
A skeleton for the proof of the Yoneda Lemma
(working draft)

Eduardo Ochs

February 12, 2018

Abstract

These notes consists of five parts.
The first part explains how to draw the “internal view” of a diagram

(or of a function, functor, natural transformation, etc).
The second part shows that a certain diagram, that we call diagram

Y0, is the “skeleton” of the proof of the Yoneda Lemma in the following
sense. In order to interpret that diagram formally we have to infer the
types of all its entities, and then infer (by “term inference”, as in [Och13],
obtaining untyped λ-terms) the actions on morphisms of the four functors
in Y0, and also the actions of the four natural transformations and the
actions of three bijections. The bijections are called B1, B2 and B3, where
B1 is easy to construct, B2 is obtained from B1 by substituing a generic
functor and a generic object that appear in B1 by specific ones, and B3 is
B2 composed with two trivial bijections, one at each side. The statement
of the Yoneda Lemma is essentially just “B3 is a bijection”. In Category
Theory texts above a certain level most term inferences are treated as
“obvious”, so a (skeleton of a) proof of the Yoneda Lemma is just diagram
Y0 plus “do the obvious type inferences and term inferences”.

The third part discusses a gap in the second part. The “bijection”
B3 converts a map f ∈ HomC(B,C) into a natural transformation T ′′ ∈
Nat((C,−), (B,−)) and a T ′′ into an f , but what we got in the second part
is just a pair of λ-terms of the right types, (B3, B

−1
3), without the proofs

that B−1
3 (B3(f)) = f and that B3(B

−1
3 (T ′′)) = T ′′. In the language of

[Och13] what we did was to drop, or erase, a lot of information (mainly the
“equational parts”) and then work in the “syntactical world”; we obtained
a “skeleton of a proof” that must now must be “lifted” to the “real world”
by completing some missing parts. It turns out that B−1

3 (B3(f)) = f
is trivial, but B3(B

−1
3 (T ′′)) = T ′′ only holds if T ′′ obeys the “naturality

condition” that comes from it being a natural transformation. The moral
of the story so far is that 90% of the proof of the Yoneda Lemma can be
extracted from diagram Y0 if we do the “obvious” type and term inferences
on it (“for some value of 90%”, of course); only a tiny part of the proof
needs things that get erased in the passage to the skeleton.

The fourth part uses these tools to state and prove three other “Yoneda
Lemmas” and to define universal arrows, universal elements, representable

1

2

functors, and to show how some of these ideas are motivated by adjunc-
tions.

The fifth part uses all this to build “bridges” between several notations.
The less trivial case is how to translate between our notation and the one
in Reyes, Reyes and Zolfaghari’s Generic Figures and Their Glueings; the
translations between our notation and MacLane’s, Riehl’s and Awodey’s
are easy (but only RRZ has been written in details at the moment).

Index of sections:
1 Internal views . 2
2 Changing shape, changing notation 5
3 Interpreting diagrams Y0, Y1, and Y2 6
4 B1 is really a bijection . 12
5 Making the bijections more explicit 13
6 A stronger Yoneda Lemma . 14
7 Representable functors . 15
8 Universal elements and universal arrows 15
9 Adjunctions . 15
10 Two contravariant Yoneda Lemmas 17
11 The Yoneda Embeddings . 19
12 Reading “Generic Figures and ther Glueings” 20
12.1 Morphisms of C-sets . 22
12.2 The Yoneda Lemma in RRZ . 22
13 Reading MacLane’s CWM . 23
14 Reading Emily Riehl’s “CT in Context” 24
15 Reading Awodey’s “Category Theory” 25
16 Related projects . 25

1 Internal views
Note: this section is an introduction to the idea of “internal views” of categorical
diagrams. I first saw this idea in [LS97], p.13, but it is used in other places too
— for example in p.17 of [Rie16]. I used it a lot in [Och13], but there I insisted
on a notion of “downcasing” that I’ve since abandoned.

When I was a kid my first exposure to functions was through diagrams like
this:

0 0//

1
2,,Y

YYYYYY
YYY

2

4))
RRR

RRR
RRR

RR
1

3

2017yoneda February 12, 2018 17:26

3

after a while — actually years — the blob-sets got names, like A, B, N, R, the
functions got names like f , g,

√
, and several conventions were established:

we didn’t have to draw all elements in the blob-sets; we could draw a “generic
element”, n, and indicate that it goes to

√
n; and we could draw an “external

view” of the function above or below the “internal view” given by the blobs:

−1
0 0//

1 1//

2
√
2//

3
√
3//

4 2//

n
√
n//

N R
√

//

Then the internal view gradually disappeared from our mathematical prac-
tice, and we started to write functions like this,

√
: N → R

n 7→
√
n

,
f : A → B

a 7→ f(a)
,

· : C ×D → E
(c, d) 7→ c · d

which makes a clear distinction between the tailless arrow, ‘→’, and the arrow
with tail, ‘ 7→’: f : A → B is a function that takes elements (plural!) from A
to elements of B, and n 7→

√
(n) is an element (in the singular) being taken to

another. Rewriting our diagram for the internal and the external views of “
√

”
without blobs, it becomes:

4 2�
√

//

n
√
n

�
√
//

N R
√

//

, or simply: n
√
n� //

N R
√

//

We will often use the convention that f : A → B is a function from A to B,
but A → B is the set of all functions from A to B — i.e., (A → B) = BA and
f : A → B means f ∈ (A → B) — on ‘ 7→’s this doesn’t hold, and the names on
‘ 7→’s can be omitted.

The internal view of a functor F : A → C is more complex. The category
A has not only “points” (the objects of A) but also “arrows” (the morphisms

2017yoneda February 12, 2018 17:26

4

of A). The functor F takes a morphism g : A → B in A to a morphism
Fg : FA → FB in C; and sometimes we will denote the action of F on objects
by F0 and its action on morphisms by F1, so a diagram with the internal and
the external views of F may be drawn, for example, as:

A F0A
� F0 //

B F0B
� F0 //

A

B

g

��

F0A

F0B

F1g

��

A C
F //

� F1 //
or as:

A FA
� //

B FB� //

A

B

g

��

FA

FB

Fg

��

A C
F //

� //

The “action” of a natural transformation T : F → G, where F,G : A → B
are functors, consists of a single operation — not two as in functors — that
expects an object A ∈ A and returns a morphism TA : FA → GA in B. We
can represent that action as A 7→ (TA : FA → GA) or A 7→ (FA

TA→ GA), or as
a diagram:

A

B

F

��

A

B

G

��

A

FA

J

F

��

A

GA

t

G

��4
44

44
44

4

FA GATA //

A

T

��

F G
T //

The “naturality condition” of a natural transformation T : F → G is the
assurance that for every arrow α : A → A′ in A this square commutes:

A

A′

α

��

FA GA
TA //FA

FA′

Fα

��

GA

GA′

Gα

��
FA′ GA′TA′

//

F G
T //

Diagrams like the one above will be our favorite ways to draw internal views
of natural transformations. Note that the arrows for the functors F and G are
left implicit.

We will sometimes use diagrams like this to show the internal view of a
commutative diagram, especially when it is in Set:

A B
f //A

C

g

��

B

D

h

��
C D

k //

a f(a)
f //a

g(a)

g

��

f(a)

h(f(a))

h
��

g(a) k(g(a))
k //

2017yoneda February 12, 2018 17:26

5

the internal view shows that h(f(a)) = k(g(a)) for every a ∈ A.

Our favorite way to choose names for the components of an adjunction and
to draw its internal view is this:

LA Aoo �
LA

B

g[

f
��

A

RB

g

f]

��
B RB� //

oo[AB ��
]AB

//

B A
oo L

B A
R
//

The adjunction L a R “is” a bijection HomB(LA,B)
oo [AB

]AB

// HomA(A,RB) for

each A in A and each B in B. Note that the functor L appears at the left of
the ‘a’ and of the ‘,’, and it goes left; the functor R appears at the right of the
‘a’ and of the ‘,’, and it goes right; the direction ‘[’ of the bijection goes left in
the diagram, and it pulls the functor in g : A → RB to the left of the ‘→’; the
direction ‘]’ of the bijection goes right in the diagram and pushes the functor in
f : LA → B to the right of the ‘→’.

When C is a finite category that can be drawn explicitly, like this,

A C
f //

B

C

g
��

we can represent functors from C to other categories very compactly using a
positional notation similar to the ones in sec.1 of [Och17]. For example, this
diagram

{1, 2} {5, 6}
1 7→5
2 7→6 //

{3, 4}

{5, 6}

3 7→5
5 7→6
��

can be intepreted as a functor F : C → Set with F (A) = {1, 2}, F (f) =
{(1, 5), (2, 6)} and so on — we define F by the internal view of its image.

2 Changing shape, changing notation
The translation between two languages for diagrams can be done in two steps
— changing shape and changing notation — that are independent and can be
applied in any order. In the example below we start with a diagram from
[RRZ04] (see sec.12.2) at the top left; moving right changes its shape to show

2017yoneda February 12, 2018 17:26

6

the internal view of its natural transformation, and moving down changes its
notation to the one in sec.4:

F ′

F

f

OOF hF
1F //___ hF X

Φ //

F ′

hF

f

??�
�

�
�

�

F

F ′

OO

f

hFF X(F)
ΦF //hFF

hFF
′

hF f

��

X(F)

X(F ′)

X(f)

��
hFF

′ X(F ′)
ΦF ′ //

hF X
Φ //

1F Φ(1F)
� // Φ(1F)

Φ(1F).f

_

��

1F

f

_

��
f Φ(f)� //

//

F ′

F

f

OOF hF
1F //___ hF X

Φ //

F ′

hF

f

??�
�

�
�

�

C ′

C

h

OOC (−, C)
idC //___ (−, C) R

T //

C ′

(−, C)

h

??�
�

�
�

�

��

F

F ′

OO

f

hFF X(F)
ΦF //hFF

hFF
′

hF f

��

X(F)

X(F ′)

X(f)

��
hFF

′ X(F ′)
ΦF ′ //

hF X
Φ //

1F Φ(1F)
� // Φ(1F)

Φ(1F).f

_

��

1F

f

_

��
f Φ(f)� //

C

C ′

OO

f

(C,C) RC
TC //(C,C)

(C ′, C)

(h,C)

��

RC

RC ′

Rh

��
(C ′, C) RC ′TC′

//

(−, C) R
T //

idC TCidC
� // TCidC

TCidC ;Rh

_

��

idC

h

_

��
h TC ′h� //

��

C ′

C

h

OOC (−, C)
idC //___ (−, C) R

T //

C ′

(−, C)

h

??�
�

�
�

�

C

C ′

OO

f

(C,C) RC
TC //(C,C)

(C ′, C)

(h,C)

��

RC

RC ′

Rh

��
(C ′, C) RC ′TC′

//

(−, C) R
T //

idC TCidC
� // TCidC

TCidC ;Rh

_

��

idC

h

_

��
h TC ′h� //

//

3 Interpreting diagrams Y0, Y1, and Y2
My favorite diagram for remembering the proof of (one of the forms of) the
Yoneda Lemma is this one (“diagram Y0”):

A

RC
��

C RC� //

(C,−) (A,R−)//

OO

��

1

(B,C)
��

C (B,C)� //

(C,−) (1, (B,−))// (1, (B,−))

(B,−)

OO

��

(C,−)

(B,−)
##G

GG
GG

GG
GG

G

OO

��
� //

It is made of 11 objects in different categories, 6 morphisms, two functors,
two bijections, and a middle arrow that performs some substitutions on the first

2017yoneda February 12, 2018 17:26

7

bijection to obtain the second one. Let’s name (or “number”) all of them:

O1

O3

m1

��
O2 O3

� F1 //

O7 O8m2

//

OO
B1
��

O4

O6

m3

��
O5 O6

� F2 //

O9 O10m4

// O10

O11

OO

m5

��

O9

O11

m6

##G
GG

GG
GG

GG
GG

OO
B2
��

� S //

The existence of a morphism O1
m1→ O3 tells us that O1 and O3 belong to the

same category; as O1 = A let’s call that category A. Similarly, O2 = O5 = C,
so O2 and O5 belong to a category that we will call C. O4 and O6 belong to the
same category, and O4 = 1, which is an object of Set, so O4 and O6 are objects
of Set. Similarly, O7 = O9 = (C,−), so O7, O8, O9, O10, O11 all belong to the
same category. The functor F1 = R goes from C to A and the functor F2, that
will turn out to be (B,−), goes from C to Set.

(B,C) is a shorthand for HomC(B,C); the two objects B and C have to
belong to the same category so B is an object of C. (C,−) is a shorthand for
the functor HomC(C,−), which goes from C to Set (obs: C has to be locally
small). (C,−) is an object of the category of functors from C to Set, and O7

to O11, so:

C : C A : A 1 : Set (C,−) : C → Set
B : C RC : A (B,C) : Set (B,−) : C → Set

R : C → A (A,R−) : C → Set
(1, (B,−)) : C → Set

(A,R−) is a shorthand for HomA(A,R−) : C → Set, (B,−) for HomC(B,−) :
C → Set, and (1, (B,−)) for HomSet(1,Hom(C(B,−))). O7 to O11 are all func-
tors from C to Set and so objects of the category SetC, and the morphisms
m3, m4, m5, m6, are natural transformations; m5 is a natural isomorphism.

If we indicate in the diagram that O7 to O11 are functors and m3 to m6 are

2017yoneda February 12, 2018 17:26

8

NTs, we get:
O1

O3

m1

��
O2 O3

� F1 //

F4 F4
T1

//

OO
B1
��

O4

O6

m3

��
O5 O6

� F2 //

F5 F6
T2

// F6

F7

OO

T3

��

F5

F7

T4

##G
GG

GG
GG

GG
GG

OO
B2
��

� S //

Warning: the bijection B1 is between m1 and T1, not between F1 and T1,
even though we draw it vertically; similarly, the bijection B2 is between m2 and
T2. The reason for drawing the diagram in this way instead of making O1 and
O2 switch places with one another and doing the same with O4 and O5 will be
explained later.

The arrow S is a substitution that produces B2 from B1. It’s better to write
it in a notation for simultaneous substitutions, not in λ-calculus notation:

S =

R := (B,−)
A := Set
A := 1

Now that we have typed most objects in diagram Y0 let’s go back to the

original notation, and give names to some arrows. This is diagram Y1:

A

RC

g

��
C RC

� R //

(C,−) (A,R−)
T
//

B1
��

OO
B−1

1

1

(B,C)

f ′

��
C (B,C)

� (B,−) //

(C,−) (1, (B,−))
T ′
// (1, (B,−))

(B,−)

I

��

(1, (B,−))

(B,−)

OO

I−1

(C,−)

(B,−)

f∗

##G
GG

GG
GG

GG
G

B2
��

OO
B−1

2
� S //

The next step is to define precisely how the four functors work. We can do that

2017yoneda February 12, 2018 17:26

9

by drawing internal views:

C ′ (C,C ′)� //C ′

C ′′

k
��

(C,C ′)

(C,C ′′)

λh.(h;k)��
C ′′ (C,C ′′)� //

C Set
(C,−) //

C ′ (A,RC ′))� //C ′

C ′′

k
��

(A,RC ′))

(A,RC ′′))

λg′.(g′;Rk)��
C ′′ (A,RC ′′))� //

C Set
(A,R−)//

C (B,C)
� //C

C ′

g
��

(B,C)

(B,C ′)

λf.(f ;g)��
C ′ (B,C ′)� //

C Set
(B,−) //

C (1, (B,C))
� //C

C ′

g
��

(1, (B,C))

(1, (B,C ′))

λf ′.λe.(f ′(e);g)��
C ′ (1, (B,C ′))� //

C Set
(1,(B,−))//

The actions of the functors (C,−), (B,−), and (A,R−) can be inferred by
term inference or by looking at the diagrams below:

C

C ′

h
��

C ′

C ′′

k
��

C

C ′′

h;k

��

C

C ′

k
��

C RC ′� //

C ′ RC ′′� //

A

RC ′

g′

��
RC ′

RC ′′

Rk
��

A

RC ′′

g′;Rk

��

B

C

h
��
C

C ′

k
��

B

C ′

h;k

��

and the action of (1, (B,−)) is a variant of (B,−). We get:

(C,−)0 = λC ′.HomC(C,C
′)

(C,−)1 = λk.λh.(h; k)
(B,−)0 = λC.HomC(B,C)
(B,−)1 = λg.λf.(f ; g)

(A,R−)0 = λC ′.HomA(A,RC ′)
(A,R−)1 = λk.λg′.(g′;Rk)

(1, (B,−))0 = λC ′.HomSet(1,HomC(B,C ′))
(1, (B,−))1 = λk.λg′.(g′;Rk)

We can do the same for the natural transformations.

(C,C ′) (A,RC ′)
λh.(g;Rh)//

(C,−) (A,R−)
T //

(C,C ′) (1, (B,C ′))
λh.λe.(f ;h)//

(C,−) (1, (B,−))
T ′

//
(1, (B,C ′)) (B,C ′)

λf ′.f ′(e)//

(1, (B,−)) (B,−)
I //

(C,C ′) (B,C ′)
λh.(f ;h) //

(C,−) (B,−)
f∗

//
(B,C ′) (1, (B,C ′))

λf.λe.f //

(B,−) (1, (B,−))
I−1

//

2017yoneda February 12, 2018 17:26

10

We get:
T = λC ′.λh.(g;Rh)
T ′ = λC ′.λh.λe.(f ;h)
f∗ = λC ′.λh.(f ;h)
I = λC ′.λf ′.f ′(e)

I−1 = λC ′.λf.λe.f

And we can also do the same for the bijections.

g : A → RC

T : (C,−) → (A,R−)

_

T :=λC′.λh.(g;Rh)

��

g : A → RC

T : (C,−) → (A,R−)

OO

g:=TC(idC)

_

f ′ : 1 → (B,C)

T ′ : (C,−) → (1, (B,−))

_

T :=λC′.λh.(g;(B,−)(h)) (?)

��

f ′ : 1 → (B,C)

T ′ : (C,−) → (1, (B,−))

OO

f ′:=T ′C(idC)

_

so:
B1 = λg.λC ′.λh.(g;Rh)

B−1
1 = λT.TC(idC)
B2 = λf ′.λC ′.λh.(g; (B,−)(h)) (?)

B−1
2 = λT ′.T ′C(idC).

Note that we used only type inference and term inference — which is not
little, but most books and articles on CT pretend that simple type inferences
and term inferences like these are “obvious” — and now have the types and
the terms for everything in diagram Y1. Let’s call the diagram below “diagram

2017yoneda February 12, 2018 17:26

11

Y2”; it is Y1 plus lots of information.

A

RC

g

��
C RC� R //

(C,−) (A,R−)
T
//

B1
��

OO
B−1

1

1

(B,C)

f ′

��
C (B,C)� (B,−) //

(C,−) (1, (B,−))
T ′
// (1, (B,−))

(B,−)

I

��

(1, (B,−))

(B,−)

OO

I−1

(C,−)

(B,−)

f∗

##G
GG

GG
GG

GG
G

B2
��

OO
B−1

2
� S //

C : C A : A 1 : Set (C,−) : C → Set
B : C RC : A (B,C) : Set (B,−) : C → Set

R : C → A (A,R−) : C → Set
(1, (B,−)) : C → Set

(C,−)0 = λC ′.HomC(C,C
′)

(C,−)1 = λk.λh.(h; k)
(B,−)0 = λC.HomC(B,C)
(B,−)1 = λg.λf.(f ; g)

(A,R−)0 = λC ′.HomA(A,RC ′)
(A,R−)1 = λk.λg′.(g′;Rk)

(1, (B,−))0 = λC ′.HomSet(1,HomC(B,C ′))
(1, (B,−))1 = λk.λg′.(g′;Rk)

T = λC ′.λh.(g;Rh)
T ′ = λC ′.λh.λe.(f ;h)
f∗ = λC ′.λh.(f ;h)
I = λC ′.λf ′.f ′(e)

I−1 = λC ′.λf.λe.f

S =
[
R:=(B,−)
A:=Set
A:=1

]
B1 = λg.λC ′.λh.(g;Rh)

B−1
1 = λT.TC(idC)
B2 = λf ′.λC ′.λh.(g; (B,−)(h)) (?)

B−1
2 = λT ′.T ′C(idC)

2017yoneda February 12, 2018 17:26

12

4 B1 is really a bijection
In this diagram, that is just a part of diagram Y1 with the bijection B1 made
more explicit,

A

RC

g

��
C RC� //

(C,−) (A,R−)
T
//

_
T :=

B1(g):=

λC′.λh.(g;Rh) ��

OO
g:=

B−1
1 (T):=

TC(idC)_

it is easy to see that B−1
1 (B1(g)) = g:

B−1
1 (B1(g)) = B−1

1 (λC ′.λh.(g;Rh))
= (λC ′.λh.(g;Rh))C(idC)
= (λh.(g;Rh))(idC)
= g;R(idC)
= g; idRC

= g

Let’s try to calculate B1(B
−1
1 (T)):

B1(B
−1
1 (T)) = B1(TC(idC))

= λC ′.λh.(TC(idC);Rh)

This is not necessarily equal to T ... but note that if T is a natural transformation
then its naturality condition means that for every k : C ′ → C ′′ this square
commutes,

C ′

C ′′

k

��

(C,C ′) (A,RC ′)
TC′
//

(C,C ′′) (A,RC ′′)
TC′′
//

(C,C ′)

(C,C ′′)

(C,−)k

��

(A,RC ′)

(A,RC ′′)

(A,R−)k

��

(C,−) (A,R−)
T //

h TC ′h
� TC′

// TC ′h

(TC ′h);Rk

_
(λk.λh.(h;k))k

��

h

h; k

_

(λk.λg′.(g′;Rk))k

��
h; k TC ′′(h; k)�

TC′′
//

i.e., (TC ′h);Rk = TC ′′(h; k); this diagram helps understanding the types:

A

RC

r
��

C

C ′

h
��

RC

RC ′

Rh
��

C ′

C ′′

k
��

RC ′

RC ′′

Rk
��

A

RC ′

TC′h

��

A

RC ′′

TC′′(h;k)

��

C RC
� //

C ′ RC ′� //

C ′′ RC ′′� //

2017yoneda February 12, 2018 17:26

13

If we replace k : C ′ → C ′′ by h : C → C ′ and h by idC we get:

((TC ′h);Rk = TC ′′(h; k))

[
C′:=C
C′′:=C′

k:=h
h:=idC

]
= (TCidC ;Rh = TC ′(idC ;h))

which lets us continue the calculation of B1(B
−1
1 (T)):

B1(B
−1
1 (T)) = B1(TC(idC))

= λC ′.λh.(TC(idC);Rh)
= λC ′.λh.(TC ′(idC ;h))
= λC ′.λh.TC ′h

this means that for all C ′ and h we have

B1(B
−1
1 (T))C ′h = (λC ′.λh.TC ′h)C ′h

= (λh.TC ′h)h
= TC ′h

so by η-reduction B1(B
−1
1 (T))C ′ = TC ′ and B1(B

−1
1 (T)) = T .

Note that the proof of TCidC ;Rh = TC ′h can be represented as a diagram:

C

C ′

h

��

(C,C) (A,RC)
TC //(C,C)

(C,C ′)

(C,−)h

��

(A,RC)

(A,RC ′)

(A,R−)h

��
(C,C ′) (A,RC ′)

TC′
//

(C,−) (A,R−)
T //

idC TCidC
� // TCidC

(TCidC);Rh

_

��

idC

h

_

��
h TC ′h
� //

5 Making the bijections more explicit
Let’s introduce a new diagram that stresses the bijections — and names a few
bijections that were unnamed before. This is diagram Y3:

g : A → RC

T : (C,−) → (A,R−)

_

B1

��

g : A → RC

T : (C,−) → (A,R−)

OO

B−1
1

_

f : B → C

f ′ : 1 → (B,C)

_

B4

��

f : B → C

f ′ : 1 → (B,C)

OO

B−1
4

_
f ′ : 1 → (B,C)

T ′ : (C,−) → (1, (B,−))

_

B2

��

f ′ : 1 → (B,C)

T ′ : (C,−) → (1, (B,−))

OO

B−1
2

_
T ′ : (C,−) → (1, (B,−))

f∗ : (C,−) → (B,−)

_

B5

��

T ′ : (C,−) → (1, (B,−))

f∗ : (C,−) → (B,−)

OO

B−1
5

_

� S //

f : B → C

f∗ : (C,−) → (B,−)

_

B3

��

f : B → C

f∗ : (C,−) → (B,−)

OO

B−1
3

_

2017yoneda February 12, 2018 17:26

14

The statement of the Yoneda Lemma is just this: “B3 is a bijection”. If we
build B4 and B5, define B3 as B5 ◦B2 ◦B4 and simplify the λ-terms we obtain
that B3 is just this:

f : B → C

f∗ : (C,−) → (B,−)

_

f∗:=λh.(f ;h)

��

f : B → C

f∗ : (C,−) → (B,−)

OO

f :=(f∗C)(idC)

_

A direct proof that B3 and B−1
3 are inverses to one another requires natural-

ity like we did in section 4 (trust me!), and less direct proof can be structured
like this: B1 is a bijection implies that B2 is a bijection, that implies that B3 is
a bijection.

6 A stronger Yoneda Lemma
If we don’t replace the functor R by (B,−) in Y0 and we make A := Set and
A := 1 we can build this diagram here (“diagram Y4”),

1

RC

p′

��
C RC

� R //

(C,−) (1, R−)
T ′
// (1, R−)

R

OO

��

(C,−)

R

T
##G

GG
GG

GG
GG

GG

OO

��

that yields a bijection between points of RC and natural transformations from
(C,−) to R (“diagram Y5”):

p ∈ RC

p′ : 1 → RC

_

��

p ∈ RC

p′ : 1 → RC

OO

_
p′ : 1 → RC

T ′ : (C,−) → (1, R−)

_

��

p′ : 1 → RC

T ′ : (C,−) → (1, R−)

OO

_
T ′ : (C,−) → (1, R−)

T : (C,−) → R

_

��

T ′ : (C,−) → (1, R−)

T : (C,−) → R

OO

_

This bijection feels much more abstract than the one that we were looking
at before.

2017yoneda February 12, 2018 17:26

15

7 Representable functors

8 Universal elements and universal arrows
We say that an element p ∈ RC is a universal element when the natural trans-
formation T associated to it by diagram Y4 is a natural isomorphism, i.e., when
for every C ′ the map TC ′ = λh.Rhp is an iso:

p ∈ RC

T : (C,−) → R

_
T :=λC′.λh.Rhp ��

p ∈ RC

T : (C,−) → R

OO
p:=TCidC_

A universal arrow is an arrow g : A → RC such that the associated T
(= λC ′.λh.(g;Rh)) is a natural isomorphism:

A

RC

g

��
C RC� //

(C,−) (A,R−)
T
//

_
T :=

λC′.λh.(g;Rh)
��

OO
g:=

TC(idC)
_

9 Adjunctions
At the end of sec.1 we presented a convention for naming the components of an
adjunction and drawing its internal view, but we didn’t include units or counits.

For any A ∈ A the unit map ηA, defined like this,

LA Aoo L �

LA RLA
�
R
//

LA

LA

idLA

��

A

RLA

ηA:=
](idLA)
��

oo[A,LA��
]A,LA

//

B Aoo L
B A

R
//

induces a map (f 7→ (ηA;Rf)) : (LA,B) → (A,RB) that is equal to the bijec-

2017yoneda February 12, 2018 17:26

16

tion]AB : (LA,B) → (A,RB):

A

RLA

ηA

��
LA RLA

� //LA

B

f

��

RLA

RB

Rf

��
B RB� //

� R //

A

RB

ηA;Rf

��

B A
oo L

B A
R
//

the map (f 7→ (ηA;Rf)) is natural in B, and we can see (I’m omitting the
details now) that it induces a natural transformation T : (LA,−) → (A,R−):

A

RLA

ηA

��
LA RLA� R //

(LA,−) (A,R−)
T
//

OO

��

We are now in a situation similar to diagram Y0 — we can see that any natural
transformation T : (LA,−) → (A,R−) yields a map ηA : A → RLA (that is
not necessarily the unit of the adjuction, of course).

Now make the category A be Set, and make A := 1 and C := LA = L1.
Then RLA = RL1 = RC, and we get these diagrams:

1

RC

p′

��
C RC

� R //

(C,−) (1, R−)
T ′
// (1, R−)

R

OO

��

(C,−)

R
T $$H

HH
HH

HH
HH

OO

��

p ∈ RC

p′ : 1 → RC

_

��

p ∈ RC

p′ : 1 → RC

OO

_
p′ : 1 → RC

T ′ : (C,−) → (1, R−)

_

��

p′ : 1 → RC

T ′ : (C,−) → (1, R−)

OO

_
T ′ : (C,−) → (1, R−)

T : (C,−) → R

_

��

T ′ : (C,−) → (1, R−)

T : (C,−) → R

OO

_

We have a bijection between RC = RL1 and the set of natural transformations
from (C,−) to R, but we also have more: when p′ : 1 → RL1 = RC is a unit
map of the adjunction then the corresponding T : (C,−) → R is a natural
isomorphism, so this functor R is representable and represented by C, the map
p′ : 1 → RC is a universal arrow, p ∈ RC is a universal element. Most (or all?)

2017yoneda February 12, 2018 17:26

17

items in Examples 2.1.5 in pp.51–53 of [Rie16] are applications of this idea using
adjunctions of the form F a U — e.g., in item (ii) the functor F : Set → fGroup
takes each set A to the free group FA having A as its set of generators.

(To do: debug the ideas above!)

10 Two contravariant Yoneda Lemmas
Let’s introduce some notations for dealing with opposite categories. If B and C
are objects of C then Bop and Cop are objects of Cop; a morphism f : B → C in
C is written as fop : Cop → Bop when regarded as a morphism in Cop. Looking
at hom-sets, we have that f ∈ HomC(B,C) iff fop ∈ HomCop(Cop, Bop), and in
the shorthand notation this means that (B,C) and (Cop, Bop) are equal except
for the ‘op’s in the elements of (Cop, Bop).

Let G : Cop → D be a contravariant functor. We will write its action on
objects as Cop 7→ GG, and the internal view of G is:

B

C

OO
f

Bop GB
� //

Cop GC� //

Bop

Cop

fop

��

GB

GC

Gf
��

Cop D
G //

If we take Diagram Y0 and replace the category C by Cop we get this; note
that R : Cop → A:

A

RC
��

Cop RC
� R //

(Cop,−) (A,R−)//

OO

��

1

(Bop, Cop)
��

Cop (Bop, Cop)
�(B

op,−)//

(Cop,−) (1, (Bop,−))// (1, (Bop,−))

(Bop,−)

OO

��

(Cop,−)

(Bop,−)
##G

GG
GG

GG
GG

G

OO

��
� //

2017yoneda February 12, 2018 17:26

18

We can simplify this a bit, rewriting it as:

A

RC
��

Cop RC
� R //

(−, C) (A,R−)//

OO

��

1

(C,B)
��

Cop (C,B)
� (−,B) //

(−, C) (1, (−, B))// (1, (−, B))

(−, B)

OO

��

(−, C)

(−, B)
##G

GG
GG

GG
GG

G

OO

��
� //

If we replace A by Set and A by 1 and complete the triangle at the lower
left we get a single diagram that states the two contravariant Yoneda Lemmas:

1

RC
��

Cop RC� R //

(−, C) (1, R−)// (1, R−)

R

OO

��

(−, C)

R
##G

GG
GG

GG
GG

GG

OO

��

1

(C,B)
��

Cop (C,B)� (−,B) //

(−, C) (1, (−, B))// (1, (−, B))

(−, B)

OO

��

(−, C)

(−, B)
##G

GG
GG

GG
GG

G

OO

��
� //

The diagrams that help us understand how the functors and natural trans-
formations above work are:

C

C ′

OO

C ′

C ′′

OO

1

RC
��

Cop RC� //Cop

C ′op
��

RC

RC ′

_

��
C ′op RC ′� //C ′op

C ′′op
��

RC ′

RC ′′
��

C ′′op RC ′′� //

(−, C) (1, R−)// (1, R−)

R

OO

��

(−, C)

R
))RRR

RRRR
RRRR

R

C

C ′

OO

C ′

C ′′

OO

1

(C,B)
��

Cop (C,B)� //Cop

C ′op
��

(C,B)

(C ′, B)

_

��
C ′op (C ′, B)

� //C ′op

C ′′op
��

(C ′, B)

(C ′′, B)
��

C ′′op (C ′′, B)� //

(−, C) (1, (−, B))// (1, (−, B))

(−, B)

OO

��

(−, C)

(−, B)
))RR

RRR
RRR

R

2017yoneda February 12, 2018 17:26

19

The statements of these contravariant Yoneda Lemmas are:

p : RC

T : (−, C) → R

_
T :=

λC′.λh.(Rh)(p)
��

p : RC

T : (−, C) → R

OO
p:=

TCidC_

f : C → B

f∗ : (−, C) → (−, B)

_
f∗:=

λC′.λh.(h;f) ��

f : C → B

f∗ : (−, C) → (−, B)

OO
f :=

f∗CidC_

Note that the action of the (contravariant) functor (−, C) on objects can be
written Bop 7→ (B,C); sometimes by abuse of language we will denote the whole
functor (−, C) by Bop 7→ (B,C), and, similarly, denote the covariant functor
(B,−) used in sec.3 by C 7→ (B,C).

11 The Yoneda Embeddings
Our two “less abstract Yoneda lemmas” can be drawn like this:

B

C

f

��

(B,−)

(C,−)

OO
f∗oo //

B

C

f

��

(−, B)

(−, C)

f∗
��

oo //

They are usually presented at a slightly higher level, as:

B

C

f

��

C

Bop (B,−)
� //Bop

Cop

OO

fop

(B,−)

(C,−)

OO
f∗

Cop (C,−)� //

oo //

Cop SetC
y //

B (−, B)
� //B

C

f

��

(−, B)

(−, C)

f∗
��

C (−, C)� //

oo //

C SetC
opy′

//

The Yoneda Lemma says that the functors Bop 7→ (B,−) and B 7→ (−, B)
— whose short names are y and y′ — are full and faithful. These functors are
usually called the Yoneda Embeddings

If we expand the ‘(B,−)’ and the ‘(−, B)’ in Bop 7→ (B,−) and B 7→ (−, B)
we get Bop 7→ (C 7→ (B,C)) and B 7→ (Aop 7→ (A,B)), and this makes the
actions of y and y′ on objects very easy to understand. A trick to figure out
how y and y′ act on morphisms is to draw the internal views of the natural
transformations g∗ and g∗ at the right of the diagram, and rewrite yg and y′g

2017yoneda February 12, 2018 17:26

20

in several equivalent notations:

B

C

g

��

C

Bop (B,−)� //Bop

Cop

OO

gop

(B,−)

(C,−)

OO
yg:=
g∗:=

(g,−):=
λD.(g;):=

λD.λh.(g;h)

Cop (C,−)� //

oo //

Cop SetC
y //

(B,D)

(C,D)

OO
ygD:=
g∗D:=
(g,D):=

λh.(g;h)=
(g;)

g;h

h

OO

_

B (−, B)� //B

C

g

��

(−, B)

(−, C)

y′g:=
g∗:=

(−,g):=
λA.(;g):=

λA.λf.(f ;g)��
C (−, C)� //

oo //

C SetC
opy′

//

(A,B)

(A,C)

y′gA:=
g∗A:=
(A,g):=

λf.(f ;g)=
(;g)��

f

f ; g

_

��

12 Reading “Generic Figures and ther Glueings”
When I first tried to read Reyes, Reyes and Zolfaghari’s [RRZ04] (“RRZ” from
here on) I got very stuck, as I didn’t have any good methods to work on its
notation bit by bit to make it make sense to me...

Take this diagram from page 11 of the book:

F ′

F
f
??�����

F X
σ //__

F ′

X

σ.f

77ooooo

We can type its entities:

F ′

F

f

OOF X
σ //____

F ′

X

σ.f

??�
�

�
�

�

C SetC
op

Set

X(F)

X(F ′)

().f :=
X(f)
��

σ

σ.f

_

().f

��

C is a category
F, F ′ ∈ C
f : F ′ → F
X : Cop → Set
X(F), X(F ′) ∈ Set
σ ∈ X(F)
σ.f ∈ X(F ′) σ.f = X(f)(σ)

In sec.1 we said that we would sometimes write A → B for BA or Hom(A,B);
we can do something similar for ‘ //__ ’. In RRZ F

σ //__ X means σ ∈ X(F), so
we will interpret F //__ X as X(F) and F

σ //__ X as σ : F //__ X.

2017yoneda February 12, 2018 17:26

21

We can make the examples in RRZ more elementary if we work with finite
mathematical objects built from integers, pairs, and sets, as done in [Och17]
(sec.2 and onwards). Let M be the directed (multi-)graph with labeled arrows
(“DGLA”) below:

7

8

78

��

7

8

708

��
8 9

89
//

7

77

��

9 99dd

M =

{7, 8, 9},

(7,7,77),
(7,8,78),
(7,8,708),
(8,9,89),
(9,9,99)

We can set C to this category (the identity arrows are omitted),

V

A

s

OO

V

A

t

OO

to define figures made of vertices and arrows. This functor M : Cop → Set

M(A)

M(V)

M(s)

��

M(A)

M(V)

M(t)

��

{77, 78, 708, 89, 99}

{7, 8, 9}

77 7→7
78 7→7
708 7→7
89 7→8
99 7→9

��

{77, 78, 708, 89, 99}

{7, 8, 9}

77 7→7
78 7→8
708 7→8
89 7→9
99 7→9
��

“is” the DGLA M above.
I am not sure what this notation means when it appears in RRZ:

V //__ X

a, b, c, d, e

It may be either “a, b, c, d, e : V //__ X” or “(V //__ X) = {a, b, c, d, e}”... anyway,
in M we have:

V //__ M

7, 8, 9

A //__ M

77, 78, 708, 89, 99

And this is a change of figure:

C SetC
op

V

A

s

OOA M
708 //___

V

M

708.s
=7

??�
�

�
�

M(A)

M(V)

M(s)

��

Set

708

7

_

M(s)

��

2017yoneda February 12, 2018 17:26

22

12.1 Morphisms of C-sets
A Morphisms of C-sets Φ : X → Y (see p.11 of RZZ) is a natural transformation
from X to Y , where both X and Y are C-sets, i.e., X,Y : Cop → Set. The
figure at left below appears in p.11 of RRZ except for the last line with the the
category annotations; at the right of it is an internal view, in RRZ’s notation,
of the natural transformation Φ:

F ′

F

f

OOF X
σ //____ X Y

Φ //

F ′

X

σ.f
v

v

::v
v

C SetC
op

SetC
op

F

F ′

OO

f

X(F) Y (F)
ΦF //X(F)

X(F ′)

X(f)

��

Y (F)

Y (F ′)

Y (f)

��
X(F ′) Y (F ′)

ΦF ′//

X Y
Φ //

σ Φ(σ)� // Φ(σ)

Φ(σ).f

_
��

σ

σ.f

_

��
σ.f Φ(σ.f)

� //

Here is a type inference for the subexpressions of the “naturality condition”
Φ(σ).f = Φ(σ.f):

Φ︸︷︷︸
:X→Y

(σ︸︷︷︸
∈X(F)

)

︸ ︷︷ ︸
∈Y (f)

. f︸︷︷︸
:F ′→F︸ ︷︷ ︸

:Y (F)→Y (F ′)︸ ︷︷ ︸
∈Y (F ′)

= Φ︸︷︷︸
:X→Y

(σ︸︷︷︸
∈X(F)

. f︸︷︷︸
:F ′→F︸ ︷︷ ︸

∈X(F ′)

)

︸ ︷︷ ︸
∈Y (F ′)

One difficulty in translating Φ(σ).f = Φ(σ.f) to standard notation is that
the arguments to the dot operation are “in the wrong order”. If we rewrite σ.f
as (.f)(σ) then the naturality condition becomes (.f)(Φ(σ)) = Φ((.f)(σ)), i.e.,
(.f) ◦ Φ = Φ ◦ (.f), and the easiest way (for me) to understand the types is to
write first f : F ′ → F and Φ : X → Y and then all the rest in the diagram
below:

F

F ′

OO

f

F (X) F (Y)
ΦF //F (X)

F ′(X)

X(f)

��

F (Y)

F ′(Y)

Y (f)

��
F ′(X) F ′(Y)

ΦF ′ //

X Y
Φ //

σ Φ(σ)� // Φ(σ)

Φ(σ).f

_
��

σ

σ.f

_

��
σ.f Φ(σ.f)� //

and (.f)(Φ(σ)) = Φ((.f)(σ)) becomes Y (f)(ΦF (σ)) = ΦF ′(X(f)(σ)), and (.f)◦
Φ = Φ ◦ (.f) becomes Y (f) ◦ ΦF = ΦF ′ ◦X(f).

12.2 The Yoneda Lemma in RRZ
The Yoneda Lemma appears in pages 22–23 and again at pages 29–30 of the
book. Let’s examine the enlarged versions — drawn with internal views —
of some of the figures used in the proof. Our enlarged versions will be called
diagrams YR1, YR2, and YR3.

Important: we will make one change in RRZ’s notation — where the book
writes hF we will write (−, F), and where it writes hf we will write (−, f); we

2017yoneda February 12, 2018 17:26

23

saw in sec.11 that the action of the natural transformation (−, f) (a.k.a. f∗) is
essentially (f◦).

This (“YR1”) is from p.23:

F ′′′

F ′′

h

OOF
′′ (−, F ′)

g //___ (−, F ′) (−, F)
(−,f)//

F ′′′

(−, F ′)

g◦h
z

z

==z
z

C SetC
op

SetC
op

F ′′′

F ′′

OO

h

(F ′′, F ′) (F ′′, F)

(F,f)
=(f◦)//(F ′′, F ′)

(F ′′′, F ′)

(h,F ′)
=(◦h)

��

(F ′′, F)

(F ′′′, F)

(h,F)
=(◦h)
��

(F ′′′, F ′) (F ′′′, F)

(F ′,f)
=(f◦)//

(−, F ′) (−, F)
(−,f) //

g f ◦ g� // f ◦ g

(f ◦ g) ◦ h

_

��

g

g ◦ h

_

��
g ◦ h f ◦ (g ◦ h)� //

This (“YR2”) is from p.29:

F ′

F

f

OOF (−, F)
1F //___ (−, F) X

Φ //

F ′

(−, F)

f

??�
�

�
�

�

C SetC
op

SetC
op

F

F ′

OO

f

(F, F) X(F)
ΦF //(F, F)

(F ′, F)

(f,F)
=(◦f)

��

X(F)

X(F ′)

X(f)

��
(F ′, F) X(F ′)

ΦF ′ //

(−, F) X
Φ //

1F ΦF (1F)
� // ΦF (1F)

ΦF (1F).f

_

��

1F

f

_

��
f ΦF ′(f)� //

This (“YR3”) is also from p.29:

F ′′

F ′

g

OOF
′ (−, F)

f //__ (−, F) X
Φ //

F ′′

(−, F)

g◦f

??�
�

�
�

�

C SetC
op

SetC
op

F ′

F ′′

OO

g

(F ′, F) X(F ′)
ΦF ′ //(F ′, F)

(F ′′, F)

(g,F)
=(◦g)

��

X(F ′)

X(F ′′)

X(f)

��
(F ′′, F) X(F ′′)

ΦF ′′ //

(−, F) X
Φ //

f ΦF (f)
� // ΦF (f)

ΦF (f).g

_

��

f

f ◦ g

_

��
f ◦ g ΦF ′(f ◦ g)� //

(YR1 is used to prove that (−, f) is morphism of C-sets)
(YR2 is used to prove that ΦF ′(f) can be calculated as ΦF (1F).f = X(f)(ΦF (1F)))
(YR3 is used to prove that (???))
(To do: debug this, compare with sections 4 and 10...)

13 Reading MacLane’s CWM
MacLane (in [Mac98], section III.2, pages 59–62) starts by fixing a functor
S : D → C and showing that for any pair 〈r, u : c → Sr〉, that we draw like
this,

u

Sr

u
��

r Sr� S //

D C
S //

2017yoneda February 12, 2018 17:26

24

any choice of an object d ∈ D induces a map ϕd : D(r, d) → C(c, Sd),

c

Sr

u
��

r

d

f ′

��

Sr

Sd

Sf ′

��

r Sr� S //

d Sd� S //

D(r, d) C(c, Sd)
ϕd //

f ′ Sf ′ ◦ u� ϕd //

D(r, d) C(c, Sd)
ϕd //

It turns out that D(r,−) and C(c, S−) are functors,

d D(r, d)
� //d

d′

h
��

D(r, d)

D(r, d′)

(D(r,−))(h):=

λf ′.(h◦f ′)��
d′ D(r, d′)� //

D Set
D(r,−) //

d C(c, Sd)
� //d

d′

h
��

C(c, Sd)

C(c, Sd′)

(C(s,S−))(h):=
λk.(Sh◦k)��

d′ C(c, Sd′)� //

D Set
C(c,S−)//

and ϕ : D(r,−) → C(c, S−) is a natural transformation between them:

d

d′

h

��

D(r, d) C(c, Sd)
ϕd //

D(r, d′) C(c, Sd′)
ϕd′ //

D(r, d)

D(r, d′)

D(r,h)

��

C(c, Sd)

C(c, Sd′)

C(c,Sh)

��

D(r,−) C(c, S−)
ϕ //

f ′ Sf ′ ◦ u� // Sf ′ ◦ u

Sh ◦ (Sf ′ ◦ u)

_

��

f ′

h ◦ f ′

_

��
h ◦ f ′ S(h ◦ f ′) ◦ u� //

However, MacLane introduces, right in the beginning, a concept that I feel
that should better be left to a second moment...

(To be continued!!!)

14 Reading Emily Riehl’s “CT in Context”
The Yoneda Lemma is proved in [Rie16] in section 2.2, pages 55–61.

Here’s Riehl’s formula 2.2.5 from pages 57–58 in the shape of our diagram

2017yoneda February 12, 2018 17:26

25

Y4:
1

Fc

x′

��
c Fc� F //

C(c,−) Set(1, F−)// Set(1, F−)

F

OO

��

C(c,−)

F

α

##G
GG

GG
GG

GG
GG

OO

��

x ∈ Fc

α ∈ Hom(C(c,−), F)

_

α:=
Ψ(x):=

λd.λf.Ff(x)

��

x ∈ Fc

α ∈ Hom(C(c,−), F)

OO

a:=
Φ(α):=
αc(1c)

_

The Yoneda embeddings appear as Corollary 2.2.8 in [Rie16], in p.60. She
makes this diagram:

C SetC
op� � y //

c C(−, c)� //c

d

f

��

C(−, c)

C(−, d)

f∗
��

d C(−, d)� //

� //

Cop SetC� � y //

c C(c,−)� //c

d

f

��

C(c,−)

C(d,−)

OO
f∗

d C(d,−)� //

� //

She uses the ‘y’ with two different meanings, one in the left half and another
in the right half of her diagram. If we modify her diagram to add some of the
information from our diagrams in sec.11 and change her letters just a little bit,
we get this:

C SetC
op� � y′

//

b C(−, b)� //b

c

g

��

C(−, b)

C(−, c)

g∗:=
y′g:=

C(−,g):=
λa.λf.(g◦f)=

λa.(g◦)��
c C(−, c)� //

� //

Cop SetC� � y //

b C(b,−)� //b

c

g

��

C(b,−)

C(c,−)

OO
g∗:=
yg:=

C(g,−):=
λd.λh.(h◦g)=

λd.(◦g)
c C(c,−)� //

� //

15 Reading Awodey’s “Category Theory”
(To do: show internal views etc of sections 8.2–8.4 of [Awo06] (pp.160–167))

16 Related projects
These notes are related to three, ahem, things: a workshop called “Logic for
Children”, a series of papers on “Planar Heyting Algebras for Children” (these

2017yoneda February 12, 2018 17:26

REFERENCES 26

notes prepare the ground for the material on presheaves, sheaves and geometric
morphisms that will be presented in the third paper), and a very introductory
course on λ-calculus, logics and Categories that I am giving every semester in
my university since 2016. Links:

http://angg.twu.net/logic-for-children-2018.html
http://angg.twu.net/math-b.html#zhas-for-children-2
http://angg.twu.net/math-b.html#lclt

References
[Awo06] S. Awodey. Category Theory. Oxford University Press, 2006.
[LS97] W. Lawvere and S. Schanuel. Conceptual Mathematics: A first intro-

duction to categories. Cambridge, 1997.
[Mac98] S. MacLane. Categories for the Working Mathematician, 2nd ed.

Springer, 1998.
[Och13] E. Ochs. “Internal Diagrams and Archetypal Reasoning in Category

Theory”. In: Logica Universalis 7.3 (Sept. 2013). http://angg.twu.
net/math-b.html#idarct, pp. 291–321.

[Och17] E. Ochs. “Planar Heyting Algebras for Children”. Available at http:
//angg.twu.net/math-b.html#zhas-for-children-2. 2017.

[Rie16] E. Riehl. Category Theory in Context. http://www.math.jhu.edu/
~eriehl/context.pdf. Dover, 2016.

[RRZ04] M. P. Reyes, G. E. Reyes, and H. Zolfaghari. Generic Figures and
Their Glueings. https://marieetgonzalo.files.wordpress.com/
2004/06/generic-figures.pdf. Polimetrica, 2004.

2017yoneda February 12, 2018 17:26

http://angg.twu.net/logic-for-children-2018.html
http://angg.twu.net/math-b.html#zhas-for-children-2
http://angg.twu.net/math-b.html#lclt
http://angg.twu.net/math-b.html#idarct
http://angg.twu.net/math-b.html#idarct
http://angg.twu.net/math-b.html#zhas-for-children-2
http://angg.twu.net/math-b.html#zhas-for-children-2
http://www.math.jhu.edu/~eriehl/context.pdf
http://www.math.jhu.edu/~eriehl/context.pdf
https://marieetgonzalo.files.wordpress.com/2004/06/generic-figures.pdf
https://marieetgonzalo.files.wordpress.com/2004/06/generic-figures.pdf

	Internal views
	Changing shape, changing notation
	Interpreting diagrams Y0, Y1, and Y2
	B1 is really a bijection
	Making the bijections more explicit
	A stronger Yoneda Lemma
	Representable functors
	Universal elements and universal arrows
	Adjunctions
	Two contravariant Yoneda Lemmas
	The Yoneda Embeddings
	Reading ``Generic Figures and ther Glueings''
	Morphisms of C-sets
	The Yoneda Lemma in RRZ

	Reading MacLane's CWM
	Reading Emily Riehl's ``CT in Context''
	Reading Awodey's ``Category Theory''
	Related projects

