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Category Theory gives the impression of being an area where most concepts
and arguments are stated and formalized via diagrams, but this is not exactly
true... in most texts almost everything is done algebraically, and the reader is
expected to be able to reconstruct the “missing diagrams” by himself.

I used to believe, as an outsider, that some people who grew up immersed the
oral culture of the area would know several techniques for “drawing the missing
diagrams”. My main intent when I organized the workshop “Logic for Children”
at the UniLog 2018 [9] was to collect some of these folklore techniques, compare
them with the ones that I had developed myself to study CT, and formalize
them all — but what I found instead was that everybody that I could get in
touch with used their own ad-hoc techniques, and that what I was trying to do
was either totally new to them, or at least new in its level of detail.

One way to make concepts of Category Theory totally formal is to implement
them on proof assistants. For example, the diagram below
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A ∈ A
C ∈ C
R : A→ C
γ : A→ RC

(C→ ) : C→ Set
(C→ )0(D) = HomC(C,D)
(C→ )1(h) = λg.(g;h)

(A→R ) : C→ Set
(A→R )0(D) = HomA(A,RD)
(A→R )1(h) = λδ.(δ;Rh)

T : (C→ )→ (A→R )

T0(D) := λg.(γ;Rg)
γ := TC(idC)

“is” the Yoneda Lemma, as in [10], Theorem 2.2.4, but in a slightly more gen-
eral form and in a different notation: ours is Hom(Hom(C,−),Hom(A,R−)) ∼=
Hom(A,RC); the details are in [6], and an implementation of it in Idris is un-
derway.
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If we erase the left half of the diagram above we get a “skeleton” for the
Yoneda Lemma, in the sense of [5], Sections 1 and 12: the full diagram including
the right half can be reconstructed from its left half with very few extra clues.

Let’s say that a diagram is “formal enough” when its formalization on a type
system or on a proof assistant is very easy to obtain, as in the example above
— or at least if it is easy to formalize it in a type system if we work only in its
“syntactical part”, as discussed in Sections 12 and 19 of [5]. All the diagrams
that I am going to present in this talk are “formal enough” in this sense.

Now look at the figure below:

�

�

�

�

�

�

�

�

−1

0 0
� //

1 1
� //

2
√

2
� //

3
√

3
� //

4 2
� //

n
√
n

� //

N R
√

//

LA′ A′oo L0 �

LA Aoo L0 �

B RB
�

R0

//

B′ RB′
�

R0

//

oo L1 �

oo [ ��
]
//

�
R1

//

LA′

LA

Lα

��

A′

A

α

��
LA

B

g[

f

��

A

RB

g

f]

��
B

B′

β

��

RB

RB′

Rβ

��

B A
oo L

B A
R

//

LRB

B

εB

��

A

RLA

ηA

��

A×C Aoo �

B×C Boo �

D (C→D)
� //

E (C→E)
� //

oo �

oo [ ��
]
//

� //

A×C

B×C

λp.(f(πp),π′p)

��

A

B

f

��
B×C

D

λp.g(πp)(π′p)
h

��

B

(C→D)

g
λb.λc.h(b,c)

��
D

E

k

��

(C→D)

(C→E)

λf.λc.k(fc)

��

Set Set
oo (×C)

Set Set
(C→)

//

(C→D)×C

D

λp.(πp)(π′p)

��

B

(C→(B×C))

λb.λc.(b,c)

��

Fig. 1. Three cases of internal views and external views.
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It is composed of three subdiagrams, that we will call AB
C , and each of them

is made of external view below and an internal view above.

Diagram A shows, below, the external view of the function N
√
→ R, and above

that its internal view — in which one of the arrows, n 7→
√
n, shows the action of√

on a generic element, and the other ‘ 7→’ arrows, like 3 7→
√

3 and 4 7→ 2, show
substitution instances of n 7→

√
n, maybe after some term reductions. Compare

this with, say, [4], [10], [1] — they use external and internal diagrams but they
don’t make the distinction between ‘→’ and ‘7→’, and this makes their diagrams
hard to formalize.

Diagram B shows the external view of a (generic) adjunction L a R, and
above it its internal view. The nodes and arrows above B are objects and mor-
phisms in B, and similarly for the nodes and arrows above A. The ‘7→’ arrows
of the internal view are now of three kinds: actions of functors on objects, ac-
tions of functors on morphisms, and “transpositions” coming from the natural
isomorphism Hom(L−,−) ↔ Hom(−, R−). Diagram C is essentially the same
as B, but for a particular adjunction: (×B) a (B→). Note how the diagrams B
and C have exactly the same shape — but our diagrams for internal views are
much bigger than the corresponding external views.

In this talk I will present, in a way accessible to non-specialists, how to
work with diagrams for generic cases and particular cases in parallel and how
to transfer knowledge from the general to the particular and back (as in [8] and
[7]), how to build internal diagrams in slightly harder cases than the example
above (i.e., in monads!), and how to do the opposite of the categorists’ habit of
“getting rid of the variables” (as in Part I of [3]).

I know how to show formally, using type systems and λ-calculus, what kinds
of knowledge and intutions we can obtain easily, and almost automatically, by
working at the same time in parallel diagrams like: with λ-terms/without, gen-
eral/particular, and external/internal; but I don’t know yet how describe these
kinds of knowledge and intuitions in terms that are less mathematical and more
philosophical, like for example what Ralf Krömer’s did in his book [2] and in its
slides for his keynote talk in [9], available from the web page of the workshop —
and this is one of my main reasons, or excuses, for trying to present these ideas
to non-mathematicians.
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