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Abstract

Imagine two category theorists, Aleks and Bob, who both think very
visually and who have exactly the same background. One day Aleks
discovers a theorem, T1, and sends an e-mail, E1, to Bob, stating and
proving T1 in a purely algebraic way; then Bob is able to reconstruct by
himself Aleks’s diagrams for T1 exactly as Aleks has thought them. We
say that Bob has reconstructed the missing diagrams in Aleks’s e-mail.

Now suppose that Carol has published a paper, P2, with a theorem
T2. Aleks and Bob both read her paper independently, and both pretend
that she thinks diagrammatically in the same way as them. They both
“reconstruct the missing diagrams” in P2 in the same way, even though
Carol has never used those diagrams herself.

Here we will reconstruct, in the sense above, some of the “missing
diagrams” in two factorizations of geometric morphisms in section A4 of
Johnstone’s “Sketches of an Elephant”, and also some “missing examples”.
Our criteria for determining what is “missing” and how to fill out the holes
are essentially the ones presented in the “Logic for Children” workshop at
the UniLog 2018; they are derived from a certain definition of “children”
that turned out to be especially fruitful.

One of the themes of the workshop [5] was a set of techniques for drawing
diagrams for general cases and for particular cases in parallel, in a way that
makes both diagrams have similar shapes, and that lets us transfer knowledge
from the general to the particular and back. The term “for children” in the
title of the workshop comes from some peoples’ reactions to Category Theory:
“I need a version for children of that!”. We defined children in a certain way
in order to get guidelines for how to construct a version “for children” of a
categorical text; namely, “children”: 1) prefer to start from particular cases
and then generalize; 2) like diagrams and like finite objects that can be drawn
explicitly; 3) become familiar with mathematical ideas by calculating and by
checking several cases (i.e., by “playing”), rather than by proving theorems.

1 Categories with coordinates
Let’s see a way to define finite categories whose objects have coordinates in
N2 and whose arrows can be named by just their sources and targets. We call
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these categories ZCategories, and it’s easier to start with an example. The left
half of Figure 1 is a ZCategory A whose objects are A0 = {1, 2, 3, 4, 5}, with
coordinates c(1) = (0, 2), c(2) = (1, 1), c(3) = (2, 1), c(4) = (1, 0), c(5) = (2, 0).
The arrow 2 → 4 belongs to A, but it is not shown. The right half of Figure 1
is a functor F : A → Set — a ZPresheaf.

A =


1

2
��?

??
??

?1

3
''OO

OOO
OOO

OOO1

4
��/
//
//
//
//
//

2 3//2

4
��

3

5
��

4 5//

 F =


F1

F2

��?
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??
F1

F3
''OO
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OOF1

F4

��/
//
//
//
//
//

F2 F3
//F2

F4

��

F3

F5

��
F4 F5

//


Figure 1: A ZCategory and a ZPresheaf.

A ZSet is a finite set P ⊂ N2 that touches both the x-axis and the y-axis. A
ZDirectedGraph is a pair (P,A) where P is a ZSet and A ⊆ P × P is a set of
arrows. We write (P,A∗) for the transitive-reflexive closure of (P,A).

The section 1 of [7] defines positional notations for ZSets and for functions
with ZSets as their domains. They’re like this:

{
(1,3),

(0,2), (2,2),
(1,1),
(1,0)

}
= =

{
((1,3),4),

((0,2),5), ((2,2),6),
((1,1),7),
((1,0),8)

}
=

4
5 6
7
8

The condition “...that touches both the x-axis and the y-axis” lets us draw
ZSets as just bullets, omitting the axes.

A ZCategory B is a category plus a structure ((P,A), c), called its drawing
instructions, obeying: 1) (P,A) is a ZDirectedGraph; 2) c : B0 → P is a
bijection between the objects of B and the ZSet P ; 3) for any objects D,E ∈ B
the hom-set HomB(D,E) is singleton when (c(D), c(E)) ∈ A∗, and is empty
when (c(D), c(E)) 6∈ A∗. The conditions 1–3 imply that a ZCategory is a finite
preorder category; the coordinates say where each object is to be drawn, and
the set A says which arrows are to be drawn explicitly; the other arrows are
said to be implicit.

A ZTopos is a functor category of the form SetB, where B is a ZCategory.
Objects of a ZTopos SetB inherit the drawing instructions from B, as the F in
the example above.

We call the objects of a ZTopos ZPresheaves. Note that a presheaf P on
B is an element of SetB

op

, which means that for each arrow D → E in B the
presheaf P returns an arrow P (D → E) : PE → PD in Set; ZPresheaves don’t
have this reversal of direction.
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2 Internal Diagrams
Internal diagrams are a tool that lets us lower the level of abstraction. They
merge ideas from the standard notation for declaring functions with the way we
used to draw functions in school, using arrows between the elements of blob-
sets. Look at Figure 2, at the left. Compare its ‘N → R’ in the upper line (the
external view), with the ‘n 7→

√
n’ in the lower line (the internal view); the

n 7→
√
n shows a (generic) element and its image. The middle part of Figure 2

shows the external view at the bottom and an internal view at the top; note that
all elements in the blobs for N and R are named, but only a few of the elements
are shown (compare with [4], p.3); the arrows like 3 7→

√
3 and 4 7→ 2, that show

elements and their images, are substitution instances of the generic n 7→
√
n,

maybe after some calculations (or “reductions” in λ-calculus terminology). The
right part of Figure 2 shows an adjunction L a R between categories A and B,
drawn in our favourite “shape” (see [9], where all this is explained in detail):
with the functor L going left and the functor R going right. We don’t draw blobs
to stress that B,LA,LRB ∈ B and A,RB,RLA ∈ A, and we draw “generic”
unit and counit maps.

√
: N → R

n 7→
√
n

−1
0 0
� //

1 1� //

2
√
2

� //

3
√
3� //

4 2� //

n
√
n� //

N R
√

//

LRB

B

εB

��

A

RLA

ηA

��

LA Aoo L0 �
LA

B

f

��

A

RB

g

��
B RB

�
R0

//

oo[AB ��
]AB

//

B Aoo L
B A

R
//

Figure 2: The standard notation for defining a function;
An internal view and the external view of the function √ ;
An internal view and the external view of an adjunction L a R.

3 Geometric morphisms (and how to draw them)
A geometric morphism f : E → F is an adjunction (f∗ a f∗) between toposes
E and F plus the assurance that f∗ is exact; a ZGM is a geometric morphism
generated by a functor f : A → B between ZCategories (a ZFunctor), in the
following sense. A functor f : A → B induces a geometric morphism f :
SetA → SetB between ZToposes; where f∗ is defined “by composition”. The
right adjoint f∗ can be calculated by the Kan extension formula, but in small
examples it is better to calculate it directly by guess-and-test. Figure 3 shows
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how we draw a geometric morphism and a ZGM; Figure 4 shows why we are
interested in ZGMs: if we choose ZCategories A and B we can replace several
objects of our diagram for ZGMs by their internal views, and this gives us a
way to “understand” the adjunction and the unit and counit maps.

f∗f∗D

D

εD

��

C

f∗f
∗C

ηC

��

f∗C Coo �f∗C

D
��

C

f∗D
��

D f∗D
� //

oo //

E Foo f∗

E F
f∗

//

E F
f //

f∗f∗D

D

εD

��

C

f∗f
∗C

ηC

��

f∗C Coo �f∗C

D
��

C

f∗D
��

D f∗D
� //

oo //

SetA SetB
oo f

∗

SetA SetB
f∗

//

SetA SetB
f //

A B
f //

Figure 3: A geometric morphism and a ZGM.

(
C2 C3
↘ ↙ ↘
C4 C5

)

(
D2 D3
↘ ↙ ↘
D4 D5

)
εD

��


C1
↙ ↘

C2 C3
↘ ↙ ↘
C4 C5
↘ ↙
C6




C2×C4
C3

↙ ↘
C2 C3
↘ ↙ ↘
C4 C5
↘ ↙

1


ηC
��

(
C2 C3
↘ ↙ ↘
C4 C5

) 
C1
↙ ↘

C2 C3
↘ ↙ ↘
C4 C5
↘ ↙
C6

oo �
(

C2 C3
↘ ↙ ↘
C4 C5

)

(
D2 D3
↘ ↙ ↘
D4 D5

)��


C1
↙ ↘

C2 C3
↘ ↙ ↘
C4 C5
↘ ↙
C6




D2×D4
D3

↙ ↘
D2 D3
↘ ↙ ↘
D4 D5
↘ ↙

1


��(

D2 D3
↘ ↙ ↘
D4 D5

) 
D2×D4

D3
↙ ↘

D2 D3
↘ ↙ ↘
D4 D5
↘ ↙

1

� //

oo //

SetA SetBoo f∗

SetA SetB
f∗

//

SetA SetB
f //

(
2 3
↘ ↙ ↘

4 5

) 
1

↙ ↘
2 3
↘ ↙ ↘

4 5
↘ ↙

6

f //

Figure 4: A ZGM in a particular case.
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4 Planar Heyting Algebras and 2-Column Graphs
The preprints [7] and [8] explain how to use 2-column graphs (“2CGs”) to de-
velop visual intuition about intuitionistic logic (the first one) and sheaves (the
second one).

The central construction in [7] can be stated as: every 2CG is associated
to a Planar Heyting Algebra (a “ZHA”, defined in section 4 of [7]) and vice-
versa, and the central construction in [8] is: every 2CG with question marks is
associated to a ZHA with a J-operator and vice-versa. This can be represented
as:

(P,A) H
((P,A), Q) (H, J)

where the ‘ ’ is pronounced “is associated to”. Formally, (P,A) H
when H is isomorphic to the order topology OA(P ), and ((P,A), Q) (H, J)
when (P,A) H and besides that the equivalence relation that Q in-
duces on OA(P ) is the same as the equivalence that the J-operator J induces
on H.

Here’s why this is relevant to us. We can regard a 2CG (P,A) as a ZCategory.
The logic of the ZTopos Set(P,A) — i.e., its Sub(1) — is exactly OA(P ). Also,
each sheaf shj(Set

(P,A)) on Set(P,A) corresponds to a set of question marks
Q ⊆ P and vice-versa.

These constructions are easy to understand if we have a concrete example,
so look at Figure 6.

The representation of the characteristic function of a subset S ⊆ P , χS , is
the diagram that we obtain from (P,A) by replacing each point of P by 1 when
it belongs to S and by 0 when not. We say that S obeys the condition of an
arrow (α → β) ∈ A when χS(α) ≤ χS(β), and that S violates the condition of
an (α → β) ∈ A when χS(α) = 1 and χS(β) = 0. A subset S ⊆ P is A-open
when it obeys the conditions of all arrows in A. OA(P ) is the set of all A-open
subsets of P .

A specification for a 2CG is a 4-uple (l, r, R, L); it generates a 2CG (P,A)
with P := pile(lr), and with sets of intercolumn arrows R (going right) and L
(going left). The set A of arrows of (P,A) is R ∪ L plus all the intracolumn
arrows that point one step down. The 2CG (P,A) in Figure 5 is generated by
this specification:

(4, 6,

{
4_→_5,
3_→_4,
2_→_2,
1_→_1,

}
, { 2_←_5 })

We write pile(ab) for the set {a_, . . . , 1_, _1, . . . ,_b}; χpile(a,b) is a pile of
a ‘1’s in the left column and b ‘1’s in the right column. A pile(ab) automatically
obeys the conditions of the vertical arrows in A (as they all point one step
down), and it is possible to translate the intercolumn arrows into conditions in
the ‘ab’s (sec.15 of [7]). The specification above becomes this:

OA(P ) = { pile(ab) | a ∈ {0, . . . , 4}, b ∈ {0, . . . , 6},

(
a≥4→ b≥5 ∧
a≥3→ b≥4 ∧
a≥2→ b≥2 ∧
a≥1→ b≥1

)
∧( a≥2← b≥5 ) }
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(P,A) H
((P,A), Q) (H, J)

Figure 5: The correspondence between 2CGs and ZHAs: the general case.
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Figure 6: The correspondence between 2CGs and ZHAs: an example.
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Figure 7: The closed operator (13∨) (right) and its associated question marks
(left).
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that lets us draw the ZHA H ∼= OA(P ) very quickly — and lets us check the
‘ ’ in the top of Figure 6.

In the lower half of Figure 6 the set of question marks is Q = {4_, 3_, 2_,
_1,_2,_3,_5, }. The subsets S, S′ ⊆ P are Q-equivalent when S and S′ only
differ in points of Q, i.e., S\Q = S′\Q. In the example, pile(22) ∼Q pile(23) 6∼Q

pile(24).
A J-operator on a Heyting Algebra H is an operation J : H → H, abbrevi-

ated as ‘·∗’, obeying P ≤ P ∗ = P ∗∗ and (P ∧Q)∗ = P ∗ ∧Q∗. The “slashing” in
the ZHA of the lower half of Figure 6 induces a J-operator that takes each ele-
ment of H to the top element of its equivalence class: J(12) = 23. We say that
A,B ∈ H are J-equivalent when A∗ = B∗. In the example, 22 ∼J 23 6∼J 24. It
is not hard to see that in this case (∼Q) = (∼P ).

Figure 7 shows the “closed” J-operator (13∨), that takes each A ∈ H to
13 ∨ A; it would be called J13(p) = 13 ∨ p in the notation of [3], page 329,
2.18.(i).

5 Question marks and sheaves
A J-operator J in a ((P,A), Q) (H, J) can be interpreted in the topos
Set(P,A) as an operation J : Sub(1) → Sub(1) on its truth-values. This J can
be extended to a local operator (see [EA4.4]) j : Ω → Ω in the topos Set(P,A).
The Elephant uses local operators instead of J-operators practically everywhere;
our (13∨) corresponds to a “closed local operator” c(pile(13)) in it — see [EA
p.206].

Each set of question marks Q ⊆ P induces an operation that erases the
information on objects associated to the points of Q and an operation that
“reconstructs” this information on those objects in a “natural” way. Figure 4
shows a case of this erasing and reconstruction, with Q = {1, 6}.

It is possible to show that in Figure 4 and in all similar cases the image of
f∗ is a sheaf and η is a sheafification functor. By “all similar cases” we mean:
the points of A are a subset of the points of B, and the partial order on A
is the restriction to those points of the partial order on B. We will need a
notation for that. If B is drawn as the directed graph (P,A) and S ⊆ P , then
we draw B as (S,A|S), where A|S ⊆ S × S is a set of arrows on S that obeys
(A|S)∗ = (S × S) ∩ A∗. We refer to that as a restriction of A to S, or as a
restriction of A with question marks Q, where Q = P\S.

6 Two factorizations of geometric morphisms
The Elephant presents in its sections A4.2 and A4.5 two factorizations of ge-
ometric morphisms that can be combined in a single diagram — see Figure 8.
An arbitrary geometry morphism g : A → D can be factored in an essentially
unique way as a surjection followed by an inclusion ([EA4.2.10]), and an inclu-
sion i : B → D can be factored in an essentially unique way as a dense g.m.
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followed by a closed g.m. ([EA4.5.20]). A canonical way to build these factor-
izations is by taking B := AG, where G is a certain comonad on A ([EA4.2.8]),
and taking C := shj(D), where j is a certain local operator on D.

A D
g (any g.m.) //

A B
s (surjection) // B D

i (inclusion) //

B C
d (dense) // C D

c (closed) //

AG shj(D)

Figure 8: Two factorizations of geometric morphisms.

SetA SetD
g (any g.m.) //

SetA SetB
s (surjection) // SetB SetD

i (inclusion) //

SetB SetC
d (dense) // SetC SetD

c (closed) //

(SetA)G shj(Set
D)

A D
g //

A B
s // B D

i //

B C
d // C D

c //

Figure 9: The same factorizations, but on ZGMs.

s∗s∗A

A
��

B

s∗s
∗B

(monic)
��

s∗B Boo �s∗B

A
��

B

s∗A
��

A s∗A
� //

oo //

SetA SetBoo s
∗

SetA SetB
s∗
//

A B
s //

i∗i∗B

B

(iso)
��

D

i∗i
∗D
��

i∗D Doo �i∗D

B
��

D

i∗B
��

B i∗B
� //

oo //

SetB SetDoo i∗

SetB SetD
i∗

//

B D
i //

d∗d∗B

B
��

kC

d∗d
∗kC

(monic
on c.p.s)��

d∗C Coo �d∗C

B
��

C

d∗B
��

B d∗B
� //

oo //

SetB SetCoo d
∗

SetB SetC
d∗

//

B C
d //

c∗c∗C

C
��

D

c∗c
∗D
��

c∗D Doo �c∗D

C
��

D

c∗C
��

C c∗C
� //

oo //

SetC SetDoo c
∗

SetC SetD
c∗
//

C D
c //

Figure 10: Conditions on the functors A
s→ B

i→ D and B
d→ C.
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These factorizations are almost completely opaque to people who know just
the basics of toposes. How can we produce a version “for children” of them in
the sense of the introduction?

The trick is to start with geometric morphisms whose internal views can be
drawn explicity — the ZGMs of section 2. Actually we start with the lower level
of Figure 2, and with the belief that all factorizations can be performed within
ZGMs.

7 Two factorizations of ZGMs
The Elephant defines surjections by a list of equivalent conditions, and the
same for inclusions and dense and closed geometric morphisms. Some of these
conditions — the ones drawn in Figure 10 — are very easy to test on ZGMs.

1. SetA
s→ SetB is a surjection when for every object B ∈ SetB the unit

map ηB is monic ([EA4.2.6 (iv)]);
2. SetB

i→ SetD is an inclusion when for every object B ∈ SetB the counit
map εB is an iso ([EA4.2.8]);

3. SetB
d→ SetC is an dense when for every constant presheaf kC the unit

map εkC is a monic [I can’t find a reference for this now].

We also have two conditions for “dense” and “close” that are easy to state
on “restrictions” in the sense of section 5 — but it’s not trivial to derive them
from the material in the Elephant. Let’s state them anyway:

4. A restriction SetB
d→ SetC is dense when all its question marks “have

non-question marks ahead of them”, i.e.: for every α in C such that α ∈ Q there
is an arrow α → β in C with β 6∈ Q;

5. A restriction SetC
d→ SetD is closed when all its question marks “are at

the end”, i.e.: there are no arrows α → β in D with α ∈ Q and β 6∈ Q.

We will say that a ZFunctor A
s→ B induces a surjection when the ZGM

SetA
s→ SetB induced by it is a surjection; and the same for inclusion, dense,

and closed.
How can we factor a ZFunctor A

g→ D into ZFunctors A
s→ B

i→ D that
induce a surjection and an inclusion, and how do we factor this B

i→ D into
B

d→ C
c→ D? Here is a way to get a good part of a possible answer.

We can think that a ZFunctor f : X → Y does several actions. If we think
that X is “before” and Y is “after”, then f can, for example: create isolated
objects, collapse isolated objects, collapse two ordered objects, create an arrow,
create objects at the beginning of a connected set, create objects at the middle
of a connected set, create objects at the end of a connected set... here are some
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examples that only do one of these actions each:

(1→1′) → (1)
(1 1′) → (1)
(1 2) → (1→2)

(2) → (1→2)
(1→3) → (1→2→3)

(1) → (1 2)
(1) → (1→2)

When we take A
g→ D as each one of the seven ZFunctors and we try to

factor that g as A
s→ B

d→ C
c→ D we see that the first three functors factor as

(s = g, d = id, c = id), the next two as (s = id, d = g, c = id), and the last two
as (s = id, d = id, c = g). The leads to a:

Conjecture 1 Take a ZFunctor A
g→ D. Factor it into A

s→ B
d→ C

c→ D in
the following way: s collapses objects and creates arrows; c creates objects at the
middle and at the beginnings of connected sets; d creates objects at the ends of
connected sets. Then this factorization of ZFunctors induces a surjective-dense-
closed factorization of ZGMs.

8 Epilogue: timber
Sections 1, 10, 11, 12, and 16 of [6] discuss how to reconstruct theorems from
incomplete versions that take very little mental space, or very little space on
paper; we do something similar here.

One idea that was widely circulated after the fire in the Notre Dame cathe-
dral was that it would be impossible to reconstruct its roof, because that would
require an entire forest full of old oak trees, and that thing doesn’t exist any-
more... but I saw a thread on Tweeter1 that contained these tweets: “The
steeple and the beams supporting it are 160 years old, and oaks for new beams
awaits at Versailles, the grown replacements for oaks cut to rebuild after the
revolution.” “Do you have a source on that protocol? Would love to hear more
- feel free to DM.” “It was a lecture I attended at Versailles on disaster recovery
and long term planning. Once per century events have to be planned for in a
city where structures are a thousand years old.” “It was a lecture from a decade
ago. I’m sorry that I don’t have more details but there must be better sources
than me out there. It’s similar to the oaks at Oxford grown to replace the ones
that rot out every 500 years, on schedule.”

Sometimes we have to deal with a Topos Theory whose timber is made from
Algebric Geometry oaks. Sometimes, for one reason or another, we want to be
prepared to replace them by oaks from Computer Science, or with oaks coming
from finite examples. The structure of the cathedral modulo these timbers can
be described in several forms; some more algebraic, some more diagramatic, like
the idea of “shape” in our Figures 3 and 10 and in [9].

1https://twitter.com/_theek_/status/1117895531563372544
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