(Page 77):
3.13 Definition. Let \mathcal{E} be any category with pullbacks. A universal closure operation on \mathcal{E} is defined by specifying, for each $X \in \mathcal{E}$, a closure operation (i.e., an increasing, order-preserving, idempotent map) on the poset of subobjects of X - we denote the closure of $X^{\prime} \mapsto X$ by $\overline{X^{\prime}} \mapsto X-$ in such a way that closure commutes with pullback along morphisms of \mathcal{E}; i.e., given $Y \xrightarrow{f} X$, we have $f^{*}\left(\overline{X^{\prime}}\right) \cong \overline{f^{*}\left(X^{\prime}\right)}$ as subobjects of Y.

We shall use the words dense and closed with their usual meanings relative to a universal closure operation; i.e., $X^{\prime} \hookrightarrow X$ is dense if $\overline{X^{\prime}} \cong X^{\prime}$, and closed if $\overline{X^{\prime}} \cong X^{\prime}$.

Here is a way to visualize those rules.
First line: a monic map $\alpha: A \hookrightarrow B$ factors through its closure $\bar{\alpha}: \bar{A} \hookrightarrow$ B; the factorization arrow $A \hookrightarrow \bar{A}$ is not usually named. The closure of $\bar{\alpha}: \bar{A} \hookrightarrow B$ is a monic $\overline{\bar{\alpha}}: \overline{\bar{A}} \mapsto B$ isomorphic to $\bar{\alpha}: \bar{A} \mapsto B$. In a shorter notation, $A \leq \bar{A} \cong \overline{\bar{A}}$.

Second line: in the shorter notation the closure operation is order-preserving iff $A \leq B$ implies $\bar{A} \leq \bar{B}$; more formally, if $(\alpha: A \mapsto C) \leq(\beta: B \mapsto C)$ implies $(\bar{\alpha}: \bar{A} \hookrightarrow C) \leq(\bar{\beta}: \bar{B} \mapsto C)$, where each ' \leq 's between monics should be read as "factors through".

The best way to visualize the last rule is by a slight diagrammatic abuse of of language. We start with a monic $\gamma: C \rightarrow D$ and an arrow $f: B \rightarrow D$ that is not necessarily a monic, as below. We form their pullback, and we call the arrow at the left wall $f^{*}(\gamma): A \hookrightarrow B$. Let $\bar{\gamma}: \bar{C} \hookrightarrow D$ and $\overline{f^{*}(\gamma)}: \bar{A} \hookrightarrow B$ be the closures of γ and $f^{*}(\gamma)$. If we draw everything as below then the natural way to draw the pullback of $\bar{\gamma}: \bar{C} \mapsto D$ by f would be as an arrow $f^{*}(\bar{\gamma})$ in the same position as $\overline{f^{*}(\gamma)}: \bar{A} \rightharpoondown B$; what the rule $\overline{f^{*}(\gamma)} \cong f^{*}(\bar{\gamma})$ says is that $f^{*}(\gamma)$ and $f^{*}(\bar{\gamma})$ are isomorphic as subobjects of B - but we will draw $f^{*}(\gamma)$ and $f^{*}(\bar{\gamma})$ as if they were a single arrow.

We will usually draw that diagram as this, and omit the names of most, or all, of its arrows.

A J-operator induces a universal closure

