In [Rie16], sec.6.1, right Kan extensions are explained using the two diagrams below. The notation of cells is explained in sec.1.7 of the book, and modulo the types — that can be inferred from the diagrams — a right Kan extension of K along K is a pair $(\operatorname{Ran}_K F, \epsilon)$ such that for all (G, α) there is a unique β making everything commute.

If we specialize E to Set and do some renamings, the diagram becomes:

and if we change its shape to stress that ϵ "looks like" a counit map and Ran_f "looks like" the right adjoint to the functor f^* , we get this:

When the categories **A** and **B** are finite posets we get: 1) $\mathbf{Set}^{\mathbf{A}}$ and $\mathbf{Set}^{\mathbf{B}}$ are toposes; 2) the functor "precomposition with f", f*, is very easy to define and to visualize, 3) the left and right Kan extensions Lan_f and Ran_f and can be defined and calculated by the formulas in sec.6.2 of [Rie16], 4) we have adjunctions $\mathrm{Lan}_f \dashv f^* \dashv \mathrm{Ran}_f$, and the structure $(\mathrm{Lan}_f \dashv f^* \dashv \mathrm{Ran}_f)$ can be seen as an essential geometric morphism $f: \mathbf{Set}^{\mathbf{A}} \to \mathbf{Set}^{\mathbf{B}}$ ([**Elephant1**], A4.1.4)

In [Rie16], sec.6.1, right Kan extensions are defined as this.

Given functors $F:\mathsf{C}\to\mathsf{E},\,K:\mathsf{C}\to\mathsf{D},\,$ a right Kan extension of F along K is a functor $\mathrm{Ran}_KF:\mathsf{D}\to\mathsf{E}$ together with a natural transformation $\epsilon:(K;\mathrm{Ran}_KF)\Rightarrow F$ such that every pair $(G:D\to E,\delta:F\Rightarrow (K;G))$ factors uniquely through ϵ in this sense: there exists a unique $\alpha:G\Rightarrow\mathrm{Ran}_KF$

as illustrated.

For every $\alpha: f^*F \to G$ there is a unique $\beta: F \to f_*G$ such that $(f^*\beta; \epsilon) = \alpha$:

