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Category Theory...
...seems to be a very elegant area with “the right abstractions”
and lots of diagrams, but the diagrams are usually omitted
from the texts as if they were “obvious exercises”, and the
motivating examples are mentioned briefly, if at all — so the
comparisons between these “abstractions” and the examples
are also left as exercises.

Topos Theory is a very important sub-area of CT.
When I tried to read Johnstone’s “Topos Theory” (1977)
I understood very little, even though I tried very hard.
“I need a version for children of this!!!”
(I.e., with the missing diagrams and the examples.)
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My current favorite definition of “children”:
They prefer to start from particular cases
and then generalize —
They like diagrams and finite objects
drawn very explicitly —
They become familiar with mathematical ideas
by calculating / checking several cases
(rather than by proving theorems)

Example: pentominos.
Let “children” play
with pentominos for a while
before showing to them
theorems and game trees!
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Five applications

1. A way to develop visual intuition about Intuitionistic
Propositional Logic. Models for IPL are Heyting Alge-
bras; topologies are HAs. Look for finite topologies! Use
order topologies. Bonus: use planar topologies (“ZHAs”).

2. A way to build a topos with a given logic (when that
logic is a ZHA). Solution: Set(P,A).

3. Sheaves are related to J-operators (← old terminology)
on HAs. So: a way to visualize J-operators on ZHAs
(“slashings”).
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1. The sheaf associated to a J-operator. Solution: ques-
tion marks; erasing followed by reconstruction yields the
sheafification functor.

2. A version “for children” for parts of The Elephant —
in which the “missing diagrams” are no longer missing
and we can remember theorems and constructions by
shape and movement. Also: motivating examples “for
children”, in which everything is finite and can be drawn
explicitly. “Children” develop familiarity with mathe-
matical structures by calculating rather than by proving
theorems.
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Finite topologies
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Finite topologies (2)
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Finite topologies (3)
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Non-planar! Why?
Answer: because the W has three independent points!
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Finite topologies (4): 2CGs and ZHAs
A 2-column graph never has three independent points.
Trick: pile(25) = {2_, 1_, _1,_2,_3,_4,_5}.
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A famous J-operator: (13∨)
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A strange J-operator
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Logic in a ZHA (visually!!!)
Notation: a 2-column graph is (P,A) — (points, arrows) —
its order topology is OA(P ),
and a Planar Heyting Algebra (a ZHA) is H ⊂ Z2.
The correspondence is written as (P,A) H
and formally it means OA(P ) ∼= H.
There are two ways to define >,⊥ ∈ H and ∧,∨,→∈ >...

1) Via topology, in OA(P ):
> := P ,
⊥ := ∅,
Q ∧R := Q ∩R,
Q ∨R := Q ∪R,
R→ S := Int((T\R) ∪ S)



13

Logic in a ZHA (visually!!!) (2)
2) Via order. For example:

(Q→ (R→ S)) ↔ ((Q ∧R)→ S)
(Q ≤ (R→ S)) ↔ ((Q ∧R) ≤ S)

{Q ∈ H | Q ≤ (R→ S) } = {Q ∈ H | (Q ∧R) ≤ S }
(R→ S) = sup {Q ∈ H | (Q ∧R) ≤ S }

=
⋃
{Q ∈ H | (Q ∧R) ≤ S }
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Logic in a ZHA (visually!!!) (3)

>
· ·

· · ·
· (∨) · (→)

· Q · · ·
· · R ·
· (∧) ·
· ·
⊥
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J-operators
A J-operator on a Heyting Algebra H is an operation
J : H → H, abbreviated as ‘·∗’, obeying P ≤ P ∗ = P ∗∗

and (P ∧Q)∗ = P ∗ ∧Q∗.
Some famous J-operators: (¬¬), (A∨), (A→) (for A ∈ H).

A J-operator induces an equivalence relation:
P ∼J Q iff P ∗ = Q∗.
For many years I didn’t have ANY visual intuition on
what J-operators were, or could be.
When we play with J-operators on ZHAs we discover that:
Each equivalence class [P ]J has a top element, a bottom
element, and all element in between; and P ∗ is always the
top element of [P ]J ...
So we only need to draw the equivalence classes!
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A famous J-operator: (13∨)
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A strange J-operator
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Question marks
Every set of question marks Q ⊆ P in (P,A) induces an equiv-
alence relation on H ∼= OA(P ). Two subsets S, S′ ⊆ P are
Q-equivalent when S and S′ only differ in points of Q, i.e.:
S\Q = S′\Q. Here Q = {4_, 3_, 2_, _1,_2,_3,_5, }, and:
pile(22) ∼Q pile(23) 6∼Q pile(24),
12∗ = 23, 22 ∼J pile23 6∼J 24.
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pile(22) ∼Q pile(23) 6∼Q pile(24),
12∗ = 23, 22 ∼J pile23 6∼J 24.
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Toposes, geometric morphisms, internal diagrams
Internal diagrams are a tool to lower the lever of abstraction.
This is a geometric morphism between toposes.

f∗f∗D

D

εD

��

C

f∗f
∗C

ηC

��

f∗C Coo �f∗C

D
��

C

f∗D
��

D f∗D
� //

oo //

E Foo f∗

E F
f∗

//

E F
f //
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Toposes, geometric morphisms, internal diagrams (2)
Let A and B be 2CGs regarded as categories.
Then a functor f : A→ B induces a geometric morphism...
f∗f∗D

D

εD

��

C

f∗f
∗C

ηC

��

f∗C Coo �f∗C

D
��

C

f∗D
��

D f∗D
� //

oo //

SetA SetB
oo f

∗

SetA SetB
f∗

//

SetA SetB
f //

A B
f //

And if we draw the internal views of A, B, C, D...
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(
C2 C3

↘ ↙ ↘
C4 C5

)

(
D2 D3

↘ ↙ ↘
D4 D5

)
εD

��


C1

↙ ↘
C2 C3

↘ ↙ ↘
C4 C5

↘ ↙
C6




C2×C4
C3

↙ ↘
C2 C3

↘ ↙ ↘
C4 C5

↘ ↙
1


ηC
��

(
C2 C3

↘ ↙ ↘
C4 C5

) 
C1

↙ ↘
C2 C3

↘ ↙ ↘
C4 C5

↘ ↙
C6

oo �
(

C2 C3
↘ ↙ ↘
C4 C5

)

(
D2 D3

↘ ↙ ↘
D4 D5

)��


C1

↙ ↘
C2 C3

↘ ↙ ↘
C4 C5

↘ ↙
C6




D2×D4
D3

↙ ↘
D2 D3

↘ ↙ ↘
D4 D5

↘ ↙
1


��(

D2 D3
↘ ↙ ↘
D4 D5

) 
D2×D4

D3
↙ ↘

D2 D3
↘ ↙ ↘
D4 D5

↘ ↙
1

� //

oo //

SetA SetBoo f∗

SetA SetB
f∗

//

SetA SetB
f //

(
2 3
↘ ↙ ↘

4 5

) 
1

↙ ↘
2 3
↘ ↙ ↘

4 5
↘ ↙

6

f //



23

A factorization
The Elephant presents in its sections A4.2 and A4.5 two fac-
torizations of geometric morphisms that can be combined in a
single diagram (next slide). An arbitrary geometry morphism
g : A → D can be factored in an essentially unique way as a
surjection followed by an inclusion ([EA4.2.10]), and an inclu-
sion i : B → D can be factored in an essentially unique way as
a dense g.m. followed by a closed g.m. ([EA4.5.20]). A canon-
ical way to build these factorizations is by taking B := AG,
where G is a certain comonad on A ([EA4.2.8]), and taking
C := shj(D), where j is a certain local operator on D.
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A factorization (2)

A D
g (any g.m.) //

A B
s (surjection) // B D

i (inclusion) //

B C
d (dense) // C D

c (closed) //

AG shj(D)
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A factorization (3)

SetA SetD
g (any g.m.) //

SetA SetB
s (surjection) // SetB SetD

i (inclusion) //

SetB SetC
d (dense) // SetC SetD

c (closed) //

(SetA)G shj(Set
D)

A D
g //

A B
s // B D

i //

B C
d // C D

c //



26

A factorization (4)
s∗s∗A

A
��

B

s∗s
∗B

(monic)
��

s∗B Boo �s∗B

A
��

B

s∗A
��

A s∗A
� //

oo //

SetA SetBoo s
∗

SetA SetB
s∗
//

A B
s //

i∗i∗B

B

(iso)
��

D

i∗i
∗D
��

i∗D Doo �i∗D

B
��

D

i∗B
��

B i∗B
� //

oo //

SetB SetDoo i∗

SetB SetD
i∗

//

B D
i //

d∗d∗B

B
��

kC

d∗d
∗kC

(monic
on c.p.s)��

d∗C Coo �d∗C

B
��

C

d∗B
��

B d∗B
� //

oo //

SetB SetCoo d
∗

SetB SetC
d∗

//

B C
d //

c∗c∗C

C
��

D

c∗c
∗D
��

c∗D Doo �c∗D

C
��

D

c∗C
��

C c∗C
� //

oo //

SetC SetDoo c
∗

SetC SetD
c∗
//

C D
c //

These factorizations are almost completely opaque to people
who know just the basics of toposes... how can we?...
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Shape and movement
This is how I remember the Frobenius Property:

P ΣfP
� //

P∧f∗Q

POO

Σf (P∧f∗Q)

ΣfP66mmmmmmmm
(ΣfP )∧Q

ΣfPOO

f∗Q Qoo �

P∧f∗Q

f∗Q
��

Σf (P∧f∗Q)

Q
((QQ

QQQ
QQQ

QQ
(ΣfP )∧Q

Q
��

P∧f∗Q Σf (P∧f∗Q)
� // Σf (P∧f∗Q) (ΣfP )∧Q

\ //
Σf (P∧f∗Q) (ΣfP )∧Qoo

Frob

� //

� //

A B
f //

(From “Internal Diagrams and Archetypal Reasoning in
Category Theory” (Ochs 2013))


