
Adult help needed: factoring geometric morphisms
Let’s define a finite geometric morphism (an fgm) like this.
A functor f : A→ B “is” an fgm iff both A and B are finite categories.
If f : A→ B is an fgm, then (◦f) : SetB → SetA has both adjoints:

Lanf a (◦f) a Ranf

An fgm f : A→ B induces an essential geometric morphism
f : SetA → SetB ,

f ≡ (f! a f∗ a f∗) := (Lanf a (◦f) a Ranf )

When will use the expression “the fgm f” to refer either to f : A→ B
or to (f! a f∗ a f∗), depending on the context.

Some terminology:
An fgm f is an inclusion when (f∗ a f∗) is an inclusion.
An fgm f is a surjection when (f∗ a f∗) is a surjection.
An fgm f is dense when (f∗ a f∗) is dense.
An fgm f is closed when (f∗ a f∗) is closed.
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Look at these theorems from part A of Johnstone’s “Sketches of an Elephant”:
Theorem 4.2.10 Every geometric morphism can be factored, uniquely up to
canonical equivalence, as a surjection followed by an inclusion.
Corollary 4.5.20 Any geometric inclusion E ′ → E has a unique factorization
E ′ → E ′′ → E , where E ′ → E ′′ is dense and E ′′ → E is closed.

They say that every geometric morphism E → E ′′′ can be factored as:

E E ′′′

geometric //

E E ′
surjection // E ′ E ′′dense // E ′′ E ′′′closed //E ′ E ′′′

inclusion //

I would like to do something similar for fgms.
If f : A→ D is an fgm, then (I believe that) it factors as:

SetA SetD

geometric //

SetA SetB
surjection// SetB SetC

dense // SetC SetD
closed //SetB SetD

inclusion //

A B
α // B C

β // C D
γ //B D

ι
//

My guess was that A
α→ B

ι→ D was the epi-monic factorization

of the functor f : A→ B, and in B
β→ C

γ→ D one map added just points,
while the other one added just arrows (regarding A, B, C, D as graphs).

I asked a friend that I met in a conference a few months ago to check
my hypothesis, and in the next day he showed me some diagrams,
with very small A, B, C, D, and explained me why I was wrong.
I lost the diagrams he drew on that day (on a napkin, iirc)...
but I just sent an e-mail to him (= Peter Arndt).

Now I know how to do diagrams like the ones in the next page,
and my intent is to use that to construct examples with fgms
to clarify a good part of section A4 in the Elephant.
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From: Peter Arndt
To: Eduardo Ochs
Date: 2015oct04

So, part one of your conjecture is correct (the way I read it). You write that
the (surjective,inclusion) factorization of a geometric morphism is induced by
the (epi,mono) factorization of the index categories. ”Epi-mono” factorization
is an uncommon name for functors - what you can use here, and what you
probably meant, is the (essentially surjective, fully faithful) factorization for
functors. This factorization is unique up to equivalence and can be realized
concretely in different ways, e.g. by factoring the given functor through the full
subcategory on the objects in the image (the second part of the factorization is
then the inclusion of this full subcategory).

Proof that this gives the (surjection,inclusion) factorization of the presheaf
categories (maybe you already told me this in Istanbul, I don’t remember):

It is enough to check that the (essentially surjective, fully faithful) fac-
torizationof the functor between the index categories induces a factorization
into a surjectivegeometric morphism and an inclusion, since this factorization is
essentially unique ( Moerdijk/MacLane VII, Prop 4/Thm 6).

By definition a geometric morphism (f∗, f
∗) is surjective if f∗ is faithful. In

our case f∗ is precomposition. This is faithful for a functor f that is surjective on
objects, since natural transformations are determined objectwise and all objects
are in the image. So the first part of the factorization indeed yields a surjective
geometric morphism.

For the second part we have to show that the essential geometric morphism
(g∗, g

∗) induced by a fully faithful functor g between the small index categories
is an inclusion. By definition this means that g∗ is fully faithful. But in our
case g∗ is right Kan extension along g, and (left or right) Kan extensions along
fully faithful functors are fully faithful again.

(end of proof)

Note that this goes through for any index categories, not just preorders.
Also note that it was not a priori clear that the middle topos ocurring in the
(surjection,inclusion) factorization is a presheaf topos again, or that the two
parts of the factorization are essential geometric morphisms again, but we have
now seen that this is true.

However, I have some doubts about the corresponding statement for the
(dense, closed) factorization.

Your second proposed factorization B → C → D you described as ”adding
just points, then adding just arrows”. This factorization probably doesn’t exist
for general functors. You can factorize a functor by first adjoining the objects
from the target category which are not in the image. In the second step you
can take care of the Hom-sets, but the maps betwen these will not in general be
injective or surjective, i.e. it will not be just adding arrows, but also identifying
a few old arrows. For your preorders this doesn’t occur, of course, so your
terminology makes sense (but it confused me a bit because I was thinking of
general small categories).
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For a set X let cX denote the constant presheaf with value X. That
a geometric morphism (f∗, f

∗) is dense, means that for a set X the unit map
cX → f∗f

∗cX is a mono. In our case, where the geometric morphism is induced
by a functor f : A → B between small categories, f∗ is precomposition with
f , so f∗cX is the constant presheaf on the domain category of the functor
f . Again f∗ is the right Kan extension along f . Looking at the pointwise
construction of right Kan extension, by taking limits over some comma category,
one can see that for an object b of B we have f∗f

∗cX(b) = XM(b) where M(b)
is the set of connected components of the comma category b ↓ f . The unit
map cX → f∗f

∗cX is objectwise given by the diagonal map X = cX(b) →
f∗f

∗cX(b) = XM(b) whenever the set M(b) is nonempty and this map is always
a mono. When the set M(b) is empty, then XM(b) is the terminal object and
the unit map will not be a mono for X with more than one element. So the
condition for being dense is exactly that of forcing the overcategories occurring
in the construction of right Kan extensions to be nonempty.

I cannot think of a universal way of enforcing this in general categories, but
maybe for your preorders one can, I haven’t yet thought about it.

The closed embedding part seems difficult. I have to think more about it...
—————————————————
A counterexample showing that the (dense, closed) factorization is not in-

duced by first adding objects then adding+identifying arrows:
Consider the inclusion of small categories f : [a← b] ↪→ [a← b→ c]. Your

proposed factorization goes

[a← b] ↪→ [a← b c] ↪→ [a← b→ c]

. Call the first arrow i and the second j.

Density part: Let X := {0, 1} be the two element set and cX the constant
presheaf on [a← b c] with value X.

The condition for density is that the unit cX → i∗i
∗cX (which is a natural

transformation of presheaves on [a ← b c]) is a mono. The pullback i∗cX
is the constant presheaf with value X on the category [a ← b] (it is just the
restriction of the previous constant presheaf to the subcategory [a← b]). Let’s
compute its right Kan extension along i.

This is a pointwise Kan extension. To compute the value i∗i
∗cX(z) at an

object z of the target category (here: [a← b c]) one does the following: Form
the comma category z ↓ i, i.e. the category with objects z → i(y) for some y
in the domain category and arrows commutative triangles with one side of the
form “i of some morphism”, then forget the morphisms from z and forget the is
- this gives us a diagram of objects in the domain category (here: [a← b]) – an
object y of the domain category can occur multiple times in this diagram (one
time for each morphism z → i(y)), so this is not a subdiagram of the domain
category. To this diagram apply now the given functor that we want to extend
(here: constant functor with value X); we get a diagram of sets. Now take the
limit of this diagram.
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If you have a fully faithful functor along which you want to Kan extend,
then the values of the objects in the image are the same as before (because the
category over which we take the limit has an initial object)

Hence for the objects in the image of i we get the same value as before,
i.e. we have in our example (i∗i

∗cX)(a) = (i∗cX)(a) = X and (i∗i
∗cX)(b) =

(i∗cX)(b) = X. The comma category for the object c has no objects, since there
is no morphism from c to something in the image of i, so here we take the limit
over the empty diagram and get (i∗i

∗cX)(c) = {∗}.
Thus the morphism cX → i∗i

∗cX, evaluated at c ∈ Ob([a← b c]) is the
map {0, 1} → 1 and therefore not a mono.

Closed inclusion part:
Adding arrows does usually not even give an inclusion, let alone a closed

inclusion. Inclusion means that the right adjoint is fully faithful or, equivalently,
that the counit j∗j∗X → X is an isomorphism for all X. In our presheaf
case the right adjoint j∗ is given by right Kan extension. Consider the case
j : [a b] ↪→ [a′ → b′] (inclusion of a discrete subcategory, this case would be
contained in many other cases). To compute the value of the Kan extension
f∗X at a′ we have to consider the comma category ja ← a′ → jb, forget the
a′ and the js and then take the limit of the values in sets. The outcome is:
j∗X(a′) = X(a) × X(b). It is easy to see that j∗X(b′) = X(b). Now consider
the caseX(a) 6= ∅ andX(b) = ∅ thenX(a)×X(b) = ∅ 6= X(a). Then the counit,
whatever it is cannot be an isomorphism. (The counit that would have to be an
iso is a pair of morphisms of sets, given by idX(b) and pr2 : X(a)×X(b)→ X(a),
if I see it correctly).

Alternatively one can see directly that j∗ is not fully faithful: A morphism
of presheaves on the discrete category [a b], i.e. a pair of morphisms (g :
X(a) → Y (a), h : X(b) → Y (b)) is sent by j∗ to (g × h : X(a) × X(b) →
Y (a) × Y (b), h : X(b) → Y (b)) (I think). Again take the example Y (b) = ∅,
then the map g : X(a)→ Y (a) is simply forgotten.

——————————————
This example also occurs within the previous example, so it gives a coun-

terexample to whole factorization. I think in general it is a good idea to look at
the index category [a′ → b′] for the (dense,closed) part. Looking at the definition
of closed embedding in terms of Lawvere-Tierney topologies, this is an easy ex-
ample. There are only three subterminal objects in this topos, and, according to
this post http://math.stackexchange.com/a/177894 only three Lawvere-Tierney
topologies (should be easy to check), whose corresponding subtoposes of sheaves
are equivalent to the one object topos, Set, and the whole topos, respectively.
So there is not much choice for a factorization there. I think that the nontrivial
subtopos is indeed closed.

I didn’t look at the general construction of the (dense,closed) factorization,
but it is a construction where one takes sheaves and to me it feels unlikely that
in general one gets a topos of presheaf type this way. I don’t think it will be too
hard to settle this question, but I didn’t try. It is still a possibility that there is
a (dense,closed) factorization within the world of presheaf toposes, it might or
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might not be unique, it might or might not be induced by functors of the small
index categories, but I somehow doubt it. But on the other hand for Heyting
algebras it should work, I think, since the (dense,closed) factorization for localic
(or spatial) toposes doesn’t lead out of the world of localic toposes...
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So, part one of your conjecture is correct (the way I read it). You write that
the (surjective,inclusion) factorization of a geometric morphism is induced by
the (epi,mono) factorization of the index categories. ”Epi-mono” factorization
is an uncommon name for functors - what you can use here, and what you
probably meant, is the (essentially surjective, fully faithful) factorization for
functors. This factorization is unique up to equivalence and can be realized
concretely in different ways, e.g. by factoring the given functor through the full
subcategory on the objects in the image (the second part of the factorization is
then the inclusion of this full subcategory).

Proof that this gives the (surjection,inclusion) factorization of the presheaf
categories (maybe you already told me this in Istanbul, I don’t remember):

It is enough to check that the (essentially surjective, fully faithful) fac-
torizationof the functor between the index categories induces a factorization
into a surjectivegeometric morphism and an inclusion, since this factorization is
essentially unique ( Moerdijk/MacLane VII, Prop 4/Thm 6).

By definition a geometric morphism (f∗, f
∗) is surjective if f∗ is faithful. In

our case f∗ is precomposition. This is faithful for a functor f that is surjective on
objects, since natural transformations are determined objectwise and all objects
are in the image. So the first part of the factorization indeed yields a surjective
geometric morphism.

For the second part we have to show that the essential geometric morphism
(g∗, g

∗) induced by a fully faithful functor g between the small index categories
is an inclusion. By definition this means that g∗ is fully faithful. But in our
case g∗ is right Kan extension along g, and (left or right) Kan extensions along
fully faithful functors are fully faithful again.

(end of proof)

Note that this goes through for any index categories, not just preorders.
Also note that it was not a priori clear that the middle topos ocurring in the
(surjection,inclusion) factorization is a presheaf topos again, or that the two
parts of the factorization are essential geometric morphisms again, but we have
now seen that this is true. However, I have some doubts about the corresponding
statement for the (dense, closed) factorization.

Your second proposed factorization B → C → D you described as ”adding
just points, then adding just arrows”. This factorization probably doesn’t exist
for general functors. You can factorize a functor by first adjoining the objects
from the target category which are not in the image. In the second step you
can take care of the Hom-sets, but the maps betwen these will not in general be
injective or surjective, i.e. it will not be just adding arrows, but also identifying
a few old arrows. For your preorders this doesn’t occur, of course, so your
terminology makes sense (but it confused me a bit because I was thinking of
general small categories).
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For a set X let cX denote the constant presheaf with value X. That
a geometric morphism (f∗, f

∗) is dense, means that for a set X the unit map
cX → f∗f

∗cX is a mono. In our case, where the geometric morphism is induced
by a functor f : A → B between small categories, f∗ is precomposition with
f , so f∗cX is the constant presheaf on the domain category of the functor
f . Again f∗ is the right Kan extension along f . Looking at the pointwise
construction of right Kan extension, by taking limits over some comma category,
one can see that for an object b of B we have f∗f

∗cX(b) = XM(b) where M(b)
is the set of connected components of the comma category b ↓ f . The unit
map cX → f∗f

∗cX is objectwise given by the diagonal map X = cX(b) →
f∗f

∗cX(b) = XM(b) whenever the set M(b) is nonempty and this map is always
a mono. When the set M(b) is empty, then XM(b) is the terminal object and
the unit map will not be a mono for X with more than one element. So the
condition for being dense is exactly that of forcing the overcategories occurring
in the construction of right Kan extensions to be nonempty.

I cannot think of a universal way of enforcing this in general categories, but
maybe for your preorders one can, I haven’t yet thought about it.

The closed embedding part seems difficult. I have to think more about it...
——– 2nd mail ——————————————-

A counterexample showing that the (dense, closed) factorization is not in-
duced by first adding objects then adding+identifying arrows:

Consider the inclusion of small categories f : [a← b] ↪→ [a← b→ c]. Your
proposed factorization goes

[a← b] ↪→ [a← b c] ↪→ [a← b→ c]

. Call the first arrow i and the second j.

Density part: Let X := {0, 1} be the two element set and cX the constant
presheaf on [a← b c] with value X.

The condition for density is that the unit cX → i∗i
∗cX (which is a natural

transformation of presheaves on [a ← b c]) is a mono. The pullback i∗cX
is the constant presheaf with value X on the category [a ← b] (it is just the
restriction of the previous constant presheaf to the subcategory [a← b]). Let’s
compute its right Kan extension along i.

This is a pointwise Kan extension. To compute the value i∗i
∗cX(z) at an

object z of the target category (here: [a← b c]) one does the following: Form
the comma category z ↓ i, i.e. the category with objects z → i(y) for some y
in the domain category and arrows commutative triangles with one side of the
form “i of some morphism”, then forget the morphisms from z and forget the is
- this gives us a diagram of objects in the domain category (here: [a← b]) – an
object y of the domain category can occur multiple times in this diagram (one
time for each morphism z → i(y)), so this is not a subdiagram of the domain
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category. To this diagram apply now the given functor that we want to extend
(here: constant functor with value X); we get a diagram of sets. Now take the
limit of this diagram.

If you have a fully faithful functor along which you want to Kan extend,
then the values of the objects in the image are the same as before (because the
category over which we take the limit has an initial object)

Hence for the objects in the image of i we get the same value as before,
i.e. we have in our example (i∗i

∗cX)(a) = (i∗cX)(a) = X and (i∗i
∗cX)(b) =

(i∗cX)(b) = X. The comma category for the object c has no objects, since there
is no morphism from c to something in the image of i, so here we take the limit
over the empty diagram and get (i∗i

∗cX)(c) = {∗}.
Thus the morphism cX → i∗i

∗cX, evaluated at c ∈ Ob([a← b c]) is the
map {0, 1} → 1 and therefore not a mono.

Closed inclusion part:
Adding arrows does usually not even give an inclusion, let alone a closed

inclusion. Inclusion means that the right adjoint is fully faithful or, equivalently,
that the counit j∗j∗X → X is an isomorphism for all X. In our presheaf
case the right adjoint j∗ is given by right Kan extension. Consider the case
j : [a b] ↪→ [a′ → b′] (inclusion of a discrete subcategory, this case would be
contained in many other cases). To compute the value of the Kan extension
f∗X at a′ we have to consider the comma category ja ← a′ → jb, forget the
a′ and the js and then take the limit of the values in sets. The outcome is:
j∗X(a′) = X(a) × X(b). It is easy to see that j∗X(b′) = X(b). Now consider
the caseX(a) 6= ∅ andX(b) = ∅ thenX(a)×X(b) = ∅ 6= X(a). Then the counit,
whatever it is, cannot be an isomorphism. (The counit that would have to be an
iso is a pair of morphisms of sets, given by idX(b) and pr2 : X(a)×X(b)→ X(a),
if I see it correctly).

Alternatively one can see directly that j∗ is not fully faithful: A morphism
of presheaves on the discrete category [a b], i.e. a pair of morphisms (g :
X(a) → Y (a), h : X(b) → Y (b)) is sent by j∗ to (g × h : X(a) × X(b) →
Y (a) × Y (b), h : X(b) → Y (b)) (I think). Again take the example Y (b) = ∅,
then the map g : X(a)→ Y (a) is simply forgotten.

——————————————-

This example also occurs within the previous example, so it gives a coun-
terexample to whole factorization. I think in general it is a good idea to look at
the index category [a′ → b′] for the (dense,closed) part. Looking at the definition
of closed embedding in terms of Lawvere-Tierney topologies, this is an easy ex-
ample. There are only three subterminal objects in this topos, and, according to
this post http://math.stackexchange.com/a/177894 only three Lawvere-Tierney
topologies (should be easy to check), whose corresponding subtoposes of sheaves
are equivalent to the one object topos, Set, and the whole topos, respectively.
So there is not much choice for a factorization there. I think that the nontrivial
subtopos is indeed closed.
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I didn’t look at the general construction of the (dense,closed) factorization,
but it is a construction where one takes sheaves and to me it feels unlikely that
in general one gets a topos of presheaf type this way. I don’t think it will be too
hard to settle this question, but I didn’t try. It is still a possibility that there is
a (dense,closed) factorization within the world of presheaf toposes, it might or
might not be unique, it might or might not be induced by functors of the small
index categories, but I somehow doubt it. But on the other hand for Heyting
algebras it should work, I think, since the (dense,closed) factorization for localic
(or spatial) toposes doesn’t lead out of the world of localic toposes...

————— 3rd mail ——————————————-

Cool, I like your diagrams! Everything is visible at a glance. I just found
out how the (dense, closed) factorization works and it is well visualizable! It
boils down to the empty/nonemptyness criterion of comma categories from the
first mail, and that is something you can really see in your small examples. (by
the way, the surjection/dense/closed terminology is indeed standard, and well
chosen).

About subtoposes (closed or not, for now): They are all given as sheaves for
a Lawvere-Tierney topology. A Lawvere-Tierney topology is an endomorphism
j of the presheaf Ω, it is a closure operator (satisfying some conditions) which is
on each Ω(X) given by specifying which are the closed subobjects (then, to an
arbitrary subobject this closure operator associates the smallest closed subobject
bigger than the given one). Of course this endomorphism is determined by
saying what it does on each object, or equivalently, by saying what happens
when postcomposing it with maps from representable functors to Ω.

But now, since your index categories are preorders, the representable func-
tors are subterminal objects1. The upshot of what I want to write is that in a
presheaf category many constructions are determined by what they do the rep-
resentable functors, and that here the representable functors are subterminal,
which gives a good handle on Lawvere-Tierney topologies, since they are about
closure of subobjects, in particular those of the terminal object.

Just to be sure: presheaves are contravariant functors for me now. For a
subterminal object A → 1 the restriction map is given by Ω(1) → Ω(A), V 7→
V ∩ A and surjective. From the condition that j is a natural transformation
we get that the closed subobjects of A are exactly the intersections of closed
subobjects of 1 with A:

Ω(1)
U 7→U∩A//

jU 7→Ū

��

Ω(A)

j

��
Ω(1)

Ū 7→Ū∩A// Ω(A)

1But there can still be subterminal objects which are not representable
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Moreover for a closed subobject Ā of 1 we have that the closed subobjects
of Ā are exactly the subobjects which are closed in Ω(1) and are contained in
Ā: We know that the closed subobjects of Ā are those of the form Ā ∩ Ū for
some closed subobject Ū of 1, but seeing Ā ∩ Ū as a subobject of 1 we get
Ā ∩ Ū = j(Ā) ∩ j(Ū) (since both are j-closed), then j(Ā) ∩ j(Ū) = j(Ā ∩ U)
(properties of j), hence altogether Ā ∩ Ū = j(Ā ∩ U).

Finally, considering an arbitrary subterminal object and its closure A ↪→
Ā ↪→ 1, the restriction map Ωcl(Ā) → Ωcl(A), which we know to be surjective,
is also injective (I denote by Ωcl the collection of closed subobjects). To see
this, suppose we have two subobjects Ā ∩ V̄ , Ā ∩ W̄ of Ā which are mapped to
the same subobject of A, i.e. such that A ∩ V̄ = A ∩ W̄ . Now apply the map
Ω(A) → Ω(1) which considers them as subobjects of 1, the apply j. We get
Ā ∩ V̄ = j(A) ∩ j(V̄ ) = j(A ∩ V̄ ) = j(A ∩ W̄ ) = j(A) ∩ j(W̄ ) = Ā ∩ W̄ .

Altogether this shows that Lawvere-Tierney topologies for presheaves on
a preorder are in bijection to the closure operators j : Ω(1) → Ω(1) satisfying
j(A ∩ B) = j(A) ∩ j(B). Now Ω(1) itself can be easily determined2 and then
probably also such closure operators are not hard to work out completely for
very small preorders. Put differently, this means classifying all subtoposes of
such a topos.

Seeing which subtoposes among them are closed (i.e. which Lawvere-
Tierney topologies are of the required kind) is even easier: Just take all the
subobjects and apply the recipe for the construction of a closed Lawvere-Tierney
topology, i.e. j : V 7→ U ∪ V .

(Another approach would be to follow the article by Olivia Caramello I
mentioned last time - taking that kind of perspective one would have to work
out what kind of theory a presheaf topos of your type classifies and what is the
lattice of theories coming with it.)

What about the sheafification functor for a closed Lawvere-Tierney topol-
ogy?

If the topology is given by the subterminal object U , i.e. some functor that
maps certain objects of the index category to 1 := {∗} and the others to ∅,
then by the elephant, Prop. A.4.5.3(ii) an object A is sheaf iff the projection
A× U ∼= U is an isomorphism (it is not necessary to talk about the projection
here; since U is subterminal there is at most morphism to U anyway, so it must
be the projection). The presheaf A × U has value ∅ at those objects where U
has value ∅ and has the value of A at the other objects. I.e. the passage from A
to A× U “deletes” the values where U has value ∅ and keeps the others. Thus
the requirement for A to be a sheaf becomes: A must have value 1 wherever U
has value 1 (and it can have arbitrary values otherwise).

2The terminal object is of course the constant functor with value 1 := {∗}. Its subobjects
are exactly the functors which map the objects of your index preorder either to the empty set
or the one point set (this can of course not happen arbitrarily but has to satisfy the constraint
that an object mapped to the empty set cannot receive a map from an object mapped to the
one point set, but that is the only constraint).
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Accordingly, the sheafification is the functor that enforces this condition,
i.e. it keeps the values of A at those objects where U produces the empty set
and resets them to 1 at those objects where U produces the value 1 — this is
what Prop. A.4.5.3(iii) says.

——————–
This description of sheaves makes it apparent that a closed suptopos of a

presheaf topos SetC is actually a presheaf topos again — it can be described as
the topos of presheaves on the full subcategory of C whose objects are mapped
to ∅ by the subterminal object U (in one direction of the equivalence one can
forget the other objects, in the other direction one adds the value 1 at all the
additional objects)3.

So your (dense, closed) factorization actually stays in the world of presheaf
toposes, it seems. The next question is when the geometric morphisms occurring
in the factorization are induced by functors between the index categories. This is
true for the second one, because all closed inclusions between presheaf categories
are of this form:

Proof: Let U be the subterminal object of SetC inducing the closed Lawvere-
Tierney topology jU and let D be the full subcategory of C whose objects are
mapped to ∅ by U .

We need to establish a commutative (up to natural iso) triangle of geometric
morphisms

ShjU
//

��

SetC

SetD

;;OO

where the vertical morphism is the equivalence, the diagonal morphism is the
(precomposition, right Kan extension) adjunction and the horizontal morphism
is the (sheafification, inclusion) adjunction.

It is enough to show a natural isomorphism just between the left adjoints (or
just the right adjoints) by uniqueness of adjoints. But this is clear: SetC → ShjU

resets the values at the objects of Ob(C)\Ob(D) to 1, then ShjU → SetD forgets
those values — and this forgetting is exactly restriction to the objects of D, i.e.
precomposition with D ↪→ C.

(I had first checked it on right adjoints. That is also instructive, you have
to show that the right Kan extension produces just the value 1 at the objects
of Ob(C) \ Ob(D). By the formula for pointwise Kan extensions this happens
exactly when the undercategories are empty and this is true exactly because
the objects of our full subcategory are given by a subterminal object...) (end of
proof)

——————————————-

3One can maybe also use the techniques of Olivia Caramello’s article to show this, but I
didn’t see a statement in the relevant places, e.g. section 7.2 or section 14. Another article
of hers that might be useful for a logic based proof is http://arxiv.org/abs/1404.4610, in
particular section 6.4. But there she doesn’t mention closed subtoposes.
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Now this tells us how to find the (dense, closed) factorization. The mental
image for this is that from topology, i.e. the dense part should map the domain
to the closure of its image, and the closed part is the inclusion of this closure.
I suppose this is a valid intuition for toposes too, and that the topos occuring
in the middle should be the smallest closed subtopos through which the given
geometric morphism factors (“smallest” meaning: the full subcategory with the
fewest objects; sheaves always form a full subcategory, so that makes sense).

So in our situation we start with a geometric inclusion (h∗, h
∗) : SetA ↪→

SetC induced by a fully faithful functor h : A → C (since that is the situation
after we have done the (surjection, inclusion) factorization). Our right adjoint
is given by right Kan extension. We look for a full subcategory through which
h∗ factors and which is given by demanding that its objects take value 1 on
some specified objects. Hence we need to look which objects c of C get value
1 after performing the Kan extension – we know that these are the ones whose
comma category c ↓ h is empty. So a careless first guess could be that the index
category in the middle (in A → D → C) is the full subcategory of C whose
objects are the c with c ↓ h empty.

One might think that we need a small correction to this guess: We cannot
just take any set of objects where we want our functors to take the value 1;
the set of objects must be specified by a subterminal object as before, in order
to give a closed subtopos. So we need to take the smallest such set of objects.
This extra condition is sort of a hereditariness condition: If an object is in our
subcategory and another one receives a morphism from it, then it also needs
to be in the subcategory. However, if c ↓ h is empty and there is a morphism
c → c′, then c′ ↓ h is also empty, otherwise there would be some c′ → h(a),
hence also c→ c′ → h(a). So our guess was actually not careless and the extra
condition is automatic.

By construction (resp. by the observation in the last paragraph) the in-
clusion SetD → SetC is closed. As for the other part of the factorization, i.e.
SetA → SetD: This is also the one induced by right Kan extension along A→ D
and it is dense by the criterion we saw at the end of my first mail: This crite-
rion was exactly that the comma categories d ↓ h need to be nonempty and we
achieved that by construction (since we put all the other objects in the second
step). Yay! That is the proof that we get a (dense, closed) factorization this
way!

——————————————-

Ok, I just took a look at the elephant. The proof of Lemma A.4.5.19(i)
(together with the paragraph after and A.4.5.20) says how to construct the
closure in the general case: You start with a geometric inclusion. The domain of
this then corresponds to the topos of sheaves for some Lawvere-Tierney topology
j. You take the smallest subobject of 1, i.e. 0 ↪→ 1, then form its closure
j(0 ↪→ 1). This is another subobject of 1 which you then use to form a closed
Lawvere-Tierney topology and thus a closed subtopos. We could compare this
with the above construction. We would have to figure out how to obtain the j
from the geometric morphism, it probably as simple as chasing the initial object
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back and forth through the adjunction...
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Kan extensions: a general case and a particular case.

C LanFC
� //

D ◦ F Doo �

E RanFC
� //

SetA SetB
LanF //

SetA SetBoo ◦FSetA SetB

RanF

//

A B
F //

C

D ◦ F
��

LanFC

D
��

D ◦ F

E
��

D

RanFC
��

� //oo �

oo �� //

 C2 C3

C4 C5

↘ ↙ ↘




0

C2 C3

C4 C5

C4+C3C5

↙ ↘

↘ ↙ ↘

↘ ↙


� //

 D2 D3

D4 D5

↘ ↙ ↘




D1

D2 D3

D4 D5

D6

↙ ↘

↘ ↙ ↘

↘ ↙


oo �

 E2 E3

E4 E5

↘ ↙ ↘




E2×E4
E3

E2 E3

E4 E5

1

↙ ↘

↘ ↙ ↘

↘ ↙


� //

Set(
••••) Set

( ••••••
)LanF //

Set(
••••) Set

( ••••••
)

oo ◦FSet(
••••) Set

( ••••••
)

RanF

//

 2 3

4 5
↘ ↙ ↘




1

2 3

4 5

6

↙ ↘

↘ ↙ ↘

↘ ↙


F //

 C2 C3

C4 C5

↘ ↙ ↘



 D2 D3

D4 D5

↘ ↙ ↘


��



0

C2 C3

C4 C5

C4+C3C5

↙ ↘

↘ ↙ ↘

↘ ↙





D1

D2 D3

D4 D5

D6

↙ ↘

↘ ↙ ↘

↘ ↙



��

 D2 D3

D4 D5

↘ ↙ ↘



 E2 E3

E4 E5

↘ ↙ ↘


��



D1

D2 D3

D4 D5

D6

↙ ↘

↘ ↙ ↘

↘ ↙





E2×E4
E3

E2 E3

E4 E5

1

↙ ↘

↘ ↙ ↘

↘ ↙



��

� //oo �

oo �� //
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Equivalent conditions

A′ α!A
′� //

α∗B Boo
faithful

�

A α∗A
� //

SetA SetB
α //SetA SetB

surjective
//

A B
α //A B

essentially
surjective

//

A′

α∗B
��

α!A
′

B
��

α∗B

A
��

B

α∗A
��

B′ ι!B
′� //

ι∗D Doo �

B ι∗B
�

fully faithful
//

SetB SetD
ι //SetB SetD

inclusion
//

B D
ι //B D

fully faithful
//

B′

ι∗D
��

ι!B
′

D
��

ι∗D

B
��

D

ι∗B
��

B′ β!B
′� //

β∗kC kCoo �

β∗kC β∗β
∗kC

� //

SetB SetC
β //SetB SetC

dense
//

B C
β //B C
?

//

B′

β∗kC
��

β!B
′

kC
��

β∗kC

β∗kC

id ��

kC

β∗β
∗kC

��
mono
��

C ′ γ!C
′� //

γ∗γ∗C γ∗Coo �

C γ∗C
� //

SetC SetD
γ //SetC SetD

closed
//

C D
γ //C D
?

//

C ′

γ∗γ∗C
��

γ!C
′

γ∗C
��

γ∗γ∗C

C

iso ��

γ∗C

γ∗C

id��
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Peter’s counterexample, 1: the Kan extensions

 B′
1

B′
2

↓


 B′

1

B′
2 B′

1

↙ ↘

� //

 D1

D2

↓


 D1

D2 D3

↙ ↘

oo �

 B1

B2

↓


 B1

B2 1
↙ ↘

� //

 B′
1

B′
2

↓


 D1

D2

↓


��

 B′
1

B′
2 B′

1

↙ ↘


 D1

D2 D3

↙ ↘


�� D1

D2

↓


 B1

B2

↓


��

 D1

D2 D3

↙ ↘


 B1

B2 1
↙ ↘


��

 B′
1

B′
2

↓


 B′

1

B′
2 0
↓

� //

 C1

C2

↓


 C1

C2 C3

↓

oo �

 B1

B2

↓


 B1

B2 1
↓

� //

 B′
1

B′
2

↓


 C1

C2

↓


��

 B′
1

B′
2 0
↓


 C1

C2 C3

↓


�� C1

C2

↓


 B1

B2

↓


��

 C1

C2 C3

↓


 B1

B2 1
↓


��

 C ′
1

C ′
2 C ′

3

↓


 C ′

1

C ′
2 C ′

1+C ′
3

↙ ↘

� //

 D1

D2 D3

↓


 D1

D2 D3

↙ ↘

oo �

 C1

C2 C3

↓


 C1×C3

C2 C3

↙ ↘

� //

 C ′
1

C ′
2 C ′

3

↓


 D1

D2 D3

↓


��

 C ′
1

C ′
2 C ′

1+C ′
3

↙ ↘


 D1

D2 D3

↙ ↘


�� D1

D2 D3

↓


 C1

C2 C3

↓


��

 D1

D2 D3

↙ ↘


 C1×C3

C2 C3

↙ ↘


��
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Peter’s counterexample, 2: the equivalent conditions fail

 C

C
↓


 C

C C
↓

oo �

 C

C
↓


 C

C 1
↓

� //

 C

C
↓


 C

C
↓


id
��

 C

C C
↓


 C

C 1
↓


not

monic��

C1×C3

C2 C3

↓


 C1×C3

C2 C3

↙ ↘

oo �

 C1

C2 C3

↓


 C1×C3

C2 C3

↙ ↘

� //

C1×C3

C2 C3

↓


 C1

C2 C3

↓


not
iso ��

 C1×C3

C2 C3

↙ ↘


 C1×C3

C2 C3

↙ ↘


id
��
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