
1

A diagram for the Yoneda Lemma
(In which each node and arrow can be

interpreted precisely as a “term”,
and most of the interpretations are

“obvious”; plus dictionaries!!!)
Eduardo Ochs (UFF, Rio das Ostras, Brazil)

http://angg.twu.net/#intro-tys-lfc

C RC
� //

A

RC

γ

��

(C→_) (A→R_)
T
//
��

55
T0 := λD.λg.(γ;Rg)
γ := TC(idC)

2019notes-yoneda April 5, 2020 10:06

http://angg.twu.net/#intro-tys-lfc

2

Three Yoneda Lemmas
These are our diagrams for three “Yoneda Lemmas”.

C RC� //

A

RC

γ

��

(C→_) (A→R_)
T //

C RC� //

1

RC

γ

��

(C→_) (1→R_)
T // (1→R_)

R

OO

��

(C→_)

R
T ′

%%KK
KKK

KKK
KK

C (B→ C)� //

1

(B→ C)

γ

��

(C→_) (1→(B→_))
T // (1→(B→_))

(B→_)

OO

��

(C→_)

(B→_)
T ′ &&MM

MMM
MMM

M

In all cases we have bijections between ‘γ’s and ‘T ’s.
The ‘γ’s are morphisms, the ‘T ’s are natural transformations.
Right: the most concrete and familiar YL, a bijection
Hom(B,C) ↔ Nat((C→_), (B→_)).
Left: the most abstract YL.

3

Three Yoneda Lemmas (and their names)

C RC
� //

A

RC

γ

��

(C→_) (A→R_)
T //

C RC
� //

1

RC

γ

��

(C→_) (1→R_)
T // (1→R_)

R

OO

��

(C→_)

R
T ′

%%KK
KKK

KKK
KK

C (B→ C)
� //

1

(B→ C)

γ

��

(C→_) (1→(B→_))
T // (1→(B→_))

(B→_)

OO

��

(C→_)

(B→_)
T ′ &&MM

MMM
MMM

M

Left: an (obscure?) lemma from adjunctions.
Middle: the Yoneda Lemma.
Right: the Yoneda Embedding.
Left: Hom(A,RC) ∼= Nat(Hom(C,−),Hom(A,R−))
Middle: RC ∼= Nat(Hom(C,−), R)
Right: Hom(B,C) ∼= Nat(Hom(C,−),Hom(B,−))

4

Three Yoneda Lemmas, co- and contravariant
We can modify each of our three Yoneda lemmas to get a
covariant version of it... for example, the Yoneda embedding
that we just saw says that the contravariant functor
X 7→ (X→_) at the left below is full and faithful...

C (C→_)
� //C

B

OO

B (B→_)� //

(C→_)

(B→_)
��

oo //

Cop SetC
X 7→(X→_) //

C (_→C)
� //C

D
��
D (_→D)� //

(_→C)

(_→D)
��

oo //

C SetC
opY 7→(_→Y) //

It is also possible to show that the covariant functor
Y 7→ (_→Y) at the right is full and faithful.
Next slides: the six lemmas, in my notation and in Riehl’s.

5

C RC� //

A

RC

γ
��

C A
R //

(C→_) (A→R_)
T //

C RC� //

1

RC

γ
��

C Set
R //

(C→_) (1→R_)
T // (1→R_)

R

OO

��

(C→_)

R
T ′ ''OO

OOO
OOO

O

C (B→C)� //

1

(B→C)

γ
��

C Set
(B→_) //

(C→_) (1→(B→_))
T // (1→(B→_))

(B→_)

OO

��

(C→_)

(B→_)
T ′ ((QQ
QQQ

QQ

C FC
� //

A

FC

γ
��

Cop A
F //

(_→C) (A→F_)
T //

C FC
� //

1

FC

γ
��

Cop Set
F //

(_→C) (1→F_)
T // (1→F_)

F

OO

��

(_→C)

F
T ′ ''OO

OOO
OOO

O

C (C→D)
� //

1

(C→D)

γ
��

Cop Set
(_→D) //

(_→C) (1→(_→D))
T // (1→(_→D))

(_→D)

OO

��

(_→C)

(_→D)
T ′ ((QQ
QQQ

QQ

6

TODO:
Translate the diagrams from the previous slide
to the notation in Section 2.2 of Emily Riehl’s
“Categories in Context”...

http://www.math.jhu.edu/~eriehl/context.pdf

http://www.math.jhu.edu/~eriehl/context.pdf

7

The first (most abstract) Yoneda Lemma
Choose (locally small) categories A and C,
objects A ∈ A and C ∈ C, a functor R : C → A,
and a morphism γ : A → RC.

C RC
� //

A

RC

γ

��

(C→_) (A→R_)
T //

We need to understand the functors (C → _) : C → Set
and (A → R_) : C → Set and see how the morphism
γ : A → RC induces a natural transformation T ...

8

The two functors: internal views
To understand the functors (C→_) and (A→R_) we
1) draw an auxiliar diagram (left),
2) draw their internal views (middle, right).

A

RC

γ
��

C

D

g
��

RC

RD

Rg
��

D

E

h
��

RD

RE

Rh
��

A

RD

δ

��

C RC� //

D RD� //

E RE� //

C A
R //

D (C→D)
� //D

E

h
��

(C→D)

(C→E)

λg.(g;h)��
E (C→E)� //

C Set
(C→_) //

g

g;h

_

��

D (A→RD)
� //D

E

h
��

(A→RD)

(A→RE)

λδ.(δ;Rh)��
E (A→RE)� //

C Set
(A→R_) //

δ

δ;Rh

_

��

(C→_)0(D) = HomC(C,D), (C→_)1(h) = λg.(g;h),
(A→R_)0(D) = HomA(A,RD), (A→R_)1(h) = λδ.(δ;Rh).

9

The natural transformation: internal view
To understand the NT T : (C→_) → (A→R_)
we start by seeing how it produces, for objects D,E ∈ C,
morphisms TD and TE...

A

RC

γ
��

C

D

g
��

RC

RD

Rg
��

D

E

h
��

RD

RE

Rh
��

A

RD

δ

��

C RC� //

D RD� //

E RE� //

C A
R //

D

E

(C→D) (A→RD)
TD //

(C→E) (A→RE)
TE //

(C→_) (A→R_)
T //

g γ;Rg
� //

g;h γ;R(g;h)� //

So TD = λg.(R; g),
T0 = λD.λg.(R; g).

10

The natural transformation: internal view (2)
Now we want to check that this T obeys sqcondT ,
i.e. that for every morphism h : D → E the
“obvious” induced square commutes.

A

RC

γ
��

C

D

g
��

RC

RD

Rg
��

D

E

h
��

RD

RE

Rh
��

A

RD

δ

��

C RC
� //

D RD� //

E RE
� //

C A
R //

D

E

h

��

(C→D) (A→RD)
TD //(C→D)

(C→E)

(C→_)h

��

(A→RD)

(A→RE)

(A→R_)h

��
(C→E) (A→RE)

TE //

(C→_) (A→R_)
T //

g γ;Rg
� // γ;Rg

(γ;Rg);Rh

_

��

g

g;h

_

��
g;h γ;R(g;h)

� //

δ

δ;Rh

_

��

It commutes because we have
∀g.((γ;Rg);Rh = γ;R(g;h)).

11

The diagram of the first Yoneda Lemma
We now understand all nodes and arrows in this diagram...
Remember that γ induced T .

C RC� //

A

RC

γ

��

(C→_) (A→R_)
T //

A ∈ A
C ∈ C
R : A → C
γ : A → RC

(C→_) : C → Set
(C→_)0(D) = HomC(C,D)
(C→_)1(h) = λg.(g;h)

(A→R_) : C → Set
(A→R_)0(D) = HomA(A,RD)
(A→R_)1(h) = λδ.(δ;Rh)

T : (C→_) → (A→R_)
T0(D) := λg.(γ;Rg)

12

The diagram of the first Yoneda Lemma (2)
We started with a morphism γ and defined T from it.
We can also do the inverse!

C RC� //

A

RC

γ

��

(C→_) (A→R_)
T //

A ∈ A
C ∈ C
R : A → C
γ : A → RC
γ := TC(idC)

(C→_) : C → Set
(C→_)0(D) = HomC(C,D)
(C→_)1(h) = λg.(g;h)

(A→R_) : C → Set
(A→R_)0(D) = HomA(A,RD)
(A→R_)1(h) = λδ.(δ;Rh)

T : (C→_) → (A→R_)

13

The bijection
Fact: the operations
T := λD.λg.(γ;Rg) and
γ := TC(idC)
are inverses to one another.
Let’s rewrite them as “Tγ” and “γT ”...

Tγ = λD.λg.(γ;Rg)
γT = TC(idC)
T(γT) = λD.λg.(γT ;Rg) = λD.λg.((TC(idC));Rg)
γ(Tγ) = TγC(idC) = (λD.λg.(γ;Rg))C(idC)

We want to check that γ(Tγ) = γ (easy)
and that T(γT) = T (harder).

14

The bijection (2)
It’s easy to check that γ(Tγ) = γ:
γ(Tγ) = TγC(idC)

= (λD.λg.(γ;Rg))C(idC)
= (λg.(γ;Rg))(idC)
= γ;R(idC)
= γ; idRC

= γ

15

The bijection (3)
Remember that
T(γT) = λD.λg.((TC(idC));Rg), and so
T(γT)D(g) = TC(idC);Rg.

We want to check this:
∀D.∀g.(T(γT)D(g) = TD(g)), i.e.,
∀D.∀g.(TC(idC);Rg = TD(g))...

This is a consequence of sqcondT !

16

The bijection (4)
We want to check this:
∀D.∀g.(TC(idC);Rg = TD(g))...

This is a consequence of sqcondT !
Look:

C

D

g

��

(C→C) (A→RC)
TC //(C→C)

(C→D)

(C→_)g

��

(A→RC)

(A→RD)

(A→R_)g

��
(C→D) (A→RD)

TD //

(C→_) (A→R_)
T //

idC TC(idC)
� // TC(idC)

TC(idC);Rg

_

��

idC

g

_

��
g TD(g)� //

17

Drawing the bijection
A honest way to draw the bijection between ‘γ’s and ‘T ’s
would be diagram with the curved arrow in the middle...
But we will commit an abuse of (diagrammatical) language
and use a vertical arrow, as in the diagram at the right.

C RC� //

A

RC

γ

��

(C→_) (A→R_)
T //

C RC
� //

A

RC

γ

��

(C→_) (A→R_)
T
//
��

55

A

RC

γ

��
C RC

� //

(C→_) (A→R_)
T
//

OO

��

Now we have a shape for the (first) Yoneda Lemma
and we can use it to compare several notations...
But it’s better to do that with the tree YLs at once,
so let’s prove the other two.

18

Changing the category A to Set
Remember that A,RC ∈ A and C ∈ C...
This is not shown in the diagram, but it appears
in the terms and types in lots of places.
Let’s take a particular case: A becomes Set...
In the notation of (simultaneous) substitution: [A := Set].
The diagram does not change, but we can now
take a particular case of A too: [A := 1]. We get:

C RC
� //

A

RC

γ

��

(C→_) (A→R_)
T
//
��

55

[
A := Set
A := 1

]
=

C RC� //

1

RC

γ

��

(C→_) (1→R_)
T
//
��

55

19

Getting rid of the ‘1’s
Convention: 1 is the singleton set,
with single element ∗: ∗ ∈ 1 ∈ Set, 1 = {∗}.
If B ∈ Set then an arrow β : 1 → B
“selects” an element b ∈ B...
We have a bijection between elements of b ∈ B
and arrows β : 1 → B,
that we write as B ↔ (1→B),
or as two operations as b := β(∗), β := λ∗.b ...

My favourite way to represent a bijection A
f //oo
g

B

in a type system is as a 6-uple (A,B, f, g,wdl,wdr),
where f : A → B, g : B → A, and wdl and wdr assure
that ∀a ∈ A.(g ◦ f)(a) = a and ∀b ∈ A.(f ◦ g)(b) = b
respectively.

20

Bijections and isos in type systems
One of my reasons for writing these notes was to show how
these diagrams can be interpreted in a formal way in type
systems and in proof assistants, so let me be type-ish for a
moment...

Thorsten Altenkirch — in his book chapter “Naïve Type The-
ory” (from 2018(?), available from this home page) — uses the
notation JP K for the “set of evidence” for the proposition P .

I prefer to call JP K the “set of proofs” of P (which suggests that
we are in the BHK interpretation), or the “set of witnesses”
of P (which suggests a model with proof-irrelevance and every
JP K being either empty or a singleton)...

So...

21

Bijections and isos in type systems (2)
So:

(A
f //oo
g

B) = (A,B, f, g,wdl,wdr)
where:
A is a set,
B is a set,
f : A → B,
g : B → A,
wdl : J∀a ∈ A.(g ◦ f)(a) = aK,
wdr : J∀b ∈ B.(f ◦ g)(b) = bK.

This is easy to adapt to define isos in a category.

(A oo
f //B) is interpreted as (A

f //oo
f−1

B).

22

Getting rid of the ‘1’s (2)
The (nameless) bijection (1→B) ↔ B can be interpreted as:

B

(1→B)

��

OO

b

β

_

OOβ

b

_

��

b ∈ B
β ∈ (1→B)
b := β(∗)
β := λ∗.b

and written as:

B
λb.λ∗.b //oo
λβ.β(∗)

(1→B) or (1→B)
λβ.β(∗) //oo
λb.λ∗.b

B

The components wdl and wdr of the 6-uples are treated
as “obvious”, and are omitted.

23

Getting rid of the ‘1’s (3)
If R : C → Set then we have a (nameless)
natural transformation (1→R_) ↔ R
between these functors:

D RD
� //D

E1

h

��

RD

RE

Rh

��
E1 RE� //

C Set
R //

� //

D (1→RD)
� //D

E

h

��

(1→RD)

(1→RE)

(1→R_)(h)
:= λδ.(δ;Rh)��

E (1→RE)� //

C Set
(1→R_) //

� //

Note that in type theory R = (R0, R1, . . .),
(1→R_) = ((1→R_)0, (1→R_)1 , . . .),
and the diagrams above give us enough information
to let us build (1→R_) as a term.

24

Getting rid of the ‘1’s (4)
If R : C → Set then we have a (nameless)
natural isomorphism (1→R_) ↔ R
between the functors defined in the previous page...
If F,G : A → B then a natural transformation T : F → G
is formalized in TT as a pair (T0, sqcondT),
where T0 is its “action on objects”
and sqcondT is its “square condition”.
The nameless natual iso (1→R_) ↔ R can be interpreted as
a nameless NT (1→R_) → R,
a nameless NT R → (1→R_),
and guarantees that their composites are identity functors...

25

Getting rid of the ‘1’s (5)
The nameless natual iso (1→R_) ↔ R can be interpreted as
a nameless NT (1→R_) → R,
a nameless NT R → (1→R_),
and guarantees that their composites are identity functors...

Their actions on objects can be defined from this:
((1→R_) → R)0(D) : (1→RD) → RD)
((1→R_) → R)0(D) = λδ.δ(∗)
(R → (1→R_))0(D) : D → (1→RD)
(R → (1→R_))0(D) = λd.λ∗.d

(I will omit the details)

26

Changing the category A to Set (2)
With the nameless natural iso (1→R_) ↔ R
we can add an extra level to the basement our diagram,
and this yields an “obvious” bijection between ‘γ’s and ‘T ′’s.
This new diagram “is” our Second Yoneda Lemma.

C RC
� //

1

RC

γ

��

(C→_) (1→R_)
T
//
��

55

C RC
� //

1

RC

γ

��

(C→_) (1→R_)
T
//
��

55

(1→R_)

R

OO

��

(C→_)

R
T ′

%%KK
KKK

KKK
KK

27

Changing R to (B→)
Choose an object B ∈ C.
It induces a functor (B→) : C → Set.
Several slides ago we did this substitution
on the diagram of the first Yoneda Lemma:[

A := Set
A := 1

]
Now we will do this substitution
on the diagram of the second Yoneda Lemma:[

R := (B→)
]

very little will change in the diagram,
but a lot will change in the terms and types.

28

Changing R to (B→) (2)
After the substitution

[
R := (B→)

]
the diagram for the Second Yoneda Lemma (left) becomes
the diagram for the Third Yoneda Lemma (right):

C RC� //

1

RC

γ

��

(C→_) (1→R_)
T
//
��

55

(1→R_)

R

OO

��

(C→_)

R
T ′

%%KK
KKK

KKK
KK

C (B→C)
� //

1

(B→C)

γ

��

(C→_) (1→(B→_))
T
//
��

44

(1→(B→_))

(B→_)

OO

��

(C→_)

(B→_)
T ′ &&MM

MMM
MMM

M

Our Third Yoneda Lemma is usually stated as this bijection:
(B→C) ↔ ((C→_) → (B→_)), where the right side is
the space of natural transformations from (C→_) to (B→_)).

READING
INTERNAL
DIAGRAMS

30

Motivation: blob-sets

√
: N → R

n 7→
√
n

−1
0 0� //

1 1� //

2
√
2

� //

3
√
3� //

4 2
� //

n
√
n

� //

N R
√

//

31

Motivation: blob-sets (2)

“Internal diagrams are a tool that lets us lower the level of
abstraction. (...) Look at the figure at the left in the previous
slide and compare its ‘N → R’ in the upper line (the external
view), with the ‘n 7→

√
n’ in the lower line (the internal view);

the n 7→
√
n shows a (generic) element and its image.

The figure at the right shows the external view at the bottom
and an internal view at the top; note that all elements in the
blobs for N and R are named, but only a few of the elements
are shown (...) the arrows like 3 7→

√
3 and 4 7→ 2, that show

elements and their images, are substitution instances of the
generic n 7→

√
n, maybe after some calculations (or “reduc-

tions” in λ-calculus terminology).”

32

The internal view of a functor
We usually draw internal views above external views,
general cases at the left, particular cases at the right.
Remember that a functor F : C → D
is a 4-uple: (F0, F1, respidsF , respcompF).
The diagram at the right below defines (X×). How?

A FA� F0 //A

B

g

��

FA

FB

Fg

��
B FB�

F0

//

� F1 //

C D
F //

Y X×Y� //Y

Z

f

��

X×Y

X×Z

〈π,f◦π′〉

��
Z X×Z� //

� //

Set Set
(X×) //

33

The internal view of a functor (2)
Compare:

A FA� F0 //A

B

g

��

FA

FB

Fg

��
B FB�

F0

//

� F1 //

C D
F //

Y X×Y� //Y

Z

f

��

X×Y

X×Z

〈π,f◦π′〉

��
Z X×Z� //

� //

Set Set
(X×) //

A FA� F0 //A

B

g

��

FA

FB

Fg

��
B FB

�
F0

//

� F1 //

C D
F //

Y X×Y�(X×)0 //Y

Z

f

��

X×Y

X×Z

〈π,f◦π′〉

��
Z X×Z

�(X×)0 //

�(X×)1//

Set Set
(X×) //

Y (X×)0(Y)�(X×)0//Y

Z

f

��

(X×)0(Y)

(X×)0(Z)

(X×)1(f)

��
Z (X×)0(Z)

�(X×)0//

�(X×)1//

Set Set
(X×) //

So (X×)0 = λY.(X × Y),
and (X×)1 = λf.〈π, f ◦ π′〉.

34

TO DO: internal diagrams of NTs and adjunctions
(I have lots of those diagrams — plus monads, etc —
but I never explained the conventions in them very clearly...)

This is an adjunction:

LRB

B

εB

��

A

RLA

ηA

��

LA Aoo L0 �
LA

B

f

��

A

RB

g

��
B RB�

R0

//

oo[AB ��
]AB

//

B Aoo L
B A

R
//

HELP
NEEDED

36

Help needed: proof assistants
I was never able to learn enough Coq or Agda...
I guess that it would be easy to formalize the figure with the
three Yoneda Lemmas in Coq or Agda. We can number its
objects as

o11 o21 o31
o12 o13 o22 o23 o32 o33

o14 o15 o24 o25 o34 o35
o26 o36

and choose some convention for the ascii names for arrows, and
for the ascii names for arrows between arrows.

37

Help needed: proof assistants (2)
Smart proof assistants should be able to find by themselves the
proofs that we said that were “obvious”. Besides the obvious
proofs I’ve said that some constructions are “obvious”. Finding
obvious “constructions” needs term inference instead of proof
inference, and implementation of term inference are rare.

38

Help needed: Agda
There are several implementation of CT in Agda.
There is even a “Big list of formalizations of Category Theory
in proof assistants” in MathOverflow!
I’m trying to read — with Juan Meleiro — a big blog post
by Jannis Limpberg called “Yoneda’s Lemma in Excruciating
Detail”, that has an implementation in Agda.

We will try to:
1. draw its diagrams in our favourite shapes,
2. assign coordinates to some of his terms,
3. sketch a way to read our 2D diagrams directly in Agda...

39

Jannis Limpberg
“Yoneda’s Lemma in Excruciating Detail” (blog post):
https://limperg.de/posts/2018-07-27-yoneda.html
The functor Ap:

(F,C) FC
� //(F,C)

(G,D)

(θ,f)

��

FC

GD

Gf◦θC
��

(G,D) GD� //

� //

(C→D)×C D
Ap //

C

D

f

��

FC GC
θC //FC

FD

Ff

��

GC

GD

Gf

��
FD GD

θD //

F G
θ //

https://limperg.de/posts/2018-07-27-yoneda.html

40

Jannis Lindberg (2)
The functor Hom:

(C,D) Hom(C,D)� //(C,D)

(C ′, D′)

(f,g)

��

Hom(C,D)

Hom(C ′, D′)

λh.(g◦h◦f)
��

(C ′, D′) Hom(C ′, D′)
� //

� //

Cop×C Sets
Ap //

C

C ′

OO

f

D

D′

g

��

h

g ◦ h ◦ f

_

��

41

Jannis Limpberg (3)
The functor y:

D Hom(•, D)� //D

D′

f

��

Hom(•, D)

Hom(•, D′)

yf

��
D′ Hom(•, D′)

� //

� //

C Cop⇒Sets
y //

C

C ′

OO
g

Hom(•, D) Hom(•, D′)
yf //

Hom(C,D) Hom(C,D′)
(yf)C //Hom(C,D)

Hom(C ′, D)

(yD)(g)

��

Hom(C,D′)

Hom(C ′, D′)

(yD′)(g)
��

Hom(C ′, D) Hom(C ′, D′)
(yf)C′ //

h f ◦ h� //h

h ◦ g

_

��

f ◦ h

f ◦ h ◦ g

_

��
h ◦ g f ◦ h ◦ g� //

DICTIONARIES

43

Same shape, several notations
Now that we have a shape for the three Yoneda Lemmas we
can change the notation — i.e., what is written in each of the
nodes that we named o11, o12, . . ., o36 a few slides ago, and
also change what is written in the arrows...

For typographical reasons — I don’t have good ways to put
labels along curved arrows — I will have to commit the abuse
of diagrammatical language explained in the slide “Drawing
the bijection” (p.13), and draw the curved bijections as just
their vertical-ish lower halves.

44

Categories for the Working Mathematician
Here is how MacLane states our YLs in his CWM.
Our first YL is implicit in his Proposition 1 in p.59:

Proposition 1. For a functor S : D → C a pair
〈r, u : c → Sr〉 is universal from c to S if and
only if the function sending each f ′ : r → d into
Sf ′u : c → Sd is a bijection of hom-sets

D(r, d) ∼= C(c, Sd). (1)

This bijection is natural in d. Conversely, given r
and c, any natural isomorphism (1) is determined
in this way by a unique arrow u : c → Sr such that
〈r, u〉 is universal from c to S.

45

Categories for the Working Mathematician (2)
Our second YL appears in p.61 of CWM, as this:

Lemma (Yoneda). If K : D → Set is a functor
from D and r an object in D (for D a category with
small hom-sets), there is a bijection

y : Nat(D(r,−),K) ∼= Kr

which sends each natural transformation α : D(r,−)
•→

K to αr1r, the image of the identity r → r.

46

Categories for the Working Mathematician (3)
Our third YL also appears in p.61 of CWM, as a corollary:

Corollary. For objects r, s ∈ D, each natural
transformation D(r,−) → D(s,−) has the form
D(h,−) for a unique arrow h : s → r.

47

Categories for the Working Mathematician (4)

r Sr� //

c

Sr

u

��
r Kr� //

∗

Kr

u

��
r D(s, r)� //

∗

D(s, r)

f

��

D(r,−) C(c, S−)
T
// D(r,−) Set(∗,K−)// Set(∗,K−)

K

OO

��

D(r,−)

K

T ′

$$J
JJ

JJ
JJ

JJ
JJ

J
D(r,−) Set(∗, D(s,−))// Set(∗, D(s,−))

D(s,−)

OO

��

D(r,−)

D(s,−)

D(f,−)
$$JJ

JJ
JJ

JJ
JJ

J

_
��
OO
_

_
��
OO
y

_
_

Y ��
OO
_

