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Abstract

One of the main prerequisites for understanding sheaves on ele-
mentary toposes is the proof that a (Lawvere-Tierney) topology on a
topos induces a closure operator on it, and vice-versa. That standard
theorem is usually presented in a relatively brief way, with most de-
tails being left to the reader — see for example [Joh77, section 3.1],
[McL92, chapter 21], [LM92, section V.1], [Bel88, chapter 5] — and
with no hints on how to visualize some of the hardest axioms and
proofs.

These notes are an attempt to present that standard theorem in
all details and in a visual way, following the conventions in [FavC];
in particular, some properties, like stability by pullbacks, are always
drawn in the same “shape”. We also use the idea that “Set is the
archetypal topos” (from [IDARCT, section 16]) and a variant of the
“canonical subobjects” from [LS86, section 2.15] to do a version “for
children” of the proof of the correspondence between topologies and
closure operators; this proof “for children” can be lifted without much
pain to a proof that works on toposes without canonical subobjects.

The last sections of these notes show how, for certain toposes, the
operation that restricts a closure operation on a topos to its action
on Sub(1) — i.e., to a “modal operator on its Heyting Algebra of
truth values” ([Fre72, section 1.4]), also called a “J-operator” in [FS79,
definition 2.11] and [PH2] — is a bijection, and shows how to visualize
this. I haven’t been able to find mentions of this bijection in the
literature... if you know any, please let me know!
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1 Subobjects and inclusions
The subobjects of an object D of a topos E are the monics with codomain
D modulo isomorphism. Here is an example in Set:

A Boo // B Coo //A

D

��

f

��?
??

??
??

??
??

??
B

D

� _

g

��

C

D

��

h

����
��
��
��
��
��
�

{20, 40} {2, 4}
207→2
407→4 //{20, 40} {2, 4}oo {2, 4} {2, 4}

27→4
47→2 //{2, 4} {2, 4}oo{20, 40}

{1, 2, 3, 4}

��

207→2
207→4

��?
??

??
??

??
??

?
{2, 4}

{1, 2, 3, 4}

� _

��

{2, 4}

{1, 2, 3, 4}

��

27→4
47→2

����
��
��
��
��
��

Here the monics f : A � D, g : B � D, h : C � D are all equivalent;
in some texts they are “the same subobject”. Let’s make that precise. For us
the elements of Sub(D) are the monics with codomain D. If (f : A � D),
(g : B � D) are elements of Sub(D) then they are equivalent (notation:
f ≡ g) iff there is an iso A ↔ B making the obvious triangle commute.
We write [f ] for the equivalence class made of an f ∈ Sub(D) and all other
monics in Sub(D) equivalent to f , and we write Sub(D) for Sub(D) modulo
equivalence: so [f ] ∈ Sub(D).

A monic g : B � D in Set is an inclusion if it obeys:

∀b ∈ dom(g). g(b) = b.

The usual way to formalize inclusions in toposes is via canonical subob-
jects. A topos E has canonical subobjects is it comes equiped with a class
CanSub(E) of monics that obey a certain list of properties — see [LS86, p.200
onwards] — that are also obeyed by the inclusions in Set. Here we will do
something similar but with a different list of properties, and in section 3 we
will see how to translate our proofs, done in toposes with inclusions, to proofs
in arbitrary toposes.

When f : A � C and g : B � C are subobjects of C we say that f is
contained in g (notation: f ⊆ g) when there is a monic m : A � B making
the obvious triangle commute. We call m the “mediating map”.

In Set we have two different operations that take two maps f, g with a
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common codomain and produce pullbacks:

B

C

g

��
A C

f
//

{ (a, b)∈A×B | f(a)=g(b) } Bπ′
//{ (a, b)∈A×B | f(a)=g(b) }

A

π

��

B

C

g

��
A C

f
//

B

C

g

��
A C

f
//

{ a∈A | f(a) ∈ B } B//{ a∈A | f(a) ∈ B }

A

� _

��

B

C

� _

g

��
A C

f
//

� //

� //

The second one only works when the right wall is an inclusion, but it
produces pullbacks whose left walls are inclusions. In both cases we will
write the left wall as f−1(g) : f−1(B) → A,

f−1(B) B//f−1(B)

A

f−1(g)

��

B

C

g

��
A C

f
//

and there will be no default name for the top wall. When the right wall is
marked as an inclusion we will use the second pullback operation, otherwise
the first one.

In Set the classifying map of a monic m : A � B is defined as:

A 1//A

B

��
m

��

1

Ω

� _

>
��

B Ωχf :=

(λb:B.∃a∈A.m(a)=b)

//

and the “true” map > : 1 ↪→ Ω is the inclusion {1} ↪→ {0, 1}.
The inclusion classified by a map f : B → Ω is the map f−1(>); we

will sometimes write it as σ(f). Note that for any monic m : A � B we
have m ≡ σ(χm), and we have m = σ(χm) if m is an inclusion; and for any
f : B → Ω we have χσ(f) = f .
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1.1 Inclusions, precisely
A topos with inclusions is a topos E endowed with a class of monics Incs(E),
called the inclusions, and two pullback operations, as in the previous section,
obeying the properties below:

Inc1) For any two object C and D of E there is at most one inclusion from
C to D. When that inclusion map exists we write it as C ↪→ D — we
don’t need to name it — and we say that C is a subset of D (notation:
C ⊆ D).

Inc2) Each [f ] ∈ Sub(D) contains exactly one inclusion map. This can be
expressed as

∀A ∃!Boo ∃! //∀A

∀D

��

∀f
��?

??
??

??
?

∃!B

∀D

� _

∃!g
��

in the variant of Freyd’s diagrammatic language defined in [FavC, sec-
tion 4.1]. We will say that this g is the inclusion associated (or: equiv-
alent) to f , and write this as can(f) = g.

Inc3) The composite of two inclusions is an inclusion. Or, in the language of
Inc1: if B ⊆ C and C ⊆ D then B ⊆ D, with B ↪→ D = B ↪→ C ↪→ D.

Inc4) If f : B ↪→ D and g : C ↪→ D are inclusions with f ⊆ g then the
mediating map m : B � C is an inclusion. In the language of Inc1:
f ⊆ g implies B ⊆ C. We can visualize this as:

B C� � m //B

D

� k

f
��2
22
22
22

C

D

s S

g

����
��
��
�

Inc5) The “true” map > : 1 ↪→ Ω is an inclusion.

Inc6) The second operation that produces pullbacks in E receives maps f :
A → C and g : B ↪→ C and returns pullbacks whose left walls are
inclusions. In a diagram:

B

C

g

��
A C� �

f
//

f−1(B) B//f−1(B)

A

� _

f−1(g)

��

B

C

� _

g

��
A C

f
//

� //
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Inc7) The intersection of two inclusions B ↪→ D and C ↪→ D is defined as
their pullback:

B∩C C� � //B∩C

B

� _

��

C

D

� _

��
B D� � //

Note that its upper wall is the mediating map from the composite
B∩C ↪→ C ↪→ D to C ↪→ D, so it is an inclusion.
Using Inc2 we can see that B∩C and C∩B are the same subset of D,
not just isomorphic subobjects.

We write Incs(D) for the class of inclusions with codomain D and Subsets(D)
for the class of subsets of D. In a topos with inclusions we have:

Subsets(D) ∼= Incs(D) ∼= Sub(D) ∼= Sub(D),

where the first two ‘∼=’s are isomorphisms and the last one is just an “equiv-
alence of categories”: if we start with a monic f in Sub(D), take it to its
equivalence class [f ] in Sub(D), and then go back to Sub(D), what we get is
can(f), and we have f ≡ can(f) but not necessarily f = can(f).

1.2 ‘And’ and ‘implies’
In section 2.2 we will need the “internal conjunction map”, (∧) : Ω×Ω → Ω,
whose internal view is (P,Q) 7→ P ∧Q, and the “internal implication map”,
(→) : Ω×Ω → Ω, that works as (P,Q) 7→ (P→Q). They are well explained
in sections 13.3 and 13.4 of [McL92], but only in their forms “for adults”, that
work in arbitrary toposes. In this section I will just complement [McL92] by
showing briefly how those definitions that hold in any topos are translations
of definitions that make sense in Set.

The arrow (∧) is built as the classifying map of the inclusion σ(∧) in this
diagram,

{ (P,Q) ∈ Ω× Ω | P ∧Q } 1//{ (P,Q) ∈ Ω× Ω | P ∧Q }

Ω× Ω

� _

σ(∧)
��

1

Ω

� _

��
Ω× Ω Ω∧:=χσ(∧)

//
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and the inclusion σ(∧) is built as an equalizer. We have:

{ (P,Q) ∈ Ω× Ω | P ∧Q }
= { (P,Q) ∈ Ω× Ω | P = > ∧Q = >}
= { (P,Q) ∈ Ω× Ω | idΩ(P ) = >Ω(P ) ∧ idΩ(Q) = >Ω(Q) }
= { (P,Q) ∈ Ω× Ω | (idΩ × idΩ)(P,Q) = (>Ω ×>Ω)(P,Q) }
= Eq((idΩ × idΩ), (>Ω ×>Ω))

Eq((idΩ × idΩ), (>Ω ×>Ω)) Ω× Ω� � eq((idΩ×idΩ),(>Ω×>Ω)) // Ω× Ω Ω
idΩ×idΩ //Ω× Ω Ω
>Ω×>Ω

//

{ (P,Q) ∈ Ω× Ω | P ∧Q } Ω× Ω� � σ(∧) // Ω× Ω Ω
(P,Q) 7→(P,Q) //Ω× Ω Ω
(P,Q) 7→(>,>)

//

Where the map >Ω is defined as:

A 1
!A // 1 Ω> //A Ω
>A:=>◦!A

// Ω 1
!Ω // 1 Ω> //Ω Ω
>Ω:=>◦!Ω

//

The arrow (→) is the classifier of the inclusion σ(→), that is built as
another equalizer:

{ (P,Q) ∈ Ω× Ω | P → Q } 1//{ (P,Q) ∈ Ω× Ω | P → Q }

Ω× Ω

� _

σ(→)

��

1

Ω

� _

��
Ω× Ω Ω

(→):=χσ(→)

//

{ (P,Q) ∈ Ω× Ω | P → Q }
= { (P,Q) ∈ Ω× Ω | > ≤ P → Q }
= { (P,Q) ∈ Ω× Ω | > ∧ P ≤ Q }
= { (P,Q) ∈ Ω× Ω | P ≤ Q }
= { (P,Q) ∈ Ω× Ω | P = P ∧Q }
= { (P,Q) ∈ Ω× Ω | π(P,Q) = (∧)(P,Q) }
= Eq(π,∧)

Eq(π,∧) Ω× Ω� � eq(π,∧) // Ω× Ω Ω
π //Ω× Ω Ω
∧

//

{ (P,Q) ∈ Ω× Ω | P → Q } Ω× Ω� � σ(→) // Ω× Ω Ω
(P,Q)7→P //Ω× Ω Ω

(P,Q)7→(P∧Q)
//

Note that in Set we have:
{ (P,Q) ∈ Ω× Ω | P ∧Q } = {(1, 1)},
{ (P,Q) ∈ Ω× Ω | P → Q } = {(0, 0), (0, 1), (1, 1)}.
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2 Closure operators
A closure operator (·) on a topos with inclusions E is a family of operations
like this,

(·)E : Incs(E) → Incs(E)

(d : D ↪→ E) 7→ (d : D ↪→ E),

where we have one (·)E for each object E of the topos, and these ‘(·)E’s obey:

C1) d ⊆ d,
C2) d = d,
C3) c ⊆ d implies c ⊆ d,
C4) c ∩ d = c ∩ d,
C5) f−1(d) = f−1(d),

for all inclusions c : C ↪→ E and d : D ↪→ E and for all maps f : B → E.
We will draw the properties C1, C2, C3, C5 as:

D

D

��

��?
??

??
??

?
D

E

��

d

��

D

E

��

d����
��
��
��

D
D

,, ,,YYYYY D

D
GG

GG
G

GG
GG

G
D

E

��

d

��

D

E

��

d

��








D

E

zz

d
zztt
tt
tt
tt
tt
tt
tt
t

C D// //C

C

��

��?
??

??
??

?
D

D

��

��?
??

??
??

?

C D// //

C

E

��
c

��

D

E

��

d

����
��
��
��
��
��
��
��

C

E

��
c

����
��
��
��

D

E

ww

d

wwooo
ooo

ooo
ooo

ooo
o

f−1(D) D//

f−1(D)=f−1(D) D//

B E
f

//

f−1(D)

B

��

f−1(d)

��

f−1(D)

f−1(D)=f−1(D)

��

��?
??

??
??

??

f−1(D)=f−1(D)

B

��

f−1(d)=f−1(d)

����
��
��
��
��

D

E

��

d

��

D

D

��

��?
??

??
??

??
??

D

E

��

d

����
��
��
��
��
�

Where all the ‘�’s in the diagrams are inclusions.
Important: in all diagrams from this section to section to 2.6 all the

‘�’s will stand for inclusions. This is for typographical reasons, to make the
diagrams a bit lighter. The distinction between ‘�’s and ‘↪→’s will reappear
in section 3.
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2.1 Topologies
A (Lawvere-Tierney) Topology on a topos E is a map j : Ω → Ω obeying:

LT1) j ◦ j = j,
LT2) j ◦ > = >,
LT3) j ◦ ∧ = ∧ ◦ (j × j).
We draw LT1, LT2, and LT3 as:

Ω Ω> //Ω

Ω
> ��?

??
??

??
Ω

Ω

j
��

Ω Ω
j //Ω

Ω
j ��?

??
??

??
Ω

Ω

j
��

Ω× Ω Ω∧ //Ω× Ω

Ω× Ω

j×j
��

Ω

Ω

j
��

Ω× Ω Ω∧ //

One way to grasp the intuitive meaning of LT1, LT2, and LT3 is to look
at their internal views. If we have maps p, q : A → Ω, the internal views of

A Ω
p // Ω Ω> //Ω

Ω
> ��?

??
??

??
Ω

Ω

j
��

A Ω
p // Ω Ω

j //Ω

Ω
j ��?

??
??

??
Ω

Ω

j
��

A Ω× Ω
〈p,q〉 // Ω× Ω Ω∧ //Ω× Ω

Ω× Ω

j×j
��

Ω

Ω

j
��

Ω× Ω Ω∧ //

are:

a P (a)� // P (a) >� //P (a)

>

y

��9
99

99
99

9
>

>∗

_

��

a P (a)� // P (a) P (a)∗� //P (a)

P (a)∗

k

&&

P (a)∗

P (a)∗∗

_

��

a (P (a), Q(a))� // (P (a), Q(a)) P (a)∧Q(a)� //(P (a), Q(a))

(P (a)∗, Q(a)∗)

_

��

P (a)∧Q(a)

(P (a)∧Q(a))∗

_

��

(P (a)∗, Q(a)∗) P (a)∗∧Q(a)∗� //

We are writing j(P (a)) as P (a)∗ to suggest a connection between topolo-
gies and the J-operators of [PH2]; we will develop this idea in section ....
.
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2.2 Topologies induce closure operators
Theorem 2.2.1. Let E be a topos with inclusions, and let j be a topology
on it. For each inclusion d : D ↪→ E let d : D ↪→ E be the inclusion that is
classified by j ◦ χd, as in the diagram below:

D 1//D

E

��
d

��

1

Ω

��

��

D 1//D

E

��
d

����
��
��

1

Ω

��

����
��
��

E Ωχd

// Ω Ω
j
//

Then this operation d 7→ d is a closure operator — i.e., it obeys C1, C2,
C3, C4, C5.

Proof.
For C1, rename the second 1 to 1′ in the diagram above and draw the

identity map 1 → 1′. The slanted rectangle with D in its upper left corner
is a pullback. We can factor the maps d : D � E and ! : D → 1′ through it,

D 1//D

E

��
d

��

1

Ω

��

��

D 1′//D

E

��
d

����
��
��

1′

Ω

��

����
��
��

E Ωχd

// Ω Ω
j
//

D

D

��
m

��?
??

??
?

1

1′
''OO

OOO
OOO

OOO
OOO

and this gives us a mediating map m : D � D. It is easy to check that this
m is a monic and an inclusion.1

For C2, draw the diagram below:

D 1//D

E

��

d

��

1

Ω

��

��

D 1//D

E

��

d

��






1

Ω

��

��






D 1//D

E

vv
d

vvmmmm
mmm

mmm
1

Ω

vv

vvmmm
mmm

mmm
m

D

D

##
##G

GG
G

1

1

))

))SSS
SSSS

SSSS
S

D

D

��

��7
77

7
1

1

&&

&&MM
MMM

MMM
MMM

E Ωχd

// Ω Ω
j
// Ω Ω

j
//

1I thank David Michael Roberts for helping me with this.
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The inclusion d is classified by j ◦ χd and d is classified by j ◦ j ◦ χd. By
LT1 we have j ◦ j = j, and so j ◦ χd = j ◦ j ◦ χd. This means that d and d

are two inclusions classified by the same map — so d = d, and the inclusion
D ↪→ D is the identity.

To prove C4 we use the diagram below and the series of equalities at the
right of it:

E Ω×Ω
〈χc,χd〉 // Ω×Ω Ω∧ //Ω×Ω

Ω×Ω

j×j

��

Ω

Ω

j

��
Ω×Ω Ω∧ //

χ(c∩d) = j ◦ χc∩d
= j ◦ ∧ ◦ 〈χc, χd〉
= ∧ ◦ (j × j) ◦ 〈χc, χd〉
= ∧ ◦ 〈j ◦ χc, j ◦ χd〉
= ∧ ◦ 〈χc, χd〉
= χ(c∩d)

The inclusions c ∩ d and c∩ d are classified by the same map, so they are
equal.

The proof of C3 is this series of inferences:
c ⊆ d

c = c ∧ d

c = c ∧ d c ∧ d = c ∧ d

c = c ∧ d

c ⊆ d

The proof of C5 is this diagram

f−1(D) D// D 1//

f−1(D) D// D 1//

B E
f

// E Ωχd

// Ω Ω
j
//

f−1(D)

B

��
f−1(d)

��

D

E

��
d

��

1

Ω

��

��

f−1(D)

f−1(D)

��
��?

??
?

D

D

��

��?
??

??
?

1

1''
OOO

OOO
OOO

OOO
OO

f−1(D)

B

��
f−1(d)

����
��
�

D

E

��

d����
��
��

1

Ω

��

����
��
��

plus these equalities:

χ(f−1(d)) = j ◦ χf−1(d)

= j ◦ χd ◦ f
= χd ◦ f
= χf−1(d)

The inclusions f−1(d) and f−1(d) are classified by the same map, so they are
the same inclusion.
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2.3 Restricting a (·)E
In this section we will see how a closure operation (·)E can be “restricted”
to a subset D ⊆ E.

Theorem 2.3.1. Let E be a topos with inclusions, with a closure opera-
tor (·). If C ⊆ D ⊆ E in it, then the closure of m : C ↪→ D can be calculated
from the closures of c : C ↪→ D and d : D ↪→ E — and we have m = d−1(c)
and dom(m) = C ∩D.

Proof. draw the diagram at the left below, that is the diagram for C5
with some things renamed. The pullback of c : C ↪→ E and d : D ↪→ E is
C ∩D, which is C; so d

−1
(c) = m, and we have the diagram at the right.

d−1(C) C// //

d−1(C) C// //

D E//
d

//

d−1(C)

D

��
d−1(c)

��

d−1(C)

d−1(C)

��
��?

??
?

d−1(C)

D

��
d−1(c)

����
��
�

C

E

��
c

��

C

C

��

��?
??

??
?

C

E

��
c

����
��
��

C C// //

CD=C∩D C// //

D E//
d

//

C

D

��
m

��

C

CD=C∩D

��

��?
??

??

CD=C∩D

D

��
m=d−1(c)

����
��
��

C

E

��
c

��

C

C

��

��?
??

??
?

C

E

��
c

����
��
��

Our notation for the domain of the closure of an m : C ↪→ D when the
name C is taken will be CD, for “the closure of C in D”; the operation ‘·D’
will generalize the ‘·∗’ of [PH2]. As CD is the pullback of c : C ↪→ E and
d : D ↪→ E we have CD = C ∩D = CE ∩D.

Theorem 2.3.2. Let E be a topos with inclusions with closure operator
(·). If D ⊆ E in E, then (·)D can be obtained from (·)E in the following way:

(·)D : Incs(D) → Incs(D)
(m : C ↪→ D) → (m : CD → D)

:= (d−1(c) : C ∩D ↪→ D)

where c is c : C ↪→ E and c is its closure, c : C ↪→ E.
Proof. This is an easy corollary of Theorem 2.3.
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2.4 Dense and closed
For the next theorems we need some definitions:

An inclusion c : C → D is dense iff c = idD.
An inclusion d : D → E is closed iff d = d.
Theorem 2.4.1. If an inclusion a : A ↪→ B is dense and closed then it

is the identity.
Proof:

a dense
a = idB

a closed
a = a

a = idB

Theorem 2.4.2. In a topos with inclusions E with closure operator (·),
for any inclusion d : D ↪→ E we have:

D

D

�� m (dense)

��?
??

??
?

D

E

��

d (closed)����
��
��

D

E

��

d

��

Proof. d = d, so d is closed. To see that m : D ↪→ D is dense, we build
the diagram at the left below:

d
−1
(D) D// //

d
−1
(D) D// //

D E//
d

//

d
−1
(D)

D

��
d
−1

(d)

��

d
−1
(D)

d
−1
(D)

��
��?

??

d
−1
(D)

D

��
d
−1

(d)����
��
�

D

E

��
d

��

D

D

��

��?
??

??
?

D

E

��
d

����
��
��

D D//

D D//

D E
d

//

D

D

��
m

��

D

D

��

��?
??

??
?

D

D

��
m=id

����
��
��

D

E

��
d

��

D

D

��

��?
??

??
?

D

E

��
d

����
��
��

we have d
−1
(D) = D ∩D = D and d

−1
(D) = D ∩D = D, so we can rewrite

it as the diagram at the right above, and we get that m = id.
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2.5 Closure operators induce topologies
Let E be a topos with inclusions, and (·) a closure operator on it. Build this
diagram on it:

1

J :=1

��

��?
??

??
1

Ω

��

>

��

J :=1 1//J :=1

Ω

��

>����
��
��

1

Ω

��

����
��
��

Ω Ω
j:=χ>

//

Here the closure of > : 1 → Ω is > : 1 → Ω, and J is an alternate name
for this 1; and j := χ> is the map that classifies >.

Theorem 2.5.1. For every inclusion d : D ↪→ E we have χd = j ◦ χd,
where j is the map above.

Proof. Take a map f : E → Ω, and add to the diagram above the
diagram for f−1(>) = f−1(>). We get this:

f−1(1) 1//

f−1(1) J// J 1//

E Ω
f

// Ω Ω
j

//

f−1(1)

E

��
f−1(>)

��

f−1(1)

f−1(1)

��
��?

??
?

f−1(1)

E

��
f−1(>)

����
��
�

1

Ω

��
>

��

1

J

��

��?
??

??
?

J

Ω

��
>

����
��
��

1

Ω

��
>

����
��
��

This map f is the classifying map for some inclusion; let’s call it d : D ↪→
E, and rewrite f as χd. We get:

D 1//

D J// J 1//

E Ωχd

// Ω Ω
j

//

D

E

��
d

��

D

D

��

��?
??

??
?

D

E

��
d

����
��
��

1

Ω

��
>

��

1

J

��

��?
??

??
?

J

Ω

��
>

����
��
��

1

Ω

��
>

����
��
��

We have d = f−1(>) = f−1(>) = χd
−1(>) = χd

−1(j−1(>)) = (j ◦
χd)

−1(>), and so χd = χ((j◦χd)−1(>)) = j ◦ χd.
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Theorem 2.5.2. The map j defined above is a topology.
Proof. To prove LT1 we have to see that j = j ◦ j. We have d = d for

all inclusions d; so χd = χ
d

always. We have χd = j ◦ χd and χ
d
= j ◦ j ◦ χd,

so j ◦ χd = j ◦ j ◦ χd always holds. There is a way to make χd = id here
— which is when d : D ↪→ E is > : 1 ↪→ Ω — and so a particular case of
j ◦ χd = j ◦ j ◦ χd is j ◦ id = j ◦ j ◦ id, which gives us j = j ◦ j.

To prove LT2 we have to see that >Ω = j ◦>Ω, i.e., that >◦!Ω = j ◦>◦!Ω.
To do this we draw this diagram,

Ω 1// 1 1//

Ω 1// 1 J// J 1//

Ω 1
!Ω

// 1 Ω
>

// Ω Ω
j

//

Ω

Ω

��
idΩ

��

Ω

Ω

��

��?
??

??
?

Ω

Ω

��
idΩ=idΩ

����
��
��

1

1

��
!1

��

1

1

��

��?
??

??
?

1

1

��
!1=!1

����
��
��

1

Ω

��
>

��

1

J

��

��?
??

??
?

J

Ω

��
>

����
��
��

1

Ω

��
>

����
��
��

and check that its two upright squares and its three lower slanted squared
are pullbacks. With this we get that both >◦!Ω and j ◦ >◦!Ω classify idΩ, so
>◦!Ω = j ◦ >◦!Ω.

To prove LT3 we start by choosing any two inclusions with the same
codomain, c : C ↪→ E and d : D ↪→ E. From the maps χc, χd : E → Ω we
build a map 〈χc, χd〉 : Ω → Ω × Ω, and we plug it on the diagram for LT3.
We get:

E Ω×Ω
〈χc,χd〉 // Ω×Ω Ω∧ //Ω×Ω

Ω×Ω

j×j

��

Ω

Ω

j

��
Ω×Ω Ω∧ //

We have
∧ ◦ (j × j) ◦ 〈χc, χd〉 = χc∩d

j ◦ ∧ ◦ 〈χc, χd〉 = χc∩d

and C4 tells us that c∩d = c ∩ d; so it is always true that ∧◦(j×j)◦〈χc, χd〉 =
j◦∧◦〈χc, χd〉. We can make 〈χc, χd〉 be the identity map if we take E := Ω×Ω,
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〈χc, χd〉 = idΩ×Ω = 〈π, π′〉. The internal views of χc and χd are:

C 1//C

Ω×Ω

��
c

��

1

Ω

��
>
��

Ω×Ω Ωχc=π
//

D 1//D

Ω×Ω

��
d

��

1

Ω

��
>
��

Ω×Ω Ωχd=π
//

(P,Q) P� //

(P,Q) Q� //

In Set we can construct the subsets C and D as:

C = { (P,Q) ∈ Ω× Ω | P = >}
= {>} × Ω

D = { (P,Q) ∈ Ω× Ω | Q = >}
= Ω× {>}

This suggests that we can generalize that construction to any topos as:

C 1//C

E

��
c

��

1

Ω

��
>
��

E Ωχc
//

1×Ω 1//1×Ω

Ω×Ω

��
(>×id)

��

1

Ω

��
>
��

Ω×Ω Ωχc=π
//

D 1//D

E

��
d

��

1

Ω

��
>
��

E Ωχd

//

Ω×1 1//Ω×1

Ω×Ω

��
(id×>)

��

1

Ω

��
>
��

Ω×Ω Ωχd=π
//

These constructions do work, but I will skip the details of the proof. So:
with c = (> × id) and d = (id × >) we have 〈χc, χd〉 = idΩ×Ω, and in this
particular case our equality ∧ ◦ (j × j) ◦ 〈χc, χd〉 = j ◦ ∧ ◦ 〈χc, χd〉 reduces to
∧ ◦ (j × j) = j ◦ ∧ — and this proves LT3.
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2.6 A bijection
We saw that a closure operator induces a topology and that a topology
induces a closure operator. Now we need to check that these two operations,
that we can abbreviate as (·) 7→ j and j 7→ (·), as below,

(·) j� j:=χ> //

(·) joo
(·):=(λd.σ(j◦χd))

�

are inverses to one another — i.e., that the composites (·) 7→ j 7→ (·) and
j 7→ (·) 7→ j are identity maps. We will organize all this visually as:

(λd.d)

(·)(·) χ>
� //

(λd.σ(χ> ◦ χd)) χ>
oo �

j ◦ χ>

χ((λd.σ(j◦χd))(>))(λd.σ(j ◦ χd)) χ((λd.σ(j◦χd))(>))
� //

(λd.σ(j ◦ χd)) joo �

To prove that (·) 7→ j 7→ (·) is the identity we need to check that in
any topos with inclusions with a closure operator (·) we have that (·), i.e.,
(λd.d), is equal to (λd.σ(χ> ◦ χd)). It is enough that check that we have
d = σ(χ> ◦ χd) for any inclusion d. Look at the diagram below...

D 1//

D J// J 1//

E Ωχd

// Ω Ωχ>
//

D

E

��
d

��

D

D

��

��?
??

??
?

D

E

��
d

����
��
��

1

Ω

��
>

��

1

J

��

��?
??

??
?

J

Ω

��
>

����
��
��

1

Ω

��
>

����
��
��

To prove that j 7→ (·) 7→ j is the identity we need to check that in any
topos with inclusions with a topology j we have j = j ◦ χT . Look at the
diagram below:

1 1//1

Ω

��
>
��

1

Ω

��
>
��

Ω Ωχ>
// Ω Ω

j
//

We have χ> = idΩ, and so j ◦ χT = j ◦ id = j.
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3 Translating all this to toposes without in-
clusions

Let’s start by an example – we will translate Theorem 2.3. This diagram
condenses the two diagrams of the original proof into a single one:

d−1(C)=D∩C=C C� � //

CD=d−1(C)=d−1(C)=D∩C C� � //

D E� �

d
//

d−1(C)=D∩C=C

D

� _

d−1(c)
=(d∩c)′

m

��

d−1(C)=D∩C=C

CD=d−1(C)=d−1(C)=D∩C

� x

**VVVV
VVVV

VVV

CD=d−1(C)=d−1(C)=D∩C

D

fF

m=d−1(c)=d−1(c)=(d∩c)′
tthhhhh

hhhh
hhhh

hhhh
h

C

E

� _

c

��

C

C

� o

��?
??

??
?

C

E

oO
c

����
��
��

where (d∩ c)′ and (d∩ c)′ are maps in intersection pullbacks. The convention
is that if a : A � C and b : B � C are monics then the components of the
diagram for A ∩B are named like this:

A ∩B B//(a∩b)
′′
//A ∩B

A

��
(a∩b)′

��

A ∩B

C

""

(a∩b)
DDD

""D
DDD

B

C

��
b

��
A C//

a
//

This is how I would start to structure the proof above to implement it in
a proof assistant. Most nodes in this tree

d inclusion
d−1(C) = D ∩ C

C ⊆ D

C = C ∩D

C = D ∩ C

D ∩ C = C

C = d−1(C)

CD = d−1(C) d−1(C) = d−1(C)

d inclusion
d−1(C) = D ∩ C

CD = D ∩ C

state that two inclusions with different constructions are isomorphic, and so
they are the same morphism. For example, “C = d−1(C)” is an abbreviation
for this:

(m : C ↪→ D) = (d−1(c) : D−1(C) ↪→ D)

The properties of inclusions let us omit the codomains and the names of
the arrows in many cases, and write only their domains.
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We can regard the tree above as a proof of this equality of inclusions that
appears at the root node:

(m : CD ↪→ D) = ((d ∩ c)′ : D ∩ C ↪→ D)

We can translate it to a construction of this isomorphism of monics:

(m : CD � D) ≡ ((d ∩ c)′ : D ∩ C � D)

Now the names of the morphisms are primary and the names of the
objects secondary. I prefer write both, otherwise I feel that the translated
tree becomes unreadable. Here is the translation of the upper left part of the
previous tree:

d monic
(d−1(c) : d−1(C) � D) ≡ (id ∩m : D ∩ C � D)

(m : C � D) ⊆ (id : D � D)

(m : C � D) ≡ (m ∩ id : C ∩D � D)

(m : C � D) ≡ (id ∩m : D ∩ C � D)

(id ∩m : D ∩ C � D) ≡ (m : C � D)

(d−1(c) : d−1(C) � D) ≡ (m : C � D)

(m : C � D) ≡ (d−1(c) : d−1(C) � D)

(m : CD � D) ≡ (d−1(c) : d−1(C) � D)

I tried to draw a diagram with all the morphisms in the tree above fol-
lowing my usual conventions, and I found the result too messy. But if we
translate the original diagram to this,

d−1(C)≡D∩C≡C C// //

CD≡d−1(C)≡d−1(C)≡D∩C C// //

D E//
d

//

d−1(C)≡D∩C≡C

D

��

d−1(c)
≡(d∩c)′

m

��

d−1(C)≡D∩C≡C

CD≡d−1(C)≡d−1(C)≡D∩C

**

**VVVV
VVVVV

VV

CD≡d−1(C)≡d−1(C)≡D∩C

D

tt

m≡d−1(c)≡d−1(c)≡(d∩c)′
tthhhh

hhhh
hhhh

hhhh
h

C

E

��
c

��

C

C

��

��?
??

??
?

C

E

��
c

����
��
��

and we define in the right way how to interpret the ‘≡’s in it, then everything
works. In

A1≡A2≡A3

B1≡B2≡B3≡B4

f1≡f2≡f3≡f4≡f5

��

the “object” A1≡A2≡A3 means that we have three objects with known, but
unnamed, isos between each one and the next, like this: A1 ↔ A2 ↔ A3, and
the “arrow” f1≡f2≡f3≡f4≡f5 is in fact five “isomorphic” arrows, and each
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fi goes from some Aj to some Bk, but the diagram does not say what are
these ‘j’s and ‘k’s; in this context “the ‘fi’s are isomorphic” means that the
diagram made by A1 ↔ A2 ↔ A3, B1 ↔ B2 ↔ B3 ↔ B4, and all the ‘fi’s
commutes.

The translation sketched above works for all constructions and proofs in
sections 2–2.6. It may be possible to characterize the class of constructions
and proofs on which it works, but this is far beyond the scope of these notes.
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4 Toposes of the form SetC and SetD

From here onwards we will reserve the symbol C for small categories and
D for “DAG categories”, that we define as follows: a category D is a DAG
category iff there is a finite DAG (P,A) such that D is the transitive-reflexive
closure (P,A∗) of (P,A), regarded as a category.

We are especially interested in two kinds of DAG categories:

1. The ones coming from the ZDAGs of [PH1], sections 1–2, with their
objects labeled in the “reading order”, as the categories H (“house”),
K (“kite”), and W below:

H =

1

2 3

4 5

↙ ↘
↓ ↓

K =

1

2 3

4

5

↙ ↘
↘ ↙

↓
W =

1 2 3

4 5
↘ ↙ ↘ ↙

2. “2-column graphs”, like the one below:

T =

1_

2_

3_

_1

_2

_3

They will be discussed in the next section.

The paper [PH1] defines a language in which certain diagrams have pre-
cise meanings as mathematical objects, but these meanings depends on the
context, and new meanings can be added. This bullet diagram

•
• •
•
•

can be interpreted as a subset of Z2 (section 1) and as a DAG with arrows
going downward (section 2); a diagram with ‘0’s and ‘1’s like

0
0 1
1
1

can be interpreted as:

1. a function, a characteristic function, or a subset (section 1),
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2. a set or an open set in an arbitrary topology (section 11),

3. a stable subset (section 12),

4. an open set in the default topology (section 12),

5. an open set of an order topology (section 12),

6. a point in a certain partial order (section 13),

7. a point in a certain planar Heyting Algebra (in a “ZHA”; sections 4,
13, 16)

Here we will add some new meanings to these lists. When we say

K =
•

• •
•
•

or T = ••
•

••
•

these will be shorter versions of the definitions of the DAG categories K and
T in the beginning of the section, and this

0
0 1
1
1

↪→
1

1 1
1
1

will be an inclusion in the category SetK, that we can expand as:

∅

∅
����
��
��
�
∅

{∗}
��?

??
??

?

∅

{∗}
��?

??
??

? {∗}

{∗}
����
��
��

{∗}

{∗}
��





{∗}

{∗}
����
��
��
{∗}

{∗}
��?

??
??

?

{∗}

{∗}
��?

??
??

?
{∗}

{∗}
����
��
��

{∗}

{∗}
��


� � //

Suppose that A =
0

1 0
0
0

is an object of SetK. This A has an arrow from
a 1 to 0: the image of the morphism 2 → 4 in K by A is a morphism from
{∗} to ∅ in Set, but Hom({∗}, ∅) is empty, so this is absurd. A diagram like

0
1 0
0
0

, “with an arrow 1 → 0”, denotes a non-stable subset of a ZSet in [PH1,
section 12], and a non-open subset in [PH1, section 15]; here it will denote
something that is not an object of the DAG category that we are dealing
with.
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4.1 Inclusions in ‘SetC’s and ‘SetD’s
Suppose that C is a small category and that E is the topos C. We can define
a class of inclusions on this SetC as follows. A morphism T : D → E is said
to be an inclusion if these two conditions hold:

SCInc1) For every object B of C the map TB : DB → EB is an inclusion
in Set,

SCInc2) For every map f : B → C in C the map Df : DB → DC is the
restriction of the map Ef : EB → EC to DB.

A morphism T : D → E in SetC is a natural transformation between two
functors D,E : C → Set, and using the conventions in section 5.3 of [PH2]
we can draw the conditions SCInc1 and SCInc2 for it as:

B

C

f

��

DB EB� � TB //DB

DC

Df

��

EB

EC

Ef

��
DC EC� � TC //

D E� � T //

with ∀d ∈ DB. (Df)(d) = (Ef ◦ TB)(d).
Here is an example of an inclusion in SetK, drawn using the conventions

from [FavC], sections 7.12–7.13::

{24, 25}

{1}
����
��
��
{24, 25}

{2}
��?

??
??

?

{1}

{1}
��?

??
??

?
{2}

{1}
����
��
��

{1}

{1}
��





{24, 25}

{1}
����
��
��
{24, 25}

{2, 3}

247→2
257→2

��?
??

??
?

{1}

{1}
��?

??
??

?
{2, 3}

{1}
����
��
��

{1}

{0, 1}
1 7→1
��


� � //

D E� � T //

It is relatively easy to check that this class of inclusions in a SetC obeys
the conditions Inc1, ..., Inc7 from section 1.1. We will leave the details to
the reader, inclusing the two ways of defining pullbacks. The classifier will
be discussed in section 4.6.
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4.2 The logic of a SetD

Let E be a topos with inclusions. The truth-values of E are the subsets of the
terminal 1E, and the logic of E, Logic(E), is the class, or set, of truth-values
of E. For some ‘SetD’s Logic(SetD) is easy to calculate and to draw. For
example:

Logic(SetK) =

{
0

0 0
0
0
,

0
0 0
0
1
,

0
0 0
1
1
,

0
0 1
1
1
,

0
1 0
1
1
,

0
1 1
1
1
,

1
1 1
1
1

}
,

Logic(SetH) =

1
1 1
1 1

0
1 1
1 1

0
1 0
1 1

0
0 1
1 1

0
1 0
1 0

0
0 0
1 1

0
0 1
0 1

0
0 0
1 0

0
0 0
0 1

0
0 0
0 0

↖

↗ ↖

↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗

In a DAG topos E = SetD where D is the DAG (P,A) regarded as a
category we have:

OA(P ) = Logic(SetD) ∼= Subsets(1E) ∼= Incs(1E) ∼= Sub(1E) ∼= Sub(1E),

The order topology OA(P ) is a Heyting Algebra. The section 16 of [PH1]
shows, very succintly and with nice diagrams, how to interpret >,⊥,∧,∨,→,
and ¬ on an OA(P ) — but for the gory details of the translation between
OA(P ) and Sub(1E) it points to [Awo06, section 6.3].

4.3 Inner points and χ01-diagrams
Let’s now borrow some terminology from Kripke Semantics. The objects of
C will be called worlds, or stages. An inner point of an object E ∈ SetC

is a pair (B, b) where B ∈ C and b ∈ EB — here we will not follow the
convention of calling b a “point of E at stage B”. We denote the set of inner
points of E as Innerpoints(E).

When (B, b) and (C, c) are inner points of E ∈ SetC and there is a map
f : B → C in C such that Ef(b) = c we will say that (B, b) sees (C, c), or
that (C, c) is ahead of (B, b). The set of futures of a point (B, b) ∈ E ∈ SetC,
denoted FuturesE((B, b)), is the set of inner points ahead of (B, b) in E.
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In ‘SetD’s we can use positional notations based on the ones of [PH1,
section 1] to draw both inner points and sets of futures. In the example of
an inclusion in SetK given in section 4.1 we have:

(3, 2) ∈ E ∈ SetK,

FuturesE((3, 2)) = {(3, 2), (4, 1), (5, 1)},

FuturesE

(
·

· 2
·
·

)
=

(
·

· 2
1
1

)
.

If m : D ↪→ E is an inclusion in a SetC we define its 01-characteristic
map as the function χ01m that takes each inner point (B, b) ∈ E to 1 if
(B, b) ∈ D, and to 0 otherwise. The χ01-diagram of an inclusion m : D ↪→ E
in a SetD, χ01(m), is obtained by drawing above each inner point (B, b) of
E its image by χ01m. The χ01-diagram of the inclusion T : D ↪→ E of section
4.1 is:

χ01(T ) =

{241, 251}

{11}
����
��
�

{241, 251}

{21, 30}

247→2
257→2

��?
??

??

{11}

{11}
��?

??
??

{21, 30}

{11}
����
��
�

{11}

{00, 11}
17→1
��

To obtain D from that diagram just drop the inner points with superscript
0, and then erase the remaining superscripts.

Take any inclusion m : D ↪→ E in a SetD. Then its χ01-diagram is
non-decreasing, in the following sense: if a (B, b) ∈ E sees a (C, c) ∈ E,
then χ01m((B, b)) ≤ χ01m((C, c)). Also, the functions from Innerpoints(E) to
{0, 1} that are 0/1-characteristic maps of inclusions are exactly the ones that
are non-decreasing. This gives us a simple way to build Incs(E) for a given
E ∈ SetD: get all the non-decreasing functions from the inner points of E
to {0, 1}, then convert each one to an inclusion.

We can mix χ01-diagrams with futures, but we will draw the result in a
very compact way. The χ01-diagram of the futures in m : D ↪→ D of an inner
point (B, b) ∈ E is drawn like FuturesE((B, b)), but for each (C, c) that is
ahead of (B, b) we draw χ01m((C, c)) in the place that we would draw (C, c).
For example, in the T : D ↪→ E of 4.1 we have:

χ01FuturesT ((3, 2)) =

(
·

· 0
1
1

)
.
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It is easy to see that if (C, c) is ahead of (B, b) then the χ01Futuresm((C, c))
is χ01Futuresm((B, b)) restricted to FuturesE((C, c)), where E is the codomain
of m. In the example,

χ01FuturesT ((3, 2)) =

(
·

· 0
1
1

)
χ01FuturesT ((4, 1)) =

(
·

· ·
1
1

)

4.4 The classifier in a SetD

Let D be the DAG category induced by a DAG (P,A), and let E = SetD.
In this situation we will use ‘↓’ with two different meanings: if B ∈ P then
↓B will be the set of elements of P “ahead” of B, and if Q ∈ Logic(E) then
↓Q is the set of elements of Logic(E) “below” Q. For example, when D = K,

K =

1

2 3

4

5

↙ ↘
↘ ↙

↓
, ↓3 = ↓

(
·

· •
·
·

)
= ↓

(
0

0 1
1
1

)
,

↓
(

0
1 1
1
1

)
=

{
·

0 0
0
0
,

·
0 0
0
1
,

·
0 0
1
1
,

·
0 1
1
1
,

·
1 0
1
1
,

·
1 1
1
1

}
In a category SetD the classifier object Ω is the functor Ω : D → Set

that takes each object B ∈ D to ↓↓B and each morphism B → C in D to
the function (∧↓C) : ↓↓B → ↓↓C. The classifier of SetK is this,

Ω =

↓↓1

↓↓2

∧↓2

����
��
��
↓↓1

↓↓3

∧↓3

��?
??

??
?

↓↓2

↓↓4
∧↓4 ��?

??
??

?
↓↓3

↓↓4
∧↓4����

��
��

↓↓4

↓↓5
∧↓5
��
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Here is the inner view of this Ω ∈ SetK:

=

{
0

0 0
0
0
,

0
0 0
0
1
,

0
0 0
1
1
,

0
0 1
1
1
,

0
1 0
1
1
,

0
1 1
1
1
,

1
1 1
1
1

}

{
·

0 ·
0
0
,

·
0 ·
0
1
,

·
0 ·
1
1
,

·
0 ·
1
1

}
∧
( ·

• ·
•
•

)

����
��
��
��
��
��
��
��

{
0

0 0
0
0
,

0
0 0
0
1
,

0
0 0
1
1
,

0
0 1
1
1
,

0
1 0
1
1
,

0
1 1
1
1
,

1
1 1
1
1

}

{
·

· 0
0
0
,

·
· 0
0
1
,

·
· 0
1
1
,

·
· 0
1
1

}
∧
( ·

· •
•
•

)

��?
??

??
??

??
??

??
??

?

{
·

0 ·
0
0
,

·
0 ·
0
1
,

·
0 ·
1
1
,

·
0 ·
1
1

}

{
·

· ·
0
0
,

·
· ·
0
1
,

·
· ·
1
1
,

}
∧
( ·

· ·
•
•

)

��?
??

??
??

??
??

??
??

?

{
·

· 0
0
0
,

·
· 0
0
1
,

·
· 0
1
1
,

·
· 0
1
1

}

{
·

· ·
0
0
,

·
· ·
0
1
,

·
· ·
1
1
,

}
∧
( ·

· ·
•
•

)

����
��
��
��
��
��
��
��

{
·

· ·
0
0
,

·
· ·
0
1
,

·
· ·
1
1
,

}

{
·

· ·
·
0
,

·
· ·
·
1

}
∧
( ·

· ·
·
•

)

��
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When the DAG (P,A) is a 2-column graph we can draw each ↓↓B as a
subset of the logic of the topos. For example, when D = T,

T =


1_

2_

3_

_1

_2

_3
 Logic(SetT) =

32
33

20
21
22
23

10
11
12
13

00
01
02

Ω =



32
·

20
21
22

·

10
11
12

·

00
01
02

·
·

·
·
·
·

10
11
12
13

00
01
02

·
·

20
·
·
·

10
·
·
·

00
·
·

·
·

·
·
·
·

·
·
·
·

00
01
02

·
·

·
·
·
·

10
·
·
·

00
·
·

·
·

·
·
·
·

·
·
·
·

00
01

·
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4.5 Classifying maps in a SetD (TODO)

4.6 The classifier in a SetD (via Yoneda)
Most texts about basic topos theory define the classifier of a SetC directly,
as we did in sections 4.4–4.5: they define an object Ω whose action on objects
takes each B ∈ C to the set of subfunctors of Hom(B,−) and whose action
on morphisms is the “obvious” one, and then they show that this Ω obeys
the properties that we expect from the classifier.

The book [LM92] does that but it also shows, in its pages 36–39, that
we can use Yoneda to prove that ΩB ∼= Sub(Hom(B,−)). I struggled a lot
to understand their proof, but I found that when I specialize it to ‘SetD’s it
becomes easy to visualize. Let me show how.

Let (P,A) be a 2-column graph, let D be (P,A) regarded as a category,
and let E be the topos SetD. Let Ω be any classifier object in E. This Ω is
a functor from D to Set, and:

Theorem 4.6.1. The action on objects of Ω takes each B ∈ D to a set
isomorphic to ↓↓B.

The proof needs the two diagrams below. The one on the left is the
“standard Yoneda Lemma”: it is the diagram Y1 of [FavC, section 7.2] with
its functor R : B → Set replaced by Ω : D → Set. The diagram on the right
is the “Yoneda Lemma for representable functors” — the second diagram
from [FavC, section 7.6] with its representable functor R : B → Set replaced
by Incs : (SetD)op → Set; its universal arrow is p>q, that selects the element
(> : 1 � Ω) ∈ Incs(Ω).

1

Ω(B)
��

B Ω(B)� //B

C
��

Ω(B)

Ω(C)
��

� //

C Ω(C)� //

D SetΩ //

D(B,−) Set(1,Ω(−))// Set(1,Ω(−))

Ω(−) = Ω

OO

��

D(B,−)

Ω(−) = Ω
))RR

RRR
RRR

RR
↓B ∼=

1

Incs(Ω)

p>q
(univ)��

Ω Incs(Ω)� //Ω

E

OO Incs(Ω)

Incs(E)
��

� //

E Incs(E)� //

(SetD)op SetIncs //

SetD(−,Ω) Set(1, Incs(−))oo // Set(1, Incs(−))

Incs(−) = Incs

OO

��

SetD(−,Ω)

Incs(−) = Incs

ii

))SSS
SSSS

SSSS

SetD

Now we have this sequence of isomorphisms:
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Ω(B) ∼= Set(1,Ω(B))
∼= SetD(↓B,Ω)
∼= Incs(↓B)

where the movement is:

1
2

3

4

5

Let’s look at an example. If D is the category T and B = _3 then:

Logic(SetT) =

32
33

20
21
22
23

10
11
12
13

00
01
02

Ω(_3) ∼= Set(1,Ω(_3))
∼= SetD(↓(_3),Ω)
∼= Incs(↓(_3))
∼= Incs(13)
∼= Subsets(13)
∼= {00, 01, 02, 10, 11, 12, 13}
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5 J-operators, slashings, and question marks
A set of question marks on 2-column graph (P,A) is a subset Q of P ; a
slashing S on a Planar Heyting Algebra H is a set of diagonal cuts on H
that “do not stop midway”. We say that two open subsets R1 and R2 of the
order topology OA(P ) are Q-equivalent if they only differ in a subset of Q;
we say that two elements R1 and R2 of H are S-equivalent if they belong to
the same region, i.e., it is possible to go from R1 to R2 without crossing any
one of the diagonal cuts.

The first theme treated in [PH2] is that there is a correspondence between
sets of question marks and slashings. For example, here,

1_

2_

3_

4_

_1

_2

_3

_4

_5

_6

?

?

?

?

?

?

?



45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

((P,A), Q) (H, J)

the Q-equivalence classes in OA(P ) coincide with the S-equivalence classes
in H; see [PH2, sections 1–1.4].

Let H be a ZHA and S be a slashing on it. Every S-equivalence class of H
has a top element; let’s write S(R) for the top element in the S-equivalence
class of R.

A J-operator on a ZHA H is a function J : H → H, that we usually write
as (·)∗, that obeys these three axioms: for any R,R1, R2 ∈ H,

J1) R ≤ R∗,
J2) R∗ = R∗∗,
J3) (R1 ∧R2)

∗ = R∗
1 ∧R∗

2.

A J-operator induces an equivalence relation on H, in which R1 ∼J R2

iff R∗
1 = R∗

2. It is easy to prove that each R∗ is the top element of its
J-equivalence class. It is also possible to prove that every slashing S “is”
a J-operator if we define J(R) := S(R), and that the lines separating the
equivalence classes of a J-operator always form a slashing. This is done in
[PH2, sections 2–4].
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5.1 Closure operators induce J-operators (TODO)
Let (P,A) be a 2-column graph. Let E = SetD be the DAG topos generated
by (P,A), and let H := Logic(E). Let (·) be a closure operator on E. Define
an operation (·)∗ : H → H by defining R∗ as dom(inc(R, 1)). More formally,

(·)∗ : Logic(E) → Logic(E)

R 7→ dom(inc(R, 1))

And as a diagram:

R T// //

R∗ T// //

1 Ω//
χinc(R,1)

// Ω Ω
j

//

R

1

� _

inc(R,1)

��

R

R∗

� o

��?
??

??
?

R∗

1

oO

inc(R,1)����
��
��
�

T

Ω

� _

��

T

Ω

oO

����
��
��

Note that we also have R∗ = dom(σ(j ◦ χinc(R,1))).

Theorem 5.1.1. The operation (·)∗ defined above is a J-operator.
Proof. The proofs of J1 and J2, i.e., of R ≤ R∗ and R∗ = R∗∗, are just

the parts C1 and C2 of Theorem 2.2 with a slightly different notation: just
rewrite the E as 1, D as R, D as R∗, and D as R∗∗.

The proof of J3 is better done in two steps. First we establish the no-
tation, i.e., how the truth-values and their arrows to 1 will be named, using
the notation for intersection pullbacks that we defined in Theorem 2.3:

C∧D D� � (c∩d)′′ //C∧D

C

� _

(c∩d)′

��

C∧D

1

� p

(c∩d)
DDD

DD

!!D
DD

DD

D

1

� _

d

��
C 1� �

c
//

C∗∧D∗ D∗� �(c∩d)′′ //C∗∧D∗

C∗

� _

(c∩d)′

��

C∗∧D∗

1

� p

(c∩d)
DDD

DD

!!D
DD

DD

D∗

1

� _

d

��
C∗ 1� �

c
//

C∧D

(C ∧D)∗

� o

��?
??

??
?C∧D

1

� _

c∩d

��

(C ∧D)∗

1

oO

c∩d����
��
��

And here is the second step:

(C ∧D)∗ = dom(c ∩ d)

= dom(c ∩ d)

= dom(c) ∩ dom(d)
= C∗ ∩D∗

(C ∧D)∗ = dom(inc(C, 1) ∩ inc(D, 1))

= dom(inc(C, 1) ∩ inc(D, 1))

= dom(inc(C, 1)) ∩ dom(inc(D, 1))
= C∗ ∩D∗
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5.2 J-operators induce topologies (TODO)
Let’s state this in its general form first, and then see an example that clarifies
what it means and how it works.

Theorem 5.2.1.
Suppose that: D is a DAG category,

E is SetD,
j is a topology in E,
(·) is the closure operator associated to j,
B is an object of D,
R is ↓B (so R ∈ Logic(E)),
(q : Q ↪→ R) ∈ Incs(R) (so Q ≤ R),
(q : Q ↪→ R) is the closure of q (so Q ≤ Q ≤ R).

Then: RB = {∗},
ΩB = ↓↓B = ↓R,
(χqB)(∗) = Q,
(χqB)(∗) = Q,

and so: jB(Q) = jB(χqB(∗))
= (jB ◦ χqB)(∗)
= (j ◦ χq)(B)(∗)
= χq(B)(∗)
= Q.

Q T// //

Q T ′// //

R Ω//
χq

// Ω Ω′
j

//R Ω′

χq

//
↓B =

Q

R

� _

q

��

Q

Q

� o

��?
??

??
?

Q

R

oO
q

����
��
��

T

Ω

� _

��

T ′

Ω′

oO

����
��
��

RB ΩB
χqB

// ΩB ΩB
jB

//RB ΩB

χqB
//

∗ Q� //

∗ Q� //

Q Q� //
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Example 5.2.2. If we make D = T, B = 3_, Q = 11, and Q = 21 in
the previous diagram it becomes this:

11 T// //

21 T ′// //

32 Ω//
χq

// Ω Ω′
j

//32 Ω′

χq

//
↓3_ =

11

32

� _

q

��

11

21

� o

��?
??

??
?

21

32

oO

q
����
��
��

T

Ω

� _

��

T ′

Ω′

oO

����
��
��

(3_, ∗) (3_, 11)� //

(3_, ∗) (3_, 21)� //

(3_, 11) (3_, 21)� //

Here is its internal view:(
∅ ∅
∅ ∅

{∗} {∗}

) (
{32} {13}
{20} {02}
{10} {01}

)
// //

(
∅ ∅

{∗} ∅
{∗} {∗}

) (
{32} {13}
{20} {02}
{10} {01}

)
// //

(
{∗} ∅
{∗} {∗}
{∗} {∗}

)
Ω//

χq
// Ω Ω′

j
//

(
{∗} ∅
{∗} {∗}
{∗} {∗}

)
Ω′

χq

//
↓3_ =

(
∅ ∅
∅ ∅

{∗} {∗}

)

(
{∗} ∅
{∗} {∗}
{∗} {∗}

)

� _

q

��

(
∅ ∅
∅ ∅

{∗} {∗}

)
(

∅ ∅
{∗} ∅
{∗} {∗}

)� o

��?
??(

∅ ∅
{∗} ∅
{∗} {∗}

)
(

{∗} ∅
{∗} {∗}
{∗} {∗}

) oOq����
�

(
{32} {13}
{20} {02}
{10} {01}

)

Ω

� _

��

(
{32} {13}
{20} {02}
{10} {01}

)

Ω′

oO

����
��
��
�

(3_, ∗) (3_, 11)� //

(3_, ∗) (3_, 21)� //

(3_, 11) (3_, 21)� //

I did not expand the ‘Ω’s because their internal views would be too big –
see the last diagram in section 4.4. Note that the images of R by the monics
χq and χq (that are not inclusions!) are, respectively:(

{11} ∅
{10} {01}
{10} {01}

)
and

(
{21} ∅
{20} {01}
{10} {01}

)
.
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Theorem 5.2.3.
Suppose that: (P,A) is a 2-column graph,

D is (P,A) as a DAG category,
E is SetD,
H is Logic(E),
(·)∗ is a J-operator on H.

Then the operation j = λB:P.λQ:↓Q.Q∗ ∧ ↓B
is a morphism j : Ω → Ω

that obeys j ◦ j = j,
j ◦ >Ω = >Ω,
∧ ◦ j = (j × j) ◦ ∧,

i.e., j is a topology on E.
Q T// //

Q∗∧↓B T ′// //

R Ω//
χq

// Ω Ω′
j

//R Ω′

χq

//
↓B =

Q

R

� _

q

��

Q

Q∗∧↓B

� o

��?
??

??
?

Q∗∧↓B

R

oO
q

����
��
��

T

Ω

� _

��

T ′

Ω′

oO

����
��
��

RB ΩB
χqB

// ΩB ΩB
jB

//RB ΩB

χqB
//

∗ Q� //

∗ Q∗∧↓B� //

Q Q∗∧↓B� //

To prove that this j : Ω → Ω is a natural transformation in SetD we need
to check that the square at the right here commutes:

B

C

f

��

ΩB ΩB
jB //ΩB

ΩC

Ωf

��

ΩB

ΩC

Ωf

��
ΩC ΩC

jC //

Ω Ω
j //

Q Q∗∧↓B� //Q

Q∧↓C

_

��

Q∗∧↓B

(Q∧↓B)∗∧↓C

_

��

Q∧↓C (Q∧↓C)∗∧↓C� //
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To prove that j obejs J1, J2, J3 we need to check that the lower three
diagrams here commute:

Ω Ω> //Ω

Ω
> ��?

??
??

??
Ω

Ω

j
��

Ω Ω
j //Ω

Ω
j ��?

??
??

??
Ω

Ω

j
��

Ω× Ω Ω∧ //Ω× Ω

Ω× Ω

j×j
��

Ω

Ω

j
��

Ω× Ω Ω∧ //

ΩB ΩB
jB //ΩB

ΩB
jB ��?

??
??

??
ΩB

ΩB

jB
��

ΩB ΩB
>ΩB //ΩB

ΩB
>ΩB ""E

EE
EE

EE
E ΩB

ΩB

jB
��

ΩB×ΩB ΩB
λQ,R.Q∧R //ΩB×ΩB

ΩB×ΩB

jB×jB
��

ΩB

ΩB

jB
��

ΩB×ΩB ΩB
λQ,R.Q∧R //

Q Q∗∧↓B� // Q∗∧↓B

(Q∗∧↓B)∗∧↓B

_

��

Q

Q∗∧↓B

c

--

Q ↓B� // ↓B

(↓B)∗∧↓B

_

��

Q

↓B

^

//

(Q,R) Q∧R� // Q∧R

(Q∧R)∗∧↓B

_

��

(Q,R)

(Q∗∧↓B,R∗∧↓B)

_

��
(Q∗∧↓B,R∗∧↓B) (Q∗∧↓B)∧(R∗∧↓B)� //
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Example 5.2.4. We can build a j by brute force from a 2CG with
question marks and see what patterns emerge. TODO: explain the notation
with slashings on sub-ZHAs of H.

((P,A), Q) =


1_

2_

3_

_1

_2

_3

?

?

?

?



(H, J) =

32
33

20
21
22
23

10
11
12
13

00
01
02

j =



32
·

20
21
22

·

10
11
12

·

00
01
02

·
·

·
·
·
·

10
11
12
13

00
01
02

·
·

20
·
·
·

10
·
·
·

00
·
·

·
·

·
·
·
·

·
·
·
·

00
01
02

·
·

·
·
·
·

10
·
·
·

00
·
·

·
·

·
·
·
·

·
·
·
·

00
01

·
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5.3 A bijection (TODO)

(·) j
� j:=χ> //(·) joo

(·):=(λd.σ(j◦χd))

�(·)

(·)∗

w

(·)∗:=
λQ. dom(inc(Q,>))

��7
77

77
77

77
77

77
7

(·)∗

j

G

j:=
λB.λQ.Q∗∧↓B

CC��������������
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5.4 Dense and closed maps in a SetD (TODO)
Let D be a DAG topos with a J-operator. If R and S are two truth-values
in it with R ≤ S we can name the inclusions between R, S, and 1 like this:

R S� � m //R

1

� k

r

��2
22
22
22

S

1

s S

s

����
��
��
�

and can use the Theorem 2.3 to calculate m using just the J-operator. We
have this:

R

RS=R∗∧S

� o
(dense)

��?
??

??
?R

S

� _

m

��

RS=R∗∧S

S

oO

m
(closed)

����
��
��

where we call the mediating map d, and we know that d is dense and m is
closed by Theorem 2.4.

This gives us lots of examples of dense and closed maps in a topos with
a J-operator. For example, if R = 11 and S = 14 in the figure below, then
R∗ = 23 and RS = R∗ ∧ S = 13:

R

R∗ S

RS

11

13 = 23 ∧ 14

� o

(dense)

��?
??

??
??

??
11

14

� _

��

13 = 23 ∧ 14

14

oO

(closed)
����
��
��
��
�

By trying many examples of this factorization I got two conjectures:
Conjecture 5.4.1. an inclusion R ↪→ R′ in the logic is dense iff both R

and R′ belong to the same region of the slashing,
Conjecture 5.4.2. an inclusion S ′ ↪→ S in the logic is dense iff S ′ cannot

be moved upwards toward S without crossing a line of the slashing.
They are both easy to prove. (...)
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5.5 Sheaves in a SetD (TODO)
The usual definition of a sheaf in a topos E with a topology j is that an
object S ∈ E is a (j-)sheaf iff for every dense monic d : D � E in E every
map f : D → S factors uniquely through d : D � E. I prefer to write this
backwards: S is a sheaf iff for every dense monic d : D � E the map of
hom-sets (◦d) : Hom(E, S) → Hom(D,S) is a bijection. In a diagram:

∀D

∀E

� _

∀d
dense

��

∀D

S

∀f

��?
??

??
??

??
?

∀E S
∃!g
// Hom(E, S)

Hom(D,S)

◦d
iso

OO

g

g ◦ d

_

OO

In a SetD we can get lots of properties that sheaves must obey by un-
derstanding what the condition above means on a very small family of dense
maps — the “basic dense maps”. Suppose that we have a DAG with ques-
tion marks ((P,A), Q) and that our topos E with topology j is generated
by that ((P,A), Q). For every point B of the set of question marks Q let
bd(B) : D ↪→ E be the inclusion in which E is ↓B and D is E minus the
point B. We will call these ‘bd(B)’s the basic dense maps of our topos.

5.6 From question marks to a closure operator (TODO) ?

?

?

?

?

?

?

1

·

·

·

1

0

0

0

·

· 


?

?

?

1

·

·

·

1

0

0

0

·

· 
5.7 Some topological lemmas (TODO)
Let (X,O(X)) be a topological space.

Lemma 5.7.1. If A,B ⊆ X then int(A ∩B) = int(A) ∩ int(B).
Proof. Suppose that c ∈ int(A) ∩ int(B). Then we have open sets

W,V ∈ O(X) that make all the inferences in the tree at the left below true,
and so c ∈ int(A ∩ B). Now suppose that d ∈ int(A ∩ B). We have an open
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set U ∈ O(X) that makes all the inferences in the tree at the right below
true, and so d ∈ int(A)∩ int(B). This means that int(A)∩ int(B) ⊆ int(A∩B)
and int(A ∩B) ⊆ int(A) ∩ int(B), and so int(A ∩B) = int(A) ∩ int(B).

c ∈ int(A) ∩ int(B)

c ∈ int(A)

c ∈ V ⊆ int(A)

c ∈ V ⊆ A

c ∈ V ∩W ⊆ A

c ∈ int(A) ∩ int(B)

c ∈ int(B)

c ∈ V ⊆ int(B)

c ∈ W ⊆ B

c ∈ V ∩W ⊆ B

c ∈ V ∩W ⊆ A ∩B

c ∈ int(A ∩B)

d ∈ int(A ∩B)

d ∈ U ⊆ int(A ∩B)

d ∈ U ⊆ A ∩B

d ∈ U ⊆ A

d ∈ int(A)

d ∈ int(A ∩B)

d ∈ U ⊆ int(A ∩B)

d ∈ U ⊆ A ∩B

d ∈ U ⊆ B

d ∈ int(B)

d ∈ int(A) ∩ int(B)

Lemma 5.7.2. If W,V ∈ O(X), W ⊆ V , and A ⊆ X, then
int(W ∪ A) ∩ V = int(W ∪ (A ∩ V )).
Proof:

int(W ∪ A) ∩ V = int(W ∪ A) ∩ int(V )
= int((W ∪ A) ∩ V )
= int((W ∩ V ) ∪ (A ∩ V ))
= int(W ∪ (A ∩ V )).
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5.8 Planar Heyting Algebras and 2CGs (TODO)
[This section is obsolete (?)]

The preprints [PH1] and [PH2] explain how to use 2-column graphs
(“2CGs”) to develop visual intuition about intuitionistic logic (the first one)
and J-operators (the second one). [PH2] stops just short from showing the
connections between J-operators and sheaves; we will do that in the next
sections.

The central construction in [PH1] can be stated as: every 2CG is associ-
ated to a Planar Heyting Algebra (a “ZHA”) and vice-versa, and the central
construction in [PH2] is: every 2CG with question marks is associated to a
ZHA with a J-operator and vice-versa. This can be represented in the general
case as:

(P,A) H
((P,A), Q) (H, J)

where the ‘ ’ is pronounced “is associated to”. Here is a nice particular
case: 

1_

2_

3_

4_

_1

_2

_3

_4

_5

_6


45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04


1_

2_

3_

4_

_1

_2

_3

_4

_5

_6

?

?

?

?

?

?

?



45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

For the details see [PH2], sections 1–3.
For a quick explanation of how to interpret the logical connectives in

OA(P ) and Incs(1E), see section 16 of [PH1]; for a way to visualize these
Heyting Algebras, see [PH1], section 13.
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