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Abstract

Most texts on Category Theory are written in a very terse style,
in which people pretend a) that all concepts are visualizable, and b)
that the readers can reconstruct the diagrams that the authors had
in mind based on only the most essential cues. As an outsider I spent
years believing that the techniques for drawing diagrams were part
of the oral culture of the field, and that the insiders could read texts
on CT reconstructing the “missing diagrams” in them line by line
and paragraph by paragraph, and drawing for each page of text a
page of diagrams with all the diagrams that the authors had omit-
ted. My belief was wrong: there are lots of conventions for drawing
diagrams scattered through the literature, but that unified diagram-
matic language did not exist. In this chapter I will show an attempt
to reconstruct that (imaginary) language for missing diagrams: we
will see an extensible diagrammatic language, called DL, that follows
the conventions of the diagrams in the literature of CT whenever pos-
sible and that seems to be adequate for drawing “missing diagrams”
for Category Theory. Our examples include the “missing diagrams”
for adjunctions, for the Yoneda Lemma, for Kan extensions, and for
geometric morphisms, and how to formalize them in Agda.
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1 Introduction
One of the main themes of this text is a diagrammatic language — let’s

call it DL — that can be used to draw “missing diagrams” for Category The-
ory. DL is a reconstructed language, and it’s easier to explain it if I explain
how it was reconstructed, and which of its conventions were improvised. It
is easier to do it in the first person.

Suppose that your native language is A and you are learning a language
B by a method that includes conversation classes. You will have to improvise
a lot, but you will usually get feedback quickly. Now suppose that you are
studying a language C — for example, Aeolic Greek ([Car03]) — mostly
by yourself, and the corpus of texts in C is small. A good exercise is to
try to write your thoughts in C, using loanwords and improvised syntactical
constructs when needed, but marking mentally the places in which you had
to improvise. In most cases, but not all, you will eventually find ways to
rewrite those parts to make them look more like C.

The conventions of DL are explained in sec.2. A few of them don’t cor-
respond to anything that I could find in the literature; they are listed at the
end of that section.

The best way to introduce DL is to tell the full story of how it evolved
from a long sequence of wrong assumptions and from some “thoughts that I
wanted to express in DL”.

Let me start with some quotes. This one is from Eilenberg and Steenrod
([ES52, p.ix], but I learned it from [Krö07, pp.82–83]):

The diagrams incorporate a large amount of information. Their
use provides extensive savings in space and in mental effort. In
the case of many theorems, the setting up of the correct diagram
is the major part of the proof. We therefore urge that the reader
stop at the end of each theorem and attempt to construct for
himself the relevant diagram before examining the one which is
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given in the text. Once this is done, the subsequent demonstra-
tion can be followed more readily; in fact, the reader can usually
supply it himself.

I spent a lot of my time studying Category Theory trying to “supply
the diagrams myself”. In [ES52] supplying the diagrams is not very hard (I
guess), but in books like [CWM], in which most important concepts involve
several categories, I had to rearrange my diagrams hundreds of times until I
reached “good” diagrams...

The problem is that I expected too much from “good” diagrams. The
next quotes are from the sections 1 and 12 of an article that I wrote about
that ([IDARCT]):

My memory is limited, and not very dependable: I often have
to rededuce results to be sure of them, and I have to make them
fit in as little “mental space” as possible...

Different people have different measures for “mental space”;
someone with a good algebraic memory may feel that an expres-
sion like Frob : Σf (P ∧ f ∗Q) ∼= ΣfP ∧ Q is easy to remember,
while I always think diagramatically, and so what I do is that I
remember this diagram,

and I reconstruct the formula from it.

Let’s call the “projected” version of a mathematical object its
“skeleton”. The underlying idea in this paper is that for the right
kinds of projections, and for some kinds of mathetical objects, it
should be possible to reconstruct enough of the original object
from its skeleton and few extra clues — just like paleontologists
can reconstruct from a fossil skeleton the look of an animal when
it was alive.
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I was searching for a diagrammatic language that would let me express
the “skeletons” of categorical definitions and proofs. I wanted these skeletons
to be easy to remember — partly because they would have shapes that were
easy to remember, and partly because they would be similar to “archetypal
cases” ([IDARCT, section 16]).

In 2016 and 2017 I taught a seminar course for undergraduates that cov-
ered a bit of Category Theory in the end — see Section 5.5 and [Och19]
— and this forced me to invent new techniques for working in two different
styles in parallel: a style “for adults”, more general, abstract, and formal,
and another “for children”, with more diagrams and examples. After some
semesters, and after writing most of the material that became [PH1], I tried
to read again some parts of Johnstone’s “Sketches of an Elephant”, a book
that always felt quite impenetrable to me, and I found a way to present geo-
metric morphisms in toposes to “children”. It was based on this diagram,

f ∗G Goo �f ∗G

H
��

G

f∗H
��

H f∗H
� //

oo //

E Foo f
∗

E F
f∗
//

(
G2 G3
↘ ↙ ↘
G4 G5

) 
G1
↙ ↘

G2 G3
↘ ↙ ↘
G4 G5
↘ ↙
G6

oo �

(
G2 G3
↘ ↙ ↘
G4 G5

)

(
H2 H3
↘ ↙ ↘
H4 H5

)��


G1
↙ ↘

G2 G3
↘ ↙ ↘
G4 G5
↘ ↙
G6




H2×H4H3
↙ ↘

H2 H3
↘ ↙ ↘
H4 H5
↘ ↙

1



��

(
H2 H3
↘ ↙ ↘
H4 H5

) 
H2×H4H3
↙ ↘

H2 H3
↘ ↙ ↘
H4 H5
↘ ↙

1

� //

oo //

SetA SetBoo f∗

SetA SetB
f∗

//

A B
f //

that we will discuss in detail in 8.12. Its left half is a generic geometric mor-
phism (“for adults”), and its right half is a very specific geometric morphism
(“for children”) in which everything is easy to understand and to visualize,
and that turns out to be “archetypal enough”.

I showed that to the few categorists with whom I had contact and the
feedback that I got was quite positive. A few of them — the ones who were
strictly “adults” — couldn’t understand why I was playing with particular
cases, and even worse, with finite categories, instead of proving things in the
most general case possible, but some others said that these ideas were very
nice, that they knew a few bits about geometric morphisms but those bits
didn’t connect well, and that now they had a family of particular cases to
think about, and they had much more intuition than before.
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That was the first time that my way of using diagrams yielded some-
thing so nice! This was the excuse that I needed to organize a workshop
on diagrammatic languages and ways to use particular cases; here’s how I
advertised it (from [OL18]):

When we explain a theorem to children — in the strict sense
of the term — we focus on concrete examples, and we avoid
generalizations, abstract structures and infinite objects.

When we present something to “children”, in a wider sense of
the term that means “people without mathematical maturity”,
or even “people without expertise in a certain area”, we usually
do something similar: we start from a few motivating examples,
and then we generalize.

One of the aims of this workshop is to discuss techniques for
particularization and generalization. Particularization is easy;
substituing variables in a general statement is often enough to
do the job. Generalization is much harder, and one way to visu-
alize how it works is to regard particularization as a projection:
a coil projects a circle-like shadow on the ground, and we can
ask for ways to “lift” pieces of that circle to the coil continously.
Projections lose dimensions and may collapse things that were
originally different; liftings try to reconstruct the missing infor-
mation in a sensible way. There may be several different liftings
for a certain part of the circle, or none. Finding good generaliza-
tions is somehow like finding good liftings.

The second of our aims is to discuss diagrams. For example,
in Category Theory statements, definitions and proofs can be
often expressed as diagrams, and if we start with a general dia-
gram and particularize it we get a second diagram with the same
shape as the first one, and that second diagram can be used as
a version “for children” of the general statement and proof. Di-
agrams were for a long time considered second-class entities in
CT literature ([Krö07] discusses some of the reasons), and were
omitted; readers who think very visually would feel that part of
the work involved in understanding CT papers and books would
be to reconstruct the “missing” diagrams from algebraic state-
ments. Particular cases, even when they were the motivation
for the general definition, are also treated as somewhat second-
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class — and this inspires a possible meaning for what can call
“Category Theory for Children”: to start from the diagrams for
particular cases, and then “lift” them to the general case. Note
that this can be done outside Category Theory too; [Jam01] is a
good example.

Our third aim is to discuss models. A standard example is
that every topological space is a Heyting Algebra, and so a model
for Intuitionistic Predicate Logic, and this lets us explain visually
some features of IPL. Something similar can be done for some
modal and paraconsistent logics; we believe that the figures for
that should be considered more important, and be more well-
known.

This is from the second announcement:

If we say that categorical definitions are “for adults” - because
they may be very abstract - and that particular cases, diagrams,
and analogies are “for children”, then our intent with this work-
shop becomes easy to state. “Children” are willing to use “tools
for children” to do mathematics, even if they will have to trans-
late everything to a language “for adults” to make their results
dependable and publishable, and even if the bridge between their
tools “for children” and “for adults” is somewhat defective, i.e.,
if the translation only works on simple cases...

We are interested in that bridge between maths “for adults”
and “for children” in several areas. Maths “for children” are hard
to publish, even informally as notes (see this thread

http://angg.twu.net/categories-2017may02.html

in the Categories mailing list), so often techniques are rediscov-
ered over and over, but kept restricted to the “oral culture” of
the area.

Our main intents with this workshop are:

• to discuss (over coffe breaks!) the techniques of the “bridge”
that we currently use in seemingly ad-hoc ways,

• to systematize and “mechanize” these techniques to make
them quicker to apply,

2022on-the-missing March 11, 2022 01:40
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• to find ways to publish those techniques — in journals or
elsewhere,

• to connect people in several areas working in related ideas,
and to create repositories of online resources.

In the UniLog 2018 I was able to chat with several categorists, and they
told me that the oral culture of CT was not as I was expected: if there are
standard ways to draw diagrams they are not widely known. I also spent two
evenings with Peter Arndt working on a certain factorization of geometric
morphisms “for children” — and this made me feel that at some point I would
be able to present applications of this diagrammatic language in “top-tier”
conferences that would not accept works with holes.

The following quote is from the abstract of my submission ([MDE]) to
the ACT2019:

Imagine two category theorists, Aleks and Bob, who both
think very visually and who have exactly the same background.
One day Aleks discovers a theorem, T1, and sends an e-mail,
E1, to Bob, stating and proving T1 in a purely algebraic way;
then Bob is able to reconstruct by himself Aleks’s diagrams for
T1 exactly as Aleks has thought them. We say that Bob has
reconstructed the missing diagrams in Aleks’s e-mail.

Now suppose that Carol has published a paper, P2, with a
theorem T2. Aleks and Bob both read her paper independently,
and both pretend that she thinks diagrammatically in the same
way as them. They both “reconstruct the missing diagrams” in
P2 in the same way, even though Carol has never used those
diagrams herself.

and this from my submission ([Och20]) to Diagrams 2020:

Category Theory gives the impression of being an area where
most concepts and arguments are stated and formalized via dia-
grams, but this is not exactly true... in most texts almost every-
thing is done algebraically, and the reader is expected to be able
to reconstruct the “missing diagrams” by himself.

I used to believe, as an outsider, that some people who grew
up immersed the oral culture of the area would know several tech-
niques for “drawing the missing diagrams”. My main intent when
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I organized the workshop “Logic for Children” at the UniLog 2018
[OL18] was to collect some of these folklore techniques, compare
them with the ones that I had developed myself to study CT,
and formalize them all — but what I found instead was that ev-
erybody that I could get in touch with used their own ad-hoc
techniques, and that what I was trying to do was either totally
new to them, or at least new in its level of detail.

The story will continue at the end of sec.2, after the list of conventions.

2 The conventions
The conventions that I will present now are the ones that we will need

to interpret the diagram below, that is essentially the Proposition 1 in the
proof of the Yoneda Lemma in [CWM, Section III.2]; we will call that diagram
the “Basic Example” and also “diagram Y0”. In the sections 8–8.12 we will
see how extend DL to make it able to interpret the diagram for geometric
morphisms of the Introduction.

A

RC

η
��

C RC� //

B AR //

B(C,−) A(A,R−)α
//
��

99

(CD) Our diagrams are made of components that are nodes and arrows. The
nodes can contain arbitrary expressions. The arrows work as connec-
tives, and each arrow can be interpreted as the top-level connective in
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the smallest subexpression that contains it. For example, the curved
arrow in the diagram above can be interpreted as:

(A
η→ RC)↔ (B(C,−) T→ A(A,R−)).

(C→) Arrows that look like ‘→’ (“\to”) represent hom-sets, or, in Set, spaces
of functions. When a ‘→’ arrow is named the name stands for an
element of that hom-set. For example, in A

η→ RC we have η : A →
RC.

(C7→) Arrows that look like ‘ 7→’ (“\mapsto”) represent internal views of func-
tions or functors. This has some subtleties; see Section 5.

(C↔) Arrows that look like ‘↔’ (“\leftrightarrow”) represent bijections or
isomorphisms.

(CAI) “Above” usually means “inside”, or “internal view”. In the diagram
above the morphism η : A → RC is in A and C is an object of B.
Also, the arrow C 7→ RC is above B

R→ A, and this means that it is
an internal view of the functor R. Note that usually is not always —
and B

R→ A is not an internal view of B(C,−) T→ A(A,R−).

(CO) When the definition of a component of our diagram is “obvious” in
the sense of “there is a unique natural construction for an object with
that name”, we will usually omit its definition and pretend that it is
obvious; same for its uniqueness. See Section 3.

(CC) Everything commutes by default, and non-commutative cells have to
be indicated explicitly. See Section 4.

(CTL) The default “meaning” for a diagram without quantifiers is the defini-
tion of its top-level component. There is a natural partial order on the
components of a diagram, in which α ≺ β iff α is “more basic” than β,
or, in other words, if α needs to be defined before β. In the diagram
above the top-level component is the curved bijection.

(CMQ) The default “meaning” for a diagram with quantifiers is a proposition.
See Sections 4–4.2 for how to obtain that proposition.
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(CAdj) I use shapes based on my way of drawing adjunctions whenever possi-
ble. I like adjunctions so much that when I want to explain Category
Theory to someone who knows just a little bit of Maths I always start
by the adjunction (×B) a (B→) of Section 5.4; I always draw it in
a canonical way, with the left adjoint going left, the right adjoint go-
ing right, and the morphisms going down. In Proposition 1 of [CWM,
Section III.2] the map η is a universal arrow, and someone who learns
adjunctions first sees the unit maps η : A → (B→(A×B)) as the first
examples of universal arrows — so that’s why the upper part of the
diagram above is drawn in this position.

(CYo) I use shapes based on my way of drawing the Yoneda Lemma whenever
possible. Look at the sections 7–7.3 and 8.4–8.6: the upper parts of
their diagrams look like parts of adjunctions, but the other parts do not.
For example, I draw “The functor U : Ring → Set is representable”
as:

1

U(Z[x])

pxq
univ
��

Z[x] U(Z[x])� //

Ring SetU //

Ring(Z[x],−)

U

ff

&&MM
MMM

MMM
MM

(CDT) A diagram acts a dictionary of default types for symbols. See sec.6.5.

(CIA) Default types allow us to use indefinite articles in a precise way. An
example: we have η : HomA(A,RC), so “an η” means “an element of
HomA(A,RC)”. See sec.6.6.

(COT) We use a notation as close to the original text as possible, especially
when we are trying to draw the missing diagrams for some existing
text. If we were drawing the missing diagrams for the Proposition 1 of
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[CWM, Section III.2] our diagram would be this:

c

Sr

u
��

r Sr� //

D C
S //

D(r,−) C(c, S−)ϕ
//
��

99

but I hate Mac Lane’s choice of letters, so I decided to use another
notation here.

(CSk) Suppose that we have a piece of text — say, a paragraph P — and
we want to reconstruct the “missing diagram” D for P . Ideally this D
should be a “skeleton” for P , in the sense that it should be possible to
reconstruct the ideas in P from the diagram D using very few extra
hints; see [IDARCT, sec.12].

(CTT) Our diagrams should be close to Type Theory: it should be possible to
use them as a scaffolding for formalizing our text in (pseudocode for)
a proof assistant.

(CFSh) The image by a functor of a diagram D is drawn with the same shape
as D.

(CISh) The internal view of a diagram D is drawn with the same shape as D,
modulo duplications — see section 5.

(CPSh) A particular case of a diagram D is drawn with the same shape as D.

(CNSh) A translation of a diagram D to another notation is drawn with the
same shape as D.

The conventions (CD)–(CMQ) and (CFSh)–(CNSh) all appear in dia-
grams in [MacLaneNotes], [Freyd76], [FS90], [Tay99], [Riehl], [Leinster], but
very few of them are spelled out explicitly, and the idea of “same shape”
is never stressed. See [NG14, p.179] for a neat example of “substitution
produces something with the same shape” and [Penrose] for a language for
drawing diagrams from high-level specifications in which it may be possible
to implement the rules about “same shape”.
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The other conventions may be new, but remember from the introduction
that most of the work on diagrammatic languages lies below the threshold
of publishability... so conventions corresponding to those may be folklore
knowledge in groups that I don’t have contact with yet.

The convention (COT) is obvious in retrospect, but giving a name to
it saved me from my tendency to invent new notations. The conventions
(CDT) and (CIA) replace the idea of downcasings from [IDARCT, sec.3],
that didn’t work well. Sections 8–8.12 show how to add new conventions to
DL, and sec.8.3 shows that we can add a bad convention and mark it as a
temporary hack.

There are many notations for Type Theory. To make this chapter more
readable in the convention (CTT) I will use a pseudocode that is halfway
between standard mathematical notation and Agda; the companion paper
[Och22] will show how to translate it to real Agda (with the library [HC20]).

Most texts on CT use diagrams to prove theorems. Here will use them
to understand theorems, and to translate between languages. Our approach
can be seen as an extension of [Gan13] to Category Theory; see also [JIB22],
that is a recent book that follows many of the ideas in [Gan13].

3 Finding “the” object with a given name
One of the books that I tried to read when I was starting to learn Category

Theory was Mac Lane’s [CWM]. It is written for readers who know a lot of
mathematics and who can follow some steps that it treats as obvious. I was
not (yet) a reader like that, but I wanted to become one.

There is one specific thing that [CWM] does pretending that it is obvious
that I found especially fascinating. It “defines” functors by describing their
actions on objects, and it leaves to the reader the task of discovering their
actions on morphisms. Let’s see how to find these actions on morphisms.

A functor F : A→ B has four components:

F = (F0, F1, respidsF , respcompF ).

They are its action on objects, its action on morphisms, the assurance that
it takes identity maps to identity maps, and the assurance that it respects
compositions. When Mac Lane says this,

Fix a set B. Let (×B) denote the functor that takes each set A
to A×B.

2022on-the-missing March 11, 2022 01:40



CONTENTS 14

he is saying that (×B)0A = A×B, or, more precisely, this:

(×B)0 := λA.A×B

The “the” in the expression “Let (×B) denote the functor...” implies
that the precise meaning of (×B)1 is easy to find, and that it is easy to prove
respids(×B) and respcomp(×B).

If f : A′ → A then (×B)1f : (×B)0A
′ → (×B)0A. We know the name of

the image morphism, (×B)1f , and its type,

(×B)1f : A′ ×B → A×B,

and it is implicit that there is an “obvious” natural construction for this
(×B)1f from f . A natural construction is — TA-DAAAA!!! — a λ-term, so
we are looking for a term of type A′ × B → A× B that can be constructed
from f : A′ → A.

In a big diagram:

f : A′ → A

(×B)1f : A′×B → A×B ⇒

[p : A′×B]1

πp : A′ f : A′ → A

f(πp) : A

[p : A′×B]1

π′p : B

(f(πp), π′p) : A×B
(λp:A′×B.(f(πp), π′p) : A′×B → A×B 1

A double bar in a derivation means “there are several omitted steps here”,
and sometimes a double bar suggests that these omitted steps are obvious.
The derivation on the left says that there is an “obvious” way to build a
(×B)1f : A′×B → A×B from a “hypothesis” f : A′ → A. If we expand its
double bar we get the tree at the right, that shows that the “precise meaning”
for (×B)1f is (λp:A′×B.(f(πp), π′p). More formally (and erasing a typing),

(×B)1 := λf.(λp.(f(πp), π′p)).

The expansion of the double bar above becomes something more familiar
if we translate the trees to Logic using Curry-Howard:

P → Q

P ∧R→ Q ∧R ⇒

[P ∧R]1

P P → Q

Q

[P ∧R]1

R

Q ∧R

P ∧R→ Q ∧R
1
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We obtain the tree at the right by proof search.
Let’s give a name for the operation above that obtained a term of type

A′×B → A×B: we will call that operation term search, or, as it is somewhat
related to type inference, term inference.

Term search may yield several different construction and trees, and so
several non-equivalent terms of the desired type. When Mac Lane says “the
functor (×B)” he is indicating that:

• a term for (×B)1 is easy to find (note that we use the expression “a
precise meaning for (×B)1”),

• all other natural constructions for something that “deserves the name”
(×B)1 yield terms equivalent to that first, most obvious one,

• proving respids(×B) and respcomp(×B) is trivial.

In many situations we will start by just the name of a functor, as the
“(×B)” in the example above, and from that name it will be easy to find
the “precise meaning” for (×B)0, and from that the “precise meaning” for
(×B)1, and after that proofs that respids(×B) and respcomp(×B). We will use
the expression “...deserving the name...” in this process — terms for (×B)0,
(×B)1, respids(×B), and respcomp(×B) “deserve their names” if they obey the
expected constraints.

For a more thorough discussion see [IDARCT].

These ideas of “finding a precise meaning” and “finding (something) de-
serving that name” can also be applied to morphisms, natural transforma-
tions, isomorphisms, and so on.

In Section 7.2 we will see how to find natural constructions for the two
directions of the bijection in the Basic Example — or how the expand the
double bars in the two derivations here:

A

RC

η
��

C RC� //

B AR //

B(C,−) A(A,R−)α
//
��

99
η : A→ RC

α : B(C,−)→ A(A,R−)

α : B(C,−)→ A(A,R−)
η : A→ RC
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I am not aware of any papers or books on CT that discuss how to (re)con-
struct a functor from its action on objects or from its name, but Agda has
a tool that can be used for that: look for the section on “Automatic Proof
Search” in [AgdaMan].

4 Freyd’s diagrammatic language
In [Freyd76] Peter Freyd presents a very nice diagrammatic language that

can be used to express some definitions from Category Theory. For example,
this is the statement that a category has all equalizers:

∀

A B
f //

A B
g
//?

∃

A B
f //

A B
g
//?E Ae

//

∀

A B
f //

A B
g
//?E Ae

//

X

A

h

��?
??

??
??

∃!

A B
f //

A B
g
//?E Ae

//

X

A

h

��?
??

??
??

X

E

k
��

All cells in these diagrams commute by default, and non-commuting cells
have to be indicated with a ‘?’. Each vertical bar with a ‘∀’ above it means
“for all extensions of the previous diagram to this one such that everything
commutes”; a vertical bar with a ‘∃!’ above it means “there exists a unique
extension of the previous diagram to this one such that everything com-
mutes”, and so on. See the scan in [Freyd76] for the basic details of how
to formalize these diagrams, and the book [FS90, p.28 onwards], for tons of
extra details, examples, and applications.

Let’s call the subdiagrams of a diagram like the one above its “stages”.
Its stage 0 is empty, its stage 1 has two objects and two arrows, its last stage
has four objects and five arrows, and the quantifiers separating the stages
are Q1 = ∀, Q2 = ∃, Q3 = ∀, Q4 = ∃!. They are structured like this:

S0 S1 S2 S3 S4

Q1 Q2 Q3 Q4
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I was not very good at drawing all stages separately — it was boring, it
took me too long, and I often got distracted and committed errors — so I
started to play with extensions of that diagrammatic language.

4.1 Adding quantifiers
Here is a simple way to draw all stages at once. We start from a diagram

for the “last stage with quantifiers”, that we will call LSQ:

∀1A ∀1B
∀1f //∀1A ∀1B
∀1g

//?∃2E ∀1A∃2e
//

∀3X

∀1A

∀3h

��?
??

??
??

??
??

∀3X

∃2E

∃!4k

��

We can recover all the stages and quantifiers from it. The numbered
quantifiers in it are ∀1, ∃2, ∀3, and ∃!4. The highest number in them is 4,
so we set n = 4 (n is the index of the last stage), and we set “stage 4 with
quantifiers”, SQ4, to LSQ. To obtain the SQ3 from SQ4 we delete all nodes
an arrows in SQ4 that are annotated with a ‘∃!4’; to obtain SQ2 from SQ3

we delete all nodes an arrows in SQ3 that are annotated with a ‘∀3’, and so
on until we get a diagram SQ0, that in this example is empty. To obtain each
Sk — a stage in the original diagrammatic language from Freyd, that doesn’t
have quantifiers — from the corresponding SQk we treat all the quantifiers
in SQk as mere annotations, and we erase them; for example, ‘∃2e’ becomes
‘e’, and ∀1A becomes A. To obtain the quantifiers Q1, Q2, Q3, Q4 that are
put in the vartical bars that separate the stages, we just assign ∀1, ∃2, ∀3,
and ∃!4 to them, without the numbers in the subscripts.

Bonus convention: when the quantifiers in a diagram are just ‘∀’s and
‘∃!’s without subscripts the ‘∀’s are to be interpreted as ‘∀1’ and the ‘∃!’s as
‘∃!2’s.
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4.2 Adding functors
Freyd’s language can’t represent functors — in the sense of diagrams like

the ones in sec.5.2 — and I wanted to use it to draw the missing diagrams
for definitions involving functors, so I had to extend it again.

Let me use an example to discuss this. This is the definition of universal
arrow in [CWM, p.55], including the original diagram, modulo change of
letters:

Definition. If R : B → A is a functor and A an object of
A, a universal arrow from A to R is a pair (B, η) consisting of
an object B of B and and arrow η : A → RB of A such that
to every pair (B′, g) with B′ an object of B and g : A → RB′

an arrow of A, there is a unique arrow f : B → B′ of B with
Rf ◦ η = g. In other words, every arrow h to R factors uniquely
through the universal arrow η, as in the commutative diagram:

A RB
η //

=

RB

RB′,

Rf

��

B

B′.

f

��
A RB′,

g //

The definition itself goes only up to the “with Rf ◦ η = g.”, so let me
ignore the part starting from “In other words”, and draw a better “missing
diagram” for the definition:

A

RB

η
��

B RB� //

B AR //

∀
A

RB

η
��

B RB� //

B′ RB′� //

A

RB′

g

��

B AR //

∃!
A

RB

η
��

B RB� //B

B′

f
��

RB

RB′

Rf
��

� //

B′ RB′� //

A

RB′

g

��

B AR //

This diagram is quite close to being a skeleton for the definition of uni-
versal arrow. It can be interpreted as a proposition, and the only extra hint
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that we need is that “universalness” for the arrow η corresponds to the truth
of that proposition. Here’s how to extract the proposition from it:

In a context where: A is a category,
B is a category,
R : B→ A,
A ∈ A,
B ∈ B,
η : A→ RB,

for all B′ ∈ B and
g : A→ RB′,

there exists a unique f : B → B′ such that
Rf ◦ η = g.

To convert that to a definition of universalness we just have to replace
the “for all” by “(B, η) is a universal arrow for A to R iff for all”.

The convention for quantifiers from sec.4.1 lets us rewrite the diagram in
three stages above as:

A

RB

η
��

B RB� //B

∀B′

∃!f
��

RB

RB′

Rf
��

� //

∀B′ RB′� //

A

RB′

∀g

��

B AR //

Also, I noticed that I could omit most typings when they could be inferred
from the diagram. I could “formalize” the diagram above as: “in a context
where (A,B, R,A,B, η) are as in the diagram above, we say that (B, η)
is a universal arrow from A to R when ∀(B′, g).∃!f.(Rf ◦ η = g)”. This
looked too loaded to be used in public, but it was practical for private notes
— and I could even omit the “Rf ◦ η = g”, as everything commutes by
default. In sec.6.5 we will see a way to formalize this method for omitting
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and reconstructing types, and in sec.6.6 we will see a second way to define
universalness.

Note that when we erase a node or arrow we also erase everything that
depends on it. In the example above SQ2 has an arrow labeled ∃!2f ; to
obtain SQ1 from SQ2 we have to erase that arrow, the arrow Rf , and the
arrow f 7→ Rf — and to obtain SQ0 from SQ1 we have to erase the arrow
g, the node B′, the node RB′, and the arrow B′ 7→ RB′.

5 Internal views
My favorite way of introducing internal views is with the diagram below:

√
: N → R

n 7→
√
n

−1
0 0� //

1 1� //

2
√
2� //

3
√
3� //

4 2� //

n
√
n� //

N R
√

//

The parts with the two blobs and ‘ � // ’s between them is based on how I
was taught sets and functions when I was a kid; it is an internal view of the
N

√
→ R below it. Not all elements of N are shown in the blob-view of N, but

the ones that are shown are named; compare this with [LR03, p.2 onwards],
in which the elements are usually dots.

The arrow n � //
√
n between the blobs shows a generic element of N and

its image, and the other ‘ � // ’s are substitution instances of it, like this:

(n � //
√
n)[n := 2] = (2 � //

√
2)

In some cases, like 4 � // 2, we write 2 instead of
√
4 because

√
4 “reduces

to” 2, as explained in the next section.
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5.1 Reductions
The convention (C 7→) says that an arrow α 7→ β above an arrow A

f→ B
should be interpreted as meaning f(α) β, where ‘ ’ means “reduces to”;
the standard example is

√
4 2. In a diagram:

4 2� //

n
√
n� //

N R
√
//

√
4 2

α β� //

A B
f //

f(α) β

The idea of reduction comes from λ-calculus. We write α
1
 β to say that

the term α reduces to β in one step, and α
∗
 γ to say that there is a finite

sequence of one-step reductions that reduce α to γ. Here we are interested
in reduction in a system with constants, in which for example (

√
)(4)

1
 2.

Here is a directed graph that shows all the one-step reductions starting
from g(2 + 3), considering g(a) = a · a+ 4:

g(2 + 3) g(5)//

(2 + 3) · (2 + 3) + 4

(2 + 3) · 5 + 4
$$JJ

JJJ
JJ

(2 + 3) · 5 + 4

5 · 5 + 4
$$J

JJ
JJ

JJ

5 · (2 + 3) + 4 5 · 5 + 4//

g(2 + 3)

(2 + 3) · (2 + 3) + 4
��

(2 + 3) · (2 + 3) + 4

5 · (2 + 3) + 4
��

g(5)

5 · 5 + 4
��

5 · 5 + 4 25 + 4// 25 + 4 29//

Note that all reductions sequences starting from g(2 + 3) terminate at
the same term, 29 — “the term g(2 + 3) is strongly normalizing” —, and
reduction sequences from g(2 + 3) may “diverge” but they “converge” later
— this is the “Church-Rosser Property”, a.k.a. “confluence”.

A good place to learn about reduction in systems with constants is [SICP].
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5.2 Functors
By the convention (CFSh) the image of the diagram above A in the

diagram below — remember that above usually means inside —

A1

A2

f
��

A2

A3
goo
77oo A3

A4

h
��

A1

A3

k
''OO

OO

A2

A4
m ''OO
OO

A BF //

is a diagram with the same shape over B. We draw it like this:

A1

A2

f
��

A2

A3
goo
77oo A3

A4

h
��

A1

A3

k
''OO

OO

A2

A4
m ''OO
OO

A BF //

FA1

FA2

Ff
��

FA2

FA3
Fgjj
55jj FA3

FA4

Fh
��

FA1

FA3

Fk
))TTT

TT

FA2

FA4
Fm

))TTT
TT

In this case we don’t draw the arrows like A1 7→ FA1 because there would
be too many of them — we leave them implicit.

We say that the diagram above is an internal view of the functor F . To
draw the internal view of the functor F : A → B we start with a diagram
in A that is made of two generic objects and a generic morphism between
them. We get this:

C FC� //C

D

g
��

FC

FD

Fg
��

D FD� //

� //

A BF //

Compare this with the diagram with blob-sets in Section 5, in which the
‘n 7→

√
n’ says where a generic element is taken.

Any arrow of the form α 7→ β above a functor arrow A
F→ B is interpreted

as saying that F takes α to β, or, in the terminology of the section 5.1, that
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Fα reduces to β. So this diagram

B A×B� //B

C

f
��

A×B

A×C
λp.(πp,f(π′p))
��

C A×C� //

� //

Set Set
(A×) //

defines (A×) as:
(A×)0 := λB.A×B,
(A×)1 := λf.λp.(πp, f(π′p)).

In this case we can also use internal views of (A×) to define (A×)1:

B A×B� //B

C

f
��

A×B

A×C
(A×)f
��

C A×C� //

� //

Set Set
(A×) //

(a, b)

(a, f(b))

_

��

p

(πp, f(π′p))

_

��

5.3 Natural transformations
Suppose that we have two functors F,G : A→ B and a natural transfor-

mation T : F → G. A first way to draw an internal view of T is this:

C

FC
,

55llllll
C

GC

�
))RRR

RRR

FC

GC

TC
��

C � //

A B
F //A B
G
//

If we start with a morphism h : C → D in A, like this,

C

D

h
��

A B
F //A B
G
//
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the convention (CFSh) would yield an image of h by F and another by G,
and we can draw the arrows TC and TD to obtain a commuting square in
B:

C

FC

�
##G

GGG
GC

GC

�

**UUU
UUUU

UUUU
UUUU

D

FD

�
##G

GGG
GD

GD

�

**UUU
UUUU

UUUU
UUUU

C

D

h

��

FC GC
TC

//FC

FD

Fh

��

GC

GD

Gh

��
FD GD

TD
//

F G
T //

A B
F //A B
G

//

This way of drawing internal views of natural transformations yields di-
agrams that are too heavy, so we will usually draw them as just this:

C

D

h

��

FC GCTC //FC

FD

Fh

��

GC

GD

Gh

��
FD GD

TD
//

F G
T //

Note that the input morphism is at the left, and above F
T→ G we draw its

images by F , G, and T .
When the codomain of F and G is Set we will sometimes also draw at

the right an internal view of the commuting square, like this:

C

D

h

��

FC GCTC //FC

FD

Fh

��

GC

GD

Gh

��
FD GD

TD //

F GT //

x (TC)(x)� // (TC)(x)

(Gh ◦ TC)(x)

_

��

x

(Fh)(x)

_

��
(Fh)(x) (TD ◦ Ff)(x)� //

Then the commutativity of the middle square is equivalent to ∀x ∈ FC.(Gh◦
TC)(x) = (TD ◦Ff)(x). Note that in this case the square at the right is an
internal view of an internal view.
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In Section 3 we saw that a functor has four components. A natural
transformation has two: T = (T0, sqcondT ), where T0 is the operation C 7→
TC and sqcondT is the guarantee that all the induced squares commute.

5.4 Adjunctions
We will draw adjunctions like this,

LA Aoo �

B RB� //

oo //

LA

B
��

A

RB
��

B Aoo L
B A

R
//

with the left adjoint going left and the right adjoint going right. My favorite
names for the left and right adjoints are L and R. The standard notation for
that adjunction is L a R.

The top-level component of the diagram above is the bijection arrow in
the middle of the square — it says that Hom(LA,B) ↔ Hom(A,RB). It is
implicit that we have bijections like that for all A and B; it is also implicit
that that bijection is natural in some sense.

We will sometimes expand adjunction diagrams by adding unit and counit
maps, the unit and the unit as natural transformations, the actions of L and
R on morphisms, and other things. For example:

LR

idB

ε
��

LRB

B

εB
��

LA′ A′oo �LA′

LA

Lf
��

A′

A

f
��

oo �

LA Aoo �LA

B

h[

g ��

A

RB

h
g]��

oo �� //

B RB� //B

B′

k
��

RB

RB′

Rk
��

B′ RB′� //

� //

A

RLA

ηA
��

idA

LR

η
��

B Aoo LB A
R
//

We can obtain the naturality conditions by regarding [ and ] as natural
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transformations and drawing the internal views of their internal views:

(A,B)

(A′, B′)

(fop,g)

��

B(LA,B) A(A,RB)ooB(LA,B)

B(LA′, B′)
��

A(A,RB)

A(A′, RB′)
��

B(LA′, B′) A(A′, RB′)oo

B(L−,−) A(−, R−)oo [

h[ hoo �h[

k ◦ h[ ◦ Lf

_

��

h

Rk ◦ h ◦ f

_

��
(Rk ◦ h ◦ f)[ Rk ◦ h ◦ foo �

(A,B)

(A′, B′)

(fop,g)

��

B(LA,B) A(A,RB)//B(LA,B)

B(LA′, B′)
��

A(A,RB)

A(A′, RB′)
��

B(LA′, B′) A(A′, RB′)//

B(L−,−) A(−, R−)] //

g g]� // g]

Rk ◦ g] ◦ f

_
��

g

k ◦ g ◦ Lf

_

��
k ◦ g ◦ Lf (k ◦ g ◦ Lf)]� //

5.5 A way to teach adjunctions
I mentioned in the first sections that I have tested some parts of this

language in a seminar course — described here: [Och19] — and that in it
I taught Categories starting by adjunctions. Here’s how: we started by the
basics of λ-calculus and some sections of [PH1], and then I asked the students
to define each one of the operations in the right half of the diagram below as
λ-terms:

LA′ A′oo �

LA Aoo �

B RB� //

B′ RB′� //

oo �

oo �� //

� //

LA′

LA
��

A′

A
��

LA

B
��

A

RB
��

B

B′
��

RB

RB′
��

B Aoo L
B A

R
//

LRB

B
��

A

RLA
��

A×C Aoo �

B×C Boo �

D (C→D)� //

E (C→E)� //

oo �

oo �� //

� //

A×C

B×C
��

A

B
��

B×C

D
��

B

(C→D)
��

D

E
��

(C→D)

(C→E)
��

Set Setoo(×C)

Set Set
(C→)

//

(C→D)×C

D
��

B

(C→(B×C))
��

Then we saw the definition of functors, natural transformations and ad-
junctions, and we checked that the right half is a particular case (“for chil-
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dren”!) of the diagram for a generic adjunction in the left half. After that,
and after also checking that in the Planar Heyting Algebras of [PH1] we
have an adjunction (∧Q) a (Q →), I helped the students to decypher some
excerpts of [Awo06].

From the components of the generic adjunction in the diagram above it
is possible to build this big diagram:

LA′ A′oo �LA′

LA

Lf

��

A′

A

f
��
A

RLA

ηA
��

A′

RLA
��

oo �

LA RLAoo �

LA Aoo �LA

LRB

Lh
��

A

RB

h
��

oo �

LRB RBoo �LRB

B

εB
��

LA

B

g

��

LRB

B

εB
��

LA′ A′oo �LA′

LA

Lf
��

A′

A

f
��

oo �

LA Aoo �LA

B

h[

g ��

A

RB

h
g]��

oo �� //

B RB� //B

B′

k
��

RB

RB′

Rk
��

B′ RB′� //

� //

A

RLA

ηA
��

A

RLA

ηA
��

LA RLA� //LA

B

g
��

RLA

RB

Rg
��

B RB� //

� //

A

RB

h

��

LRB RB� //LRB

B

ηB
��
B

B′

k
��

LRB

B′
��

RB

RB′

Rk

��
B′ RB′� //

� //

B Aoo LB A
R
//

Let’s use these names for its subdiagrams:
A

BCDEF
G
I

.
A fully-specified adjunction between categories B and A has lots of com-

ponents: (L,R, ε, η, [, ], univ(ε), univ(η)), and maybe even others, but usually
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we define only some of these components; there is a Big Theorem About Ad-
junctions (below!) that says how to reconstruct the fully-specified adjunction
from some of its components.

Some parts of the diagram above can be interpreted as definitions, like
these:

Lf := (ηA ◦ f)[

g := εB ◦ Lh εB := (idRB)
[ ηA := (idLA)

] h := Rg ◦ ηA
Rk := (k ◦ ηB)]

The subdiagrams B and F can also be interpreted in the opposite direc-
tion, as:

g] := (∀A.∀g.∃!h)Ag h[ := (∀B.∀h.∃!g)Bh
= (univεB)Ag = (univηA)Bh

The notations (∀A.∀g.∃!h)Ag and (univεB)Ag are clearly abuses of lan-
guage — but it’s not hard to translate them to something formal, and these
notations inspired great discussions in the classroom... also, they can help
us to understand and formalize constructions like this one,

Lf := (univηA)(LA)(ηA ◦ f)

A′

RLA′

ηA′
univ
��

LA′ RLA′� // A

RLA

ηA
univ
��

LA RLA� //

A′

A

f

��?
??

??
??

??

LA′

LA

Lf
��?

??
??

??
??

RLA′

RLA

RLf

??
?

��?
??

� //

B A
R
//

that are needed in cases like the part (ii) of the Big Theorem.
The Big Theorem About Adjunctions is this — it’s the Theorem 2 in

[CWM, page 83], but with letters changed to match the ones we are using in
our diagrams:
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Big Theorem About Adjunctions. Each adjunction 〈L,R, ]〉 :
A ⇀ B is completely determined by the items in any one of the
following lists:

(i) Functors L, R, and a natural transformation η : idA → RL
such that each ηA : A→ RLA is universal to R from A. Then ]
is defined by (6).

(ii) The functor R : B → A and for each A ∈ A an object
L0A ∈ B and a universal arrow ηA : A → RL0A from A to
R. Then the functor L has object function L0 and is defined on
arrows f : A′ → A by RLf ◦ ηA′ = ηA ◦ f .

(iii) Functors L, R, and a natural transformation ε : LR →
idB such that each εB : LRB → B is universal from L to B. Here
[ is defined by (7).

(iv) The functor L : A → B and for each B ∈ B an object
R0B ∈ A and an arrow εB : LR0B → B universal from L to B.

(v) Functors L, R and natural transformations η : idA → RL
and ε : LR→ idB such that both composites (8) are the identity
transformations. Here ] is defined by (6) and [ by (7).
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6 Types for Children
We will need a bit of Type Theory in the sections 8.2 and 8.1. We will

need some non-standard notational conventions that appear more or less
naturally when we present Theory Theory “for children” in the right way —
let’s see the details.

Section 6 of [Sel13] has a very good presentation of types “for adults”:
it uses expressions like A × B and A → B as and treats them as purely
syntactical objects, but each one comes with an “intended meaning”. Let’s
start by defining a version “for children” of that in which these intended
meanings become more concrete, and then we will work in the version “for
children” and in the version “for adults” in parallel.

6.1 Dependent types
In our version “for children”:

• all types are sets,

• some sets are types,

• every finite subset of N is a type,

• if A and B are types then A× B and A→ B are types. A× B is the
space of pairs of the form (a, b) in which a ∈ A and b ∈ B, and A→ B
is the space of functions from A to B,

• a : A means a ∈ A — the distinction between ‘:’ and ‘∈’ will only
appear in other settings,

• “space of” means “set of”. The space of functions from A to B is the
set of all functions from A to B, and each function is considered as a
set of input-output pairs. So, for example, if A = {2, 3} and B = {4, 5}
then:

A×B = {(2, 4), (2, 5), (3, 4), (3, 5), },
A→ B =

{{
(2,4),
(3,4)

}
,
{

(2,4),
(3,5)

}
,
{

(2,5),
(3,4)

}
,
{

(2,5),
(3,5)

}}
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• if A is a type and (Ca)a∈A is a family of types indexed by A then
Πa:A.Ca and Σa:A.Ca are dependent types defined in the usual way,
and (a:A) → Ca and (a:A) × Ca are alternate notations for Πa:A.Ca

and Σa:A.Ca (see [NC08, section 2]). Formally,

Σa:A.Ca = { (a, c) ∈ A× (
⋃

a∈ACa) | a ∈ A, c ∈ Ca }
(a:A)× Ca = { (a, c) ∈ A× (

⋃
a∈ACa) | a ∈ A, c ∈ Ca }

Πa:A.Ca = { f : A→ (
⋃

a∈ACa) | ∀a ∈ A. f(a) ∈ Ca }
(a:A)→ Ca = { f : A→ (

⋃
a∈ACa) | ∀a ∈ A. f(a) ∈ Ca }

If A = {2, 3}, C2 = {6, 7}, and C3 = {7, 8} then:

(a:A)× Ca = {(2, 6), (2, 7), (3, 7), (3, 8), },
(a:A)→ C =

{{
(2,6),
(3,7)

}
,
{

(2,6),
(3,8)

}
,
{

(2,7),
(3,7)

}
,
{

(2,7),
(3,8)

}}
.

6.2 Witnesses
If P is a proposition we will write JP K for its space of witnesses, or its

space of proofs. The exact definition of JP K will usually depend on the
context, but we always have JP K = ∅ when P is false and JP K 6= ∅ when P is
true. In some situations all the witnesses of a proposition P will be identified
— this is called proof irrelevance; see [NG14, p.340] — and all the spaces
of witnesses will be either singletons or empty sets; in other situations some
‘JP K’s will have more than one element.

The notation 〈〈P 〉〉 will denote a witness that P is true. Formally, 〈〈P 〉〉 is
a variable (with a long name!) whose type is JP K. A good way to remember
this notation is that JP K looks like a box and 〈〈P 〉〉 looks like something that
comes in that box.

In Agda the operation ‘≡’ returns a space of proofs of equality. If a and
b are expressions with the same type then Agda’s ‘a ≡ b’ corresponds to our
Ja = bK, and people sometimes use the name ‘a≡b’ to denote an element of
a ≡ b — we use 〈〈a = b〉〉 for that. See the section “Equality” in [WKS20]
for simple examples, and Agda’s standard library for more examples.

6.3 Judgments
The main objects of Type Theory are derivable judgements. A derivable

judgment is one that can appear as the root node of a derivation in which each
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bar is an application of one the rules in [NG14, p.127]. These derivations are
usually huge — for example, here is a derivation for A:Θ, B:Θ ` (Πa:A.B):Θ:

` Θ:�
a
` Θ:�

a

A:Θ ` Θ:�
w�

` Θ:�
a

A:Θ ` A:Θ
v�

A:Θ, B:Θ ` A:Θ
w�

` Θ:�
a
` Θ:�

a

A:Θ ` Θ:�
w�

` Θ:�
a

A:Θ ` A:Θ
v�

A:Θ, B:Θ ` A:Θ
w�

` Θ:�
a
` Θ:�

a

A:Θ ` Θ:�
w�

A:Θ, B:Θ ` B:Θ
v�

A:Θ, B:Θ, a:A ` B:Θ
wΘ

A:Θ, B:Θ ` (Πa:A.B):Θ
ΠΘΘΘ

so rarely draw them explicitly, and we use other tools to show that certain
judgments are derivable.

Every derivable judgment obeys this (taken verbatim from [Sel13, p.52]):

A typing judgment is an expression of the form

x1 : A1, x2 : A2, . . . , xn : An `M : A.

Its meaning is: ”under the assumption that xi is of type Ai ,
for i = 1 . . . n, the term M is a well-typed term of type A.” The
free variables of M must be contained in x1, . . . , xn.

Understanding what this means in the version “for children” will take us
quite close to understanding that in Type Theory “for adults”. We will do
that in the next section.

Let me just correct a simplification. The main objects of the Type Theory
used in Agda and in most other proof assistants are derivable judgments with
definitions, as explained in the chapters 8–10 of [NG14]. A judgment with
definitions is written as ∆;Γ `M : N , where ∆ is a list of definitions ([NG14,
def.9.2.1]); we will mostly ignore the ‘∆’ here.

6.4 Set comprehensions
The part at the left of the ‘`’ in a typing judgment is called a typing

context. Typing contexts also appear in set comprehensions. Let’s see an
example:

{ 10a+ b | a ∈ {1, 2}, b ∈ {2, 3}, a < b }

 { a ∈ {1, 2}︸ ︷︷ ︸
generator

, b ∈ {2, 3}︸ ︷︷ ︸
generator

, a < b︸ ︷︷ ︸
filter︸ ︷︷ ︸

context

; 10a+ b︸ ︷︷ ︸
expression

}
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We rewrote the comprehension { 〈expr〉 | 〈context〉 } to { 〈context〉 ; 〈expr〉 }
for clarity, and we marked which parts of the context act as “generators”
and which ones act as “filters”. The context above can be rewritten in type-
theoretical notation as:

a : {1, 2}, b : {2, 3}, 〈〈a<b〉〉 : Ja<bK

A value for that context is a triple (a, b, 〈〈a<b〉〉), where a ∈ {1, 2}, b ∈
{2, 3}, and 〈〈a<b〉〉 is a guarantee that a < b is true.

6.5 Omitting types
The diagram at the left below is a copy of the one from sec.4.2, but now

we will interpret it in a different way, as a “dictionary of (default) types”.
For example, it says that when the symbol η appears without a type its type
will be the default one given by the diagram: η : A→ RC, or η : A(A,RC).
The default types are listed at the right.

A

RC

η

��
C RC� //C

D

f

��

RC

RD

Rf

��

� //

D RD� //

A

RD

g

��

B AR //

A is a category
B is a category
R : A→ B
A ∈ A
C ∈ B
D ∈ B
η : A→ RC
f : C → D
g : A→ RD

6.6 Indefinite articles
We will use the diagram above to redefine universalness. In our old defi-

nition, from sec.4.2, universalness is just a “property”; in our new definition
it will be a pair made of a “structure” and a “property” (see sec.8.2).

Suppose that
A is a category,
B is a category,
R : A→ B,
A ∈ A,
C ∈ B,
η : A→ RC,
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and let ] be this operation:

] = λD.λf. Rf ◦ η.

Note that the types of D and f are given by the diagram: D is an object
of B, and f : C → D. Then “universalness” for the tuple (A,B, R,A,C, η)
is a pair ([, 〈〈[ = ]−1〉〉), in which [ is an operation “that for each D takes
each g to an f” and ([ = ]−1) is a shorthand for this proposition:

(∀D.∀f. [D (]D f) = f) ∧
(∀D.∀g. ]D ([D g) = g).

The component 〈〈[ = ]−1〉〉 of the universalness is a witness that guarantess
that this proposition holds.

The types of [ and 〈〈[ = ]−1〉〉 are:

[ : (D : ObjsB)→ (A(A,RD)→ B(C,D))

〈〈[ = ]−1〉〉 : J (∀D.∀f. [D (]D f) = f) ∧
(∀D.∀g. ]D ([D g) = g) K

We can use a trick with indefinite articles to obtain the type of [. Let’s
overload the notations J·K and 〈〈·〉〉: with their new meanings ‘JαK’ will be
pronounced “the type of α”, and ‘〈〈α〉〉’ will be “an α”, “an object with the
same type of α”, or “an element of JαK”. Then

[ is an operation that for each D takes each g to an f

becomes:
[ = λD.λg.〈〈f〉〉

The indefinite article in this 〈〈f〉〉 is contagious: we read the equality
above not as “[ is the operation that takes each D...” but as “[ is an operation
that...”. We don’t know the value of λD.λg.〈〈f〉〉 but we can calculate its type:

f : C → D
JfK : B(C,D)
〈〈f〉〉 : B(C,D)

g : A→ RD
JgK : A(A,RD)
D : ObjsB

JλD.λg.〈〈f〉〉K : ObjsB → (A(A,RD)→ B(C,D))

We will see how to represent universalness in diagrams in sec.8.2.
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6.7 “Physicists’ notation”
Books like [TG88] use a notation in which expressions like “z = z(x, y(x))”

are allowed — the same symbol can be used both as a (dependent!) variable
and as the name of a function, and arguments can be omitted — and in a
context in which y = y(x) the default meaning for y0 is y(x0). In many areas
of Mathematics that notation has been phased out (see [JIB22, sec.3.3]) and
replaced by one in which the names of the bound variables matter very little.

Let’s call the older notation “physicist’s notation” and the newer one
“mathematician’s notation”; these names are not standard at all. If we apply
the ideas of the “physicist’s notation” to judgments we can abbreviate

a : A, b : B(a), c : C(a, b) ` d(a, b, c) : D(a, b, c)

to just a : A, b : B, c : C ` d : D, or even to a, b, c ` d. Some of the
conventions of DL were inspired by conventions from “physicist’s notation”.
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7 The Basic Example as a skeleton
In the sections 2 and 3 I claimed that the diagram of the Basic Example

is a “skeleton” of a certain theorem, in the sense that both the statement
and the proof of that theorem can be reconstructed from just the diagram
and very few extra hints. Let’s see the details of this.

7.1 Reconstructing its functors
Let’s call this diagram — the diagram of the Basic Example — Y0:

Y0 :=

A

RC

η
��

C RC� //

B AR //

B(C,−) A(A,R−)α
//
��

99

We don’t know yet the precise meaning of the functors B(C,−) and
A(A,R−), but if we enlarge Y0 to this — note that we are omitting the
curved bijection by convenience,

Y0+ :=

A

RC

η
��

C RC� //C

D

f
��

RC

RD

Rf
��

� //

D RD� //D

E

g
��

RD

RE

Rg
��

� //

E RE� //

A

RD

h

��

B AR //

B(C,−) A(A,R−)α //

and we draw the internal views of B(C,−) and A(A,R−), then the meanings
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for B(C,−) and A(A,R−) become obvious:

D B(C,D)� //D

E

g
��

B(C,D)

B(C,E)

B(C,g)
��

E B(C,E)� //

B Set
B(C,−) //

f

g ◦ f

_

��

D A(A,RD)� //D

E

g
��

A(A,RD)

A(A,RE)

A(A,Rg)
��

E A(A,RE)� //

B Set
A(A,R−) //

h

Rg ◦ h

_

��

So:
B(C,−) : B→ Set
B(C,−)0 := λD.B(C,D)
B(C,−)1 := λg.λf.g ◦ f
A(A,R−) : B→ Set
A(A,R−)0 := λD.A(A,RD)
A(A,R−)1 := λg.λh.Rg ◦ h

7.2 Natural transformations
In sec.5.3 we saw that a natural transformation is a pair. An NT α :

B(C,−)→ A(A,R−) is a pair (α0, sqcondα), where sqcondα is this:

sqcondα = ∀D.∀E.∀g.∀f. (A(A,Rf) ◦ αD) = (αE ◦B(C, f))
= ∀D.∀E.∀g.∀f. (Rg ◦ (αDf)) = (αE(g ◦ f))
= ∀D.∀E.∀g.∀f. (Rg ◦ (α0Df)) = (α0E(g ◦ f))

We can visualize what this “means” using the two diagrams at the top in
the next page.

Suppose that we define a natural transformation αη by saying that (αη)0 =
λD.λf.Rf ◦η. Then we can either affirm that sqcondαη

“is obvious” or verify
that it holds. Substituing α0 by λD.λf.Rf ◦ η we obtain:

sqcondαη
= ∀D.∀E.∀g.∀f. (Rg ◦ (Rf ◦ η)) = (R(g ◦ f) ◦ η)

which is clearly true, so sqcondαη
holds, and αη is a natural transformation

for every η : A→ RC. We can define an operation (η → α) by:

(η 7→ α) := λη.((αη)0, sqcondαη
)

Without abbreviations this definition would be very big. The lower third
of the diagram in the next page shows how visualize what sqcondαη

means.
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A

RC

η
��

C RC� //C

D

f
��

RC

RD

Rf
��

� //

D RD� //D

E

g
��

RD

RE

Rg
��

� //

E RE� //

A

RD

`,
αDf

��

B AR //

B(C,−) A(A,R−)α //

D

E

g

��

B(C,D) A(A,RD)//B(C,D)

B(C,E)
��

A(A,RD)

A(A,RE)
��

B(C,E) A(A,RE)//

B(C,−) A(A,R−)α //

f αDf� // αDf

Rg ◦ (αDf)

_

��

f

g ◦ f

_

��
g ◦ f αE(g ◦ f)� //

`

Rg ◦ `

_

��

D

E

g

��

B(C,D) A(A,RD)//B(C,D)

B(C,E)
��

A(A,RD)

A(A,RE)
��

B(C,E) A(A,RE)//

B(C,−) A(A,R−)αη //

f Rf ◦ η� // Rf ◦ η

Rg ◦ (Rf ◦ η)

_

��

f

g ◦ f

_

��
g ◦ f R(g ◦ f) ◦ η� //

`

Rg ◦ `

_

��
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We can define an operation (α 7→ η) by:

(α 7→ η) := λα. α0C idC ,
(η 7→ α0) := λη.λD.λf.Rf ◦ η,
(η 7→ α) := λη.((η 7→ α0)(η), sqcond(something)).

We can prove that the operations (η 7→ α) and (α 7→ η) are mutually
inverse, but this is tricky. The proof contains a step that is hard to visualize,
and that is often stated as a slogan, like this (from [Leinster, p.97] and [CWM,
p.61]):

A natural transformation α : B(C,−)→ A(A,R−)
is determined by its value at idC .

The proof of that step requires instantiating sqcondα, i.e.,

∀D.∀E.∀g : D → E. ∀f : C → D. (Rg ◦ (α0Df)) = (α0E(g ◦ f))

at D := C, E := D, g := f , and f := idC . If we do this in two sub-steps —
first D := C and E := D, and then g := f and f := idC — we see that after
the first sub-step we get this:

∀g : C → D. ∀f : C → C. (Rg ◦ (α0Cf)) = (α0D(g ◦ f))

The variables g and f have sort of changed their types, and some people
(like me!) would prefer to rename them, to, say:

∀f : C → D. ∀ι : C → C. (Rf ◦ (α0Cι)) = (α0D(f ◦ ι))

The diagrams in the next page show the renamed version.
To prove that our operations (α 7→ η) and (η 7→ α) are mutually inverse

we need to prove that the round trips (α 7→ η 7→ α) and (η 7→ α 7→ η) are
both identities. To prove that (α 7→ η 7→ α) = id, let’s define ηα := (α →
η)(α) and αηα := (η 7→ α)(ηα) and . The proof of (α 7→ η 7→ α) = id includes
this sequence of equalities:

(αηα)0Df = (η 7→ α0)((α 7→ η)(α))Df
= (η 7→ α0)(αCidC)Df
= (λη.λD.λf. Rf ◦ η)(αCidC)Df
= (λD.λf. Rf ◦ (αCidC))Df
= Rf ◦ (αCidC)
= αDf
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that uses our hard step in its last equality. The details, including the proof
of (η 7→ α 7→ η) = id, can be found in [Och22].

A

RC

η
��

C RC� //C

C

ι,
idC ��

RC

RC

Rι
��

� //

C RC� //C

D

f
��

RC

RD

Rf
��

� //

D RD� //

C

D

f◦ι,
f◦idC ,

f

��

A

RC

m,
αCι,
αCidC

��

A

RD

Rf◦(αCι),
αD(f◦ι),

Rf◦(αCidC),
αDf

��

B AR //

B(C,−) A(A,R−)α //

C

D

f

��

B(C,C) A(A,RC)//B(C,C)

B(C,D)
��

A(A,RC)

A(A,RD)
��

B(C,D) A(A,RD)//

B(C,−) A(A,R−)α //

ι αCι� // αCι

Rf ◦ (αCι)

_

��

ι

f ◦ ι

_

��
f ◦ ι αD(f ◦ ι)� //

m

Rf ◦m

_

��

C

D

f

��

B(C,C) A(A,RC)//B(C,C)

B(C,D)
��

A(A,RC)

A(A,RD)
��

B(C,D) A(A,RD)//

B(C,−) A(A,R−)α //

idC αCidC
� // αCidC

Rf ◦ (αCidC)

_

��

idC

f

_

��
f αDf� //

m

Rf ◦m

_

��

7.3 The full reconstruction
We have just reconstructed all the typings and definitions for the diagram

Y0. Here is the full reconstruction, except for the “proof terms” like respids,
assoc, idL and idR for each functor, sqcond for each natural transformations,
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and the proofs that both round trips in the bijections are identity maps:

A

RC

η
��

C RC� //

B AR //

B(C,−) A(A,R−)α
//
��

99

A is a category,
B is a category,
R : B→ A,
A ∈ A,
C ∈ B,
η : A→ RD,

B(C,−) : B→ Set,
B(C,−)0 := λD.B(C,D),
B(C,−)1 := λg.λf. g ◦ f,
A(A,R−) : A→ Set,
A(A,R−)0 := λD.A(A,RD),
A(A,R−)1 := λg.λh.Rg ◦ h,
α : B(C,−)→ A(A,R−),
(η 7→ α0) := λη.λD.λf. Rf ◦ η,
(α 7→ η) := λα. αC(idC),

or:
α0 := λD.λf.Rf ◦ η,
η := αC(idC).

It is quite short — if we treat the proof terms as “obvious”.
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8 Extensions to the diagrammatic language
Our diagrammatic language and the list of conventions in Section 2 can

be extended — “by the user” — in zillions of ways. Let’s see some examples
of extensions.

8.1 A way to define new categories
We saw in the sections 5.2 and 7.1 how to use diagrams to define functors,

and in sections 5.3 and 7.2 how to define natural transformations. We can
define new categories by diagrams, too.

A

RC

η
��

C RC� //C

D

f
��

RC

RD

Rf
��

� //

D RD� //

A

RD

g

��

B AR //

 A

RC

η
��

C RC� //


 A

RD

g
��

D RD� //


f ��

(A↓R)

(C, η)

(D, g)

f
��

(A↓R)

My favorite way — a syntax sugar! — of visualizing the comma category
(A↓R) is the middle third of the diagram above, in which the objects of
(A↓R) are depicted as L-shaped diagrams. To understand the typings and
the commutativity conditions we have to look at the left third — it indicates
that f must obey Rf ◦ η = g. The right third shows a generic morphism in
(A↓R) without the syntax sugar, but we still have to look at the left third
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to type it. We have:

In a context in which A is a category,
B is a category,
R : B→ A,
A is an object of A,

we define the category (A↓R) as follows:
An object of (A↓R)

is a pair (C, η)
in which C : B0

and η : HomA(A,RC);
so (C, η) : (C:B0)× HomA(A,RC)

and (A↓R)0 := (C:B0)× HomA(A,RC).

A morphism f : (C, η)→ (D, g) in (A↓R)
is an f : HomB(C,D) such that Rf ◦ η = g,

or equivalently a pair (f, 〈〈Rf ◦ η = g〉〉);
we have (f, 〈〈Rf ◦ η = g〉〉) : (f : HomB(C,D))× JRf ◦ η = gK,

so Hom(A↓R)((C, η), (D, g)) :=
(f : HomB(C,D))× JRf ◦ η = gK.

This defines formally the first two components of the category (A↓R).
Remember that a category C has seven components:

C = (C0,HomC, idC, ◦C; assocC, idLC, idRC)

We are pretending that the other components of (A↓R) are “obvious” in the
sense of Section 3. Note the we used the notations for dependent types and
witnesses of the sections 6.1 and 6.2.

8.2 Universalness as something extra
We can consider that an universal arrow is an arrow η : A → RC with

something extra. We saw how to represent this “something extra” in Type
Theory: a universal arrow η is a pair (η, univη), where univη is its “universal-
ness”, that we defined in one way in sec.4.2 and in another way in sec.6.6.

Universalness is just one ‘-ness’ among many. Several of these “-ness”es
have standard graphical representations: for example pullbackness is indi-
cated by a ‘ ’, and monicness is indicated by a tail like this: ‘�’. [FS90]
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defines lots of graphical representations for “-ness”es starting on its page
37. We will sometimes use an ‘:=’ to define a new annotation that is an
abbreviation for extra structure:

A

RC

η
univ��

C RC� //

B AR //

A

RC

η
��

C RC� //C

D

∃!f
��

RC

RD

Rf
��

D RD� //

A

RD

∀g

��

B AR //

� //:=

This is pullbackness:

A B//A

C
��

B

D
��

C D//

:=
A B//A

C
��

B

D
��

C D//

∀X

A

∃!
???

��??
?

∀X

C

∀

��/
//
//
//
//
//
//

∀X

B

∀

''OO
OOO

OOO
OOO

O

8.3 Opposite categories

Suppose that we have a diagram A
f→ B

g→ C in a category A. There
are several different notations for the corresponding diagram in Aop: for
example, in [CWM, p.33] it would be written as A

fop

← B
gop← C, while in

[AT11, p.15] as A
f← B

g← C. The convention (COT) says that the notation
in our diagrams should be as close as possible to the notation in the original
text — so let’s see how to support the notation in [AT11], that looks a bit
harder than the one in [CWM].

We want to define a new category, Aop, using tricks similar to the ones in
Section 8.1, but now we can’t pretend that the new composition is obvious.
We will define (Aop)0, HomAop , idAop , and ◦Aop without any textual expla-
nations, with just the diagrams to convince the readed that our definitions
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are reasonable.

A

A

B

f��

A

A

idA��

A

B

f��
B

C

g
��

A

C

g◦f

��

A

A

A

B

OO
f

A

A

OO
idA

A

B

OO
f

B

C

OO
g

A

C

OO

f◦g

Aop

A0 =: (Aop)0

HomA(A,B) =: HomAop(B,A)

idA(A) =: idAop(A)

g ◦A f =: f ◦Aop g

In the diagram below F : Aop → B is a contravariant functor, and the A
above Aop indicates that g : C → D is a morphism of A, not of Aop. I am
not very happy with this trick but I haven’t found a better alternative yet.

C FC� //C

D

g
��

FC

FD

OO
Fg

D FD� //

� //

A
Aop BF //

8.4 The Yoneda Lemma
The formalization of Y0 as a series of typings and definitions in Section 7.3

suggests that some operations from Type Theory that can be applied on the
formalization side should be translatable to the diagram side; for example,
substitution. This one clearly works: if we substitute A by Set and A by
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the set 1 we get this,

Y0

[
A := Set
A := 1

]
=

1

RC

η
��

C RC� //

B SetR //

B(C,−) Set(1, R−)α
//
��

99

For each object S of Set we have a bijection between elements of S and
morphisms 1→ S. We will denote the morphism from 1 to S that “chooses”
an element s ∈ S by psq; the pronounciation of psq is “the name of s”. We
have a bijection between ‘s’s and psqs:

For each D ∈ B we have a bijection Set(1, RD) ↔ RD — and we can
use these bijections to build a natural isomorphism Set(1, R−) ↔ R. We
will draw it vertically, and complete the triangle:

Y1 :=

1

RC

η
��

C RC� //

B SetR //

B(C,−) Set(1, R−)α
//B(C,−)

R
β ''OO

OOO
OOO

OOO
Set(1, R−)

R

OO

��

��

99

We can use that natural isomorphism to obtain ‘β’s from ‘α’s, and vice-
versa, by composition. We could draw an arrow for the bijection between
‘α’s and ‘β’s and another arrow for the bijection between ‘η’s and elements
of RC, but we will prefer to omit them.

We will call the diagram above Y1. It doesn’t have a single top-level
arrow, so we can’t apply the convention (CTL) to it, and we need to specify
its “meaning” explicitly. We will consider that its three bijections are top-
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level objects, and so the diagram Y1 says that we have these bijections:

RC
↔ Set(1, RC)
↔ SetB(B(C,−),Set(1, R−))
↔ SetB(B(C,−), R)

The Yoneda Lemma “is” the bijection RC ↔ SetB(B(C,−), R) — check
how it is defined in [Leinster, thm.4.2.1], [Riehl, thm.2.2.4], [CWM, p.61],
[Awo06, lemma 8.2]. Some books show how to calculate the element of RC
associated to a given β and vice-versa, and most treat Set(1, R−) as some-
thing secondary. If we represent this idea of the Yoneda Lemma in the same
format the we used in sec.7.3, we get this:

Y2 :=

1

RC

peq
��

C RC� //

B SetR //

B(C,−)

R
β $$J

JJ
JJ

JJ
J

B is a category,
R : B→ Set,
C ∈ B,

B(C,−) : B→ Set,
B(C,−)0 := λD.B(C,D),
B(C,−)1 := λg.λf. g ◦ f,
e ∈ RC,
peq := λ∗.e,
β : B(C,−)→ R,

(e 7→ β0) := λe.λD.λf. Rf(e),
(β 7→ e) := λβ.βCidC ,

8.5 The Yoneda embedding
Let’s define Y3 as the result of this substituion:

Y3 = Y2

[
R := B(B,−)

e := ϕ

]
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We have:

Y3 =

1

B(B,C)

pϕq
��

C B(B,C)� //

B SetR //

B(C,−)

B(B,−)
β $$JJ
JJJ

JJ

B is a category,
B(B,−) : B→ Set,
C ∈ B,

B(C,−) : B→ Set,
B(C,−)0 := λD.B(C,D),
B(C,−)1 := λg.λf. g ◦ f,
ϕ ∈ B(B,C),
pϕq := λ∗.ϕ,
β : B(C,−)→ B(B,−),
(ϕ 7→ β0) := λϕ.λD.λf. B(B,−)1(f)(ϕ),
(β 7→ ϕ) := λβ.βCidC ,

The formulas in (ϕ 7→ β0) and (β 7→ ϕ) can be simplified, and we can
derive this other diagram from it:

C B(C,−)� //C

B

OO

ϕ

B(C,−)

B(B,−)

β

��
B B(B,−)� //

oo //

B(C,D)

B(B,D)
��

f

f ◦ ϕ

_

��

B
Bop Set

y //

B is a category,
B ∈ B,
C ∈ B,

ϕ : B → C,
β : B(C,−)→ B(B,−),
(ϕ 7→ β0) := λϕ.λD.λf. f ◦ ϕ,
(β 7→ ϕ) := λβ.βCidC ,

Let’s call it Y4. This is one of the Yoneda Embeddings; compare that
diagram with the ones in [Riehl, p.60]. In [Och22] we show how to formalize
it in Agda as a corollary of Y0, Y1, Y2, and Y3.

Note that the functor C 7→ B(C,−) in Y4 is contravariant, and we used
the trick from sec.8.3 to indicate this.

8.6 Representable functors
Some books, like [Leinster] and [Riehl], present representable functors

first, then lots of examples, and only then they present the Yoneda Lemma.
In our diagram Y1 a representation for the functor R is a pair (C, β) such
that the natural transformation β is a natural iso. It is easy to see that we

2022on-the-missing March 11, 2022 01:40



CONTENTS 49

have these bijections, or bi-implications:

natural iso-ness of β
↔ natural iso-ness of α
↔ universalness of η

The last one holds in the diagram Y0 too.

Many of the textbook examples of representable functors are consequences
of a simple theorem that shows that every functor R : B → Set with a left
adjoint is representable. The diagram Y5 below is a skeleton for a proof of
that theorem:

Y5 :=

1

RL1

η1
univ��

L1 RL1� //

B SetR //

B(L1,−)

R

dd

$$J
JJ

JJ
JJ

J

LA Aoo �LA

B
��

A

RB
��

B RB� //

oo //

B Setoo L
B Set

R
//

A

RLA

ηA
��

1

RL1

η1
��

The unit arrow η1 : 1→ RL1 is universal — note the ‘univ’ in the upper
right arrow — and so its associated ‘β’ is a natural iso; we drew it with a
‘↔’.

Statements like “the functor blah is representable” are very common in
CT texts, and their natural isos is usually written just like “R ∼= B(L1,−)”,
without a name. A good way to draw the missing diagrams for a text should
not force us to invent names, and so we should be allowed to omit the names
of arrows when this is convenient.

This is the example (iv) in [Riehl, p.52]:

(iv) The functor U : Ring → Set is represented by the
unital ring Z[x], the polynomial ring in one variable with
integer coefficients. A unital ring homomorphism Z[x]→ R
is uniquely determined by the image of x; put another way,
Z[x] is the free unital ring on a single generator.
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The diagram below is a good way to visualize that:

1

UZ[x]

pxq
univ��

Z[x] UZ[x]� //

Ring SetU //

Ring(Z[x],−)

U

dd

$$J
JJ

JJ
JJ

J

FA Aoo �FA

B
��

A

UB
��

B UB� //

oo //

Ring Setoo FRing Set
U
//

A

UFA

ηA
��

1

UZ[x]

η1
��

Its left half is useful for when we want to remember how that representa-
tion is generated by an adjunction of the form F a U , but it can be omitted.
In sec.2 I drew that diagram without its left half.

8.7 The 2-category of categories
Natural transformations are often drawn as ‘⇒’s in the middle of “cells”

whose walls are functors. If F,G : A → B are functors and T : F → G is
natural transformation, then A,B, F,G, T are drawn like this:

A B

F
''

A B

G

77⇓T

There are several ways to compose functors and natural transformations
— see [Riehl, section 1.7], [Haz19, section A.5], and [Pow90] for the details
and the precise terminology. For example, in

A

B

F

??���������

B

C

R

**

B

C

G

��
A C

H
//

⇓T
⇓U

A C

GF

��
A C

RF

!!
A C

H
//

⇓UF

⇓T
A C

GF

��
A C

H
//

⇓T ·UF= =

we used “whiskering” and then “vertical composition”.
We can use internal views to lower the level of abstraction of the diagrams

above. If we draw the images of an object A ∈ A by the functors and natural
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transformations we get:

A

FA

O

GG�������������

FA

GFA

�
""

FA

RFA

d

$$

A HA� //

GFA

RFA
UFA��

RFA

HA
TA��

A

GFA

b

**

A

RFA
N

++

A HA� //

GFA

RFA
UFA��

RFA

HA
TA��

A

GFA

b

**

A HA� //

GFA

HA

TA◦UFA
=(T ·UF )A

��
= =

Note that this process of taking a “pasting diagram” and looking at its
internal view — in which many names become longer and some nodes are
duplicated — is the opposite of what people usually do in the literature: they
usually go from pasting diagrams to string diagrams, in which most names
are omitted. See [Mar14] and [Haz19, section A.5].
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8.8 Kan extensions
Kan extensions are usually drawn using 2-cells ([Riehl, definition 6.1.1]),

but they can also be drawn as adjunctions ([Riehl, proposition 6.1.5], [CWM,
section X.3]). Let’s see how to draw them in both ways at the same time in
a way that makes the translation clear. Here is the diagram:

GF ∀Goo �GF

RF

UF
��

∀G

R:=RanFH

∃!U
��

oo �

RF R:=RanFHoo �RF

H

T
��

GF

H

∀V

��

CA CBoo ◦F
CA CB

RanF
//

A BF //

A

B

F

??���������

B

C

R

**

B

C

∀G

��
A C

H
//

⇓T
⇓∃!U

We will consider right Kan extensions only.
Fix F : A → B and a category C. We have a functor (◦F ) : CB →

CA. Suppose that it has a right adjoint, (◦F ) a RanF . For each natural
transformation H : A → C its image by Ranf , R := RanFH, is a natural
transformation R : B→ C. We have:

(◦F ) a RanH
HomCA((◦F )−,−) ∼= HomCB(−,RanF−),
HomCA((◦F )G,H) ∼= HomCB(G,RanFH),
HomCA(G ◦ F,H) ∼= HomCB(G,RanFH),
HomCA(GF,H) ∼= HomCB(G,R)

and if we substitute [G := R] in HomCB(G,R) and we transpose idR to the
left we obtain a morphism T : RF → H. The pair (R,H) obeys a certain
universal property, that we will call “Ran-ness”:

∀G. ∀V. ∃!U. (T · UF ) = V.

The usual way of defining right Kan extensions is by starting with the
functors F : A → B and H : A → C and then saying that a pair (R, T ) is
a right Kan extension of H along F iff it obeys Ran-ness; the functor RanF
and the adjunction come later. See [Riehl], section 6.1.

Note that we don’t draw the ‘∀V : GF → H’ in the right half of the
diagram — it would overwrite the rest.
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8.9 All concepts are Kan extensions
Both [CWM] and [Riehl] have sections called “All concepts are Kan ex-

tensions” — section X.7 in [CWM] and 6.5 in [Riehl]. Now that we have a
favorite way of drawing right Kan extensions we can use it to draw diagrams
for 1) binary products in Set are right Kan extensions, 2) limits are right
Kan extensions and 3) left adjoints are right Kan extensions. Here they are.

1. Let •• be the discrete category with two objects, • be the discrete
category with one object, and ! : •• → • be the unique functor from
•• to •. Then:

(X,X) ∀Xoo �(X,X)

(Y×Z, Y×Z)
(h,h)

��

∀X

Y×Z
∃!h
��

oo �

(Y×Z, Y×Z) Y×Zoo �(Y×Z, Y×Z)

(Y, Z)

(π,π′)
��

(X,X)

(Y, Z)

∀(f,g)

��

Set•• Set•oo ∆:=(◦!)
Set•• Set•

lim:=Ran!
//

•• •! //

••

•

!

??�������������

•

Set

Y×Z

''

•

Set

∀X

��
•• Set

(Y,Z)
//

⇓(π,π′)

⇓∃!h

2. Let I be a finite index category — for example, I =
(

1
↓

2 → 3

)
— and let

C be a category with finite limits. A functor D : I → C is a diagram
of shape I in C. Let’s denote by 1 the discrete category with a single
object — the name ‘1’ is more standard than ‘•’. Then:

∆X ∀Xoo �∆X

∆ limI D

∆f
��

∀X

limI D

∃!f
��

oo �

∆ limI D limI Doo �∆ limI D

D

ε
��

∆X

D

∀γ

��

CI C1oo ∆:=(◦!)
CI C1

lim:=Ran!
//

I 1! //

I

1

!

??�������������

1

C

limI D

))

1

C

∀X

��
I C

D
//

⇓ε

⇓∃!f
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3. Left adjoints are right Kan extensions. If

B oo
L

R
//A

is an adjunction, then (L, ε) is a right Kan extension of idB along R.
In a more compact notation, L := RanRidB — but in this case we only
know the action of RanR on the object idB, and we don’t know if this
RanR can be extended to a “real” functor whose domain is the whole
of BB. The diagram is:

GR ∀Goo �GR

LR

UR
��

∀G

L:=RanRidB

∃!U
��

oo �

LR L:=RanRidB
oo �LR

idB

ε
��

GR

idB

∀V

��

BB BAoo (◦R)

BB BA

RanR
//

B AR //

B

A

R

??������������

A

B

L

))

A

B

∀G

��
B B

idB
//

⇓ε

⇓∃!U

To show that this works we have to prove that ∀V.∃!U.(ε · UR = V ).
We will do that by “inverting the equation ε · UR = V ”:

A B
L
// B A

R
//A B

L
//A A

idA

��
A B

G

��
B B

idB

BB

⇓η ⇓U

⇓ε
= A B

L
// A B

L
//A A

idA

��
A B

G

��
B B

idB

BB

⇓U
⇓idL = U

=

A B
L
// B A

R
//A A

idA

��
A B

G

��
B B

idB

BB

⇓η
⇓V = V L · η

The solution in U := V L ·Gη.
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8.10 A formula for Kan extensions
The sections X.3 of [CWM] and 6.2 of [Riehl] discuss a formula for cal-

culating Kan extensions, that defines RanFH as the functor whose action on
objects is:

B 7→ Lim(B↓F π→ A
H→ Set),

and its action on morphisms is “obvious” in the sense of Section 3. I found
this formula totally impossible to understand until I finally found a way to
visualize what it “meant”.

For each object B ∈ B the functor B↓F H◦π−−→ Set can be regarded as a
diagram in Set whose shape is the shape of the comma category B↓F . If
A and B are finite preorder categories and F is an inclusion then B↓F can
“inherit its shape” from A; inclusions of preorders are “toy examples” “for
children”, but they give us some intuition to start with, and they can help
us understand the formal version that can handle more general cases.

These are the diagrams for RanF as a right adjoint — note that we use
Set instead of C to make things less abstract,

GF Goo �GF

H

V

��

G

RanFH

U

��

oo //

H RanFH
� // = R

SetA SetBoo ◦F
SetA SetB

RanF
//

A BF //

RB =
(RanFH)B =

Lim(B↓F π→ A
H→ Set)

and here are some diagrams to help us understand the comma category B↓F
— in the compact notation its objects have names like (A, β), but in the
more visual notation they are L-shaped diagrams:

B

FA

β
��

A FA� //A

A′

α
��

FA

FA′

Fα
��

� //

A′ FA′� //

B

FA′

β′=
Fα◦β

��

A BF //

 B

FA

β��
A FA� //


 B

FA′
β′
��

A′ FA′� //


α ��

B↓F

(A, β) A� // A HA� //(A, β)

(A′, β′)

α
��

A

A′

α
��

HA

HA′

Hα
��

� // � //

(A′, β′) A′� // A′ HA′� //

B↓F Aπ //A SetH //
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Let’s see an example.

If A F→ B is the inclusion


2

6
��

5 6//

→


1′ 2′//1′

3′
��

2′

4′
��

3′ 4′//3′

5′
��

4′

6′
��

5′ 6′//

,

then 1′↓F =


( 1′
2 F2 )

( 1′
6 F6 )
��

( 1′
5 F5 ) ( 1′

6 F6 )
//

 and 3′↓F =


( 3′
5 F5 ) ( 3′

6 F6 )
//

,

and (1′↓F H◦π−−→ Set) =


H2

H6

��
H5 H6

//

 and (3′↓F H◦π−−→ Set) =


H5 H6

//

;

so R(1′) = Lim(1′↓F H◦π−−→ Set) = H2 ×H6 H5,
and R(3′) = Lim(3′↓F H◦π−−→ Set) = H5.
We can follow the same pattern to calculate R(2′), R(4′), R(5′), R(6′).
The square of the adjunction becomes this, in this particular case:

GF Goo �GF

H
��

G

RanFH
��

oo //

H RanFH
� // = R


G2

G6

��
G5 G6

//




G1 G2

//G1

G3

��

G2

G4

��
G3 G4

//G3

G5

��

G4

G6

��
G5 G6

//

oo �


G2

G6

��
G5 G6

//




H2

H6

��
H5 H6

//



��


G1 G2

//G1

G3

��

G2

G4

��
G3 G4

//G3

G5

��

G4

G6

��
G5 G6

//




H2×H6H5 H2
//H2×H6H5

H5

��

H2

H6

��
H5 H6

//H5

H5

��

H6

H6

��
H5 H6

//



��
oo //

H2

H6

��
H5 H6

//




H2×H6H5 H2

//H2×H6H5

H5

��

H2

H6

��
H5 H6

//H5

H5

��

H6

H6

��
H5 H6

//


� //
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8.11 Functors as objects
One way to treat a diagram in Set like this

F :=

{24, 25}

{1}
����
��
��
{24, 25}

{2, 3}

247→2
257→2

��?
??

??
?

{1}

{1}
��?

??
??

?
{2, 3}

{1}
����
��
��

{1}

{0, 1}
1 7→1
��

as a functor is to think that that diagram is an abbreviation — it is just the
upper-right part of a diagram like this,


1

2 3

4

5

↙ ↘
↘ ↙
↓





{24, 25}

{1}
����
��
��
{24, 25}

{2, 3}

247→2
257→2

��?
??

??
?

{1}

{1}
��?

??
??

?
{2, 3}

{1}
����
��
��

{1}

{0, 1}
17→1
��


� //

K SetF //

where we add the extra hint that the index category K is exactly the kite-
shaped preorder category drawn above the “K”.

The convention (CFSh) says that the image by a functor of a diagram
is a diagram with the same shape, so according to that convention we have
F (1) = {24, 25}, F (4→ 5) = ({1} 17→1→ {0, 1}), and so on; so the upper right
part of the diagram above defines F .

Note that the single ‘ 7→’ above the K
F→ Set stands for several ‘ 7→’s, one

for each object and one for each morphism, and note that F is an object of
SetK.

2022on-the-missing March 11, 2022 01:40



CONTENTS 58

8.12 Geometric morphisms for children
Let A and B be these preorder categories, and let f : A → B be the

inclusion functor from A to B:

A :=

(
2 3
↘ ↙ ↘

4 5

)
B :=


1

↙ ↘
2 3
↘ ↙ ↘

4 5
↘ ↙

6


The left half of the diagram below is the standard definition of a geometric

morphism f from a topos E to a topos F . A geometric morphism f : E → F is
actually an adjunction f ∗ a f∗ plus the guarantee that f ∗ : E ← F preserves
limits, which is a condition slightly weaker than requiring that f ∗ has a left
adjoint. When that left adjoint exists it is denoted by f !, and we say that
f ! a f ∗ a f∗ is an essential geometric morphism. The only non-standard
thing about the diagram at the left below is that is contains an internal view
of the adjunction f ∗ a f∗.

f ∗G Goo �f ∗G

H
��

G

f∗H
��

H f∗H
� //

oo //

E Foo f
∗

E F
f∗
//

(
G2 G3
↘ ↙ ↘
G4 G5

) 
G1
↙ ↘

G2 G3
↘ ↙ ↘
G4 G5
↘ ↙
G6

oo �

(
G2 G3
↘ ↙ ↘
G4 G5

)

(
H2 H3
↘ ↙ ↘
H4 H5

)��


G1
↙ ↘

G2 G3
↘ ↙ ↘
G4 G5
↘ ↙
G6




H2×H4H3
↙ ↘

H2 H3
↘ ↙ ↘
H4 H5
↘ ↙

1



��

(
H2 H3
↘ ↙ ↘
H4 H5

) 
H2×H4H3
↙ ↘

H2 H3
↘ ↙ ↘
H4 H5
↘ ↙

1

� //

oo //

SetA SetBoo f∗

SetA SetB
f∗

//

A B
f //

The right half of the diagram is a particular case of the left half. Its lower
line, A f→ B, does not exist in the left half. The inclusion functor f induces
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adjunctions f ! a f ∗ a f∗ as this,

SetA SetB
f !
//

SetA SetBoo f∗SetA SetB

f∗
//

A B
f //

where f ∗ is easy to define and f ! and f∗ not so much — the standard way to
define f ! and f∗ is by Kan extensions.

The big square in the upper part of the diagram is an internal view of the
adjunction f ∗ a f∗, with the functors f ∗G, G, H, and f∗H being displayed as
their internal views. We can choose the sets G1, . . . , G6 and the morphisms
between them arbitrarily, so this is an internal view of an arbitrary functor
G : B→ Set; and the same for H.

The arrow f ∗G ←[ G can be read as a definition for the action of f ∗ on
objects — it just erases some parts of the diagram — and the arrow H 7→ f∗H
can be read as a definition for the action of f∗ on objects — f∗ “reconstructs”
H1 and H6 in a certain natural way. It is easy to reconstruct the actions of
f ∗ and f∗ on morphisms from just what is shown, and to reconstruct the two
directions of the bijection.

The big diagram above can be used 1) to convince categorists who are not
seasoned toposophers that this diagrammatic language can make some diffi-
cult categorical concepts more accessible, and 2) as a starting point to gen-
erate diagrams “for children” for several parts of the Elephant ([Elephant]),
and even to prove new theorems on toposes. For more on (1), see [OL18] and
[Och18]; for (2), see [MDE].

9 Related and unrelated work
The diagrammatic language that I described here seems to be unrelated

to the ones in [CK17] and [Coe11] — that describe lots of diagrammatic
languages — and also unrelated to [Mar14]. We lower the level of abstraction
— see for example Section 8.7 — while they (usually) raise it.

I’ve taken an approach that is the opposite of [CW01] and [Các04]. Các-
camo and Winskel define a derivation system that can only construct func-
tors, natural transformations, etc, that obey the expected naturality condi-
tions, while we allow some kinds of sloppinesses, like constructing something
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that looks like a functor and pretending that it is a functor when it may not
be. When I started working on this diagrammatic language I had a com-
panion derivation system for it; [IDARCT, Section 14] mentions it briefly,
but it doesn’t show the introduction rules that create (proto)functors and
(proto)natural transformations and that allow being sloppy (“in the syntac-
tical world”). That derivation system was incomplete in all senses — it even
had “rules” that I knew how to apply in particular cases but I didn’t know
how to formalize.

Some of my excuses for allowing one to pretend that a functor is a functor
and leaving the verification to a second stage come from [Che04]. I learned
a lot on how mathematicians use intuition and diagrams from [Krö07] —
[Krö18] is a great summary — and [Cor04], and they have helped me to
identify which characteristics of my diagrammatic language are very unusual
and may be new, and that deserve to be presented in detail.

Many of the first ideas for my diagrammatic language appeared when
I was reading [See83], [See84], [See87], [Jac99], and [BCS06] and trying to
draw the “missing diagrams” in those papers in both the original notation
and in the “archetypal case” ([IDARCT, Section 16]).

Many of the later ideas appeared when I was trying to understand sheaves
using a certain approach “for children” ([PH2]): I learned how to draw dia-
grams showing a Grothendieck topology, its corresponding Lawvere-Tierney
topology, and its corresponding nucleus in particular cases, and I knew that
there had to be a way (in the sense of [Che04]) to “lift” these diagrams of
the correspondences in particular cases to a diagram of the correspondences
in the general case... the details of this “lifting” were hard to formalize, but
missing details started to become clear when I required the diagrams to be
translatable to a pseudocode that could be translated to Agda. At this mo-
ment [PH2] is still incomplete, but some of the ideas in DL were motivated
by its conceptual holes.
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