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Abstract (1)
The notes in
http://angg.twu.net/math-b.html#favorite-conventions

— I’ll refer to them as “[FavC]” from here on — define an extensible di-
agrammatic language that lets us take complex definitions in Category
Theory and then complement them with several kinds of diagrams to
lower the level of complexity and abstraction of the original definition.
What we usually get after adding these diagrams is the original defini-
tion (very abstract, “for adults”) drawn side to side with diagrams for
particular cases (“for children”), in two parallel diagrams with the same
shape; see the introduction of [FavC] for several different overviews of
the method, and for several different attempts to define “children” in a
useful way.

2021groth-tops-children-slides 2021may17 15:04

http://angg.twu.net/math-b.html#favorite-conventions
http://angg.twu.net/2020.2-C2.html


3

Abstract (2)
The definition of a Grothendieck topology is quite hard to under-

stand — I found it impossible for many years — and in this presentation
I will show how the extend the diagrammatic language from [FavC] to
handle that. Most of the material that I will present is in

http://angg.twu.net/LATEX/2021groth-tops-children.pdf,
but I need to confess that this is an early draft that I need to rewrite
as soon as possible.

The presentation will be in Portuguese, with slides in English.
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What we will need:
1) The order topologies/ZHAs generated by 2-column graphs
from [PH1, sections 14–17],
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What we will need (2)
2) This extension to the notations in [PH1]:[ 0

0
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]
= {U ∈ O(B) | U is of the form
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= {U ∈ O(12) | U is of the form

· ·· ?· ? 1
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= {U ∈ O(12) |
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⊆ U ⊆
· ·· 1· 1 1
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}

=

{ · ·· 0· 0 1
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· ·· 0· 1 1
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· ·· 1· 1 1
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}
= { ↓{10, 02}, ↓{11, 02}, ↓12 }
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What we will need (3)
Several conventions from the beginning of [FavC],
the convention on “functors as objects” from [FavC, sec.7.12],
and a new conventions for drawing diagrams of names,
pronounciations and notations.
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Quotient topologies
Consider this partition of R:

P = {(−∞, 1)︸ ︷︷ ︸
A

, [1, 2)︸ ︷︷ ︸
B

, [2, 3]︸︷︷︸
C

, (3, 4]︸ ︷︷ ︸
D

, (4,+∞)︸ ︷︷ ︸
E

}

We will say that a subset U ⊆ R respects P iff
for every I ∈ P either I ⊂ U or I ∩ U = ∅.
For example, B ∪D = [1, 2) ∪ (3, 4] respects P ,
but [0.5, 2.34] does not.
Let:

PP (R) = {U ∈ P(R) | U respects P }
OP (R) = {U ∈ O(R) | U respects P }

Then PP (R) has 25 = 32 elements, and OP ⊂ PP (R).
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Quotient topologies (2)
Here is another way to draw P and the conditions
that an U ∈ PP (R) must obey to obey U ∈ OP (R):

P = {(−∞, 1)︸ ︷︷ ︸
A

, [1, 2)︸ ︷︷ ︸
B

, [2, 3]︸︷︷︸
C

, (3, 4]︸ ︷︷ ︸
D

, (4,+∞)︸ ︷︷ ︸
E

}
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Quotient topologies (3)
Here are the 10 elements of OP (R):

ABCDE
ABDE

ABD ADE
AB AE DE

A E
∅
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2-column graphs and their order topologies
...or: 2CGs and ZHAs

X = H =
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