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The abstract of the extended abstract that I submitted to the conference was
just this:

Imagine two category theorists, Aleks and Bob, who both think
very visually and who have exactly the same background. One day
Aleks discovers a theorem, T1, and sends an e-mail, E1, to Bob, stat-
ing and proving T1 in a purely algebraic way; then Bob is able to
reconstruct by himself Aleks’s diagrams for T1 exactly as Aleks has
thought them. We say that Bob has reconstructed the missing dia-
grams in Aleks’s e-mail.

Now suppose that Carol has published a paper, P2, with a theo-
rem T2. Aleks and Bob both read her paper independently, and both
pretend that she thinks diagrammatically in the same way as them.
They both “reconstruct the missing diagrams” in P2 in the same way,
even though Carol has never used those diagrams herself.

Here we will reconstruct, in the sense above, some of the “missing
diagrams” in two factorizations of geometric morphisms in section A4
of Johnstone’s “Sketches of an Elephant”, and also some “missing ex-
amples”. Our criteria for determining what is “missing” and how to fill
out the holes are essentially the ones presented in the “Logic for Chil-
dren” workshop at the UniLog 2018; they are derived from a certain
definition of “children” that turned out to be especially fruitful.

Its focus was the factorization in the last paragraph — let me call it simply
“the factorization” from here on; it is explained in the section 6 of the poster.

In this poster I will try to do something different: I will try to give a broad
view of the whole project, and show that the factorization is just a cherry on top
of the sundae — a cherry that is there to please the mathematicians who believe
that constructions and techniques only relevant when they prove new theorems.

The references in boldface in this poster are to papers, slides and notes that
can accessed from the section titled “On some missing diagrams in the Elephant”
in my webpage:

http://angg.twu.net/math-b.html
http://angg.twu.net/math-b.html#missing-diagrams-elephant

They are:

[IDARCT]: Internal Diagrams and Archetypal Reasoning
in Category Theory
(Logica Universalis, 2013)

[PH1]: Planar Heyting Algebras for Children
(Accepted @ South Americal Journal of Logic)

[MDE] On some missing diagrams in the Elephant
(My extended abstract to the ACT2019 — it’s not
in the conference website because poster session people
are second-class people, duh)

[NYo]: Notes on the Yoneda Lemma
(In which each node and arrow can be
interpreted precisely as a “term”,
and most of the interpretations are
“obvious”; plus dictionaries!!!)
(slides, 2019)

1 “Is associated to”
The symbol ‘ ’ will be pronounced “is associated to”, but the formal meaning
of ‘A B’ will depend on the types of A and B. For example,

(P,A) H

will mean that the 2-column graph (P,A) is associated to the Planar Heyting
Algebra (a “ZHA”) H through the standard bijection between 2CGs and ZHAs;

((P,A), Q) (H, J)

will mean that besides (P,A) J the equivalence relation induced by set
of question marks Q is “the same” as the one induced by J-operator J ; and

J j

means that in the topos that we are talking about the J-operator J (J-operators
are a concept that fell out of fashion) is associated to the local operator j : Ω → Ω
— something is everyone (?!?) knows that induces a notion of “sheaf” on the topos
we’re in.

2 Parallel diagrams (of several kinds)
Look at the diagram below. Let’s call its three subdiagrams A B

C . Each of the
subdiagrams A, B, C have an “external diagram”, or an “external view”, below,
and an “internal diagram” or “internal view” above.
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Our notions of “external” and “internal” are the same as in [LS97] or [LR03],
but our use of arrows is much more precise. Note that in diagram A

• we distinguish ‘→’ and ‘ 7→’ in the usual way — N
√
→ R is a typing,

• one of the ‘ 7→’ arrows above N
√
→ R is “generic”: n 7→

√
n shows how to pro-

duce the image of a generic element n ∈ N — i.e., as an untyped λ-calculus
term,

√
= λn.

√
n,

• all the other ‘ 7→’ arrows above N
√
→ R are substituition instances of n 7→√

n, maybe after some term reductions.

“3 7→
√
3” is just a substituion instance of “n 7→

√
n”, but “4 7→ 2” is a sub-

stitution instance of “n 7→
√
n” followed by the reduction that transforms

“
√
4” into “2”.

The notion of “above” in these diagrams is very important. The blob above
N shows some elements of N; same for R, and the ‘ 7→’ arrows above the ‘→’ are
internal views of the ‘→’.

The subfigure B shows the external view and the internal view of a (generic)
adjunction. Things are much more complex now — we don’t draw the blobs;
above B we have six objects and four morphisms from the category B, and the
same for A; the arrows marked ‘L0’ above L are the action of L on objects and
the arrow ‘L1’ is the action of L on morphisms, and the same for R; we draw the
transpositions [ and ]; we draw the unit and the counit.

The subfigure C is a particular case of the subfigure B — among other things
it has exactly the same shape as B, and we can extract from it the definitions of
L0, L1, etc in this particular case.

The “general case” B and the “particular case” C are evidently parallel dia-
grams, but in each of A, B, C we have a internal diagram parallel to an external
diagram — but the internal diagrams are much bigger.

Note: these diagrams can be interpreted in proof assistants! See [NYo] for a
reasonably big example worked out in all detail!

(A curiosity: many years ago I spent a lot of time studying [Jac99] and trying
to create a bridge between his fibration-based categorical models for type theory
and what I thought that were the “archetypal cases” motivating them. Some of
my conventions for “above”, “below”, etc, comes from conventions for fibrations.)

3 Projections and liftings
One of the first ideas presented in [IDARCT] is that we can treat operations
that discard information, like particularization, as projections, and we can treat
generalization as lifting... and the paper shows how to represent visually several
operations that erase and that reconstruct information.

Suppose that we learned adjunctions from [Mac71]. His presentation is not
very visual, so we worked a bit (or a lot) and found the diagrams for adjunctions
in sec.2; we are now in a situation where we know the “algebraic” definition of an
adjunction plus a diagrammatic way to represent it. We work a bit more and we
get a diagram for a particular case – the adjunction (×B) a (B→).

There are some advantages in knowing the “algebraic version”, plus having a
diagram for the general case, that lets us play with some sequences operations as
if they were shape and movement, plus having particular cases that let us test
conjectures quickly... in recent texts about the Philosophy of Mathematics, like
[Krö07], [Man08], [Cor04] we can even find names for each kind of reasoning, and
each kind of intuition, that becomes accessible to us after we get another view of,
say, adjunctions...

The diagram below let us visualize these “states of knowledge”:
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There are some processes that I discuss in [IDARCT] that are only mentioned
very, very briefly in the three references above — namely, forgetting details and
then reconstructing them, and “omitting diagrams” for publication followed by
“reconstructing the diagrams that the author had in mind” as explained in the
abstract in the beginning of the poster.

Also, there is an idea in [IDARCT] that I haven’t seen anywhere else and
that became a long-term project for me, that is that we can “project out” all the
terms in a categorical construction or proof that mention equalities of morphisms
— I call this “dropping the boring part and keeping only the fun part” of the
categorical constructions and arguments —, then we do our constructions there,
and after we’re finished with this part we reconstruct the “boring” part in a way
that matches the rest.

4 Drawing topologies
We can draw subsets of a set •• •••

by their characteristic functions: 1
0 1
1
0

, 0
0 1
1
1

, and so
on. The order topology on a set •• •••

is defined by:

a subset of •• •••
is open

when its characteristic function
doesn’t have a ‘1’ above a ‘0’.

We can draw topologies as directed graphs. Let “A ⊂1 B” stand for: “A ⊂ B,
and the difference B\A has exactly one element”. We will draw the topology
(X,O(X)) as the DAG (O(X),⊂1), meaning that there will be an arrow V → U
when V ⊂1 U . We have:

(O( •• •• •),⊂1) =
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↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗

(O( • •• •• •),⊂1) =

1 11 11 1

1 01 11 1
0 11 11 1

0 01 11 1
0 10 11 1

0 01 01 1
0 00 11 1

0 01 01 0
0 00 01 1
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0 00 00 1

0 00 00 0

↗ ↖

↖ ↗ ↖

↗ ↖ ↗

↗ ↖ ↗

↖ ↗ ↖

↖ ↗

(O(• • •• • ),⊂1) =

1 1 11 1

1 1 01 1 1 0 11 1 0 1 11 1

1 0 01 1 0 1 01 1 0 0 11 1

1 0 01 0 0 0 01 1 0 0 10 1

0 0 01 0 0 0 00 1

0 0 00 0

↗ ↑ ↖

↑ ↖↗ ↖↗ ↑

↗ ↖ ↑ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗

The DAGs (O( •• •• •),⊂1) and (O( • •• •• •),⊂1) are planar (neat!), and
(O(• • •• • ),⊂1) is non-planar (clumsy!). The nonplanarity comes from • • •• • having
three independent points; the subDAG generated by the open sets of the form ? ? ?

1 1

is a cube.

4.1 2-Column Graphs (“2CGs”)
One way to make sure that our topologies will be neat (i.e., planar) is to forbid
having three independent points, and one way to do this is to declare that we are
only interested in topologies in 2-columns graphs (2CGs).

This is an example of a 2CG, and its topology:

O
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4_
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_6


=

45
46

34
35
36

22
23
24
25
26

11
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13
14

00
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02
03
04

but we are drawing the open sets using a two-digit notation...
We write pile(ab) for the set {a_, . . . , 1_, _1, . . . ,_b}; the characteristic

function of pile(a, b) is a pile of a ‘1’s in the left column and b ‘1’s in the right
column.

We sometimes omit the ‘pile’s; for example, the 25 above means

25 ≡ pile(2, 5) = {2_, 1_, _1,_2,_3,_4,_5},

an open set. Note the pile(2, 1) is not an open set — its characteristic functions
has a ‘1’ (in the position 2_) pointing to a ‘0’ (in the position _2).

A specification of a 2CG is a 4-uple (l, r, R, L); it generates a 2CG (P,A) with
P := pile(lr), and with sets of intercolumn arrows R (going right) and L (going
left). The set A of arrows of (P,A) is R ∪ L plus all the intracolumn arrows that
point one step down. The 2CG above is generated by this specification:

(4, 6,

{ 4_→_5,
3_→_4,
2_→_2,
1_→_1,

}
, { 2_←_5 })

In the library that I wrote to calculate with these objects that specification is
represented as a string: "46; 11 22 34 45, 25".

4.2 Planar Heyting Algebras (“ZHAs”)
We can treat the topology above as a subset of Z2. Here’s how.

(x, y) means: start at (0, 0), walk x steps east and y steps north.
〈a, b〉 means: start at (0, 0), walk a steps northwest and
b steps northeast — i.e., 〈a, b〉 = (0, 0) + a

−−−−→
(−1, 1) + b

−−−→
(1, 1).

LR is { 〈a, b〉 | a, b ∈ N } — like N2 tilted 45◦ counterclockwise.
ab is an abbreviation for 〈a, b〉.
Look at the topology above again. It is generated by a 2CG whose specifica-

tion in "46; 11 22 34 45, 25". The 46 is the top element of the topology, and
the "11 22 34 45" and the "25" are the points where the left wall and the right
wall have “bumps”.

[PH1] defines ZHAs in sec.4 as a finite subset of LR “between a left wall and
a right wall” (long story — see the paper), and it shows a correspondence that we
write as:

(P,A) H

we pronounce that as: “every 2CG (P,A) is associated to a ZHA H and vice-versa”.
Topologies are Heyting Algebras, so the order topology (P,OA(P )) of a 2CG

is a Heyting Algebra — and we can interpret intuitionistic propositional logic on
it.

Here is a particular case of (P,A) H:
1_

2_

3_

4_

_1

_2

_3

_4

_5

_6


45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

4.3 Logic in a ZHA
The standard way of interpreting logic on a topology (X,O(X)) is: the truth
values are the open sets P,Q,R, . . . ∈ O(X); > = X; ⊥ = ∅; P ∧ Q = P ∩ Q;
P ∨Q = P ∪Q; P → Q = int((X\P ) ∪Q). On a ZHA the operations >,⊥,∧,∨
are very easy to visualize...
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>
· ·

· · ·
· (∨) · (→)

· P · · ·
· · Q ·
· (∧) ·

· ·
⊥

There is a way to calculate P → Q visually, but the formula has four subcases.
For example, if P is “left of” Q then P → Q is ne(Q), i.e.: start from Q and walk
northeast as many steps as possible. The diagram above shows that 31 → 12 = 14
— you can check that by calculating int((pile(44)\pile(31)) ∪ pile(12)).

By the way, this is one of the first things that I present to students in a hands-
on seminar course called “λ-Calculus, Logics, and Translations”... they learn how
the interpret the definitions for >,⊥,∧,∨,→,¬ in a ZHA, then they see that in
these logics some classical tautologies sometimes give results different from >,
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︸ ︷︷ ︸
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and only then they learn what is a Heyting Algebra, and they check that ZHAs
with these operations are Heyting Algebras, they learn topologies, etc, etc... the
ordering of topics is very unusual — from particular to general — but it works!

4.4 J-operators on ZHAs
A J-operator on a Heyting Algebra H is a function J : H → H that obeys the
axioms J1, J2, J3 below; we usually write J as ·∗ : Ω → Ω, and write the axioms
as rules.

P ≤ P ∗
J1

P ∗ = P ∗∗
J2

(P ∧Q)∗ = P ∗ ∧Q∗
J3

J1 says that the operation ·∗ is non-decreasing.
J2 says that the operation ·∗ is idempotent.
J3 is a bit mysterious but has amazing consequences.
A J-operator induces an equivalence relation: P ∼ Q iff P ∗ = Q∗. Let’s write

[P ]J for the equivalence class of P .
It is possible to prove that every equivalence class [P ]J has a maximal ele-

ment, a minimal element, and contains all the elements of H between the minimal
and the maximal element, and nothing else. Also, for all elements Q ∈ [P ]J we
have that Q∗ is the maximal element of [P ]J . So we can represent a J-operator
graphically by the fences between its equivalence classes; if we interpret this as a
J-operator,
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then 32∗ = 44∗ = 44, 30∗ = 61∗ = 61, etc...
...but this has “cuts stopping midway”, and a — very non-trivial — conse-

quence of J1, J2, J3 is that we can’t have “cuts stopping midway”!
Definition (informal): a slashing on a ZHA H is any drawing obtained by

cutting H by diagonals cuts without “cuts stopping midway”. This is an example
of a ZHA with a slashing:
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I said that every J-operator “is” a slashing. The converse is also true: every
slashing “is” a J-operator.

4.5 Question marks
Take a 2CG (P,A), and choose a subset Q ⊆ P . This Q will be the set of ques-
tion marks, and we will represent it by drawing ‘?’s at the side of its points. A
structure ((P,A), Q) will be called a 2CG with question marks.

Suppose that (P,A) H. A set of question marks Q ⊆ P induces an
equivalence relation ∼Q on H: ab ∼Q cd if and only if pile(ab) and pile(cd) differ
only on points of Q — or, more formally, pile(ab)\Q = pile(cd)\Q.

It is easy to convert a set of question marks to a slashing and vice-versa — and
slashings correspond to J-operators and vice-versa. Our favourite way of writing
these bijection is as:

((P,A), Q) (H, J),

and here is a particular case of it:
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Note that if we erase the question marks and the cuts above we get a particular
case of (P,A) H.

5 Toposes for children
My favourite very short explanation for what a topos is is:

1. a Cartesian Closed Category (CCC) is a category with a terminal, binary
products, and exponentials,

2. CCCs are exactly the categories in which we can interpret the simply-typed
λ-calculus (“λ1”),

3. the archetypal CCC is Set (see [IDARCT]),

4. every Heyting Algebra is a CCC,

5. a topos is a CCC with pullbacks and a classifier object.

6. toposes are exactly the categories in which we can interpret a certain form
of intuitionistic, typed Set Theory,

7. the archetypal topos is Set,

8. the subcategory Sub(1) ⊂ E of a topos E is a Heyting Algebra — the “logic”
of E ,

9. for every small category A the category SetA is a topos,

10. for every 2CG (P,A) H the category Set(P,A) is a topos whose
“logic” is H.

5.1 The classifier
Choose a 2CG (P,A). Let E be the topos Set(P,A). There is an easy way to
draw the classifier ΩE , but the result is big. Let’s see an example. Suppose that
(P,A) H is:
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Ignore the question marks and the slashing for the moment. Then ΩE is (ig-
noring the slashings):
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Now stop ignoring the question marks and the slashing above. We get an 2CG
with question marks ((P,A), Q) and its associated ZHA with J-operator (H, J)...

6 The factorization

The Elephant presents in its sections A4.2 and A4.5 two factorizations of geo-
metric morphisms that can be combined in a single diagram — see Figure ??.
An arbitrary geometry morphism g : A → D can be factored in an essentially
unique way as a surjection followed by an inclusion ([EA4.2.10]), and an inclusion
i : B → D can be factored in an essentially unique way as a dense g.m. followed
by a closed g.m. ([EA4.5.20]). A canonical way to build these factorizations is
by taking B := AG, where G is a certain comonad on A ([EA4.2.8]), and taking
C := shj(D), where j is a certain local operator on D.

A Dg (any g.m.) //

A Bs (surjection) // B Di (inclusion) //

B Cd (dense) // C Dc (closed) //

AG shj(D)
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D
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B
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SetB SetD
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B Di //
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B
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on c.p.s)��

d∗C Coo �d∗C

B
��
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��

B d∗B
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oo //

SetB SetCoo d
∗

SetB SetC
d∗
//

B Cd //

c∗c∗C

C
��

D

c∗c
∗D
��

c∗D Doo �c∗D

C
��

D

c∗C
��

C c∗C
� //

oo //

SetC SetDoo c
∗

SetC SetD
c∗
//

C Dc //

These factorizations are almost completely opaque to people who know just
the basics of toposes. How can we produce a version “for children” of them in the
sense of the introduction?

The trick is to start with geometric morphisms whose internal views can be
drawn explicity — the ZGMs of section ??. Actually we start with the lower level
of Figure 2, and with the belief that all factorizations can be performed within
ZGMs.

7 Two factorizations of ZGMs

The Elephant defines surjections by a list of equivalent conditions, and the same
for inclusions and dense and closed geometric morphisms. Some of these conditions
— the ones drawn in Figure ?? — are very easy to test on ZGMs.

1. SetA
s→ SetB is a surjection when for every object B ∈ SetB the unit map

ηB is monic ([EA4.2.6 (iv)]);

2. SetB
i→ SetD is an inclusion when for every object B ∈ SetB the counit

map εB is an iso ([EA4.2.8]);

3. SetB
d→ SetC is an dense when for every constant presheaf kC the unit

map εkC is a monic [I can’t find a reference for this now].

We also have two conditions for “dense” and “close” that are easy to state on
“restrictions” in the sense of section ?? — but it’s not trivial to derive them from
the material in the Elephant. Let’s state them anyway:

4. A restriction SetB
d→ SetC is dense when all its question marks “have

non-question marks ahead of them”, i.e.: for every α in C such that α ∈ Q there
is an arrow α → β in C with β 6∈ Q;

5. A restriction SetC
d→ SetD is closed when all its question marks “are at

the end”, i.e.: there are no arrows α → β in D with α ∈ Q and β 6∈ Q.

We will say that a ZFunctor A
s→ B induces a surjection when the ZGM

SetA
s→ SetB induced by it is a surjection; and the same for inclusion, dense, and

closed.
How can we factor a ZFunctor A

g→ D into ZFunctors A
s→ B

i→ D that
induce a surjection and an inclusion, and how do we factor this B

i→ D into
B

d→ C
c→ D? Here is a way to get a good part of a possible answer.

We can think that a ZFunctor f : X → Y does several actions. If we think
that X is “before” and Y is “after”, then f can, for example: create isolated
objects, collapse isolated objects, collapse two ordered objects, create an arrow,
create objects at the beginning of a connected set, create objects at the middle
of a connected set, create objects at the end of a connected set... here are some
examples that only do one of these actions each:

(1→1′) → (1)
(1 1′) → (1)
(1 2) → (1→2)

(2) → (1→2)
(1→3) → (1→2→3)

(1) → (1 2)
(1) → (1→2)

When we take A
g→ D as each one of the seven ZFunctors and we try to

factor that g as A
s→ B

d→ C
c→ D we see that the first three functors factor as

(s = g, d = id, c = id), the next two as (s = id, d = g, c = id), and the last two as
(s = id, d = id, c = g). The leads to a:

Theorem. Take a ZFunctor A
g→ D. Factor it into A

s→ B
d→ C

c→ D in
the following way: s collapses objects and creates arrows; c creates objects at the
middle and at the beginnings of connected sets; d creates objects at the ends of
connected sets. Then this factorization of ZFunctors induces a surjective-dense-
closed factorization of ZGMs.
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