On the the missing diagrams
in Category Theory

Eduardo Ochs
March 11, 2022

Abstract

Most texts on Category Theory are written in a very terse style,
in which people pretend a) that all concepts are visualizable, and b)
that the readers can reconstruct the diagrams that the authors had
in mind based on only the most essential cues. As an outsider I spent
years believing that the techniques for drawing diagrams were part
of the oral culture of the field, and that the insiders could read texts
on CT reconstructing the “missing diagrams” in them line by line
and paragraph by paragraph, and drawing for each page of text a
page of diagrams with all the diagrams that the authors had omit-
ted. My belief was wrong: there are lots of conventions for drawing
diagrams scattered through the literature, but that unified diagram-
matic language did not exist. In this chapter I will show an attempt
to reconstruct that (imaginary) language for missing diagrams: we
will see an extensible diagrammatic language, called DL, that follows
the conventions of the diagrams in the literature of C'T whenever pos-
sible and that seems to be adequate for drawing “missing diagrams”
for Category Theory. Our examples include the “missing diagrams”
for adjunctions, for the Yoneda Lemma, for Kan extensions, and for
geometric morphisms, and how to formalize them in Agda.

Contents

W =

Introduction

The conventions

Finding “the” object with a given name

Freyd’s diagrammatic language

4.1 Adding quantifiers
4.2 Adding functors

Internal views

5.1 Reductions
5.2 Functorso
5.3 Natural transformations
5.4 Adjunctions
5.5 A way to teach adjunctions

Types for Children

6.1 Dependent types Lo
6.2 Witnesses
6.3 Judgments.
6.4 Set comprehensions
6.5 Omitting types L
6.6 Indefinite articles L
6.7 “Physicists’ notation”

The Basic Example as a skeleton

7.1 Reconstructing its functors 0oL
7.2 Natural transformations
7.3 The full reconstruction L.

Extensions to the diagrammatic language

8.1 A way to define new categories
8.2 Universalness as something extra
8.3 Opposite categories
8.4 The Yoneda Lemma
8.5 The Yoneda embedding
8.6 Representable functors00
8.7 The 2-category of categories
8.8 Kanextensions,
8.9 All concepts are Kan extensions

CONTENTS 3

8.10 A formula for Kan extensions 55
8.11 Functors as objects oL o7
8.12 Geometric morphisms for children 58
9 Related and unrelated work 59

1 Introduction

One of the main themes of this text is a diagrammatic language — let’s
call it DL — that can be used to draw “missing diagrams” for Category The-
ory. DL is a reconstructed language, and it’s easier to explain it if I explain
how it was reconstructed, and which of its conventions were improvised. It
is easier to do it in the first person.

Suppose that your native language is A and you are learning a language
B by a method that includes conversation classes. You will have to improvise
a lot, but you will usually get feedback quickly. Now suppose that you are
studying a language C' — for example, Aeolic Greek ([Car03]) — mostly
by yourself, and the corpus of texts in C' is small. A good exercise is to
try to write your thoughts in C| using loanwords and improvised syntactical
constructs when needed, but marking mentally the places in which you had
to improvise. In most cases, but not all, you will eventually find ways to
rewrite those parts to make them look more like C'.

The conventions of DL are explained in sec.2. A few of them don’t cor-
respond to anything that I could find in the literature; they are listed at the
end of that section.

The best way to introduce DL is to tell the full story of how it evolved
from a long sequence of wrong assumptions and from some “thoughts that I
wanted to express in DL”.

Let me start with some quotes. This one is from Eilenberg and Steenrod
([ES52, p.ix], but I learned it from [Kr607, pp.82-83)):

The diagrams incorporate a large amount of information. Their
use provides extensive savings in space and in mental effort. In
the case of many theorems, the setting up of the correct diagram
is the major part of the proof. We therefore urge that the reader
stop at the end of each theorem and attempt to construct for
himself the relevant diagram before examining the one which is

20220on-the-missing March 11, 2022 01:40

CONTENTS 4

given in the text. Once this is done, the subsequent demonstra-
tion can be followed more readily; in fact, the reader can usually
supply it himself.

I spent a lot of my time studying Category Theory trying to “supply
the diagrams myself”. In [ES52] supplying the diagrams is not very hard (I
guess), but in books like [CWM], in which most important concepts involve
several categories, I had to rearrange my diagrams hundreds of times until I
reached “good” diagrams...

The problem is that I expected too much from “good” diagrams. The
next quotes are from the sections 1 and 12 of an article that I wrote about
that ([IDARCT]):

My memory is limited, and not very dependable: I often have
to rededuce results to be sure of them, and I have to make them
fit in as little “mental space” as possible...

Different people have different measures for “mental space”;
someone with a good algebraic memory may feel that an expres-
sion like Frob : X (P A f*Q) = P A Q) is easy to remember,
while I always think diagramatically, and so what I do is that I
remember this diagram,

and I reconstruct the formula from it.

Let’s call the “projected” version of a mathematical object its
“skeleton”. The underlying idea in this paper is that for the right
kinds of projections, and for some kinds of mathetical objects, it
should be possible to reconstruct enough of the original object
from its skeleton and few extra clues — just like paleontologists
can reconstruct from a fossil skeleton the look of an animal when
it was alive.

20220on-the-missing March 11, 2022 01:40

CONTENTS 5

I was searching for a diagrammatic language that would let me express
the “skeletons” of categorical definitions and proofs. I wanted these skeletons
to be easy to remember — partly because they would have shapes that were
easy to remember, and partly because they would be similar to “archetypal
cases” ([[IDARCT, section 16]).

In 2016 and 2017 I taught a seminar course for undergraduates that cov-
ered a bit of Category Theory in the end — see Section 5.5 and [Och19]
— and this forced me to invent new techniques for working in two different
styles in parallel: a style “for adults”, more general, abstract, and formal,
and another “for children”, with more diagrams and examples. After some
semesters, and after writing most of the material that became [PH1], T tried
to read again some parts of Johnstone’s “Sketches of an Elephant”, a book
that always felt quite impenetrable to me, and I found a way to present geo-
metric morphisms in toposes to “children”. It was based on this diagram,

Gy
(GQ\ AN) G2< >G3\
o a) | el e
f*G < G g N 5
Gs
| — | 0
H+— f*H HyxnyHs
- EIVAN H2< >H3\
e r)N
¥ N
* 1
SetAi)SetB
7
A / B

that we will discuss in detail in 8.12. Its left half is a generic geometric mor-
phism (“for adults”), and its right half is a very specific geometric morphism
(“for children”) in which everything is easy to understand and to visualize,
and that turns out to be “archetypal enough”.

I showed that to the few categorists with whom I had contact and the
feedback that I got was quite positive. A few of them — the ones who were
strictly “adults” — couldn’t understand why I was playing with particular
cases, and even worse, with finite categories, instead of proving things in the
most general case possible, but some others said that these ideas were very
nice, that they knew a few bits about geometric morphisms but those bits
didn’t connect well, and that now they had a family of particular cases to
think about, and they had much more intuition than before.

20220on-the-missing March 11, 2022 01:40

CONTENTS 6

That was the first time that my way of using diagrams yielded some-
thing so nice! This was the excuse that I needed to organize a workshop
on diagrammatic languages and ways to use particular cases; here’s how I
advertised it (from [OL18]):

When we explain a theorem to children — in the strict sense
of the term — we focus on concrete examples, and we avoid
generalizations, abstract structures and infinite objects.

When we present something to “children”; in a wider sense of
the term that means “people without mathematical maturity”,
or even “people without expertise in a certain area”, we usually
do something similar: we start from a few motivating examples,
and then we generalize.

One of the aims of this workshop is to discuss techniques for
particularization and generalization. Particularization is easy;
substituing variables in a general statement is often enough to
do the job. Generalization is much harder, and one way to visu-
alize how it works is to regard particularization as a projection:
a coil projects a circle-like shadow on the ground, and we can
ask for ways to “lift” pieces of that circle to the coil continously.
Projections lose dimensions and may collapse things that were
originally different; liftings try to reconstruct the missing infor-
mation in a sensible way. There may be several different liftings
for a certain part of the circle, or none. Finding good generaliza-
tions is somehow like finding good liftings.

The second of our aims is to discuss diagrams. For example,
in Category Theory statements, definitions and proofs can be
often expressed as diagrams, and if we start with a general dia-
gram and particularize it we get a second diagram with the same
shape as the first one, and that second diagram can be used as
a version “for children” of the general statement and proof. Di-
agrams were for a long time considered second-class entities in
CT literature ([Kro07] discusses some of the reasons), and were
omitted; readers who think very visually would feel that part of
the work involved in understanding CT papers and books would
be to reconstruct the “missing” diagrams from algebraic state-
ments. Particular cases, even when they were the motivation
for the general definition, are also treated as somewhat second-

20220on-the-missing March 11, 2022 01:40

CONTENTS

class — and this inspires a possible meaning for what can call
“Category Theory for Children”: to start from the diagrams for
particular cases, and then “lift” them to the general case. Note
that this can be done outside Category Theory too; [Jam01] is a
good example.

Our third aim is to discuss models. A standard example is
that every topological space is a Heyting Algebra, and so a model
for Intuitionistic Predicate Logic, and this lets us explain visually
some features of IPL. Something similar can be done for some
modal and paraconsistent logics; we believe that the figures for
that should be considered more important, and be more well-
known.

This is from the second announcement:

If we say that categorical definitions are “for adults” - because
they may be very abstract - and that particular cases, diagrams,
and analogies are “for children”, then our intent with this work-
shop becomes easy to state. “Children” are willing to use “tools
for children” to do mathematics, even if they will have to trans-
late everything to a language “for adults” to make their results
dependable and publishable, and even if the bridge between their
tools “for children” and “for adults” is somewhat defective, i.e.,
if the translation only works on simple cases...

We are interested in that bridge between maths “for adults”
and “for children” in several areas. Maths “for children” are hard
to publish, even informally as notes (see this thread

http://angg.twu.net/categories-2017may02.html

in the Categories mailing list), so often techniques are rediscov-
ered over and over, but kept restricted to the “oral culture” of
the area.

Our main intents with this workshop are:

« to discuss (over coffe breaks!) the techniques of the “bridge”
that we currently use in seemingly ad-hoc ways,

o to systematize and “mechanize” these techniques to make
them quicker to apply,

20220on-the-missing March 11, 2022 01:40

http://angg.twu.net/categories-2017may02.html

CONTENTS 8

e to find ways to publish those techniques — in journals or
elsewhere,

e to connect people in several areas working in related ideas,
and to create repositories of online resources.

In the UniLog 2018 I was able to chat with several categorists, and they
told me that the oral culture of CT was not as I was expected: if there are
standard ways to draw diagrams they are not widely known. I also spent two
evenings with Peter Arndt working on a certain factorization of geometric
morphisms “for children” — and this made me feel that at some point I would
be able to present applications of this diagrammatic language in “top-tier”
conferences that would not accept works with holes.

The following quote is from the abstract of my submission ([MDE]) to
the ACT2019:

Imagine two category theorists, Aleks and Bob, who both
think very visually and who have exactly the same background.
One day Aleks discovers a theorem, T}, and sends an e-mail,
Ey, to Bob, stating and proving T} in a purely algebraic way;
then Bob is able to reconstruct by himself Aleks’s diagrams for
T, exactly as Aleks has thought them. We say that Bob has
reconstructed the missing diagrams in Aleks’s e-mail.

Now suppose that Carol has published a paper, P,, with a
theorem T5. Aleks and Bob both read her paper independently,
and both pretend that she thinks diagrammatically in the same
way as them. They both “reconstruct the missing diagrams” in
P, in the same way, even though Carol has never used those
diagrams herself.

and this from my submission ([Och20]) to Diagrams 2020:

Category Theory gives the impression of being an area where
most concepts and arguments are stated and formalized via dia-
grams, but this is not exactly true... in most texts almost every-
thing is done algebraically, and the reader is expected to be able
to reconstruct the “missing diagrams” by himself.

I used to believe, as an outsider, that some people who grew
up immersed the oral culture of the area would know several tech-
niques for “drawing the missing diagrams”. My main intent when

20220on-the-missing March 11, 2022 01:40

CONTENTS 9

[organized the workshop “Logic for Children” at the UniLog 2018
[OL18] was to collect some of these folklore techniques, compare
them with the ones that I had developed myself to study CT,
and formalize them all — but what I found instead was that ev-
erybody that I could get in touch with used their own ad-hoc
techniques, and that what I was trying to do was either totally
new to them, or at least new in its level of detail.

The story will continue at the end of sec.2, after the list of conventions.

2 The conventions

The conventions that I will present now are the ones that we will need
to interpret the diagram below, that is essentially the Proposition 1 in the
proof of the Yoneda Lemma in [CWM, Section II1.2]; we will call that diagram
the “Basic Example” and also “diagram YO0”. In the sections 8-8.12 we will
see how extend DL to make it able to interpret the diagram for geometric
morphisms of the Introduction.

B(Cv _) o A<A7 R_)

(CD) Our diagrams are made of components that are nodes and arrows. The
nodes can contain arbitrary expressions. The arrows work as connec-
tives, and each arrow can be interpreted as the top-level connective in

20220on-the-missing March 11, 2022 01:40

CONTENTS 10

(C—=)

(Ce)

(CAI)

(CO)

(CC)

(CTL)

(CMQ)

the smallest subexpression that contains it. For example, the curved
arrow in the diagram above can be interpreted as:

(A5 RC) 5 (B(C,—) = A(A, R—-)).

Arrows that look like ‘—’ (“\to”) represent hom-sets, or, in Set, spaces
of functions. When a ‘=’ arrow is named the name stands for an
element of that hom-set. For example, in A - RC we have n : A —
RC.

Arrows that look like ‘" (“\mapsto”) represent internal views of func-
tions or functors. This has some subtleties; see Section 5.

Arrows that look like ‘<=’ (“\leftrightarrow”) represent bijections or
isomorphisms.

“Above” usually means “inside”, or “internal view”. In the diagram
above the morphism 1 : A — RC is in A and C' is an object of B.

Also, the arrow C' +— RC' is above B it A, and this means that it is
an internal view of the functor R. Note that usually is not always —

and B 25 A is not an internal view of B(C,—) EN A(A, R-).

When the definition of a component of our diagram is “obvious” in
the sense of “there is a unique natural construction for an object with
that name”, we will usually omit its definition and pretend that it is
obvious; same for its uniqueness. See Section 3.

Everything commutes by default, and non-commutative cells have to
be indicated explicitly. See Section 4.

The default “meaning” for a diagram without quantifiers is the defini-
tion of its top-level component. There is a natural partial order on the
components of a diagram, in which a < 3 iff a is “more basic” than [,
or, in other words, if a needs to be defined before 5. In the diagram
above the top-level component is the curved bijection.

The default “meaning” for a diagram with quantifiers is a proposition.
See Sections 4-4.2 for how to obtain that proposition.

20220on-the-missing March 11, 2022 01:40

CONTENTS 11

(CAdj)

(CDT)
(CIA)

(COT)

I use shapes based on my way of drawing adjunctions whenever possi-
ble. T like adjunctions so much that when I want to explain Category
Theory to someone who knows just a little bit of Maths I always start
by the adjunction (xB) - (B—) of Section 5.4; I always draw it in
a canonical way, with the left adjoint going left, the right adjoint go-
ing right, and the morphisms going down. In Proposition 1 of [CWM,
Section II1.2] the map 7 is a universal arrow, and someone who learns
adjunctions first sees the unit maps n : A — (B—(AxB)) as the first
examples of universal arrows — so that’s why the upper part of the
diagram above is drawn in this position.

I use shapes based on my way of drawing the Yoneda Lemma whenever
possible. Look at the sections 7-7.3 and 8.4-8.6: the upper parts of
their diagrams look like parts of adjunctions, but the other parts do not.
For example, I draw “The functor U : Ring — Set is representable”

as:
1

Zlz]——U(Z[x])
Ring —Y . Set

Ring(Z[z], —)

™.

U
A diagram acts a dictionary of default types for symbols. See sec.6.5.

Default types allow us to use indefinite articles in a precise way. An
example: we have 1 : Homa (A, RC), so “an n” means “an element of
Homa (A, RC)”. See sec.6.6.

We use a notation as close to the original text as possible, especially
when we are trying to draw the missing diagrams for some existing
text. If we were drawing the missing diagrams for the Proposition 1 of

20220on-the-missing March 11, 2022 01:40

CONTENTS 12

[CWM, Section III.2] our diagram would be this:

C
lu
r Sr
D5 C

but I hate Mac Lane’s choice of letters, so I decided to use another
notation here.

(CSk) Suppose that we have a piece of text — say, a paragraph P — and
we want to reconstruct the “missing diagram” D for P. Ideally this D
should be a “skeleton” for P, in the sense that it should be possible to
reconstruct the ideas in P from the diagram D using very few extra
hints; see [[DARCT, sec.12].

(CTT) Our diagrams should be close to Type Theory: it should be possible to
use them as a scaffolding for formalizing our text in (pseudocode for)
a proof assistant.

(CFSh) The image by a functor of a diagram D is drawn with the same shape
as D.

(CISh) The internal view of a diagram D is drawn with the same shape as D,
modulo duplications — see section 5.

(CPSh) A particular case of a diagram D is drawn with the same shape as D.

(CNSh) A translation of a diagram D to another notation is drawn with the
same shape as D.

The conventions (CD)—-(CMQ) and (CFSh)—-(CNSh) all appear in dia-
grams in [MacLaneNotes], [Freyd76], [FS90], [Tay99], [Riehl], [Leinster], but
very few of them are spelled out explicitly, and the idea of “same shape”
is never stressed. See [NG14, p.179] for a neat example of “substitution
produces something with the same shape” and [Penrose] for a language for
drawing diagrams from high-level specifications in which it may be possible
to implement the rules about “same shape”.

20220on-the-missing March 11, 2022 01:40

CONTENTS 13

The other conventions may be new, but remember from the introduction
that most of the work on diagrammatic languages lies below the threshold
of publishability... so conventions corresponding to those may be folklore
knowledge in groups that I don’t have contact with yet.

The convention (COT) is obvious in retrospect, but giving a name to
it saved me from my tendency to invent new notations. The conventions
(CDT) and (CIA) replace the idea of downcasings from [IDARCT, sec.3],
that didn’t work well. Sections 8-8.12 show how to add new conventions to
DL, and sec.8.3 shows that we can add a bad convention and mark it as a
temporary hack.

There are many notations for Type Theory. To make this chapter more
readable in the convention (CTT) I will use a pseudocode that is halfway
between standard mathematical notation and Agda; the companion paper
[Och22] will show how to translate it to real Agda (with the library [HC20]).

Most texts on CT use diagrams to prove theorems. Here will use them
to understand theorems, and to translate between languages. Our approach
can be seen as an extension of [Ganl3] to Category Theory; see also [JIB22],
that is a recent book that follows many of the ideas in [Ganl13].

3 Finding “the” object with a given name

One of the books that I tried to read when I was starting to learn Category
Theory was Mac Lane’s [CWM]. It is written for readers who know a lot of
mathematics and who can follow some steps that it treats as obvious. I was
not (yet) a reader like that, but I wanted to become one.

There is one specific thing that [CWM] does pretending that it is obvious
that I found especially fascinating. It “defines” functors by describing their
actions on objects, and it leaves to the reader the task of discovering their
actions on morphisms. Let’s see how to find these actions on morphisms.

A functor F': A — B has four components:

F = (Fy, Fy, respids, respcomp).

They are its action on objects, its action on morphisms, the assurance that
it takes identity maps to identity maps, and the assurance that it respects
compositions. When Mac Lane says this,

Fix a set B. Let (xB) denote the functor that takes each set A
to A x B.

20220on-the-missing March 11, 2022 01:40

CONTENTS 14

he is saying that (xB)gA = A x B, or, more precisely, this:
(xB)g:=AA.AX B

The “the” in the expression “Let (xB) denote the functor..” implies
that the precise meaning of (x B); is easy to find, and that it is easy to prove
respids, gy and respcomp, g).

If f: A= Athen (xB)f: (xB)yA" — (xB)oA. We know the name of
the image morphism, (x B);f, and its type,

(xB)1f: A x B— Ax B,

and it is implicit that there is an “obvious” natural construction for this
(xB)1f from f. A natural construction is — TA-DAAAA!l! — a A-term, so
we are looking for a term of type A’ x B — A x B that can be constructed
from f: A" — A.

In a big diagram:

[p: A'xBJ!
p: A f:A—A [p: AxB]!
f(mp) : A m'p: B
f:A A (f(7p),7'p) : AXB

(xB)1f: AxB - AxB = (Ap:A'x B.(f(7p),n'p) : AAxB — AxB 1

A double bar in a derivation means “there are several omitted steps here”,
and sometimes a double bar suggests that these omitted steps are obvious.
The derivation on the left says that there is an “obvious” way to build a
(xB)1f : A’xB — Ax B from a “hypothesis” f : A’ — A. If we expand its
double bar we get the tree at the right, that shows that the “precise meaning”
for (xB)1f is (Ap:A’xB.(f(wp), 7'p). More formally (and erasing a typing),

(xB)1 := Af.(Ap.(f(7mp), 7'p)).

The expansion of the double bar above becomes something more familiar
if we translate the trees to Logic using Curry-Howard:

[PAR]!
P P—Q [PAR]
Q R
P—qQ QAR
PAR—SQAR = P/\R—>Q/\R1

20220on-the-missing March 11, 2022 01:40

CONTENTS 15

We obtain the tree at the right by proof search.

Let’s give a name for the operation above that obtained a term of type
A'x B — Ax B: we will call that operation term search, or, as it is somewhat
related to type inference, term inference.

Term search may yield several different construction and trees, and so
several non-equivalent terms of the desired type. When Mac Lane says “the
functor (xB)” he is indicating that:

« a term for (xB); is easy to find (note that we use the expression “a
precise meaning for (xB);”),

« all other natural constructions for something that “deserves the name”
(X B); yield terms equivalent to that first, most obvious one,

* proving respids,) and respcomp, gy is trivial.

In many situations we will start by just the name of a functor, as the
“(xB)” in the example above, and from that name it will be easy to find
the “precise meaning” for (xB)g, and from that the “precise meaning” for
(xB)1, and after that proofs that respids,) and respcomp,). We will use
the expression “..deserving the name...” in this process — terms for (x B)o,
(X B)1, respids, z), and respcompy, 5 “deserve their names” if they obey the
expected constraints.

For a more thorough discussion see [[DARCT].

These ideas of “finding a precise meaning” and “finding (something) de-
serving that name” can also be applied to morphisms, natural transforma-
tions, isomorphisms, and so on.

In Section 7.2 we will see how to find natural constructions for the two
directions of the bijection in the Basic Example — or how the expand the
double bars in the two derivations here:

A
J/n n:A— RC
B_~R A a:B(C,—) - A(A, R-)

n:A— RC
B(C,-) = A(4, R—)

20220on-the-missing March 11, 2022 01:40

CONTENTS 16

[am not aware of any papers or books on CT that discuss how to (re)con-
struct a functor from its action on objects or from its name, but Agda has
a tool that can be used for that: look for the section on “Automatic Proof
Search” in [AgdaMan)].

4 Freyd’s diagrammatic language
In [Freyd76] Peter Freyd presents a very nice diagrammatic language that

can be used to express some definitions from Category Theory. For example,
this is the statement that a category has all equalizers:

v 3 v =l
X X
h . X
/ f
g g g g9

All cells in these diagrams commute by default, and non-commuting cells
have to be indicated with a ‘7. Each vertical bar with a ‘v’ above it means
“for all extensions of the previous diagram to this one such that everything
commutes”; a vertical bar with a ‘3!” above it means “there exists a unique
extension of the previous diagram to this one such that everything com-
mutes”, and so on. See the scan in [Freyd76] for the basic details of how
to formalize these diagrams, and the book [FS90, p.28 onwards], for tons of
extra details, examples, and applications.

Let’s call the subdiagrams of a diagram like the one above its “stages”.
Its stage 0 is empty, its stage 1 has two objects and two arrows, its last stage
has four objects and five arrows, and the quantifiers separating the stages
are Q1 =V, Q2 =3, Q3 =V, Q4 = 3. They are structured like this:

Q1 Qo Qs Q4

SQ 51 Sg 53 54

20220on-the-missing March 11, 2022 01:40

CONTENTS 17

I was not very good at drawing all stages separately — it was boring, it
took me too long, and I often got distracted and committed errors — so I
started to play with extensions of that diagrammatic language.

4.1 Adding quantifiers

Here is a simple way to draw all stages at once. We start from a diagram
for the “last stage with quantifiers”, that we will call LSQ:

Vs X

Vah
ke 3
Vif
- - 2
3 F W V1A V‘g VB
1

We can recover all the stages and quantifiers from it. The numbered
quantifiers in it are Vq, 35, V3, and 3!4. The highest number in them is 4,
so we set n = 4 (n is the index of the last stage), and we set “stage 4 with
quantifiers”, SQy4, to LSQ. To obtain the SQ3 from S, we delete all nodes
an arrows in S@Q4 that are annotated with a ‘3!;’; to obtain SQ, from SQ3
we delete all nodes an arrows in SQ)3 that are annotated with a ‘V3’, and so
on until we get a diagram SQ), that in this example is empty. To obtain each
S, — a stage in the original diagrammatic language from Freyd, that doesn’t
have quantifiers — from the corresponding SQ); we treat all the quantifiers
in SQ; as mere annotations, and we erase them; for example, ‘Joe” becomes
‘e’, and V1A becomes A. To obtain the quantifiers @1, @2, @3, Q4 that are
put in the vartical bars that separate the stages, we just assign Vq, do, V3,
and J!4 to them, without the numbers in the subscripts.

Bonus convention: when the quantifiers in a diagram are just ‘V’s and
‘3I’s without subscripts the V’s are to be interpreted as 'V, and the ‘J!’s as
‘H!Q’S.

20220on-the-missing March 11, 2022 01:40

CONTENTS 18

4.2 Adding functors

Freyd’s language can’t represent functors — in the sense of diagrams like
the ones in sec.5.2 — and I wanted to use it to draw the missing diagrams
for definitions involving functors, so I had to extend it again.

Let me use an example to discuss this. This is the definition of universal
arrow in [CWM, p.55|, including the original diagram, modulo change of
letters:

Definition. If R : B — A is a functor and A an object of
A, a universal arrow from A to R is a pair (B,n) consisting of
an object B of B and and arrow n : A — RB of A such that
to every pair (B’,g) with B" an object of B and g : A — RB’
an arrow of A, there is a unique arrow f : B — B’ of B with
Rf on = g. In other words, every arrow h to R factors uniquely
through the universal arrow 7, as in the commutative diagram:

A—"~RB B
I FTRE Y
g ¥ v
A—= RPB, B'.
The definition itself goes only up to the “with Rf on = ¢.”, so let me

ignore the part starting from “In other words”, and draw a better “missing
diagram” for the definition:

\ 3!
A A A
I i i
B+——=RB B+——=RB |9 B+—=RB |9
fl|—>i5’f
B+ RB’ B+ RB’
B A B-2-A B-%- A

This diagram is quite close to being a skeleton for the definition of uni-
versal arrow. It can be interpreted as a proposition, and the only extra hint

20220on-the-missing March 11, 2022 01:40

CONTENTS 19

that we need is that “universalness” for the arrow 7 corresponds to the truth
of that proposition. Here’s how to extract the proposition from it:

In a context where: A is a category,
B is a category,
R:B— A
AeA,
B € B,
n:A— RB,

for all B’ € B and
g:A— RB,
there exists a unique f: B — B’ such that

Rfon=g.

To convert that to a definition of universalness we just have to replace
the “for all” by “(B,n) is a universal arrow for A to R iff for all”.

The convention for quantifiers from sec.4.1 lets us rewrite the diagram in
three stages above as:

A

n
B+——= RB |y
H!fl|—> Rf

VB +— RB’

B-f. A

Also, I noticed that I could omit most typings when they could be inferred
from the diagram. I could “formalize” the diagram above as: “in a context
where (A,B, R, A, B,n) are as in the diagram above, we say that (B,n)
is a universal arrow from A to R when V(B',¢).3'f.(Rf on = g)”. This
looked too loaded to be used in public, but it was practical for private notes
— and I could even omit the “Rf on = ¢”, as everything commutes by
default. In sec.6.5 we will see a way to formalize this method for omitting

20220on-the-missing March 11, 2022 01:40

CONTENTS 20

and reconstructing types, and in sec.6.6 we will see a second way to define
universalness.

Note that when we erase a node or arrow we also erase everything that
depends on it. In the example above S(@Q); has an arrow labeled Jl5f; to
obtain SQ; from S@Qs we have to erase that arrow, the arrow Rf, and the
arrow f — Rf — and to obtain SQ, from S¢); we have to erase the arrow
g, the node B’, the node RB’, and the arrow B’ — RB'.

5 Internal views

My favorite way of introducing internal views is with the diagram below:

—~ (D

Ot 0

11 1

21 \/5

\/_Z N — R 3; \/§
n = n 41 2

n vn

N—Y R

The parts with the two blobs and ‘+——="s between them is based on how I
was taught sets and functions when I was a kid; it is an internal view of the

N 4 R below it. Not all elements of N are shown in the blob-view of N, but
the ones that are shown are named; compare this w