants + 1}
          else -- modified or non-English letter
            pure st
        else throw (.notALetter c)
      set st'
      loop cs
  loop str.toList
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The type class contains a function akin to modify  called modifyGet , which allows the
function to both compute a return value and transform an old state in a single step. The
function returns a pair in which the first element is the return value, and the second
element is the new state; modify  just adds the constructor of Unit  to the pair used in
modifyGet :

The definition of MonadState  is as follows:

PUnit  is a version of the Unit  type that is universe-polymorphic to allow it to be in Type u
instead of Type . While it would be possible to provide a default implementation of
modifyGet  in terms of get  and set , it would not admit the optimizations that make
modifyGet  useful in the first place, rendering the method useless.

Of Classes and The Functions

Thus far, each monad type class that takes extra information, like the type of exceptions for
MonadExcept  or the type of the state for MonadState , has this type of extra information as

an output parameter. For simple programs, this is generally convenient, because a monad
that combines one use each of StateT , ReaderT , and ExceptT  has only a single state type,
environment type, and exception type. As monads grow in complexity, however, they may
involve multiple states or errors types. In this case, the use of an output parameter makes it
impossible to target both states in the same do -block.

def countLetters (str : String) : StateT LetterCounts (Except Err) Unit :=
  let rec loop (chars : List Char) := do
    match chars with
    | [] => pure ()
    | c :: cs =>
      if c.isAlpha then
        if vowels.contains c then
          modify fun st => {st with vowels := st.vowels + 1}
        else if consonants.contains c then
          modify fun st => {st with consonants := st.consonants + 1}
        else -- modified or non-English letter
          pure ()
      else throw (.notALetter c)
      loop cs
  loop str.toList

def modify [MonadState σ m] (f : σ → σ) : m Unit :=
  modifyGet fun s => ((), f s)

class MonadState (σ : outParam (Type u)) (m : Type u → Type v) : Type (max (u+1) 
v) where
  get : m σ
  set : σ → m PUnit
  modifyGet : (σ → α × σ) → m α
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For these cases, there are additional type classes in which the extra information is not an
output parameter. These versions of the type classes use the word Of  in the name. For
example, MonadStateOf  is like MonadState , but without an outParam  modifier.

Similarly, there are versions of the type class methods that accept the type of the extra
information as an explicit, rather than implicit, argument. For MonadStateOf , there are
getThe  with type

and modifyThe  with type

There is no setThe  because the type of the new state is enough to decide which
surrounding state monad transformer to use.

In the Lean standard library, there are instances of the non- Of  versions of the classes
defined in terms of the instances of the versions with Of . In other words, implementing the
Of  version yields implementations of both. It's generally a good idea to implement the Of

version, and then start writing programs using the non- Of  versions of the class,
transitioning to the Of  version if the output parameter becomes inconvenient.

Transformers and Id

The identity monad Id  is the monad that has no effects whatsoever, to be used in contexts
that expect a monad for some reason but where none is actually necessary. Another use of
Id  is to serve as the bottom of a stack of monad transformers. For instance, StateT σ Id

works just like State σ .

Exercises

Monad Contract

Using pencil and paper, check that the rules of the monad transformer contract are satisfied
for each monad transformer in this section.

(σ : Type u) → {m : Type u → Type v} → [MonadStateOf σ m] → m σ

(σ : Type u) → {m : Type u → Type v} → [MonadStateOf σ m] → (σ → σ) → m PUnit
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Logging Transformer

Define a monad transformer version of WithLog . Also define the corresponding type class
MonadWithLog , and write a program that combines logging and exceptions.

Counting Files

Modify doug 's monad with StateT  such that it counts the number of directories and files
seen. At the end of execution, it should display a report like:

  Viewed 38 files in 5 directories.
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Ordering Monad Transformers
When composing a monad from a stack of monad transformers, it's important to be aware
that the order in which the monad transformers are layered matters. Different orderings of
the same set of transformers result in different monads.

This version of countLetters  is just like the previous version, except it uses type classes to
describe the set of available effects instead of providing a concrete monad:

The state and exception monad transformers can be combined in two different orders, each
resulting in a monad that has instances of both type classes:

When run on input for which the program does not throw an exception, both monads yield
similar results:

However, there is a subtle difference between these return values. In the case of M1 , the
outermost constructor is Except.ok , and it contains a pair of the unit constructor with the
final state. In the case of M2 , the outermost constructor is the pair, which contains

def countLetters [Monad m] [MonadState LetterCounts m] [MonadExcept Err m] (str 
: String) : m Unit :=
  let rec loop (chars : List Char) := do
    match chars with
    | [] => pure ()
    | c :: cs =>
      if c.isAlpha then
        if vowels.contains c then
          modify fun st => {st with vowels := st.vowels + 1}
        else if consonants.contains c then
          modify fun st => {st with consonants := st.consonants + 1}
        else -- modified or non-English letter
          pure ()
      else throw (.notALetter c)
      loop cs
  loop str.toList

abbrev M1 := StateT LetterCounts (ExceptT Err Id)
abbrev M2 := ExceptT Err (StateT LetterCounts Id)

#eval countLetters (m := M1) "hello" ⟨0, 0⟩

Except.ok ((), { vowels := 2, consonants := 3 })

#eval countLetters (m := M2) "hello" ⟨0, 0⟩

(Except.ok (), { vowels := 2, consonants := 3 })
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Except.ok  applied only to the unit constructor. The final state is outside of Except.ok . In
both cases, the program returns the counts of vowels and consonants.

On the other hand, only one monad yields a count of vowels and consonants when the
string causes an exception to be thrown. Using M1 , only an exception value is returned:

Using M2 , the exception value is paired with the state as it was at the time that the
exception was thrown:

It might be tempting to think that M2  is superior to M1  because it provides more
information that might be useful when debugging. The same program might compute
different answers in M1  than it does in M2 , and there's no principled reason to say that one
of these answers is necessarily better than the other. This can be seen by adding a step to
the program that handles exceptions:

This program always succeeds, but it might succeed with different results. If no exception is
thrown, then the results are the same as countLetters :

However, if the exception is thrown and caught, then the final states are very different. With
M1 , the final state contains only the letter counts from "Fallback" :

#eval countLetters (m := M1) "hello!" ⟨0, 0⟩

Except.error (StEx.Err.notALetter '!')

#eval countLetters (m := M2) "hello!" ⟨0, 0⟩

(Except.error (StEx.Err.notALetter '!'), { vowels := 2, consonants := 3 })

def countWithFallback
    [Monad m] [MonadState LetterCounts m] [MonadExcept Err m]
    (str : String) : m Unit :=
  try
    countLetters str
  catch _ =>
    countLetters "Fallback"

#eval countWithFallback (m := M1) "hello" ⟨0, 0⟩

Except.ok ((), { vowels := 2, consonants := 3 })

#eval countWithFallback (m := M2) "hello" ⟨0, 0⟩

(Except.ok (), { vowels := 2, consonants := 3 })

#eval countWithFallback (m := M1) "hello!" ⟨0, 0⟩
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With M2 , the final state contains letter counts from both "hello"  and from "Fallback" , as
one would expect in an imperative language:

In M1 , throwing an exception "rolls back" the state to where the exception was caught. In
M2 , modifications to the state persist across the throwing and catching of exceptions. This

difference can be seen by unfolding the definitions of M1  and M2 . M1 α  unfolds to
LetterCounts → Except Err (α × LetterCounts) , and M2 α  unfolds to LetterCounts → 
Except Err α × LetterCounts . That is to say, M1 α  describes functions that take an initial
letter count, returning either an error or an α  paired with updated counts. When an
exception is thrown in M1 , there is no final state. M2 α  describes functions that take an
initial letter count and return a new letter count paired with either an error or an α . When
an exception is thrown in M2 , it is accompanied by a state.

Commuting Monads

In the jargon of functional programming, two monad transformers are said to commute if
they can be re-ordered without the meaning of the program changing. The fact that the
result of the program can differ when StateT  and ExceptT  are reordered means that state
and exceptions do not commute. In general, monad transformers should not be expected
to commute.

Even though not all monad transformers commute, some do. For example, two uses of
StateT  can be re-ordered. Expanding the definitions in StateT σ (StateT σ' Id) α  yields

the type σ → σ' → ((α × σ) × σ') , and StateT σ' (StateT σ Id) α  yields σ' → σ → ((α 
× σ') × σ) . In other words, the differences between them are that they nest the σ  and σ'
types in different places in the return type, and they accept their arguments in a different
order. Any client code will still need to provide the same inputs, and it will still receive the
same outputs.

Most programming languages that have both mutable state and exceptions work like M2 . In
those languages, state that should be rolled back when an exception is thrown is difficult to
express, and it usually needs to be simulated in a manner that looks much like the passing
of explicit state values in M1 . Monad transformers grant the freedom to choose an
interpretation of effect ordering that works for the problem at hand, with both choices
being equally easy to program with. However, they also require care to be taken in the
choice of ordering of transformers. With great expressive power comes the responsibility to

Except.ok ((), { vowels := 2, consonants := 6 })

#eval countWithFallback (m := M2) "hello!" ⟨0, 0⟩

(Except.ok (), { vowels := 4, consonants := 9 })
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check that what's being expressed is what is intended, and the type signature of
countWithFallback  is probably more polymorphic than it should be.

Exercises

Check that ReaderT  and StateT  commute by expanding their definitions and
reasoning about the resulting types.
Do ReaderT  and ExceptT  commute? Check your answer by expanding their
definitions and reasoning about the resulting types.
Construct a monad transformer ManyT  based on the definition of Many , with a
suitable Alternative  instance. Check that it satisfies the Monad  contract.
Does ManyT  commute with StateT ? If so, check your answer by expanding definitions
and reasoning about the resulting types. If not, write a program in ManyT (StateT σ 
Id)  and a program in StateT σ (ManyT Id) . Each program should be one that makes
more sense for the given ordering of monad transformers.
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More do Features
Lean's do -notation provides a syntax for writing programs with monads that resembles
imperative programming languages. In addition to providing a convenient syntax for
programs with monads, do -notation provides syntax for using certain monad transformers.

Single-Branched if

When working in a monad, a common pattern is to carry out a side effect only if some
condition is true. For instance, countLetters  contains a check for vowels or consonants,
and letters that are neither have no effect on the state. This is captured by having the else
branch evaluate to pure () , which has no effects:

When an if  is a statement in a do -block, rather than being an expression, then else pure 
()  can simply be omitted, and Lean inserts it automatically. The following definition of
countLetters  is completely equivalent:

def countLetters (str : String) : StateT LetterCounts (Except Err) Unit :=
  let rec loop (chars : List Char) := do
    match chars with
    | [] => pure ()
    | c :: cs =>
      if c.isAlpha then
        if vowels.contains c then
          modify fun st => {st with vowels := st.vowels + 1}
        else if consonants.contains c then
          modify fun st => {st with consonants := st.consonants + 1}
        else -- modified or non-English letter
          pure ()
      else throw (.notALetter c)
      loop cs
  loop str.toList

def countLetters (str : String) : StateT LetterCounts (Except Err) Unit :=
  let rec loop (chars : List Char) := do
    match chars with
    | [] => pure ()
    | c :: cs =>
      if c.isAlpha then
        if vowels.contains c then
          modify fun st => {st with vowels := st.vowels + 1}
        else if consonants.contains c then
          modify fun st => {st with consonants := st.consonants + 1}
      else throw (.notALetter c)
      loop cs
  loop str.toList
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A program that uses a state monad to count the entries in a list that satisfy some monadic
check can be written as follows:

Similarly, if not E1 then STMT...  can instead be written unless E1 do STMT... . The
converse of count  that counts entries that don't satisfy the monadic check can be written
by replacing if  with unless :

Understanding single-branched if  and unless  does not require thinking about monad
transformers. They simply replace the missing branch with pure () . The remaining
extensions in this section, however, require Lean to automatically rewrite the do -block to
add a local transformer on top of the monad that the do -block is written in.

Early Return

The standard library contains a function List.find?  that returns the first entry in a list that
satisfies some check. A simple implementation that doesn't make use of the fact that
Option  is a monad loops over the list using a recursive function, with an if  to stop the

loop when the desired entry is found:

Imperative languages typically sport the return  keyword that aborts the execution of a
function, immediately returning some value to the caller. In Lean, this is available in do -
notation, and return  halts the execution of a do -block, with return 's argument being the
value returned from the monad. In other words, List.find?  could have been written like
this:

def count [Monad m] [MonadState Nat m] (p : α → m Bool) : List α → m Unit
  | [] => pure ()
  | x :: xs => do
    if ← p x then
      modify (· + 1)
    count p xs

def countNot [Monad m] [MonadState Nat m] (p : α → m Bool) : List α → m Unit
  | [] => pure ()
  | x :: xs => do
    unless ← p x do
      modify (· + 1)
    countNot p xs

def List.find? (p : α → Bool) : List α → Option α
  | [] => none
  | x :: xs =>
    if p x then
      some x
    else
      find? p xs
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Early return in imperative languages is a bit like an exception that can only cause the
current stack frame to be unwound. Both early return and exceptions terminate execution
of a block of code, effectively replacing the surrounding code with the thrown value. Behind
the scenes, early return in Lean is implemented using a version of ExceptT . Each do -block
that uses early return is wrapped in an exception handler (in the sense of the function
tryCatch ). Early returns are translated to throwing the value as an exception, and the

handlers catch the thrown value and return it immediately. In other words, the do -block's
original return value type is also used as the exception type.

Making this more concrete, the helper function runCatch  strips a layer of ExceptT  from
the top of a monad transformer stack when the exception type and return type are the
same:

The do -block in List.find?  that uses early return is translated to a do -block that does not
use early return by wrapping it in a use of runCatch , and replacing early returns with
throw :

Another situation in which early return is useful is command-line applications that
terminate early if the arguments or input are incorrect. Many programs begin with a section
that validates arguments and inputs before proceeding to the main body of the program.
The following version of the greeting program hello-name  checks that no command-line
arguments were provided:

def List.find? (p : α → Bool) : List α → Option α
  | [] => failure
  | x :: xs => do
    if p x then return x
    find? p xs

def runCatch [Monad m] (action : ExceptT α m α) : m α := do
  match ← action with
  | Except.ok x => pure x
  | Except.error x => pure x

def List.find? (p : α → Bool) : List α → Option α
  | [] => failure
  | x :: xs =>
    runCatch do
      if p x then throw x else pure ()
      monadLift (find? p xs)

https://leanprover.github.io/functional_programming_in_lean/hello-world/running-a-program.html
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Running it with no arguments and typing the name David  yields the same result as the
previous version:

Providing the name as a command-line argument instead of an answer causes an error:

And providing no name causes the other error:

The program that uses early return avoids needing to nest the control flow, as is done in
this version that does not use early return:

def main (argv : List String) : IO UInt32 := do
  let stdin ← IO.getStdin
  let stdout ← IO.getStdout
  let stderr ← IO.getStderr

  unless argv == [] do
    stderr.putStrLn s!"Expected no arguments, but got {argv.length}"
    return 1

  stdout.putStrLn "How would you like to be addressed?"
  stdout.flush

  let name := (← stdin.getLine).trim
  if name == "" then
    stderr.putStrLn s!"No name provided"
    return 1

  stdout.putStrLn s!"Hello, {name}!"

  return 0

$ lean --run EarlyReturn.lean
How would you like to be addressed?
David
Hello, David!

$ lean --run EarlyReturn.lean David
Expected no arguments, but got 1

$ lean --run EarlyReturn.lean
How would you like to be addressed?

No name provided
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One important difference between early return in Lean and early return in imperative
languages is that Lean's early return applies only to the current do -block. When the entire
definition of a function is in the same do  block, this difference doesn't matter. But if do
occurs underneath some other structures, then the difference becomes apparent. For
example, given the following definition of greet :

the expression greet "David"  evaluates to "Hello, David" , not just "David" .

Loops

Just as every program with mutable state can be rewritten to a program that passes the
state as arguments, every loop can be rewritten as a recursive function. From one
perspective, List.find?  is most clear as a recursive function. After all, its definition mirrors
the structure of the list: if the head passes the check, then it should be returned; otherwise
look in the tail. When no more entries remain, the answer is none . From another
perspective, List.find?  is most clear as a loop. After all, the program consults the entries
in order until a satisfactory one is found, at which point it terminates. If the loop terminates
without having returned, the answer is none .

Looping with ForM

Lean includes a type class that describes looping over a container type in some monad. This
class is called ForM :

def main (argv : List String) : IO UInt32 := do
  let stdin ← IO.getStdin
  let stdout ← IO.getStdout
  let stderr ← IO.getStderr

  if argv != [] then
    stderr.putStrLn s!"Expected no arguments, but got {argv.length}"
    pure 1
  else
    stdout.putStrLn "How would you like to be addressed?"
    stdout.flush

    let name := (← stdin.getLine).trim
    if name == "" then
      stderr.putStrLn s!"No name provided"
      pure 1
    else
      stdout.putStrLn s!"Hello, {name}!"
      pure 0

def greet (name : String) : String :=
  "Hello, " ++ Id.run do return name
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This class is quite general. The parameter m  is a monad with some desired effects, γ  is the
collection to be looped over, and α  is the type of elements from the collection. Typically, m
is allowed to be any monad, but it is possible to have a data structure that e.g. only supports
looping in IO . The method forM  takes a collection, a monadic action to be run for its
effects on each element from the collection, and is then responsible for running the actions.

The instance for List  allows m  to be any monad, it sets γ  to be List α , and sets the
class's α  to be the same α  found in the list:

The function doList  from doug  is forM  for lists. Because forM  is intended to be used in
do -blocks, it uses Monad  rather than Applicative . forM  can be used to make
countLetters  much shorter:

The instance for Many  is very similar:

Because γ  can be any type at all, ForM  can support non-polymorphic collections. A very
simple collection is one of the natural numbers less than some given number, in reverse
order:

class ForM (m : Type u → Type v) (γ : Type w₁) (α : outParam (Type w₂)) where
  forM [Monad m] : γ → (α → m PUnit) → m PUnit

def List.forM [Monad m] : List α → (α → m PUnit) → m PUnit
  | [], _ => pure ()
  | x :: xs, action => do
    action x
    forM xs action

instance : ForM m (List α) α where
  forM := List.forM

def countLetters (str : String) : StateT LetterCounts (Except Err) Unit :=
  forM str.toList fun c => do
    if c.isAlpha then
      if vowels.contains c then
        modify fun st => {st with vowels := st.vowels + 1}
      else if consonants.contains c then
        modify fun st => {st with consonants := st.consonants + 1}
    else throw (.notALetter c)

def Many.forM [Monad m] : Many α → (α → m PUnit) → m PUnit
  | Many.none, _ => pure ()
  | Many.more first rest, action => do
    action first
    forM (rest ()) action

instance : ForM m (Many α) α where
  forM := Many.forM

https://leanprover.github.io/functional_programming_in_lean/monad-transformers/reader-io.html#implementation
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Its forM  operator applies the provided action to each smaller Nat :

Running IO.println  on each number less than five can be accomplished with forM :

An example ForM  instance that works only in a particular monad is one that loops over the
lines read from an IO stream, such as standard input:

The definition of forM  is marked partial  because there is no guarantee that the stream is
finite. In this case, IO.FS.Stream.getLine  works only in the IO  monad, so no other monad
can be used for looping.

This example program uses this looping construct to filter out lines that don't contain
letters:

structure AllLessThan where
  num : Nat

def AllLessThan.forM [Monad m] (coll : AllLessThan) (action : Nat → m Unit) : m 
Unit :=
  let rec countdown : Nat → m Unit
    | 0 => pure ()
    | n + 1 => do
      action n
      countdown n
  countdown coll.num

instance : ForM m AllLessThan Nat where
  forM := AllLessThan.forM

#eval forM { num := 5 : AllLessThan } IO.println

4
3
2
1
0

structure LinesOf where
  stream : IO.FS.Stream

partial def LinesOf.forM (readFrom : LinesOf) (action : String → IO Unit) : IO 
Unit := do
  let line ← readFrom.stream.getLine
  if line == "" then return ()
  action line
  forM readFrom action

instance : ForM IO LinesOf String where
  forM := LinesOf.forM
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The file test-data  contains:

Invoking this program, which is stored in ForMIO.lean , yields the following output:

Stopping Iteration

Terminating a loop early is difficult to do with forM . Writing a function that iterates over the
Nat s in an AllLessThan  only until 3  is reached requires a means of stopping the loop

partway through. One way to achieve this is to use forM  with the OptionT  monad
transformer. The first step is to define OptionT.exec , which discards information about
both the return value and whether or not the transformed computation succeeded:

Then, failure in the OptionT  instance of Alternative  can be used to terminate looping
early:

A quick test demonstrates that this solution works:

def main (argv : List String) : IO UInt32 := do
  if argv != [] then
    IO.eprintln "Unexpected arguments"
    return 1

  forM (LinesOf.mk (← IO.getStdin)) fun line => do
    if line.any (·.isAlpha) then
      IO.print line

  return 0

Hello!
!!!!!
12345
abc123

Ok

$ lean --run ForMIO.lean < test-data
Hello!
abc123
Ok

def OptionT.exec [Applicative m] (action : OptionT m α) : m Unit :=
  action *> pure ()

def countToThree (n : Nat) : IO Unit :=
  let nums : AllLessThan := ⟨n⟩
  OptionT.exec (forM nums fun i => do
    if i < 3 then failure else IO.println i)
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However, this code is not so easy to read. Terminating a loop early is a common task, and
Lean provides more syntactic sugar to make this easier. This same function can also be
written as follows:

Testing it reveals that it works just like the prior version:

At the time of writing, the for ... in ... do ...  syntax desugars to the use of a type
class called ForIn , which is a somewhat more complicated version of ForM  that keeps
track of state and early termination. However, there is a plan to refactor for  loops to use
the simpler ForM , with monad transformers inserted as necessary. In the meantime, an
adapter is provided that converts a ForM  instance into a ForIn  instance, called
ForM.forIn . To enable for  loops based on a ForM  instance, add something like the

following, with appropriate replacements for AllLessThan  and Nat :

Note, however, that this adapter only works for ForM  instances that keep the monad
unconstrained, as most of them do. This is because the adapter uses StateT  and ExceptT ,
rather than the underlying monad.

Early return is supported in for  loops. The translation of do  blocks with early return into a
use of an exception monad transformer applies equally well underneath forM  as the earlier
use of OptionT  to halt iteration does. This version of List.find?  makes use of both:

#eval countToThree 7

6
5
4
3

def countToThree (n : Nat) : IO Unit := do
  let nums : AllLessThan := ⟨n⟩
  for i in nums do
    if i < 3 then break
    IO.println i

#eval countToThree 7

6
5
4
3

instance : ForIn m AllLessThan Nat where
  forIn := ForM.forIn
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In addition to break , for  loops support continue  to skip the rest of the loop body in an
iteration. An alternative (but confusing) formulation of List.find?  skips elements that
don't satisfy the check:

A Range  is a structure that consists of a starting number, an ending number, and a step.
They represent a sequence of natural numbers, from the starting number to the ending
number, increasing by the step each time. Lean has special syntax to construct ranges,
consisting of square brackets, numbers, and colons that comes in four varieties. The
stopping point must always be provided, while the start and the step are optional,
defaulting to 0  and 1 , respectively:

Expression Start Stop Step As List

[:10] 0 10 1 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

[2:10] 2 10 1 [2, 3, 4, 5, 6, 7, 8, 9]

[:10:3] 0 10 3 [0, 3, 6, 9]

[2:10:3] 2 10 3 [2, 5, 8]

Note that the starting number is included in the range, while the stopping numbers is not.
All three arguments are Nat s, which means that ranges cannot count down—a range
where the starting number is greater than or equal to the stopping number simply contains
no numbers.

Ranges can be used with for  loops to draw numbers from the range. This program counts
even numbers from four to eight:

Running it yields:

def List.find? (p : α → Bool) (xs : List α) : Option α := do
  for x in xs do
    if p x then return x
  failure

def List.find? (p : α → Bool) (xs : List α) : Option α := do
  for x in xs do
    if not (p x) then continue
    return x
  failure

def fourToEight : IO Unit := do
  for i in [4:9:2] do
    IO.println i

4
6
8
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Finally, for  loops support iterating over multiple collections in parallel, by separating the
in  clauses with commas. Looping halts when the first collection runs out of elements, so

the declaration:

produces three lines of output:

Mutable Variables

In addition to early return , else -less if , and for  loops, Lean supports local mutable
variables within a do  block. Behind the scenes, these mutable variables desugar to a use of
StateT , rather than being implemented by true mutable variables. Once again, functional

programming is used to simulate imperative programming.

A local mutable variable is introduced with let mut  instead of plain let . The definition
two , which uses the identity monad Id  to enable do -syntax without introducing any

effects, counts to 2 :

This code is equivalent to a definition that uses StateT  to add 1  twice:

Local mutable variables work well with all the other features of do -notation that provide
convenient syntax for monad transformers. The definition three  counts the number of
entries in a three-entry list:

def parallelLoop := do
  for x in ["currant", "gooseberry", "rowan"], y in [4:8] do
    IO.println (x, y)

#eval parallelLoop

(currant, 4)
(gooseberry, 5)
(rowan, 6)

def two : Nat := Id.run do
  let mut x := 0
  x := x + 1
  x := x + 1
  return x

def two : Nat :=
  let block : StateT Nat Id Nat := do
    modify (· + 1)
    modify (· + 1)
    return (← get)
  let (result, _finalState) := block 0
  result
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Similarly, six  adds the entries in a list:

List.count  counts the number of entries in a list that satisfy some check:

Local mutable variables can be more convenient to use and easier to read than an explicit
local use of StateT . However, they don't have the full power of unrestricted mutable
variables from imperative languages. In particular, they can only be modified in the do -
block in which they are introduced. This means, for instance, that for -loops can't be
replaced by otherwise-equivalent recursive helper functions. This version of List.count :

yields the following error on the attempted mutation of found :

This is because the recursive function is written in the identity monad, and only the monad
of the do -block in which the variable is introduced is transformed with StateT .

def three : Nat := Id.run do
  let mut x := 0
  for _ in [1, 2, 3] do
    x := x + 1
  return x

def six : Nat := Id.run do
  let mut x := 0
  for y in [1, 2, 3] do
    x := x + y
  return x

def List.count (p : α → Bool) (xs : List α) : Nat := Id.run do
  let mut found := 0
  for x in xs do
    if p x then found := found + 1
  return found

def List.count (p : α → Bool) (xs : List α) : Nat := Id.run do
  let mut found := 0
  let rec go : List α → Id Unit
    | [] => pure ()
    | y :: ys => do
      if p y then found := found + 1
      go ys
  return found

`found` cannot be mutated, only variables declared using `let mut` can be 
mutated. If you did not intent to mutate but define `found`, consider using `let 
found` instead
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What counts as a do block?

Many features of do -notation apply only to a single do -block. Early return terminates the
current block, and mutable variables can only be mutated in the block that they are defined
in. To use them effectively, it's important to know what counts as "the same block".

Generally speaking, the indented block following the do  keyword counts as a block, and the
immediate sequence of statements underneath it are part of that block. Statements in
independent blocks that are nonetheless contained in a block are not considered part of the
block. However, the rules that govern what exactly counts as the same block are slightly
subtle, so some examples are in order. The precise nature of the rules can be tested by
setting up a program with a mutable variable and seeing where the mutation is allowed.
This program has a mutation that is clearly in the same block as the mutable variable:

When a mutation occurs in a do -block that is part of a let -statement that defines a name
using := , then it is not considered to be part of the block:

However, a do -block that occurs under a let -statement that defines a name using ←  is
considered part of the surrounding block. The following program is accepted:

Similarly, do -blocks that occur as arguments to functions are independent of their
surrounding blocks. The following program is not accepted:

example : Id Unit := do
  let mut x := 0
  x := x + 1

example : Id Unit := do
  let mut x := 0
  let other := do
    x := x + 1
  other

`x` cannot be mutated, only variables declared using `let mut` can be mutated. 
If you did not intent to mutate but define `x`, consider using `let x` instead

example : Id Unit := do
  let mut x := 0
  let other ← do
    x := x + 1
  pure other

example : Id Unit := do
  let mut x := 0
  let addFour (y : Id Nat) := Id.run y + 4
  addFour do
    x := 5
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If the do  keyword is completely redundant, then it does not introduce a new block. This
program is accepted, and is equivalent to the first one in this section:

The contents of branches under a do  (such as those introduced by match  or if ) are
considered to be part of the surrounding block, whether or not a redundant do  is added.
The following programs are all accepted:

Similarly, the do  that occurs as part of the for  and unless  syntax is just part of their
syntax, and does not introduce a fresh do -block. These programs are also accepted:

`x` cannot be mutated, only variables declared using `let mut` can be mutated. 
If you did not intent to mutate but define `x`, consider using `let x` instead

example : Id Unit := do
  let mut x := 0
  do x := x + 1

example : Id Unit := do
  let mut x := 0
  if x > 2 then
    x := x + 1

example : Id Unit := do
  let mut x := 0
  if x > 2 then do
    x := x + 1

example : Id Unit := do
  let mut x := 0
  match true with
  | true => x := x + 1
  | false => x := 17

example : Id Unit := do
  let mut x := 0
  match true with
  | true => do
    x := x + 1
  | false => do
    x := 17

example : Id Unit := do
  let mut x := 0
  for y in [1:5] do
   x := x + y

example : Id Unit := do
  let mut x := 0
  unless 1 < 5 do
    x := x + 1
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Imperative or Functional Programming?

The imperative features provided by Lean's do -notation allow many programs to very
closely resemble their counterparts in languages like Rust, Java, or C#. This resemblance is
very convenient when translating an imperative algorithm into Lean, and some tasks are
just most naturally thought of imperatively. The introduction of monads and monad
transformers enables imperative programs to be written in purely functional languages, and
do -notation as a specialized syntax for monads (potentially locally transformed) allows

functional programmers to have the best of both worlds: the strong reasoning principles
afforded by immutability and a tight control over available effects through the type system
are combined with syntax and libraries that allow programs that use effects to look familiar
and be easy to read. Monads and monad transformers allow functional versus imperative
programming to be a matter of perspective.

Exercises

Rewrite doug  to use for  instead of the doList  function. Are there other
opportunities to use the features introduced in this section to improve the code? If so,
use them!
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Additional Conveniences

Pipe Operators

Functions are normally written before their arguments. When reading a program from left
to right, this promotes a view in which the function's output is paramount—the function has
a goal to achieve (that is, a value to compute), and it receives arguments to support it in this
process. But some programs are easier to understand in terms of an input that is
successively refined to produce the output. For these situations, Lean provides a pipeline
operator which is similar to the that provided by F#. Pipeline operators are useful in the
same situations as Clojure's threading macros.

The pipeline E1 |> E2  is short for E2 E1 . For example, evaluating:

results in:

While this change of emphasis can make some programs more convenient to read,
pipelines really come into their own when they contain many components.

With the definition:

the following pipeline:

yields:

More generally, a series of pipelines E1 |> E2 |> E3 |> E4  is short for nested function
applications E4 (E3 (E2 E1)) .

Pipelines may also be written in reverse. In this case, they do not place the subject of data
transformation first; however, in cases where many nested parentheses pose a challenge
for readers, they can clarify the steps of application. The prior example could be
equivalently written as:

#eval some 5 |> toString

"(some 5)"

def times3 (n : Nat) : Nat := n * 3

#eval 5 |> times3 |> toString |> ("It is " ++ ·)

"It is 15"
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which is short for:

Lean's method dot notation that uses the name of the type before the dot to resolve the
namespace of the operator after the dot serves a similar purpose to pipelines. Even without
the pipeline operator, it is possible to write [1, 2, 3].reverse  instead of List.reverse 
[1, 2, 3] . However, the pipeline operator is also useful for dotted functions when using
many of them. ([1, 2, 3].reverse.drop 1).reverse  can also be written as [1, 2, 3] |> 
List.reverse |> List.drop 1 |> List.reverse . This version avoids having to
parenthesize expressions simply because they accept arguments, and it recovers the
convenience of a chain of method calls in languages like Kotlin or C#. However, it still
requires the namespace to be provided by hand. As a final convenience, Lean provides the
"pipeline dot" operator, which groups functions like the pipeline but uses the name of the
type to resolve namespaces. With "pipeline dot", the example can be rewritten to [1, 2, 3] 
|>.reverse |>.drop 1 |>.reverse .

Infinite Loops

Within a do -block, the repeat  keyword introduces an infinite loop. For example, a program
that spams the string "Spam!"  can use it:

A repeat  loop supports break  and continue , just like for  loops.

The dump  function from the implementation of feline  uses a recursive function to run
forever:

This function can be greatly shortened using repeat :

#eval ("It is " ++ ·) <| toString <| times3 <| 5

#eval ("It is " ++ ·) (toString (times3 5))

def spam : IO Unit := do
  repeat IO.println "Spam!"

partial def dump (stream : IO.FS.Stream) : IO Unit := do
  let buf ← stream.read bufsize
  if buf.isEmpty then
    pure ()
  else
    let stdout ← IO.getStdout
    stdout.write buf
    dump stream

https://leanprover.github.io/functional_programming_in_lean/hello-world/cat.html#streams
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Neither spam  nor dump  need to be declared as partial  because they are not themselves
infinitely recursive. Instead, repeat  makes use of a type whose ForM  instance is partial .
Partiality does not "infect" calling functions.

While Loops

When programming with local mutability, while  loops can be a convenient alternative to
repeat  with an if -guarded break :

Behind the scenes, while  is just a simpler notation for repeat .

def dump (stream : IO.FS.Stream) : IO Unit := do
  let stdout ← IO.getStdout
  repeat do
    let buf ← stream.read bufsize
    if buf.isEmpty then break
    stdout.write buf

def dump (stream : IO.FS.Stream) : IO Unit := do
  let stdout ← IO.getStdout
  let mut buf ← stream.read bufsize
  while not buf.isEmpty do
    stdout.write buf
    buf ← stream.read bufsize
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Summary

Combining Monads

When writing a monad from scratch, there are design patterns that tend to describe the
ways that each effect is added to the monad. Reader effects are added by having the
monad's type be a function from the reader's environment, state effects are added by
including a function from the initial state to the value paired with the final state, failure or
exceptions are added by including a sum type in the return type, and logging or other
output is added by including a product type in the return type. Existing monads can be
made part of the return type as well, allowing their effects to be included in the new monad.

These design patterns are made into a library of reusable software components by defining
monad transformers, which add an effect to some base monad. Monad transformers take
the simpler monad types as arguments, returning the enhanced monad types. At a
minimum, a monad transformer should provide the following instances:

1. A Monad  instance that assumes the inner type is already a monad
2. A MonadLift  instance to translate an action from the inner monad to the transformed

monad

Monad transformers may be implemented as polymorphic structures or inductive
datatypes, but they are most often implemented as functions from the underlying monad
type to the enhanced monad type.

Type Classes for Effects

A common design pattern is to implement a particular effect by defining a monad that has
the effect, a monad transformer that adds it to another monad, and a type class that
provides a generic interface to the effect. This allows programs to be written that merely
specify which effects they need, so the caller can provide any monad that has the right
effects.

Sometimes, auxiliary type information (e.g. the state's type in a monad that provides state,
or the exception's type in a monad that provides exceptions) is an output parameter, and
sometimes it is not. The output parameter is most useful for simple programs that use each
kind of effect only once, but it risks having the type checker commit to a the wrong type too
early when multiple instances of the same effect are used in a given program. Thus, both
versions are typically provided, with the ordinary-parameter version of the type class having
a name that ends in -Of .
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Monad Transformers Don't Commute

It is important to note that changing the order of transformers in a monad can change the
meaning of programs that use the monad. For instance, re-ordering StateT  and ExceptT
can result either in programs that lose state modifications when exceptions are thrown or
programs that keep changes. While most imperative languages provide only the latter, the
increased flexibility provided by monad transformers demands thought and attention to
choose the correct variety for the task at hand.

do-Notation for Monad Transformers

Lean's do -blocks support early return, in which the block is terminated with some value,
locally mutable variables, for -loops with break  and continue , and single-branched if -
statements. While this may seem to be introducing imperative features that would get in the
way of using Lean to write proofs, it is in fact nothing more than a more convenient syntax
for certain common uses of monad transformers. Behind the scenes, whatever monad the
do -block is written in is transformed by appropriate uses of ExceptT  and StateT  to

support these additional effects.
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Programming with Dependent Types
In most statically-typed programming languages, there is a hermetic seal between the world
of types and the world of programs. Types and programs have different grammars and they
are used at different times. Types are typically used at compile time, to check that a
program obeys certain invariants. Programs are used at run time, to actually perform
computations. When the two interact, it is usually in the form of a type-case operator like an
"instance-of" check or a casting operator that provides the type checker with information
that was otherwise unavailable, to be verified at run time. In other words, the interaction
consists of types being inserted into the world of programs, gaining some limited run-time
meaning.

Lean does not impose this strict separation. In Lean, programs may compute types and
types may contain programs. Placing programs in types allows their full computation power
to be used at compile time, and the ability to return types from functions makes types into
first-class participants in the programming process.

Dependent types are types that contain non-type expressions. A common source of
dependent types is a named argument to a function. For example, the function
natOrStringThree  returns either a natural number or a string, depending on which Bool  it

is passed:

Further examples of dependent types include:

The introductory section on polymorphism contains posOrNegThree , in which the
function's return type depends on the value of the argument.
The OfNat  type class depends on the specific natural number literal being used.
The CheckedInput  structure used in the example of validators depends on the year in
which validation occurred.
Subtypes contain propositions that refer to particular values.
Essentially all interesting propositions, including those that determine the validity of
array indexing notation, are types that contain values and are thus dependent types.

Dependent types vastly increase the power of a type system. The flexibility of return types
that branch on argument values enables programs to be written that cannot easily be given
types in other type systems. At the same time, dependent types allow a type signature to
restrict which values may be returned from a function, enabling strong invariants to be
enforced at compile time.

def natOrStringThree (b : Bool) : if b then Nat else String :=
  match b with
  | true => (3 : Nat)
  | false => "three"

https://leanprover.github.io/functional_programming_in_lean/getting-to-know/polymorphism.html
https://leanprover.github.io/functional_programming_in_lean/type-classes/pos.html#literal-numbers
https://leanprover.github.io/functional_programming_in_lean/functor-applicative-monad/applicative.html#validated-input
https://leanprover.github.io/functional_programming_in_lean/functor-applicative-monad/applicative.html#subtypes
https://leanprover.github.io/functional_programming_in_lean/props-proofs-indexing.html
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However, programming with dependent types can be quite complex, and it requires a whole
set of skills above and beyond functional programming. Expressive specifications can be
complicated to fulfill, and there is a real risk of tying oneself in knots and being unable to
complete the program. On the other hand, this process can lead to new understanding,
which can be expressed in a refined type that can be fulfilled. While this chapter scratches
the surface of dependently typed programming, it is a deep topic that deserves an entire
book of its own.
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Indexed Families
Polymorphic inductive types take type arguments. For instance, List  takes an argument
that determines the type of the entries in the list, and Except  takes arguments that
determine the types of the exceptions or values. These type arguments, which are the same
in every constructor of the datatype, are referred to as parameters.

Arguments to inductive types need not be the same in every constructor, however.
Inductive types in which the arguments to the type vary based on the choice of constructor
are called indexed families, and the arguments that vary are referred to as indices. The "hello
world" of indexed families is a type of lists that contains the length of the list in addition to
the type of entries, conventionally referred to as "vectors":

Function declarations may take some arguments before the colon, indicating that they are
available in the entire definition, and some arguments after, indicating a desire to pattern-
match on them and define the function case by case. Inductive datatypes have a similar
principle: the argument α  is named at the top of the datatype declaration, prior to the
colon, which indicates that it is a parameter that must be provided as the first argument in
all occurrences of Vect  in the definition, while the Nat  argument occurs after the colon,
indicating that it is an index that may vary. Indeed, the three occurrences of Vect  in the
nil  and cons  constructor declarations consistently provide α  as the first argument, while

the second argument is different in each case.

The declaration of nil  states that it is a constructor of type Vect α 0 . This means that
using Vect.nil  in a context expecting a Vect String 3  is a type error, just as [1, 2, 3]
is a type error in a context that expects a List String :

The mismatch between 0  and 3  in this example plays exactly the same role as any other
type mismatch, even though 0  and 3  are not themselves types.

Indexed families are called families of types because different index values can make
different constructors available for use. In some sense, an indexed family is not a type;

inductive Vect (α : Type u) : Nat → Type u where
   | nil : Vect α 0
   | cons : α → Vect α n → Vect α (n + 1)

example : Vect String 3 := Vect.nil

type mismatch
  Vect.nil
has type
  Vect String 0 : Type
but is expected to have type
  Vect String 3 : Type
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rather, it is a collection of related types, and the choice of index values also chooses a type
from the collection. Choosing the index 5  for Vect  means that only the constructor cons
is available, and choosing the index 0  means that only nil  is available.

If the index is not yet known (e.g. because it is a variable), then no constructor can be used
until it becomes known. Using n  for the length allows neither Vect.nil  nor Vect.cons ,
because there's no way to know whether the variable n  should stand for a Nat  that
matches 0  or n + 1 :

Having the length of the list as part of its type means that the type becomes more
informative. For example, Vect.replicate  is a function that creates a Vect  with a number
of copies of a given value. The type that says this precisely is:

The argument n  appears as the length of the result. The message associated with the
underscore placeholder describes the task at hand:

When working with indexed families, constructors can only be applied when Lean can see
that the constructor's index matches the index in the expected type. However, neither
constructor has an index that matches n — nil  matches Nat.zero , and cons  matches
Nat.succ . Just as in the example type errors, the variable n  could stand for either,

example : Vect String n := Vect.nil

type mismatch
  Vect.nil
has type
  Vect String 0 : Type
but is expected to have type
  Vect String n : Type

example : Vect String n := Vect.cons "Hello" (Vect.cons "world" Vect.nil)

type mismatch
  Vect.cons "Hello" (Vect.cons "world" Vect.nil)
has type
  Vect String (0 + 1 + 1) : Type
but is expected to have type
  Vect String n : Type

def Vect.replicate (n : Nat) (x : α) : Vect α n := _

don't know how to synthesize placeholder
context:
α : Type u_1
n : Nat
x : α
⊢ Vect α n
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depending on which Nat  is provided to the function as an argument. The solution is to use
pattern matching to consider both of the possible cases:

Because n  occurs in the expected type, pattern matching on n  refines the expected type in
the two cases of the match. In the first underscore, the expected type has become Vect α 
0 :

In the second underscore, it has become Vect α (k + 1) :

When pattern matching refines the type of a program in addition to discovering the
structure of a value, it is called dependent pattern matching.

The refined type makes it possible to apply the constructors. The first underscore matches
Vect.nil , and the second matches Vect.cons :

The first underscore under the .cons  should have type α . There is an α  available, namely
x :

def Vect.replicate (n : Nat) (x : α) : Vect α n :=
  match n with
  | 0 => _
  | k + 1 => _

don't know how to synthesize placeholder
context:
α : Type u_1
n : Nat
x : α
⊢ Vect α 0

don't know how to synthesize placeholder
context:
α : Type u_1
n : Nat
x : α
k : Nat
⊢ Vect α (k + 1)

def Vect.replicate (n : Nat) (x : α) : Vect α n :=
  match n with
  | 0 => .nil
  | k + 1 => .cons _ _

don't know how to synthesize placeholder
context:
α : Type u_1
n : Nat
x : α
k : Nat
⊢ α
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The second underscore should be a Vect α k , which can be produced by a recursive call to
replicate :

Here is the final definition of replicate :

In addition to providing assistance while writing the function, the informative type of
Vect.replicate  also allows client code to rule out a number of unexpected functions

without having to read the source code. A version of replicate  for lists could produce a list
of the wrong length:

However, making this mistake with Vect.replicate  is a type error:

The function List.zip  combines two lists by pairing the first entry in the first list with the
first entry in the second list, the second entry in the first list with the second entry in the
second list, and so forth. List.zip  can be used to pair the three highest peaks in the US
state of Oregon with the three highest peaks in Denmark:

don't know how to synthesize placeholder
context:
α : Type u_1
n : Nat
x : α
k : Nat
⊢ Vect α k

def Vect.replicate (n : Nat) (x : α) : Vect α n :=
  match n with
  | 0 => .nil
  | k + 1 => .cons x (replicate k x)

def List.replicate (n : Nat) (x : α) : List α :=
  match n with
  | 0 => []
  | k + 1 => x :: x :: replicate k x

def Vect.replicate (n : Nat) (x : α) : Vect α n :=
  match n with
  | 0 => .nil
  | k + 1 => .cons x (.cons x (replicate k x))

application type mismatch
  cons x (cons x (replicate k x))
argument
  cons x (replicate k x)
has type
  Vect α (k + 1) : Type ?u.2019
but is expected to have type
  Vect α k : Type ?u.2019
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The result is a list of three pairs:

It's somewhat unclear what should happen when the lists have different lengths. Like many
languages, Lean chooses to ignore the extra entries in one of the lists. For instance,
combining the heights of the five highest peaks in Oregon with those of the three highest
peaks in Denmark yields three pairs. In particular,

evaluates to

While this approach is convenient because it always returns an answer, it runs the risk of
throwing away data when the lists unintentionally have different lengths. F# takes a
different approach: its version of List.zip  throws an exception when the lengths don't
match, as can be seen in this fsi  session:

["Mount Hood",
 "Mount Jefferson",
 "South Sister"].zip ["Møllehøj", "Yding Skovhøj", "Ejer Bavnehøj"]

[("Mount Hood", "Møllehøj"),
 ("Mount Jefferson", "Yding Skovhøj"),
 ("South Sister", "Ejer Bavnehøj")]

[3428.8, 3201, 3158.5, 3075, 3064].zip [170.86, 170.77, 170.35]

[(3428.8, 170.86), (3201, 170.77), (3158.5, 170.35)]

> List.zip [3428.8; 3201.0; 3158.5; 3075.0; 3064.0] [170.86; 170.77; 170.35];;

System.ArgumentException: The lists had different lengths.
list2 is 2 elements shorter than list1 (Parameter 'list2')
   at Microsoft.FSharp.Core.DetailedExceptions.invalidArgDifferentListLength[?]
(String arg1, String arg2, Int32 diff) in /builddir/build/BUILD/dotnet-v3.1.424-
SDK/src/fsharp.3ef6f0b514198c0bfa6c2c09fefe41a740b024d5/src/fsharp/FSharp.Core/lo
24
   at Microsoft.FSharp.Primitives.Basics.List.zipToFreshConsTail[a,b]
(FSharpList`1 cons, FSharpList`1 xs1, FSharpList`1 xs2) in 
/builddir/build/BUILD/dotnet-v3.1.424-
SDK/src/fsharp.3ef6f0b514198c0bfa6c2c09fefe41a740b024d5/src/fsharp/FSharp.Core/lo
918
   at Microsoft.FSharp.Primitives.Basics.List.zip[T1,T2](FSharpList`1 xs1, 
FSharpList`1 xs2) in /builddir/build/BUILD/dotnet-v3.1.424-
SDK/src/fsharp.3ef6f0b514198c0bfa6c2c09fefe41a740b024d5/src/fsharp/FSharp.Core/lo
929
   at Microsoft.FSharp.Collections.ListModule.Zip[T1,T2](FSharpList`1 list1, 
FSharpList`1 list2) in /builddir/build/BUILD/dotnet-v3.1.424-
SDK/src/fsharp.3ef6f0b514198c0bfa6c2c09fefe41a740b024d5/src/fsharp/FSharp.Core/li
466
   at <StartupCode$FSI_0006>.$FSI_0006.main@()
Stopped due to error
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This avoids accidentally discarding information, but crashing a program comes with its own
difficulties. The Lean equivalent, which would use the Option  or Except  monads, would
introduce a burden that may not be worth the safety.

Using Vect , however, it is possible to write a version of zip  with a type that requires that
both arguments have the same length:

This definition only has patterns for the cases where either both arguments are Vect.nil
or both arguments are Vect.cons , and Lean accepts the definition without a "missing
cases" error like the one that results from a similar definition for List :

This is because the constructor used in the first pattern, nil  or cons , refines the type
checker's knowledge about the length n . When the first pattern is nil , the type checker
can additionally determine that the length was 0 , so the only possible choice for the second
pattern is nil . Similarly, when the first pattern is cons , the type checker can determine
that the length was k+1  for some Nat  k , so the only possible choice for the second
pattern is cons . Indeed, adding a case that uses nil  and cons  together is a type error,
because the lengths don't match:

The refinement of the length can be observed by making n  into an explicit argument:

def Vect.zip : Vect α n → Vect β n → Vect (α × β) n
  | .nil, .nil => .nil
  | .cons x xs, .cons y ys => .cons (x, y) (zip xs ys)

def List.zip : List α → List β → List (α × β)
  | [], [] => []
  | x :: xs, y :: ys => (x, y) :: zip xs ys

missing cases:
(List.cons _ _), []
[], (List.cons _ _)

def Vect.zip : Vect α n → Vect β n → Vect (α × β) n
  | .nil, .nil => .nil
  | .nil, .cons y ys => .nil
  | .cons x xs, .cons y ys => .cons (x, y) (zip xs ys)

type mismatch
  Vect.cons y ys
has type
  Vect β (?m.4765 + 1) : Type ?u.4577
but is expected to have type
  Vect β 0 : Type ?u.4577

def Vect.zip : (n : Nat) → Vect α n → Vect β n → Vect (α × β) n
  | 0, .nil, .nil => .nil
  | k + 1, .cons x xs, .cons y ys => .cons (x, y) (zip k xs ys)
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Exercises

Getting a feel for programming with dependent types requires experience, and the
exercises in this section are very important. For each exercise, try to see which mistakes the
type checker can catch, and which ones it can't, by experimenting with the code as you go.
This is also a good way to develop a feel for the error messages.

Double-check that Vect.zip  gives the right answer when combining the three highest
peaks in Oregon with the three highest peaks in Denmark. Because Vect  doesn't have
the syntactic sugar that List  has, it can be helpful to begin by defining
oregonianPeaks : Vect String 3  and danishPeaks : Vect String 3 .

Define a function Vect.map  with type (α → β) → Vect α n → Vect β n .

Define a function Vect.zipWith  that combines the entries in a Vect  one at a time
with a function. It should have the type (α → β → γ) → Vect α n → Vect β n → Vect 
γ n .

Define a function Vect.unzip  that splits a Vect  of pairs into a pair of Vect s. It
should have the type Vect (α × β) n → Vect α n × Vect β n .

Define a function Vect.snoc  that adds an entry to the end of a Vect . Its type should
be Vect α n → α → Vect α (n + 1)  and #eval Vect.snoc (.cons "snowy" .nil) 
"peaks"  should yield Vect.cons "snowy" (Vect.cons "peaks" (Vect.nil)) . The
name snoc  is a traditional functional programming pun: it is cons  backwards.

Define a function Vect.reverse  that reverses the order of a Vect .

Define a function Vect.drop  with the following type: (n : Nat) → Vect α (k + n) → 
Vect α k . Verify that it works by checking that #eval danishPeaks.drop 2  yields
Vect.cons "Ejer Bavnehøj" (Vect.nil) .

Define a function Vect.take  with type (n : Nat) → Vect α (k + n) → Vect α n  that
returns the first n  entries in the Vect . Check that it works on an example.
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The Universe Design Pattern
In Lean, types such as Type , Type 3 , and Prop  that classify other types are known as
universes. However, the term universe is also used for a design pattern in which a datatype
is used to represent a subset of Lean's types, and a function converts the datatype's
constructors into actual types. The values of this datatype are called codes for their types.

Just like Lean's built-in universes, the universes implemented with this pattern are types that
describe some collection of available types, even though the mechanism by which it is done
is different. In Lean, there are types such as Type , Type 3 , and Prop  that directly describe
other types. This arrangement is referred to as universes à la Russell. The user-defined
universes described in this section represent all of their types as data, and include an
explicit function to interpret these codes into actual honest-to-goodness types. This
arrangement is referred to as universes à la Tarski. While languages such as Lean that are
based on dependent type theory almost always use Russell-style universes, Tarski-style
universes are a useful pattern for defining APIs in these languages.

Defining a custom universe makes it possible to carve out a closed collection of types that
can be used with an API. Because the collection of types is closed, recursion over the codes
allows programs to work for any type in the universe. One example of a custom universe
has the codes nat , standing for Nat , and bool , standing for Bool :

Pattern matching on a code allows the type to be refined, just as pattern matching on the
constructors of Vect  allows the expected length to be refined. For instance, a program that
deserializes the types in this universe from a string can be written as follows:

Dependent pattern matching on t  allows the expected result type t.asType  to be
respectively refined to NatOrBool.nat.asType  and NatOrBool.bool.asType , and these
compute to the actual types Nat  and Bool .

inductive NatOrBool where
  | nat | bool

abbrev NatOrBool.asType (code : NatOrBool) : Type :=
  match code with
  | .nat => Nat
  | .bool => Bool

def decode (t : NatOrBool) (input : String) : Option t.asType :=
  match t with
  | .nat => input.toNat?
  | .bool =>
    match input with
    | "true" => some true
    | "false" => some false
    | _ => none
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Like any other data, codes may be recursive. The type NestedPairs  codes for any possible
nesting of the pair and natural number types:

In this case, the interpretation function NestedPairs.asType  is recursive. This means that
recursion over codes is required in order to implement BEq  for the universe:

Even though every type in the NestedPairs  universe already has a BEq  instance, type class
search does not automatically check every possible case of a datatype in an instance
declaration, because there might be infinitely many such cases, as with NestedPairs .
Attempting to appeal directly to the BEq  instances rather than explaining to Lean how to
find them by recursion on the codes results in an error:

The t  in the error message stands for an unknown value of type NestedPairs .

Type Classes vs Universes

Type classes allow an open-ended collection of types to be used with an API as long as they
have implementations of the necessary interfaces. In most cases, this is preferable. It is hard
to predict all use cases for an API ahead of time, and type classes are a convenient way to
allow library code to be used with more types than the original author expected.

A universe à la Tarski, on the other hand, restricts the API to be usable only with a
predetermined collection of types. This is useful in a few situations:

inductive NestedPairs where
  | nat : NestedPairs
  | pair : NestedPairs → NestedPairs → NestedPairs

abbrev NestedPairs.asType : NestedPairs → Type
  | .nat => Nat
  | .pair t1 t2 => asType t1 × asType t2

def NestedPairs.beq (t : NestedPairs) (x y : t.asType) : Bool :=
  match t with
  | .nat => x == y
  | .pair t1 t2 => beq t1 x.fst y.fst && beq t2 x.snd y.snd

instance {t : NestedPairs} : BEq t.asType where
  beq x y := t.beq x y

instance {t : NestedPairs} : BEq t.asType where
  beq x y := x == y

failed to synthesize instance
  BEq (NestedPairs.asType t)
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When a function should act very differently depending on which type it is passed—it is
impossible to pattern match on types themselves, but pattern matching on codes for
types is allowed
When an external system inherently limits the types of data that may be provided, and
extra flexibility is not desired
When additional properties of a type are required over and above the implementation
of some operations

Type classes are useful in many of the same situations as interfaces in Java or C#, while a
universe à la Tarski can be useful in cases where a sealed class might be used, but where an
ordinary inductive datatype is not usable.

A Universe of Finite Types

Restricting the types that can be used with an API to a predetermined collection can enable
operations that would be impossible for an open-ended API. For example, functions can't
normally be compared for equality. Functions should be considered equal when they map
the same inputs to the same outputs. Checking this could take infinite amounts of time,
because comparing two functions with type Nat → Bool  would require checking that the
functions returned the same Bool  for each and every Nat .

In other words, a function from an infinite type is itself infinite. Functions can be viewed as
tables, and a function whose argument type is infinite requires infinitely many rows to
represent each case. But functions from finite types require only finitely many rows in their
tables, making them finite. Two functions whose argument type is finite can be checked for
equality by enumerating all possible arguments, calling the functions on each of them, and
then comparing the results. Checking higher-order functions for equality requires
generating all possible functions of a given type, which additionally requires that the return
type is finite so that each element of the argument type can be mapped to each element of
the return type. This is not a fast method, but it does complete in finite time.

One way to represent finite types is by a universe:

inductive Finite where
  | unit : Finite
  | bool : Finite
  | pair : Finite → Finite → Finite
  | arr : Finite → Finite → Finite

abbrev Finite.asType : Finite → Type
  | .unit => Unit
  | .bool => Bool
  | .pair t1 t2 => asType t1 × asType t2
  | .arr t1 t2 => asType t1 → asType t2
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In this universe, the constructor arr  stands for the function type, which is written with an
arr ow.

Comparing two values from this universe for equality is almost the same as in the
NestedPairs  universe. The only important difference is the addition of the case for arr ,

which uses a helper called Finite.enumerate  to generate every value from the type coded
for by t1 , checking that the two functions return equal results for every possible input:

The standard library function List.all  checks that the provided function returns true  on
every entry of a list. This function can be used to compare functions on the Booleans for
equality:

It can also be used to compare functions from the standard library:

It can even compare functions built using tools such as function composition:

This is because the Finite  universe codes for Lean's actual function type, not a special
analogue created by the library.

The implementation of enumerate  is also by recursion on the codes from Finite .

def Finite.beq (t : Finite) (x y : t.asType) : Bool :=
  match t with
  | .unit => true
  | .bool => x == y
  | .pair t1 t2 => beq t1 x.fst y.fst && beq t2 x.snd y.snd
  | .arr t1 t2 =>
    t1.enumerate.all fun arg => beq t2 (x arg) (y arg)

#eval Finite.beq (.arr .bool .bool) (fun _ => true) (fun b => b == b)

true

#eval Finite.beq (.arr .bool .bool) (fun _ => true) not

false

#eval Finite.beq (.arr .bool .bool) id (not ∘ not)

true

  def Finite.enumerate (t : Finite) : List t.asType :=
    match t with
    | .unit => [()]
    | .bool => [true, false]
    | .pair t1 t2 => t1.enumerate.product t2.enumerate
    | .arr t1 t2 => t1.functions t2.enumerate
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In the case for Unit , there is only a single value. In the case for Bool , there are two values
to return ( true  and false ). In the case for pairs, the result should be the Cartesian
product of the values for the type coded for by t1  and the values for the type coded for by
t2 . In other words, every value from t1  should be paired with every value from t2 . The

helper function List.product  can certainly be written with an ordinary recursive function,
but here it is defined using for  in the identity monad:

Finally, the case of Finite.enumerate  for functions delegates to a helper called
Finite.functions  that takes a list of all of the return values to target as an argument.

Generally speaking, generating all of the functions from some finite type to a collection of
result values can be thought of as generating the functions' tables. Each function assigns an
output to each input, which means that a given function has  rows in its table when there
are  possible arguments. Because each row of the table could select any of  possible
outputs, there are  potential functions to generate.

Once again, generating the functions from a finite type to some list of values is recursive on
the code that describes the finite type:

The table for functions from Unit  contains one row, because the function can't pick
different results based on which input it is provided. This means that one function is
generated for each potential input.

There are  functions from Bool  when there are  result values, because each individual
function of type Bool → α  uses the Bool  to select between two particular α s:

Generating the functions from pairs can be achieved by taking advantage of currying. A
function from a pair can be transformed into a function that takes the first element of the

def List.product (xs : List α) (ys : List β) : List (α × β) := Id.run do
  let mut out : List (α × β) := []
  for x in xs do
    for y in ys do
      out := (x, y) :: out
  pure out.reverse

k

k n

nk

  def Finite.functions (t : Finite) (results : List α) : List (t.asType → α) :=
    match t with

      | .unit =>
        results.map fun r =>
          fun () => r

n2 n

      | .bool =>
        (results.product results).map fun (r1, r2) =>
          fun
            | true => r1
            | false => r2
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pair and returns a function that's waiting for the second element of the pair. Doing this
allows Finite.functions  to be used recursively in this case:

Generating higher-order functions is a bit of a brain bender. Each higher-order function
takes a function as its argument. This argument function can be distinguished from other
functions based on its input/output behavior. In general, the higher-order function can
apply the argument function to every possible argument, and it can then carry out any
possible behavior based on the result of applying the argument function. This suggests a
means of constructing the higher-order functions:

Begin with a list of all possible arguments to the function that is itself an argument.
For each possible argument, construct all possible behaviors that can result from the
observation of applying the argument function to the possible argument. This can be
done using Finite.functions  and recursion over the rest of the possible arguments,
because the result of the recursion represents the functions based on the
observations of the rest of the possible arguments. Finite.functions  constructs all
the ways of achieving these based on the observation for the current argument.
For potential behavior in response to these observations, construct a higher-order
function that applies the argument function to the current possible argument. The
result of this is then passed to the observation behavior.
The base case of the recursion is a higher-order function that observes nothing for
each result value—it ignores the argument function and simply returns the result
value.

Defining this recursive function directly causes Lean to be unable to prove that the whole
function terminates. However, using a simpler form of recursion called a right fold can be
used to make it clear to the termination checker that the function terminates. A right fold
takes three arguments: a step function that combines the head of the list with the result of
the recursion over the tail, a default value to return when the list is empty, and the list being
processed. It then analyzes the list, essentially replacing each ::  in the list with a call to the
step function and replacing []  with the default value:

Finding the sum of the Nat s in a list can be done with foldr :

      | .pair t1 t2 =>
        let f1s := t1.functions <| t2.functions results
        f1s.map fun f =>
          fun (x, y) =>
            f x y

def List.foldr (f : α → β → β) (default : β) : List α → β
  | []     => default
  | a :: l => f a (foldr f default l)
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With foldr , the higher-order functions can be created as follows:

The complete definition of Finite.Functions  is:

Because Finite.enumerate  and Finite.functions  call each other, they must be defined in
a mutual  block. In other words, right before the definition of Finite.enumerate  is the
mutual  keyword:

[1, 2, 3, 4, 5].foldr (· + ·) 0
===>
(1 :: 2 :: 3 :: 4 :: 5 :: []).foldr (· + ·) 0
===>
(1 + 2 + 3 + 4 + 5 + 0)
===>
15

      | .arr t1 t2 =>
        let args := t1.enumerate
        let base :=
          results.map fun r =>
            fun _ => r
        args.foldr
          (fun arg rest =>
            (t2.functions rest).map fun more =>
              fun f => more (f arg) f)
          base

  def Finite.functions (t : Finite) (results : List α) : List (t.asType → α) :=
    match t with
      | .unit =>
        results.map fun r =>
          fun () => r
      | .bool =>
        (results.product results).map fun (r1, r2) =>
          fun
            | true => r1
            | false => r2
      | .pair t1 t2 =>
        let f1s := t1.functions <| t2.functions results
        f1s.map fun f =>
          fun (x, y) =>
            f x y
      | .arr t1 t2 =>
        let args := t1.enumerate
        let base :=
          results.map fun r =>
            fun _ => r
        args.foldr
          (fun arg rest =>
            (t2.functions rest).map fun more =>
              fun f => more (f arg) f)
          base
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and right after the definition of Finite.functions  is the end  keyword:

This algorithm for comparing functions is not particularly practical. The number of cases to
check grows exponentially; even a simple type like ((Bool × Bool) → Bool) → Bool
describes 65536 distinct functions. Why are there so many? Based on the reasoning above,
and using  to represent the number of values described by the type , we should expect
that

is

which is

which is

or 65536. Nested exponentials grow quickly, and there are many higher-order functions.

Exercises

Write a function that converts any value from a type coded for by Finite  into a string.
Functions should be represented as their tables.
Add the empty type Empty  to Finite  and Finite.beq .
Add Option  to Finite  and Finite.beq .

mutual
  def Finite.enumerate (t : Finite) : List t.asType :=
    match t with

      | .arr t1 t2 =>
        let args := t1.enumerate
        let base :=
          results.map fun r =>
            fun _ => r
        args.foldr
          (fun arg rest =>
            (t2.functions rest).map fun more =>
              fun f => more (f arg) f)
          base
end

|T | T

|((Bool × Bool) → Bool) → Bool|

,|Bool||(Bool×Bool)→Bool|

,22|Bool×Bool|

224
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Worked Example: Typed Queries
Indexed families are very useful when building an API that is supposed to resemble some
other language. They can be used to write a library of HTML constructors that don't permit
generating invalid HTML, to encode the specific rules of a configuration file format, or to
model complicated business constraints. This section describes an encoding of a subset of
relational algebra in Lean using indexed families, as a simpler demonstration of techniques
that can be used to build a more powerful database query language.

This subset uses the type system to enforce requirements such as disjointness of field
names, and it uses type-level computation to reflect the schema into the types of values
that are returned from a query. It is not a realistic system, however—databases are
represented as linked lists of linked lists, the type system is much simpler than that of SQL,
and the operators of relational algebra don't really match those of SQL. However, it is large
enough to demonstrate useful principles and techniques.

A Universe of Data

In this relational algebra, the base data that can be held in columns can have types Int ,
String , and Bool  and are described by the universe DBType :

Using asType  allows these codes to be used for types. For example:

It is possible to compare the values described by any of the three database types for
equality. Explaining this to Lean, however, requires a bit of work. Simply using BEq  directly
fails:

inductive DBType where
  | int | string | bool

abbrev DBType.asType : DBType → Type
  | .int => Int
  | .string => String
  | .bool => Bool

#eval ("Mount Hood" : DBType.string.asType)

"Mount Hood"

def DBType.beq (t : DBType) (x y : t.asType) : Bool :=
  x == y
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Just as in the nested pairs universe, type class search doesn't automatically check each
possibility for t 's value The solution is to use pattern matching to refine the types of x  and
y :

In this version of the function, x  and y  have types Int , String , and Bool  in the three
respective cases, and these types all have BEq  instances. The definition of dbEq  can be
used to define a BEq  instance for the types that are coded for by DBType :

This is not the same as an instance for the codes themselves:

The former instance allows comparison of values drawn from the types described by the
codes, while the latter allows comparison of the codes themselves.

A Repr  instance can be written using the same technique. The method of the Repr  class is
called reprPrec  because it is designed to take things like operator precedence into account
when displaying values. Refining the type through dependent pattern matching allows the
reprPrec  methods from the Repr  instances for Int , String , and Bool  to be used:

Schemas and Tables

A schema describes the name and type of each column in a database:

failed to synthesize instance
  BEq (asType t)

def DBType.beq (t : DBType) (x y : t.asType) : Bool :=
  match t with
  | .int => x == y
  | .string => x == y
  | .bool => x == y

instance {t : DBType} : BEq t.asType where
  beq := t.beq

instance : BEq DBType where
  beq
    | .int, .int => true
    | .string, .string => true
    | .bool, .bool => true
    | _, _ => false

instance {t : DBType} : Repr t.asType where
  reprPrec :=
    match t with
    | .int => reprPrec
    | .string => reprPrec
    | .bool => reprPrec
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In fact, a schema can be seen as a universe that describes rows in a table. The empty
schema describes the unit type, a schema with a single column describes that value on its
own, and a schema with at least two columns is represented by a tuple:

As described in the initial section on product types, Lean's product type and tuples are right-
associative. This means that nested pairs are equivalent to ordinary flat tuples.

A table is a list of rows that share a schema:

For example, a diary of visits to mountain peaks can be represented with the schema peak :

A selection of peaks visited by the author of this book appears as an ordinary list of tuples:

Another example consists of waterfalls and a diary of visits to them:

structure Column where
  name : String
  contains : DBType

abbrev Schema := List Column

abbrev Row : Schema → Type
  | [] => Unit
  | [col] => col.contains.asType
  | col1 :: col2 :: cols => col1.contains.asType × Row (col2::cols)

abbrev Table (s : Schema) := List (Row s)

abbrev peak : Schema := [
  ⟨"name", DBType.string⟩,
  ⟨"location", DBType.string⟩,
  ⟨"elevation", DBType.int⟩,
  ⟨"lastVisited", .int⟩
]

def mountainDiary : Table peak := [
  ("Mount Nebo",       "USA",     3637, 2013),
  ("Moscow Mountain",  "USA",     1519, 2015),
  ("Himmelbjerget",    "Denmark",  147, 2004),
  ("Mount St. Helens", "USA",     2549, 2010)
]

https://leanprover.github.io/functional_programming_in_lean/getting-to-know/polymorphism.html#Prod
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Recursion and Universes, Revisited

The convenient structuring of rows as tuples comes at a cost: the fact that Row  treats its
two base cases separately means that functions that use Row  in their types and are defined
recursively over the codes (that, is the schema) need to make the same distinctions. One
example of a case where this matters is an equality check that uses recursion over the
schema to define a function that checks rows for equality. This example does not pass
Lean's type checker:

The problem is that the pattern col :: cols  does not sufficiently refine the type of the
rows. This is because Lean cannot yet tell whether the singleton pattern [col]  or the col1 
:: col2 :: cols  pattern in the definition of Row  was matched, so the call to Row  does not
compute down to a pair type. The solution is to mirror the structure of Row  in the definition
of Row.bEq :

abbrev waterfall : Schema := [
  ⟨"name", .string⟩,
  ⟨"location", .string⟩,
  ⟨"lastVisited", .int⟩
]

def waterfallDiary : Table waterfall := [
  ("Multnomah Falls", "USA", 2018),
  ("Shoshone Falls",  "USA", 2014)
]

def Row.bEq (r1 r2 : Row s) : Bool :=
  match s with
  | [] => true
  | col::cols =>
    match r1, r2 with
    | (v1, r1'), (v2, r2') =>
      v1 == v2 && bEq r1' r2'

type mismatch
  (v1, r1')
has type
  ?m.6674 × ?m.6677 : Type (max ?u.6686 ?u.6685)
but is expected to have type
  Row (col :: cols) : Type
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Unlike in other contexts, functions that occur in types cannot be considered only in terms of
their input/output behavior. Programs that use these types will find themselves forced to
mirror the algorithm used in the type-level function so that their structure matches the
pattern-matching and recursive behavior of the type. A big part of the skill of programming
with dependent types is the selection of appropriate type-level functions with the right
computational behavior.

Column Pointers

Some queries only make sense if a schema contains a particular column. For example, a
query that returns mountains with an elevation greater than 1000 meters only makes sense
in the context of a schema with a "elevation"  column that contains integers. One way to
indicate that a column is contained in a schema is to provide a pointer directly to it, and
defining the pointer as an indexed family makes it possible to rule out invalid pointers.

There are two ways that a column can be present in a schema: either it is at the beginning of
the schema, or it is somewhere later in the schema. Eventually, if a column is later in a
schema, then it will be the beginning of some tail of the schema.

The indexed family HasCol  is a translation of the specification into Lean code:

The family's three arguments are the schema, the column name, and its type. All three are
indices, but re-ordering the arguments to place the schema after the column name and type
would allow the name and type to be parameters. The constructor here  can be used when
the schema begins with the column ⟨name, t⟩ ; it is thus a pointer to the first column in the
schema that can only be used when the first column has the desired name and type. The
constructor there  transforms a pointer into a smaller schema into a pointer into a schema
with one more column on it.

Because "elevation"  is the third column in peak , it can be found by looking past the first
two columns with there , after which it is the first column. In other words, to satisfy the

def Row.bEq (r1 r2 : Row s) : Bool :=
  match s with
  | [] => true
  | [_] => r1 == r2
  | _::_::_ =>
    match r1, r2 with
    | (v1, r1'), (v2, r2') =>
      v1 == v2 && bEq r1' r2'

instance : BEq (Row s) where
  beq := Row.bEq

inductive HasCol : Schema → String → DBType → Type where
  | here : HasCol (⟨name, t⟩ :: _) name t
  | there : HasCol s name t → HasCol (_ :: s) name t
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type HasCol peak "elevation" .int , use the expression .there (.there .here) . One
way to think about HasCol  is as a kind of decorated Nat — zero  corresponds to here , and
succ  corresponds to there . The extra type information makes it impossible to have off-by-

one errors.

A pointer to a particular column in a schema can be used to extract that column's value
from a row:

The first step is to pattern match on the schema, because this determines whether the row
is a tuple or a single value. No case is needed for the empty schema because there is a
HasCol  available, and both constructors of HasCol  specify non-empty schemas. If the

schema has just a single column, then the pointer must point to it, so only the here
constructor of HasCol  need be matched. If the schema has two or more columns, then
there must be a case for here , in which case the value is the first one in the row, and one
for there , in which case a recursive call is used. Because the HasCol  type guarantees that
the column exists in the row, Row.get  does not need to return an Option .

HasCol  plays two roles:

1. It serves as evidence that a column with a particular name and type exists in a schema.

2. It serves as data that can be used to find the value associated with the column in a
row.

The first role, that of evidence, is similar to way that propositions are used. The definition of
the indexed family HasCol  can be read as a specification of what counts as evidence that a
given column exists. Unlike propositions, however, it matters which constructor of HasCol
was used. In the second role, the constructors are used like Nat s to find data in a collection.
Programming with indexed families often requires the ability to switch fluently between
both perspectives.

Subschemas

One important operation in relational algebra is to project a table or row into a smaller
schema. Every column not present in the smaller schema is forgotten. In order for
projection to make sense, the smaller schema must be a subschema of the larger schema,
which means that every column in the smaller schema must be present in the larger
schema. Just as HasCol  makes it possible to write a single-column lookup in a row that
cannot fail, a representation of the subschema relationship as an indexed family makes it
possible to write a projection function that cannot fail.

def Row.get (row : Row s) (col : HasCol s n t) : t.asType :=
  match s, col, row with
  | [_], .here, v => v
  | _::_::_, .here, (v, _) => v
  | _::_::_, .there next, (_, r) => get r next
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The ways in which one schema can be a subschema of another can be defined as an
indexed family. The basic idea is that a smaller schema is a subschema of a bigger schema if
every column in the smaller schema occurs in the bigger schema. If the smaller schema is
empty, then it's certainly a subschema of the bigger schema, represented by the constructor
nil . If the smaller schema has a column, then that column must be in the bigger schema,

and all the rest of the columns in the subschema must also be a subschema of the bigger
schema. This is represented by the constructor cons .

In other words, Subschema  assigns each column of the smaller schema a HasCol  that
points to its location in the larger schema.

The schema travelDiary  represents the fields that are common to both peak  and
waterfall . It is certainly a subschema of peak , as shown by this example:

However, code like this is difficult to read and difficult to maintain. One way to improve it is
to instruct Lean to write the Subschema  and HasCol  constructors automatically. This can be
done using the tactic feature that was introduced in the Interlude on propositions and
proofs. That interlude uses by simp  to provide evidence of various propositions.

In this context, two tactics are useful:

The constructor  tactic instructs Lean to solve the problem using the constructor of a
datatype.
The repeat  tactic instructs Lean to repeat a tactic over and over until it either fails or
the proof is finished.

In the next example, by constructor  has the same effect as just writing .nil  would have:

However, attempting that same tactic with a slightly more complicated type fails:

inductive Subschema : Schema → Schema → Type where
  | nil : Subschema [] bigger
  | cons :
      HasCol bigger n t →
      Subschema smaller bigger →
      Subschema (⟨n, t⟩ :: smaller) bigger

example : Subschema travelDiary peak :=
  .cons .here
    (.cons (.there .here)
      (.cons (.there (.there (.there .here))) .nil))

example : Subschema [] peak := by constructor

example : Subschema [⟨"location", .string⟩] peak := by constructor

https://leanprover.github.io/functional_programming_in_lean/props-proofs-indexing.html
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Errors that begin with unsolved goals  describe tactics that failed to completely build the
expressions that they were supposed to. In Lean's tactic language, a goal is a type that a
tactic is to fulfill by constructing an appropriate expression behind the scenes. In this case,
constructor  caused Subschema.cons  to be applied, and the two goals represent the two

arguments expected by cons . Adding another instance of constructor  causes the first
goal ( HasCol peak \"location\" DBType.string ) to be addressed with HasCol.there ,
because peak 's first column is not "location" :

However, adding a third constructor  results in the first goal being solved, because
HasCol.here  is applicable:

A fourth instance of constructor  solves the Subschema peak []  goal:

unsolved goals
case a
⊢ HasCol peak "location" DBType.string

case a
⊢ Subschema [] peak

example : Subschema [⟨"location", .string⟩] peak := by
  constructor
  constructor

unsolved goals
case a.a
⊢ HasCol
    [{ name := "location", contains := DBType.string }, { name := "elevation", 
contains := DBType.int },
      { name := "lastVisited", contains := DBType.int }]
    "location" DBType.string

case a
⊢ Subschema [] peak

example : Subschema [⟨"location", .string⟩] peak := by
  constructor
  constructor
  constructor

unsolved goals
case a
⊢ Subschema [] peak

example : Subschema [⟨"location", .string⟩] peak := by
  constructor
  constructor
  constructor
  constructor
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Indeed, a version written without the use of tactics has four constructors:

Instead of experimenting to find the right number of times to write constructor , the
repeat  tactic can be used to ask Lean to just keep trying constructor  as long as it keeps

making progress:

This more flexible version also works for more interesting Subschema  problems:

The approach of blindly trying constructors until something works is not very useful for
types like Nat  or List Bool . Just because an expression has type Nat  doesn't mean that
it's the correct Nat , after all. But types like HasCol  and Subschema  are sufficiently
constrained by their indices that only one constructor will ever be applicable, which means
that the contents of the program itself are less interesting, and a computer can pick the
correct one.

If one schema is a subschema of another, then it is also a subschema of the larger schema
extended with an additional column. This fact can be captured as a function definition.
Subschema.addColumn  takes evidence that smaller  is a subschema of bigger , and then

returns evidence that smaller  is a subschema of c :: bigger , that is, bigger  with one
additional column:

A subschema describes where to find each column from the smaller schema in the larger
schema. Subschema.addColumn  must translate these descriptions from the original larger
schema into the extended larger schema. In the nil  case, the smaller schema is [] , and
nil  is also evidence that []  is a subschema of c :: bigger . In the cons  case, which

describes how to place one column from smaller  into larger , the placement of the
column needs to be adjusted with there  to account for the new column c , and a recursive
call adjusts the rest of the columns.

Another way to think about Subschema  is that it defines a relation between two schemas—
the existence of an expression with type Subschema bigger smaller  means that (bigger, 

example : Subschema [⟨"location", .string⟩] peak :=
  .cons (.there .here) .nil

example : Subschema [⟨"location", .string⟩] peak := by repeat constructor

example : Subschema travelDiary peak := by repeat constructor

example : Subschema travelDiary waterfall := by repeat constructor

def Subschema.addColumn (sub : Subschema smaller bigger) : Subschema smaller (c 
:: bigger) :=
  match sub with
  | .nil  => .nil
  | .cons col sub' => .cons (.there col) sub'.addColumn
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smaller)  is in the relation. This relation is reflexive, meaning that every schema is a
subschema of itself:

Projecting Rows

Given evidence that s'  is a subschema of s , a row in s  can be projected into a row in s' .
This is done using the evidence that s'  is a subschema of s , which explains where each
column of s'  is found in s . The new row in s'  is built up one column at a time by
retrieving the value from the appropriate place in the old row.

The function that performs this projection, Row.project , has three cases, one for each case
of Row  itself. It uses Row.get  together with each HasCol  in the Subschema  argument to
construct the projected row:

Conditions and Selection

Projection removes unwanted columns from a table, but queries must also be able to
remove unwanted rows. This operation is called selection. Selection relies on having a means
of expressing which rows are desired.

The example query language contains expressions, which are analogous to what can be
written in a WHERE  clause in SQL. Expressions are represented by the indexed family
DBExpr . Because expressions can refer to columns from the database, but different sub-

expressions all have the same schema, DBExpr  takes the database schema as a parameter.
Additionally, each expression has a type, and these vary, making it an index:

The col  constructor represents a reference to a column in the database. The eq
constructor compares two expressions for equality, lt  checks whether one is less than the

def Subschema.reflexive : (s : Schema) → Subschema s s
  | [] => .nil
  | _ :: cs => .cons .here (reflexive cs).addColumn

def Row.project (row : Row s) : (s' : Schema) → Subschema s' s → Row s'
  | [], .nil => ()
  | [_], .cons c .nil => row.get c
  | _::_::_, .cons c cs => (row.get c, row.project _ cs)

inductive DBExpr (s : Schema) : DBType → Type where
  | col (n : String) (loc : HasCol s n t) : DBExpr s t
  | eq (e1 e2 : DBExpr s t) : DBExpr s .bool
  | lt (e1 e2 : DBExpr s .int) : DBExpr s .bool
  | and (e1 e2 : DBExpr s .bool) : DBExpr s .bool
  | const : t.asType → DBExpr s t
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other, and  is Boolean conjunction, and const  is a constant value of some type.

For example, an expression in peak  that checks whether the elevation  column is greater
than 1000 and the location is "Denmark"  can be written:

This is somewhat noisy. In particular, references to columns contain boilerplate calls to by 
repeat constructor . A Lean feature called macros can help make expressions easier to
read by eliminating this boilerplate:

This declaration adds the c!  keyword to Lean, and instructs Lean to replace any instance of
c!  followed by an expression with the corresponding DBExpr.col  construction. Here,
term  stands for Lean expressions, rather than commands, tactics, or some other part of

the language. Lean macros are a bit like C preprocessor macros, except they are better
integrated into the language and they automatically avoid some of the pitfalls of CPP. In
fact, they are very closely related to macros in Scheme and Racket.

With this macro, the expression can be much easier to read:

Finding the value of an expression with respect to a given row uses Row.get  to extract
column references, and it delegates to Lean's operations on values for every other
expression:

Evaluating the expression for Valby Bakke, the tallest hill in the Copenhagen area, yields
false  because Valby Bakke is much less than 1 km over sea level:

Evaluating it for a fictional mountain of 1230m elevation yields true :

def tallInDenmark : DBExpr peak .bool :=
  .and (.lt (.const 1000) (.col "elevation" (by repeat constructor)))
       (.eq (.col "location" (by repeat constructor)) (.const "Denmark"))

macro "c!" n:term : term => `(DBExpr.col $n (by repeat constructor))

def tallInDenmark : DBExpr peak .bool :=
  .and (.lt (.const 1000) (c! "elevation"))
       (.eq (c! "location") (.const "Denmark"))

def DBExpr.evaluate (row : Row s) : DBExpr s t → t.asType
  | .col _ loc => row.get loc
  | .eq e1 e2  => evaluate row e1 == evaluate row e2
  | .lt e1 e2  => evaluate row e1 < evaluate row e2
  | .and e1 e2 => evaluate row e1 && evaluate row e2
  | .const v => v

#eval tallInDenmark.evaluate ("Valby Bakke", "Denmark", 31, 2023)

false
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Evaluating it for the highest peak in the US state of Idaho yields false , as Idaho is not part
of Denmark:

Queries

The query language is based on relational algebra. In addition to tables, it includes the
following operators:

1. The union of two expressions that have the same schema combines the rows that
result from two queries

2. The difference of two expressions that have the same schema removes rows found in
the second result from the rows in the first result

3. Selection by some criterion filters the result of a query according to an expression
4. Projection into a subschema, removing columns from the result of a query
5. Cartesian product, combining every row from one query with every row from another
6. Renaming a column in the result of a query, which modifies its schema
7. Prefixing all columns in a query with a name

The last operator is not strictly necessary, but it makes the language more convenient to
use.

Once again, queries are represented by an indexed family:

#eval tallInDenmark.evaluate ("Fictional mountain", "Denmark", 1230, 2023)

true

#eval tallInDenmark.evaluate ("Mount Borah", "USA", 3859, 1996)

false
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The select  constructor requires that the expression used for selection return a Boolean.
The product  constructor's type contains a call to disjoint , which ensures that the two
schemas don't share any names:

The use of an expression of type Bool  where a type is expected triggers a coercion from
Bool  to Prop . Just as decidable propositions can be considered to be Booleans, where

evidence for the proposition is coerced to true  and refutations of the proposition are
coerced to false , Booleans are coerced into the proposition that states that the expression
is equal to true . Because all uses of the library are expected to occur in contexts where the
schemas are known ahead of time, this proposition can be proved with by simp . Similarly,
the renameColumn  constructor checks that the new name does not already exist in the
schema. It uses the helper Schema.renameColumn  to change the name of the column
pointed to by HasCol :

Executing Queries

Executing queries requires a number of helper functions. The result of a query is a table;
this means that each operation in the query language requires a corresponding
implementation that works with tables.

inductive Query : Schema → Type where
  | table : Table s → Query s
  | union : Query s → Query s → Query s
  | diff : Query s → Query s → Query s
  | select : Query s → DBExpr s .bool → Query s
  | project : Query s → (s' : Schema) → Subschema s' s → Query s'
  | product :
      Query s1 → Query s2 →
      disjoint (s1.map Column.name) (s2.map Column.name) →
      Query (s1 ++ s2)
  | renameColumn :
      Query s → (c : HasCol s n t) → (n' : String) → !((s.map 
Column.name).contains n') →
      Query (s.renameColumn c n')
  | prefixWith :
      (n : String) → Query s →
      Query (s.map fun c => {c with name := n ++ "." ++ c.name})

def disjoint [BEq α] (xs ys : List α) : Bool :=
  not (xs.any ys.contains || ys.any xs.contains)

def Schema.renameColumn : (s : Schema) → HasCol s n t → String → Schema
  | c :: cs, .here, n' => {c with name := n'} :: cs
  | c :: cs, .there next, n' => c :: renameColumn cs next n'
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Cartesian Product

Taking the Cartesian product of two tables is done by appending each row from the first
table to each row from the second. First off, due to the structure of Row , adding a single
column to a row requires pattern matching on its schema in order to determine whether
the result will be a bare value or a tuple. Because this is a common operation, factoring the
pattern matching out into a helper is convenient:

Appending two rows is recursive on the structure of both the first schema and the first row,
because the structure of the row proceeds in lock-step with the structure of the schema.
When the first row is empty, appending returns the second row. When the first row is a
singleton, the value is added to the second row. When the first row contains multiple
columns, the first column's value is added to the result of recursion on the remainder of the
row.

List.flatMap  applies a function that itself returns a list to every entry in an input list,
returning the result of appending the resulting lists in order:

The type signature suggests that List.flatMap  could be used to implement a Monad List
instance. Indeed, together with pure x := [x] , List.flatMap  does implement a monad.
However, it's not a very useful Monad  instance. The List  monad is basically a version of
Many  that explores every possible path through the search space in advance, before users

have the chance to request some number of values. Because of this performance trap, it's
usually not a good idea to define a Monad  instance for List . Here, however, the query
language has no operator for restricting the number of results to be returned, so combining
all possibilities is exactly what is desired:

Just as with List.product , a loop with mutation in the identity monad can be used as an
alternative implementation technique:

def addVal (v : c.contains.asType) (row : Row s) : Row (c :: s) :=
  match s, row with
  | [], () => v
  | c' :: cs, v' => (v, v')

def Row.append (r1 : Row s1) (r2 : Row s2) : Row (s1 ++ s2) :=
  match s1, r1 with
  | [], () => r2
  | [_], v => addVal v r2
  | _::_::_, (v, r') => (v, r'.append r2)

def List.flatMap (f : α → List β) : (xs : List α) → List β
  | [] => []
  | x :: xs => f x ++ xs.flatMap f

def Table.cartesianProduct (table1 : Table s1) (table2 : Table s2) : Table (s1 
++ s2) :=
  table1.flatMap fun r1 => table2.map r1.append
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Difference

Removing undesired rows from a table can be done using List.filter , which takes a list
and a function that returns a Bool . A new list is returned that contains only the entries for
which the function returns true . For instance,

evaluates to

because "Columbia"  and "Sandy"  have lengths less than or equal to 8 . Removing the
entries of a table can be done using the helper List.without :

This will be used with the BEq  instance for Row  when interpreting queries.

Renaming Columns

Renaming a column in a row is done with a recursive function that traverses the row until
the column in question is found, at which point the column with the new name gets the
same value as the column with the old name:

While this function changes the type of its argument, the actual return value contains
precisely the same data as the original argument. From a run-time perspective, renameRow
is nothing but a slow identity function. One difficulty in programming with indexed families
is that when performance matters, this kind of operation can get in the way. It takes a very
careful, often brittle, design to eliminate these kinds of "re-indexing" functions.

def Table.cartesianProduct (table1 : Table s1) (table2 : Table s2) : Table (s1 
++ s2) := Id.run do
  let mut out : Table (s1 ++ s2) := []
  for r1 in table1 do
    for r2 in table2 do
      out := (r1.append r2) :: out
  pure out.reverse

["Willamette", "Columbia", "Sandy", "Deschutes"].filter (·.length > 8)

["Willamette", "Deschutes"]

def List.without [BEq α] (source banned : List α) : List α :=
  source.filter fun r => !(banned.contains r)

def Row.rename (c : HasCol s n t) (row : Row s) : Row (s.renameColumn c n') :=
  match s, row, c with
  | [_], v, .here => v
  | _::_::_, (v, r), .here => (v, r)
  | _::_::_, (v, r), .there next => addVal v (r.rename next)
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Prefixing Column Names

Adding a prefix to column names is very similar to renaming a column. Instead of
proceeding to a desired column and then returning, prefixRow  must process all columns:

This can be used with List.map  in order to add a prefix to all rows in a table. Once again,
this function only exists to change the type of a value.

Putting the Pieces Together

With all of these helpers defined, executing a query requires only a short recursive function:

Some arguments to the constructors are not used during execution. In particular, both the
constructor project  and the function Row.project  take the smaller schema as explicit
arguments, but the type of the evidence that this schema is a subschema of the larger
schema contains enough information for Lean to fill out the argument automatically.
Similarly, the fact that the two tables have disjoint column names that is required by the
product  constructor is not needed by Table.cartesianProduct . Generally speaking,

dependent types provide many opportunities to have Lean fill out arguments on behalf of
the programmer.

Dot notation is used with the results of queries to call functions defined both in the Table
and List  namespaces, such List.map , List.filter , and Table.cartesianProduct . This
works because Table  is defined using abbrev . Just like type class search, dot notation can
see through definitions created with abbrev .

The implementation of select  is also quite concise. After executing the query q ,
List.filter  is used to remove the rows that do not satisfy the expression. Filter expects a

function from Row s  to Bool , but DBExpr.evaluate  has type Row s → DBExpr s t → 

def prefixRow (row : Row s) : Row (s.map fun c => {c with name := n ++ "." ++ 
c.name}) :=
  match s, row with
  | [], _ => ()
  | [_], v => v
  | _::_::_, (v, r) => (v, prefixRow r)

def Query.exec : Query s → Table s
  | .table t => t
  | .union q1 q2 => exec q1 ++ exec q2
  | .diff q1 q2 => exec q1 |>.without (exec q2)
  | .select q e => exec q |>.filter e.evaluate
  | .project q _ sub => exec q |>.map (·.project _ sub)
  | .product q1 q2 _ => exec q1 |>.cartesianProduct (exec q2)
  | .renameColumn q c _ _ => exec q |>.map (·.rename c)
  | .prefixWith _ q => exec q |>.map prefixRow
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t.asType . Because the type of the select  constructor requires that the expression have
type DBExpr s .bool , t.asType  is actually Bool  in this context.

A query that finds the heights of all mountain peaks with an elevation greater than 500
meters can be written:

Executing it returns the expected list of integers:

To plan a sightseeing tour, it may be relevant to match all pairs mountains and waterfalls in
the same location. This can be done by taking the Cartesian product of both tables, selecting
only the rows in which they are equal, and then projecting out the names:

Because the example data includes only waterfalls in the USA, executing the query returns
pairs of mountains and waterfalls in the US:

Errors You May Meet

Many potential errors are ruled out by the definition of Query . For instance, forgetting the
added qualifier in "mountain.location"  yields a compile-time error that highlights the
column reference c! "location" :

open Query in
def example1 :=
  table mountainDiary |>.select
  (.lt (.const 500) (c! "elevation")) |>.project
  [⟨"elevation", .int⟩] (by repeat constructor)

#eval example1.exec

[3637, 1519, 2549]

open Query in
def example2 :=
  let mountain := table mountainDiary |>.prefixWith "mountain"
  let waterfall := table waterfallDiary |>.prefixWith "waterfall"
  mountain.product waterfall (by simp)
    |>.select (.eq (c! "mountain.location") (c! "waterfall.location"))
    |>.project [⟨"mountain.name", .string⟩, ⟨"waterfall.name", .string⟩] (by 
repeat constructor)

#eval example2.exec

[("Mount Nebo", "Multnomah Falls"),
 ("Mount Nebo", "Shoshone Falls"),
 ("Moscow Mountain", "Multnomah Falls"),
 ("Moscow Mountain", "Shoshone Falls"),
 ("Mount St. Helens", "Multnomah Falls"),
 ("Mount St. Helens", "Shoshone Falls")]
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This is excellent feedback! On the other hand, the text of the error message is quite difficult
to act on:

Similarly, forgetting to add prefixes to the names of the two tables results in an error on by 
simp , which should provide evidence that the schemas are in fact disjoint;

However, the error message is similarly unhelpful:

Lean's macro system contains everything needed not only to provide a convenient syntax
for queries, but also to arrange for the error messages to be helpful. Unfortunately, it is
beyond the scope of this book to provide a description of implementing languages with
Lean macros. An indexed family such as Query  is probably best as the core of a typed
database interaction library, rather than its user interface.

open Query in
def example2 :=
  let mountains := table mountainDiary |>.prefixWith "mountain"
  let waterfalls := table waterfallDiary |>.prefixWith "waterfall"
  mountains.product waterfalls (by simp)
    |>.select (.eq (c! "location") (c! "waterfall.location"))
    |>.project [⟨"mountain.name", .string⟩, ⟨"waterfall.name", .string⟩] (by 
repeat constructor)

unsolved goals
case a.a.a.a.a.a.a
mountains : Query (List.map (fun c => { name := "mountain" ++ "." ++ c.name, 
contains := c.contains }) peak) :=
  prefixWith "mountain" (table mountainDiary)
waterfalls : Query (List.map (fun c => { name := "waterfall" ++ "." ++ c.name, 
contains := c.contains }) waterfall) :=
  prefixWith "waterfall" (table waterfallDiary)
⊢ HasCol (List.map (fun c => { name := "waterfall" ++ "." ++ c.name, contains := 
c.contains }) []) "location" ?m.110696

open Query in
def example2 :=
  let mountains := table mountainDiary
  let waterfalls := table waterfallDiary
  mountains.product waterfalls (by simp)
    |>.select (.eq (c! "mountain.location") (c! "waterfall.location"))
    |>.project [⟨"mountain.name", .string⟩, ⟨"waterfall.name", .string⟩] (by 
repeat constructor)

unsolved goals
mountains : Query peak := table mountainDiary
waterfalls : Query waterfall := table waterfallDiary
⊢ False
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Exercises

Dates

Define a structure to represent dates. Add it to the DBType  universe and update the rest of
the code accordingly. Provide the extra DBExpr  constructors that seem to be necessary.

Nullable Types

Add support for nullable columns to the query language by representing database types
with the following structure:

Use this type in place of DBType  in Column  and DBExpr , and look up SQL's rules for NULL
and comparison operators to determine the types of DBExpr 's constructors.

Experimenting with Tactics

What is the result of asking Lean to find values of the following types using by repeat 
constructor ? Explain why each gives the result that it does.

Nat

List Nat

Vect Nat 4

Row []

Row [⟨"price", .int⟩]

Row peak

HasCol [⟨"price", .int⟩, ⟨"price", .int⟩] "price" .int

structure NDBType where
  underlying : DBType
  nullable : Bool

abbrev NDBType.asType (t : NDBType) : Type :=
  if t.nullable then
    Option t.underlying.asType
  else
    t.underlying.asType
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Indices, Parameters, and Universe Levels
The distinction between indices and parameters of an inductive type is more than just a way
to describe arguments to the type that either vary or do not between the constructors.
Whether an argument to an inductive type is a parameter or an index also matters when it
comes time to determine the relationships between their universe levels. In particular, an
inductive type may have the same universe level as a parameter, but it must be in a larger
universe than its indices. This restriction is necessary to ensure that Lean can be used as a
theorem prover as well as a programming language—without it, Lean's logic would be
inconsistent. Experimenting with error messages is a good way to illustrate these rules, as
well as the precise rules that determine whether an argument to a type is a parameter or an
index.

Generally speaking, the definition of an inductive type takes its parameters before a colon
and its indices after the colon. Parameters are given names like function arguments,
whereas indices only have their types described. This can be seen in the definition of Vect :

In this definition, α  is a parameter and the Nat  is an index. Parameters may be referred to
throughout the definition (for example, Vect.cons  uses α  for the type of its first
argument), but they must always be used consistently. Because indices are expected to
change, they are assigned individual values at each constructor, rather than being provided
as arguments at the top of the datatype definition.

A very simple datatype with a parameter is WithParameter :

The universe level u  can be used for both the parameter and for the inductive type itself,
illustrating that parameters do not increase the universe level of a datatype. Similarly, when
there are multiple parameters, the inductive type receives whichever universe level is
greater:

Because parameters do not increase the universe level of a datatype, they can be more
convenient to work with. Lean attempts to identify arguments that are described like indices
(after the colon), but used like parameters, and turn them into parameters: Both of the
following inductive datatypes have their parameter written after the colon:

inductive Vect (α : Type u) : Nat → Type u where
   | nil : Vect α 0
   | cons : α → Vect α n → Vect α (n + 1)

inductive WithParameter (α : Type u) : Type u where
  | test : α → WithParameter α

inductive WithTwoParameters (α : Type u) (β : Type v) : Type (max u v) where
  | test : α → β → WithTwoParameters α β
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When a parameter is not named in the initial datatype declaration, different names may be
used for it in each constructor, so long as they are used consistently. The following
declaration is accepted:

However, this flexibility does not extend to datatypes that explicitly declare the names of
their parameters:

Similarly, attempting to name an index results in an error:

Using an appropriate universe level and placing the index after the colon results in a
declaration that is acceptable:

Even though Lean can sometimes determine that an argument after the colon in an
inductive type declaration is a parameter when it is used consistently in all constructors, all
parameters are still required to come before all indices. Attempting to place a parameter
after an index results in the argument being considered an index itself, which would require
the universe level of the datatype to increase:

inductive WithParameterAfterColon : Type u → Type u where
  | test : α → WithParameterAfterColon α

inductive WithParameterAfterColon2 : Type u → Type u where
  | test1 : α → WithParameterAfterColon2 α
  | test2 : WithParameterAfterColon2 α

inductive WithParameterAfterColonDifferentNames : Type u → Type u where
  | test1 : α → WithParameterAfterColonDifferentNames α
  | test2 : β → WithParameterAfterColonDifferentNames β

inductive WithParameterBeforeColonDifferentNames (α : Type u) : Type u where
  | test1 : α → WithParameterBeforeColonDifferentNames α
  | test2 : β → WithParameterBeforeColonDifferentNames β

inductive datatype parameter mismatch
  β
expected
  α

inductive WithNamedIndex (α : Type u) : Type (u + 1) where
  | test1 : WithNamedIndex α
  | test2 : WithNamedIndex α → WithNamedIndex α → WithNamedIndex (α × α)

inductive datatype parameter mismatch
  α × α
expected
  α

inductive WithIndex : Type u → Type (u + 1) where
  | test1 : WithIndex α
  | test2 : WithIndex α → WithIndex α → WithIndex (α × α)
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Parameters need not be types. This example shows that ordinary datatypes such as Nat
may be used as parameters:

Using the n  as suggested causes the declaration to be accepted:

What can be concluded from these experiments? The rules of parameters and indices are as
follows:

1. Parameters must be used identically in each constructor's type.
2. All parameters must come before all indices.
3. The universe level of the datatype being defined must be at least as large as the

largest parameter, and strictly larger than the largest index.
4. Named arguments written before the colon are always parameters, while arguments

after the colon are typically indices. Lean may determine that the usage of arguments
after the colon makes them into parameters if they are used consistently in all
constructors and don't come after any indices.

When in doubt, the Lean command #print  can be used to check how many of a datatype's
arguments are parameters. For example, for Vect , it points out that the number of
parameters is 1:

inductive ParamAfterIndex : Nat → Type u → Type u where
  | test1 : ParamAfterIndex 0 γ
  | test2 : ParamAfterIndex n γ → ParamAfterIndex k γ → ParamAfterIndex (n + k) 
γ

invalid universe level in constructor 'ParamAfterIndex.test1', parameter 'γ' has 
type
  Type u
at universe level
  u+2
it must be smaller than or equal to the inductive datatype universe level
  u+1

inductive NatParam (n : Nat) : Nat → Type u where
  | five : NatParam 4 5

inductive datatype parameter mismatch
  4
expected
  n

inductive NatParam (n : Nat) : Nat → Type u where
  | five : NatParam n 5

#print Vect
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It is worth thinking about which arguments should be parameters and which should be
indices when choosing the order of arguments to a datatype. Having as many arguments as
possible be parameters helps keep universe levels under control, which can make a
complicated program easier to type check. One way to make this possible is to ensure that
all parameters come before all indices in the argument list.

Additionally, even though Lean is capable of determining that arguments after the colon are
nonetheless parameters by their usage, it's a good idea to write parameters with explicit
names. This makes the intention clear to readers, and it causes Lean to report an error if the
argument is mistakenly used inconsistently across the constructors.

inductive Vect.{u} : Type u → Nat → Type u
number of parameters: 1
constructors:
Vect.nil : {α : Type u} → Vect α 0
Vect.cons : {α : Type u} → {n : Nat} → α → Vect α n → Vect α (n + 1)
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Pitfalls of Programming with Dependent
Types
The flexibility of dependent types allows more useful programs to be accepted by a type
checker, because the language of types is expressive enough to describe variations that
less-expressive type systems cannot. At the same time, the ability of dependent types to
express very fine-grained specifications allows more buggy programs to be rejected by a
type checker. This power comes at a cost.

The close coupling between the internals of type-returning functions such as Row  and the
types that they produce is an instance of a bigger difficulty: the distinction between the
interface and the implementation of functions begins to break down when functions are
used in types. Normally, all refactorings are valid as long as they don't change the type
signature or input-output behavior of a function. Functions can be rewritten to use more
efficient algorithms and data structures, bugs can be fixed, and code clarity can be
improved without breaking client code. When the function is used in a type, however, the
internals of the function's implementation become part of the type, and thus part of the
interface to another program.

As an example, take the following two implementations of addition on Nat . Nat.plusL  is
recursive on its first argument:

Nat.plusR , on the other hand, is recursive on its second argument:

Both implementations of addition are faithful to the underlying mathematical concept, and
they thus return the same result when given the same arguments.

However, these two implementations present quite different interfaces when they are used
in types. As an example, take a function that appends two Vect s. This function should
return a Vect  whose length is the sum of the length of the arguments. Because Vect  is
essentially a List  with a more informative type, it makes sense to write the function just as
one would for List.append , with pattern matching and recursion on the first argument.
Starting with a type signature and initial pattern match pointing at placeholders yields two
messages:

def Nat.plusL : Nat → Nat → Nat
  | 0, k => k
  | n + 1, k => plusL n k + 1

def Nat.plusR : Nat → Nat → Nat
  | n, 0 => n
  | n, k + 1 => plusR n k + 1
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The first message, in the nil  case, states that the placeholder should be replaced by a
Vect  with length plusL 0 k :

The second message, in the cons  case, states that the placeholder should be replaced by a
Vect  with length plusL (n✝ + 1) k :

The symbol after n , called a dagger, is used to indicate names that Lean has internally
invented. Behind the scenes, pattern matching on the first Vect  implicitly caused the value
of the first Nat  to be refined as well, because the index on the constructor cons  is n + 1 ,
with the tail of the Vect  having length n . Here, n✝  represents the Nat  that is one less
than the argument n .

Definitional Equality

In the definition of plusL , there is a pattern case 0, k => k . This applies in the length
used in the first placeholder, so another way to write the underscore's type Vect α 
(Nat.plusL 0 k)  is Vect α k . Similarly, plusL  contains a pattern case n + 1, k => plusN 
n k + 1 . This means that the type of the second underscore can be equivalently written
Vect α (plusL n✝ k + 1) .

To expose what is going on behind the scenes, the first step is to write the Nat  arguments
explicitly, which also results in daggerless error messages because the names are now
written explicitly in the program:

def appendL : Vect α n → Vect α k → Vect α (n.plusL k)
  | .nil, ys => _
  | .cons x xs, ys => _

don't know how to synthesize placeholder
context:
α : Type u_1
n k : Nat
ys : Vect α k
⊢ Vect α (Nat.plusL 0 k)

don't know how to synthesize placeholder
context:
α : Type u_1
n k n✝ : Nat
x : α
xs : Vect α n✝
ys : Vect α k
⊢ Vect α (Nat.plusL (n✝ + 1) k)
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Annotating the underscores with the simplified versions of the types does not introduce a
type error, which means that the types as written in the program are equivalent to the ones
that Lean found on its own:

The first case demands a Vect α k , and ys  has that type. This is parallel to the way that
appending the empty list to any other list returns that other list. Refining the definition with
ys  instead of the first underscore yields a program with only one remaining underscore to

be filled out:

def appendL : (n k : Nat) → Vect α n → Vect α k → Vect α (n.plusL k)
  | 0, k, .nil, ys => _
  | n + 1, k, .cons x xs, ys => _

don't know how to synthesize placeholder
context:
α : Type u_1
k : Nat
ys : Vect α k
⊢ Vect α (Nat.plusL 0 k)

don't know how to synthesize placeholder
context:
α : Type u_1
n k : Nat
x : α
xs : Vect α n
ys : Vect α k
⊢ Vect α (Nat.plusL (n + 1) k)

def appendL : (n k : Nat) → Vect α n → Vect α k → Vect α (n.plusL k)
  | 0, k, .nil, ys => (_ : Vect α k)
  | n + 1, k, .cons x xs, ys => (_ : Vect α (n.plusL k + 1))

don't know how to synthesize placeholder
context:
α : Type u_1
k : Nat
ys : Vect α k
⊢ Vect α k

don't know how to synthesize placeholder
context:
α : Type u_1
n k : Nat
x : α
xs : Vect α n
ys : Vect α k
⊢ Vect α (Nat.plusL n k + 1)
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Something very important has happened here. In a context where Lean expected a Vect α 
(Nat.plusL 0 k) , it received a Vect α k . However, Nat.plusL  is not an abbrev , so it may
seem like it shouldn't be running during type checking. Something else is happening.

The key to understanding what's going on is that Lean doesn't just expand abbrev s while
type checking. It can also perform computation while checking whether two types are
equivalent to one another, such that any expression of one type can be used in a context
that expects the other type. This property is called definitional equality, and it is subtle.

Certainly, two types that are written identically are considered to be definitionally equal—
Nat  and Nat  or List String  and List String  should be considered equal. Any two

concrete types built from different datatypes are not equal, so List Nat  is not equal to
Int . Additionally, types that differ only by renaming internal names are equal, so (n : 
Nat) → Vect String n  is the same as (k : Nat) → Vect String k . Because types can
contain ordinary data, definitional equality must also describe when data are equal. Uses of
the same constructors are equal, so 0  equals 0  and [5, 3, 1]  equals [5, 3, 1] .

Types contain more than just function arrows, datatypes, and constructors, however. They
also contain variables and functions. Definitional equality of variables is relatively simple:
each variable is equal only to itself, so (n k : Nat) → Vect Int n  is not definitionally equal
to (n k : Nat) → Vect Int k . Functions, on the other hand, are more complicated. While
mathematics considers two functions to be equal if they have identical input-output
behavior, there is no efficient algorithm to check that, and the whole point of definitional
equality is for Lean to check whether two types are interchangeable. Instead, Lean considers
functions to be definitionally equal either when they are both fun -expressions with
definitionally equal bodies. In other words, two functions must use the same algorithm that
calls the same helpers to be considered definitionally equal. This is not typically very helpful,
so definitional equality of functions is mostly used when the exact same defined function
occurs in two types.

When functions are called in a type, checking definitional equality may involve reducing the
function call. The type Vect String (1 + 4)  is definitionally equal to the type Vect String 
(3 + 2)  because 1 + 4  is definitionally equal to 3 + 2 . To check their equality, both are
reduced to 5 , and then the constructor rule can be used five times. Definitional equality of

def appendL : (n k : Nat) → Vect α n → Vect α k → Vect α (n.plusL k)
  | 0, k, .nil, ys => ys
  | n + 1, k, .cons x xs, ys => (_ : Vect α (n.plusL k + 1))

don't know how to synthesize placeholder
context:
α : Type u_1
n k : Nat
x : α
xs : Vect α n
ys : Vect α k
⊢ Vect α (Nat.plusL n k + 1)
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functions applied to data can be checked first by seeing if they're already the same—there's
no need to reduce ["a", "b"] ++ ["c"]  to check that it's equal to ["a", "b"] ++ ["c"] ,
after all. If not, the function is called and replaced with its value, and the value can then be
checked.

Not all function arguments are concrete data. For example, types may contain Nat s that
are not built from the zero  and succ  constructors. In the type (n : Nat) → Vect String 
n , the variable n  is a Nat , but it is impossible to know which Nat  it is before the function is
called. Indeed, the function may be called first with 0 , and then later with 17 , and then
again with 33 . As seen in the definition of appendL , variables with type Nat  may also be
passed to functions such as plusL . Indeed, the type (n : Nat) → Vect String n  is
definitionally equal to the type (n : Nat) → Vect String (Nat.plusL 0 n) .

The reason that n  and Nat.plusL 0 n  are definitionally equal is that plusL 's pattern
match examines its first argument. This is problematic: (n : Nat) → Vect String n  is not
definitionally equal to (n : Nat) → Vect String (Nat.plusL n 0) , even though zero
should be both a left and a right identity of addition. This happens because pattern
matching gets stuck when it encounters variables. Until the actual value of n  becomes
known, there is no way to know which case of Nat.plusL n 0  should be selected.

The same issue appears with the Row  function in the query example. The type Row (c :: 
cs)  does not reduce to any datatype because the definition of Row  has separate cases for
singleton lists and lists with at least two entries. In other words, it gets stuck when trying to
match the variable cs  against concrete List  constructors. This is why almost every
function that takes apart or constructs a Row  needs to match the same three cases as Row
itself: getting it unstuck reveals concrete types that can be used for either pattern matching
or constructors.

The missing case in appendL  requires a Vect α (Nat.plusL n k + 1) . The + 1  in the
index suggests that the next step is to use Vect.cons :

A recursive call to appendL  can construct a Vect  with the desired length:

def appendL : (n k : Nat) → Vect α n → Vect α k → Vect α (n.plusL k)
  | 0, k, .nil, ys => ys
  | n + 1, k, .cons x xs, ys => .cons x (_ : Vect α (n.plusL k))

don't know how to synthesize placeholder
context:
α : Type u_1
n k : Nat
x : α
xs : Vect α n
ys : Vect α k
⊢ Vect α (Nat.plusL n k)
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Now that the program is finished, removing the explicit matching on n  and k  makes it
easier to read and easier to call the function:

Comparing types using definitional equality means that everything involved in definitional
equality, including the internals of function definitions, becomes part of the interface of
programs that use dependent types and indexed families. Exposing the internals of a
function in a type means that refactoring the exposed program may cause programs that
use it to no longer type check. In particular, the fact that plusL  is used in the type of
appendL  means that the definition of plusL  cannot be replaced by the otherwise-

equivalent plusR .

Getting Stuck on Addition

What happens if append is defined with plusR  instead? Beginning in the same way, with
explicit lengths and placeholder underscores in each case, reveals the following useful error
messages:

However, attempting to place a Vect α k  type annotation around the first placeholder
results in an type mismatch error:

def appendL : (n k : Nat) → Vect α n → Vect α k → Vect α (n.plusL k)
  | 0, k, .nil, ys => ys
  | n + 1, k, .cons x xs, ys => .cons x (appendL n k xs ys)

def appendL : Vect α n → Vect α k → Vect α (n.plusL k)
  | .nil, ys => ys
  | .cons x xs, ys => .cons x (appendL xs ys)

def appendR : (n k : Nat) → Vect α n → Vect α k → Vect α (n.plusR k)
  | 0, k, .nil, ys => _
  | n + 1, k, .cons x xs, ys => _

don't know how to synthesize placeholder
context:
α : Type u_1
k : Nat
ys : Vect α k
⊢ Vect α (Nat.plusR 0 k)

don't know how to synthesize placeholder
context:
α : Type u_1
n k : Nat
x : α
xs : Vect α n
ys : Vect α k
⊢ Vect α (Nat.plusR (n + 1) k)
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This error is pointing out that plusR 0 k  and k  are not definitionally equal.

This is because plusR  has the following definition:

Its pattern matching occurs on the second argument, not the first argument, which means
that the presence of the variable k  in that position prevents it from reducing. Nat.add  in
Lean's standard library is equivalent to plusR , not plusL , so attempting to use it in this
definition results in precisely the same difficulties:

Addition is getting stuck on the variables. Getting it unstuck requires propositional equality.

Propositional Equality

Propositional equality is the mathematical statement that two expressions are equal. While
definitional equality is a kind of ambient fact that Lean automatically checks when required,
statements of propositional equality require explicit proofs. Once an equality proposition
has been proved, it can be used in a program to modify a type, replacing one side of the
equality with the other, which can unstick the type checker.

The reason why definitional equality is so limited is to enable it to be checked by an
algorithm. Propositional equality is much richer, but the computer cannot in general check

def appendR : (n k : Nat) → Vect α n → Vect α k → Vect α (n.plusR k)
  | 0, k, .nil, ys => (_ : Vect α k)
  | n + 1, k, .cons x xs, ys => _

type mismatch
  ?m.3079
has type
  Vect α k : Type ?u.3016
but is expected to have type
  Vect α (Nat.plusR 0 k) : Type ?u.3016

def Nat.plusR : Nat → Nat → Nat
  | n, 0 => n
  | n, k + 1 => plusR n k + 1

def appendR : (n k : Nat) → Vect α n → Vect α k → Vect α (n + k)
  | 0, k, .nil, ys => (_ : Vect α k)
  | n + 1, k, .cons x xs, ys => _

type mismatch
  ?m.3111
has type
  Vect α k : Type ?u.3016
but is expected to have type
  Vect α (0 + k) : Type ?u.3016

https://leanprover.github.io/functional_programming_in_lean/type-classes/standard-classes.html#equality-and-ordering
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whether two expressions are propositionally equal, though it can verify that a purported
proof is in fact a proof. The split between definitional and propositional equality represents
a division of labor between humans and machines: the most boring equalities are checked
automatically as part of definitional equality, freeing the human mind to work on the
interesting problems available in propositional equality. Similarly, definitional equality is
invoked automatically by the type checker, while propositional equality must be specifically
appealed to.

In Propositions, Proofs, and Indexing, some equality statements are proved using simp . All
of these equality statements are ones in which the propositional equality is in fact already a
definitional equality. Typically, statements of propositional equality are proved by first
getting them into a form where they are either definitional or close enough to existing
proved equalities, and then using tools like simp  to take care of the simplified cases. The
simp  tactic is quite powerful: behind the scenes, it uses a number of fast, automated tools

to construct a proof. A simpler tactic called rfl  specifically uses definitional equality to
prove propositional equality. The name rfl  is short for reflexivity, which is the property of
equality that states that everything equals itself.

Unsticking appendR  requires a proof that k = Nat.plusR 0 k , which is not a definitional
equality because plusR  is stuck on the variable in its second argument. To get it to
compute, the k  must become a concrete constructor. This is a job for pattern matching.

In particular, because k  could be any Nat , this task requires a function that can return
evidence that k = Nat.plusR 0 k  for any k  whatsoever. This should be a function that
returns a proof of equality, with type (k : Nat) → k = Nat.plusR 0 k . Getting it started
with initial patterns and placeholders yields the following messages:

Having refined k  to 0  via pattern matching, the first placeholder stands for evidence of a
statement that does hold definitionally. The rfl  tactic takes care of it, leaving only the
second placeholder:

def plusR_zero_left : (k : Nat) → k = Nat.plusR 0 k
  | 0 => _
  | k + 1 => _

don't know how to synthesize placeholder
context:
⊢ 0 = Nat.plusR 0 0

don't know how to synthesize placeholder
context:
k : Nat
⊢ k + 1 = Nat.plusR 0 (k + 1)

https://leanprover.github.io/functional_programming_in_lean/props-proofs-indexing.html
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The second placeholder is a bit trickier. The expression Nat.plusR 0 k + 1  is definitionally
equal to Nat.plusR 0 (k + 1) . This means that the goal could also be written k + 1 = 
Nat.plusR 0 k + 1 :

Underneath the + 1  on each side of the equality statement is another instance of what the
function itself returns. In other words, a recursive call on k  would return evidence that k = 
Nat.plusR 0 k . Equality wouldn't be equality if it didn't apply to function arguments. In
other words, if x = y , then f x = f y . The standard library contains a function congrArg
that takes a function and an equality proof and returns a new proof where the function has
been applied to both sides of the equality. In this case, the function is (· + 1) :

Propositional equalities can be deployed in a program using the rightward triangle operator
▸ . Given an equality proof as its first argument and some other expression as its second,

this operator replaces instances of the left side of the equality with the right side of the
equality in the second argument's type. In other words, the following definition contains no
type errors:

The first placeholder has the expected type:

It can now be filled in with ys :

def plusR_zero_left : (k : Nat) → k = Nat.plusR 0 k
  | 0 => by rfl
  | k + 1 => _

def plusR_zero_left : (k : Nat) → k = Nat.plusR 0 k
  | 0 => by rfl
  | k + 1 => (_ : k + 1 = Nat.plusR 0 k + 1)

don't know how to synthesize placeholder
context:
k : Nat
⊢ k + 1 = Nat.plusR 0 k + 1

def plusR_zero_left : (k : Nat) → k = Nat.plusR 0 k
  | 0 => by rfl
  | k + 1 =>
    congrArg (· + 1) (plusR_zero_left k)

def appendR : (n k : Nat) → Vect α n → Vect α k → Vect α (n.plusR k)
  | 0, k, .nil, ys => plusR_zero_left k ▸ (_ : Vect α k)
  | n + 1, k, .cons x xs, ys => _

don't know how to synthesize placeholder
context:
α : Type u_1
k : Nat
ys : Vect α k
⊢ Vect α k
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Filling in the remaining placeholder requires unsticking another instance of addition:

Here, the statement to be proved is that Nat.plusR (n + 1) k = Nat.plusR n k + 1 ,
which can be used with ▸  to draw the + 1  out to the top of the expression so that it
matches the index of cons .

The proof is a recursive function that pattern matches on the second argument to plusR ,
namely k . This is because plusR  itself pattern matches on its second argument, so the
proof can "unstick" it through pattern matching, exposing the computational behavior. The
skeleton of the proof is very similar to that of plusR_zero_left :

The remaining case's type is definitionally equal to Nat.plusR (n + 1) k + 1 = Nat.plusR 
n (k + 1) + 1 , so it can be solved with congrArg , just as in plusR_zero_left :

This results in a finished proof:

The finished proof can be used to unstick the second case in appendR :

def appendR : (n k : Nat) → Vect α n → Vect α k → Vect α (n.plusR k)
  | 0, k, .nil, ys => plusR_zero_left k ▸ ys
  | n + 1, k, .cons x xs, ys => _

don't know how to synthesize placeholder
context:
α : Type u_1
n k : Nat
x : α
xs : Vect α n
ys : Vect α k
⊢ Vect α (Nat.plusR (n + 1) k)

def plusR_succ_left (n : Nat) : (k : Nat) → Nat.plusR (n + 1) k = Nat.plusR n k 
+ 1
  | 0 => by rfl
  | k + 1 => _

don't know how to synthesize placeholder
context:
n k : Nat
⊢ Nat.plusR (n + 1) (k + 1) = Nat.plusR n (k + 1) + 1

def plusR_succ_left (n : Nat) : (k : Nat) → Nat.plusR (n + 1) k = Nat.plusR n k 
+ 1
  | 0 => by rfl
  | k + 1 => congrArg (· + 1) (plusR_succ_left n k)
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When making the length arguments to appendR  implicit again, they are no longer explicitly
named to be appealed to in the proofs. However, Lean's type checker has enough
information to fill them in automatically behind the scenes, because no other values would
allow the types to match:

Pros and Cons

Indexed families have an important property: pattern matching on them affects definitional
equality. For example, in the nil  case in a match  expression on a Vect , the length simply
becomes 0 . Definitional equality can be very convenient, because it is always active and
does not need to be invoked explicitly.

However, the use of definitional equality with dependent types and pattern matching has
serious software engineering drawbacks. First off, functions must be written especially to be
used in types, and functions that are convenient to use in types may not use the most
efficient algorithms. Once a function has been exposed through using it in a type, its
implementation has become part of the interface, leading to difficulties in future
refactoring. Secondly, definitional equality can be slow. When asked to check whether two
expressions are definitionally equal, Lean may need to run large amounts of code if the
functions in question are complicated and have many layers of abstraction. Third, error
messages that result from failures of definitional equality are not always very easy to
understand, because they may be phrased in terms of the internals of functions. It is not
always easy to understand the provenance of the expressions in the error messages. Finally,
encoding non-trivial invariants in a collection of indexed families and dependently-typed
functions can often be brittle. It is often necessary to change early definitions in a system
when the exposed reduction behavior of functions proves to not provide convenient
definitional equalities. The alternative is to litter the program with appeals to equality
proofs, but these can become quite unwieldy.

In idiomatic Lean code, indexed datatypes are not used very often. Instead, subtypes and
explicit propositions are typically used to enforce important invariants. This approach
involves many explicit proofs, and very few appeals to definitional equality. As befits an
interactive theorem prover, Lean has been designed to make explicit proofs convenient.
Generally speaking, this approach should be preferred in most cases.

def appendR : (n k : Nat) → Vect α n → Vect α k → Vect α (n.plusR k)
  | 0, k, .nil, ys => plusR_zero_left k ▸ ys
  | n + 1, k, .cons x xs, ys => plusR_succ_left n k ▸ .cons x (appendR n k xs 
ys)

def appendR : Vect α n → Vect α k → Vect α (n.plusR k)
  | .nil, ys => plusR_zero_left _ ▸ ys
  | .cons x xs, ys => plusR_succ_left _ _ ▸ .cons x (appendR xs ys)
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However, understanding indexed families of datatypes is important. Recursive functions
such as plusR_zero_left  and plusR_succ_left  are in fact proofs by mathematical
induction. The base case of the recursion corresponds to the base case in induction, and the
recursive call represents an appeal to the induction hypothesis. More generally, new
propositions in Lean are often defined as inductive types of evidence, and these inductive
types usually have indices. The process of proving theorems is in fact constructing
expressions with these types behind the scenes, in a process not unlike the proofs in this
section. Also, indexed datatypes are sometimes exactly the right tool for the job. Fluency in
their use is an important part of knowing when to use them.

Exercises

Using a recursive function in the style of plusR_succ_left , prove that for all Nat s n
and k , n.plusR k = n + k .
Write a function on Vect  for which plusR  is more natural than plusL , where plusL
would require proofs to be used in the definition.
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Summary

Dependent Types

Dependent types, where types contain non-type code such as function calls and ordinary
data constructors, lead to a massive increase in the expressive power of a type system. The
ability to compute a type from the value of an argument means that the return type of a
function can vary based on which argument is provided. This can be used, for example, to
have the result type of a database query depend on the database's schema and the specific
query issued, without needing any potentially-failing cast operations on the result of the
query. When the query changes, so does the type that results from running it, enabling
immediate compile-time feedback.

When a function's return type depends on a value, analyzing the value with pattern
matching can result in the type being refined, as a variable that stands for a value is replaced
by the constructors in the pattern. The type signature of a function documents the way that
the return type depends on the argument value, and pattern matching then explains how
the return type can be fulfilled for each potential argument.

Ordinary code that occurs in types is run during type checking, though partial  functions
that might loop infinitely are not called. Mostly, this computation follows the rules of
ordinary evaluation that were introduced in the very beginning of this book, with
expressions being progressively replaced by their values until a final value is found.
Computation during type checking has an important difference from run-time computation:
some values in types may be variables whose values are not yet known. In these cases,
pattern-matching gets "stuck" and does not proceed until or unless a particular constructor
is selected, e.g. by pattern matching. Type-level computation can be seen as a kind of partial
evaluation, where only the parts of the program that are sufficiently known need to be
evaluated and other parts are left alone.

The Universe Pattern

A common pattern when working with dependent types is to section off some subset of the
type system. For example, a database query library might be able to return varying-length
strings, fixed-length strings, or numbers in certain ranges, but it will never return a function,
a user-defined datatype, or an IO  action. A domain-specific subset of the type system can
be defined by first defining a datatype with constructors that match the structure of the
desired types, and then defining a function that interprets values from this datatype into
honest-to-goodness types. The constructors are referred to as codes for the types in
question, and the entire pattern is sometimes referred to as a universe à la Tarski, or just as

https://leanprover.github.io/functional_programming_in_lean/getting-to-know/evaluating.html


02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 344/432

a universe when context makes it clear that universes such as Type 3  or Prop  are not
what's meant.

Custom universes are an alternative to defining a type class with instances for each type of
interest. Type classes are extensible, but extensibility is not always desired. Defining a
custom universe has a number of advantages over using the types directly:

Generic operations that work for any type in the universe, such as equality testing and
serialization, can be implemented by recursion on codes.
The types accepted by external systems can be represented precisely, and the
definition of the code datatype serves to document what can be expected.
Lean's pattern matching completeness checker ensures that no codes are forgotten,
while solutions based on type classes defer missing instance errors to client code.

Indexed Families

Datatypes can take two separate kinds of arguments: parameters are identical in each
constructor of the datatype, while indices may vary between constructors. For a given choice
of index, only some constructors of the datatype are available. As an example, Vect.nil  is
available only when the length index is 0 , and Vect.cons  is available only when the length
index is n+1  for some n . While parameters are typically written as named arguments
before the colon in a datatype declaration, and indices as arguments in a function type after
the colon, Lean can infer when an argument after the colon is used as a parameter.

Indexed families allow the expression of complicated relationships between data, all
checked by the compiler. The datatype's invariants can be encoded directly, and there is no
way to violate them, not even temporarily. Informing the compiler about the datatype's
invariants brings a major benefit: the compiler can now inform the programmer about what
must be done to satisfy them. The strategic use of compile-time errors, especially those
resulting from underscores, can make it possible to offload some of the programming
thought process to Lean, freeing up the programmer's mind to worry about other things.

Encoding invariants using indexed families can lead to difficulties. First off, each invariant
requires its own datatype, which then requires its own support libraries. List.append  and
Vect.append  are not interchangeable, after all. This can lead to code duplication. Secondly,

convenient use of indexed families requires that the recursive structure of functions used in
types match the recursive structure of the programs being type checked. Programming with
indexed families is the art of arranging for the right coincidences to occur. While it's possible
to work around missing coincidences with appeals to equality proofs, it is difficult, and it
leads to programs littered with cryptic justifications. Thirdly, running complicated code on
large values during type checking can lead to compile-time slowdowns. Avoiding these
slowdowns for complicated programs can require specialized techniques.
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Definitional and Propositional Equality

Lean's type checker must, from time to time, check whether two types should be considered
interchangable. Because types can contain arbitrary programs, it must therefore be able to
check arbitrary programs for equality. However, there is no efficient algorithm to check
arbitrary programs for fully-general mathematical equality. To work around this, Lean
contains two notions of equality:

Definitional equality is an underapproximation of equality that essentially checks for
equality of syntactic representation modulo computation and renaming of bound
variables. Lean automatically checks for definitional equality in situations where it is
required.

Propositional equality must be explicitly proved and explicitly invoked by the
programmer. In return, Lean automatically checks that the proofs are valid and that
the invocations accomplish the right goal.

The two notions of equality represent a division of labor between programmers and Lean
itself. Definitional equality is simple, but automatic, while propositional equality is manual,
but expressive. Propositional equality can be used to unstick otherwise-stuck programs in
types.

However, the frequent use of propositional equality to unstick type-level computation is
typically a code smell. It typically means that coincidences were not well-engineered, and it's
usually a better idea to either redesign the types and indices or to use a different technique
to enforce the needed invariants. When propositional equality is instead used to prove that
a program meets a specification, or as part of a subtype, there is less reason to be
suspicious.
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Interlude: Tactics, Induction, and Proofs

A Note on Proofs and User Interfaces

This book presents the process of writing proofs as if they are written in one go and
submitted to Lean, which then replies with error messages that describe what remains to be
done. The actual process of interacting with Lean is much more pleasant. Lean provides
information about the proof as the cursor is moved through it and there are a number of
interactive features that make proving easier. Please consult the documentation of your
Lean development environment for more information.

The approach in this book that focuses on incrementally building a proof and showing the
messages that result demonstrates the kinds of interactive feedback that Lean provides
while writing a proof, even though it is much slower than the process used by experts. At
the same time, seeing incomplete proofs evolve towards completeness is a useful
perspective on proving. As your skill in writing proofs increases, Lean's feedback will come
to feel less like errors and more like support for your own thought processes. Learning the
interactive approach is very important.

Recursion and Induction

The functions plusR_succ_left  and plusR_zero_left  from the preceding chapter can be
seen from two perspectives. On the one hand, they are recursive functions that build up
evidence for a proposition, just as other recursive functions might construct a list, a string,
or any other data structure. On the other, they also correspond to proofs by mathematical
induction.

Mathematical induction is a proof technique where a statement is proven for all natural
numbers in two steps:

1. The statement is shown to hold for . This is called the base case.
2. Under the assumption that the statement holds for some arbitrarily chosen number ,

it is shown to hold for . This is called the induction step. The assumption that the
statement holds for  is called the induction hypothesis.

Because it's impossible to check the statement for every natural number, induction provides
a means of writing a proof that could, in principle, be expanded to any particular natural
number. For example, if a concrete proof were desired for the number 3, then it could be
constructed by using first the base case and then the induction step three times, to show
the statement for 0, 1, 2, and finally 3. Thus, it proves the statement for all natural numbers.

0
n

n + 1
n
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The Induction Tactic

Writing proofs by induction as recursive functions that use helpers such as congrArg  does
not always do a good job of expressing the intentions behind the proof. While recursive
functions indeed have the structure of induction, they should probably be viewed as an
encoding of a proof. Furthermore, Lean's tactic system provides a number of opportunities
to automate the construction of a proof that are not available when writing the recursive
function explicitly. Lean provides an induction tactic that can carry out an entire proof by
induction in a single tactic block. Behind the scenes, Lean constructs the recursive function
that corresponds the use of induction.

To prove plusR_zero_left  with the induction tactic, begin by writing its signature (using
theorem , because this really is a proof). Then, use by induction k  as the body of the

definition:

The resulting message states that there are two goals:

A tactic block is a program that is run while the Lean type checker processes a file,
somewhat like a much more powerful C preprocessor macro. The tactics generate the
actual program.

In the tactic language, there can be a number of goals. Each goal consists of a type together
with some assumptions. These are analogous to using underscores as placeholders—the
type in the goal represents what is to be proved, and the assumptions represent what is in-
scope and can be used. In the case of the goal case zero , there are no assumptions and
the type is Nat.zero = Nat.plusR 0 Nat.zero —this is the theorem statement with 0
instead of k . In the goal case succ , there are two assumptions, named n✝  and n_ih✝ .
Behind the scenes, the induction  tactic creates a dependent pattern match that refines the
overall type, and n✝  represents the argument to Nat.succ  in the pattern. The assumption
n_ih✝  represents the result of calling the generated function recursively on n✝ . Its type is

the overall type of the theorem, just with n✝  instead of k . The type to be fulfilled as part of
the goal case succ  is the overall theorem statement, with Nat.succ n✝  instead of k .

The two goals that result from the use of the induction  tactic correspond to the base case
and the induction step in the description of mathematical induction. The base case is case 

theorem plusR_zero_left (k : Nat) : k = Nat.plusR 0 k := by
  induction k

unsolved goals
case zero
⊢ Nat.zero = Nat.plusR 0 Nat.zero

case succ
n✝ : Nat
n_ih✝ : n✝ = Nat.plusR 0 n✝
⊢ Nat.succ n✝ = Nat.plusR 0 (Nat.succ n✝)
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zero . In case succ , n_ih✝  corresponds to the induction hypothesis, while the whole of
case succ  is the induction step.

The next step in writing the proof is to focus on each of the two goals in turn. Just as pure 
()  can be used in a do  block to indicate "do nothing", the tactic language has a statement
skip  that also does nothing. This can be used when Lean's syntax requires a tactic, but it's

not yet clear which one should be used. Adding with  to the end of the induction
statement provides a syntax that is similar to pattern matching:

Each of the two skip  statements has a message associated with it. The first shows the base
case:

The second shows the induction step:

In the induction step, the inaccessible names with daggers have been replaced with the
names provided after succ , namely n  and ih .

The cases after induction ... with  are not patterns: they consist of the name of a goal
followed by zero or more names. The names are used for assumptions introduced in the
goal; it is an error to provide more names than the goal introduces:

Focusing on the base case, the rfl  tactic works just as well inside of the induction  tactic
as it does in a recursive function:

theorem plusR_zero_left (k : Nat) : k = Nat.plusR 0 k := by
  induction k with
  | zero => skip
  | succ n ih => skip

unsolved goals
case zero
⊢ Nat.zero = Nat.plusR 0 Nat.zero

unsolved goals
case succ
n : Nat
ih : n = Nat.plusR 0 n
⊢ Nat.succ n = Nat.plusR 0 (Nat.succ n)

theorem plusR_zero_left (k : Nat) : k = Nat.plusR 0 k := by
  induction k with
  | zero => skip
  | succ n ih lots of names => skip

too many variable names provided at alternative 'succ', #5 provided, but #2 
expected
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In the recursive function version of the proof, a type annotation made the expected type
something that was easier to understand. In the tactic language, there are a number of
specific ways to transform a goal to make it easier to solve. The unfold  tactic replaces a
defined name with its definition:

Now, the right-hand side of the equality in the goal has become Nat.plusR 0 n + 1  instead
of Nat.plusR 0 (Nat.succ n) :

Instead of appealing to functions like congrArg  and operators like ▸ , there are tactics that
allow equality proofs to be used to transform proof goals. One of the most important is rw ,
which takes a list of equality proofs and replaces the left side with the right side in the goal.
This almost does the right thing in plusR_zero_left :

However, the direction of the rewrite was incorrect. Replacing n  with Nat.plusR 0 n  made
the goal more complicated rather than less complicated:

This can be remedied by placing a left arrow before ih  in the call to rewrite , which
instructs it to replace the right-hand side of the equality with the left-hand side:

theorem plusR_zero_left (k : Nat) : k = Nat.plusR 0 k := by
  induction k with
  | zero => rfl
  | succ n ih => skip

theorem plusR_zero_left (k : Nat) : k = Nat.plusR 0 k := by
  induction k with
  | zero => rfl
  | succ n ih =>
    unfold Nat.plusR

unsolved goals
case succ
n : Nat
ih : n = Nat.plusR 0 n
⊢ Nat.succ n = Nat.plusR 0 n + 1

theorem plusR_zero_left (k : Nat) : k = Nat.plusR 0 k := by
  induction k with
  | zero => rfl
  | succ n ih =>
    unfold Nat.plusR
    rw [ih]

unsolved goals
case succ
n : Nat
ih : n = Nat.plusR 0 n
⊢ Nat.succ (Nat.plusR 0 n) = Nat.plusR 0 (Nat.plusR 0 n) + 1
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This rewrite makes both sides of the equation identical, and Lean takes care of the rfl  on
its own. The proof is complete.

Tactic Golf

So far, the tactic language has not shown its true value. The above proof is no shorter than
the recursive function; it's merely written in a domain-specific language instead of the full
Lean language. But proofs with tactics can be shorter, easier, and more maintainable. Just
as a lower score is better in the game of golf, a shorter proof is better in the game of tactic
golf.

The induction step of plusR_zero_left  can be proved using the simplification tactic simp .
Using simp  on its own does not help, and the goal is left unmodified:

However, simp  can be configured to make use of a set of definitions. Just like rw , these
arguments are provided in a list. Asking simp  to take the definition of Nat.plusR  into
account leads to a simpler goal:

theorem plusR_zero_left (k : Nat) : k = Nat.plusR 0 k := by
  induction k with
  | zero => rfl
  | succ n ih =>
    unfold Nat.plusR
    rw [←ih]

theorem plusR_zero_left (k : Nat) : k = Nat.plusR 0 k := by
  induction k with
  | zero => rfl
  | succ n ih =>
    simp

unsolved goals
case succ
n : Nat
ih : n = Nat.plusR 0 n
⊢ Nat.succ n = Nat.plusR 0 (Nat.succ n)

theorem plusR_zero_left (k : Nat) : k = Nat.plusR 0 k := by
  induction k with
  | zero => rfl
  | succ n ih =>
    simp [Nat.plusR]
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In particular, the goal is now identical to the induction hypothesis. In addition to
automatically proving simple equality statements, the simplifier automatically replaces goals
like Nat.succ A = Nat.succ B  with A = B . Because the induction hypothesis ih  has
exactly the right type, the exact  tactic can indicate that it should be used:

However, the use of exact  is somewhat fragile. Renaming the induction hypothesis, which
may happen while "golfing" the proof, would cause this proof to stop working. The
assumption  tactic solves the current goal if any of the assumptions match it:

This proof is no shorter than the prior proof that used unfolding and explicit rewriting.
However, a series of transformations can make it much shorter, taking advantage of the fact
that simp  can solve many kinds of goals. The first step is to drop the with  at the end of
induction . For structured, readable proofs, the with  syntax is convenient. It complains if

any cases are missing, and it shows the structure of the induction clearly. But shortening
proofs can often require a more liberal approach.

Using induction  without with  simply results in a proof state with two goals. The case
tactic can be used to select one of them, just as in the branches of the induction ... with
tactic. In other words, the following proof is equivalent to the prior proof:

In a context with a single goal (namely, k = Nat.plusR 0 k ), the induction k  tactic yields
two goals. In general, a tactic will either fail with an error or take a goal and transform it into

unsolved goals
case succ
n : Nat
ih : n = Nat.plusR 0 n
⊢ n = Nat.plusR 0 n

theorem plusR_zero_left (k : Nat) : k = Nat.plusR 0 k := by
  induction k with
  | zero => rfl
  | succ n ih =>
    simp [Nat.plusR]
    exact ih

theorem plusR_zero_left (k : Nat) : k = Nat.plusR 0 k := by
  induction k with
  | zero => rfl
  | succ n ih =>
    simp [Nat.plusR]
    assumption

theorem plusR_zero_left (k : Nat) : k = Nat.plusR 0 k := by
  induction k
  case zero => rfl
  case succ n ih =>
    simp [Nat.plusR]
    assumption
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zero or more new goals. Each new goal represents what remains to be proved. If the result
is zero goals, then the tactic was a success, and that part of the proof is done.

The <;>  operator takes two tactics as arguments, resulting in a new tactic. T1 <;> T2
applies T1  to the current goal, and then applies T2  in all goals created by T1 . In other
words, <;>  enables a general tactic that can solve many kinds of goals to be used on
multiple new goals all at once. One such general tactic is simp .

Because simp  can both complete the proof of the base case and make progress on the
proof of the induction step, using it with induction  and <;>  shortens the proof:

This results in only a single goal, the transformed induction step:

Running assumption  in this goal completes the proof:

Here, exact  would not have been possible, because ih  was never explicitly named.

For beginners, this proof is not easier to read. However, a common pattern for expert users
is to take care of a number of simple cases with powerful tactics like simp , allowing them to
focus the text of the proof on the interesting cases. Additionally, these proofs tend to be
more robust in the face of small changes to the functions and datatypes involved in the
proof. The game of tactic golf is a useful part of developing good taste and style when
writing proofs.

Induction on Other Datatypes

Mathematical induction proves a statement for natural numbers by providing a base case
for Nat.zero  and an induction step for Nat.succ . The principle of induction is also valid for
other datatypes. Constructors without recursive arguments form the base cases, while
constructors with recursive arguments form the induction steps. The ability to carry out
proofs by induction is the very reason why they are called inductive datatypes.

One example of this is induction on binary trees. Induction on binary trees is a proof
technique where a statement is proven for all binary trees in two steps:

theorem plusR_zero_left (k : Nat) : k = Nat.plusR 0 k := by
  induction k <;> simp [Nat.plusR]

unsolved goals
case succ
n✝ : Nat
n_ih✝ : n✝ = Nat.plusR 0 n✝
⊢ n✝ = Nat.plusR 0 n✝

theorem plusR_zero_left (k : Nat) : k = Nat.plusR 0 k := by
  induction k <;> simp [Nat.plusR] <;> assumption
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1. The statement is shown to hold for BinTree.leaf . This is called the base case.
2. Under the assumption that the statement holds for some arbitrarily chosen trees l

and r , it is shown to hold for BinTree.branch l x r , where x  is an arbitrarily-
chosen new data point. This is called the induction step. The assumptions that the
statement holds for l  and r  are called the induction hypotheses.

BinTree.count  counts the number of branches in a tree:

Mirroring a tree does not change the number of branches in it. This can be proven using
induction on trees. The first step is to state the theorem and invoke induction :

The base case states that counting the mirror of a leaf is the same as counting the leaf:

The induction step allows the assumption that mirroring the left and right subtrees won't
affect their branch counts, and requests a proof that mirroring a branch with these subtrees
also preserves the overall branch count:

The base case is true because mirroring leaf  results in leaf , so the left and right sides are
definitionally equal. This can be expressed by using simp  with instructions to unfold
BinTree.mirror :

def BinTree.count : BinTree α → Nat
  | .leaf => 0
  | .branch l _ r =>
    1 + l.count + r.count

theorem BinTree.mirror_count (t : BinTree α) : t.mirror.count = t.count := by
  induction t with
  | leaf => skip
  | branch l x r ihl ihr => skip

unsolved goals
case leaf
α : Type
⊢ count (mirror leaf) = count leaf

unsolved goals
case branch
α : Type
l : BinTree α
x : α
r : BinTree α
ihl : count (mirror l) = count l
ihr : count (mirror r) = count r
⊢ count (mirror (branch l x r)) = count (branch l x r)

https://leanprover.github.io/functional_programming_in_lean/monads/conveniences.html#leading-dot-notation
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In the induction step, nothing in the goal immediately matches the induction hypotheses.
Simplifying using the definitions of BinTree.count  and BinTree.mirror  reveals the
relationship:

Both induction hypotheses can be used to rewrite the left-hand side of the goal into
something almost like the right-hand side:

The simp_arith  tactic, a version of simp  that can use additional arithmetic identities, is
enough to prove this goal, yielding:

theorem BinTree.mirror_count (t : BinTree α) : t.mirror.count = t.count := by
  induction t with
  | leaf => simp [BinTree.mirror]
  | branch l x r ihl ihr => skip

theorem BinTree.mirror_count (t : BinTree α) : t.mirror.count = t.count := by
  induction t with
  | leaf => simp [BinTree.mirror]
  | branch l x r ihl ihr =>
    simp [BinTree.mirror, BinTree.count]

unsolved goals
case branch
α : Type
l : BinTree α
x : α
r : BinTree α
ihl : count (mirror l) = count l
ihr : count (mirror r) = count r
⊢ 1 + count (mirror r) + count (mirror l) = 1 + count l + count r

theorem BinTree.mirror_count (t : BinTree α) : t.mirror.count = t.count := by
  induction t with
  | leaf => simp [BinTree.mirror]
  | branch l x r ihl ihr =>
    simp [BinTree.mirror, BinTree.count]
    rw [ihl, ihr]

unsolved goals
case branch
α : Type
l : BinTree α
x : α
r : BinTree α
ihl : count (mirror l) = count l
ihr : count (mirror r) = count r
⊢ 1 + count r + count l = 1 + count l + count r
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In addition to definitions to be unfolded, the simplifier can also be passed names of equality
proofs to use as rewrites while it simplifies proof goals. BinTree.mirror_count  can also be
written:

As proofs grow more complicated, listing assumptions by hand can become tedious.
Furthermore, manually writing assumption names can make it more difficult to re-use proof
steps for multiple subgoals. The argument *  to simp  or simp_arith  instructs them to use
all assumptions while simplifying or solving the goal. In other words, the proof could also be
written:

Because both branches are using the simplifier, the proof can be reduced to:

Exercises

Prove plusR_succ_left  using the induction ... with  tactic.
Rewrite the proof of plus_succ_left  to use <;>  in a single line.
Prove that appending lists is associative using induction on lists: theorem 
List.append_assoc (xs ys zs : List α) : xs ++ (ys ++ zs) = (xs ++ ys) ++ zs

theorem BinTree.mirror_count (t : BinTree α) : t.mirror.count = t.count := by
  induction t with
  | leaf => simp [BinTree.mirror]
  | branch l x r ihl ihr =>
    simp [BinTree.mirror, BinTree.count]
    rw [ihl, ihr]
    simp_arith

theorem BinTree.mirror_count (t : BinTree α) : t.mirror.count = t.count := by
  induction t with
  | leaf => simp [BinTree.mirror]
  | branch l x r ihl ihr =>
    simp_arith [BinTree.mirror, BinTree.count, ihl, ihr]

theorem BinTree.mirror_count (t : BinTree α) : t.mirror.count = t.count := by
  induction t with
  | leaf => simp [BinTree.mirror]
  | branch l x r ihl ihr =>
    simp_arith [BinTree.mirror, BinTree.count, *]

theorem BinTree.mirror_count (t : BinTree α) : t.mirror.count = t.count := by
  induction t <;> simp_arith [BinTree.mirror, BinTree.count, *]
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Programming, Proving, and Performance
This chapter is about programming. Programs need to compute the correct result, but they
also need to do so efficiently. To write efficient functional programs, it's important to know
both how to use data structures appropriately and how to think about the time and space
needed to run a program.

This chapter is also about proofs. One of the most important data structures for efficient
programming in Lean is the array, but safe use of arrays requires proving that array indices
are in bounds. Furthermore, most interesting algorithms on arrays do not follow the pattern
of structural recursion—instead, they iterate over the array. While these algorithms
terminate, Lean will not necessarily be able to automatically check this. Proofs can be used
to demonstrate why a program terminates.

Rewriting programs to make them faster often results in code that is more difficult to
understand. Proofs can also show that two programs always compute the same answers,
even if they do so with different algorithms or implementation techniques. In this way, the
slow, straightforward program can serve as a specification for the fast, complicated version.

Combining proofs and programming allows programs to be both safe and efficient. Proofs
allow elision of run-time bounds checks, they render many tests unnecessary, and they
provide an extremely high level of confidence in a program without introducing any runtime
performance overhead. However, proving theorems about programs can be time
consuming and expensive, so other tools are often more economical.

Interactive theorem proving is a deep topic. This chapter provides only a taste, oriented
towards the proofs that come up in practice while programming in Lean. Most interesting
theorems are not closely related to programming. Please refer to Next Steps for a list of
resources for learning more. Just as when learning programming, however, there's no
substitute for hands-on experience when learning to write proofs—it's time to get started!

https://leanprover.github.io/functional_programming_in_lean/next-steps.html
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Tail Recursion
While Lean's do -notation makes it possible to use traditional loop syntax such as for  and
while , these constructs are translated behind the scenes to invocations of recursive

functions. In most programming languages, recursive functions have a key disadvantage
with respect to loops: loops consume no space on the stack, while recursive functions
consume stack space proportional to the number of recursive calls. Stack space is typically
limited, and it is often necessary to take algorithms that are naturally expressed as recursive
functions and rewrite them as loops paired with an explicit mutable heap-allocated stack.

In functional programming, the opposite is typically true. Programs that are naturally
expressed as mutable loops may consume stack space, while rewriting them to recursive
functions can cause them to run quickly. This is due to a key aspect of functional
programming languages: tail-call elimination. A tail call is a call from one function to another
that can be compiled to an ordinary jump, replacing the current stack frame rather than
pushing a new one, and tail-call elimination is the process of implementing this
transformation.

Tail-call elimination is not just merely an optional optimization. Its presence is a
fundamental part of being able to write efficient functional code. For it to be useful, it must
be reliable. Programmers must be able to reliably identify tail calls, and they must be able to
trust that the compiler will eliminate them.

The function NonTail.sum  adds the contents of a list of Nat s:

Applying this function to the list [1, 2, 3]  results in the following sequence of evaluation
steps:

def NonTail.sum : List Nat → Nat
  | [] => 0
  | x :: xs => x + sum xs

NonTail.sum [1, 2, 3]
===>
1 + (NonTail.sum [2, 3])
===>
1 + (2 + (NonTail.sum [3]))
===>
1 + (2 + (3 + (NonTail.sum [])))
===>
1 + (2 + (3 + 0))
===>
1 + (2 + 3)
===>
1 + 5
===>
6
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In the evaluation steps, parentheses indicate recursive calls to NonTail.sum . In other
words, to add the three numbers, the program must first check that the list is non-empty.
To add the head of the list ( 1 ) to the sum of the tail of the list, it is first necessary to
compute the sum of the tail of the list:

But to compute the sum of the tail of the list, the program must check whether it is empty. It
is not - the tail is itself a list with 2  at its head. The resulting step is waiting for the return of
NonTail.sum [3] :

The whole point of the run-time call stack is to keep track of the values 1 , 2 , and 3  along
with the instruction to add them to the result of the recursive call. As recursive calls are
completed, control returns to the stack frame that made the call, so each step of addition is
performed. Storing the heads of the list and the instructions to add them is not free; it takes
space proportional to the length of the list.

The function Tail.sum  also adds the contents of a list of Nat s:

Applying it to the list [1, 2, 3]  results in the following sequence of evaluation steps:

The internal helper function calls itself recursively, but it does so in a way where nothing
needs to be remembered in order to compute the final result. When Tail.sumHelper

1 + (NonTail.sum [2, 3])

1 + (2 + (NonTail.sum [3]))

def Tail.sumHelper (soFar : Nat) : List Nat → Nat
  | [] => soFar
  | x :: xs => sumHelper (x + soFar) xs

def Tail.sum (xs : List Nat) : Nat :=
  Tail.sumHelper 0 xs

Tail.sum [1, 2, 3]
===>
Tail.sumHelper 0 [1, 2, 3]
===>
Tail.sumHelper (0 + 1) [2, 3]
===>
Tail.sumHelper 1 [2, 3]
===>
Tail.sumHelper (1 + 2) [3]
===>
Tail.sumHelper 3 [3]
===>
Tail.sumHelper (3 + 3) []
===>
Tail.sumHelper 6 []
===>
6
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reaches its base case, control can be returned directly to Tail.sum , because the
intermediate invocations of Tail.sumHelper  simply return the results of their recursive
calls unmodified. In other words, a single stack frame can be re-used for each recursive
invocation of Tail.sumHelper . Tail-call elimination is exactly this re-use of the stack frame,
and Tail.sumHelper  is referred to as a tail-recursive function.

The first argument to Tail.sumHelper  contains all of the information that would otherwise
need to be tracked in the call stack—namely, the sum of the numbers encountered so far. In
each recursive call, this argument is updated with new information, rather than adding new
information to the call stack. Arguments like soFar  that replace the information from the
call stack are called accumulators.

At the time of writing and on the author's computer, NonTail.sum  crashes with a stack
overflow when passed a list with 216,856 or more entries. Tail.sum , on the other hand, can
sum a list of 100,000,000 elements without a stack overflow. Because no new stack frames
need to be pushed while running Tail.sum , it is completely equivalent to a while  loop
with a mutable variable that holds the current list. At each recursive call, the function
argument on the stack is simply replaced with the next node of the list.

Tail and Non-Tail Positions

The reason why Tail.sumHelper  is tail recursive is that the recursive call is in tail position.
Informally speaking, a function call is in tail position when the caller does not need to
modify the returned value in any way, but will just return it directly. More formally, tail
position can be defined explicitly for expressions.

If a match -expression is in tail position, then each of its branches is also in tail position.
Once a match  has selected a branch, control proceeds immediately to it. Similarly, both
branches of an if -expression are in tail position if the if -expression itself is in tail
position. Finally, if a let -expression is in tail position, then its body is as well.

All other positions are not in tail position. The arguments to a function or a constructor are
not in tail position because evaluation must track the function or constructor that will be
applied to the argument's value. The body of an inner function is not in tail position because
control may not even pass to it: function bodies are not evaluated until the function is
called. Similarly, the body of a function type is not in tail position. To evaluate E  in (x : α) 
→ E , it is necessary to track that the resulting type must have (x : α) → ...  wrapped
around it.

In NonTail.sum , the recursive call is not in tail position because it is an argument to + . In
Tail.sumHelper , the recursive call is in tail position because it is immediately underneath a

pattern match, which itself is the body of the function.
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At the time of writing, Lean only eliminates direct tail calls in recursive functions. This means
that tail calls to f  in f 's definition will be eliminated, but not tail calls to some other
function g . While it is certainly possible to eliminate a tall call to some other function,
saving a stack frame, this is not yet implemented in Lean.

Reversing Lists

The function NonTail.reverse  reverses lists by appending the head of each sub-list to the
end of the result:

Using it to reverse [1, 2, 3]  yields the following sequence of steps:

The tail-recursive version uses x :: ·  instead of · ++ [x]  on the accumulator at each
step:

This is because the context saved in each stack frame while computing with
NonTail.reverse  is applied beginning at the base case. Each "remembered" piece of

context is executed in last-in, first-out order. On the other hand, the accumulator-passing
version modifies the accumulator beginning from the first entry in the list, rather than the
original base case, as can be seen in the series of reduction steps:

def NonTail.reverse : List α → List α
  | [] => []
  | x :: xs => reverse xs ++ [x]

NonTail.reverse [1, 2, 3]
===>
(NonTail.reverse [2, 3]) ++ [1]
===>
((NonTail.reverse [3]) ++ [2]) ++ [1]
===>
(((NonTail.reverse []) ++ [3]) ++ [2]) ++ [1]
===>
(([] ++ [3]) ++ [2]) ++ [1]
===>
([3] ++ [2]) ++ [1]
===>
[3, 2] ++ [1]
===>
[3, 2, 1]

def Tail.reverseHelper (soFar : List α) : List α → List α
  | [] => soFar
  | x :: xs => reverseHelper (x :: soFar) xs

def Tail.reverse (xs : List α) : List α :=
  Tail.reverseHelper [] xs
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In other words, the non-tail-recursive version starts at the base case, modifying the result of
recursion from right to left through the list. The entries in the list affect the accumulator in a
first-in, first-out order. The tail-recursive version with the accumulator starts at the head of
the list, modifying an initial accumulator value from left to right through the list.

Because addition is commutative, nothing needed to be done to account for this in
Tail.sum . Appending lists is not commutative, so care must be taken to find an operation

that has the same effect when run in the opposite direction. Appending [x]  after the result
of the recursion in NonTail.reverse  is analogous to adding x  to the beginning of the list
when the result is built in the opposite order.

Multiple Recursive Calls

In the definition of BinTree.mirror , there are two recursive calls:

Just as imperative languages would typically use a while loop for functions like reverse  and
sum , they would typically use recursive functions for this kind of traversal. This function

cannot be straightforwardly rewritten to be tail recursive using accumulator-passing style.

Typically, if more than one recursive call is required for each recursive step, then it will be
difficult to use accumulator-passing style. This difficulty is similar to the difficulty of
rewriting a recursive function to use a loop and an explicit data structure, with the added
complication of convincing Lean that the function terminates. However, as in
BinTree.mirror , multiple recursive calls often indicate a data structure that has a

constructor with multiple recursive occurrences of itself. In these cases, the depth of the
structure is often logarithmic with respect to its overall size, which makes the tradeoff
between stack and heap less stark. There are systematic techniques for making these
functions tail-recursive, such as using continuation-passing style, but they are outside the
scope of this chapter.

Tail.reverse [1, 2, 3]
===>
Tail.reverseHelper [] [1, 2, 3]
===>
Tail.reverseHelper [1] [2, 3]
===>
Tail.reverseHelper [2, 1] [3]
===>
Tail.reverseHelper [3, 2, 1] []
===>
[3, 2, 1]

def BinTree.mirror : BinTree α → BinTree α
  | .leaf => .leaf
  | .branch l x r => .branch (mirror r) x (mirror l)
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Exercises

Translate each of the following non-tail-recursive functions into accumulator-passing tail-
recursive functions:

The translation of NonTail.filter  should result in a program that takes constant stack
space through tail recursion, and time linear in the length of the input list. A constant factor
overhead is acceptable relative to the original:

def NonTail.length : List α → Nat
  | [] => 0
  | _ :: xs => NonTail.length xs + 1 

def NonTail.factorial : Nat → Nat
  | 0 => 1
  | n + 1 => factorial n * (n + 1)

def NonTail.filter (p : α → Bool) : List α → List α
  | [] => []
  | x :: xs =>
    if p x then
      x :: filter p xs
    else
      filter p xs
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Proving Equivalence
Programs that have been rewritten to use tail recursion and an accumulator can look quite
different from the original program. The original recursive function is often much easier to
understand, but it runs the risk of exhausting the stack at run time. After testing both
versions of the program on examples to rule out simple bugs, proofs can be used to show
once and for all that the programs are equivalent.

Proving sum Equal

To prove that both versions of sum  are equal, begin by writing the theorem statement with
a stub proof:

As expected, Lean describes an unsolved goal:

The rfl  tactic cannot be applied here, because NonTail.sum  and Tail.sum  are not
definitionally equal. Functions can be equal in more ways than just definitional equality,
however. It is also possible to prove that two functions are equal by proving that they
produce equal outputs for the same input. In other words,  can be proved by proving
that  for all possible inputs . This principle is called function extensionality.
Function extensionality is exactly the reason why NonTail.sum  equals Tail.sum : they both
sum lists of numbers.

In Lean's tactic language, function extensionality is invoked using funext , followed by a
name to be used for the arbitrary argument. The arbitrary argument is added as an
assumption to the context, and the goal changes to require a proof that the functions
applied to this argument are equal:

theorem non_tail_sum_eq_tail_sum : NonTail.sum = Tail.sum := by
  skip

unsolved goals
⊢ NonTail.sum = Tail.sum

f = g

f(x) = g(x) x

theorem non_tail_sum_eq_tail_sum : NonTail.sum = Tail.sum := by
  funext xs

unsolved goals
case h
xs : List Nat
⊢ NonTail.sum xs = Tail.sum xs
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This goal can be proved by induction on the argument xs . Both sum  functions return 0
when applied to the empty list, which serves as a base case. Adding a number to the
beginning of the input list causes both functions to add that number to the result, which
serves as an induction step. Invoking the induction  tactic results in two goals:

The base case for nil  can be solved using rfl , because both functions return 0  when
passed the empty list:

The first step in solving the induction step is to simplify the goal, asking simp  to unfold
NonTail.sum  and Tail.sum :

Unfolding Tail.sum  revealed that it immediately delegates to Tail.sumHelper , which
should also be simplified:

theorem non_tail_sum_eq_tail_sum : NonTail.sum = Tail.sum := by
  funext xs
  induction xs with
  | nil => skip
  | cons y ys ih => skip

unsolved goals
case h.nil
⊢ NonTail.sum [] = Tail.sum []

unsolved goals
case h.cons
y : Nat
ys : List Nat
ih : NonTail.sum ys = Tail.sum ys
⊢ NonTail.sum (y :: ys) = Tail.sum (y :: ys)

theorem non_tail_sum_eq_tail_sum : NonTail.sum = Tail.sum := by
  funext xs
  induction xs with
  | nil => rfl
  | cons y ys ih => skip

theorem non_tail_sum_eq_tail_sum : NonTail.sum = Tail.sum := by
  funext xs
  induction xs with
  | nil => rfl
  | cons y ys ih =>
    simp [NonTail.sum, Tail.sum]

unsolved goals
case h.cons
y : Nat
ys : List Nat
ih : NonTail.sum ys = Tail.sum ys
⊢ y + NonTail.sum ys = Tail.sumHelper 0 (y :: ys)
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In the resulting goal, sumHelper  has taken a step of computation and added y  to the
accumulator:

Rewriting with the induction hypothesis removes all mentions of NonTail.sum  from the
goal:

This new goal states that adding some number to the sum of a list is the same as using that
number as the initial accumulator in sumHelper . For the sake of clarity, this new goal can be
proved as a separate theorem:

Once again, this is a proof by induction where the base case uses rfl :

theorem non_tail_sum_eq_tail_sum : NonTail.sum = Tail.sum := by
  funext xs
  induction xs with
  | nil => rfl
  | cons y ys ih =>
    simp [NonTail.sum, Tail.sum, Tail.sumHelper]

unsolved goals
case h.cons
y : Nat
ys : List Nat
ih : NonTail.sum ys = Tail.sum ys
⊢ y + NonTail.sum ys = Tail.sumHelper y ys

theorem non_tail_sum_eq_tail_sum : NonTail.sum = Tail.sum := by
  funext xs
  induction xs with
  | nil => rfl
  | cons y ys ih =>
    simp [NonTail.sum, Tail.sum, Tail.sumHelper]
    rw [ih]

unsolved goals
case h.cons
y : Nat
ys : List Nat
ih : NonTail.sum ys = Tail.sum ys
⊢ y + Tail.sum ys = Tail.sumHelper y ys

theorem helper_add_sum_accum (xs : List Nat) (n : Nat) :
    n + Tail.sum xs = Tail.sumHelper n xs := by
  skip

unsolved goals
xs : List Nat
n : Nat
⊢ n + Tail.sum xs = Tail.sumHelper n xs
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Because this is an inductive step, the goal should be simplified until it matches the induction
hypothesis ih . Simplifying, using the definitions of Tail.sum  and Tail.sumHelper , results
in the following:

Ideally, the induction hypothesis could be used to replace Tail.sumHelper (y + n) ys , but
they don't match. The induction hypothesis can be used for Tail.sumHelper n ys , not
Tail.sumHelper (y + n) ys . In other words, this proof is stuck.

A Second Attempt

Rather than attempting to muddle through the proof, it's time to take a step back and think.
Why is it that the tail-recursive version of the function is equal to the non-tail-recursive
version? Fundamentally speaking, at each entry in the list, the accumulator grows by the
same amount as would be added to the result of the recursion. This insight can be used to
write an elegant proof. Crucially, the proof by induction must be set up such that the
induction hypothesis can be applied to any accumulator value.

Discarding the prior attempt, the insight can be encoded as the following statement:

theorem helper_add_sum_accum (xs : List Nat) (n : Nat) :
    n + Tail.sum xs = Tail.sumHelper n xs := by
  induction xs with
  | nil => rfl
  | cons y ys ih => skip

unsolved goals
case cons
n y : Nat
ys : List Nat
ih : n + Tail.sum ys = Tail.sumHelper n ys
⊢ n + Tail.sum (y :: ys) = Tail.sumHelper n (y :: ys)

theorem helper_add_sum_accum (xs : List Nat) (n : Nat) :
    n + Tail.sum xs = Tail.sumHelper n xs := by
  induction xs with
  | nil => rfl
  | cons y ys ih =>
    simp [Tail.sum, Tail.sumHelper]

unsolved goals
case cons
n y : Nat
ys : List Nat
ih : n + Tail.sum ys = Tail.sumHelper n ys
⊢ n + Tail.sumHelper y ys = Tail.sumHelper (y + n) ys
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In this statement, it's very important that n  is part of the type that's after the colon. The
resulting goal begins with ∀ (n : Nat) , which is short for "For all n ":

Using the induction tactic results in goals that include this "for all" statement:

In the nil  case, the goal is:

For the induction step for cons , both the induction hypothesis and the specific goal contain
the "for all n ":

In other words, the goal has become more challenging to prove, but the induction
hypothesis is correspondingly more useful.

A mathematical proof for a statement that beings with "for all " should assume some
arbitrary , and prove the statement. "Arbitrary" means that no additional properties of 
are assumed, so the resulting statement will work for any . In Lean, a "for all" statement is
a dependent function: no matter which specific value it is applied to, it will return evidence
of the proposition. Similarly, the process of picking an arbitrary  is the same as using fun 
x => ... . In the tactic language, this process of selecting an arbitrary  is performed using
the intro  tactic, which produces the function behind the scenes when the tactic script has
completed. The intro  tactic should be provided with the name to be used for this arbitrary
value.

theorem non_tail_sum_eq_helper_accum (xs : List Nat) :
    (n : Nat) → n + NonTail.sum xs = Tail.sumHelper n xs := by
  skip

unsolved goals
xs : List Nat
⊢ ∀ (n : Nat), n + NonTail.sum xs = Tail.sumHelper n xs

theorem non_tail_sum_eq_helper_accum (xs : List Nat) :
    (n : Nat) → n + NonTail.sum xs = Tail.sumHelper n xs := by
  induction xs with
  | nil => skip
  | cons y ys ih => skip

unsolved goals
case nil
⊢ ∀ (n : Nat), n + NonTail.sum [] = Tail.sumHelper n []

unsolved goals
case cons
y : Nat
ys : List Nat
ih : ∀ (n : Nat), n + NonTail.sum ys = Tail.sumHelper n ys
⊢ ∀ (n : Nat), n + NonTail.sum (y :: ys) = Tail.sumHelper n (y :: ys)

x

x x

x

x

x
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Using the intro  tactic in the nil  case removes the ∀ (n : Nat),  from the goal, and adds
an assumption n : Nat :

Both sides of this propositional equality are definitionally equal to n , so rfl  suffices:

The cons  goal also contains a "for all":

This suggests the use of intro .

theorem non_tail_sum_eq_helper_accum (xs : List Nat) :
    (n : Nat) → n + NonTail.sum xs = Tail.sumHelper n xs := by
  induction xs with
  | nil => intro n
  | cons y ys ih => skip

unsolved goals
case nil
n : Nat
⊢ n + NonTail.sum [] = Tail.sumHelper n []

theorem non_tail_sum_eq_helper_accum (xs : List Nat) :
    (n : Nat) → n + NonTail.sum xs = Tail.sumHelper n xs := by
  induction xs with
  | nil =>
    intro n
    rfl
  | cons y ys ih => skip

unsolved goals
case cons
y : Nat
ys : List Nat
ih : ∀ (n : Nat), n + NonTail.sum ys = Tail.sumHelper n ys
⊢ ∀ (n : Nat), n + NonTail.sum (y :: ys) = Tail.sumHelper n (y :: ys)

theorem non_tail_sum_eq_helper_accum (xs : List Nat) :
    (n : Nat) → n + NonTail.sum xs = Tail.sumHelper n xs := by
  induction xs with
  | nil =>
    intro n
    rfl
  | cons y ys ih =>
    intro n

unsolved goals
case cons
y : Nat
ys : List Nat
ih : ∀ (n : Nat), n + NonTail.sum ys = Tail.sumHelper n ys
n : Nat
⊢ n + NonTail.sum (y :: ys) = Tail.sumHelper n (y :: ys)
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The proof goal now contains both NonTail.sum  and Tail.sumHelper  applied to y :: ys .
The simplifier can make the next step more clear:

This goal is very close to matching the induction hypothesis. There are two ways in which it
does not match:

The left-hand side of the equation is n + (y + NonTail.sum ys) , but the induction
hypothesis needs the left-hand side to be a number added to NonTail.sum ys . In
other words, this goal should be rewritten to (n + y) + NonTail.sum ys , which is
valid because addition of natural numbers is associative.
When the left side has been rewritten to (y + n) + NonTail.sum ys , the accumulator
argument on the right side should be n + y  rather than y + n  in order to match.
This rewrite is valid because addition is also commutative.

The associativity and commutativity of addition have already been proved in Lean's
standard library. The proof of associativity is named Nat.add_assoc , and its type is (n m k 
: Nat) → (n + m) + k = n + (m + k) , while the proof of commutativity is called
Nat.add_comm  and has type (n m : Nat) → n + m = m + n . Normally, the rw  tactic is

provided with an expression whose type is an equality. However, if the argument is instead
a dependent function whose return type is an equality, it attempts to find arguments to the
function that would allow the equality to match something in the goal. There is only one
opportunity to apply associativity, though the direction of the rewrite must be reversed
because the right side of the equality in Nat.add_assoc  is the one that matches the proof
goal:

theorem non_tail_sum_eq_helper_accum (xs : List Nat) :
    (n : Nat) → n + NonTail.sum xs = Tail.sumHelper n xs := by
  induction xs with
  | nil =>
    intro n
    rfl
  | cons y ys ih =>
    intro n
    simp [NonTail.sum, Tail.sumHelper]

unsolved goals
case cons
y : Nat
ys : List Nat
ih : ∀ (n : Nat), n + NonTail.sum ys = Tail.sumHelper n ys
n : Nat
⊢ n + (y + NonTail.sum ys) = Tail.sumHelper (y + n) ys
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Rewriting directly with Nat.add_comm , however, leads to the wrong result. The rw  tactic
guesses the wrong location for the rewrite, leading to an unintended goal:

This can be fixed by explicitly providing y  and n  as arguments to Nat.add_comm :

theorem non_tail_sum_eq_helper_accum (xs : List Nat) :
    (n : Nat) → n + NonTail.sum xs = Tail.sumHelper n xs := by
  induction xs with
  | nil =>
    intro n
    rfl
  | cons y ys ih =>
    intro n
    simp [NonTail.sum, Tail.sumHelper]
    rw [←Nat.add_assoc]

unsolved goals
case cons
y : Nat
ys : List Nat
ih : ∀ (n : Nat), n + NonTail.sum ys = Tail.sumHelper n ys
n : Nat
⊢ n + y + NonTail.sum ys = Tail.sumHelper (y + n) ys

theorem non_tail_sum_eq_helper_accum (xs : List Nat) :
    (n : Nat) → n + NonTail.sum xs = Tail.sumHelper n xs := by
  induction xs with
  | nil =>
    intro n
    rfl
  | cons y ys ih =>
    intro n
    simp [NonTail.sum, Tail.sumHelper]
    rw [←Nat.add_assoc]
    rw [Nat.add_comm]

unsolved goals
case cons
y : Nat
ys : List Nat
ih : ∀ (n : Nat), n + NonTail.sum ys = Tail.sumHelper n ys
n : Nat
⊢ NonTail.sum ys + (n + y) = Tail.sumHelper (y + n) ys



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 371/432

The goal now matches the induction hypothesis. In particular, the induction hypothesis's
type is a dependent function type. Applying ih  to n + y  results in exactly the desired type.
The exact  tactic completes a proof goal if its argument has exactly the desired type:

The actual proof requires only a little additional work to get the goal to match the helper's
type. The first step is still to invoke function extensionality:

The next step is unfold Tail.sum , exposing Tail.sumHelper :

theorem non_tail_sum_eq_helper_accum (xs : List Nat) :
    (n : Nat) → n + NonTail.sum xs = Tail.sumHelper n xs := by
  induction xs with
  | nil =>
    intro n
    rfl
  | cons y ys ih =>
    intro n
    simp [NonTail.sum, Tail.sumHelper]
    rw [←Nat.add_assoc]
    rw [Nat.add_comm y n]

unsolved goals
case cons
y : Nat
ys : List Nat
ih : ∀ (n : Nat), n + NonTail.sum ys = Tail.sumHelper n ys
n : Nat
⊢ n + y + NonTail.sum ys = Tail.sumHelper (n + y) ys

theorem non_tail_sum_eq_helper_accum (xs : List Nat) :
    (n : Nat) → n + NonTail.sum xs = Tail.sumHelper n xs := by
  induction xs with
  | nil => intro n; rfl
  | cons y ys ih =>
    intro n
    simp [NonTail.sum, Tail.sumHelper]
    rw [←Nat.add_assoc]
    rw [Nat.add_comm y n]
    exact ih (n + y)

theorem non_tail_sum_eq_tail_sum : NonTail.sum = Tail.sum := by
  funext xs

unsolved goals
case h
xs : List Nat
⊢ NonTail.sum xs = Tail.sum xs

theorem non_tail_sum_eq_tail_sum : NonTail.sum = Tail.sum := by
  funext xs
  simp [Tail.sum]
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Having done this, the types almost match. However, the helper has an additional addend on
the left side. In other words, the proof goal is NonTail.sum xs = Tail.sumHelper 0 xs , but
applying non_tail_sum_eq_helper_accum  to xs  and 0  yields the type 0 + NonTail.sum xs 
= Tail.sumHelper 0 xs . Another standard library proof, Nat.zero_add , has type (n : 
Nat) → 0 + n = n . Applying this function to NonTail.sum xs  results in an expression with
type 0 + NonTail.sum xs = NonTail.sum xs , so rewriting from right to left results in the
desired goal:

Finally, the helper can be used to complete the proof:

This proof demonstrates a general pattern that can be used when proving that an
accumulator-passing tail-recursive function is equal to the non-tail-recursive version. The
first step is to discover the relationship between the starting accumulator argument and the
final result. For instance, beginning Tail.sumHelper  with an accumulator of n  results in
the final sum being added to n , and beginning Tail.reverseHelper  with an accumulator
of ys  results in the final reversed list being prepended to ys . The second step is to write
down this relationship as a theorem statement and prove it by induction. While the
accumulator is always initialized with some neutral value in practice, such as 0  or [] , this
more general statement that allows the starting accumulator to be any value is what's
needed to get a strong enough induction hypothesis. Finally, using this helper theorem with
the actual initial accumulator value results in the desired proof. For example, in
non_tail_sum_eq_tail_sum , the accumulator is specified to be 0 . This may require

rewriting the goal to make the neutral initial accumulator values occur in the right place.

unsolved goals
case h
xs : List Nat
⊢ NonTail.sum xs = Tail.sumHelper 0 xs

theorem non_tail_sum_eq_tail_sum : NonTail.sum = Tail.sum := by
  funext xs
  simp [Tail.sum]
  rw [←Nat.zero_add (NonTail.sum xs)]

unsolved goals
case h
xs : List Nat
⊢ 0 + NonTail.sum xs = Tail.sumHelper 0 xs

theorem non_tail_sum_eq_tail_sum : NonTail.sum = Tail.sum := by
  funext xs
  simp [Tail.sum]
  rw [←Nat.zero_add (NonTail.sum xs)]
  exact non_tail_sum_eq_helper_accum xs 0
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Exercise

Warming Up

Write your own proofs for Nat.zero_add , Nat.add_assoc , and Nat.add_comm  using the
induction  tactic.

More Accumulator Proofs

Reversing Lists

Adapt the proof for sum  into a proof for NonTail.reverse  and Tail.reverse . The first
step is to think about the relationship between the accumulator value being passed to
Tail.reverseHelper  and the non-tail-recursive reverse. Just as adding a number to the

accumulator in Tail.sumHelper  is the same as adding it to the overall sum, using
List.cons  to add a new entry to the accumulator in Tail.reverseHelper  is equivalent to

some change to the overall result. Try three or four different accumulator values with pencil
and paper until the relationship becomes clear. Use this relationship to prove a suitable
helper theorem. Then, write down the overall theorem. Because NonTail.reverse  and
Tail.reverse  are polymorphic, stating their equality requires the use of @  to stop Lean

from trying to figure out which type to use for α . Once α  is treated as an ordinary
argument, funext  should be invoked with both α  and xs :

This results in a suitable goal:

Factorial

Prove that NonTail.factorial  from the exercises in the previous section is equal to your
tail-recursive solution by finding the relationship between the accumulator and the result
and proving a suitable helper theorem.

theorem non_tail_reverse_eq_tail_reverse : @NonTail.reverse = @Tail.reverse := 
by
  funext α xs

unsolved goals
case h.h
α : Type u_1
xs : List α
⊢ NonTail.reverse xs = Tail.reverse xs
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Arrays and Termination
To write efficient code, it is important to select appropriate data structures. Linked lists have
their place: in some applications, the ability to share the tails of lists is very important.
However, most use cases for a variable-length sequential collection of data are better
served by arrays, which have both less memory overhead and better locality.

Arrays, however, have two drawbacks relative to lists:

1. Arrays are accessed through indexing, rather than by pattern matching, which imposes
proof obligations in order to maintain safety.

2. A loop that processes an entire array from left to right is a tail-recursive function, but it
does not have an argument that decreases on each call.

Making effective use of arrays requires knowing how to prove to Lean that an array index is
in bounds, and how to prove that an array index that approaches the size of the array also
causes the program to terminate. Both of these are expressed using an inequality
proposition, rather than propositional equality.

Inequality

Because different types have different notions of ordering, inequality is governed by two
type classes, called LE  and LT . The table in the section on standard type classes describes
how these classes relate to the syntax:

Expression Desugaring Class Name

x < y LT.lt x y LT

x ≤ y LE.le x y LE

x > y LT.lt y x LT

x ≥ y LE.le y x LE

In other words, a type may customize the meaning of the <  and ≤  operators, while >  and
≥  derive their meanings from <  and ≤ . The classes LT  and LE  have methods that return

propositions rather than Bool s:

The instance of LE  for Nat  delegates to Nat.le :

class LE (α : Type u) where
  le : α → α → Prop

class LT (α : Type u) where
  lt : α → α → Prop

https://leanprover.github.io/functional_programming_in_lean/props-proofs-indexing.html
https://leanprover.github.io/functional_programming_in_lean/type-classes/standard-classes.html#equality-and-ordering


02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 375/432

Defining Nat.le  requires a feature of Lean that has not yet been presented: it is an
inductively-defined relation.

Inductively-Defined Propositions, Predicates, and Relations

Nat.le  is an inductively-defined relation. Just as inductive  can be used to create new
datatypes, it can also be used to create new propositions. When a proposition takes an
argument, it is referred to as a predicate that may be true for some, but not all, potential
arguments. Propositions that take multiple arguments are called relations.

Each constructor of an inductively defined proposition is a way to prove it. In other words,
the declaration of the proposition describes the different forms of evidence that it is true. A
proposition with no arguments that has a single constructor can be quite easy to prove:

The proof consists of using its constructor:

In fact, the proposition True , which should always be easy to prove, is defined just like
EasyToProve :

Inductively-defined propositions that don't take arguments are not nearly as interesting as
inductively-defined datatypes. This is because data is interesting in its own right—the
natural number 3  is different from the number 35 , and someone who has ordered 3
pizzas will be upset if 35 arrive at their door 30 minutes later. The constructors of a
proposition describe ways in which the proposition can be true, but once a proposition has
been proved, there is no need to know which underlying constructors were used. This is why
most interesting inductively-defined types in the Prop  universe take arguments.

The inductively-defined predicate IsThree  states that its argument is three:

The mechanism used here is just like indexed families such as HasCol , except the resulting
type is a proposition that can be proved rather than data that can be used.

instance : LE Nat where
  le := Nat.le

inductive EasyToProve : Prop where
  | heresTheProof : EasyToProve

theorem fairlyEasy : EasyToProve := by
  constructor

inductive True : Prop where
  | intro : True

inductive IsThree : Nat → Prop where
  | isThree : IsThree 3

https://leanprover.github.io/functional_programming_in_lean/dependent-types/typed-queries.html#column-pointers
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Using this predicate, it is possible to prove that three is indeed three:

Similarly, IsFive  is a predicate that states that its argument is 5 :

If a number is three, then the result of adding two to it should be five. This can be expressed
as a theorem statement:

The resulting goal has a function type:

Thus, the intro  tactic can be used to convert the argument into an assumption:

Given the assumption that n  is three, it should be possible to use the constructor of
IsFive  to complete the proof:

However, this results in an error:

This error occurs because n + 2  is not definitionally equal to 5 . In an ordinary function
definition, dependent pattern matching on the assumption three  could be used to refine

theorem three_is_three : IsThree 3 := by
  constructor

inductive IsFive : Nat → Prop where
  | isFive : IsFive 5

theorem three_plus_two_five : IsThree n → IsFive (n + 2) := by
  skip

unsolved goals
n : Nat
⊢ IsThree n → IsFive (n + 2)

theorem three_plus_two_five : IsThree n → IsFive (n + 2) := by
  intro three

unsolved goals
n : Nat
three : IsThree n
⊢ IsFive (n + 2)

theorem three_plus_two_five : IsThree n → IsFive (n + 2) := by
  intro three
  constructor

tactic 'constructor' failed, no applicable constructor found
n : Nat
three : IsThree n
⊢ IsFive (n + 2)
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n  to 3 . The tactic equivalent of dependent pattern matching is cases , which has a syntax
similar to that of induction :

In the remaining case, n  has been refined to 3 :

Because 3 + 2  is definitionally equal to 5 , the constructor is now applicable:

The standard false proposition False  has no constructors, making it impossible to provide
direct evidence for. The only way to provide evidence for False  is if an assumption is itself
impossible, similarly to how nomatch  can be used to mark code that the type system can
see is unreachable. As described in the initial Interlude on proofs, the negation Not A  is
short for A → False . Not A  can also be written ¬A .

It is not the case that four is three:

The initial proof goal contains Not :

The fact that it's actually a function type can be exposed using simp :

Because the goal is a function type, intro  can be used to convert the argument into an
assumption. There is no need to keep simp , as intro  can unfold the definition of Not
itself:

theorem three_plus_two_five : IsThree n → IsFive (n + 2) := by
  intro three
  cases three with
  | isThree => skip

unsolved goals
case isThree
⊢ IsFive (3 + 2)

theorem three_plus_two_five : IsThree n → IsFive (n + 2) := by
  intro three
  cases three with
  | isThree => constructor

theorem four_is_not_three : ¬ IsThree 4 := by
  skip

unsolved goals
⊢ ¬IsThree 4

theorem four_is_not_three : ¬ IsThree 4 := by
  simp [Not]

unsolved goals
⊢ IsThree 4 → False

https://leanprover.github.io/functional_programming_in_lean/props-proofs-indexing.html#connectives
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In this proof, the cases  tactic solves the goal immediately:

Just as a pattern match on a Vect String 2  doesn't need to include a case for Vect.nil , a
proof by cases over IsThree 4  doesn't need to include a case for isThree .

Inequality of Natural Numbers

The definition of Nat.le  has a parameter and an index:

The parameter n  is the number that should be smaller, while the index is the number that
should be greater than or equal to n . The refl  constructor is used when both numbers
are equal, while the step  constructor is used when the index is greater than n .

From the perspective of evidence, a proof that  consists of finding some number 
such that . In Lean, the proof then consists of a Nat.le.refl  constructor
wrapped by  instances of Nat.le.step . Each step  constructor adds one to its index
argument, so  step  constructors adds  to the larger number. For example, evidence that
four is less than or equal to seven consists of three step s around a refl :

The strict less-than relation is defined by adding one to the number on the left:

Evidence that four is strictly less than seven consists of two step 's around a refl :

theorem four_is_not_three : ¬ IsThree 4 := by
  intro h

unsolved goals
h : IsThree 4
⊢ False

theorem four_is_not_three : ¬ IsThree 4 := by
  intro h
  cases h

inductive Nat.le (n : Nat) : Nat → Prop
  | refl : Nat.le n n
  | step : Nat.le n m → Nat.le n (m + 1)

n ≤ k d

n + d = m

d

d d

theorem four_le_seven : 4 ≤ 7 :=
  open Nat.le in
  step (step (step refl))

def Nat.lt (n m : Nat) : Prop :=
  Nat.le (n + 1) m

instance : LT Nat where
  lt := Nat.lt
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This is because 4 < 7  is equivalent to 5 ≤ 7 .

Proving Termination

The function Array.map  transforms an array with a function, returning a new array that
contains the result of applying the function to each element of the input array. Writing it as
a tail-recursive function follows the usual pattern of delegating to a function that passes the
output array in an accumulator. The accumulator is initialized with an empty array. The
accumulator-passing helper function also takes an argument that tracks the current index
into the array, which starts at 0 :

The helper should, at each iteration, check whether the index is still in bounds. If so, it
should loop again with the transformed element added to the end of the accumulator and
the index incremented by 1 . If not, then it should terminate and return the accumulator. An
initial implementation of this code fails because Lean is unable to prove that the array index
is valid:

However, the conditional expression already checks the precise condition that the array
index's validity demands (namely, i < arr.size ). Adding a name to the if  resolves the
issue, because it adds an assumption that the array indexing tactic can use:

theorem four_lt_seven : 4 < 7 :=
  open Nat.le in
  step (step refl)

def Array.map (f : α → β) (arr : Array α) : Array β :=
  arrayMapHelper f arr Array.empty 0

def arrayMapHelper (f : α → β) (arr : Array α) (soFar : Array β) (i : Nat) : 
Array β :=
  if i < arr.size then
    arrayMapHelper f arr (soFar.push (f arr[i])) (i + 1)
  else soFar

failed to prove index is valid, possible solutions:
  - Use `have`-expressions to prove the index is valid
  - Use `a[i]!` notation instead, runtime check is perfomed, and 'Panic' error 
message is produced if index is not valid
  - Use `a[i]?` notation instead, result is an `Option` type
  - Use `a[i]'h` notation instead, where `h` is a proof that index is valid
α : Type ?u.1742
β : Type ?u.1745
f : α → β
arr : Array α
soFar : Array β
i : Nat
⊢ i < Array.size arr
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Lean does not, however, accept the modified program, because the recursive call is not
made on an argument to one of the input constructors. In fact, both the accumulator and
the index grow, rather than shrinking:

Nevertheless, this function terminates, so simply marking it partial  would be unfortunate.

Why does arrayMapHelper  terminate? Each iteration checks whether the index i  is still in
bounds for the array arr . If so, i  is incremented and the loop repeats. If not, the program
terminates. Because arr.size  is a finite number, i  can be incremented only a finite
number of times. Even though no argument to the function decreases on each call,
arr.size - i  decreases toward zero.

Lean can be instructed to use another expression for termination by providing a
termination_by  clause at the end of a definition. The termination_by  clause has two

components: names for the function's arguments and an expression using those names
that should decrease on each call. For arrayMapHelper , the final definition looks like this:

A similar termination proof can be used to write Array.find , a function that finds the first
element in an array that satisfies a Boolean function and returns both the element and its
index:

def arrayMapHelper (f : α → β) (arr : Array α) (soFar : Array β) (i : Nat) : 
Array β :=
  if inBounds : i < arr.size then
    arrayMapHelper f arr (soFar.push (f arr[i])) (i + 1)
  else soFar

fail to show termination for
  arrayMapHelper
with errors
argument #6 was not used for structural recursion
  failed to eliminate recursive application
    arrayMapHelper f✝ arr (Array.push soFar (f✝ arr[i])) (i + 1)

structural recursion cannot be used

failed to prove termination, use `termination_by` to specify a well-founded 
relation

def arrayMapHelper (f : α → β) (arr : Array α) (soFar : Array β) (i : Nat) : 
Array β :=
  if inBounds : i < arr.size then
    arrayMapHelper f arr (soFar.push (f arr[i])) (i + 1)
  else soFar
termination_by arrayMapHelper _ arr _ i _ => arr.size - i

def Array.find (arr : Array α) (p : α → Bool) : Option (Nat × α) :=
  findHelper arr p 0



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 381/432

Once again, the helper function terminates because arr.size - i  decreases as i
increases:

Not all termination arguments are as quite as simple as this one. However, the basic
structure of identifying some expression based on the function's arguments that will
decrease in each call occurs in all termination proofs. Sometimes, creativity can be required
in order to figure out just why a function terminates, and sometimes Lean requires
additional proofs in order to accept the termination argument.

Exercises

Implement a ForM (Array α)  instance on arrays using a tail-recursive accumulator-
passing function and a termination_by  clause.
Implement a function to reverse arrays using a tail-recursive accumulator-passing
function that doesn't need a termination_by  clause.
Reimplement Array.map , Array.find , and the ForM  instance using for ... in ...
loops in the identity monad and compare the resulting code.
Reimplement array reversal using a for ... in ...  loop in the identity monad.
Compare it to the tail-recursive function.

def findHelper (arr : Array α) (p : α → Bool) (i : Nat) : Option (Nat × α) :=
  if h : i < arr.size then
    let x := arr[i]
    if p x then
      some (i, x)
    else findHelper arr p (i + 1)
  else none
termination_by findHelper arr p i => arr.size - i
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More Inequalities
Lean's built-in proof automation is sufficient to check that arrayMapHelper  and
findHelper  terminate. All that was needed was to provide an expression whose value

decreases with each recursive call. However, Lean's built-in automation is not magic, and it
often needs some help.

Merge Sort

One example of a function whose termination proof is non-trivial is merge sort on List .
Merge sort consists of two phases: first, a list is split in half. Each half is sorted using merge
sort, and then the results are merged using a function that combines two sorted lists into a
larger sorted list. The base cases are the empty list and the singleton list, both of which are
already considered to be sorted.

To merge two sorted lists, there are two basic cases to consider:

1. If one of the input lists is empty, then the result is the other list.
2. If both lists are non-empty, then their heads should be compared. The result of the

function is the smaller of the two heads, followed by the result of merging the
remaining entries of both lists.

This is not structurally recursive on either list. The recursion terminates because an entry is
removed from one of the two lists in each recursive call, but it could be either list. The
termination_by  clause uses the sum of the length of both lists as a decreasing value:

In addition to using the lengths of the lists, a pair that contains both lists can also be
provided:

def merge [Ord α] (xs : List α) (ys : List α) : List α :=
  match xs, ys with
  | [], _ => ys
  | _, [] => xs
  | x'::xs', y'::ys' =>
    match Ord.compare x' y' with
    | .lt | .eq => x' :: merge xs' (y' :: ys')
    | .gt => y' :: merge (x'::xs') ys'
termination_by merge xs ys => xs.length + ys.length
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This works because Lean has a built-in notion of sizes of data, expressed through a type
class called WellFoundedRelation . The instance for pairs automatically considers them to
be smaller if either the first or the second item in the pair shrinks.

A simple way to split a list is to add each entry in the input list to two alternating output lists:

Merge sort checks whether a base case has been reached. If so, it returns the input list. If
not, it splits the input, and merges the result of sorting each half:

Lean's pattern match compiler is able to tell that the assumption h  introduced by the if
that tests whether xs.length < 2  rules out lists longer than one entry, so there is no
"missing cases" error. However, even though this program always terminates, it is not
structurally recursive:

def merge [Ord α] (xs : List α) (ys : List α) : List α :=
  match xs, ys with
  | [], _ => ys
  | _, [] => xs
  | x'::xs', y'::ys' =>
    match Ord.compare x' y' with
    | .lt | .eq => x' :: merge xs' (y' :: ys')
    | .gt => y' :: merge (x'::xs') ys'
termination_by merge xs ys => (xs, ys)

def splitList (lst : List α) : (List α × List α) :=
  match lst with
  | [] => ([], [])
  | x :: xs =>
    let (a, b) := splitList xs
    (x :: b, a)

def mergeSort [Ord α] (xs : List α) : List α :=
  if h : xs.length < 2 then
    match xs with
    | [] => []
    | [x] => [x]
  else
    let halves := splitList xs
    merge (mergeSort halves.fst) (mergeSort halves.snd)

fail to show termination for
  mergeSort
with errors
argument #3 was not used for structural recursion
  failed to eliminate recursive application
    mergeSort halves.fst

structural recursion cannot be used

failed to prove termination, use `termination_by` to specify a well-founded 
relation
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The reason it terminates is that splitList  always returns lists that are shorter than its
input. Thus, the length of halves.fst  and halves.snd  are less than the length of xs . This
can be expressed using a termination_by  clause:

With this clause, the error message changes. Instead of complaining that the function isn't
structurally recursive, Lean instead points out that it was unable to automatically prove that
(splitList xs).fst.length < xs.length :

Splitting a List Makes it Shorter

It will also be necessary to prove that (splitList xs).snd.length < xs.length . Because
splitList  alternates between adding entries to the two lists, it is easiest to prove both

statements at once, so the structure of the proof can follow the algorithm used to
implement splitList . In other words, it is easiest to prove that ∀(lst : List), 
(splitList lst).fst.length < lst.length ∧ (splitList lst).snd.length < 

lst.length .

Unfortunately, the statement is false. In particular, splitList []  is ([], []) . Both output
lists have length 0 , which is not less than 0 , the length of the input list. Similarly,
splitList ["basalt"]  evaluates to (["basalt"], []) , and ["basalt"]  is not shorter

than ["basalt"] . However, splitList ["basalt", "granite"]  evaluates to (["basalt"], 
["granite"]) , and both of these output lists are shorter than the input list.

It turns out that the lengths of the output lists are always less than or equal to the length of
the input list, but they are only strictly shorter when the input list contains at least two

def mergeSort [Ord α] (xs : List α) : List α :=
  if h : xs.length < 2 then
    match xs with
    | [] => []
    | [x] => [x]
  else
    let halves := splitList xs
    merge (mergeSort halves.fst) (mergeSort halves.snd)
termination_by mergeSort xs => xs.length

failed to prove termination, possible solutions:
  - Use `have`-expressions to prove the remaining goals
  - Use `termination_by` to specify a different well-founded relation
  - Use `decreasing_by` to specify your own tactic for discharging this kind of 
goal
α : Type u_1
xs : List α
h : ¬List.length xs < 2
halves : List α × List α := splitList xs
⊢ List.length (splitList xs).fst < List.length xs
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entries. It turns out to be easiest to prove the former statement, then extend it to the latter
statement. Begin with a theorem statement:

Because splitList  is structurally recursive on the list, the proof should use induction. The
structural recursion in splitList  fits a proof by induction perfectly: the base case of the
induction matches the base case of the recursion, and the inductive step matches the
recursive call. The induction  tactic gives two goals:

The goal for the nil  case can be proved by invoking the simplifier and instructing it to
unfold the definition of splitList , because the length of the empty list is less than or
equal to the length of the empty list. Similarly, simplifying with splitList  in the cons  case
places Nat.succ  around the lengths in the goal:

theorem splitList_shorter_le (lst : List α) :
    (splitList lst).fst.length ≤ lst.length ∧
      (splitList lst).snd.length ≤ lst.length := by
  skip

unsolved goals
α : Type u_1
lst : List α
⊢ List.length (splitList lst).fst ≤ List.length lst ∧ List.length (splitList 
lst).snd ≤ List.length lst

theorem splitList_shorter_le (lst : List α) :
    (splitList lst).fst.length ≤ lst.length ∧
      (splitList lst).snd.length ≤ lst.length := by
  induction lst with
  | nil => skip
  | cons x xs ih => skip

unsolved goals
case nil
α : Type u_1
⊢ List.length (splitList []).fst ≤ List.length [] ∧ List.length (splitList 
[]).snd ≤ List.length []

unsolved goals
case cons
α : Type u_1
x : α
xs : List α
ih : List.length (splitList xs).fst ≤ List.length xs ∧ List.length (splitList 
xs).snd ≤ List.length xs
⊢ List.length (splitList (x :: xs)).fst ≤ List.length (x :: xs) ∧
    List.length (splitList (x :: xs)).snd ≤ List.length (x :: xs)
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This is because the call to List.length  consumes the head of the list x :: xs , converting
it to a Nat.succ , in both the length of the input list and the length of the first output list.

Writing A ∧ B  in Lean is short for And A B . And  is a structure type in the Prop  universe:

In other words, a proof of A ∧ B  consists of the And.intro  constructor applied to a proof
of A  in the left  field and a proof of B  in the right  field.

The cases  tactic allows a proof to consider each constructor of a datatype or each potential
proof of a proposition in turn. It corresponds to a match  expression without recursion.
Using cases  on a structure results in the structure being broken apart, with an assumption
added for each field of the structure, just as a pattern match expression extracts the field of
a structure for use in a program. Because structures have only one constructor, using
cases  on a structure does not result in additional goals.

Because ih  is a proof of List.length (splitList xs).fst ≤ List.length xs ∧ 
List.length (splitList xs).snd ≤ List.length xs , using cases ih  results in an
assumption that List.length (splitList xs).fst ≤ List.length xs  and an assumption
that List.length (splitList xs).snd ≤ List.length xs :

theorem splitList_shorter_le (lst : List α) :
    (splitList lst).fst.length ≤ lst.length ∧
      (splitList lst).snd.length ≤ lst.length := by
  induction lst with
  | nil => simp [splitList]
  | cons x xs ih =>
    simp [splitList]

unsolved goals
case cons
α : Type u_1
x : α
xs : List α
ih : List.length (splitList xs).fst ≤ List.length xs ∧ List.length (splitList 
xs).snd ≤ List.length xs
⊢ Nat.succ (List.length (splitList xs).snd) ≤ Nat.succ (List.length xs) ∧
    List.length (splitList xs).fst ≤ Nat.succ (List.length xs)

structure And (a b : Prop) : Prop where
  intro ::
  left : a
  right : b
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Because the goal of the proof is also an And , the constructor  tactic can be used to apply
And.intro , resulting in a goal for each argument:

The left  goal is very similar to the left✝  assumption, except the goal wraps both sides of
the inequality in Nat.succ . Likewise, the right  goal resembles the right✝  assumption,
except the goal adds a Nat.succ  only to the length of the input list. It's time to prove that
these wrappings of Nat.succ  preserve the truth of the statement.

theorem splitList_shorter_le (lst : List α) :
    (splitList lst).fst.length ≤ lst.length ∧
      (splitList lst).snd.length ≤ lst.length := by
  induction lst with
  | nil => simp [splitList]
  | cons x xs ih =>
    simp [splitList]
    cases ih

unsolved goals
case cons.intro
α : Type u_1
x : α
xs : List α
left✝ : List.length (splitList xs).fst ≤ List.length xs
right✝ : List.length (splitList xs).snd ≤ List.length xs
⊢ Nat.succ (List.length (splitList xs).snd) ≤ Nat.succ (List.length xs) ∧
    List.length (splitList xs).fst ≤ Nat.succ (List.length xs)

theorem splitList_shorter_le (lst : List α) :
    (splitList lst).fst.length ≤ lst.length ∧
      (splitList lst).snd.length ≤ lst.length := by
  induction lst with
  | nil => simp [splitList]
  | cons x xs ih =>
    simp [splitList]
    cases ih
    constructor

unsolved goals
case cons.intro.left
α : Type u_1
x : α
xs : List α
left✝ : List.length (splitList xs).fst ≤ List.length xs
right✝ : List.length (splitList xs).snd ≤ List.length xs
⊢ Nat.succ (List.length (splitList xs).snd) ≤ Nat.succ (List.length xs)

case cons.intro.right
α : Type u_1
x : α
xs : List α
left✝ : List.length (splitList xs).fst ≤ List.length xs
right✝ : List.length (splitList xs).snd ≤ List.length xs
⊢ List.length (splitList xs).fst ≤ Nat.succ (List.length xs)
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Adding One to Both Sides

For the left  goal, the statement to prove is Nat.succ_le_succ : n ≤ m → Nat.succ n ≤ 
Nat.succ m . In other words, if n ≤ m , then adding one to both sides doesn't change this
fact. Why is this true? The proof that n ≤ m  is a Nat.le.refl  constructor with m - n
instances of the Nat.le.step  constructor wrapped around it. Adding one to both sides
simply means that the refl  applies to a number that's one larger than before, with the
same number of step  constructors.

More formally, the proof is by induction on the evidence that n ≤ m . If the evidence is
refl , then n = m , so Nat.succ n = Nat.succ m  and refl  can be used again. If the

evidence is step , then the induction hypothesis provides evidence that Nat.succ n ≤ 
Nat.succ m , and the goal is to show that Nat.succ n ≤ Nat.succ (Nat.succ m) . This can
be done by using step  together with the induction hypothesis.

In Lean, the theorem statement is:

and the error message recapitulates it:

The first step is to use the intro  tactic, bringing the hypothesis that n ≤ m  into scope and
giving it a name:

Because the proof is by induction on the evidence that n ≤ m , the next tactic is induction 
h :

This results in two goals, once for each constructor of Nat.le :

theorem Nat.succ_le_succ : n ≤ m → Nat.succ n ≤ Nat.succ m := by
  skip

unsolved goals
n m : Nat
⊢ n ≤ m → Nat.succ n ≤ Nat.succ m

theorem Nat.succ_le_succ : n ≤ m → Nat.succ n ≤ Nat.succ m := by
  intro h

unsolved goals
n m : Nat
h : n ≤ m
⊢ Nat.succ n ≤ Nat.succ m

theorem Nat.succ_le_succ : n ≤ m → Nat.succ n ≤ Nat.succ m := by
  intro h
  induction h
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The goal for refl  can itself be solved using refl , which the constructor  tactic selects.
The goal for step  will also require a use of the step  constructor:

The goal is no longer shown using the ≤  operator, but it is equivalent to the induction
hypothesis ih . The assumption  tactic automatically selects an assumption that fulfills the
goal, and the proof is complete:

Written as a recursive function, the proof is:

It can be instructional to compare the tactic-based proof by induction with this recursive
function. Which proof steps correspond to which parts of the definition?

unsolved goals
case refl
n m : Nat
⊢ Nat.succ n ≤ Nat.succ n

case step
n m m✝ : Nat
a✝ : Nat.le n m✝
a_ih✝ : Nat.succ n ≤ Nat.succ m✝
⊢ Nat.succ n ≤ Nat.succ (Nat.succ m✝)

theorem Nat.succ_le_succ : n ≤ m → Nat.succ n ≤ Nat.succ m := by
  intro h
  induction h with
  | refl => constructor
  | step h' ih => constructor

unsolved goals
case step.a
n m m✝ : Nat
h' : Nat.le n m✝
ih : Nat.succ n ≤ Nat.succ m✝
⊢ Nat.le (Nat.succ n) (m✝ + 1)

theorem Nat.succ_le_succ : n ≤ m → Nat.succ n ≤ Nat.succ m := by
  intro h
  induction h with
  | refl => constructor
  | step h' ih =>
    constructor
    assumption

theorem Nat.succ_le_succ : n ≤ m → Nat.succ n ≤ Nat.succ m
  | .refl => .refl
  | .step h' => .step (Nat.succ_le_succ h')
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Adding One to the Greater Side

The second inequality needed to prove splitList_shorter_le  is ∀(n m : Nat), n ≤ m → 
n ≤ Nat.succ m . This proof is almost identical to Nat.succ_le_succ . Once again, the
incoming assumption that n ≤ m  essentially tracks the difference between n  and m  in the
number of Nat.le.step  constructors. Thus, the proof should add an extra Nat.le.step  in
the base case. The proof can be written:

To reveal what's going on behind the scenes, the apply  and exact  tactics can be used to
indicate exactly which constructor is being applied. The apply  tactic solves the current goal
by applying a function or constructor whose return type matches, creating new goals for
each argument that was not provided, while exact  fails if any new goals would be needed:

The proof can be golfed:

In this short tactic script, both goals introduced by induction  are addressed using repeat 
(first | constructor | assumption) . The tactic first | T1 | T2 | ... | Tn  means to
use try T1  through Tn  in order, using the first tactic that succeeds. In other words, repeat 
(first | constructor | assumption)  applies constructors as long as it can, and then
attempts to solve the goal using an assumption.

Finally, the proof can be written as a recursive function:

Each style of proof can be appropriate to different circumstances. The detailed proof script
is useful in cases where beginners may be reading the code, or where the steps of the proof
provide some kind of insight. The short, highly-automated proof script is typically easier to
maintain, because automation is frequently both flexible and robust in the face of small
changes to definitions and datatypes. The recursive function is typically both harder to
understand from the perspective of mathematical proofs and harder to maintain, but it can

theorem Nat.le_succ_of_le : n ≤ m → n ≤ Nat.succ m := by
  intro h
  induction h with
  | refl => constructor; constructor
  | step => constructor; assumption

theorem Nat.le_succ_of_le : n ≤ m → n ≤ Nat.succ m := by
  intro h
  induction h with
  | refl => apply Nat.le.step; exact Nat.le.refl
  | step _ ih => apply Nat.le.step; exact ih

theorem Nat.le_succ_of_le (h : n ≤ m) : n ≤ Nat.succ m := by
  induction h <;> repeat (first | constructor | assumption)

theorem Nat.le_succ_of_le : n ≤ m → n ≤ Nat.succ m
  | .refl => .step .refl
  | .step h => .step (Nat.le_succ_of_le h)
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be a useful bridge for programmers who are beginning to work with interactive theorem
proving.

Finishing the Proof

Now that both helper theorems have been proved, the rest of splitList_shorter_le  will
be completed quickly. The current proof state has two goals, for the left and right sides of
the And :

The goals are named for the fields of the And  structure. This means that the case  tactic
(not to be confused with cases ) can be used to focus on each of them in turn:

Instead of a single error that lists both unsolved goals, there are now two messages, one on
each skip . For the left  goal, Nat.succ_le_succ  can be used:

unsolved goals
case cons.intro.left
α : Type u_1
x : α
xs : List α
left✝ : List.length (splitList xs).fst ≤ List.length xs
right✝ : List.length (splitList xs).snd ≤ List.length xs
⊢ Nat.succ (List.length (splitList xs).snd) ≤ Nat.succ (List.length xs)

case cons.intro.right
α : Type u_1
x : α
xs : List α
left✝ : List.length (splitList xs).fst ≤ List.length xs
right✝ : List.length (splitList xs).snd ≤ List.length xs
⊢ List.length (splitList xs).fst ≤ Nat.succ (List.length xs)

theorem splitList_shorter_le (lst : List α) :
    (splitList lst).fst.length ≤ lst.length ∧ (splitList lst).snd.length ≤ 
lst.length := by
  induction lst with
  | nil => simp [splitList]
  | cons x xs ih =>
    simp [splitList]
    cases ih
    constructor
    case left => skip
    case right => skip
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In the right goal, Nat.le_suc_of_le  fits:

Both theorems include the precondition that n ≤ m . These can be found as the left✝  and
right✝  assumptions, which means that the assumption  tactic takes care of the final goals:

The next step is to return to the actual theorem that is needed to prove that merge sort
terminates: that so long as a list has at least two entries, both results of splitting it are
strictly shorter.

Pattern matching works just as well in tactic scripts as it does in programs. Because lst  has
at least two entries, they can be exposed with match , which also refines the type through
dependent pattern matching:

unsolved goals
α : Type u_1
x : α
xs : List α
left✝ : List.length (splitList xs).fst ≤ List.length xs
right✝ : List.length (splitList xs).snd ≤ List.length xs
⊢ Nat.succ (List.length (splitList xs).snd) ≤ Nat.succ (List.length xs)

unsolved goals
α : Type u_1
x : α
xs : List α
left✝ : List.length (splitList xs).fst ≤ List.length xs
right✝ : List.length (splitList xs).snd ≤ List.length xs
⊢ List.length (splitList xs).fst ≤ Nat.succ (List.length xs)

theorem splitList_shorter_le (lst : List α) :
    (splitList lst).fst.length ≤ lst.length ∧ (splitList lst).snd.length ≤ 
lst.length := by
  induction lst with
  | nil => simp [splitList]
  | cons x xs ih =>
    simp [splitList]
    cases ih
    constructor
    case left => apply Nat.succ_le_succ; assumption
    case right => apply Nat.le_succ_of_le; assumption

theorem splitList_shorter (lst : List α) (_ : lst.length ≥ 2) :
    (splitList lst).fst.length < lst.length ∧
      (splitList lst).snd.length < lst.length := by
  skip

unsolved goals
α : Type u_1
lst : List α
x✝ : List.length lst ≥ 2
⊢ List.length (splitList lst).fst < List.length lst ∧ List.length (splitList 
lst).snd < List.length lst
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Simplifying using splitList  removes x  and y , resulting in the computed lengths of lists
each gaining a Nat.succ :

Replacing simp  with simp_arith  removes these Nat.succ  constructors, because
simp_arith  makes use of the fact that n + 1 < m + 1  implies n < m :

theorem splitList_shorter (lst : List α) (_ : lst.length ≥ 2) :
    (splitList lst).fst.length < lst.length ∧
      (splitList lst).snd.length < lst.length := by
  match lst with
  | x :: y :: xs =>
    skip

unsolved goals
α : Type u_1
lst : List α
x y : α
xs : List α
x✝ : List.length (x :: y :: xs) ≥ 2
⊢ List.length (splitList (x :: y :: xs)).fst < List.length (x :: y :: xs) ∧
    List.length (splitList (x :: y :: xs)).snd < List.length (x :: y :: xs)

theorem splitList_shorter (lst : List α) (_ : lst.length ≥ 2) :
    (splitList lst).fst.length < lst.length ∧
      (splitList lst).snd.length < lst.length := by
  match lst with
  | x :: y :: xs =>
    simp [splitList]

unsolved goals
α : Type u_1
lst : List α
x y : α
xs : List α
x✝ : List.length (x :: y :: xs) ≥ 2
⊢ Nat.succ (List.length (splitList xs).fst) < Nat.succ (Nat.succ (List.length 
xs)) ∧
    Nat.succ (List.length (splitList xs).snd) < Nat.succ (Nat.succ (List.length 
xs))

theorem splitList_shorter (lst : List α) (_ : lst.length ≥ 2) :
    (splitList lst).fst.length < lst.length ∧
      (splitList lst).snd.length < lst.length := by
  match lst with
  | x :: y :: xs =>
    simp_arith [splitList]
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This goal now matches splitList_shorter_le , which can be used to conclude the proof:

The facts needed to prove that mergeSort  terminates can be pulled out of the resulting
And :

Merge Sort Terminates

Merge sort has two recursive calls, one for each sub-list returned by splitList . Each
recursive call will require a proof that the length of the list being passed to it is shorter than
the length of the input list. It's usually convenient to write a termination proof in two steps:
first, write down the propositions that will allow Lean to verify termination, and then prove
them. Otherwise, it's possible to put a lot of effort into proving the propositions, only to find
out that they aren't quite what's needed to establish that the recursive calls are on smaller
inputs.

The sorry  tactic can prove any goal, even false ones. It isn't intended for use in production
code or final proofs, but it is a convenient way to "sketch out" a proof or program ahead of
time. Any definitions or theorems that use sorry  are annotated with a warning.

The initial sketch of mergeSort 's termination argument that uses sorry  can be written by
copying the goals that Lean couldn't prove into have -expressions. In Lean, have  is similar
to let . When using have , the name is optional. Typically, let  is used to define names that

unsolved goals
α : Type u_1
lst : List α
x y : α
xs : List α
x✝ : List.length (x :: y :: xs) ≥ 2
⊢ List.length (splitList xs).fst ≤ List.length xs ∧ List.length (splitList 
xs).snd ≤ List.length xs

theorem splitList_shorter (lst : List α) (_ : lst.length ≥ 2) :
    (splitList lst).fst.length < lst.length ∧
      (splitList lst).snd.length < lst.length := by
  match lst with
  | x :: y :: xs =>
    simp_arith [splitList]
    apply splitList_shorter_le

theorem splitList_shorter_fst (lst : List α) (h : lst.length ≥ 2) :
    (splitList lst).fst.length < lst.length :=
  splitList_shorter lst h |>.left

theorem splitList_shorter_snd (lst : List α) (h : lst.length ≥ 2) :
    (splitList lst).snd.length < lst.length :=
  splitList_shorter lst h |>.right
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refer to interesting values, while have  is used to locally prove propositions that can be
found when Lean is searching for evidence that an array lookup is in-bounds or that a
function terminates.

The warning is located on the name mergeSort :

Because there are no errors, the proposed propositions are enough to establish
termination.

The proofs begin by applying the helper theorems:

Both proofs fail, because splitList_shorter_fst  and splitList_shorter_snd  both
require a proof that xs.length ≥ 2 :

def mergeSort [Ord α] (xs : List α) : List α :=
  if h : xs.length < 2 then
    match xs with
    | [] => []
    | [x] => [x]
  else
    let halves := splitList xs
    have : halves.fst.length < xs.length := by
      sorry
    have : halves.snd.length < xs.length := by
      sorry
    merge (mergeSort halves.fst) (mergeSort halves.snd)
termination_by mergeSort xs => xs.length

declaration uses 'sorry'

def mergeSort [Ord α] (xs : List α) : List α :=
  if h : xs.length < 2 then
    match xs with
    | [] => []
    | [x] => [x]
  else
    let halves := splitList xs
    have : halves.fst.length < xs.length := by
      apply splitList_shorter_fst
    have : halves.snd.length < xs.length := by
      apply splitList_shorter_snd
    merge (mergeSort halves.fst) (mergeSort halves.snd)
termination_by mergeSort xs => xs.length

unsolved goals
case h
α : Type ?u.37632
inst✝ : Ord α
xs : List α
h : ¬List.length xs < 2
halves : List α × List α := splitList xs
⊢ List.length xs ≥ 2
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To check that this will be enough to complete the proof, add it using sorry  and check for
errors:

Once again, there is only a warning.

There is one promising assumption available: h : ¬List.length xs < 2 , which comes
from the if . Clearly, if it is not the case that xs.length < 2 , then xs.length ≥ 2 . The
Lean library provides this theorem under the name Nat.ge_of_not_lt . The program is now
complete:

The function can be tested on examples:

def mergeSort [Ord α] (xs : List α) : List α :=
  if h : xs.length < 2 then
    match xs with
    | [] => []
    | [x] => [x]
  else
    let halves := splitList xs
    have : xs.length ≥ 2 := by sorry
    have : halves.fst.length < xs.length := by
      apply splitList_shorter_fst
      assumption
    have : halves.snd.length < xs.length := by
      apply splitList_shorter_snd
      assumption
    merge (mergeSort halves.fst) (mergeSort halves.snd)
termination_by mergeSort xs => xs.length

declaration uses 'sorry'

def mergeSort [Ord α] (xs : List α) : List α :=
  if h : xs.length < 2 then
    match xs with
    | [] => []
    | [x] => [x]
  else
    let halves := splitList xs
    have : xs.length ≥ 2 := by
      apply Nat.ge_of_not_lt
      assumption
    have : halves.fst.length < xs.length := by
      apply splitList_shorter_fst
      assumption
    have : halves.snd.length < xs.length := by
      apply splitList_shorter_snd
      assumption
    merge (mergeSort halves.fst) (mergeSort halves.snd)
termination_by mergeSort xs => xs.length

#eval mergeSort ["soapstone", "geode", "mica", "limestone"]
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Division as Iterated Subtraction

Just as multiplication is iterated addition and exponentiation is iterated multiplication,
division can be understood as iterated subtraction. The very first description of recursive
functions in this book presents a version of division that terminates when the divisor is not
zero, but that Lean does not accept. Proving that division terminates requires the use of a
fact about inequalities.

The first step is to refine the definition of division so that it requires evidence that the
divisor is not zero:

The error message is somewhat longer, due to the additional argument, but it contains
essentially the same information:

["geode", "limestone", "mica", "soapstone"]

#eval mergeSort [5, 3, 22, 15]

[3, 5, 15, 22]

def div (n k : Nat) (ok : k > 0) : Nat :=
  if n < k then
    0
  else
    1 + div (n - k) k ok

https://leanprover.github.io/functional_programming_in_lean/getting-to-know/datatypes-and-patterns.html#recursive-functions
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This definition of div  terminates because the first argument n  is smaller on each recursive
call. This can be expressed using a termination_by  clause:

Now, the error is confined to the recursive call:

This can be proved using a theorem from the standard library, Nat.sub_lt . This theorem
states that ∀ {n k : Nat}, 0 < n → 0 < k → n - k < n  (the curly braces indicate that n
and k  are implicit arguments). Using this theorem requires demonstrating that both n  and
k  are greater than zero. Because k > 0  is syntactic sugar for 0 < k , the only necessary

goal is to show that 0 < n . There are two possibilities: either n  is 0 , or it is n' + 1  for

fail to show termination for
  div
with errors
argument #1 was not used for structural recursion
  failed to eliminate recursive application
    div (n - k) k ok

argument #2 was not used for structural recursion
  failed to eliminate recursive application
    div (n - k) k ok

argument #3 was not used for structural recursion
  application type mismatch
    @Nat.le.brecOn (Nat.succ 0) fun k ok => Nat → Nat
  argument
    fun k ok => Nat → Nat
  has type
    (k : Nat) → k > 0 → Type : Type 1
  but is expected to have type
    (a : Nat) → Nat.le (Nat.succ 0) a → Prop : Type

structural recursion cannot be used

failed to prove termination, use `termination_by` to specify a well-founded 
relation

def div (n k : Nat) (ok : k > 0) : Nat :=
  if h : n < k then
    0
  else
    1 + div (n - k) k ok
termination_by div n k ok => n

failed to prove termination, possible solutions:
  - Use `have`-expressions to prove the remaining goals
  - Use `termination_by` to specify a different well-founded relation
  - Use `decreasing_by` to specify your own tactic for discharging this kind of 
goal
n k : Nat
ok : k > 0
h : ¬n < k
⊢ n - k < n
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some other Nat  n' . But n  cannot be 0 . The fact that the if  selected the second branch
means that ¬ n < k , but if n = 0  and k > 0  then n  must be less than k , which would be
a contradiction. This, n = Nat.succ n' , and Nat.succ n'  is clearly greater than 0 .

The full definition of div , including the termination proof, is:

Exercises

Prove the following theorems:

For all natural numbers , .
For all natural numbers , .
For all natural numbers  and , 
For all natural numbers  and , if  then 
For all natural numbers , 
For all natural numbers  and , if  then 

def div (n k : Nat) (ok : k > 0) : Nat :=
  if h : n < k then
    0
  else
    have : 0 < n := by
      cases n with
      | zero => contradiction
      | succ n' => simp_arith
    have : n - k < n := by
      apply Nat.sub_lt <;> assumption
    1 + div (n - k) k ok
termination_by div n k ok => n

n 0 < n + 1
n 0 ≤ n

n k (n + 1) − (k + 1) = n − k

n k k < n n ≠ 0
n n − n = 0
n k n + 1 < k n < k



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 400/432

Safe Array Indices
The GetElem  instance for Array  and Nat  requires a proof that the provided Nat  is
smaller than the array. In practice, these proofs often end up being passed to functions
along with the indices. Rather than passing an index and a proof separately, a type called
Fin  can be used to bundle up the index and the proof into a single value. This can make

code easier to read. Additionally, many of the built-in operations on arrays take their index
arguments as Fin  rather than as Nat , so using these built-in operations requires
understanding how to use Fin .

The type Fin n  represents numbers that are strictly less than n . In other words, Fin 3
describes 0 , 1 , and 2 , while Fin 0  has no values at all. The definition of Fin  resembles
Subtype , as a Fin n  is a structure that contains a Nat  and a proof that it is less than n :

Lean includes instances of ToString  and OfNat  that allow Fin  values to be conveniently
used as numbers. In other words, the output of #eval (5 : Fin 8)  is 5 , rather than
something like {val := 5, isLt := _} .

Instead of failing when the provided number is larger than the bound, the OfNat  instance
for Fin  returns a value modulo the bound. This means that #eval (45 : Fin 10)  results
in 5  rather than a compile-time error.

In a return type, a Fin  returned as a found index makes its connection to the data
structure in which it was found more clear. The Array.find  in the previous section returns
an index that the caller cannot immediately use to perform lookups into the array, because
the information about its validity has been lost. A more specific type results in a value that
can be used without making the program significantly more complicated:

structure Fin (n : Nat) where
  val  : Nat
  isLt : LT.lt val n

def findHelper (arr : Array α) (p : α → Bool) (i : Nat) : Option (Fin arr.size × 
α) :=
  if h : i < arr.size then
    let x := arr[i]
    if p x then
      some (⟨i, h⟩, x)
    else findHelper arr p (i + 1)
  else none
termination_by findHelper arr p i => arr.size - i

def Array.find (arr : Array α) (p : α → Bool) : Option (Fin arr.size × α) :=
  findHelper arr p 0

https://leanprover.github.io/functional_programming_in_lean/programs-proofs/arrays-termination.html#proving-termination
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Exercise

Write a function Fin.next? : Fin n → Option (Fin n)  that returns the next largest Fin
when it would be in bounds, or none  if not. Check that

outputs

and that

outputs

#eval (3 : Fin 8).next?

some 4

#eval (7 : Fin 8).next?

none
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Insertion Sort and Array Mutation
While insertion sort does not have the optimal worst-case time complexity for a sorting
algorithm, it still has a number of useful properties:

It is simple and straightforward to implement and understand
It is an in-place algorithm, requiring no additional space to run
It is a stable sort
It is fast when the input is already almost sorted

In-place algorithms are particularly useful in Lean due to the way it manages memory. In
some cases, operations that would normally copy an array can be optimized into mutation.
This includes swapping elements in an array.

Most languages and run-time systems with automatic memory management, including
JavaScript, the JVM, and .NET, use tracing garbage collection. When memory needs to be
reclaimed, the system starts at a number of roots (such as the call stack and global values)
and then determines which values can be reached by recursively chasing pointers. Any
values that can't be reached are deallocated, freeing memory.

Reference counting is an alternative to tracing garbage collection that is used by a number
of languages, including Python, Swift, and Lean. In a system with reference counting, each
object in memory has a field that tracks how many references there are to it. When a new
reference is established, the counter is incremented. When a reference ceases to exist, the
counter is decremented. When the counter reaches zero, the object is immediately
deallocated.

Reference counting has one major disadvantage compared to a tracing garbage collector:
circular references can lead to memory leaks. If object  references object  , and object 
references object , they will never be deallocated, even if nothing else in the program
references either  or . Circular references result either from uncontrolled recursion or
from mutable references. Because Lean supports neither, it is impossible to construct
circular references.

Reference counting means that the Lean runtime system's primitives for allocating and
deallocating data structures can check whether a reference count is about to fall to zero,
and re-use an existing object instead of allocating a new one. This is particularly important
when working with large arrays.

An implementation of insertion sort for Lean arrays should satisfy the following criteria:

1. Lean should accept the function without a partial  annotation
2. If passed an array to which there are no other references, it should modify the array

in-place rather than allocating a new one

A B B

A

A B
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The first criterion is easy to check: if Lean accepts the definition, then it is satisfied. The
second, however, requires a means of testing it. Lean provides a built-in function called
dbgTraceIfShared  with the following signature:

It takes a string and a value as arguments, and prints a message that uses the string to
standard error if the value has more than one reference, returning the value. This is not,
strictly speaking, a pure function. However, it is intended to be used only during
development to check that a function is in fact able to re-use memory rather than allocating
and copying.

When learning to use dbgTraceIfShared , it's important to know that #eval  will report that
many more values are shared than in compiled code. This can be confusing. It's important
to build an executable with lake  rather than experimenting in an editor.

Insertion sort consists of two loops. The outer loop moves a pointer from left to right across
the array to be sorted. After each iteration, the region of the array to the left of the pointer
is sorted, while the region to the right may not yet be sorted. The inner loop takes the
element pointed to by the pointer and moves it to the left until the appropriate location has
been found and the loop invariant has been restored. In other words, each iteration inserts
the next element of the array into the appropriate location in the sorted region.

The Inner Loop

The inner loop of insertion sort can be implemented as a tail-recursive function that takes
the array and the index of the element being inserted as arguments. The element being
inserted is repeatedly swapped with the element to its left until either the element to the
left is smaller or the beginning of the array is reached. The inner loop is structurally
recursive on the Nat  that is inside the Fin  used to index into the array:

If the index i  is 0 , then the element being inserted into the sorted region has reached the
beginning of the region and is the smallest. If the index is i' + 1 , then the element at i'

#check dbgTraceIfShared

dbgTraceIfShared.{u} {α : Type u} (s : String) (a : α) : α

def insertSorted [Ord α] (arr : Array α) (i : Fin arr.size) : Array α :=
  match i with
  | ⟨0, _⟩ => arr
  | ⟨i' + 1, _⟩ =>
    have : i' < arr.size := by
      simp [Nat.lt_of_succ_lt, *]
    match Ord.compare arr[i'] arr[i] with
    | .lt | .eq => arr
    | .gt =>
      insertSorted (arr.swap ⟨i', by assumption⟩ i) ⟨i', by simp [*]⟩
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should be compared to the element at i . Note that while i  is a Fin arr.size , i'  is just a
Nat  because it results from the val  field of i . It is thus necessary to prove that i' < 
arr.size  before i'  can be used to index into arr .

Omitting the have -expression with the proof that i' < arr.size  reveals the following
goal:

The hint Nat.lt_of_succ_lt  is a theorem from Lean's standard library. Its signature, found
by #check Nat.lt_of_succ_lt , is

In other words, it states that if n + 1 < m , then n < m . The *  passed to simp  causes it to
combine Nat.lt_of_succ_lt  with the isLt  field from i  to get the final proof.

Having established that i'  can be used to look up the element to the left of the element
being inserted, the two elements are looked up and compared. If the element to the left is
less than or equal to the element being inserted, then the loop is finished and the invariant
has been restored. If the element to the left is greater than the element being inserted, then
the elements are swapped and the inner loop begins again. Array.swap  takes both of its
indices as Fin s, and the by assumption  that establishes that i' < arr.size  makes use of
the have . The index to be examined on the next round through the inner loop is also i' ,
but by assumption  is not sufficient in this case. This is because the proof was written for
the original array arr , not the result of swapping two elements. The simp  tactic's database
contains the fact that swapping two elements of an array doesn't change its size, and the
[*]  argument instructs it to additionally use the assumption introduced by have .

The Outer Loop

The outer loop of insertion sort moves the pointer from left to right, invoking insertSorted
at each iteration to insert the element at the pointer into the correct position in the array.
The basic form of the loop resembles the implementation of Array.map :

unsolved goals
α : Type ?u.7
inst✝ : Ord α
arr : Array α
i : Fin (Array.size arr)
i' : Nat
isLt✝ : i' + 1 < Array.size arr
⊢ i' < Array.size arr

Nat.lt_of_succ_lt {n m : Nat} (a✝ : Nat.succ n < m) : n < m
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The resulting error is also the same as the error that occurs without a termination_by
clause on Array.map , because there is no argument that decreases at every recursive call:

Before constructing the termination proof, it can be convenient to test the definition with a
partial  modifier to make sure that it returns the expected answers:

Termination

Once again, the function terminates because the difference between the index and the size
of the array being processed decreases on each recursive call. This time, however, Lean
does not accept the termination_by :

def insertionSortLoop [Ord α] (arr : Array α) (i : Nat) : Array α :=
  if h : i < arr.size then
    insertionSortLoop (insertSorted arr ⟨i, h⟩) (i + 1)
  else
    arr

fail to show termination for
  insertionSortLoop
with errors
argument #4 was not used for structural recursion
  failed to eliminate recursive application
    insertionSortLoop (insertSorted arr { val := i, isLt := h }) (i + 1)

structural recursion cannot be used

failed to prove termination, use `termination_by` to specify a well-founded 
relation

partial def insertionSortLoop [Ord α] (arr : Array α) (i : Nat) : Array α :=
  if h : i < arr.size then
    insertionSortLoop (insertSorted arr ⟨i, h⟩) (i + 1)
  else
    arr

#eval insertionSortLoop #[5, 17, 3, 8] 0

#[3, 5, 8, 17]

#eval insertionSortLoop #["metamorphic", "igneous", "sedentary"] 0

#["igneous", "metamorphic", "sedentary"]
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The problem is that Lean has no way to know that insertSorted  returns an array that's the
same size as the one it is passed. In order to prove that insertionSortLoop  terminates, it is
necessary to first prove that insertSorted  doesn't change the size of the array. Copying
the unproved termination condition from the error message to the function and "proving" it
with sorry  allows the function to be temporarily accepted:

Because insertSorted  is structurally recursive on the index of the element being inserted,
the proof should be by induction on the index. In the base case, the array is returned
unchanged, so its length certainly does not change. For the inductive step, the induction
hypothesis is that a recursive call on the next smaller index will not change the length of the
array. There are two cases two consider: either the element has been fully inserted into the
sorted region and the array is returned unchanged, in which case the length is also
unchanged, or the element is swapped with the next one before the recursive call. However,
swapping two elements in an array doesn't change the size of it, and the induction
hypothesis states that the recursive call with the next index returns an array that's the same
size as its argument. Thus, the size remains unchanged.

Translating this English-language theorem statement to Lean and proceeding using the
techniques from this chapter is enough to prove the base case and make progress in the

def insertionSortLoop [Ord α] (arr : Array α) (i : Nat) : Array α :=
  if h : i < arr.size then
    insertionSortLoop (insertSorted arr ⟨i, h⟩) (i + 1)
  else
    arr
termination_by insertionSortLoop arr i => arr.size - i

failed to prove termination, possible solutions:
  - Use `have`-expressions to prove the remaining goals
  - Use `termination_by` to specify a different well-founded relation
  - Use `decreasing_by` to specify your own tactic for discharging this kind of 
goal
α : Type u_1
inst✝ : Ord α
arr : Array α
i : Nat
h : i < Array.size arr
⊢ Array.size (insertSorted arr { val := i, isLt := h }) - (i + 1) < Array.size 
arr - i

def insertionSortLoop [Ord α] (arr : Array α) (i : Nat) : Array α :=
  if h : i < arr.size then
    have : (insertSorted arr ⟨i, h⟩).size - (i + 1) < arr.size - i := by
      sorry
    insertionSortLoop (insertSorted arr ⟨i, h⟩) (i + 1)
  else
    arr
termination_by insertionSortLoop arr i => arr.size - i

declaration uses 'sorry'
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inductive step:

The simplification using insertSorted  in the inductive step revealed the pattern match in
insertSorted :

When faced with a goal that includes if  or match , the split  tactic (not to be confused
with the split  function used in the definition of merge sort) replaces the goal with one
new goal for each path of control flow:

theorem insert_sorted_size_eq [Ord α] (arr : Array α) (i : Fin arr.size) :
    (insertSorted arr i).size = arr.size := by
  match i with
  | ⟨j, isLt⟩ =>
    induction j with
    | zero => simp [insertSorted]
    | succ j' ih =>
      simp [insertSorted]

unsolved goals
case succ
α : Type u_1
inst✝ : Ord α
arr : Array α
i : Fin (Array.size arr)
j' : Nat
ih : ∀ (isLt : j' < Array.size arr), Array.size (insertSorted arr { val := j', 
isLt := isLt }) = Array.size arr
isLt : Nat.succ j' < Array.size arr
⊢ Array.size
      (match compare arr[j'] arr[{ val := Nat.succ j', isLt := isLt }] with
      | Ordering.lt => arr
      | Ordering.eq => arr
      | Ordering.gt =>
        insertSorted
          (Array.swap arr { val := j', isLt := (_ : j' < Array.size arr) } { val 
:= Nat.succ j', isLt := isLt })
          { val := j',
            isLt :=
              (_ :
                j' <
                  Array.size
                    (Array.swap arr { val := j', isLt := (_ : j' < Array.size 
arr) }
                      { val := Nat.succ j', isLt := isLt })) }) =
    Array.size arr
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Additionally, each new goal has an assumption that indicates which branch led to that goal,
named heq✝  in this case:

theorem insert_sorted_size_eq [Ord α] (arr : Array α) (i : Fin arr.size) :
    (insertSorted arr i).size = arr.size := by
  match i with
  | ⟨j, isLt⟩ =>
    induction j with
    | zero => simp [insertSorted]
    | succ j' ih =>
      simp [insertSorted]
      split



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 409/432

Rather than write proofs for both simple cases, adding <;> try rfl  after split  causes
the two straightforward cases to disappear immediately, leaving only a single goal:

unsolved goals
case succ.h_1
α : Type u_1
inst✝ : Ord α
arr : Array α
i : Fin (Array.size arr)
j' : Nat
ih : ∀ (isLt : j' < Array.size arr), Array.size (insertSorted arr { val := j', 
isLt := isLt }) = Array.size arr
isLt : Nat.succ j' < Array.size arr
x✝ : Ordering
heq✝ : compare arr[j'] arr[{ val := Nat.succ j', isLt := isLt }] = Ordering.lt
⊢ Array.size arr = Array.size arr

case succ.h_2
α : Type u_1
inst✝ : Ord α
arr : Array α
i : Fin (Array.size arr)
j' : Nat
ih : ∀ (isLt : j' < Array.size arr), Array.size (insertSorted arr { val := j', 
isLt := isLt }) = Array.size arr
isLt : Nat.succ j' < Array.size arr
x✝ : Ordering
heq✝ : compare arr[j'] arr[{ val := Nat.succ j', isLt := isLt }] = Ordering.eq
⊢ Array.size arr = Array.size arr

case succ.h_3
α : Type u_1
inst✝ : Ord α
arr : Array α
i : Fin (Array.size arr)
j' : Nat
ih : ∀ (isLt : j' < Array.size arr), Array.size (insertSorted arr { val := j', 
isLt := isLt }) = Array.size arr
isLt : Nat.succ j' < Array.size arr
x✝ : Ordering
heq✝ : compare arr[j'] arr[{ val := Nat.succ j', isLt := isLt }] = Ordering.gt
⊢ Array.size
      (insertSorted
        (Array.swap arr { val := j', isLt := (_ : j' < Array.size arr) } { val 
:= Nat.succ j', isLt := isLt })
        { val := j',
          isLt :=
            (_ :
              j' <
                Array.size
                  (Array.swap arr { val := j', isLt := (_ : j' < Array.size arr) 
}
                    { val := Nat.succ j', isLt := isLt })) }) =
    Array.size arr
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Unfortunately, the induction hypothesis is not strong enough to prove this goal. The
induction hypothesis states that calling insertSorted  on arr  leaves the size unchanged,
but the proof goal is to show that the result of the recursive call with the result of swapping
leaves the size unchanged. Successfully completing the proof requires an induction
hypothesis that works for any array that is passed to insertSorted  together with the
smaller index as an argument

It is possible to get a strong induction hypothesis by using the generalizing  option to the
induction  tactic. This option brings additional assumptions from the context into the

statement that's used to generate the base case, the induction hypothesis, and the goal to
be shown in the inductive step. Generalizing over arr  leads to a stronger hypothesis:

theorem insert_sorted_size_eq [Ord α] (arr : Array α) (i : Fin arr.size) :
    (insertSorted arr i).size = arr.size := by
  match i with
  | ⟨j, isLt⟩ =>
    induction j with
    | zero => simp [insertSorted]
    | succ j' ih =>
      simp [insertSorted]
      split <;> try rfl

unsolved goals
case succ.h_3
α : Type u_1
inst✝ : Ord α
arr : Array α
i : Fin (Array.size arr)
j' : Nat
ih : ∀ (isLt : j' < Array.size arr), Array.size (insertSorted arr { val := j', 
isLt := isLt }) = Array.size arr
isLt : Nat.succ j' < Array.size arr
x✝ : Ordering
heq✝ : compare arr[j'] arr[{ val := Nat.succ j', isLt := isLt }] = Ordering.gt
⊢ Array.size
      (insertSorted
        (Array.swap arr { val := j', isLt := (_ : j' < Array.size arr) } { val 
:= Nat.succ j', isLt := isLt })
        { val := j',
          isLt :=
            (_ :
              j' <
                Array.size
                  (Array.swap arr { val := j', isLt := (_ : j' < Array.size arr) 
}
                    { val := Nat.succ j', isLt := isLt })) }) =
    Array.size arr
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In the resulting goal, arr  is now part of a "for all" statement in the inductive hypothesis:

However, this whole proof is beginning to get unmanageable. The next step would be to
introduce a variable standing for the length of the result of swapping, show that it is equal
to arr.size , and then show that this variable is also equal to the length of the array that
results from the recursive call. These equality statement can then be chained together to
prove the goal. It's much easier, however, to carefully reformulate the theorem statement
such that the induction hypothesis is automatically strong enough and the variables are
already introduced. The reformulated statement reads:

theorem insert_sorted_size_eq [Ord α] (arr : Array α) (i : Fin arr.size) :
    (insertSorted arr i).size = arr.size := by
  match i with
  | ⟨j, isLt⟩ =>
    induction j generalizing arr with
    | zero => simp [insertSorted]
    | succ j' ih =>
      simp [insertSorted]
      split <;> try rfl

unsolved goals
case succ.h_3
α : Type u_1
inst✝ : Ord α
j' : Nat
ih :
  ∀ (arr : Array α),
    Fin (Array.size arr) →
      ∀ (isLt : j' < Array.size arr), Array.size (insertSorted arr { val := j', 
isLt := isLt }) = Array.size arr
arr : Array α
i : Fin (Array.size arr)
isLt : Nat.succ j' < Array.size arr
x✝ : Ordering
heq✝ : compare arr[j'] arr[{ val := Nat.succ j', isLt := isLt }] = Ordering.gt
⊢ Array.size
      (insertSorted
        (Array.swap arr { val := j', isLt := (_ : j' < Array.size arr) } { val 
:= Nat.succ j', isLt := isLt })
        { val := j',
          isLt :=
            (_ :
              j' <
                Array.size
                  (Array.swap arr { val := j', isLt := (_ : j' < Array.size arr) 
}
                    { val := Nat.succ j', isLt := isLt })) }) =
    Array.size arr
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This version of the theorem statement is easier to prove for a few reasons:

1. Rather than bundling up the index and the proof of its validity in a Fin , the index
comes before the array. This allows the induction hypothesis to naturally generalize
over the array and the proof that i  is in bounds.

2. An abstract length len  is introduced to stand for array.size . Proof automation is
often better at working with explicit statements of equality.

The resulting proof state shows the statement that will be used to generate the induction
hypothesis, as well as the base case and the goal of the inductive step:

Compare the statement with the goals that result from the induction  tactic:

In the base case, each occurrence of i  has been replaced by 0 . Using intro  to introduce
each assumption and then simplifying using insertSorted  will prove the goal, because
insertSorted  at index zero  returns its argument unchanged:

In the inductive step, the induction hypothesis has exactly the right strength. It will be useful
for any array, so long as that array has length len :

theorem insert_sorted_size_eq [Ord α] (len : Nat) (i : Nat) :
    (arr : Array α) → (isLt : i < arr.size) → arr.size = len →
    (insertSorted arr ⟨i, isLt⟩).size = len := by
  skip

unsolved goals
α : Type u_1
inst✝ : Ord α
len i : Nat
⊢ ∀ (arr : Array α) (isLt : i < Array.size arr),
    Array.size arr = len → Array.size (insertSorted arr { val := i, isLt := isLt 
}) = len

theorem insert_sorted_size_eq [Ord α] (len : Nat) (i : Nat) :
    (arr : Array α) → (isLt : i < arr.size) → arr.size = len →
    (insertSorted arr ⟨i, isLt⟩).size = len := by
  induction i with
  | zero => skip
  | succ i' ih => skip

unsolved goals
case zero
α : Type u_1
inst✝ : Ord α
len : Nat
⊢ ∀ (arr : Array α) (isLt : Nat.zero < Array.size arr),
    Array.size arr = len → Array.size (insertSorted arr { val := Nat.zero, isLt 
:= isLt }) = len
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In the base case, simp  reduces the goal to arr.size = len :

This can be proved using the assumption hLen . Adding the *  parameter to simp  instructs
it to additionally use assumptions, which solves the goal:

In the inductive step, introducing assumptions and simplifying the goal results once again in
a goal that contains a pattern match:

unsolved goals
case succ
α : Type u_1
inst✝ : Ord α
len i' : Nat
ih :
  ∀ (arr : Array α) (isLt : i' < Array.size arr),
    Array.size arr = len → Array.size (insertSorted arr { val := i', isLt := 
isLt }) = len
⊢ ∀ (arr : Array α) (isLt : Nat.succ i' < Array.size arr),
    Array.size arr = len → Array.size (insertSorted arr { val := Nat.succ i', 
isLt := isLt }) = len

theorem insert_sorted_size_eq [Ord α] (len : Nat) (i : Nat) :
    (arr : Array α) → (isLt : i < arr.size) → arr.size = len →
    (insertSorted arr ⟨i, isLt⟩).size = len := by
  induction i with
  | zero =>
    intro arr isLt hLen
    simp [insertSorted]
  | succ i' ih => skip

unsolved goals
case zero
α : Type u_1
inst✝ : Ord α
len : Nat
arr : Array α
isLt : Nat.zero < Array.size arr
hLen : Array.size arr = len
⊢ Array.size arr = len

theorem insert_sorted_size_eq [Ord α] (len : Nat) (i : Nat) :
    (arr : Array α) → (isLt : i < arr.size) → arr.size = len →
    (insertSorted arr ⟨i, isLt⟩).size = len := by
  induction i with
  | zero =>
    intro arr isLt hLen
    simp [insertSorted, *]
  | succ i' ih => skip
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Using the split  tactic results in one goal for each pattern. Once again, the first two goals
result from branches without recursive calls, so the induction hypothesis is not necessary:

theorem insert_sorted_size_eq [Ord α] (len : Nat) (i : Nat) :
    (arr : Array α) → (isLt : i < arr.size) → (arr.size = len) →
    (insertSorted arr ⟨i, isLt⟩).size = len := by
  induction i with
  | zero =>
    intro arr isLt hLen
    simp [insertSorted, *]
  | succ i' ih =>
    intro arr isLt hLen
    simp [insertSorted]

unsolved goals
case succ
α : Type u_1
inst✝ : Ord α
len i' : Nat
ih :
  ∀ (arr : Array α) (isLt : i' < Array.size arr),
    Array.size arr = len → Array.size (insertSorted arr { val := i', isLt := 
isLt }) = len
arr : Array α
isLt : Nat.succ i' < Array.size arr
hLen : Array.size arr = len
⊢ Array.size
      (match compare arr[i'] arr[{ val := Nat.succ i', isLt := isLt }] with
      | Ordering.lt => arr
      | Ordering.eq => arr
      | Ordering.gt =>
        insertSorted
          (Array.swap arr { val := i', isLt := (_ : i' < Array.size arr) } { val 
:= Nat.succ i', isLt := isLt })
          { val := i',
            isLt :=
              (_ :
                i' <
                  Array.size
                    (Array.swap arr { val := i', isLt := (_ : i' < Array.size 
arr) }
                      { val := Nat.succ i', isLt := isLt })) }) =
    len
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theorem insert_sorted_size_eq [Ord α] (len : Nat) (i : Nat) :
    (arr : Array α) → (isLt : i < arr.size) → (arr.size = len) →
    (insertSorted arr ⟨i, isLt⟩).size = len := by
  induction i with
  | zero =>
    intro arr isLt hLen
    simp [insertSorted, *]
  | succ i' ih =>
    intro arr isLt hLen
    simp [insertSorted]
    split
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unsolved goals
case succ.h_1
α : Type u_1
inst✝ : Ord α
len i' : Nat
ih :
  ∀ (arr : Array α) (isLt : i' < Array.size arr),
    Array.size arr = len → Array.size (insertSorted arr { val := i', isLt := 
isLt }) = len
arr : Array α
isLt : Nat.succ i' < Array.size arr
hLen : Array.size arr = len
x✝ : Ordering
heq✝ : compare arr[i'] arr[{ val := Nat.succ i', isLt := isLt }] = Ordering.lt
⊢ Array.size arr = len

case succ.h_2
α : Type u_1
inst✝ : Ord α
len i' : Nat
ih :
  ∀ (arr : Array α) (isLt : i' < Array.size arr),
    Array.size arr = len → Array.size (insertSorted arr { val := i', isLt := 
isLt }) = len
arr : Array α
isLt : Nat.succ i' < Array.size arr
hLen : Array.size arr = len
x✝ : Ordering
heq✝ : compare arr[i'] arr[{ val := Nat.succ i', isLt := isLt }] = Ordering.eq
⊢ Array.size arr = len

case succ.h_3
α : Type u_1
inst✝ : Ord α
len i' : Nat
ih :
  ∀ (arr : Array α) (isLt : i' < Array.size arr),
    Array.size arr = len → Array.size (insertSorted arr { val := i', isLt := 
isLt }) = len
arr : Array α
isLt : Nat.succ i' < Array.size arr
hLen : Array.size arr = len
x✝ : Ordering
heq✝ : compare arr[i'] arr[{ val := Nat.succ i', isLt := isLt }] = Ordering.gt
⊢ Array.size
      (insertSorted
        (Array.swap arr { val := i', isLt := (_ : i' < Array.size arr) } { val 
:= Nat.succ i', isLt := isLt })
        { val := i',
          isLt :=
            (_ :
              i' <
                Array.size
                  (Array.swap arr { val := i', isLt := (_ : i' < Array.size arr) 
}



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 417/432

Running try assumption  in each goal that results from split  eliminates both of the non-
recursive goals:

The new formulation of the proof goal, in which a constant len  is used for the lengths of all
the arrays involved in the recursive function, falls nicely within the kinds of problems that
simp  can solve. This final proof goal can be solved by simp [*] , because the assumptions

that relate the array's length to len  are important:

                    { val := Nat.succ i', isLt := isLt })) }) =
    len

theorem insert_sorted_size_eq [Ord α] (len : Nat) (i : Nat) :
    (arr : Array α) → (isLt : i < arr.size) → (arr.size = len) →
    (insertSorted arr ⟨i, isLt⟩).size = len := by
  induction i with
  | zero =>
    intro arr isLt hLen
    simp [insertSorted, *]
  | succ i' ih =>
    intro arr isLt hLen
    simp [insertSorted]
    split <;> try assumption

unsolved goals
case succ.h_3
α : Type u_1
inst✝ : Ord α
len i' : Nat
ih :
  ∀ (arr : Array α) (isLt : i' < Array.size arr),
    Array.size arr = len → Array.size (insertSorted arr { val := i', isLt := 
isLt }) = len
arr : Array α
isLt : Nat.succ i' < Array.size arr
hLen : Array.size arr = len
x✝ : Ordering
heq✝ : compare arr[i'] arr[{ val := Nat.succ i', isLt := isLt }] = Ordering.gt
⊢ Array.size
      (insertSorted
        (Array.swap arr { val := i', isLt := (_ : i' < Array.size arr) } { val 
:= Nat.succ i', isLt := isLt })
        { val := i',
          isLt :=
            (_ :
              i' <
                Array.size
                  (Array.swap arr { val := i', isLt := (_ : i' < Array.size arr) 
}
                    { val := Nat.succ i', isLt := isLt })) }) =
    len
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Finally, because simp [*]  can use assumptions, the try assumption  line can be replaced
by simp [*] , shortening the proof:

This proof can now be used to replace the sorry  in insertionSortLoop . Providing
arr.size  as the len  argument to the theorem causes the final conclusion to be
(insertSorted arr ⟨i, isLt⟩).size = arr.size , so the rewrite ends with a very

manageable proof goal:

The proof Nat.sub_succ_lt_self  is part of Lean's standard library. It's type is ∀ (a i : 
Nat), i < a → a - (i + 1) < a - i , which is exactly what's needed:

theorem insert_sorted_size_eq [Ord α] (len : Nat) (i : Nat) :
    (arr : Array α) → (isLt : i < arr.size) → (arr.size = len) →
    (insertSorted arr ⟨i, isLt⟩).size = len := by
  induction i with
  | zero =>
    intro arr isLt hLen
    simp [insertSorted, *]
  | succ i' ih =>
    intro arr isLt hLen
    simp [insertSorted]
    split <;> try assumption
    simp [*]

theorem insert_sorted_size_eq [Ord α] (len : Nat) (i : Nat) :
    (arr : Array α) → (isLt : i < arr.size) → (arr.size = len) →
    (insertSorted arr ⟨i, isLt⟩).size = len := by
  induction i with
  | zero =>
    intro arr isLt hLen
    simp [insertSorted, *]
  | succ i' ih =>
    intro arr isLt hLen
    simp [insertSorted]
    split <;> simp [*]

  def insertionSortLoop [Ord α] (arr : Array α) (i : Nat) : Array α :=
    if h : i < arr.size then
      have : (insertSorted arr ⟨i, h⟩).size - (i + 1) < arr.size - i := by
        rw [insert_sorted_size_eq arr.size i arr h rfl]
      insertionSortLoop (insertSorted arr ⟨i, h⟩) (i + 1)
    else
      arr
termination_by insertionSortLoop arr i => arr.size - i

unsolved goals
α : Type ?u.22342
inst✝ : Ord α
arr : Array α
i : Nat
h : i < Array.size arr
⊢ Array.size arr - (i + 1) < Array.size arr - i
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The Driver Function

Insertion sort itself calls insertionSortLoop , initializing the index that demarcates the
sorted region of the array from the unsorted region to 0 :

A few quick tests show the function is at least not blatantly wrong:

Is This Really Insertion Sort?

Insertion sort is defined to be an in-place sorting algorithm. What makes it useful, despite its
quadratic worst-case run time, is that it is a stable sorting algorithm that doesn't allocate
extra space and that handles almost-sorted data efficiently. If each iteration of the inner
loop allocated a new array, then the algorithm wouldn't really be insertion sort.

Lean's array operations, such as Array.set  and Array.swap , check whether the array in
question has a reference count that is greater than one. If so, then the array is visible to
multiple parts of the code, which means that it must be copied. Otherwise, Lean would no
longer be a pure functional language. However, when the reference count is exactly one,
there are no other potential observers of the value. In these cases, the array primitives
mutate the array in place. What other parts of the program don't know can't hurt them.

def insertionSortLoop [Ord α] (arr : Array α) (i : Nat) : Array α :=
  if h : i < arr.size then
    have : (insertSorted arr ⟨i, h⟩).size - (i + 1) < arr.size - i := by
      rw [insert_sorted_size_eq arr.size i arr h rfl]
      simp [Nat.sub_succ_lt_self, *]
    insertionSortLoop (insertSorted arr ⟨i, h⟩) (i + 1)
  else
    arr
termination_by insertionSortLoop arr i => arr.size - i

def insertionSort [Ord α] (arr : Array α) : Array α :=
   insertionSortLoop arr 0

#eval insertionSort #[3, 1, 7, 4]

#[1, 3, 4, 7]

#eval insertionSort #[ "quartz", "marble", "granite", "hematite"]

#["granite", "hematite", "marble", "quartz"]
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Lean's proof logic works at the level of pure functional programs, not the underlying
implementation. This means that the best way to discover whether a program unnecessarily
copies data is to test it. Adding calls to dbgTraceIfShared  at each point where mutation is
desired causes the provided message to be printed to stderr  when the value in question
has more than one reference.

Insertion sort has precisely one place that is at risk of copying rather than mutating: the call
to Array.swap . Replacing arr.swap ⟨i', by assumption⟩ i  with ((dbgTraceIfShared 
"array to swap" arr).swap ⟨i', by assumption⟩ i)  causes the program to emit shared 
RC array to swap  whenever it is unable to mutate the array. However, this change to the
program changes the proofs as well, because now there's a call to an additional function.
Because dbgTraceIfShared  returns its second argument directly, adding it to the calls to
simp  is enough to fix the proofs.

The complete instrumented code for insertion sort is:



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 421/432

A bit of cleverness is required to check whether the instrumentation actually works. First off,
the Lean compiler aggressively optimizes function calls away when all their arguments are
known at compile time. Simply writing a program that applies insertionSort  to a large
array is not sufficient, because the resulting compiled code may contain only the sorted
array as a constant. The easiest way to ensure that the compiler doesn't optimize away the
sorting routine is to read the array from stdin . Secondly, the compiler performs dead code
elimination. Adding extra let s to the program won't necessarily result in more references
in running code if the let -bound variables are never used. To ensure that the extra
reference is not eliminated entirely, it's important to ensure that the extra reference is
somehow used.

The first step in testing the instrumentation is to write getLines , which reads an array of
lines from standard input:

def insertSorted [Ord α] (arr : Array α) (i : Fin arr.size) : Array α :=
  match i with
  | ⟨0, _⟩ => arr
  | ⟨i' + 1, _⟩ =>
    have : i' < arr.size := by
      simp [Nat.lt_of_succ_lt, *]
    match Ord.compare arr[i'] arr[i] with
    | .lt | .eq => arr
    | .gt =>
      insertSorted
        ((dbgTraceIfShared "array to swap" arr).swap ⟨i', by assumption⟩ i)
        ⟨i', by simp [dbgTraceIfShared, *]⟩

theorem insert_sorted_size_eq [Ord α] (len : Nat) (i : Nat) :
    (arr : Array α) → (isLt : i < arr.size) → (arr.size = len) →
    (insertSorted arr ⟨i, isLt⟩).size = len := by
  induction i with
  | zero =>
    intro arr isLt hLen
    simp [insertSorted, *]
  | succ i' ih =>
    intro arr isLt hLen
    simp [insertSorted, dbgTraceIfShared]
    split <;> simp [*]

def insertionSortLoop [Ord α] (arr : Array α) (i : Nat) : Array α :=
  if h : i < arr.size then
    have : (insertSorted arr ⟨i, h⟩).size - (i + 1) < arr.size - i := by
      rw [insert_sorted_size_eq arr.size i arr h rfl]
      simp [Nat.sub_succ_lt_self, *]
    insertionSortLoop (insertSorted arr ⟨i, h⟩) (i + 1)
  else
    arr
termination_by insertionSortLoop arr i => arr.size - i

def insertionSort [Ord α] (arr : Array α) : Array α :=
  insertionSortLoop arr 0
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IO.FS.Stream.getLine  returns a complete line of text, including the trailing newline. It
returns ""  when the end-of-file marker has been reached.

Next, two separate main  routines are needed. Both read the array to be sorted from
standard input, ensuring that the calls to insertionSort  won't be replaced by their return
values at compile time. Both then print to the console, ensuring that the calls to
insertionSort  won't be optimized away entirely. One of them prints only the sorted array,

while the other prints both the sorted array and the original array. The second function
should trigger a warning that Array.swap  had to allocate a new array:

The actual main  simply selects one of the two main actions based on the provided
command-line arguments:

Running it with no arguments produces the expected usage information:

def getLines : IO (Array String) := do
  let stdin ← IO.getStdin
  let mut lines : Array String := #[]
  let mut currLine ← stdin.getLine
  while !currLine.isEmpty do
     -- Drop trailing newline:
    lines := lines.push (currLine.dropRight 1)
    currLine ← stdin.getLine
  pure lines

def mainUnique : IO Unit := do
  let lines ← getLines
  for line in insertionSort lines do
    IO.println line

def mainShared : IO Unit := do
  let lines ← getLines
  IO.println "--- Sorted lines: ---"
  for line in insertionSort lines do
    IO.println line

  IO.println ""
  IO.println "--- Original data: ---"
  for line in lines do
    IO.println line

def main (args : List String) : IO UInt32 := do
  match args with
  | ["--shared"] => mainShared; pure 0
  | ["--unique"] => mainUnique; pure 0
  | _ =>
    IO.println "Expected single argument, either \"--shared\" or \"--unique\""
    pure 1

$ sort
Expected single argument, either "--shared" or "--unique"
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The file test-data  contains the following rocks:

Using the instrumented insertion sort on these rocks results them being printed in
alphabetical order:

However, the version in which a reference is retained to the original array results in a
notification on stderr  (namely, shared RC array to swap ) from the first call to
Array.swap :

schist
feldspar
diorite
pumice
obsidian
shale
gneiss
marble
flint

$ sort --unique < test-data
diorite
feldspar
flint
gneiss
marble
obsidian
pumice
schist
shale

$ sort --shared < test-data
shared RC array to swap
--- Sorted lines: ---
diorite
feldspar
flint
gneiss
marble
obsidian
pumice
schist
shale

--- Original data: ---
schist
feldspar
diorite
pumice
obsidian
shale
gneiss
marble
flint
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The fact that only a single shared RC  notification appears means that the array is copied
only once. This is because the copy that results from the call to Array.swap  is itself unique,
so no further copies need to be made. In an imperative language, subtle bugs can result
from forgetting to explicitly copy an array before passing it by reference. When running
sort --shared , the array is copied as needed to preserve the pure functional meaning of

Lean programs, but no more.

Other Opportunities for Mutation

The use of mutation instead of copying when references are unique is not limited to array
update operators. Lean also attempts to "recycle" constructors whose reference counts are
about to fall to zero, reusing them instead of allocating new data. This means, for instance,
that List.map  will mutate a linked list in place, at least in cases when nobody could possibly
notice. One of the most important steps in optimizing hot loops in Lean code is making sure
that the data being modified is not referred to from multiple locations.

Exercises

Write a function that reverses arrays. Test that if the input array has a reference count
of one, then your function does not allocate a new array.

Implement either merge sort or quicksort for arrays. Prove that your implementation
terminates, and test that it doesn't allocate more arrays than expected. This is a
challenging exercise!
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Special Types
Understanding the representation of data in memory is very important. Usually, the
representation can be understood from the definition of a datatype. Each constructor
corresponds to an object in memory that has a header that includes a tag and a reference
count. The constructor's arguments are each represented by a pointer to some other object.
In other words, List  really is a linked list and extracting a field from a structure  really
does just chase a pointer.

There are, however, some important exceptions to this rule. A number of types are treated
specially by the compiler. For example, the type UInt32  is defined as Fin (2 ^ 32) , but it
is replaced at run-time with an actual native implementation based on machine words.
Similarly, even though the definition of Nat  suggests an implementation similar to List 
Unit , the actual run-time representation uses immediate machine words for sufficiently-
small numbers and an efficient arbitrary-precision arithmetic library for larger numbers. The
Lean compiler translates from definitions that use pattern matching into the appropriate
operations for this representation, and calls to operations like addition and subtraction are
mapped to fast operations from the underlying arithmetic library. After all, addition should
not take time linear in the size of the addends.

The fact that some types have special representations also means that care is needed when
working with them. Most of these types consist of a structure  that is treated specially by
the compiler. With these structures, using the constructor or the field accessors directly can
trigger an expensive conversion from an efficient representation to a slow one that is
convenient for proofs. For example, String  is defined as a structure that contains a list of
characters, but the run-time representation of strings uses UTF-8, not linked lists of pointers
to characters. Applying the constructor to a list of characters creates a byte array that
encodes them in UTF-8, and accessing the field of the structure takes time linear in the
length of the string to decode the UTF-8 representation and allocate a linked list. Arrays are
represented similarly. From the logical perspective, arrays are structures that contain a list
of array elements, but the run-time representation is a dynamically-sized array. At run time,
the constructor translates the list into an array, and the field accessor allocates a linked list
from the array. The various array operations are replaced with efficient versions by the
compiler that mutate the array when possible instead of allocating a new one.

Both types themselves and proofs of propositions are completely erased from compiled
code. In other words, they take up no space, and any computations that might have been
performed as part of a proof are similarly erased. This means that proofs can take
advantage of the convenient interface to strings and arrays as inductively-defined lists,
including using induction to prove things about them, without imposing slow conversion
steps while the program is running. For these built-in types, a convenient logical
representation of the data does not imply that the program must be slow.
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If a structure type has only a single non-type non-proof field, then the constructor itself
disappears at run time, being replaced with its single argument. In other words, a subtype is
represented identically to its underlying type, rather than with an extra layer of indirection.
Similarly, Fin  is just Nat  in memory, and single-field structures can be created to keep
track of different uses of Nat s or String s without paying a performance penalty. If a
constructor has no non-type non-proof arguments, then the constructor also disappears
and is replaced with a constant value where the pointer would otherwise be used. This
means that true , false , and none  are constant values, rather than pointers to heap-
allocated objects.

The following types have special representations:

Type Logical representation
Run-time

Representation

Nat
Unary, with one pointer from each
Nat.succ

Efficient arbitrary-
precision integers

Int
A sum type with constructors for
positive or negative values, each
containing a Nat

Efficient arbitrary-
precision integers

UInt8 , UInt16 ,
UInt32 , UInt64

A Fin  with an appropriate bound
Fixed-precision
machine integers

Char
A UInt32  paired with a proof that
it's a valid code point

Ordinary characters

String
A structure that contains a List 
Char  in a field called data

UTF-8-encoded string

Array α
A structure that contains a List α
in a field called data

Packed arrays of
pointers to α  values

Sort u A type Erased completely

Proofs of
propositions

Whatever data is suggested by the
proposition when considered as a
type of evidence

Erased completely

Exercise

The definition of Pos  does not take advantage of Lean's compilation of Nat  to an efficient
type. At run time, it is essentially a linked list. Alternatively, a subtype can be defined that
allows Lean's fast Nat  type to be used internally, as described in the initial section on
subtypes. At run time, the proof will be erased. Because the resulting structure has only a
single data field, it is represented as that field, which means that this new representation of
Pos  is identical to that of Nat .

https://leanprover.github.io/functional_programming_in_lean/type-classes/pos.html
https://leanprover.github.io/functional_programming_in_lean/functor-applicative-monad/applicative.html#subtypes
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After proving the theorem ∀ {n k : Nat}, n ≠ 0 → k ≠ 0 → n + k ≠ 0 , define instances
of ToString , and Add  for this new representation of Pos . Then, define an instance of Mul ,
proving any necessary theorems along the way.
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Summary

Tail Recursion

Tail recursion is recursion in which the results of recursive calls are returned immediately,
rather than being used in some other way. These recursive calls are called tail calls. Tail calls
are interesting because they can be compiled to a jump instruction rather than a call
instruction, and the current stack frame can be re-used instead of pushing a new frame. In
other words, tail-recursive functions are actually loops.

A common way to make a recursive function faster is to rewrite it in accumulator-passing
style. Instead of using the call stack to remember what is to be done with the result of a
recursive call, an additional argument called an accumulator is used to collect this
information. For example, an accumulator for a tail-recursive function that reverses a list
contains the already-seen list entries, in reverse order.

In Lean, only self-tail-calls are optimized into loops. In other words, two functions that each
end with a tail call to the other will not be optimized.

Reference Counting and In-Place Updates

Rather than using a tracing garbage collector, as is done in Java, C#, and most JavaScript
implementations, Lean uses reference counting for memory management. This means that
each value in memory contains a field that tracks how many other values refer to it, and the
run-time system maintains these counts as references appear or disappear. Reference
counting is also used in Python, PHP, and Swift.

When asked to allocate a fresh object, Lean's run-time system is able to recycle existing
objects whose reference counts are falling to zero. Additionally, array operations such as
Array.set  and Array.swap  will mutate an array if its reference count is one, rather than

allocating a modified copy. If Array.swap  holds the only reference to an array, then no
other part of the program can tell that it was mutated rather than copied.

Writing efficient code in Lean requires the use of tail recursion and being careful to ensure
that large arrays are used uniquely. While tail calls can be identified by inspecting the
function's definition, understanding whether a value is referred to uniquely may require
reading the whole program. The debugging helper dbgTraceIfShared  can be used at key
locations in the program to check that a value is not shared.
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Proving Programs Correct

Rewriting a program in accumulator-passing style, or making other transformations that
make it run faster, can also make it more difficult to understand. It can be useful to keep the
original version of the program that is more clearly correct, and then use it as an executable
specification for the optimized version. While techniques such as unit testing work just as
well in Lean as in any other language, Lean also enables the use of mathematical proofs that
completely ensure that both versions of the function return the same result for all possible
inputs.

Typically, proving that two functions are equal is done using function extensionality (the
funext  tactic), which is the principle that two functions are equal if they return the same

values for every input. If the functions are recursive, then induction is usually a good way to
prove that their outputs are the same. Usually, the recursive definition of the function will
make recursive calls on one particular argument; this argument is a good choice for
induction. In some cases, the induction hypothesis is not strong enough. Fixing this problem
usually requires thought about how to construct a more general version of the theorem
statement that provides induction hypotheses that are strong enough. In particular, to
prove that a function is equivalent to an accumulator-passing version, a theorem statement
that relates arbitrary initial accumulator values to the final result of the original function is
needed.

Safe Array Indices

The type Fin n  represents natural numbers that are strictly less than n . Fin  is short for
"finite". As with subtypes, a Fin n  is a structure that contains a Nat  and a proof that this
Nat  is less than n . There are no values of type Fin 0 .

If arr  is an Array α , then Fin arr.size  always contains a number that is a suitable index
into arr . Many of the built-in array operators, such as Array.swap , take Fin  values as
arguments rather than separated proof objects.

Lean provides instances of most of the useful numeric type classes for Fin . The OfNat
instances for Fin  perform modular arithmetic rather than failing at compile time if the
number provided is larger than the Fin  can accept.

Provisional Proofs

Sometimes, it can be useful to pretend that a statement is proved without actually doing the
work of proving it. This can be useful when making sure that a proof of a statement would
be suitable for some task, such as a rewrite in another proof, determining that an array
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access is safe, or showing that a recursive call is made on a smaller value than the original
argument. It's very frustrating to spend time proving something, only to discover that some
other proof would have been more useful.

The sorry  tactic causes Lean to provisionally accept a statement as if it were a real proof. It
can be seen as analogous to a stub method that throws a NotImplementedException  in C#.
Any proof that relies on sorry  includes a warning in Lean.

Be careful! The sorry  tactic can prove any statement, even false statements. Proving that 3 
< 2  can cause an out-of-bounds array access to persist to runtime, unexpectedly crashing a
program. Using sorry  is convenient during development, but keeping it in the code is
dangerous.

Proving Termination

When a recursive function does not use structural recursion, Lean cannot automatically
determine that it terminates. In these situations, the function could just be marked
partial . However, it is also possible to provide a proof that the function terminates.

Partial functions have a key downside: they can't be unfolded during type checking or in
proofs. This means that Lean's value as an interactive theorem prover can't be applied to
them. Additionally, showing that a function that is expected to terminate actually always
does terminate removes one more potential source of bugs.

The termination_by  clause that's allowed at the end of a function can be used to specify
the reason why a recursive function terminates. The clause maps the function's arguments
to an expression that is expected to be smaller for each recursive call. Some examples of
expressions that might decrease are the difference between a growing index into an array
and the array's size, the length of a list that's cut in half at each recursive call, or a pair of
lists, exactly one of which shrinks on each recursive call.

Lean contains proof automation that can automatically determine that some expressions
shrink with each call, but many interesting programs will require manual proofs. These
proofs can be provided with have , a version of let  that's intended for locally providing
proofs rather than values.

A good way to write recursive functions is to begin by declaring them partial  and
debugging them with testing until they return the right answers. Then, partial  can be
removed and replaced with a termination_by  clause. Lean will place error highlights on
each recursive call for which a proof is needed that contains the statement that needs to be
proved. Each of these statements can be placed in a have , with the proof being sorry . If
Lean accepts the program and it still passes its tests, the final step is to actually prove the
theorems that enable Lean to accept it. This approach can prevent wasting time on proving
that a buggy program terminates.
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Next Steps
This book introduces the very basics of functional programming in Lean, including a tiny
amount of interactive theorem proving. Using dependently-typed functional languages like
Lean is a deep topic, and much can be said. Depending on your interests, the following
resources might be useful for learning Lean 4.

Learning Lean

Lean 4 itself is described in the following resources:

Theorem Proving in Lean 4 is a tutorial on writing proofs using Lean.
The Lean 4 Manual provides a reference for the language and its features. At the time
of writing, it is still incomplete, but it describes many aspects of Lean in greater detail
than this book.
How To Prove It With Lean is a Lean-based accompaniment to the well-regarded
textbook How To Prove It that provides an introduction to writing paper-and-pencil
mathematical proofs.
Metaprogramming in Lean 4 provides an overview of Lean's extension mechanisms,
from infix operators and notations to macros, custom tactics, and full-on custom
embedded languages.
Functional Programming in Lean may be interesting to readers who enjoy jokes about
recursion.

However, the best way to continue learning Lean is to start reading and writing code,
consulting the documentation when you get stuck. Additionally, the Lean Zulip is an
excellent place to meet other Lean users, ask for help, and help others.

The Standard Library

Out of the box, Lean itself includes a fairly minimal library. Lean is self-hosted, and the
included code is just enough to implement Lean itself. For many applications, a larger
standard library is needed.

std4 is an in-progress standard library that includes many data structures, tactics, type class
instances, and functions that are out of scope for the Lean compiler itself. To use std4 , the
first step is to find a commit in its history that's compatible with the version of Lean 4 that
you're using (that is, one in which the lean-toolchain  file matches the one in your project).
Then, add the following to the top level of your lakefile.lean , where COMMIT_HASH  is the
appropriate version:

https://leanprover.github.io/theorem_proving_in_lean4/
https://leanprover.github.io/lean4/doc/
https://djvelleman.github.io/HTPIwL/
https://www.cambridge.org/highereducation/books/how-to-prove-it/6D2965D625C6836CD4A785A2C843B3DA#overview
https://github.com/arthurpaulino/lean4-metaprogramming-book
https://leanprover.github.io/functional_programming_in_lean/
https://leanprover.zulipchat.com/
https://github.com/leanprover/std4
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Mathematics in Lean

Most resources for mathematicians are written for Lean 3. A wide selection are available at
the community site. To get started doing mathematics in Lean 4, it is probably easiest to
participate in the process of porting the mathematics library mathlib  from Lean 3 to Lean
4. Please see the mathlib4  README for further information.

Using Dependent Types in Computer Science

Coq is a language that has a lot in common with Lean. For computer scientists, the Software
Foundations series of interactive textbooks provides an excellent introduction to
applications of Coq in computer science. The fundamental ideas of Lean and Coq are very
similar, and skills are readily transferable between the systems.

Programming with Dependent Types

For programmers who are interested in learning to use indexed families and dependent
types to structure programs, Edwin Brady's Type Driven Development with Idris provides an
excellent introduction. Like Coq, Idris is a close cousin of Lean, though it lacks tactics.

Understanding Dependent Types

The Little Typer is a book for programmers who haven't formally studied logic or the theory
of programming languages, but who want to build an understanding of the core ideas of
dependent type theory. While all of the above resources aim to be as practical as possible,
The Little Typer presents an approach to dependent type theory where the very basics are
built up from scratch, using only concepts from programming. Disclaimer: the author of
Functional Programming in Lean is also an author of The Little Typer.

require std from git
  "https://github.com/leanprover/std4/" @ "COMMIT_HASH"

https://leanprover-community.github.io/learn.html
https://github.com/leanprover-community/mathlib4
https://softwarefoundations.cis.upenn.edu/
https://www.manning.com/books/type-driven-development-with-idris
https://thelittletyper.com/

