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Notes on notation: Elephant
Eduardo Ochs, 2017
Version at the bottom of the page.
eduardoochs@gmail.com
http://angg.twu.net/LATEX/2017elephant.pdf
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All the extracts from page 3 onwards are from Peter Johstone’s “Sketches of an
Elephant”, vol.1, sections A1 (“Regular and Cartesian Closed Categories”) and
A4 (“Geometric Morphisms - Basic Theory”). They are interspersed with my
notes about what are the “missing diagrams” in the book; the idea of “missing
diagrams” is explained here:
http://angg.twu.net/math-b.html#logic-for-children-unilog-2018
http://angg.twu.net/LATEX/2017vichy-workshop.pdf
http://www.uni-log.org/wk6-logic-for-children.html

The diagrams in the first pages are for the third paper in this series:
http://angg.twu.net/math-b.html#zhas-for-children-2
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Surjections (defined in A4.2.6(iv)),
inclusions (defined in A4.2.9),
and some examples:

D

f∗f
∗D

η
(monic)��

f∗D Doo �f∗D

E
��

D

f∗E
��

E f∗E
� //

F E
f //F E

(surj)
//

h∗h∗E

E

ε
(iso) ��

h∗D Doo �h∗D

E
��

D

h∗E
��

E h∗E
� //

F Eh //F E
(incl)

//

D12

D12×D12

η
(monic)��

(D12 D12) D12
oo �(D12 D12)

(E1 E2)
��

D12

E1×E2

��
(E1 E2) E1×E2

� //

Set(1 2) Set(12)
f //Set(1 2) Set(12)

(surj)
//

(E6)

(E6)

ε
(iso) ��

(D6) (D5 → D6 → D7)oo �(D6)

(E6)
��

(D5 → D6 → D7)

(E6 → E6 → 1)
��

(E6) (E6 → E6 → 1)
� //

Set(6) Set(5→6→7)h //Set(6) Set(5→6→7)

(incl)
//

(D3 → D4)

(D3×D4 → D4)

η
(monic)��

(D3 D4) (D3 → D4)oo �(D3 D4)

(E3 E4)
��

(D3 → D4)

(E3×E4 → E4)
��

(E3 E4) (E3×E4 → E4)
� //

Set(3 4) Set(3→4)f //Set(3 4) Set(3→4)

(surj)
//

(E8)

(E8)

ε
(iso) ��

(D8) (D8 D9)oo �(D8)

(E8)
��

(D8 D9)

(E8 1)
��

(E8) (E8 1)
� //

Set(8) Set(8 9)h //Set(8) Set(8 9)

(incl)
//

The factorization (theorem A4.2.10),
and an example:

Set

(
1 2
3 4
5

)
Set

(
12
3 → 4
5 6

)
f //

Set

(
1 2
3 4
5

)
Set

(
12
3 → 4
5

)
g //Set

(
1 2
3 4
5

)
Set

(
12
3 → 4
5

)
(surj)
// Set

(
12
3 → 4
5

)
Set

(
12
3 → 4
5 6

)
h //Set

(
12
3 → 4
5

)
Set

(
12
3 → 4
5 6

)
(incl)
//

Set

(
1 2
3 4

6

)
Set

(
12
3 → 4
5 → 6 →7

)
f //

Set

(
1 2
3 4

6

)
Set

(
12
3 → 4

6

)
g //Set

(
1 2
3 4

6

)
Set

(
12
3 → 4

6

)
(surj)

// Set

(
12
3 → 4

6

)
Set

(
12
3 → 4
5 → 6 →7

)
h //Set

(
12
3 → 4

6

)
Set

(
12
3 → 4
5 → 6 →7

)
(incl)

//

Set

(
12
3 → 4

6

)
Set

(
12
3 → 4

6 →7

)
i //Set

(
12
3 → 4

6

)
Set

(
12
3 → 4

6 →7

)
(dense)
// Set

(
12
3 → 4

6 →7

)
Set

(
12
3 → 4
5 → 6 →7

)
j //Set

(
12
3 → 4

6 →7

)
Set

(
12
3 → 4
5 → 6 →7

)
(closed)
//
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Set(6) → Set(5→6→7):
ηcD : cD → g∗g

∗cD is (D6 → D6 → D6)→ (D6 → D6 → 1) (not monic)
Rang(0) = (0→ 0→ 0) (not initial)

(E6)

(E6)

ε
(iso) ��

(D6 → D6 → D6)

(D6 → D6 → 1)

η
not monic =(��

(D6) (D5 → D6 → D7)oo �(D6)

(E6)
��

(D5 → D6 → D7)

(E6 → E6 → 1)
��

(E6) (E6 → E6 → 1)
� //

(0) (0→ 0→ 1)
=(
//

Set(6) Set(5→6→7)h //Set(6) Set(5→6→7)

(incl)
//

Set(6) → Set(5→6):
ηcD : cD → g∗g

∗cD is (D6 → D6)→ (D6 → D6) (monic)
Rang(0) = (0→ 0) (initial)

(E6)

(E6)

ε
(iso) ��

(D6 → D6)

(D6 → D6)

η
(monic)��

(D6) (D5 → D6)oo �(D6)

(E6)
��

(D5 → D6)

(E6 → E6)
��

(E6) (E6 → E6)
� //

(0) (0→ 0)
=)

//

Set(6) Set(5→6)h //Set(6) Set(5→6)

(incl)
//

Set(6) → Set(6→7):
ηcD : cD → g∗g

∗cD is (D6 → D6)→ (D6 → D6) (monic)
Rang(0) = (0→ 0) (initial)

(E6)

(E6)

ε
(iso) ��

(D6 → D7)

(D6 → 1)

η
not monic =(��

(D6) (D6 → D7)oo �(D6)

(E6)
��

(D6 → D7)

(E6 → 1)
��

(E6) (E6 → 1)
� //

(0) (0→ 1)
=(

//

Set(6) Set(6→7)h //Set(6) Set(6→7)

(incl)
//
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Set(5→6) → Set(5→6→7):
ηcD : cD → g∗g

∗cD is (D6 → D6 → D6)→ (D6 → D6 → 1) (not monic)
Rang(0→ 0) = (0→ 0→ 1) (not initial)

(E5 → E6)

(E5 → E6)

ε
(iso) ��

(D6 → D6 → D6)

(D6 → D6 → 1)

η
not monic =(��

(D5 → D6) (D5 → D6 → D7)oo �
(D5 → D6)

(E5 → E6)
��

(D5 → D6 → D7)

(E6 → E6 → 1)
��

(E5 → E6) (E6 → E6 → 1)� //

(0→ 0) (0→ 0→ 1)
=(

//

Set(5→6) Set(5→6→7)h //Set(5→6) Set(5→6→7)

(incl)
//

Set(6→7) → Set(5→6→7):
ηcD : cD → g∗g

∗cD is (D6 → D6 → D6)(D6 → D6 → D6) (monic)
Rang(0→ 0) = (0→ 0→ 0) (initial)

(E6 → E7)

(E6 → E7)

ε
(iso) ��

(D6 → D6 → D6)

(D6 → D6 → D6)

η
monic��

(D6 → D7) (D5 → D6 → D7)oo �
(D6 → D7)

(E6 → E7)
��

(D5 → D6 → D7)

(E6 → E6 → E7)
��

(E6 → E7) (E6 → E6 → E7)
� //

(0→ 0) (0→ 0→ 0)
=)

//

Set(6→7) Set(5→6→7)h //Set(6→7) Set(5→6→7)

(incl)
//
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Dense-closed factorization (A4.5.20)
A geometric morphism f is an inclusion when all counit maps εE : f∗f∗E →

E are isos (A4.2.9); a geometric inclusion is dense exactly when all the unit maps
on constant presheaves, ηcD : cD → g∗g

∗cD, are monics, and closed when all
the counit maps, εE : h∗h∗E → E, are isos (Peter Arndt, 5.pdf, p.8)...

Problems (Peter, help, please!):
1) I can’t find these characterizations of dense and closed in the Elephant,
2) “closed inclusion” should be stricter than “inclusion”!...
http://angg.twu.net/LATEX/5.pdf

f∗f∗E

E

ε
(iso) ��

f∗D Doo �
f∗D

E
��

D

f∗E
��

E f∗E
� //

E ′ E
f //E ′ E

(inclusion)
//

cD

g∗g
∗cD

η
(monic)��

g∗D Doo �g∗D

E
��

D

g∗E
��

E g∗E
� //

E ′ E ′′
g //E ′ E ′′

(dense)
//

h∗D Doo �h∗D

E
��

D

h∗E
��

E h∗E
� //

E ′′ Eh //E ′′ E
(closed)

//

0 h∗0=0� //
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A1.1 Preliminary assumptions
(...)

A full subcategory, of course, is one whose inclusion functor is full; but when
dealing with subcategories we shall generally assume (sometimes without saying
so explicitly) that they are also replete, i.e., that any object of the ambient
category isomorphic to one in the subcategory is itself in the subcategory. The
full subcategories of C correspond to classes of objects of C which are closed
under isomorphism. In particular, for us a reflective subcategory will always
mean a full, replete subcategory whose inclusion functor has a left adjoint.

We use the term reflection for an adjunction whose right adjoint is full and
faithful, and reflector for a monad which is idempotent (i.e., one whose mul-
tiplication is an isomorphism); it is well known that these three concepts are
essentially the same. The following, related, result seems not to be widely
known, however; and since we shall need it occasionally, we sketch its proof
here.
Lemma 1.1.1 Let F : C → D be a functor having a right adjoint G. If
there is any natural isomorphism (nor necessarily the counit of the adjunction)
between FG and the identity functor on D, then (F a G) is a reflection.

Reflective: Reflector: Reflection:

LD Doo �

S S� //

LD

S
��

D

S
��

S Doo L
S D

(inc)
//

C GFC
ηC // GFC GFGFCoo

µC:=
GεFC

GFC GFGFCoo
(iso)

FGD GDoo �

D GD
� //

FGD

D

εD
(iso) ��

GD

GD
��

D Coo F
D C

G
//
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Definition 4.1.1 (a) Let E and F be toposes. A geometric morphism f :
F → E consists of a pair of functors f∗ : F → E (the direct image of f) and
f∗ : E → F (the inverse image of f) together with an adjunction (f∗ a f∗), such
that f∗ is cartesian (i.e. preserves finite limits).

(b) Let f and g : F → E be geometric morphisms. A geometric transforma-
tion α : f → g is defined to be a natural transformation α : f∗ → g∗.

f∗E Eoo �

F f∗F
� //

f∗E

F
��

E

f∗F
��

F Eoo f∗

F E
f∗

//

F Ef //

Example 4.1.4 Let f : C → D be a functor between small categories. Then
composition with f defines a functor f∗ : [D,Set]→ [C,Set], which has adjoints
on both sides, the left and right Kan extensions along f : for example, the right
Kan extension lim←−f sends a functor F : C → Set to the functor whose value at
an object B of D is the limit of the diagram

(B ↓ f) U // C F // Set

(here (B ↓ f) is the comma category whose objects are pairs (A,ϕ) with ϕ :
B → fA in D, and U is the forgetful functor from this category to C). Thus f∗

is the inverse image of a geometric morphism [C,Set]→ [D,Set], whose direct
image is lim←−f .

f∗D Doo �

F f∗F
� // f∗F lim←−fF

f∗D

F
��

D

f∗F
��

[C,Set] [D,Set]oo f
∗

[C,Set] [D,Set]
f∗

//

C D
f //

(f∗F )(B) = Lim((B ↓ f) FU−−→ Set)

(• 7→ B
ϕ→ fA← [ A) A

� // A FA
� //(• 7→ B

ϕ→ fA← [ A)

(• 7→ B
ϕ′

→ fA′ ← [ A′)

(_,α)��

A

A′

α
��

FA

FA′

Fα
��

(• 7→ B
ϕ′

→ fA′ ← [ A′) A′� // A′ FA′� //

(B ↓ f) CU // C Set
F //

(1→ D = D ← C)
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Moreover, any natural transformation α : f → g between functors C → D
induces a natural transformation f∗ → g∗ (whose value at F is the natural
transformation Fα : Ff → Fg), i.e. a geometric transformation (lim←−f , f

∗) →
(lim←−g, g

∗). Thus the assignment C7→[C,Set] can be made into a functor (that is,
a 2-functor) from the 2-category Cat of small categories, functors and natural
transformations into Cat (in fact into Cat/Set).

(...)

We note that the geometric morphisms which arise as in 4.1.4, though not as
special as those of 4.1.2, still have the property that their inverse image functors
have left adjoints as well as right adjoints. We call a geometric morphism f
essential if it has this property; we normally write f! for the left adjoint of f∗.
With the aid of this notion, we can prove a partial converse to 4.1.4:

Lemma 4.1.5 Let C and D be small categories such that D is Cauchy-
complete (cf. 1.1.10). Then every essential geometric morphism f : [C,Set] →
[D,Set] is induced as in 4.1.4 by a functor C → D.

Example 4.1.8 Let (C, T ) be a small site, as defined in 2.1.9. The inclusion
functor Sh(C, T ) → [Cop,Set] has a cartesian left adjoint (the associated sheaf
functor — this is a special case of a result which we shall prove in 4.4.8 below),
so it is the direct image of a geometric morphism.

f∗P Poo �
f∗P

S
��

P

f∗P
��

S f∗P
� //

Sh(C, T ) [Cop,Set]oof
∗ (asf)

Sh(C, T ) [Cop,Set]
f∗ (inc)

//

Example 4.1.10 Let C and D be small cartesian categories, and f : C → D
a cartesian functor. We shall show that in this case the left Kan extension
functor lim−→f [Cop,Set] → [Dop,Set] is also cartesian, so that it is the inverse
image of a geometric morphism [Dop,Set] → [Cop,Set], whose direct image is
f∗ (compare 4.1.4). To verify this, note that for any B ∈ obD, the functor
lim−→f (−)(B) : [Cop,Set]→ Set may be described as the composite

[Cop,Set] U∗
// [(B ↓ f)op,Set]

lim−→ // Set

where U : (B ↓ f)→ C is the forgetful functor, as before.

Lemma 4.2.6 Let f : F → E be a geometric morphism. The following
conditions are equivalent:

(...)
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(iii) f∗ is faithful.
(iv) The unit η of the adjunction (f∗ a f∗) is monic.
(...)

A geometric morphism satisfying the equivalent conditions of Lemma 4.2.6
is called a surjection. We next list some typical examples.

f∗E Eoo (faithful) �

f∗E f∗f
∗E

� //

f∗E

f∗E
��

E

f∗f
∗E

η
(monic)��

F Eoo f∗

F E
f∗

//

F E
f //F E

(surjection)
//

Examples 4.2.7 (...)
(b) Let f : C → D be a functor between small categories. If f is surjective

on objects, then it is easily verified that the functor f∗ : [D,Set] → [C,Set]
is conservative; for a natural transformation a between functors D → Set is
an isomorphism iff αB is bijective for every object B of D. So the geometric
morphism [C,Set]→ [D,Set] induced by f as in 4.1.4 is surjective.

(...)

(c) Let f : X → Y be a continuous map of topological spaces. If f is
surjective, then the geometric morphism Sh(X) → Sh(Y ) induced by f as in
4.1.11 is a surjection.

F FG
oo g∗

F FG
g∗
// FG Eoo h∗

FG E
h∗

//

F Eoo f∗

F E
f∗

//

Proposition 4.2.8 With the notation established above, the counit h∗h∗ → 1
is an isomorphism.

A geometric morphism h satisfying the condition that the counit h∗h∗ → 1
is an isomorphism, or the equivalent condition that h∗ is full and faithful, is
called an inclusion (though some authors prefer the term embedding). We shall
study inclusions in greater detail in the next three sections; for the present, we
digress briefly to note an alternative characterization of them:

Lemma 4.2.9 A geometric morphism is an inclusion iff its direct image is a
cartesian closed functor (i.e. preserves exponentials).

Theorem 4.2.10 Every geometric morphism can be factored, uniquely up to
canonical equivalence, as a surjection followed by an inclusion.
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Examples 4.2.12 (...)
(b) Let f : C → D be a functor between small categories. If f is full

and faithful, then the induced geometric morphism [C,Set] → [D,Set] is an
inclusion; (...)

(c) Let f : X → Y be a continuous map of topological spaces. Then it is
straightforward to verify that f∗ : Sh(X) → Sh(F ) is faithful iff it is full and
faithful, iff f−1 : O(Y ) → O(X) is surjective. If X is a subspace of Y and f
is the inclusion, then the latter condition is satisfied; the converse holds (up to
homeomorphism) provided Y satisfies the T0 separation axiom, in which case
the surjectivity of f−1 forces f to be injective. Combining this with 4.2.7(c), we
see that if we apply the factorization of 4.2.10 to the morphism Sh(X)→ Sh(F )
induced by an arbitrary continuous f : X → Y , we obtain Sh(I), where I is
the image of f topologized as a subspace of Y (that is, we obtain the coimage
factorization in Sp, rather than the image factorization).
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4.3 Cartesian Reflectors and Sheaves

Proposition 4.3.1 Let E be a cartesian closed category, and L a reflective
subcategory of E , corresponding to a reflector L on E . Then L preserves finite
products iff (the class of objects of) E is an exponential ideal in E . Moreover, if
these conditions hold then Bη : BLA → BA is an isomorphism for every object
B of L, where η : 1E → L is the unit of the reflection.

My way to visualize 4.3.1: choose a ZHA H and a J-operator J on
it. Then H is a (posetal) CCC, and J(H) is a reflective subcategory of H,
corresponding to a reflector J : H → J(H) ⊆ H. If Q ∈ J(H), i.e., Q = Q∗,
then we have this; note that in the obvious (→)-cube we have (P ∗ → Q∗) →
(P → Q∗), but in the full (→)-cube we have (P ∗ → Q∗)→ (P → Q∗).

LB

B

εB
=id ��

A

LA

ηA

��
LA B//__

A

B
��?

?
? BA

BLA

OO
BηA

(iso)

LA Aoo �
LA

B
��

A

B
��

B B� //

L Eoo L
L E

(inc)
//

Q∗

Q

εQ
=id ��

P

P ∗

ηP

��

(P→Q)

(P ∗→Q)

OO
(iso)

P ∗ Poo �P ∗

Q
��

P

Q
��

Q Q� //

J(H) H
oo J

J(H) H
(inc)
//

Here is a typical non-trivial inclusion, and a map A→ LA on it:

(
D2

) D1

↓
D2

↓
D3

oo �

(
E2

) E2

↓
E2

↓
1

� //

(
D2

)

(
E2

)��

D1

↓
D2

↓
D3


E2

↓
E2

↓
1


��

Set

 2


Set


1
↓
2
↓
3


oo f∗

Set

 2


Set


1
↓
2
↓
3


f∗

//

(
2

) ( 1
↓
2
↓
3

)
f //

(
E2

)

(
E2

)
η

(iso)
��

D1

↓
D2

↓
D3


D2

↓
D2

↓
1


η

(iso)��  {47,48}
↓

{14,15,16}
↓

{1,2,3}

 η→

 {14,15,16}
↓

{14,15,16}
↓

{0}


A

η→ LA

Now suppose that E has pullbacks, and let L be a reflector on E which pre-
serves pullbacks. Then, for any object A of E , we may define a unary operation
cL,A (or simply cL) on subobjects of A, as follows: if A′ � A is monic, then so
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is LA′ � LA, and we define cL(A
′) by the pullback diagram:

cL(A
′) LA′//cL(A
′)

A

��

��

LA′

LA

��

��
A LA

ηA //

Q JQ∧R// //Q

R

��

��:
::

::
::

:
Q JQ

// ηQ //
JQ∧R JQ//JQ∧R

R

��

��

JQ

JR

��

��
R JR

ηR //

cJ,R(Q) = cJ(Q)
= JQ×JR R
= JQ×R
= Q∗ ∧R
=: Q(R)

P1

P2

P3

 P2×R2R1

P2

R3

// //

P1

P2

P3


R1

R2

R3


��

��?
??

??
??

P1

P2

P3

 P2

P2

1


// η //P2×R2R1

P2

R3

 P2

P2

1

//

P2×R2R1

P2

R3


R1

R2

R3


��
��

P2

P2

1


R2

R2

1


��
��R1

R2

R3

 R2

R2

1

η //

{35}{13}
{1}

 {35, 36}{13}
{1, 2}

// //

{35}{13}
{1}


{35, 36}{13, 14}
{1, 2}


��

��?
??

??

{35}{13}
{1}

 {13}{13}
{0}


// η //{35, 36}{13}

{1, 2}

 {13}{13}
{0}

//

{35, 36}{13}
{1, 2}


{35, 36}{13, 14}
{1, 2}


��
��

{13}{13}
{0}


{13, 14}{13, 14}
{0}


��
��{35, 36}{13, 14}

{1, 2}

 {13, 14}{13, 14}
{0}

η//

A way to understand how it works:{35}{13}
{1}

�

{35, 36}{13, 14}
{1, 2}

 7→
1, 0
1, 0
1, 0

 7→
1, 0

 7→
1, 1
1, 0
1, 1

 7→
{35, 36}{13}
{1, 2}



Lemma 4.3.2 The operation cL just defined is a closure operation on Sub(A);
that is, it is order-preserving and satisfies A′ ≤ cL(A

′) ∼= cLcL(A
′) for any A′.

Moreover, cL commutes (up to isomorphism) with pullback along an arbitrary
morphism of E .

Lemma 4.3.3 Let c be a universal closure operation on a cartesian closed
category E . Then

(i) Given a commutative square (...) where m is a dense object and n is
closed, there is a unique morphism g : A→ B′ satisfying ng = f and gm = f ′.

A′ B′f //A′

A

��
m

(dense)

��

B′

B

��
n

(closed)

��
A B

f
//A

B′

∃!g
����

??����

P R
f //P

Q

��
m

P (Q)=Q

��

R

S

��
n

R(S)=R

��
Q S

f
//Q

R

∃!g
����

??����

(ii) For any A′ � A, c(A′) may be characterized as the unique subobject A′′

2017elephant October 17, 2017 12:00



13

of A such that A′ � A′′ is dense and A′′ � A is closed.

A′

A′′

CC (dense)

CC����

A′′

A
__
(closed)__??

A′

A

OO

OO

A′′ c(A′)

P

Q

CC (dense)

CC���

Q

R
__
(closed)__??

P

R

OO

OO

Q P (R)

(iii) For subobjects A′ � A and A′′ � A, we have c(A′∩A′′) ∼= c(A′)∩c(A′′).

My way to visualize 4.3.3
Fix a ZHA H, a J-operator J : H → H and an element Q ∈ H; remember

that we can write [00, Q]∩H for the set of elements of H below Q. The operation

·(Q) : [00, Q] ∩H → [00, Q] ∩H
P 7→ P (Q)

:= P ∗ ∧Q

is a J-operator J ′ on the ZHA H ′ := [00, Q] ∩ H, whose cuts are the same as
the ones in J , except, of course, that we don’t use the cuts above Q; note that
some regions of J may be partly inside H ′ and partly outside it — if P belongs
to one of these regions then J ′(P ) = J(P ) ∧Q 6= J(P ).

Definition 4.3.4 Let c be a universal closure operator on a cartesian category
E .

(a) We say an object A of E is (c-)separated if, whenever we have a diagram

B′

B

��m
(dense) ��

B′ A
f ′
//

B

A

f

??�
�

�

P

Q

��
P (Q)=Q

��

P R//

Q

R??�
�

�

P

Q

?? (dense)

??����

Q

R
cc

! / ∃!ccG
G

P

R

OO

OO

Q P (R)

where m is c-dense, there is at most one f : B → A with fm = f ′.
(b) We say A is a (c-)sheaf if, whenever we have a diagram as above, there

is exactly one f with fm = f ′.

My way to visualize 4.3.4
All objects R ∈ H are J-separated.
All objects R ∈ J(H) are J-sheaves.
An object R 6∈ J(H) is not a J-sheaf. The map R � R∗ is not an iso, and

we can’t build the diagonal map when P := R and Q := R∗:

R R
(iso) //R

R∗

��
(not iso)

��
R∗

R

=(

??�
�

�
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Example 4.3.5

Lemma 4.3.6 Let L be a cartesian reflector on a cartesian category E , corre-
sponding to a reflective subcategory L, and let cL denote the universal closure
derived from L as in 4.3.2. Let A be an object of E . Then

(a) The following are equivalent:
(i) A is cL-separated.
(ii) The unit map ηA : A→ LA is monic.
(iii) A is a subobject of an object of C.
(iv) The diagonal map A7→A×A is cL -closed.
(b) The following are equivalent:
(i) A is a cL-sheaf.
(ii) The unit ηa : A→ LA is an isomorphism.
(iii) A is an object of C.

Lemma 4.3.7

Lemma 4.3.8

Theorem 4.3.9 Let E be a topos, and L a cartesian reflector on E , corre-
sponding to a reflective subcategory L. Then L is a topos, and the inclusion
L → E is the direct image of a geometric morphism, whose inverse image is (the
factorization through L of) L.

Remark 4.3.10

Proposition 4.3.11 Let f : F → E be a geometric morphism. and L a
cartesian reflector on E . The following are equivalent:

(i) f factors (uniquely) through the inclusion h : L → E which corresponds
to L under 4.3.9.

2017elephant October 17, 2017 12:00



15

A4.4 Local Operators

Example 4.4.8 For a quasitopos E , there is a bijection between reflective
subcategories of E with cartesian reflector, and proper universal closure opera-
tions on E . In particular, if E is a topos, there is a bijection between subtoposes
of E and local operators on E .

Example 4.5.2 Let C be a small category, and D a full subcategory of C.
Then the geometric morphism [D,Set] → [C,Set] induced by the inclusion
D → D is an inclusion by 4.2.12(b); so it corresponds to a local operator on
[C, Set].

Proposition 4.5.8 Let j be a local operator on a topos E . The following
conditions are equivalent:

(i) The associated sheaf functor L : E → shj(E) preserves the subobject
classifier.

(ii) The canonical monomorphism Ωj → Ω is j-dense.
(iii) For any ϕ : A→ Ω, the equalizer of ϕ and jϕ is a j-dense subobject of

A.
(iv) Every monomorphism in E may be factored (not necessarily uniquely)

as a j-closed monomorphism followed by a j-dense one.
(v) j commutes with implication, i.e. the diagram (...) commutes.

Example 4.5.9 Let ¬ : Ω → Ω be the Heyting negation map, i.e. the clas-
sifying map of ⊥ : 1 � Ω. It is straightforward to verify that the composite
¬¬ is a local operator, i.e. that it satisfies the conditions of 4.4.1. Moreover,
it satisfies the conditions of 4.5.8: to see this, observe that for any element x
of a Heyting algebra if, we have x ≤ (¬¬x ⇒ x) and ¬x ≤ (¬¬x ⇒ x) (the
latter since (¬x ∧ ¬¬x) = ⊥ ≤ x), and so (¬¬x ⇒ x) ≥ (x ∨ ¬x); hence
¬¬(¬¬x ⇒ x) ≥ ¬¬(x ∨ ¬x) = >. But this is just the statement that the
diagram in (vi) of 4.5-8 commutes. Alternatively, we could use condition (iv):
given a subobject A′ � A, if we set A′′ = A′ ∪¬A′, then A′ � A′′ is ¬¬-closed
(since it is complemented) and A′′ � A is ¬¬-dense (cf. the proof of 1.4.14).

We note that the subtopos sh¬¬(E) is Boolean; for if A is any ¬¬-sheaf,
its subobjects in sh¬¬(E) are its ¬¬-closed subobjects in E , and these form a
Boolean algebra. It is easy to see that it is not an open subtopos in general; for
example, if X is a T0-space (such as R) in which no nonempty open subspace is
discrete, then sh¬¬(Sh(X)) cannot be open. We shall have more to say about
Boolean subtoposes in 4.5.21 below.

We write Lop(E) for the class of all local operators on a topos E (note that
it is a set if E is locally small). Lop(E) carries a natural partial order, defined
by j1 ≤ j2 iff ∧(j1, j2) = j1; this is equivalent to saving that J1 < J2 in Sub(Ω),
or that Ωj2 ≤ Ωj1 , or that shj2(E) ⊆ shj1(E) as subcategories of E (the more
dense monomorphisms we have, the more conditions an object has to satisfy to
be a sheaf). We shall see eventually that Lop(E) is a Heyting algebra; for the
moment, we note
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Lemma 4.5.10 The partial ordering Lop(E) has greatest and least elements,
and binary meets.

Lemma 4.5.19

Corollary 4.5.20 Any geometric inclusion E ′ → E has a unique factorization
E ′ → E ′′ → E , where E ′ → E ′′ is dense and E ′′ → E is closed.

Examples 4.6.2 (a) Every inclusion is localic, for if f is an inclusion then
every object of its domain is isomorphic to one of the form f∗A. More generally,
if f∗ is merely faithful, then the counit f∗f∗B → B is epic for all B, and so f
is localic.

(...)

(c) Let f : C → D be a functor between small categories. If f is faithful, then
the induced geometric morphism [C,Set]→ [D,Set] of 4.1.4 is localic. For every
functor C → Set is a quotient of a coproduct of representable functors; if f is
faithful then the representable functor C(A, ) is a subfunctor of f∗(D(f(A), ));
and f∗ preserves coproducts. The converse is also true: if C(A, ) appears as
a subquotient of some f∗(F ), then (being projective) it actually occurs as a
subobject of f∗(F ), and this can only happen if there exists x ∈ F (f(A)) such
that F (fα)(x) 6= F (fβ)(x) whenever α, β : A ⇒ B are distinct morphisms of
C− which in particular forces fα 6= fβ.

(d) In particular, if C is a preorder (so that the unique functor from C
to the terminal category 1 is faithful), then the unique geometric morphism
[C,Set]→ Set of 4.1.9 is localic.

(e) It is easy to verify that a composite of localic morphisms is localic,
since the subquotient relation is transitive and inverse image functors preserve
monomorphisms and epimorphisms. So, combining (a) and (d), we see that if
(C, T ) is a small site whose underlying category is a preorder, then the unique
geometric morphism Sh(C, T ) → Set is localic. (We shall prove a converse to
this result in B3.3.5.) In particular, for any topological space X, Sh(X)→ Set
is localic. Similarly, combining (a) and (b), we note that the surjection with
Boolean domain constructed in the proof of 4.5.23 is localic.

(f) It is even easier to verify that, if

G
g // F

f // E

is a composable pair of geometric morphisms and the composite fg is localic,
then g is localic. Hence if F and G both admit localic morphisms to Set, then
any geometric morphism between them is localic. For example, the geometric
morphism Sh(X)→ Sh(Y ) induced by a continuous map of spaces X → Y , as
in 4.1.11, is always localic.

Theorem 4.6.5 Any geometric morphism can be factored, uniquely up to
equivalence, as a hyperconnected morphism followed by a localic one.
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Proposition 4.6.6 Let f : F → E be a geometric morphism. The following
are equivalent:

(i) f is hyperconnected.
(ii) f∗ is full and faithful, and its image is closed under subobjects in F .
(iii) f∗ is full and faithful, and its image is closed under quotients in F .
(iv) The unit and counit of (f∗ a f∗) are both monic.
(v) f∗ preserves Ω, i.e. the comparison map τ : f∗(ΩF )→ ΩE (the classifying

map of f∗(>F )) is an isomorphism.
(vi) For each object A of E , f∗ induces an equivalence SubE(A) ' SubF (f

∗A).
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Inclusion:
A4.2.8: The counit h∗h∗ → 1 is an iso:

h∗D Doo �

h∗D h∗h
∗D� //

h∗D

h∗D
��

D

h∗h
∗D

ε
(iso)��

SetA SetBoo h
∗

SetA SetB
h∗

//

A B
h //
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