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(Page 77):
3.13 Definition. Let E be any category with pullbacks. A universal closure

operation on E is defined by specifying, for each X ∈ E , a closure operation
(i.e., an increasing, order-preserving, idempotent map) on the poset of sub-
objects of X — we denote the closure of X ′ � X by X ′ � X — in such a
way that closure commutes with pullback along morphisms of E ; i.e., given
Y

f→ X, we have f ∗(X ′) ∼= f ∗(X ′) as subobjects of Y .
We shall use the words dense and closed with their usual meanings relative

to a universal closure operation; i.e., X ′ � X is dense if X ′ ∼= X ′, and closed
if X ′ ∼= X ′.

Here is a way to visualize those rules.
First line: a monic map α : A � B factors through its closure α : A �

B; the factorization arrow A � A is not usually named. The closure of
α : A � B is a monic α : A � B isomorphic to α : A � B. In a shorter
notation, A ≤ A ∼= A.

Second line: in the shorter notation the closure operation is order-preserving
iff A ≤ B implies A ≤ B; more formally, if (α : A � C) ≤ (β : B � C)
implies (α : A � C) ≤ (β : B � C), where each ‘≤’s between monics should
be read as “factors through”.
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The best way to visualize the last rule is by a slight diagrammatic abuse of
of language. We start with a monic γ : C → D and an arrow f : B → D that
is not necessarily a monic, as below. We form their pullback, and we call the
arrow at the left wall f ∗(γ) : A � B. Let γ : C � D and f ∗(γ) : A � B be
the closures of γ and f ∗(γ). If we draw everything as below then the natural
way to draw the pullback of γ : C � D by f would be as an arrow f ∗(γ)
in the same position as f ∗(γ) : A � B; what the rule f ∗(γ) ∼= f ∗(γ) says is
that f ∗(γ) and f ∗(γ) are isomorphic as subobjects of B — but we will draw
f ∗(γ) and f ∗(γ) as if they were a single arrow.
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We will usually draw that diagram as this, and omit the names of most,
or all, of its arrows.
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A J-operator induces a universal closure
Q 1//Q
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Q 1//Q
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