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1 Introduction (CHANGE)

Rewrite the whole introduction
One of the main themes of this text is a diagrammatic language — let’s call

it DL — that can be used to draw “missing diagrams” for Category Theory.
DL is a reconstructed language, and it’s easier to explain it if I explain how it
was reconstructed, and which of its conventions were improvised. It is easier
to do it in the first person.

Suppose that your native language is A and you are learning a language B
by a method that includes conversation classes. You will have to improvise
a lot, but you will usually get feedback quickly. Now suppose that you are
studying a language C — for example, Aeolic Greek (Carson (2003)) — mostly
by yourself, and the corpus of texts in C is small. A good exercise is to
try to write your thoughts in C, using loanwords and improvised syntactical
constructs when needed, but marking mentally the places in which you had
to improvise. In most cases, but not all, you will eventually find ways to
rewrite those parts to make them look more like C.

The conventions of DL are explained in sec.2. A few of them don’t corre-
spond to anything that I could find in the literature; they are listed at the
end of that section.

The best way to introduce DL is to tell the full story of how it evolved
from a long sequence of wrong assumptions and from some “thoughts that I
wanted to express in DL”.

Let me start with some quotes. This one is from Eilenberg and Steenrod
((Eilenberg and Steenrod 1952, p.ix), but I learned it from (Krömer 2007,
pp.82–83)):

The diagrams incorporate a large amount of information. Their use provides
extensive savings in space and in mental effort. In the case of many theorems,
the setting up of the correct diagram is the major part of the proof. We therefore
urge that the reader stop at the end of each theorem and attempt to construct for
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himself the relevant diagram before examining the one which is given in the text.
Once this is done, the subsequent demonstration can be followed more readily; in
fact, the reader can usually supply it himself.

I spent a lot of my time studying Category Theory trying to “supply the
diagrams myself”. In Eilenberg and Steenrod (1952) supplying the diagrams
is not very hard (I guess), but in books like Lane (1997), in which most
important concepts involve several categories, I had to rearrange my diagrams
hundreds of times until I reached “good” diagrams...

The problem is that I expected too much from “good” diagrams. The next
quotes are from the sections 1 and 12 of an article that I wrote about that
(Ochs (2013)):

My memory is limited, and not very dependable: I often have to rededuce
results to be sure of them, and I have to make them fit in as little “mental space”
as possible...

Different people have different measures for “mental space”; someone with
a good algebraic memory may feel that an expression like Frob : Σ f (P∧ f ∗Q) ∼=
Σ f P∧Q is easy to remember, while I always think diagramatically, and so what I
do is that I remember this diagram,

and I reconstruct the formula from it.

Let’s call the “projected” version of a mathematical object its “skeleton”. The
underlying idea in this paper is that for the right kinds of projections, and for
some kinds of mathetical objects, it should be possible to reconstruct enough of
the original object from its skeleton and few extra clues — just like paleontologists
can reconstruct from a fossil skeleton the look of an animal when it was alive.

I was searching for a diagrammatic language that would let me express
the “skeletons” of categorical definitions and proofs. I wanted these skeletons
to be easy to remember — partly because they would have shapes that were
easy to remember, and partly because they would be similar to “archetypal
cases” ((Ochs 2013, section 16)).

In 2016 and 2017 I taught a seminar course for undergraduates that covered
a bit of Category Theory in the end — see Section 5.5 and Ochs (2019a) —
and this forced me to invent new techniques for working in two different
styles in parallel: a style “for adults”, more general, abstract, and formal,
and another “for children”, with more diagrams and examples. After some
semesters, and after writing most of the material that became Ochs (2019c),
I tried to read again some parts of Johnstone’s “Sketches of an Elephant”, a
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book that always felt quite impenetrable to me, and I found a way to present
geometric morphisms in toposes to “children”. It was based on this diagram,

f ∗G Goo �f ∗G

H
��

G

f∗H
��

H f∗H
� //

oo //

E Foo f
∗

E F
f∗
//

(
G2 G3
↘ ↙ ↘

G4 G5

)


G1
↙ ↘

G2 G3
↘ ↙ ↘

G4 G5
↘ ↙

G6


oo �

(
G2 G3
↘ ↙ ↘

G4 G5

)

(
H2 H3
↘ ↙ ↘

H4 H5

)��



G1
↙ ↘

G2 G3
↘ ↙ ↘

G4 G5
↘ ↙

G6




H2×H4H3
↙ ↘

H2 H3
↘ ↙ ↘

H4 H5
↘ ↙

1



��

(
H2 H3
↘ ↙ ↘

H4 H5

)


H2×H4H3
↙ ↘

H2 H3
↘ ↙ ↘

H4 H5
↘ ↙

1


� //

oo //

SetA SetBoo f ∗

SetA SetB
f∗

//

A B
f //

that we will discuss in detail in 8.12. Its left half is a generic geometric mor-
phism (“for adults”), and its right half is a very specific geometric morphism
(“for children”) in which everything is easy to understand and to visualize,
and that turns out to be “archetypal enough”.

I showed that to the few categorists with whom I had contact and the
feedback that I got was quite positive. A few of them — the ones who were
strictly “adults” — couldn’t understand why I was playing with particular
cases, and even worse, with finite categories, instead of proving things in the
most general case possible, but some others said that these ideas were very
nice, that they knew a few bits about geometric morphisms but those bits
didn’t connect well, and that now they had a family of particular cases to
think about, and they had much more intuition than before.

That was the first time that my way of using diagrams yielded something
so nice! This was the excuse that I needed to organize a workshop on diagram-
matic languages and ways to use particular cases; here’s how I advertised it
(from Ochs and Lucatelli (2018)):

When we explain a theorem to children — in the strict sense of the term —
we focus on concrete examples, and we avoid generalizations, abstract structures
and infinite objects.

When we present something to “children”, in a wider sense of the term that
means “people without mathematical maturity”, or even “people without expertise
in a certain area”, we usually do something similar: we start from a few motivating
examples, and then we generalize.

One of the aims of this workshop is to discuss techniques for particularization
and generalization. Particularization is easy; substituing variables in a general
statement is often enough to do the job. Generalization is much harder, and one
way to visualize how it works is to regard particularization as a projection: a coil
projects a circle-like shadow on the ground, and we can ask for ways to “lift”
pieces of that circle to the coil continously. Projections lose dimensions and may
collapse things that were originally different; liftings try to reconstruct the missing
information in a sensible way. There may be several different liftings for a certain
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part of the circle, or none. Finding good generalizations is somehow like finding
good liftings.

The second of our aims is to discuss diagrams. For example, in Category Theory
statements, definitions and proofs can be often expressed as diagrams, and if we
start with a general diagram and particularize it we get a second diagram with
the same shape as the first one, and that second diagram can be used as a version
“for children” of the general statement and proof. Diagrams were for a long time
considered second-class entities in CT literature (Krömer (2007) discusses some
of the reasons), and were omitted; readers who think very visually would feel that
part of the work involved in understanding CT papers and books would be to
reconstruct the “missing” diagrams from algebraic statements. Particular cases,
even when they were the motivation for the general definition, are also treated
as somewhat second-class — and this inspires a possible meaning for what can
call “Category Theory for Children”: to start from the diagrams for particular
cases, and then “lift” them to the general case. Note that this can be done outside
Category Theory too; Jamnik (2001) is a good example.

Our third aim is to discuss models. A standard example is that every topolog-
ical space is a Heyting Algebra, and so a model for Intuitionistic Predicate Logic,
and this lets us explain visually some features of IPL. Something similar can be
done for some modal and paraconsistent logics; we believe that the figures for that
should be considered more important, and be more well-known.

This is from the second announcement:

If we say that categorical definitions are “for adults” - because they may be
very abstract - and that particular cases, diagrams, and analogies are “for chil-
dren”, then our intent with this workshop becomes easy to state. “Children” are
willing to use “tools for children” to do mathematics, even if they will have to
translate everything to a language “for adults” to make their results dependable
and publishable, and even if the bridge between their tools “for children” and “for
adults” is somewhat defective, i.e., if the translation only works on simple cases...

We are interested in that bridge between maths “for adults” and “for children”
in several areas. Maths “for children” are hard to publish, even informally as notes
(see this thread

http://angg.twu.net/categories-2017may02.html

in the Categories mailing list), so often techniques are rediscovered over and over,
but kept restricted to the “oral culture” of the area.

Our main intents with this workshop are:

• to discuss (over coffe breaks!) the techniques of the “bridge” that we currently
use in seemingly ad-hoc ways,

• to systematize and “mechanize” these techniques to make them quicker to
apply,

• to find ways to publish those techniques — in journals or elsewhere,
• to connect people in several areas working in related ideas, and to create repos-

itories of online resources.

In the UniLog 2018 I was able to chat with several categorists, and they
told me that the oral culture of CT was not as I was expected: if there are
standard ways to draw diagrams they are not widely known. I also spent two
evenings with Peter Arndt working on a certain factorization of geometric
morphisms “for children” — and this made me feel that at some point I
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would be able to present applications of this diagrammatic language in “top-
tier” conferences that would not accept works with holes.

The following quote is from the abstract of my submission (Ochs (2019b))
to the ACT2019:

Imagine two category theorists, Aleks and Bob, who both think very visually
and who have exactly the same background. One day Aleks discovers a theorem,
T1, and sends an e-mail, E1, to Bob, stating and proving T1 in a purely algebraic
way; then Bob is able to reconstruct by himself Aleks’s diagrams for T1 exactly as
Aleks has thought them. We say that Bob has reconstructed the missing diagrams
in Aleks’s e-mail.

Now suppose that Carol has published a paper, P2, with a theorem T2. Aleks
and Bob both read her paper independently, and both pretend that she thinks
diagrammatically in the same way as them. They both “reconstruct the missing
diagrams” in P2 in the same way, even though Carol has never used those diagrams
herself.

and this from my submission (Ochs (2020)) to Diagrams 2020:

Category Theory gives the impression of being an area where most concepts
and arguments are stated and formalized via diagrams, but this is not exactly
true... in most texts almost everything is done algebraically, and the reader is
expected to be able to reconstruct the “missing diagrams” by himself.

I used to believe, as an outsider, that some people who grew up immersed the
oral culture of the area would know several techniques for “drawing the missing
diagrams”. My main intent when I organized the workshop “Logic for Children”
at the UniLog 2018 Ochs and Lucatelli (2018) was to collect some of these folklore
techniques, compare them with the ones that I had developed myself to study CT,
and formalize them all — but what I found instead was that everybody that I
could get in touch with used their own ad-hoc techniques, and that what I was
trying to do was either totally new to them, or at least new in its level of detail.

The story will continue at the end of sec.2, after the list of conventions.

2 The conventions (Change)

Rewrite some conventions
The conventions that I will present now are the ones that we will need to

interpret the diagram below, that is essentially the Proposition 1 in the proof
of the Yoneda Lemma in (Lane 1997, Section III.2); we will call that diagram
the “Basic Example” and also “diagram Y0”. In the sections 8–8.12 we will
see how extend DL to make it able to interpret the diagram for geometric
morphisms of the Introduction.

2022on-the-missing-b May 13, 2022 22:14
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A

RC

η

��
C RC� //

B AR //

B(C,−) A(A,R−)
α
//
��

77

(CD) Our diagrams are made of components that are nodes and arrows.
The nodes can contain arbitrary expressions. The arrows work as connec-
tives, and each arrow can be interpreted as the top-level connective in the
smallest subexpression that contains it. For example, the curved arrow in
the diagram above can be interpreted as:

(A
η→ RC)↔ (B(C,−) T→ A(A,R−)).

(C→) Arrows that look like ‘→’ (“\to”) represent hom-sets, or, in Set,
spaces of functions. When a ‘→’ arrow is named the name stands for an
element of that hom-set. For example, in A

η→ RC we have η : A→ RC.
(C7→) Arrows that look like ‘ 7→’ (“\mapsto”) represent internal views of

functions or functors. This has some subtleties; see Section 5.
(C↔) Arrows that look like ‘↔’ (“\leftrightarrow”) represent bijections or

isomorphisms.
(CAI) “Above” usually means “inside”, or “internal view”. In the diagram

above the morphism η : A→ RC is in A and C is an object of B. Also, the
arrow C 7→ RC is above B R→ A, and this means that it is an internal view
of the functor R. Note that usually is not always — and B R→ A is not an
internal view of B(C,−) T→ A(A,R−).

(CO) When the definition of a component of our diagram is “obvious” in
the sense of “there is a unique natural construction for an object with that
name”, we will usually omit its definition and pretend that it is obvious;
same for its uniqueness. See Section 3.

(CC) Everything commutes by default, and non-commutative cells have to
be indicated explicitly. See Section 4.

(CTL) The default “meaning” for a diagram without quantifiers is the def-
inition of its top-level component. There is a natural partial order on the
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components of a diagram, in which α ≺ β iff α is “more basic” than β , or,
in other words, if α needs to be defined before β . In the diagram above
the top-level component is the curved bijection.

(CMQ) The default “meaning” for a diagram with quantifiers is a proposition.
See Sections 4–4.2 for how to obtain that proposition.

(CAdj) I use shapes based on my way of drawing adjunctions whenever
possible. I like adjunctions so much that when I want to explain Category
Theory to someone who knows just a little bit of Maths I always start by
the adjunction (×B) a (B→) of Section 5.4; I always draw it in a canonical
way, with the left adjoint going left, the right adjoint going right, and
the morphisms going down. In Proposition 1 of (Lane 1997, Section III.2)
the map η is a universal arrow, and someone who learns adjunctions first
sees the unit maps η : A→ (B→(A×B)) as the first examples of universal
arrows — so that’s why the upper part of the diagram above is drawn in
this position.

(CYo) I use shapes based on my way of drawing the Yoneda Lemma when-
ever possible. Look at the sections 7–7.3 and 8.4–8.6: the upper parts of
their diagrams look like parts of adjunctions, but the other parts do not.
For example, I draw “The functor U : Ring→ Set is representable” as:

1

U(Z[x])

pxq
univ
��

Z[x] U(Z[x])� //

Ring SetU //

Ring(Z[x],−)

U

ff

&&MM
MMM

MMM

(CDT) A diagram acts a dictionary of default types for symbols. See sec.6.5.
(CIA) Default types allow us to use indefinite articles in a precise way.

An example: we have η : HomA(A,RC), so “an η” means “an element of
HomA(A,RC)”. See sec.6.6.

(COT) We use a notation as close to the original text as possible, especially
when we are trying to draw the missing diagrams for some existing text.
If we were drawing the missing diagrams for the Proposition 1 of (Lane
1997, Section III.2) our diagram would be this:

2022on-the-missing-b May 13, 2022 22:14
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c

Sr

u
��

r Sr� //

D CS //

D(r,−) C(c,S−)
ϕ
//
��

77

but I hate Mac Lane’s choice of letters, so I decided to use another notation
here.

(CSk) Suppose that we have a piece of text — say, a paragraph P — and we
want to reconstruct the “missing diagram” D for P. Ideally this D should
be a “skeleton” for P, in the sense that it should be possible to reconstruct
the ideas in P from the diagram D using very few extra hints; see (Ochs
2013, sec.12).

(CTT) Our diagrams should be close to Type Theory: it should be possible
to use them as a scaffolding for formalizing our text in (pseudocode for) a
proof assistant.

(CFSh) The image by a functor of a diagram D is drawn with the same shape
as D.

(CISh) The internal view of a diagram D is drawn with the same shape as
D, modulo duplications — see section 5.

(CPSh) A particular case of a diagram D is drawn with the same shape as
D.

(CNSh) A translation of a diagram D to another notation is drawn with the
same shape as D.

The conventions (CD)–(CMQ) and (CFSh)–(CNSh) all appear in diagrams
in Lane (1969), Freyd (1976), Freyd and Scedrov (1990), Taylor (1999), Riehl
(2016), Leinster (2014), but very few of them are spelled out explicitly, and
the idea of “same shape” is never stressed. See (Nederpelt and Geuvers 2014,
p.179) for a neat example of “substitution produces something with the same
shape” and et al (2020) for a language for drawing diagrams from high-level
specifications in which it may be possible to implement the rules about “same
shape”.

Rewrite the next two paragraphs
The other conventions may be new, but remember from the introduction

that most of the work on diagrammatic languages lies below the threshold
of publishability... so conventions corresponding to those may be folklore
knowledge in groups that I don’t have contact with yet.

The convention (COT) is obvious in retrospect, but giving a name to
it saved me from my tendency to invent new notations. The conventions
(CDT) and (CIA) replace the idea of downcasings from (Ochs 2013, sec.3),
that didn’t work well. Sections 8–8.12 show how to add new conventions to
DL, and sec.8.3 shows that we can add a bad convention and mark it as a
temporary hack.
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There are many notations for Type Theory. To make this chapter more
readable in the convention (CTT) we will use a pseudocode that is halfway
between standard mathematical notation and Agda; the companion paper
Ochs (2022) will show how to translate it to real Agda (with the library Hu
and Carette (2020)).

Most texts on CT use diagrams to prove theorems. Here will use them to
understand theorems, and to translate between languages. Our approach can
be seen as an extension of Ganesalingam (2013) to Category Theory; see also
Jansson et al. (2022), that is a recent book that follows many of the ideas in
Ganesalingam (2013).

3 Finding “the” object with a given name (Change)

Rewrite the next two paragraphs
One of the books that I tried to read when I was starting to learn Category

Theory was Mac Lane’s Lane (1997). It is written for readers who know a
lot of mathematics and who can follow some steps that it treats as obvious.
I was not (yet) a reader like that, but I wanted to become one.

There is one specific thing that Lane (1997) does pretending that it is
obvious that I found especially fascinating. It “defines” functors by describing
their actions on objects, and it leaves to the reader the task of discovering
their actions on morphisms. Let’s see how to find these actions on morphisms.

A functor F : A→ B has four components:

F = (F0,F1, respidsF , respcompF).

They are its action on objects, its action on morphisms, the assurance that
it takes identity maps to identity maps, and the assurance that it respects
compositions. When Mac Lane says this,

Fix a set B. Let (×B) denote the functor that takes each set A to A×B.

he is saying that (×B)0A = A×B, or, more precisely, this:

(×B)0 := λA.A×B

The “the” in the expression “Let (×B) denote the functor...” implies that
the precise meaning of (×B)1 is easy to find, and that it is easy to prove
respids(×B) and respcomp(×B).

If f : A′→ A then (×B)1 f : (×B)0A′→ (×B)0A. We know the name of the
image morphism, (×B)1 f , and its type,

(×B)1 f : A′×B→ A×B,

2022on-the-missing-b May 13, 2022 22:14
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and it is implicit that there is an “obvious” natural construction for this
(×B)1 f from f . A natural construction is — TA-DAAAA!!! — a λ -term, so
we are looking for a term of type A′×B→ A×B that can be constructed from
f : A′→ A.

In a big diagram:

f : A′→ A

(×B)1 f : A′×B→ A×B ⇒

[p : A′×B]1

π p : A′ f : A′→ A
f (π p) : A

[p : A′×B]1

π ′p : B
( f (π p),π ′p) : A×B

(λ p:A′×B.( f (π p),π ′p) : A′×B→ A×B
1

A double bar in a derivation means “there are several omitted steps here”,
and sometimes a double bar suggests that these omitted steps are obvious.
The derivation on the left says that there is an “obvious” way to build a
(×B)1 f : A′×B→ A×B from a “hypothesis” f : A′→ A. If we expand its double
bar we get the tree at the right, that shows that the “precise meaning” for
(×B)1 f is (λ p:A′×B.( f (π p),π ′p). More formally (and erasing a typing),

(×B)1 := λ f .(λ p.( f (π p),π ′p)).

The expansion of the double bar above becomes something more familiar
if we translate the trees to Logic using Curry-Howard:

P→ Q

P∧R→ Q∧R ⇒

[P∧R]1

P P→ Q
Q

[P∧R]1

R
Q∧R

P∧R→ Q∧R
1

We obtain the tree at the right by proof search.
Let’s give a name for the operation above that obtained a term of type

A′×B→ A×B: we will call that operation term search, or, as it is somewhat
related to type inference, term inference.

Term search may yield several different construction and trees, and so
several non-equivalent terms of the desired type. When Mac Lane says “the
functor (×B)” he is indicating that:

• a term for (×B)1 is easy to find (note that we use the expression “a precise
meaning for (×B)1”),

• all other natural constructions for something that “deserves the name”
(×B)1 yield terms equivalent to that first, most obvious one,

• proving respids(×B) and respcomp(×B) is trivial.

In many situations we will start by just the name of a functor, as the
“(×B)” in the example above, and from that name it will be easy to find
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the “precise meaning” for (×B)0, and from that the “precise meaning” for
(×B)1, and after that proofs that respids(×B) and respcomp(×B). We will use
the expression “...deserving the name...” in this process — terms for (×B)0,
(×B)1, respids(×B), and respcomp(×B) “deserve their names” if they obey the
expected constraints.

For a more thorough discussion see Ochs (2013).

These ideas of “finding a precise meaning” and “finding (something) de-
serving that name” can also be applied to morphisms, natural transforma-
tions, isomorphisms, and so on.

In Section 7.2 we will see how to find natural constructions for the two
directions of the bijection in the Basic Example — or how the expand the
double bars in the two derivations here:

A

RC

η

��
C RC� //

B AR //

B(C,−) A(A,R−)
α
//
��

77 η : A→ RC

α : B(C,−)→ A(A,R−)

α : B(C,−)→ A(A,R−)
η : A→ RC

It should be possible — in the sense of Cheng (2004) — to formalize the
method that (re)constructs a functor from its action on objects or from its
name. We couldn’t find any attempts to do that in the literature of Category
Theory, but Agda has a tool that can be used for that: look for the section
on “Automatic Proof Search” in Team.

4 Freyd’s diagrammatic language (Change)

In Freyd (1976) Peter Freyd presents a very nice diagrammatic language that
can be used to express some definitions from Category Theory. For example,
this is the statement that a category has all equalizers:

∀

A B
f //

A B
g
//?

∃

A B
f //

A B
g
//?E Ae

//

∀

A B
f //

A B
g
//?E Ae

//

X

A

h

��?
??

??
?

∃!

A B
f //

A B
g
//?E Ae

//

X

A

h

��?
??

??
?X

E

k
��

All cells in these diagrams commute by default, and non-commuting cells
have to be indicated with a ‘?’. Each vertical bar with a ‘∀’ above it means
“for all extensions of the previous diagram to this one such that everything
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commutes”; a vertical bar with a ‘∃!’ above it means “there exists a unique ex-
tension of the previous diagram to this one such that everything commutes”,
and so on. See the scan in Freyd (1976) for the basic details of how to formal-
ize these diagrams, and the book (Freyd and Scedrov 1990, p.28 onwards),
for tons of extra details, examples, and applications.

Let’s call the subdiagrams of a diagram like the one above its “stages”. Its
stage 0 is empty, its stage 1 has two objects and two arrows, its last stage
has four objects and five arrows, and the quantifiers separating the stages are
Q1 = ∀, Q2 = ∃, Q3 = ∀, Q4 = ∃!. They are structured like this:

S0 S1 S2 S3 S4

Q1 Q2 Q3 Q4

Rewrite the next paragraph
I was not very good at drawing all stages separately — it was boring, it

took me too long, and I often got distracted and committed errors — so I
started to play with extensions of that diagrammatic language.

4.1 Adding quantifiers

Here is a simple way to draw all stages at once. We start from a diagram for
the “last stage with quantifiers”, that we will call LSQ:

∀1A ∀1B
∀1 f //

∀1A ∀1B
∀1g
//?∃2E ∀1A

∃2e
//

∀3X

∀1A

∀3h

��?
??

??
??

??
∀3X

∃2E

∃!4k

��

We can recover all the stages and quantifiers from it. The numbered quan-
tifiers in it are ∀1, ∃2, ∀3, and ∃!4. The highest number in them is 4, so we set
n = 4 (n is the index of the last stage), and we set “stage 4 with quantifiers”,
SQ4, to LSQ. To obtain the SQ3 from SQ4 we delete all nodes an arrows in
SQ4 that are annotated with a ‘∃!4’; to obtain SQ2 from SQ3 we delete all
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nodes an arrows in SQ3 that are annotated with a ‘∀3’, and so on until we
get a diagram SQ0, that in this example is empty. To obtain each Sk — a
stage in the original diagrammatic language from Freyd, that doesn’t have
quantifiers — from the corresponding SQk we treat all the quantifiers in SQk
as mere annotations, and we erase them; for example, ‘∃2e’ becomes ‘e’, and
∀1A becomes A. To obtain the quantifiers Q1, Q2, Q3, Q4 that are put in the
vartical bars that separate the stages, we just assign ∀1, ∃2, ∀3, and ∃!4 to
them, without the numbers in the subscripts.

Bonus convention: when the quantifiers in a diagram are just ‘∀’s and ‘∃!’s
without subscripts the ‘∀’s are to be interpreted as ‘∀1’ and the ‘∃!’s as ‘∃!2’s.

4.2 Adding functors (Change)

Rewrite this paragraph
Freyd’s language can’t represent functors — in the sense of diagrams like

the ones in sec.5.2 — and I wanted to use it to draw the missing diagrams
for definitions involving functors, so I had to extend it again.

Let me use an example to discuss this. This is the definition of universal
arrow in (Lane 1997, p.55), including the original diagram, modulo change
of letters:

Definition. If R : B→A is a functor and A an object of A, a universal arrow from
A to R is a pair (B,η) consisting of an object B of B and and arrow η : A→ RB of A
such that to every pair (B′,g) with B′ an object of B and g : A→ RB′ an arrow of A,
there is a unique arrow f : B→ B′ of B with R f ◦η = g. In other words, every arrow
h to R factors uniquely through the universal arrow η, as in the commutative
diagram:

A RB
η //

=

RB

RB′,

R f

��

B

B′.

f

��
A RB′,

g //

The definition itself goes only up to the “with R f ◦η = g.”, so let me ignore
the part starting from “In other words”, and draw a better “missing diagram”
for the definition:
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A

RB

η

��
B RB� //

B AR //

∀
A

RB

η

��
B RB� //

B′ RB′� //

A

RB′

g

��

B AR //

∃!
A

RB

η

��
B RB� //B

B′
f
��

RB

RB′
R f
��

� //

B′ RB′� //

A

RB′

g

��

B AR //

This diagram is quite close to being a skeleton for the definition of universal
arrow. It can be interpreted as a proposition, and the only extra hint that
we need is that “universalness” for the arrow η corresponds to the truth of
that proposition. Here’s how to extract the proposition from it:

In a context where: A is a category,
B is a category,
R : B→ A,
A ∈ A,
B ∈ B,
η : A→ RB,

for all B′ ∈ B and
g : A→ RB′,

there exists a unique f : B→ B′ such that
R f ◦η = g.

To convert that to a definition of universalness we just have to replace the
“for all” by “(B,η) is a universal arrow for A to R iff for all”.

The convention for quantifiers from sec.4.1 lets us rewrite the diagram in
three stages above as:

A

RB

η

��
B RB� //B

∀B′
∃! f
��

RB

RB′
R f
��

� //

∀B′ RB′� //

A

RB′

∀g

��

B AR //
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Rewrite this paragraph
Also, I noticed that I could omit most typings when they could be inferred

from the diagram. I could “formalize” the diagram above as: “in a context
where (A,B,R,A,B,η) are as in the diagram above, we say that (B,η) is a
universal arrow from A to R when ∀(B′,g).∃! f .(R f ◦η = g)”. This looked too
loaded to be used in public, but it was practical for private notes — and
I could even omit the “R f ◦η = g”, as everything commutes by default. In
sec.6.5 we will see a way to formalize this method for omitting and recon-
structing types, and in sec.6.6 we will see a second way to define universalness.

Note that when we erase a node or arrow we also erase everything that
depends on it. In the example above SQ2 has an arrow labeled ∃!2 f ; to obtain
SQ1 from SQ2 we have to erase that arrow, the arrow R f , and the arrow
f 7→ R f — and to obtain SQ0 from SQ1 we have to erase the arrow g, the
node B′, the node RB′, and the arrow B′ 7→ RB′.

5 Internal views (Change)

Rewrite this paragraph:
My favorite way of introducing internal views is with the diagram below:

√ : N → R
n 7→

√
n

−1
0 0� //

1 1� //

2
√

2� //

3
√

3� //

4 2� //

n
√

n� //

N R
√

//

The parts with the two blobs and ‘ � // ’s between them is based on how
I was taught sets and functions when I was a kid; it is an internal view of
the N

√
→ R below it. Not all elements of N are shown in the blob-view of N,

but the ones that are shown are named; compare this with (Lawvere and
Rosebrugh 2003, p.2 onwards), in which the elements are usually dots.

The arrow n � //√n between the blobs shows a generic element of N and
its image, and the other ‘ � // ’s are substitution instances of it, like this:

(n � //√n)[n := 2] = (2 � //
√

2)
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In some cases, like 4 � //2, we write 2 instead of
√

4 because
√

4 “reduces
to” 2, as explained in the next section.

5.1 Reductions

The convention (C 7→) says that an arrow α 7→ β above an arrow A
f→ B

should be interpreted as meaning f (α) β , where ‘ ’ means “reduces to”;
the standard example is

√
4 2. In a diagram:

4 2� //

n
√

n� //

N R
√
//

√
4 2

α β
� //

A B
f //

f (α) β

The idea of reduction comes from λ -calculus. We write α
1
 β to say that

the term α reduces to β in one step, and α
∗
 γ to say that there is a finite

sequence of one-step reductions that reduce α to γ. Here we are interested in
reduction in a system with constants, in which for example (

√
)(4) 1
 2.

Here is a directed graph that shows all the one-step reductions starting
from g(2+3), considering g(a) = a ·a+4:

g(2+3) g(5)//

(2+3) · (2+3)+4

(2+3) ·5+4
$$JJ

JJJ
J

(2+3) ·5+4

5 ·5+4
$$JJ

JJJ
J

5 · (2+3)+4 5 ·5+4//

g(2+3)

(2+3) · (2+3)+4
��

(2+3) · (2+3)+4

5 · (2+3)+4
��

g(5)

5 ·5+4
��

5 ·5+4 25+4// 25+4 29//

Note that all reductions sequences starting from g(2+3) terminate at the
same term, 29 — “the term g(2+3) is strongly normalizing” —, and reduction
sequences from g(2+ 3) may “diverge” but they “converge” later — this is
the “Church-Rosser Property”, a.k.a. “confluence”.

A good place to learn about reduction in systems with constants is Abelson
and Sussman (1996).
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5.2 Functors

By the convention (CFSh) the image of the diagram above A in the diagram
below — remember that above usually means inside —

A1

A2

f
��

A2

A3goo
77oo A3

A4

h��

A1

A3

k
''OOO

O

A2

A4
m ''O
OOO

A BF //

is a diagram with the same shape over B. We draw it like this:

A1

A2

f
��

A2

A3goo
77oo A3

A4

h��

A1

A3

k
''OOO

O

A2

A4
m ''O
OOO

A BF //

FA1

FA2

F f
��

FA2

FA3
Fgjj
55jj FA3

FA4

Fh��

FA1

FA3

Fk
))TTT

TT

FA2

FA4Fm ))TTT
TT

In this case we don’t draw the arrows like A1 7→ FA1 because there would
be too many of them — we leave them implicit.

We say that the diagram above is an internal view of the functor F . To
draw the internal view of the functor F : A→ B we start with a diagram in A
that is made of two generic objects and a generic morphism between them.
We get this:

C FC� //C

D

g
��

FC

FD

Fg
��

D FD� //

� //

A BF //

Compare this with the diagram with blob-sets in Section 5, in which the
‘n 7→

√
n’ says where a generic element is taken.

Any arrow of the form α 7→ β above a functor arrow A F→ B is interpreted
as saying that F takes α to β , or, in the terminology of the section 5.1, that
Fα reduces to β . So this diagram
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B A×B� //B

C

f
��

A×B

A×C

λ p.(π p, f (π ′p))
��

C A×C� //

� //

Set Set
(A×) //

defines (A×) as:
(A×)0 := λB.A×B,
(A×)1 := λ f .λ p.(π p, f (π ′p)).

In this case we can also use internal views of (A×) to define (A×)1:

B A×B� //B

C

f
��

A×B

A×C

(A×) f
��

C A×C� //

� //

Set Set
(A×) //

(a,b)

(a, f (b))

_

��

p

(π p, f (π ′p))

_

��

5.3 Natural transformations

Suppose that we have two functors F,G : A→B and a natural transformation
T : F → G. A first way to draw an internal view of T is this:

C

FC
,

55lllllC

GC
�

))RRR
RR

FC

GC

TC
��C � //

A B
F //A B
G
//

If we start with a morphism h : C→ D in A, like this,

C

D

h
��

A B
F //A B
G
//

the convention (CFSh) would yield an image of h by F and another by G,
and we can draw the arrows TC and T D to obtain a commuting square in B:
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C

FC

�
##G

GGG
C

GC

�

**UUU
UUUU

UUUU
UU

D

FD

�
##G

GGG
D

GD

�

**UUU
UUUU

UUUU
UU

C

D

h

��
FC GC

TC
//FC

FD

Fh

��

GC

GD

Gh

��
FD GD

T D
//

F GT //

A B
F //A B
G

//

This way of drawing internal views of natural transformations yields dia-
grams that are too heavy, so we will usually draw them as just this:

C

D

h
��

FC GCTC //FC

FD

Fh
��

GC

GD

Gh
��

FD GD
T D
//

F GT //

Note that the input morphism is at the left, and above F T→ G we draw its
images by F , G, and T .

When the codomain of F and G is Set we will sometimes also draw at the
right an internal view of the commuting square, like this:

C

D

h

��

FC GCTC //FC

FD

Fh

��

GC

GD

Gh

��
FD GDT D //

F GT //

x (TC)(x)� // (TC)(x)

(Gh◦TC)(x)

_

��

x

(Fh)(x)

_

��
(Fh)(x) (T D◦F f )(x)� //

Then the commutativity of the middle square is equivalent to ∀x ∈ FC.(Gh◦
TC)(x) = (T D ◦F f )(x). Note that in this case the square at the right is an
internal view of an internal view.

In Section 3 we saw that a functor has four components. A natural trans-
formation has two: T = (T0,sqcondT ), where T0 is the operation C 7→ TC and
sqcondT is the guarantee that all the induced squares commute.
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5.4 Adjunctions

We will draw adjunctions like this,

LA Aoo �

B RB� //

oo //
LA

B
��

A

RB
��

B Aoo L
B A

R
//

with the left adjoint going left and the right adjoint going right. My favorite
names for the left and right adjoints are L and R. The standard notation for
that adjunction is L a R.

The top-level component of the diagram above is the bijection arrow in the
middle of the square — it says that Hom(LA,B)↔ Hom(A,RB). It is implicit
that we have bijections like that for all A and B; it is also implicit that that
bijection is natural in some sense.

We will sometimes expand adjunction diagrams by adding unit and counit
maps, the unit and the unit as natural transformations, the actions of L and
R on morphisms, and other things. For example:

LR

idB

ε
��

LRB

B

εB
��

LA′ A′oo �LA′

LA

L f
��

A′

A

f
��

oo �

LA Aoo �LA

B

h[
g ��

A

RB

h
g]��

oo �� //

B RB� //B

B′
k
��

RB

RB′
Rk
��

B′ RB′� //

� //

A

RLA

ηA
��

idA

LR

η
��

B Aoo L
B A

R
//

We can obtain the naturality conditions by regarding [ and ] as natural
transformations and drawing the internal views of their internal views:
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(A,B)

(A′,B′)

( f op,g)
��

B(LA,B) A(A,RB)ooB(LA,B)

B(LA′,B′)
��

A(A,RB)

A(A′,RB′)
��

B(LA′,B′) A(A′,RB′)oo

B(L−,−) A(−,R−)oo [

h[ hoo �h[

k ◦h[ ◦L f

_
��

h

Rk ◦h◦ f

_

��
(Rk ◦h◦ f )[ Rk ◦h◦ foo �

(A,B)

(A′,B′)

( f op,g)
��

B(LA,B) A(A,RB)//B(LA,B)

B(LA′,B′)
��

A(A,RB)

A(A′,RB′)
��

B(LA′,B′) A(A′,RB′)//

B(L−,−) A(−,R−)
] //

g g]� // g]

Rk ◦g] ◦ f

_
��

g

k ◦g◦L f

_

��
k ◦g◦L f (k ◦g◦L f )]� //

5.5 A way to teach adjunctions (CHANGE)

Rewrite this section
I mentioned in the first sections that I have tested some parts of this

language in a seminar course — described here: Ochs (2019a) — and that in
it I taught Categories starting by adjunctions. Here’s how: we started by the
basics of λ -calculus and some sections of Ochs (2019c), and then I asked the
students to define each one of the operations in the right half of the diagram
below as λ -terms:

LA′ A′oo �

LA Aoo �

B RB� //

B′ RB′� //

oo �

oo �� //

� //

LA′

LA
��

A′

A
��

LA

B
��

A

RB
��

B

B′
��

RB

RB′
��

B Aoo L
B A

R
//

LRB

B
��

A

RLA
��

A×C Aoo �

B×C Boo �

D (C→D)� //

E (C→E)� //

oo �

oo �� //

� //

A×C

B×C
��

A

B
��

B×C

D
��

B

(C→D)
��

D

E
��

(C→D)

(C→E)
��

Set Setoo (×C)

Set Set
(C→)
//

(C→D)×C

D
��

B

(C→(B×C))
��

Then we saw the definition of functors, natural transformations and ad-
junctions, and we checked that the right half is a particular case (“for chil-
dren”!) of the diagram for a generic adjunction in the left half. After that,
and after also checking that in the Planar Heyting Algebras of Ochs (2019c)
we have an adjunction (∧Q) a (Q→), I helped the students to decypher some
excerpts of Awodey (2006).
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From the components of the generic adjunction in the diagram above it is
possible to build this big diagram:

LA′ A′oo �LA′

LA

L f

��

A′

A

f
��

A

RLA

ηA
��

A′

RLA
��

oo �

LA RLAoo �

LA Aoo �LA

LRB

Lh
��

A

RB

h
��

oo �

LRB RBoo �LRB

B

εB
��

LA

B

g

��

LRB

B

εB
��

LA′ A′oo �LA′

LA

L f
��

A′

A

f
��

oo �

LA Aoo �LA

B

h[
g ��

A

RB

h
g]��

oo �� //

B RB� //B

B′
k
��

RB

RB′
Rk
��

B′ RB′� //

� //

A

RLA

ηA
��

A

RLA

ηA
��

LA RLA� //LA

B

g
��

RLA

RB

Rg
��

B RB� //

� //

A

RB

h

��

LRB RB� //LRB

B

ηB
��

B

B′
k
��

LRB

B′
��

RB

RB′

Rk

��
B′ RB′� //

� //

B Aoo L
B A

R
//

Let’s use these names for its subdiagrams:
A

BCDEF
G
I

.

A fully-specified adjunction between categories B and A has lots of com-
ponents: (L,R,ε,η , [, ],univ(ε),univ(η)), and maybe even others, but usually
we define only some of these components; there is a Big Theorem About Ad-
junctions (below!) that says how to reconstruct the fully-specified adjunction
from some of its components.

Some parts of the diagram above can be interpreted as definitions, like
these:

L f := (ηA ◦ f )[

g := εB ◦Lh εB := (idRB)
[ ηA := (idLA)

] h := Rg◦ηA

Rk := (k ◦ηB)
]
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The subdiagrams B and F can also be interpreted in the opposite direction,
as:

g] := (∀A.∀g.∃!h)Ag h[ := (∀B.∀h.∃!g)Bh
= (univεB)Ag = (univηA)Bh

The notations (∀A.∀g.∃!h)Ag and (univεB)Ag are clearly abuses of language
— but it’s not hard to translate them to something formal, and these nota-
tions inspired great discussions in the classroom... also, they can help us to
understand and formalize constructions like this one,

L f := (univηA)(LA)(ηA ◦ f )

A′

RLA′

ηA′
univ
��

LA′ RLA′� // A

RLA

ηA
univ
��

LA RLA� //

A′

A

f

��?
??

??
??

?

LA′

LA
L f ��?

??
??

??
? RLA′

RLA

RL f
???

��??
?

� //

B A
R
//

that are needed in cases like the part (ii) of the Big Theorem.
The Big Theorem About Adjunctions is this — it’s the Theorem 2 in (Lane

1997, page 83), but with letters changed to match the ones we are using in
our diagrams:

Big Theorem About Adjunctions. Each adjunction 〈L,R, ]〉 : A⇀B is completely
determined by the items in any one of the following lists:

(i) Functors L, R, and a natural transformation η : idA → RL such that each
ηA : A→ RLA is universal to R from A. Then ] is defined by (6).

(ii) The functor R : B→A and for each A ∈A an object L0A ∈B and a universal
arrow ηA : A→ RL0A from A to R. Then the functor L has object function L0 and
is defined on arrows f : A′→ A by RL f ◦ηA′ = ηA ◦ f .

(iii) Functors L, R, and a natural transformation ε : LR→ idB such that each
εB : LRB→ B is universal from L to B. Here [ is defined by (7).

(iv) The functor L : A→ B and for each B ∈ B an object R0B ∈ A and an arrow
εB : LR0B→ B universal from L to B.

(v) Functors L, R and natural transformations η : idA → RL and ε : LR→ idB
such that both composites (8) are the identity transformations. Here ] is defined
by (6) and [ by (7).

6 Types for Children

We will need a bit of Type Theory in the sections 8.2 and 8.1. We will need
some non-standard notational conventions that appear more or less naturally
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when we present Theory Theory “for children” in the right way — let’s see
the details.

Section 6 of Selinger (2013) has a very good presentation of types “for
adults”: it uses expressions like A×B and A→ B as and treats them as purely
syntactical objects, but each one comes with an “intended meaning”. Let’s
start by defining a version “for children” of that in which these intended
meanings become more concrete, and then we will work in the version “for
children” and in the version “for adults” in parallel.

6.1 Dependent types

In our version “for children”:

• all types are sets,
• some sets are types,
• every finite subset of N is a type,
• if A and B are types then A×B and A→ B are types. A×B is the space of

pairs of the form (a,b) in which a ∈ A and b ∈ B, and A→ B is the space
of functions from A to B,

• a : A means a ∈ A — the distinction between ‘:’ and ‘∈’ will only appear in
other settings,

• “space of” means “set of”. The space of functions from A to B is the set
of all functions from A to B, and each function is considered as a set of
input-output pairs. So, for example, if A = {2,3} and B = {4,5} then:

A×B = {(2,4),(2,5),(3,4),(3,5),},
A→ B =

{{
(2,4),
(3,4)

}
,
{

(2,4),
(3,5)

}
,
{

(2,5),
(3,4)

}
,
{

(2,5),
(3,5)

}}
• if A is a type and (Ca)a∈A is a family of types indexed by A then Πa:A.Ca

and Σa:A.Ca are dependent types defined in the usual way, and (a:A)→Ca
and (a:A)×Ca are alternate notations for Πa:A.Ca and Σa:A.Ca (see (Norell
and Chapman 2008, section 2)). Formally,

Σa:A.Ca = {(a,c) ∈ A× (
⋃

a∈A Ca) | a ∈ A, c ∈Ca }
(a:A)×Ca = {(a,c) ∈ A× (

⋃
a∈A Ca) | a ∈ A, c ∈Ca }

Πa:A.Ca = { f : A→ (
⋃

a∈A Ca) | ∀a ∈ A. f (a) ∈Ca }
(a:A)→Ca = { f : A→ (

⋃
a∈A Ca) | ∀a ∈ A. f (a) ∈Ca }

If A = {2,3}, C2 = {6,7}, and C3 = {7,8} then:

(a:A)×Ca = {(2,6),(2,7),(3,7),(3,8),},
(a:A)→C =

{{
(2,6),
(3,7)

}
,
{

(2,6),
(3,8)

}
,
{

(2,7),
(3,7)

}
,
{

(2,7),
(3,8)

}}
.
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6.2 Witnesses

If P is a proposition we will write JPK for its space of witnesses, or its space
of proofs. The exact definition of JPK will usually depend on the context,
but we always have JPK = /0 when P is false and JPK 6= /0 when P is true. In
some situations all the witnesses of a proposition P will be identified — this
is called proof irrelevance; see (Nederpelt and Geuvers 2014, p.340) — and
all the spaces of witnesses will be either singletons or empty sets; in other
situations some ‘JPK’s will have more than one element.

The notation 〈〈P〉〉 will denote a witness that P is true. Formally, 〈〈P〉〉 is
a variable (with a long name!) whose type is JPK. A good way to remember
this notation is that JPK looks like a box and 〈〈P〉〉 looks like something that
comes in that box.

In Agda the operation ‘≡’ returns a space of proofs of equality. If a and
b are expressions with the same type then Agda’s ‘a≡ b’ corresponds to our
Ja = bK, and people sometimes use the name ‘a≡b’ to denote an element of
a≡ b — we use 〈〈a= b〉〉 for that. See the section “Equality” in Wadler et al.
(2020) for simple examples, and Agda’s standard library for more examples.

6.3 Judgments

The main objects of Type Theory are derivable judgements. A derivable
judgment is one that can appear as the root node of a derivation in which
each bar is an application of one the rules in (Nederpelt and Geuvers 2014,
p.127). These derivations are usually huge — for example, here is a derivation
for A:Θ ,B:Θ ` (Πa:A.B):Θ :

`Θ :�
a
`Θ :�

a

A:Θ `Θ :�
w�

`Θ :�
a

A:Θ ` A:Θ
v�

A:Θ ,B:Θ ` A:Θ
w�

`Θ :�
a
`Θ :�

a

A:Θ `Θ :�
w�

`Θ :�
a

A:Θ ` A:Θ
v�

A:Θ ,B:Θ ` A:Θ
w�

`Θ :�
a
`Θ :�

a

A:Θ `Θ :�
w�

A:Θ ,B:Θ ` B:Θ
v�

A:Θ ,B:Θ ,a:A ` B:Θ
wΘ

A:Θ ,B:Θ ` (Πa:A.B):Θ
ΠΘΘΘ

so rarely draw them explicitly, and we use other tools to show that certain
judgments are derivable.

Every derivable judgment obeys this (taken verbatim from (Selinger 2013,
p.52)):

A typing judgment is an expression of the form

x1 : A1,x2 : A2, . . . ,xn : An `M : A.

Its meaning is: ”under the assumption that xi is of type Ai , for i = 1 . . .n, the
term M is a well-typed term of type A.” The free variables of M must be contained
in x1, . . . ,xn.
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Understanding what this means in the version “for children” will take us
quite close to understanding that in Type Theory “for adults”. We will do
that in the next section.

Let me just correct a simplification. The main objects of the Type Theory
used in Agda and in most other proof assistants are derivable judgments
with definitions, as explained in the chapters 8–10 of Nederpelt and Geuvers
(2014). A judgment with definitions is written as ∆ ;Γ ` M : N, where ∆ is
a list of definitions (Nederpelt and Geuvers 2014, def.9.2.1); we will mostly
ignore the ‘∆ ’ here.

6.4 Set comprehensions

The part at the left of the ‘`’ in a typing judgment is called a typing context.
Typing contexts also appear in set comprehensions. Let’s see an example:

{10a+b | a ∈ {1,2},b ∈ {2,3},a < b}

 {a ∈ {1,2}︸ ︷︷ ︸
generator

,b ∈ {2,3}︸ ︷︷ ︸
generator

,a < b︸ ︷︷ ︸
filter︸ ︷︷ ︸

context

; 10a+b︸ ︷︷ ︸
expression

}

We rewrote the comprehension {〈expr〉 | 〈context〉} to {〈context〉 ; 〈expr〉}
for clarity, and we marked which parts of the context act as “generators”
and which ones act as “filters”. The context above can be rewritten in type-
theoretical notation as:

a : {1,2}, b : {2,3}, 〈〈a<b〉〉 : Ja<bK

A value for that context is a triple (a,b,〈〈a<b〉〉), where a∈{1,2}, b∈{2,3},
and 〈〈a<b〉〉 is a guarantee that a < b is true.

6.5 Omitting types

The diagram at the left below is a copy of the one from sec.4.2, but now we
will interpret it in a different way, as a “dictionary of (default) types”. For
example, it says that when the symbol η appears without a type its type will
be the default one given by the diagram: η : A→ RC, or η : A(A,RC). The
default types are listed at the right.
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A

RC

η

��
C RC� //C

D

f
��

RC

RD

R f
��

� //

D RD� //

A

RD

g

��

B AR //

A is a category
B is a category
R : A→ B
A ∈ A
C ∈ B
D ∈ B
η : A→ RC
f : C→ D
g : A→ RD

6.6 Indefinite articles

We will use the diagram above to redefine universalness. In our old definition,
from sec.4.2, universalness is just a “property”; in our new definition it will
be a pair made of a “structure” and a “property” (see sec.8.2).

Suppose that
A is a category,
B is a category,
R : A→ B,
A ∈ A,
C ∈ B,
η : A→ RC,

and let ] be this operation:

] = λD.λ f . R f ◦η .

Note that the types of D and f are given by the diagram: D is an object
of B, and f : C→ D. Then “universalness” for the tuple (A,B,R,A,C,η) is a
pair ([,〈〈[= ]−1〉〉), in which [ is an operation “that for each D takes each g
to an f ” and ([= ]−1) is a shorthand for this proposition:

(∀D.∀ f . [D(]D f ) = f ) ∧
(∀D.∀g. ]D([Dg) = g).

The component 〈〈[ = ]−1〉〉 of the universalness is a witness that guarantess
that this proposition holds.

The types of [ and 〈〈[= ]−1〉〉 are:

[ : (D : ObjsB)→ (A(A,RD)→ B(C,D))

〈〈[= ]−1〉〉 : J (∀D.∀ f . [D(]D f ) = f ) ∧
(∀D.∀g. ]D([Dg) = g) K
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We can use a trick with indefinite articles to obtain the type of [. Let’s
overload the notations J·K and 〈〈·〉〉: with their new meanings ‘JαK’ will be
pronounced “the type of α”, and ‘〈〈α〉〉’ will be “an α”, “an object with the
same type of α”, or “an element of JαK”. Then

[ is an operation that for each D takes each g to an f

becomes:
[ = λD.λg.〈〈 f 〉〉

The indefinite article in this 〈〈 f 〉〉 is contagious: we read the equality above
not as “[ is the operation that takes each D...” but as “[ is an operation that...”.
We don’t know the value of λD.λg.〈〈 f 〉〉 but we can calculate its type:

f : C→ D
J f K : B(C,D)
〈〈 f 〉〉 : B(C,D)

g : A→ RD
JgK : A(A,RD)

D : ObjsB
JλD.λg.〈〈 f 〉〉K : ObjsB→ (A(A,RD)→ B(C,D))

We will see how to represent universalness in diagrams in sec.8.2.

6.7 “Physicists’ notation”

Books like Thompson and Gardner (1988) use a notation in which expressions
like “z = z(x,y(x))” are allowed — the same symbol can be used both as a
(dependent!) variable and as the name of a function, and arguments can be
omitted — and in a context in which y = y(x) the default meaning for y0 is
y(x0). In many areas of Mathematics that notation has been phased out (see
(Jansson et al. 2022, sec.3.3)) and replaced by one in which the names of the
bound variables matter very little.

Let’s call the older notation “physicist’s notation” and the newer one
“mathematician’s notation”; these names are not standard at all. If we apply
the ideas of the “physicist’s notation” to judgments we can abbreviate

a : A,b : B(a),c : C(a,b) ` d(a,b,c) : D(a,b,c)

to just a : A,b : B,c : C ` d : D, or even to a,b,c ` d. Some of the conventions
of DL were inspired by conventions from “physicist’s notation”.
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7 The Basic Example as a skeleton

In the sections 2 and 3 I claimed that the diagram of the Basic Example is
a “skeleton” of a certain theorem, in the sense that both the statement and
the proof of that theorem can be reconstructed from just the diagram and
very few extra hints. Let’s see the details of this.

7.1 Reconstructing its functors

Let’s call this diagram — the diagram of the Basic Example — Y0:

Y0 :=

A

RC

η

��
C RC� //

B AR //

B(C,−) A(A,R−)
α
//
��

77

We don’t know yet the precise meaning of the functors B(C,−) and
A(A,R−), but if we enlarge Y0 to this — note that we are omitting the
curved bijection by convenience,

Y0+ :=

A

RC

η

��
C RC� //C

D

f
��

RC

RD

R f
��

� //

D RD� //D

E

g
��

RD

RE

Rg
��

� //

E RE� //

A

RD

h

��

B AR //

B(C,−) A(A,R−)α //

and we draw the internal views of B(C,−) and A(A,R−), then the meanings
for B(C,−) and A(A,R−) become obvious:
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D B(C,D)� //D

E

g
��

B(C,D)

B(C,E)

B(C,g)��
E B(C,E)� //

B Set
B(C,−) //

f

g◦ f

_

��

D A(A,RD)� //D

E

g
��

A(A,RD)

A(A,RE)

A(A,Rg)��
E A(A,RE)� //

B Set
A(A,R−) //

h

Rg◦h

_

��

So:
B(C,−) : B→ Set

B(C,−)0 := λD.B(C,D)
B(C,−)1 := λg.λ f .g◦ f

A(A,R−) : B→ Set
A(A,R−)0 := λD.A(A,RD)
A(A,R−)1 := λg.λh.Rg◦h

7.2 Natural transformations

In sec.5.3 we saw that a natural transformation is a pair. An NT α : B(C,−)→
A(A,R−) is a pair (α0,sqcondα), where sqcondα is this:

sqcondα = ∀D.∀E.∀g.∀ f . (A(A,R f )◦αD) = (αE ◦B(C, f ))
= ∀D.∀E.∀g.∀ f . (Rg◦ (αD f )) = (αE(g◦ f ))
= ∀D.∀E.∀g.∀ f . (Rg◦ (α0D f )) = (α0E(g◦ f ))

We can visualize what this “means” using the two diagrams at the top in
the next page.

Suppose that we define a natural transformation αη by saying that (αη)0 =
λD.λ f .R f ◦η . Then we can either affirm that sqcondαη

“is obvious” or verify
that it holds. Substituing α0 by λD.λ f .R f ◦η we obtain:

sqcondαη
= ∀D.∀E.∀g.∀ f . (Rg◦ (R f ◦η)) = (R(g◦ f )◦η)

which is clearly true, so sqcondαη
holds, and αη is a natural transformation

for every η : A→ RC. We can define an operation (η → α) by:

(η 7→ α) := λη .((αη)0,sqcondαη
)

Without abbreviations this definition would be very big. The lower third
of the diagram in the next page shows how visualize what sqcondαη

means.
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A

RC

η

��
C RC� //C

D

f
��

RC

RD

R f
��

� //

D RD� //D

E

g
��

RD

RE

Rg
��

� //

E RE� //

A

RD

`,
αD f

��

B AR //

B(C,−) A(A,R−)α //

D

E

g

��

B(C,D) A(A,RD)//B(C,D)

B(C,E)
��

A(A,RD)

A(A,RE)
��

B(C,E) A(A,RE)//

B(C,−) A(A,R−)α //

f αD f� // αD f

Rg◦ (αD f )

_
��

f

g◦ f

_

��
g◦ f αE(g◦ f )� //

`

Rg◦ `

_
��

D

E

g

��

B(C,D) A(A,RD)//B(C,D)

B(C,E)
��

A(A,RD)

A(A,RE)
��

B(C,E) A(A,RE)//

B(C,−) A(A,R−)
αη //

f R f ◦η
� // R f ◦η

Rg◦ (R f ◦η)

_
��

f

g◦ f

_

��
g◦ f R(g◦ f )◦η

� //

`

Rg◦ `

_
��
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We can define an operation (α 7→ η) by:

(α 7→ η) := λα.α0 C idC,
(η 7→ α0) := λη .λD.λ f .R f ◦η ,
(η 7→ α) := λη .((η 7→ α0)(η), sqcond(something)).

We can prove that the operations (η 7→ α) and (α 7→ η) are mutually
inverse, but this is tricky. The proof contains a step that is hard to visualize,
and that is often stated as a slogan, like this (from (Leinster 2014, p.97) and
(Lane 1997, p.61)):

A natural transformation α : B(C,−)→ A(A,R−)
is determined by its value at idC.

The proof of that step requires instantiating sqcondα , i.e.,

∀D.∀E.∀g : D→ E. ∀ f : C→ D. (Rg◦ (α0D f )) = (α0E(g◦ f ))

at D :=C, E := D, g := f , and f := idC. If we do this in two sub-steps — first
D :=C and E := D, and then g := f and f := idC — we see that after the first
sub-step we get this:

∀g : C→ D. ∀ f : C→C. (Rg◦ (α0C f )) = (α0D(g◦ f ))

The variables g and f have sort of changed their types, and some people
would prefer to rename them, to, say:

∀ f : C→ D. ∀ι : C→C. (R f ◦ (α0Cι)) = (α0D( f ◦ ι))

The diagrams in the next page show the renamed version.
To prove that our operations (α 7→η) and (η 7→α) are mutually inverse we

need to prove that the round trips (α 7→ η 7→ α) and (η 7→ α 7→ η) are both
identities. To prove that (α 7→ η 7→ α) = id, let’s define ηα := (α → η)(α)
and αηα

:= (η 7→ α)(ηα) and . The proof of (α 7→ η 7→ α) = id includes this
sequence of equalities:

(αηα
)0D f = (η 7→ α0)((α 7→ η)(α))D f

= (η 7→ α0)(αCidC)D f
= (λη .λD.λ f . R f ◦η)(αCidC)D f
= (λD.λ f . R f ◦ (αCidC))D f
= R f ◦ (αCidC)
= αD f

that uses our hard step in its last equality. The details, including the proof
of (η 7→ α 7→ η) = id, can be found in Ochs (2022).
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A

RC

η

��
C RC� //C

C

ι ,
idC ��

RC

RC

Rι
��

� //

C RC� //C

D

f
��

RC

RD

R f
��

� //

D RD� //

C

D

f◦ι ,
f◦idC ,

f

��

A

RC

m,
αCι ,

αCidC

��

A

RD

R f◦(αCι),
αD( f◦ι),

R f◦(αCidC),
αD f

��

B AR //

B(C,−) A(A,R−)α //

C

D

f
��

B(C,C) A(A,RC)//B(C,C)

B(C,D)
��

A(A,RC)

A(A,RD)
��

B(C,D) A(A,RD)//

B(C,−) A(A,R−)α //

ι αCι
� // αCι

R f ◦ (αCι)

_
��

ι

f ◦ ι

_

��
f ◦ ι αD( f ◦ ι)� //

m

R f ◦m

_
��

C

D

f
��

B(C,C) A(A,RC)//B(C,C)

B(C,D)
��

A(A,RC)

A(A,RD)
��

B(C,D) A(A,RD)//

B(C,−) A(A,R−)α //

idC αCidC
� // αCidC

R f ◦ (αCidC)

_
��

idC

f

_

��
f αD f� //

m

R f ◦m

_
��

7.3 The full reconstruction

We have just reconstructed all the typings and definitions for the diagram
Y0. Here is the full reconstruction, except for the “proof terms” like respids,
assoc, idL and idR for each functor, sqcond for each natural transformations,
and the proofs that both round trips in the bijections are identity maps:
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A

RC

η

��
C RC� //

B AR //

B(C,−) A(A,R−)
α
//
��

77

A is a category,
B is a category,
R : B→ A,
A ∈ A,
C ∈ B,
η : A→ RD,

B(C,−) : B→ Set,
B(C,−)0 := λD.B(C,D),
B(C,−)1 := λg.λ f . g◦ f ,

A(A,R−) : A→ Set,
A(A,R−)0 := λD.A(A,RD),
A(A,R−)1 := λg.λh.Rg◦h,

α : B(C,−)→ A(A,R−),
(η 7→ α0) := λη .λD.λ f . R f ◦η ,
(α 7→ η) := λα. αC(idC),

or:
α0 := λD.λ f .R f ◦η ,
η := αC(idC).

It is quite short — if we treat the proof terms as “obvious”.

8 Extensions to the diagrammatic language

Our diagrammatic language and the list of conventions in Section 2 can be
extended — “by the user” — in zillions of ways. Let’s see some examples of
extensions.

8.1 A way to define new categories

We saw in the sections 5.2 and 7.1 how to use diagrams to define functors,
and in sections 5.3 and 7.2 how to define natural transformations. We can
define new categories by diagrams, too.
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A

RC

η

��
C RC� //C

D

f
��

RC

RD

R f
��

� //

D RD� //

A

RD

g

��

B AR //

 A

RC
η��

C RC� //


 A

RD
g��

D RD� //


f ��

(A↓R)

(C,η)

(D,g)

f ��

(A↓R)

The middle third of the diagram above shows a nice way to present the
comma category (A↓R) “for children”: the objects of (A↓R) are depicted as L-
shaped diagrams, and it’s easy to see that these L-shaped diagrams are syntax
sugar for the objects (C,η) and (D,g) in the right third. To understand the
typings and the commutativity conditions we have to look at the left third
— it indicates that f must obey R f ◦η = g. Note that the right third shows
a generic morphism in (A↓R) without the syntax sugar, but we still have to
look at the left third to type it. We have:

In a context in which A is a category,
B is a category,
R : B→ A,
A is an object of A,

we define the category (A↓R) as follows:
An object of (A↓R)

is a pair (C,η)
in which C : B0

and η : HomA(A,RC);
so (C,η) : (C:B0)×HomA(A,RC)

and (A↓R)0 := (C:B0)×HomA(A,RC).

A morphism f : (C,η)→ (D,g) in (A↓R)
is an f : HomB(C,D) such that R f ◦η = g,

or equivalently a pair ( f ,〈〈R f ◦η = g〉〉);
we have ( f ,〈〈R f ◦η = g〉〉) : ( f :HomB(C,D))× JR f ◦η = gK,

so Hom(A↓R)((C,η),(D,g)) :=
( f :HomB(C,D))× JR f ◦η = gK.

This defines formally the first two components of the category (A↓R). Re-
member that a category C has seven components:

C = (C0,HomC, idC,◦C;assocC, idLC, idRC)
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We are pretending that the other components of (A↓R) are “obvious” in the
sense of Section 3. Note the we used the notations for dependent types and
witnesses of the sections 6.1 and 6.2.

8.2 Universalness as something extra

We can consider that an universal arrow is an arrow η : A→ RC with some-
thing extra. We saw how to represent this “something extra” in Type Theory:
a universal arrow η is a pair (η ,univη), where univη is its “universalness”,
that we defined in one way in sec.4.2 and in another way in sec.6.6.

Universalness is just one ‘-ness’ among many. Several of these “-ness”es
have standard graphical representations: for example pullbackness is indi-
cated by a ‘ ’, and monicness is indicated by a tail like this: ‘�’. Freyd and
Scedrov (1990) defines lots of graphical representations for “-ness”es starting
on its page 37. We will sometimes use an ‘:=’ to define a new annotation that
is an abbreviation for extra structure:

A

RC

η

univ��
C RC� //

B AR //

A

RC

η

��
C RC� //C

D

∃! f
��

RC

RD

R f
��

D RD� //

A

RD

∀g

��

B AR //

� //:=

This is pullbackness:

A B//A

C
��

B

D
��

C D//

:=
A B//A

C
��

B

D
��

C D//

∀X

A

∃!
??

��?
?

∀X

C

∀

��/
//
//
//
//
//

∀X

B

∀

''OO
OOO

OOO
OO

8.3 Opposite categories

Suppose that we have a diagram A
f→ B

g→ C in a category A. There are
several different notations for the corresponding diagram in Aop: for example,
in (Lane 1997, p.33) it would be written as A

f op
← B

gop
←C, while in (Abramsky

and Tzevelekos 2011, p.15) as A
f← B

g←C. The convention (COT) says that
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the notation in our diagrams should be as close as possible to the notation
in the original text — so let’s see how to support the notation in Abramsky
and Tzevelekos (2011), that looks a bit harder than the one in Lane (1997).

We want to define a new category, Aop, using tricks similar to the ones in
Section 8.1, but now we can’t pretend that the new composition is obvious.
We will define (Aop)0, HomAop , idAop , and ◦Aop without any textual explana-
tions, with just the diagrams to convince the readed that our definitions are
reasonable.

A

A

B
f��

A

A
idA��

A

B
f��

B

C
g��

A

C

g◦ f

��

A

A

A

B

OO
f

A

A

OO
idA

A

B

OO
f

B

C

OO
g

A

C

OO

f◦g

Aop

A0 =: (Aop)0

HomA(A,B) =: HomAop(B,A)

idA(A) =: idAop(A)

g◦A f =: f ◦Aop g

In the diagram below F : Aop → B is a contravariant functor, and the A
above Aop indicates that g : C→ D is a morphism of A, not of Aop.

C FC� //C

D

g
��

FC

FD

OO
Fg

D FD� //

� //

A
Aop BF //

Note that here we extended the set of conventions of DL by adding a way
of interpreting an A above a Aop; to define other ways to draw contravariant
functors, just add other conventions to DL.

8.4 The Yoneda Lemma

The formalization of Y0 as a series of typings and definitions in Section 7.3
suggests that some operations from Type Theory that can be applied on the
formalization side should be translatable to the diagram side; for example,
substitution. This one clearly works: if we substitute A by Set and A by the
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set 1 we get this,

Y0

[
A := Set
A := 1

]
=

1

RC

η

��
C RC� //

B SetR //

B(C,−) Set(1,R−)
α
//
��

77

For each object S of Set we have a bijection between elements of S and
morphisms 1→ S. We will denote the morphism from 1 to S that “chooses”
an element s ∈ S by psq; the pronounciation of psq is “the name of s”. We
have a bijection between ‘s’s and psqs:

For each D ∈ B we have a bijection Set(1,RD)↔ RD — and we can use
these bijections to build a natural isomorphism Set(1,R−)↔ R. We will draw
it vertically, and complete the triangle:

Y1 :=

1

RC

η

��
C RC� //

B SetR //

B(C,−) Set(1,R−)
α
//B(C,−)

R
β ''OO

OOO
OOO

O
Set(1,R−)

R

OO

��

��

77

We can use that natural isomorphism to obtain ‘β ’s from ‘α’s, and vice-
versa, by composition. We could draw an arrow for the bijection between ‘α’s
and ‘β ’s and another arrow for the bijection between ‘η ’s and elements of
RC, but we will prefer to omit them.

We will call the diagram above Y1. It doesn’t have a single top-level arrow,
so we can’t apply the convention (CTL) to it, and we need to specify its
“meaning” explicitly. We will consider that its three bijections are top-level
objects, and so the diagram Y1 says that we have these bijections:

RC
↔ Set(1,RC)

↔ SetB(B(C,−),Set(1,R−))
↔ SetB(B(C,−),R)

The Yoneda Lemma “is” the bijection RC↔ SetB(B(C,−),R) — check how
it is defined in (Leinster 2014, thm.4.2.1), (Riehl 2016, thm.2.2.4), (Lane
1997, p.61), (Awodey 2006, lemma 8.2). Some books show how to calculate
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the element of RC associated to a given β and vice-versa, and most treat
Set(1,R−) as something secondary. If we represent this idea of the Yoneda
Lemma in the same format the we used in sec.7.3, we get this:

Y2 :=

1

RC

peq
��

C RC� //

B SetR //

B(C,−)

R
β $$JJ
JJJ

JJ

B is a category,
R : B→ Set,
C ∈ B,

B(C,−) : B→ Set,
B(C,−)0 := λD.B(C,D),
B(C,−)1 := λD.λE.λg.λ f . g◦ f ,

e ∈ RC,
peq := λ∗.e,
β : B(C,−)→ R,

(e 7→ β0) := λe.λD.λ f . R f (e),
(β 7→ e) := λβ .βCidC,

8.5 The Yoneda embedding

Let’s define Y3 as the result of this substituion:

Y3 = Y2

[
R := B(B,−)

e := ϕ

]
We have:

Y3 =

1

B(B,C)

pϕq
��

C B(B,C)
� //

B SetR //

B(C,−)

B(B,−)
β $$JJ
JJJ

J

B is a category,
B(B,−) : B→ Set,
C ∈ B,

B(C,−) : B→ Set,
B(C,−)0 := λD.B(C,D),
B(C,−)1 := λD.λE.λg.λ f . g◦ f ,

ϕ ∈ B(B,C),
pϕq := λ∗.ϕ,
β : B(C,−)→ B(B,−),
(ϕ 7→ β0) := λϕ.λD.λ f . B(B,−)1( f )(ϕ),
(β 7→ ϕ) := λβ .βCidC,

The formulas in (ϕ 7→ β0) and (β 7→ ϕ) can be simplified, and we can derive
this other diagram from it:
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C B(C,−)� //C

B

OO

ϕ

B(C,−)

B(B,−)

β

��
B B(B,−)� //

oo //

B(C,D)

B(B,D)
��

f

f ◦ϕ

_

��

B
Bop Set

y //

B is a category,
B ∈ B,
C ∈ B,

ϕ : B→C,
β : B(C,−)→ B(B,−),
(ϕ 7→ β0) := λϕ .λD.λ f . f ◦ϕ,
(β 7→ ϕ) := λβ .βCidC,

Let’s call it Y4. This is one of the Yoneda Embeddings; compare that
diagram with the ones in (Riehl 2016, p.60). In Ochs (2022) we show how to
formalize it in Agda as a corollary of Y0, Y1, Y2, and Y3.

Note that the functor C 7→ B(C,−) in Y4 is contravariant, and we used the
trick from sec.8.3 to indicate this.

8.6 Representable functors

Some books, like Leinster (2014) and Riehl (2016), present representable
functors first, then lots of examples, and only then they present the Yoneda
Lemma. In our diagram Y1 a representation for the functor R is a pair (C,β )
such that the natural transformation β is a natural iso. It is easy to see that
we have these bijections, or bi-implications:

natural iso-ness of β

↔ natural iso-ness of α

↔ universalness of η

The last one holds in the diagram Y0 too.

Many of the textbook examples of representable functors are consequences
of a simple theorem that shows that every functor R : B→ Set with a left
adjoint is representable. The diagram Y5 below is a skeleton for a proof of
that theorem:

Y5 :=

1

RL1

η1
univ��

L1 RL1� //

B SetR //

B(L1,−)

R

dd

$$JJ
JJJ

JJ

LA Aoo �LA

B
��

A

RB
��

B RB� //

oo //

B Setoo L
B Set

R
//

A

RLA

ηA
��

1

RL1

η1
��
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The unit arrow η1 : 1→ RL1 is universal — note the ‘univ’ in the upper
right arrow — and so its associated ‘β ’ is a natural iso; we drew it with a
‘↔’.

Statements like “the functor blah is representable” are very common in
CT texts, and their natural isos is usually written just like “R ∼= B(L1,−)”,
without a name. A good way to draw the missing diagrams for a text should
not force us to invent names, and so we should be allowed to omit the names
of arrows when this is convenient.

This is the example (iv) in (Riehl 2016, p.52):

(iv) The functor U : Ring→ Set is represented by the unital ring Z[x], the polynomial
ring in one variable with integer coefficients. A unital ring homomorphism
Z[x]→ R is uniquely determined by the image of x; put another way, Z[x] is the
free unital ring on a single generator.

The diagram below is a good way to visualize that:

1

UZ[x]

pxq
univ��

Z[x] UZ[x]� //

Ring SetU //

Ring(Z[x],−)

U

dd

$$JJ
JJJ

JJ

FA Aoo �FA

B
��

A

UB
��

B UB� //

oo //

Ring Setoo FRing Set
U
//

A

UFA

ηA
��

1

UZ[x]

η1
��

Its left half is useful for when we want to remember how that representation
is generated by an adjunction of the form F aU , but it can be omitted. In
sec.2 we drew that diagram without its left half.

8.7 The 2-category of categories

Natural transformations are often drawn as ‘⇒’s in the middle of “cells”
whose walls are functors. If F,G : A→B are functors and T : F→G is natural
transformation, then A,B,F,G,T are drawn like this:

A B
F
%%

A B
G

99⇓T

There are several ways to compose functors and natural transformations
— see (Riehl 2016, section 1.7), (Hazratpour 2019, section A.5), and Power
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(1990) for the details and the precise terminology. For example, in

A

B
F

??��������

B

C
R

++

B

C

G


A C

H
//

⇓T
⇓U

A C

GF

��
A C

RF

��
A C

H
//

⇓UF

⇓T
A C

GF

��
A C

H
//

⇓T ·UF= =

we used “whiskering” and then “vertical composition”.
We can use internal views to lower the level of abstraction of the diagrams

above. If we draw the images of an object A ∈A by the functors and natural
transformations we get:

A

FA

O

GG�����������

FA

GFA
�   FA

RFA

b

''

A HA� //

GFA

RFA
UFA��

RFA

HA
TA��

A

GFA

d

((

A

RFA
Q

))

A HA� //

GFA

RFA
UFA��

RFA

HA
TA��

A

GFA

d

((

A HA� //

GFA

HA

TA◦UFA
=(T ·UF)A
��

= =

Note that this process of taking a “pasting diagram” and looking at its
internal view — in which many names become longer and some nodes are
duplicated — is the opposite of what people usually do in the literature: they
usually go from pasting diagrams to string diagrams, in which most names
are omitted. See Marsden (2014) and (Hazratpour 2019, section A.5).

8.8 Kan extensions

Kan extensions are usually drawn using 2-cells (Riehl 2016, definition 6.1.1),
but they can also be drawn as adjunctions ((Riehl 2016, proposition 6.1.5),
(Lane 1997, section X.3)). Let’s see how to draw them in both ways at the
same time in a way that makes the translation clear. Here is the diagram:

GF ∀Goo �GF

RF

UF
��

∀G

R:=RanF H

∃!U
��

oo �

RF R:=RanF Hoo �RF

H

T
��

GF

H

∀V

��

CA CBoo ◦F
CA CB

RanF

//

A BF //

A

B
F

??��������

B

C
R

++

B

C

∀G


A C

H
//

⇓T

⇓∃!U
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We will consider right Kan extensions only.
Fix F : A → B and a category C. We have a functor (◦F) : CB → CA.

Suppose that it has a right adjoint, (◦F) a RanF . For each natural transfor-
mation H : A→C its image by Ran f , R :=RanF H, is a natural transformation
R : B→ C. We have:

(◦F) a RanH
HomCA((◦F)−,−) ∼= HomCB(−,RanF−),
HomCA((◦F)G,H) ∼= HomCB(G,RanF H),

HomCA(G◦F,H) ∼= HomCB(G,RanF H),
HomCA(GF,H) ∼= HomCB(G,R)

and if we substitute [G := R] in HomCB(G,R) and we transpose idR to the left
we obtain a morphism T : RF→H. The pair (R,H) obeys a certain universal
property, that we will call “Ran-ness”:

∀G. ∀V. ∃!U. (T ·UF) =V.

The usual way of defining right Kan extensions is by starting with the
functors F : A→B and H : A→C and then saying that a pair (R,T ) is a right
Kan extension of H along F iff it obeys Ran-ness; the functor RanF and the
adjunction come later. See Riehl (2016), section 6.1.

Note that we don’t draw the ‘∀V : GF→H’ in the right half of the diagram
— it would overwrite the rest.

8.9 All concepts are Kan extensions

Both Lane (1997) and Riehl (2016) have sections called “All concepts are
Kan extensions” — section X.7 in Lane (1997) and 6.5 in Riehl (2016). Now
that we have a favorite way of drawing right Kan extensions we can use it
to draw diagrams for 1) binary products in Set are right Kan extensions, 2)
limits are right Kan extensions and 3) left adjoints are right Kan extensions.
Here they are.

1. Let •• be the discrete category with two objects, • be the discrete category
with one object, and ! : ••→ • be the unique functor from •• to •. Then:
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(X ,X) ∀Xoo �(X ,X)

(Y×Z,Y×Z)

(h,h) ��

∀X

Y×Z

∃!h
��

oo �

(Y×Z,Y×Z) Y×Zoo �
(Y×Z,Y×Z)

(Y,Z)

(π,π ′) ��

(X ,X)

(Y,Z)

∀( f ,g)

��

Set•• Set•oo ∆ :=(◦!)
Set•• Set•

lim:=Ran!

//

•• •! //

••

•

!

??����������

•

Set

Y×Z

))

•

Set

∀X

��
•• Set

(Y,Z)
//

⇓(π,π ′)

⇓∃!h

2. Let I be a finite index category — for example, I =
( 1

↓
2 → 3

)
— and let C

be a category with finite limits. A functor D : I→C is a diagram of shape
I in C. Let’s denote by 1 the discrete category with a single object — the
name ‘1’ is more standard than ‘•’. Then:

∆X ∀Xoo �
∆X

∆ limI D

∆ f
��

∀X

limI D

∃! f
��

oo �

∆ limI D limI Doo �
∆ limI D

D

ε
��

∆X

D

∀γ

��

CI C1oo ∆ :=(◦!)
CI C1

lim:=Ran!

//

I 1! //

I

1

!

??����������

1

C

limI D

**

1

C

∀X

��
I C

D
//

⇓ε

⇓∃! f

3. Left adjoints are right Kan extensions. If

B oo
L

R
//A

is an adjunction, then (L,ε) is a right Kan extension of idB along R. In
a more compact notation, L := RanRidB — but in this case we only know
the action of RanR on the object idB, and we don’t know if this RanR can
be extended to a “real” functor whose domain is the whole of BB. The
diagram is:
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GR ∀Goo �GR

LR

UR
��

∀G

L:=RanRidB

∃!U
��

oo �

LR L:=RanRidBoo �LR

idB

ε
��

GR

idB

∀V

��

BB BAoo (◦R)
BB BA

RanR

//

B AR //

B

A

R

??����������

A

B
L

**

A

B

∀G

��
B B

idB
//

⇓ε

⇓∃!U

To show that this works we have to prove that ∀V.∃!U.(ε ·UR = V ). We
will do that by “inverting the equation ε ·UR =V”:

A B
L
// B A

R
// A B

L
//A A

idA

��
A B

G

��
B B

idB

DD

⇓η ⇓U

⇓ε

= A B
L
// A B

L
//A A

idA

��
A B

G

��
B B

idB

DD
⇓U

⇓idL
= U

=

A B
L
// B A

R
//A A

idA

��
A B

G

��
B B

idB

DD

⇓η

⇓V = V L ·Gη

The assumption ε ·UR =V was used in the vertical equality. The solution
is U :=V L ·Gη .

8.10 A formula for Kan extensions (Change)

Rewrite this paragraph:
The sections X.3 of Lane (1997) and 6.2 of Riehl (2016) discuss a formula

for calculating Kan extensions, that defines RanF H as the functor whose
action on objects is:

B 7→ Lim(B↓F π→ A H→ Set),

and its action on morphisms is “obvious” in the sense of Section 3. I found
this formula totally impossible to understand until I finally found a way to
visualize what it “meant”.

For each object B ∈ B the functor B↓F H◦π−−→ Set can be regarded as a dia-
gram in Set whose shape is the shape of the comma category B↓F . If A and B
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are finite preorder categories and F is an inclusion then B↓F can “inherit its
shape” from A; inclusions of preorders are “toy examples” “for children”, but
they give us some intuition to start with, and they can help us understand
the formal version that can handle more general cases.

These are the diagrams for RanF as a right adjoint — note that we use Set
instead of C to make things less abstract,

GF Goo �GF

H

V
��

G

RanF H

U
��

oo //

H RanF H� // = R

SetA SetBoo ◦FSetA SetB

RanF

//

A BF //

RB =
(RanF H)B =

Lim(B↓F π→ A H→ Set)

and here are some diagrams to help us understand the comma category B↓F
— in the compact notation its objects have names like (A,β ), but in the more
visual notation they are L-shaped diagrams:

B

FA

β

��
A FA� //A

A′

α

��

FA

FA′

Fα

��
� //

A′ FA′� //

B

FA′

β ′=
Fα◦β

��

A BF //

 B

FA
β��

A FA� //


 B

FA′
β ′��

A′ FA′� //


α

��

B↓F

(A,β ) A� // A HA� //(A,β )

(A′,β ′)

α

��

A

A′

α

��

HA

HA′

Hα

��
� // � //

(A′,β ′) A′� // A′ HA′� //

B↓F Aπ // A SetH //

Let’s see an example.

If A F→ B is the inclusion


2

6
��

5 6//

→


1′ 2′//1′

3′
��

2′

4′
��

3′ 4′//3′

5′
��

4′

6′
��

5′ 6′//

,

then 1′↓F =


(

1′
2 F2

)
(

1′
6 F6

)��(
1′

5 F5

) (
1′

6 F6

)
//

 and 3′↓F =

 (
3′

5 F5

) (
3′

6 F6

)
//

,
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and (1′↓F H◦π−−→Set)=


H2

H6
��

H5 H6//

 and (3′↓F H◦π−−→Set)=


H5 H6//

;

so R(1′) = Lim(1′↓F H◦π−−→ Set) = H2×H6 H5,
and R(3′) = Lim(3′↓F H◦π−−→ Set) = H5.
We can follow the same pattern to calculate R(2′), R(4′), R(5′), R(6′).
The square of the adjunction becomes this, in this particular case:

GF Goo �GF

H
��

G

RanF H
��

oo //

H RanF H� // = R


G2

G6

��
G5 G6//




G1 G2//G1

G3

��

G2

G4

��
G3 G4//G3

G5

��

G4

G6

��
G5 G6//

oo �


G2

G6

��
G5 G6//




H2

H6
��

H5 H6//



��


G1 G2//G1

G3

��

G2

G4

��
G3 G4//G3

G5

��

G4

G6

��
G5 G6//




H2×H6H5 H2//H2×H6H5

H5
��

H2

H6
��

H5 H6//H5

H5
��

H6

H6
��

H5 H6//



��
oo //

H2

H6
��

H5 H6//




H2×H6H5 H2//H2×H6H5

H5
��

H2

H6
��

H5 H6//H5

H5
��

H6

H6
��

H5 H6//


� //

8.11 Functors as objects

One way to treat a diagram in Set like this

F :=

{24,25}

{1}
����
��
{24,25}

{2,3}

24 7→2
25 7→2
��?

??
?

{1}

{1}
��?

??
?

{2,3}

{1}
����
��

{1}

{0,1}
17→1��

as a functor is to think that that diagram is an abbreviation — it is just the
upper right part of a diagram like this,
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1

2 3

4

5

↙ ↘

↘ ↙

↓





{24,25}

{1}
����
��
{24,25}

{2,3}

247→2
257→2
��?

??
?

{1}

{1}
��?

??
?

{2,3}

{1}
����
��

{1}

{0,1}
17→1��


� //

K SetF //

where we add the extra hint that the index category K is exactly the kite-
shaped preorder category drawn above the “K”.

The convention (CFSh) says that the image by a functor of a diagram
is a diagram with the same shape, so according to that convention we have
F(1) = {24,25}, F(4→ 5) = ({1} 17→1→ {0,1}), and so on; so the upper right
part of the diagram above defines F .

Note that the single ‘ 7→’ above the K F→ Set stands for several ‘ 7→’s, one
for each object and one for each morphism, and note that F is an object of
SetK.

8.12 Geometric morphisms for children (Change)

Let A and B be these preorder categories, and let f : A→ B be the inclusion
functor from A to B:

A :=

(
2 3
↘ ↙ ↘

4 5

)
B :=



1
↙ ↘

2 3
↘ ↙ ↘

4 5
↘ ↙

6


The left half of the diagram below is the standard definition of a geometric

morphism f from a topos E to a topos F . A geometric morphism f : E →F
is actually an adjunction f ∗ a f∗ plus the guarantee that f ∗ : E ←F preserves
limits, which is a condition slightly weaker than requiring that f ∗ has a left
adjoint. When that left adjoint exists it is denoted by f !, and we say that
f ! a f ∗ a f∗ is an essential geometric morphism. The only non-standard thing
about the diagram at the left below is that is contains an internal view of the
adjunction f ∗ a f∗.
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f ∗G Goo �f ∗G

H
��

G

f∗H
��

H f∗H
� //

oo //

E Foo f
∗

E F
f∗
//

(
G2 G3
↘ ↙ ↘

G4 G5

)


G1
↙ ↘

G2 G3
↘ ↙ ↘

G4 G5
↘ ↙

G6


oo �

(
G2 G3
↘ ↙ ↘

G4 G5

)

(
H2 H3
↘ ↙ ↘

H4 H5

)��



G1
↙ ↘

G2 G3
↘ ↙ ↘

G4 G5
↘ ↙

G6




H2×H4H3
↙ ↘

H2 H3
↘ ↙ ↘

H4 H5
↘ ↙

1



��

(
H2 H3
↘ ↙ ↘

H4 H5

)


H2×H4H3
↙ ↘

H2 H3
↘ ↙ ↘

H4 H5
↘ ↙

1


� //

oo //

SetA SetBoo f ∗

SetA SetB
f∗

//

A B
f //

The right half of the diagram is a particular case of the left half. Its lower
line, A f→ B, does not exist in the left half. The inclusion functor f induces
adjunctions f ! a f ∗ a f∗ as this,

SetA SetB
f !
//

SetA SetBoo f ∗SetA SetB

f∗
//

A B
f //

where f ∗ is easy to define and f ! and f∗ not so much — the standard way to
define f ! and f∗ is by Kan extensions.

The big square in the upper part of the diagram is an internal view of the
adjunction f ∗ a f∗, with the functors f ∗G, G, H, and f∗H being displayed as
their internal views. We can choose the sets G1, . . . ,G6 and the morphisms
between them arbitrarily, so this is an internal view of an arbitrary functor
G : B→ Set; and the same for H.

The arrow f ∗G← [ G can be read as a definition for the action of f ∗ on
objects — it just erases some parts of the diagram — and the arrow H 7→ f∗H
can be read as a definition for the action of f∗ on objects — f∗ “reconstructs”
H1 and H6 in a certain natural way. It is easy to reconstruct the actions of
f ∗ and f∗ on morphisms from just what is shown, and to reconstruct the two
directions of the bijection.

Rewrite this paragraph:
The big diagram above can be used 1) to convince categorists who are

not seasoned toposophers that this diagrammatic language can make some
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difficult categorical concepts more accessible, and 2) as a starting point to
generate diagrams “for children” for several parts of the Elephant (Johnstone
(2002)), and even to prove new theorems on toposes. For more on (1), see
Ochs and Lucatelli (2018) and Ochs (2018); for (2), see Ochs (2019b).

9 Related and unrelated work (CHANGE)

Rewrite the whole section
The diagrammatic language that I described here seems to be unrelated to

the ones in Coecke and Kissinger (2017) and Coecke (2011) — that describe
lots of diagrammatic languages — and also unrelated to Marsden (2014). We
lower the level of abstraction — see for example Section 8.7 — while they
(usually) raise it.

I’ve taken an approach that is the opposite of Cáccamo and Winskel (2001)
and Cáccamo (2004). Cáccamo and Winskel define a derivation system that
can only construct functors, natural transformations, etc, that obey the ex-
pected naturality conditions, while we allow some kinds of sloppinesses, like
constructing something that looks like a functor and pretending that it is a
functor when it may not be. When I started working on this diagrammatic
language I had a companion derivation system for it; (Ochs 2013, Section
14) mentions it briefly, but it doesn’t show the introduction rules that cre-
ate (proto)functors and (proto)natural transformations and that allow being
sloppy (“in the syntactical world”). That derivation system was incomplete
in all senses — it even had “rules” that I knew how to apply in particular
cases but I didn’t know how to formalize.

Some of my excuses for allowing one to pretend that a functor is a functor
and leaving the verification to a second stage come from Cheng (2004). I
learned a lot on how mathematicians use intuition and diagrams from Krömer
(2007) — Krömer (2018) is a great summary — and Corfield (2004), and they
have helped me to identify which characteristics of my diagrammatic language
are very unusual and may be new, and that deserve to be presented in detail.

Many of the first ideas for my diagrammatic language appeared when I
was reading Seely (1983), Seely (1984), Seely (1987), Jacobs (1999), and Blute
et al. (2006) and trying to draw the “missing diagrams” in those papers in
both the original notation and in the “archetypal case” ((Ochs 2013, Section
16)).

Many of the later ideas appeared when I was trying to understand sheaves
using a certain approach “for children” (Ochs (2021)): I learned how to
draw diagrams showing a Grothendieck topology, its corresponding Lawvere-
Tierney topology, and its corresponding nucleus in particular cases, and I
knew that there had to be a way (in the sense of Cheng (2004)) to “lift”
these diagrams of the correspondences in particular cases to a diagram of the
correspondences in the general case... the details of this “lifting” were hard
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to formalize, but missing details started to become clear when I required
the diagrams to be translatable to a pseudocode that could be translated to
Agda. At this moment Ochs (2021) is still incomplete, but some of the ideas
in DL were motivated by its conceptual holes.
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