1 Examples of J-operators

2 The sandwich lemma

The sandwich lemma says that if $P \leq Q \leq P^{*}$, then $P={ }^{*} Q$:

$$
\frac{P \leq Q \quad Q \leq P^{*}}{P^{*}=Q^{*}} S a:=\frac{\frac{P \leq Q}{P^{*} \leq Q^{*}} \text { Mo } \frac{\frac{Q \leq P^{*}}{Q^{*} \leq P^{* *}} M o}{Q^{*} \leq P^{*}} M 2}{P^{*}=Q^{*}}
$$

Let's use the notation of closed interval, $[P, R]$, for the set of all points between P and R (in the partial order \leq of the ZHA):

$$
[P, R]:=\{Q \in \Omega \mid P \leq Q \leq R\}
$$

We saw that $Q \in\left[P, P^{*}\right]$ implies $P=^{*} Q$, which means that all points in $\left[P, P^{*}\right]$ are *-equal, and that the equivalence class $[P]^{*}$ contains at least the set $\left[P, P^{*}\right]$ - which is never empty, because $M 1$ tells us that $P \leq P^{*}$, so

$$
\begin{aligned}
P \leq P & \leq P^{*} \rightarrow P \in\left[P, P^{*}\right] \\
P \leq P^{*} & \leq P^{*} \rightarrow P^{*} \in\left[P, P^{*}\right]
\end{aligned}
$$

Let's call a non-empty set of the form $[P, R]$ a lozenge, even though it may inherit some dents from the ambient ZHA, as here:

$$
[11,33]=(\text { diagram })
$$

If $P_{1}^{*}=P_{2}^{*}$, then the equivalence class $\left[P_{1}\right]^{*}\left(=\left[P_{2}\right]^{*}\right)$ contains the union of the lozenges $\left[P_{1}, P_{1}^{*}\right]$ and $\left[P_{2}, P_{2}^{*}\right]=\left[P_{2}, P_{1}^{*}\right]$. If $42^{*}=33^{*}=14^{*}=56$, then

$$
\begin{gathered}
{[42]^{*}=[33]^{*}=[14]^{*} \supseteq} \\
{[42,56] \cup[33,56] \cup[14,56]}
\end{gathered}
$$

so each equivalence class $[P]^{*}$ is a union of lozenges or the form $\left[-, P^{*}\right]$; and if $\left[P_{1}\right]^{*}=\left\{P 1, P_{2}, \ldots, P_{n}\right\}$ then $\left[P_{1}\right]^{*}=\left[P_{1}, P_{1}^{*}\right] \cup\left[P_{2}, P_{1}^{*}\right] \cup \ldots \cup\left[P_{n}, P_{1}^{*}\right]$.

Let's go back to the example above, where $42^{*}=33^{*}=14^{*}=56$. We have

$$
\begin{aligned}
((42 \& 33) \& 14)^{*} & = \\
(42 \& 33)^{*} \& 14^{*} & = \\
\left(42^{*} \& 33^{*}\right) \& 14^{*} & = \\
(56 \& 56) \& 56 & =56,
\end{aligned}
$$

so $42 \& 33 \& 14$ is in the same equivalence class as 42,33 , and 14 . We have $[12,56] \subseteq[42]^{*}=[33]^{*}=[14]^{*}$, which means this shape:
(diagram)
(...)

$$
\begin{aligned}
& \frac{P==^{*} Q}{P \& Q=^{*} P} E C C \&:=\frac{\frac{P^{*}=Q^{*}}{\overline{P^{*} \& Q^{*}=P *}}}{\overline{(P \& Q)^{*}=P^{*}}} M 3 \\
& \frac{P={ }^{*} Q}{P={ }^{*} P \vee Q} E C C \vee:=\frac{\overline{P \leq P \vee Q}}{P^{*}=(P \vee Q) *} S a
\end{aligned}
$$

3 How J-operators interact with connectives

$$
\left.\begin{array}{l}
P^{*} \& Q^{*} \stackrel{(M 3)}{=}(P \& Q)^{*} \\
\frac{\left(P^{*} \& Q^{*}\right)^{*} \stackrel{(M 3)}{=}(P \& Q)^{* *} \stackrel{(M 2)}{=}(P \& Q)^{*}}{} \frac{\overline{P \leq P \vee Q} \iota}{P \leq(P \vee Q)^{*}} M o \frac{\overline{Q \leq P \vee Q} \iota^{\prime}}{P^{*} \leq(P \vee Q)^{*}} M o \\
\\
\quad \frac{P^{*} \vee Q^{*} \leq(P \vee Q)^{*}}{\left(P^{*} \vee Q^{*}\right)^{*} \leq(P \vee Q)^{* *}} M o \\
\left(P^{*} \vee Q^{*}\right)^{*} \leq(P \vee Q)^{*}
\end{array},\right] \quad .
$$

$$
\begin{gathered}
\frac{P_{P \rightarrow Q^{*} \leq P \rightarrow Q^{*}}^{\left(P \rightarrow Q^{*}\right) \& P \leq Q^{*}}}{} \text { id } \\
\frac{\left(\left(P \rightarrow Q^{*}\right) \& P\right)^{*} \leq Q^{* *}}{(P o} M 2 \\
\frac{\left(\left(P \rightarrow Q^{*}\right) \& P\right)^{*} \leq Q^{*}}{\left(P \rightarrow Q^{*}\right)^{*} \& P^{*} \leq Q^{*}} \\
\frac{\left(P \rightarrow Q^{*}\right)^{*} \leq P^{*} \rightarrow Q^{*}}{} \# 3
\end{gathered}
$$

4 There are no Y-cuts

12 $a 3456$ 78
 $a_{78}^{12}{ }_{78}{ }^{56 b}$

A small lozenge in a ZHA is four points like $\{\ldots\}$ or $\{\ldots\}$ in the figure below; we will write these small lozenges as ${ }_{78}^{12}{ }_{78}^{12}$ and

When the points in a small lozenge L belong to four different equivalence classes, like in ..., we say that L is an X-cut; when they belong to three different equivalence classes, like ... or ..., a Y-cut; two different equivalence classes, like ... or ..., an I-cut; one equivalence class, a no-cut.

We saw in section 2 that equivalence classes are lozenges. Let's now see that the frontiers between equivalence classes can't be more irregular than the examples in section 1.

Every way of dividing a ZHA A into lozenges induces an operation .* : $A \rightarrow A$ that takes each element to the top element of its equivalence class; this ${ }^{〔}{ }^{*}$ ' obeys axiom M1 and M2...

We need two lemmas:

5 Partitions into contiguous classes

A partition of $\{0, \ldots, n\}$ into contiguous classes (a "picc") is one in which this holds: if $a, b, c \in\{0, \ldots, n\}$, $a<b<c$ and $a \sim c$, then $a \sim b \sim c$. So, for example, $\{\{0,1\},\{2\},\{3,4,5\}\}$ is a partition into contiguous classes, but $\{\{0,2\},\{1\}\}$ is not.

A partition of $\{0, \ldots, n\}$ into contiguous classes induces an equivalence relation $\cdot \sim_{P} \cdot$, a function $[\cdot]_{P}$ that returns the equivalence class of an element, a function

$$
\begin{aligned}
.^{P}:\{0, \ldots, n\} & \rightarrow\{0, \ldots, n\} \\
a & \mapsto \max [a]_{P}
\end{aligned}
$$

that takes each element to the top element in its class, a set $\mathrm{St}_{P}:=\left\{a \in\{0, \ldots, n\} \mid a^{P}=a\right\}$ of the "stable" elements of $\{0, \ldots, n\}$, and a graphical representation with a bar between a and $a+1$ when they are in different classes:

$$
01|2| 345 \equiv\{\{0,1\},\{2\},\{3,4,5\}\}
$$

which will be our favourite notation for partitions into contiguous classes from now on.

6 The algebra of piccs

When P and P^{\prime} are two piccs on $\{0, \ldots, n\}$ we say that $P \leq P^{\prime}$ when $\forall a \in\{0, \ldots, n\} . a^{P} \leq a^{P^{\prime}}$. The intuition is that $P \leq P^{\prime}$ means that the graph of the function $\cdot P$ is under the graph of $\cdot P^{\prime}$:

$$
\begin{aligned}
& \begin{array}{cccccc}
0|1| 2|3| 4 \mid 5 & \leq & 01|23| 45 & \leq & 01 \mid 2345 & \leq \\
P & \leq & P^{\prime} & \leq & P^{\prime \prime} & \leq
\end{array} P^{\prime \prime \prime}
\end{aligned}
$$

This yields a partial order on piccs, whose bottom element is the identity function $0|1| \ldots \mid n$, and the top element is $01 \ldots n$, that takes all elements to n.

It turns out that the piccs form a (Heyting!) algebra, in which we can define $T, \perp, \&, \vee$, and even \rightarrow.

The operations \& and \vee are easy to understand in terms of cuts (the " \mid "s):

$$
\begin{aligned}
\operatorname{Cuts}(P \vee Q) & =\operatorname{Cuts}(P) \cap \operatorname{Cuts}(Q) \\
\operatorname{Cuts}(P \& Q) & =\operatorname{Cuts}(P) \cup \operatorname{Cuts}(Q)
\end{aligned}
$$

The stable elements of a picc on $\{0, \ldots, n\}$ are the ones at the left of a cut plus the n, so we have:

$$
\begin{aligned}
\mathrm{St}(P \vee Q) & =\mathrm{St}(P) \cap \mathrm{St}(Q) \\
\mathrm{St}(P \& Q) & =\mathrm{St}(P) \cup \mathrm{St}(Q)
\end{aligned}
$$

Here is a case that shows how ${ }^{P \vee Q}$ can be problematic. The result of $a^{P \vee Q}$ must be stable by both P and Q. Let:

$$
\begin{aligned}
E & :=01|2| 34|56| 789 \\
O & :=01|23| 45|6| 789 \\
E \vee O & =01|23456| 789 \\
E \& O & =01|2| 3|4| 5|6| 789
\end{aligned}
$$

We can define $a^{P \& Q}:=a^{P} \& a^{Q}$, and this always works. But $a^{P \vee Q}:=a^{P} \vee a^{Q}$ does not, we may have to do something like iterating the two functions many times:

The " \rightarrow " in the algebra of piccs will not be relevant to us, so we will not discuss it.

7 ZQuotients

A ZQuotient for a ZHA with top element 46 is a partition of $\{0, \ldots, 4\}$ into contiguous classes (a "partition of the left wall"), plus a partition of $\{0, \ldots, 6\}$ into contiguous classes (a "partition of the right wall"). Our favourite short notation for ZQuotients is with "/"s and " \backslash "s, like this, " $4321 / 00123 \backslash 45 \backslash 6$ ", because we regard the cuts in a ZQuotient as diagonal cuts on the ZHA. The graphical notation is this (for 4321/0 $0123 \backslash 45 \backslash 6$ on

which makes clear how we can adapt the definitions of $\cdot \sim_{P} \cdot,[\cdot]_{P}, .{ }^{P}$, St_{P}, which were on (onedimensional!) PICCs in section 5, to their two-dimensional counterparts on ZQuotients. If P is the ZQuotient of the figure above, then:

$$
\begin{aligned}
34 \sim_{P} 25 & \text { is } \\
23 \sim_{P} 24 & \text { is } \\
{[12]_{P} } & =\{11,12,13,22,23\} \\
22^{P} & =23, \\
\mathrm{St}_{P} & =\{03,04,23,45,46\} .
\end{aligned}
$$

8 The algebra of ZQuotients

The ideas of the last section apply to ZQuotients, with a few adjustments. The

$$
\operatorname{St}(P \& Q)=\operatorname{St}(P) \cup \operatorname{St}(Q)
$$

would mean, for $P=54 / 32 / 10$ and $Q=01 / 23 / 45$, that

$$
\operatorname{St}\left(P_{c} u t s\right)=S t(
$$

9 2-Column graphs

A 2-column graph is a graph like the one in the picture below, composed of a left column $4_{-} \rightarrow 3_{-} \rightarrow$ $2_{-} \rightarrow 1_{-} \rightarrow 0_{-}$, a right column $6_{-} \rightarrow 5_{-} \rightarrow 4_{-} \rightarrow 3_{-} \rightarrow 2 \rightarrow 1_{-} \rightarrow 0_{-}$, and some intercolumn arrows: $4_{-} \rightarrow _2,1_{-} \rightarrow _$going from the left column to the right column, $_\rightarrow 4$ _ going from the right column to the left column.

A compact way to specify a 2 -column graph is this: (left height, right height, left-to-right arrows, right-to-left arrows). In the graph of the example this is ($5,7,\left\{4_{-} \rightarrow 2_{2}, 1_{-} \rightarrow 3\right\},\left\{4_{-} \leftarrow _5\right\}$).

We need to attribute a precise meaning for $0_{-}, \ldots, 4_{-}$and $_0, \ldots, _6$. For the moment let's use this one, in which they are points in \mathbb{N}^{2} with $x=0$ or $x=2$:

$$
\begin{array}{ll}
3_{-}:=(0,3) & -4:=(2,4) \\
2_{-}:=(0,2) & -2:=(2,2) \\
1_{-}:=(0,1) & -1:=(2,1) \\
0_{-}:=(0,0) & -0:=(2,0)
\end{array}
$$

Let's write $(5,7,\{\ldots\},\{\ldots\})^{*}$ for the transitive-reflexive closure of of the graph, and $\mathcal{O}(5,7,\{\ldots\},\{\ldots\})$ for its order topology.

Every open set of a 2-column graph is made of a pile of a elements at the bottom of the left column and a pile of b elements at the bottom of the right column. If we write these " 2 -piles" as $a b$,

$$
\left(\begin{array}{l}
8 \\
8 \\
1
\end{array} \frac{9}{1}\right) \equiv\left\{1,,-3, _2, _1\right\} \equiv 13
$$

the connection with ZHAs becomes clear:

$$
\begin{aligned}
& 34 \equiv\left(\begin{array}{l}
\frac{1}{1} \\
\frac{1}{1} \\
\frac{1}{1}
\end{array}\right) \\
& 33 \equiv\left(\begin{array}{lll}
\frac{1}{2} & \frac{9}{1} \\
1 & 1
\end{array}\right) 24 \equiv\left(\begin{array}{ll}
0 & \frac{1}{1} \\
1 & \frac{1}{1}
\end{array}\right) \\
& 32 \equiv\left(\begin{array}{ll}
\frac{1}{1} & \left.\begin{array}{l}
0 \\
1
\end{array}\right)
\end{array}\right) 23 \equiv\left(\begin{array}{ll}
0 \\
1 & \frac{9}{1} \\
1 & 1
\end{array}\right) \quad 14 \equiv\left(\begin{array}{ll}
0 & \frac{1}{1} \\
1 & \frac{1}{1}
\end{array}\right) \\
& 31 \equiv\left(\begin{array}{ll}
1 & 0 \\
1 & \frac{1}{1} \\
1
\end{array}\right) 22 \equiv\left(\begin{array}{ll}
0 & 0 \\
1 & \frac{1}{1}
\end{array}\right) ~ 13 \equiv\left(\begin{array}{ll}
0 & 0 \\
1 & \frac{1}{4} \\
1 & 1
\end{array}\right) ~ 04 \equiv\left(\begin{array}{ll}
0 & \frac{1}{1} \\
8 & \frac{1}{1}
\end{array}\right) \\
& 30 \equiv\left(\begin{array}{ll}
\frac{1}{1} \begin{array}{l}
8 \\
1
\end{array} & 8
\end{array}\right) 21 \equiv\left(\begin{array}{ll}
0 & 8 \\
1 & 1 \\
1
\end{array}\right) ~ 12 \equiv\left(\begin{array}{ll}
0 & 8 \\
1 & \frac{1}{4}
\end{array}\right) \quad 03 \equiv\left(\begin{array}{ll}
0 & \frac{9}{2} \\
8 & \frac{1}{1}
\end{array}\right) \\
& 20 \equiv\left(\begin{array}{ll}
0 & 0 \\
1 & 8
\end{array}\right) \quad 11 \equiv\left(\begin{array}{ll}
0 & 0 \\
1 & 1 \\
1
\end{array}\right) \quad 02 \equiv\left(\begin{array}{ll}
0 & 0 \\
8 & 1
\end{array}\right) \\
& 10 \equiv\left(\begin{array}{ll}
9 & 0 \\
1 & 8
\end{array}\right) \quad 01 \equiv\left(\begin{array}{ll}
8 & 0 \\
8 & 1
\end{array}\right) \\
& 00 \equiv\left(\begin{array}{ll}
8 & 8 \\
0 & 8
\end{array}\right)
\end{aligned}
$$

What happens if we add a left-right arrow, for example $2_{-} \rightarrow _$?

$$
\left(3,4,\left\{2_{-} \rightarrow __{-}\right\},\{ \}\right) \quad=\left(\begin{array}{cc}
& -4 \\
& \downarrow \\
3- & -3 \\
\downarrow & \downarrow \\
2- & -2 \\
\downarrow & \downarrow \\
1-1 & -1
\end{array}\right)
$$

Its effect is to make all the 2-piles of the form ($\left.\begin{array}{l}? \\ ? \\ ? \\ ? \\ ?\end{array}\right)$ non-open — more simply, the ones of the form

$$
\begin{aligned}
& 34 \equiv\binom{\frac{1}{1} \frac{1}{1}}{\frac{1}{1}} \\
& 33 \equiv\left(\begin{array}{ll}
\frac{1}{f} \\
1 & \frac{1}{1}
\end{array}\right) 24 \equiv\left(\begin{array}{ll}
9 & \frac{1}{4} \\
i & 1
\end{array}\right) \\
& 32 \equiv\left(\begin{array}{ll}
\frac{1}{1} \frac{8}{1} & \frac{1}{1}
\end{array}\right) 23 \equiv\left(\begin{array}{ll}
0 & \frac{9}{2} \\
1 & \frac{1}{1}
\end{array}\right) \quad 14 \equiv\left(\begin{array}{ll}
0 & \frac{1}{1} \\
1 & \frac{1}{1}
\end{array}\right) \\
& 22 \equiv\left(\begin{array}{ll}
0 & 8 \\
1 & \frac{1}{1} \\
1 & 1
\end{array}\right) 13 \equiv\left(\begin{array}{ll}
0 & \frac{9}{4} \\
1 & 1
\end{array}\right) \quad 04 \equiv\left(\begin{array}{ll}
8 & \frac{1}{1} \\
0 & \frac{1}{1}
\end{array}\right) \\
& 12 \equiv\left(\begin{array}{ll}
0 & \frac{o}{l} \\
1 & \frac{1}{2}
\end{array}\right) 03 \equiv\left(\begin{array}{ll}
8 & \frac{9}{1} \\
8 & 1
\end{array}\right) \\
& 11 \equiv\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right) 02 \equiv\left(\begin{array}{ll}
0 & 0 \\
8 & \frac{1}{2}
\end{array}\right) \\
& 10 \equiv\left(\begin{array}{ll}
0 & 0 \\
1 & 8
\end{array}\right) \quad 01 \equiv\left(\begin{array}{ll}
0 & 8 \\
8 & 1
\end{array}\right) \\
& 00 \equiv\left(\begin{array}{ll}
8 & 8 \\
0 & 8
\end{array}\right)
\end{aligned}
$$

Graphica
like this,
we see that a topology like $\mathcal{O}(3,4,\{ \},\{ \})$ is a ZHA:

> 34
> $33 \quad 24$
> $32 \quad 23 \quad 14$
> $\begin{array}{llll}31 & 22 & 13 & 04\end{array}$
> $30 \quad 21 \quad 12 \quad 03$
> $20 \quad 11 \quad 02$
> 00

