Como ensinar
Matematica Discreta
para calouros com
portugués muito ruim

Eduardo Ochs (UFF, Rio das Ostras, RJ, Brazil)
http://angg.twu.net/math-b.html#eb12019-m

2019ebl-mesa-slides May 6, 2019 13:08

http://angg.twu.net/math-b.html#ebl2019-m

Mesa redonda: “Algumas abordagens para
disciplinas de Légica em cursos de graduagao”
Resumo (da minha apresentacdo na mesa):

Considere a seguinte situagdo: um curso de Matematica Disc-
reta para calouros, com contetido muito grande, num campus
em que entram muitos alunos muito fracos com muito pouca
base matemaética e portugués muito ruim; além disso nos pe-
dem pra que ensinemos o maximo possivel nesse curso e nao
deixemos passar alunos que nao tiverem aprendido o suficiente,
porque este curso de Matematica Discreta é pré-requisito para
cursos que exigem uma certa maturidade matematica, e ele
deve servir como “filtro™.. como estruturar um curso assim
pra que ele funcione bem?

(Resumo, continuagio)

O problema mais bésico aqui é: que linguagem utilizar? Os
alunos sempre comecam tentando discutir suas idéias em por-
tugués, tanto entre si quanto com o professor, mas o portugués
deles é impreciso demais, e ndo ha tempo habil para debuga-
lo no curso! Entdo precisamos ir introduzindo desde o inicio
notacoes matematicas precisas que sejam faceis o suficiente de
usar, e al usar sempre exemplos em notagdo matemaética... a
linguagem matematica adequada vira a base que torna as dis-
cussoes em portugués possiveis.

(Resumo, continuagio)

Nesta palestra vou mostrar como esta “linguagem matematica
adequada para calouros” pode ser dividida em trés camadas:
uma camada mais bésica, em que tudo pode ser calculado até
o resultado final num ntmero finito de passos sem precisar
de criatividade praticamente nenhuma; uma camada média,
em que alguns objetos infinitos, como N ou Z, passam a ser
permitidos; e uma camada acima destas que inclui uma lin-
guagem para provas formais. Além disto vou mostrar modos
de visualizar varios dos objetos mateméticos do curso, e discu-
tir alguns pontos em que esta abordagem do curso ainda tem
“buracos”.

Discrete Mathematics at PURO/UFF

I teach in a campus that UFF has in Rio das Ostras,
in the countryside of the state of Rio de Janeiro...
The entrance of the campus looks like this:

“PURO”:
<~ Poélo Universitario
de Rio das Ostras

(Let’s start with) Discrete Mathematics

I teach in a city called Rio das Ostras, in the countryside of
the state of Rio de Janeiro, in a big federal university (“UFF”),
but in one of its smallest campi, away from the capital.

I sometimes teach Discrete Mathematics to Computer Science
students there.

Many of the students there — even in CompSci — enter the
university with very little knowledge of:

1) how to deal with variables,

2) how to write their calculations,

3) how to test their ideas.

Discrete Mathematics is a first-semester course there.
Let me explain my approach to fix (1), (2), and (3).

Discrete Mathematics at PURO/UFF
I structured the Discrete Mathematics (“DM”) course
in three layers.

Layer 1 consists of calculating things and learning
how to use mathematical notation and definitions.
Layer 2 introduces some infinite objects, like N and Z.
Layer 3 introduces a formal language for doing proofs.

Everything in Layer 1 can be calculated in a finite
number of steps with very little creativity.

One of the basic things that we learn in Layer 1 is

are the base for A\-calculus and Type Theory.

Basic Mathematical Objects

Here’s a definition (“for adults”) of the
mathematical objects that we deal with

in Level 1. Notation: O is the set of BMOs.

a) Numbers belong to O; Z C O.

b) The truth-values belong to O: {T,F} C O.
¢) O is closed by “finite lists” and “finite sets”.
d) Finite strings belong to O.

Item (d) is only introduced at the end of the course,
when we show that “valid expressions” can be defined
formally... “1+2%(3+4)” is “valid”, but “)+)” is not.

Some graphical representations are allowed.

Some graphical representations
We define graphical representations for:
a) (finite) subsets of Z2,

b) functions whose domains are (a),

¢) directed graphs...

(1,2),(1,3),
(V,A) = <{L 2,3,4,5}, { (2’?’(3{4)’ }
4,5

10

Layer 1: Set Comprehensions

One of the first things that I present to students is
a syntax for set comprehensions using “generators”,
“filters” and a “result expression”...

faef{1,2},0€{2,3},a <b; (a,b)} = {(1,2),(1,3),(2,3)}
gen gen filt expr
context oo

Note the ¢;” instead of a |’!
These things can be calculated from left to right
using trees in a finite number of steps.

11

Layer 1: Set Comprehensions (2)

I make the students work in groups, and they solve
the 54+ 19+ 16 + 9 + 16 4 7 exercises quickly.

I suggest this table-ish way to draw the trees...

To calculate

{a€e{l,2},b€{2,3},a<b; 10a+b} ={12,13,23}

we draw:

a b a<b 10a+b
1 2 T 12

1 3 T 13

2 2 F ‘

2 3 T 23

the vertical bar means “abort”.
Valid values for the context: (1,2, T), (1,3, T), (2,3,T).

12

Layer 1: Set Comprehensions — SPOILER
Spoiler: the idea of context will be reused in many other
contexts later, but with slightly different notations...
Compare:

1) {ae{l,2},be{2,3},a<b; 10a+b} ={12,13,23}
2) a:{1,2},0:{2,3},a < bF (10a + b):N

a{1,2},6:{2,3} Fa<b < this is false!

A:Sets, B:Sets - A:Sets

A:Sets, B:Sets - A x B:Sets

A:Sets, B:Sets, a:A, f:A — Bt f(a):B

A:Sets, B:Sets, a:A,b:B - (a,b):A X B

A:Sets, B:Sets, a:A F (Ab:B.(a,b)):B — A x B

0 g O U = W
PN AN

13

An abuse of language

Remember that I make the students

do 5+19+16+9+ 16+ 7 exercises about set comprehensions...
some of the exercises are about cartesian products, and

some introduce new notations, like:

{r€{2,3,4},y €{2,3,4},y = 3;(z,y)}

{z.y €1{2,3,4},y = 3; (z,y)}

{(Ia ,U) € {27 3, 4}27 Yy= 3; (.’IZ‘, y)}

This abuse of language will be incredibly important later
when we discuss type systems. We will allow things like:

A:Sets, B:Sets, (a,b):A x B, f:A — B+ fa:B

How do we make (a,b) behave as a variable?
(In the singular!)

An abuse of language (2)

Short answer:

(a,b) becomes a “long name” for a variable p,
a becomes an abbreviation for 7(a,b), i.e., 7p,
b becomes an abbreviation for 7’(a,b), i.e., 7'p,

A:Sets, B:Sets, (a,b):A x B, f:A — BF f(a):B
becomes:
A:Sets, B:Sets, p:A x B, f:A — BF f(7p):B

(More on “long names” later!)

14

15

A-notation in Discrete Mathematics
In DM we see functions as sets of input-output pairs...
It f: {1,2,3} — {10,20,30}
z +— 10z
(1,10),
then f = { (2,20), }
(3,30)
The students learn that, e.g.,
(1,10), (1,10),
{ (2,20), } (2) =20, and { (2,20), } (4) = ERROR.
(3,30) (3,30)
We see (in passing) that

(1,10),
(\x € {1,2,3}.102) = {z € {1,2,3}; (z,102)} = { (220 }
3,30)

(Simultaneous) substitution

I also teach, right in the beginning of the course,

a notation for (simultaneous) substitution...
(Because I can’t rely on the students’ Portuguese!...)
Examples:

y:=b+z
zi=c+zx

= ((a+y)+(b+2) (c+x)

Tr:=a-+y
x—|—y

(Vanessao 20 reais) {a = (fDG)}
_ (v(J'De)ness(fD@)o 20 re(flj@)is)

16

17

(Simultaneous) substitution (2)
This is useful to test equations,

(22 —4=0) [z:=3]
(2?2 —4=0) [z :=2]

= (9
= (4-

—4=0)=F

4=0)=T

and to define a way to calculate expressions with quantifiers:

(Va € {2,3,5}.a® < 10)

(a? < 10)[a :=2] A
(a? < 10)[a := 3] A
(a® < 10)[a := 5]
E) A

22 < 10) A (32 < 10) A (4% < 10)
4 < 10) A (9 < 10) A (16 < 10)
TATAF

F

18

Substitution and A-calculus
...and I mention, very briefly, that we can use substitution
to calculate with A-terms:
(A € {1,2,3}.10z)(2) = (10z)[z :=2]
= 10-2
= 20
Some students later take an optional seminar course that is

a very basic introduction to A-calculus and Category Theory...
In it they learn how to handle untyped A-terms...

19

Discrete Mathematics at PURO/UFF (2)

Discrete Mathematics is taught to first-semester
Computer Science students there.

Most of these students enter the university with

very little knowledge of how to use variables,

and when they attempt to spell out their ideas in Portuguese,
either speaking or writing, they are too imprecise...
They ask “can I do xxx yyy?” and if I say “yes” they
write weird atrocities in the test, and when I mark them
as wrong they blame me (“you said I could do that!”);
if I say “no, you can’t do that” then they do other
atrocites and blame me, too.

I don’t have time to debug their Portuguese!

20

Discrete Mathematics at PURO/UFF (3)

...50 I decided that I would stress mathetical notation —
Almost all ideas on the blackboard (whiteboard, actually)
would have examples in mathematical notation.

I structured the course of Discrete Mathematics

in three layers (presented more or less in parallel):
Layer 1: Calculating things

in a system with numbers, truth-values, sets and lists
where everything can be calculated in a finite number
of steps with almost no creativity required.

Layer 2: some infinite objects, like N and Z, are allowed;
we learn how to “calculate”, e.g., Ik € Z.10k = 23

Layer 3: we add formal proofs.

21

Layer 1: Calculating things

...in a system with numbers, truth-values, sets and lists
where everything can be calculated in a finite number
of steps with almost no creativity required.

Example:

(Va € {2,3,5}.a®> <10) = (a? <10)[a:=2] A
(a2 < 10)[a := 3] A
(a® < 10)[a := 5]
— (22 <10)A (32 < 10) A (42 < 10)
= (4<10)A(9<10) A (16 < 10)
= TATAF
= F

Note the substituion operator:
(a® < 10)[a := 3] = (32 < 10).

22

Layer 1: Set Comprehensions

I wrote a lengthy explanation of set comprehensions,
using “generators”, “filters” and a “result expression”.
The students started by learning how to calculate things
like these (note the ‘;” instead of a ‘|’; these ‘{...;...}’s
are calculated from left to right!):

{a €{1,2},b € {2,3},a # b;(a,b)}
gen gen expr

= {(1,2),(1,3),(2,3)}

..then {a € {2,3,4} |a®> <10}
and {10a +0b|a € {1,2},b € {3,4} }.

Layer 1: Set Comprehensions (2)
The “lengthy explanation of set comprehensions”

using “generators”, “filters” and a “result expression”, has:

2 pages of explanations,
2 pages of exercises (5+19+16-+9+1647 exercises),

1 page of answers, all using a graphical notation —
for example:

23

24

Positional notations
...then we adapt the graphical notation for subsets of Z2...
we define a convention for omitting the axes,

(1,3), ° °
_) (02), (2,2), \ _ % _
K_{ (1,1), }_ o._.o.
(1,0) °

we define a positional notation for functions,

((1,3),1),)

f= { ((0,2),0), ((2,2),2), } _0 2
((1’1)71)7 1
((1,0),1) 1

and for subsets, partial functions, and characteristic functons:

° . 1 1

- e o o -2 0 1
o« C 7 1 1
. . 0

Propositions

LN N)
LetW:{O,l,Z,S}x{O,l,2}:£ooo)

(Our “set of worlds”).

A proposition on A is a function P : A — {F, T}.
Let P, @, R be these propositions on W:
P={(zy),2) | (zy) eWz=(z<1Ay=1)}

Q={((z,y),2) [(x,y) eW,z=(1<x<2Ay>1)
R={((z,y9),2) [(xz,y) eW,z=(0<z<2Ay<1)
or:

TTFF
P=P,y) =@<1Ay=1) TTEF

FTTF
Q=Q(z,y)=1<z<2Ay>1) FTTF

FFFF
= = <zxr< < =
R=R(z,y)=(0<z<2Ay<1) IITE

}
}

25

26

Propositions (2)

In a (long) series of exercises the students learned to visualize
these and lots of other propositions on W — actually this set
of propositions,

S={T,L, PQ R PANQ, PVQ, P— Q}

and I asked them to draw the Hasse diagram of the partial
order on §. They got this:

27

Propositions (3)
Using ‘0’s and ‘1’s instead of ‘F’s and ‘T’s, what they got was:

28

Comprehensions — contexts — sequents
The part at the left of the ;" ina ‘{...;...}’
is called the “context”. For example:

ae{l,2},be{2,3},a#b,ce{l,...,a+b};10a + ¢
fae{l,2},be{2,3},a# { } }

gen gen filt gen expr

context

The set of possible values for this context is:

{a € {1,2},b€{2,3},a#b,ce{1,...,a+b};(a,b,c)}
—_— — = ~——

gen gen filt gen expr

context

29

Comprehensions — contexts — sequents (2)
This is surprisingly similar to contexts in sequents!

Z,b 1,2 ime(4 b)Fb=
a < 4, E{a 73}7p”me(a+) 3

gen gen filt

context

The sequent above can be seen as a (false!) proposition.
We used this in the course to debug proofs.

Our formal proofs were written as series of numbered lines,
each line starting by either “Suppose” of “Then”.

Each “Then” line had an associated sequent —

its context was made of all the open “Suppose”s.

For each “Then” line in a valid proof its associated sequent
had to be a true proposition.

30

Dicas (do inicio do curso de Geometria Analitica)

Vocé VAI TER QUE aprender a definir seus objetos — pon-
tos, retas, conjuntos, circulos, etc... isso provavelmente vai ser
algo novo pra vocé e é algo que precisa de MUITO treino. Da
pra passar em Calculo 1 e em Prog 1 s6 aprendendo a “ler”
as definigoes que o professor e os livros mostram, mas em Ge-

ometria Analitica NAO DA, em GA vocé vai ter que aprender
aler E A ESCREVER definigoes.

2) Cada “seja” ou “sejam” que aparece nestas folhas é uma
definicao, e vocé pode usd-los como exemplos de defini¢oes
bem-escritas (ééé!1!!) pra aprender jeitos de escrever as suas
definigoes.

3) Em “matematiqués” a gente quase ndo usa termos como
“ele”, “ela”; “isso”, “aquilo” e “l4” — ao invés disso a gente
d4 nomes curtos pros objetos ou usa expressoes matematicas

31

pra eles cujo resultado é o objeto que a gente quer (como nas
pags __ e _)... mas quando a gente esta discutindo problemas
no papel ou no quadro a gente pode ser referir a determinados
objetos apontando pra eles com o dedo e dizendo “esse aqui”.

32

Dan Ingalls interview on SmallTalk

It started to hit home in the Spring of ’74 after I taught
Smalltalk to 20 PARC nonprogrammer adults. They were able
to get through the initial material faster than the children, but
just as it looked like an overwhelming success was at hand, they
started to crash on problems that didn’t look to me to be much
harder than the ones they had just been doing well on. One
of them was a project thought up by one of the adults, which
was to make a little database system that could act like a card
file or rolodex. They couldn’t even come close to programming
it. I was very surprised because I “knew” that such a project
was well below the mythical “two pages” for end-users we were
working within. That night I worote it out, and the next day I
showed all of them how to do it. Still, none of them were able
to do it by themselves. Later, I sat in the room pondering the

33

board from my talk. Finally, I counted the number of nonob-
vious ideas in this little program. They came to 17. And some
of them were like the concept of the arch in building design:
very hard to discover, if you don’t already know them.

The connection to literacy was painfully clear. It isn’t enough
to just learn to read and write. There is also a literature that
renders ideas. Language is used to read and write about them,
but at some point the organization of ideas starts to domi-
nate mere language abilities. And it help greatly to have some
powerful ideas under one’s belt to better acquire more power-
ful ideas [Papert 70s]. So, we decided we should teach design.
And Adele came up with another brillian stroke to deal with
this. She decided that what was needed was in intermediary
between the vague ideas about the problem and the very de-
tailed writing and debugging that had to be done to get it

34

to run in Smalltalk. She called the intermediary forms design
templates.

