
Planar Heyting Algebras for Children

Eduardo Ochs

December 18, 2016

This paper shows a way to interpret (propositional) intuitionistic logic visu-
ally (see section 6).

The “for children” in the title has a precise, but somewhat unusual, meaning,
that is explained in sec.24.

1 Positional notations

Definition: a ZSet is a finite, non-empty subset of N2 that touches both axes,
i.e., that has a point of the form (0,) and a point of the form (, 0). We
will often represent ZSets using a bullet notation, with or without the axes and
ticks. For example:

K =

{
(1,3),

(0,2), (2,2),
(1,1),
(1,0)

}
= =

We will use the ZSet above a lot in examples, so let’s give it a short name:
K (“kite”).

The condition of touching both axes is what lets us represent ZSets unam-
biguously using just the bullets:

 =(=)

We can use a positional notation to represent functions from a ZSet. For
example, if

f : K → N
(x, y) 7→ x

then

f =

{
((1,3),1),

((0,2),0), ((2,2),2),
((1,1),1),
((1,0),1)

}
=

1
0 2
1
1

We will sometimes use λ-notation to represent functions compactly. For
example:

λ(x, y):K.x =

{
((1,3),1),

((0,2),0), ((2,2),2),
((1,1),1),
((1,0),1)

}
=

1
0 2
1
1

1

2

λ(x, y):K.y =

{
((1,3),3),

((0,2),2), ((2,2),2),
((1,1),1),
((1,0),0)

}
=

3
2 2
1
0

The “reading order” on the points of a ZSet S “lists” the points of S starting
from the top and going from left to right in each line. More precisely, if S has
n points then rS : S → {1, . . . , n} is a bijection, and for example:

rK =
1

2 3
4
5

Subsets of a ZSet are represented with a notation with ‘•’s and ‘·’, and partial
functions from a ZSet are represented with ‘·’s where they are not defined. For
example:

•
· •
•
·

1
· 3
4
·

The characteristic function of a subset S′ of a ZSet S is the function χS′ :

S → {0, 1} that returns 1 exactly on the points of S′; for example,
1

0 1
1
0

is

the characteristic function of
•

· •
•
·
⊂

•
• •
•
•
. We will sometimes denote subsets by

their characteristic functions because this makes them easier to “pronounce” by

reading aloud their digits in the reading order — for example,
1

0 1
1
0

is “one-zero-

one-one-zero” (see sec.??).

2 ZDAGs

We will sometimes use the bullet notation for a ZSet S as a shorthand for one
of the two DAGs induced by S: one with its arrows going up, the other one
with them going down. For example: sometimes

•
• •
•
•

will stand for:

•

• •

•

•

↙ ↘

↘ ↙

↓

=

(1, 3)

(0, 2) (2, 2)

(1, 1)

(1, 0)

↙ ↘

↘ ↙

↓

=

({
(1,3),

(0,2), (2,2),
(1,1),
(0,0)

}
,

{
((1,3),(0,2)),((1,3),(2,2)),
((0,2),(1,1)),((2,2),(1,1)),

((1,1),(0,0))

})

Let’s formalize this.
Consider a game in which black and white pawns are placed on points of Z2,

and they can move like this:

•
↙↓↘
• • •

◦ ◦ ◦
↖↑↗
◦

2016planar-has December 18, 2016 13:54

3

Black pawns can move from (x, y) to (x + k, y − 1) and white pawns from
(x, y) to (x+k, y+1), where k ∈ {−1, 0, 1}. The mnemonic is that black pawns
are “solid”, and thus “heavy”, and they “sink”, so they move down; white pawns
are “hollow”, and thus “light”, and they “float”, so they move up.

Let’s now restrict the board positions to a ZSet S. Black pawns can move
from (x, y) to (x+ k, y− 1) and white pawns from (x, y) to (x+ k, y+1), where
k ∈ {−1, 0, 1}, but only when the starting and ending positions both belong to
S. The sets of possible black pawn moves and white pawn moves on S can be
defined formally as:

BPM(S) = { ((x, y), (x′, y′)) ∈ S2 | x− x′ ∈ {−1, 0, 1}, y′ = y − 1 }
WPM(S) = { ((x, y), (x′, y′)) ∈ S2 | x− x′ ∈ {−1, 0, 1}, y′ = y + 1 }

...and now please forget everything else you expect from a game — like starting
position, capturing, objective, winning... the idea of a “game” was just a tool
to let us explain BPM(S) and WPM(S) quickly.

A ZDAG is a DAG of the form (S,BPM(S)) or (S,WPM(S)), where S is a
ZSet.

A ZPO is partial order of the form (S,BPM(S)∗) or (S,WPM(S)∗), where S
is a ZSet and the ‘∗’ denotes the transitive-reflexive closure of the relation.

Sometimes, when this is clear from the context, a bullet diagram like
•• •••

will stand for either the ZDAGs (
•• •••
,BPM(

•• •••
)) or (

•• •••
,WPM(

•• •••
)), or for the

ZPOs (
•• •••
,BPM(

•• •••
)∗) or (

•• •••
,WPM(

•• •••
)∗) (sec.4), or even for the ZPOs seen

as categories (section).

3 LR-coordinates

The lr-coordinates are useful for working on quarter-plane of Z2 that looks like
N2 turned 45◦ to the left. Let 〈l, r〉 := (−l+ r, l+ r); then (the bottom part of)
{ 〈l, r〉 | l, r ∈ N } is:

〈4, 0〉 〈3, 1〉 〈2, 2〉 〈1, 3〉 〈0, 4〉

〈3, 0〉 〈2, 1〉 〈1, 2〉 〈0, 3〉

〈2, 0〉 〈1, 1〉 〈0, 2〉

〈1, 0〉 〈0, 1〉

〈0, 0〉

=

(−4, 4) (−2, 4) (0, 4) (2, 4) (4, 4)

(−3, 3) (−1, 3) (1, 3) (3, 3)

(−2, 2) (0, 2) (2, 2)

(−1, 1) (1, 1)

(0, 0)

Sometimes we will write lr instead of 〈l, r〉. So:

40 31 22 13 04

30 21 12 03

20 11 02

10 01

00

=

(−4, 4) (−2, 4) (0, 4) (2, 4) (4, 4)

(−3, 3) (−1, 3) (1, 3) (3, 3)

(−2, 2) (0, 2) (2, 2)

(−1, 1) (1, 1)

(0, 0)

2016planar-has December 18, 2016 13:54

4

Let LR = { 〈l, r〉 | l, r ∈ N }.

4 ZHAs

A ZHA is a subset of LR “between a left and a right wall”, as we will see.

A triple (h,L,R) is a “height-left-right-wall” when:
1) h ∈ N
2) L : {0, . . . , h} → Z and R : {0, . . . , h} → Z
3) L(h) = R(h) (the top points of the walls are the same)
4) L(0) = R(0) = 0 (the bottom points of the walls are the same, 0)
5) ∀y ∈ {0, . . . , h}. L(y) ≤ R(y) (“left” is left of “right”)
6) ∀y ∈ {1, . . . , h}. L(y)− L(y − 1) = ±1 (the left wall makes no jumps)
7) ∀y ∈ {1, . . . , h}. R(y)−R(y − 1) = ±1 (the right wall makes no jumps)

The ZHA generated by a height-left-right-wall (h,L,R) is the set of all points
of LR with valid height and between the left and the right walls. Formally:

ZHAG(h,L,R) = { (x, y) ∈ LR | y ≤ h,L(y) ≤ x ≤ R(y) }.

A ZHA is a set of the form ZHAG(h,L,R), where the triple (h,L,R) is a
height-left-right-wall.

Here is an example of a ZHA (with the white pawn moves on it):

(−4, 8)

(−3, 9)

(−3, 7)

(−2, 8)

(−2, 6)

(−3, 3)

(−2, 4)

(−1, 5)

(−2, 2)

(−1, 3)

(0, 4)

(−1, 1)

(0, 2)

(1, 3)

(0, 0)

(1, 1)

↗ ↖

↖ ↗

↖

↖

↗ ↖

↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗ ↖

↖ ↗
L(0) = 0 R(0) = 0

L(1) = −1 R(1) = 1

L(2) = −2 R(2) = 0

L(3) = −3 R(3) = 1

L(4) = −2 R(4) = 0

L(5) = −1 R(5) = −1

L(6) = −2 R(6) = −2

L(7) = −3 R(7) = −3

L(8) = −4 R(8) = −2

L(9) = −3 R(9) = −3 h = 9L(9) = R(9)

L(0) = R(0) = 0

We will see later (section 6) that ZHAs (with white pawn moves) are Heyting
Algebras.

We can use a bullet notation to denote ZHAs, but look at what happens
when we start with a ZHA, erase the axes, and then add the axes back using

2016planar-has December 18, 2016 13:54

5

the convention from sec.1:

we get a ZSet whose bottom point is (2, 0), but the bottom point of our original
ZHA was (0, 0)... let’s refine that convention. From this point on, it will be:
when it is clear from the context that a bullet diagram represents a ZHA, then
the (0, 0) is its bottom point; otherwise the (0, 0) is the point that makes the
diagram fit in N2 and touch both axes.

The new convention also applies to functions from ZHAs, and for partial
functions and subsets. For example:

B =

•

•
•
•

•
•
•

•
•
• (a ZHA) λ(x, y):B.x =

-1

-2
-1
0

-1
0
1

0
1
2

λ〈l, r〉:B.l =

3

2
2
2

1
1
1

0
0
0 λ〈l, r〉:B.r =

2

0
1
2

0
1
2

0
1
2

We will often denote ZHAs by the identity function on them:

λ〈l, r〉:B.〈l, r〉 = λlr:B.lr =

32

20
21
22

10
11
12

00
01
02 B =

32

20
21
22

10
11
12

00
01
02

Note that we are using the compact notation from the end of section 3: ‘lr’
instead of ‘〈l, r〉’.

5 Propositional calculus

A PC-structure is a tuple

L = (Ω,≤,>,⊥,∧,∨,→,↔,¬),

where:
Ω is the “set of truth values”,
≤ is a relation on Ω,
> and ⊥ are two elements of Ω,
∧, ∨, →, ↔ are functions from Ω× Ω to Ω,
¬ is a function from Ω to Ω.

Classical Logic “is” a PC-structure, with Ω = {0, 1}, > = 1, ⊥ = 0, ≤=
{(0, 0), (0, 1), (1, 0)}, ∧ =

{
((0,0),0),((0,1),0),
((1,0),0),((1,1),1)

}
, etc.

PC-structures let us interpret expressions from Propositional Calculus, and
let us define a notion of tautology. For example, in Classical Logic,

2016planar-has December 18, 2016 13:54

6

• ¬¬P ↔ P is a tautology because it is valid (i.e., it yields >) for all values
of P in Ω,

• ¬(P ∧Q) → (¬P ∨ ¬Q) s a tautology because it is valid for all values of
P and Q in Ω,

• but P ∨ Q → P ∧ Q is not a tautology, because when P = 0 and Q = 1
the result is not >:

P︸︷︷︸
0

∨ Q︸︷︷︸
1︸ ︷︷ ︸

1

→ P︸︷︷︸
0

∧ Q︸︷︷︸
1︸ ︷︷ ︸

0︸ ︷︷ ︸
0

6 Propositional calculus in a ZHA

Let Ω be the set of points of a ZHA and ≤ the default partial order on it. The
default meanings for >,⊥,∧,∨,→,↔,¬ are these ones:

〈a, b〉 ≤ 〈c, d〉 := a ≤ c ∧ b ≤ d
〈a, b〉 ≥ 〈c, d〉 := a ≥ c ∧ b ≥ d

〈a, b〉 above 〈c, d〉 := a ≥ c ∧ b ≥ d
〈a, b〉 below 〈c, d〉 := a ≤ c ∧ b ≤ d
〈a, b〉 leftof 〈c, d〉 := a ≥ c ∧ b ≤ d
〈a, b〉 rightof 〈c, d〉 := a ≤ c ∧ b ≥ d

valid(〈a, b〉) := 〈a, b〉 ∈ Ω
ne(〈a, b〉) := if valid (〈a, b+ 1〉) then ne(〈a, b+ 1〉) else 〈a, b〉 end
nw(〈a, b〉) := if valid (〈a+ 1, b〉) then nw(〈a+ 1, b〉) else 〈a, b〉 end

〈a, b〉 ∧ 〈c, d〉 := 〈min(a, c),min(b, d)〉
〈a, b〉 ∨ 〈c, d〉 := 〈max(a, c),max(b, d)〉
〈a, b〉 → 〈c, d〉 := if 〈a, b〉 below 〈c, d〉 then >

elseif 〈a, b〉 leftof 〈c, d〉 then ne(〈a, b〉 ∧ 〈c, d〉)
elseif 〈a, b〉 rightof 〈c, d〉 then nw(〈a, b〉 ∧ 〈c, d〉)
elseif 〈a, b〉 above 〈c, d〉 then 〈c, d〉
end

> := sup(Ω)
⊥ := 〈0, 0〉

¬〈a, b〉 := 〈a, b〉 → ⊥
〈a, b〉 ↔ 〈c, d〉 := (〈a, b〉 → 〈c, d〉) ∧ (〈c, d〉 → 〈a, b〉)

Let Ω be the ZHA at the top left in the figure below. Then, with the default
meanings for the connectives neither ¬¬P ↔ P nor ¬(P ∧Q)→ (¬P ∨¬Q) are
tautologies, as there are valuations that make them yield results different than

2016planar-has December 18, 2016 13:54

7

> = 32:

32

20
21
22

10
11
12

00
01
02

>
·
· →

P ′′ · P ′

P ·
⊥

(¬¬ P︸︷︷︸
10︸ ︷︷ ︸

02︸ ︷︷ ︸
20

)→ P︸︷︷︸
10

︸ ︷︷ ︸
12

>
∨
· ·

Q′ · P ′

P Q
∧

¬(P︸︷︷︸
10

∧ Q︸︷︷︸
01︸ ︷︷ ︸

00

)

︸ ︷︷ ︸
32

→ (¬ P︸︷︷︸
10︸ ︷︷ ︸

02

∨¬ Q︸︷︷︸
01︸ ︷︷ ︸

20︸ ︷︷ ︸
22

)

︸ ︷︷ ︸
22

So: some classical tautologies are not tautologies in this ZHA.
The somewhat arbitrary-looking definition of ‘→’ will be explained at the

end of the next section.

7 Heyting Algebras

A Heyting Algebra is a PC-structure

H = (Ω,≤H ,>H ,⊥H ,∧H ,∨H ,→H ,↔H ,¬H),

in which:
1) (Ω,≤H) is a partial order
2) >H is the top element of the partial order
3) ⊥H is the bottom element of the partial order
4) P ↔H Q is the same as (P →H Q) ∧H (Q→H P)
5) ¬HP is the same as P →H ⊥H

6) ∀P,Q,R ∈ Ω. (P ≤H (Q ∧H R))↔ ((P ≤H Q) ∧ (P ≤H R))
7) ∀P,Q,R ∈ Ω. ((P ∨H Q) ≤H R)↔ ((P ≤H R) ∧ (Q ≤H R))
8) ∀P,Q,R ∈ Ω. (P ≤H (Q→H R))↔ ((P ∧H R) ≤H R)
6’) ∀Q,R ∈ Ω.∃!Y ∈ Ω.∀P ∈ Ω. (P ≤H Y)↔ ((P ≤H Q) ∧ (P ≤H R))
7’) ∀P,Q ∈ Ω.∃!X ∈ Ω.∀R ∈ Ω. (X ≤H R)↔ ((P ≤H R) ∧ (Q ≤H R))
8’) ∀Q,R ∈ Ω.∃!Y ∈ Ω.∀P ∈ Ω. (P ≤H Y)↔ ((P ∧H R) ≤H R)

The conditions 6’, 7’, 8’ say that there are unique elements in Ω that “behave
as” Q ∧H R, P ∨H Q and Q→H R for given P , Q, R; the conditions 6,7,8 say
that Q∧H R, P ∨H Q and Q→H R are exactly the elements with this behavior.

The positional notation on ZHAs is very helpful for visualizing what the

2016planar-has December 18, 2016 13:54

8

conditions 6’,7’,8’,6,7,8 mean. Let Ω be the ZDAG on the left below:

40
41
42
43
44

30
31
32
33
34

20
21
22
23

24

10
11
12

13
14

00
01

02
03
04

>
· ·

· · ·
· · · (→)
· Q · · ·
· · R ·
· (∧) ·
· ·
⊥

>
· ·
· · ·

· (∨) · ·
· P · · ·
· · Q ·
· · ·
· ·
⊥

we will see that
a) if Q = 31 and R = 12 then Q ∧H R = 11,
b) if P = 31 and Q = 12 then P ∨H Q = 32,
c) if Q = 31 and R = 12 then Q→H R = 14.

Let’s see each case separately — but, before we start, note that in 6, 7, 8, 6’,
7’, 8’ we work part with truth values in Ω and part with standard truth values.
For example, in 6, with P = 20, we have:

(P︸︷︷︸
20

≤H (Q︸︷︷︸
31

∧H R︸︷︷︸
12︸ ︷︷ ︸

11

)

︸ ︷︷ ︸
0

)↔ ((P︸︷︷︸
20

≤H Q︸︷︷︸
31︸ ︷︷ ︸

1

) ∧ (P︸︷︷︸
20

≤H R︸︷︷︸
12︸ ︷︷ ︸

0

)

︸ ︷︷ ︸
0

)

︸ ︷︷ ︸
1

a) Let Q = 31 and R = 12. We want to see that Q ∧H R = 11, i.e., that

∀P ∈ Ω. (P ≤H Y)↔ ((P ≤H Q) ∧ (P ≤H R))

holds for Y = 11 and for no other Y ∈ Ω. We can visualize the behavior of
P ≤H Q for all ‘P ’s by drawing λP :Ω.(P ≤H Q) in the positional notation; then
we do the same for λP :Ω.(P ≤H R) and for λP :Ω.((P ≤H Q) ∧ (P ≤H R)).
Suppose that the full expression, ‘∀P :Ω. ’, is true; then the behavior of the
left side of the ‘↔’, λP :Ω.(P ≤H Y), has to be a copy of the behavior of the
right side, and that lets us find the only adequate value for Y .

The order in which we calculate and draw things is below, followed by the
results themselves:

(P ≤H Y︸︷︷︸
(7)︸ ︷︷ ︸

(6)

)↔ ((P ≤H Q︸︷︷︸
(1)︸ ︷︷ ︸

(3)

) ∧ (P ≤H R︸︷︷︸
(2)︸ ︷︷ ︸

(4)

)

︸ ︷︷ ︸
(5)

)

2016planar-has December 18, 2016 13:54

9

(P ≤H Y︸︷︷︸
11︸ ︷︷ ︸

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
0
0
0

1
1
0
0
0

)↔ ((P ≤H Q︸︷︷︸
31︸ ︷︷ ︸

0
0
0
0
0

1
1
0
0
0

1
1
0
0
0

1
1
0
0
0

1
1
0
0
0

) ∧ (P ≤H R︸︷︷︸
12︸ ︷︷ ︸

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
0
0

1
1
1
0
0

)

︸ ︷︷ ︸
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
0
0
0

1
1
0
0
0

)

b) Let P = 31 and Q = 12. We want to see that P ∨H Q = 32, i.e., that

∀R:Ω. (X ≤H R)↔ ((P ≤H R) ∧ (Q ≤H R))

holds for X = 32 and for no other X ∈ Ω. We do essentially the same as
we did in (a), but now we calculate λR:Ω.(P ≤H R), λR:Ω.(Q ≤H R), and
λR:Ω.((P ≤H R) ∧ (Q ≤H R)). The order in which we calculate and draw
things is below, followed by the results themselves:

(X︸︷︷︸
(7)

≤H R

︸ ︷︷ ︸
(6)

)↔ ((P︸︷︷︸
(1)

≤H R

︸ ︷︷ ︸
(3)

) ∧ (Q︸︷︷︸
(2)

≤H R

︸ ︷︷ ︸
(4)

)

︸ ︷︷ ︸
(5)

)

(X︸︷︷︸
32

≤H R︸ ︷︷ ︸
0
0
1
1
1

0
0
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

)↔ ((P︸︷︷︸
31

≤H R︸ ︷︷ ︸
0
1
1
1
1

0
1
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

) ∧ (Q︸︷︷︸
12

≤H R

︸ ︷︷ ︸
0
0
1
1
1

0
0
1
1
1

0
0
1
1
1

0
0
1
1
1

0
0
0
0
0

)

︸ ︷︷ ︸
0
0
1
1
1

0
0
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

)

c) Let Q = 31 and R = 12. We want to see that Q→H R = 14, i.e., that

∀P :Ω. (P ≤H Y)↔ ((P ∧H Q) ≤H R)

holds for Y = 14 and for no other Y ∈ Ω. Here the strategy is slightly different.
We start by visualizing λP :Ω.(P ∧H Q), which is a function from Ω to Ω, not

2016planar-has December 18, 2016 13:54

10

a function from Ω to {0, 1} like the ones we were using before. The order in
which we calculate and draw things is below, followed by the results:

(P ≤H Y︸︷︷︸
(6)︸ ︷︷ ︸

(5)

)↔ ((P ∧H Q︸︷︷︸
(1)︸ ︷︷ ︸

(3)

) ≤H R︸︷︷︸
(2)

︸ ︷︷ ︸
(4)

)

(P ≤H Y︸︷︷︸
14︸ ︷︷ ︸

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

)↔ ((P ∧H Q︸︷︷︸
31︸ ︷︷ ︸

30
31
31
31
31

30
31
31
31
31

20
21
21
21
21

10
11
11
11
11

00
01
01
01
01

) ≤H R︸︷︷︸
12

︸ ︷︷ ︸
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

)

8 Logic in a Heyting Algebra

In the previous sextion we saw a set of conditions — called 1 to 8’ — that
characterize the “Heyting-Algebra-ness” of a PC-structure. It is easy to see
that Heyting-Algebra-ness, or “HA-ness”, is equivalent to this set of conditions:

1 ∀P. (P ≤ P) id
∀P,Q,R. (P ≤ R) ← (P ≤ Q) ∧ (Q ≤ R) comp

2 ∀P. (P ≤ >) >1

3 ∀Q. (⊥ ≤ Q) ⊥1

6 ∀P,Q,R. (P ≤ Q ∧R) → (P ≤ Q) ∧1
∀P,Q,R. (P ≤ Q ∧R) → (P ≤ R) ∧2
∀P,Q,R. (P ≤ Q ∧R) ← (P ≤ Q) ∧ (P ≤ R) ∧3

7 ∀P,Q,R. (P ∨Q ≤ R) → (P ≤ R) ∨1
∀P,Q,R. (P ∨Q ≤ R) → (Q ≤ R) ∨2
∀P,Q,R. (P ∨Q ≤ R) ← (P ≤ R) ∧ (Q ≤ R) ∨3

8 ∀P,Q,R. (P ≤ Q→R) → (P ∧Q ≤ R) →1

∀P,Q,R. (P ≤ Q→R) ← (P ∧Q ≤ R) →2

We omitted the conditions 4 and 5, that defined ‘↔’ and ‘¬’ in terms of the
other operators. The last column gives a name to each of these new conditions.

These new conditions let us put (some) proofs about HAs in tree form, as
we shall see soon.

2016planar-has December 18, 2016 13:54

11

Let us introduce two new notations. The first one,

(expr)
[
v1:=repl1
v2:=repl2

]
indicates simultaneous substitution of all (free) occurrences of the variables v1
and v2 in expr by repl1 and repl2. For example,

((x+ y) · z)
[
x:=a+y
y:=b+z
z:=c+x

]
= ((a+ y) + (b+ z)) · (c+ x).

The second is a way to write ‘→’s as horizontal bars. In

A B C

D
α

E F

G
β

H

I
γ

J
δ

K
ε

L M

N
ζ

O

P
η

the trees mean:

• if A, B, C are true then D is true (by α),

• if E, F , are true then G is true (by β),

• if H is true then I is true (by γ),

• J is true (by δ, with no hypotheses),

• K is true (by ε); if L and M then N (by ζ); if K, N , O, then P (by η);
combining all this we get a way to prove that if L, M , O, then P ,

where α, β, γ, δ, ε, ζ, η are usually names of rules.

The implications in the table in the beginning of this section can be rewritten
as “tree rules” as:

P ≤ P
id

P ≤ Q Q ≤ R

P ≤ R
comp

P ≤ > >1 ⊥ ≤ Q
⊥1

P ≤ Q ∧R

P ≤ Q
∧1

P ≤ Q ∧R

P ≤ R
∧2

P ≤ Q P ≤ R

P ≤ Q ∧R
∧3

P ∨Q ≤ R

P ≤ R
∨1

P ∨Q ≤ R

Q ≤ R
∨2

P ≤ R Q ≤ R

P ∨Q ≤ R
∨3

P ≤ Q→R

P ∧Q ≤ R
→1

P ∧Q ≤ R

P ≤ Q→R
→2

2016planar-has December 18, 2016 13:54

12

Note that the ‘∀P,Q,R ∈ Ω’s are left implicit in the tree rules, which means
that every substitution instance of the tree rules hold; sometimes — but rarely
— we will indicate the substitution explicitly, like this,(

P ∧Q ≤ R

P ≤ Q→R
→2

)[
Q:=P→⊥

R:=⊥
]

P ∧ (P→⊥) ≤ ⊥
P ≤ ((P→⊥)→⊥)

→2

(→2)
[
Q:=P→⊥

R:=⊥
]

P ∧ (P→⊥) ≤ ⊥
P ≤ ((P→⊥)→⊥)

→2

[
Q:=P→⊥

R:=⊥
]

Usually we will only say ‘→2’ instead of ‘→2

[
Q:=P→⊥

R:=⊥
]
’ at the right of a bar,

and the task of discovering which substitution has been used is left to the reader.

The tree rules can be composed in a nice visual way. For example, this,

P ∧Q ≤ P ∧Q
id

P ∧Q ≤ P
∧1

P ≤ R

P ∧Q ≤ R
comp

P ∧Q ≤ P ∧Q
id

P ∧Q ≤ Q
∧2

Q ≤ S

P ∧Q ≤ S
comp

P ∧Q ≤ R ∧ S
∧3

“is” a proof for:

∀P,Q,R, S ∈ Ω. (P ≤ R) ∧ (Q ≤ S)→ ((P ∧Q) ≤ (R ∧ S)).

8.1 Derived rules

Note: in this section we will ignore the operators ‘↔’ and ‘¬’ in PC-structures;
we will think that every ‘P ↔ Q’ is as abbreviation for ‘(P→Q)∧ (Q→P)’ and
every ‘¬P ’ is an abbreviation for ‘P→>’.

We’ll write [>1], . . . , [→2] for the “linear” versions of the rules in last section
— for example, [→2] is (∀P,Q,R ∈ Ω. (P ∧Q ≤ R) → (P ≤ Q→R)) — and if
S = (r1, . . . , rn) is a set of rules, each in tree form, then [S] = [r1] ∧ . . . ∧ [rn],
and an “S-tree” is a proof in tree form that only uses rules that are in the set
S.

Let HA-ness1, HA-ness2, HA-ness3, be these sets, with the rules from sec.8:

HA-ness1 = {id, comp,>1,⊥1,∧3,∨3,→2},
HA-ness2 = {∧1,∧2,∨1,∨2,→1},
HA-ness3 = HA-ness1 ∪ HA-ness2

and let HA-ness4, HA-ness5 and HA-ness7 be these ones, where the new rules are
the ones at the left column of fig.1:

HA-ness4 = {∧4,∧5,∨4,∨5,MP0,MP}
HA-ness5 = HA-ness1 ∪ HA-ness4
HA-ness7 = HA-ness1 ∪ HA-ness2 ∪ HA-ness4

2016planar-has December 18, 2016 13:54

13

Q ∧R ≤ Q
∧4

:=

Q ∧R ≤ Q ∧R
id [P :=Q∧R]

Q ∧R ≤ Q
∧1 [P :=Q∧R]

Q ∧R ≤ R
∧5

:=

Q ∧R ≤ Q ∧R
id [P :=Q∧R]

Q ∧R ≤ R
∧2 [P :=Q∧R]

P ≤ P ∨Q
∨4

:=

P ∨Q ≤ P ∨Q
id [P :=P∨Q]

P ≤ P ∨Q
∨1 [R:=P∨Q]

Q ≤ P ∨Q
∨5

:=

P ∨Q ≤ P ∨Q
id [P :=P∨Q]

Q ≤ P ∨Q
∨2 [R:=P∨Q]

Q ∧ (Q→R) ≤ R
MP0

:=

Q→R ≤ Q→R
id

(Q→R) ∧Q ≤ R
→1

P ≤ Q P ≤ Q→R

P ≤ R
MP

:=

P ≤ Q P ≤ Q→R

P ≤ Q ∧ (Q→R) Q ∧ (Q→R) ≤ R
MP0

P ≤ R
comp

Figure 1: Derived rules

2016planar-has December 18, 2016 13:54

14

P ≤ Q ∧R

P ≤ Q
∧1

:=

P ≤ Q ∧R Q ∧R ≤ Q
∧4

P ≤ Q
comp

P ≤ Q ∧R

P ≤ R
∧2

:=

P ≤ Q ∧R Q ∧R ≤ R
∧5

P ≤ R
comp

P ∨Q ≤ R

P ≤ R
∨1

:=

P ≤ P ∨Q
∨4

P ∨Q ≤ R

P ≤ R
comp

P ∨Q ≤ R

Q ≤ R
∨2

:=

Q ≤ P ∨Q
∨5

P ∨Q ≤ R

Q ≤ R
comp

P ≤ Q→R

P ∧Q ≤ R
→1

:=

P ∧Q ≤ Q
∧5

P ∧Q ≤ P
∧4

P ≤ Q→R

P ∧Q ≤ Q→R
comp

P ∧Q ≤ Q ∧ (Q→R)
∧3

Q ∧ (Q→R) ≤ R
MP0

P ∧Q ≤ R
comp

Figure 2: Derived rules (2)

2016planar-has December 18, 2016 13:54

15

Note that the trees in the right of fig.1 are HA-ness3-trees.
Fig.1 can be interpreted in two ways. The first one is that it shows that

[HA-ness3] → [∧4],
[HA-ness3] → [∧5],
[HA-ness3] → [∨4],
[HA-ness3] → [∨5],
[HA-ness3] → [MP0],
[HA-ness3] → [MP],
[HA-ness3] → [HA-ness4],
[HA-ness3] → [HA-ness7];

the second one is that it shows a way to replace occurrences of ∧4, ∧5, ∨4, ∨5,
MP0, MP. Take an HA-ness7-tree, T . Call it hypotheses H1, . . . , Hn, and its
conclusion C, Replace each occurrence of ∧4, ∧5, ∨4, ∨5, MP0, MP in T by the
corresponding tree in the right side of fig.1. The result is a new tree, T ′, which
is “equivalent” to T in the sense of having the same hypotheses and conclusion
as T . So,

• every HA-ness3-tree is an HA-ness7-tree,

• every HA-ness7-tree is “equivalent” to an HA-ness3-tree.

We call this trick “derived rules” — the rules in HA-ness4 are “derived” from
HA-ness3, and HA-ness3 and HA-ness7 are “equivalent” in the sense that they
“prove the same things”.

Now look at fig.2. It has the rules in HA-ness2 at the left, and HA-ness5-trees
at the right; it shows that

[HA-ness5] → [∧1],
[HA-ness5] → [∧2],
[HA-ness5] → [∨1],
[HA-ness5] → [∨2],
[HA-ness5] → [→2],
[HA-ness5] → [HA-ness2],
[HA-ness5] → [HA-ness7],

and it also shows how to take an HA-ness7-tree T and replace every occurrence
of an HA-ness4-rule in it by an HA-ness3-tree, producing an HA-ness3-tree T ′

which is “equivalent” to T . This means that:

• every HA-ness5-tree is an HA-ness7-tree,

• every HA-ness7-tree is “equivalent” to an HA-ness5-tree,

and that HA-ness3, HA-ness7 and HA-ness5 are all “equivalent”.

2016planar-has December 18, 2016 13:54

16

9 Topologies

The best way to connect ZHAs to several standard concepts is by seeing that
ZHAs are topologies on certain finite sets — actually on 2-column acyclical
graphs. This will be done here and in the next few sections.

A topology on a set X is a subset S of P(X) such that:
1) S contains X and ∅,
2) if P,Q ∈ S then S contains P ∩Q and P ∪Q,
3) if S ′ ⊂ S then S contains

⋃
S ′.

A topological space is a pair (X,S) where X is a set and S is a topology on
X.

When (X,S) is a topological space and U ∈ S we say that U is open in
(X,S).

For example, let X be the ZSet
• ••• •, and let’s use the characteristic function

notation from sec.1 to denote its subsets — we write X =
1 1
1

1 1
and ∅ =

0 0
0

0 0

instead of X = • ••• • and ∅ = · ··· · .

If S =
{
1 0
0

0 0
, 0 1

0
0 0

, 0 0
1

0 0
, 0 0

0
1 0

, 0 0
0

0 1

}
then S ⊂ P(X) but S fails all the conditions

in 1, 2, 3 above:
1) X =

1 1
1

1 1
6∈ S and ∅ =

0 0
0

0 0
6∈ S

2) Let P =
1 0
0

0 0
∈ S and Q =

0 1
0

0 0
∈ S. Then P ∩ Q =

0 0
0

0 0
6∈ S and

P ∪Q = 1 1
0

0 0
6∈ S.

3) Let S ′ =
{
0 1
0

0 0
, 0 0

1
0 0

, 0 0
0

1 0

}
⊂ S. Then

⋃
S ′ = 0 1

0
0 0
∪ 0 0

1
0 0
∪ 0 0

0
1 0

= 0 1
1

1 0
6∈ S.

Now letK =
•

• •
•
•

and S =
{

0
0 0
0
0
,

0
0 0
0
1
,

0
0 0
1
1
,

0
0 1
1
1
,

0
1 0
1
1
,

0
1 1
1
1
,

1
1 1
1
1

}
. In this case (K,S)

is a topological space.

Some sets have “default” topologies on them, denoted with ‘O’. For example,
R is often used to mean the topological space (R,O(R)), where:

O(R) = {U ⊂ R | U is a union of open intervals }.

We say that a subset U ⊂ R is “open in R” (“in the default sense”; note that
now we are saying just “open in R”, not “open in (R,O(R))”) when U is a union
of open intervals, i.e., when U ∈ O(R); but note that P(R) and {∅,R} are also
topologies on R, and:

{2, 3, 4} ∈ P(R), so {2, 3, 4} is open in (R,P(R)),
{2, 3, 4} 6∈ O(R), so {2, 3, 4} is not open in (R,O(R)),
{2, 3, 4} 6∈ {∅,R}, so {2, 3, 4} is not open in (R, {∅,R});

when we say just “U is open in X”, this means that:
1) O(X) is clear from the context, and
2) U ∈ O(X).

2016planar-has December 18, 2016 13:54

17

10 The default topology on a ZSet

Let’s define a default topology O(D) for each ZSet D.

For each ZSet D we define O(D) as:

O(D) := {U ⊂ D | ∀((x, y), (x′, y′))∈BPM(D). ((x, y)∈U → (x′, y′)∈U) }

whose visual meaning is this. Turn D into a ZDAG by adding arrows for the
black pawns moves (sec.2), and regard each subset U ⊂ D as a board configura-
tion in which the black pieces may move down to empty positions through the
arrows. A subset U is “stable” when no moves are possible because all points
of U “ahead” of a black piece are already occupied by black pieces; a subset U
is “non-stable” when there is at least one arrow ((x, y), (x′, y′)) ∈ BPM(D) in
which (x, y) had a black piece and (x′, y′) is an empty position.

In our two notations for subsets (sec.1) a subset U ⊂ D is unstable when it
has an arrow like ‘• → ·’ or ‘1 → 0’; remember that black pawn moves arrows
go down. A subset U ⊂ D is stable when none of its ‘•’s or ‘1’s can move down
to empty positions.

“Open” is the same as “stable”. O(D) is the set of stable subsets of D.

Some examples:
0

0 1
0
0

is not open because it has a 1 above a 0,

O(
•

• •
•
•
) =

{
0

0 0
0
0
,

0
0 0
0
1
,

0
0 0
1
1
,

0
0 1
1
1
,

0
1 0
1
1
,

0
1 1
1
1
,

1
1 1
1
1

}
,

O(•• •• •) =
{

0
0 0
0 0

,
0

0 0
0 1

,
0

0 0
1 0

,
0

0 0
1 1

,
0

0 1
0 1

,
0

0 1
1 1

,
0

1 0
1 0

,
0

1 0
1 1

,
0

1 1
1 1

,
1

1 1
1 1

}
.

The definition of O(D) above can be generalized to any directed graph. If
(A,R) is a directed graph, then (A,OR(A)) is a topological space if we define:

OR(A) := {U ⊆ A | ∀(a, b) ∈ R. (a ∈ U → b ∈ U) }

The two definitions are related as this: O(D) = OBPM(D)(D).
Note that we can see the arrows in BPM(D) or in R as obligations that open

sets must obey; each arrow a → b says that every open set that contains a is
forced to contain b too.

11 Topologies as partial orders

For any topological space (X,O(X)) we can regard O(X) as a partial order,
ordered by inclusion, with ∅ as its minimal element and X as its maximal
element; we denote that partial order by (O(X),⊆).

Take any ZSet D. The partial order (O(D),⊆) will sometimes be a ZHA
when we draw it with ∅ at the bottom, D at the top, and inclusions pointing
up, as can be seen in the three figures below; when D =

•
• •
• • or D = • •• •• • the

result is a ZHA, but when D = • • •• • it not.

2016planar-has December 18, 2016 13:54

18

Let’s write “V ⊂1 U” for “V ⊆ U and V and U differ in exactly one point”.
When D is a ZSet the relation ⊆ on O(D) is the transitive-reflexive closure of
⊂1, and (O(D),⊂1) is easier to draw than (O(D),⊆).

(H,BPM(H)) =

•
• •
• •

↙ ↘
↓ ↓

(O(H),⊂1) =

1
1 1
1 1

0
1 1
1 1

0
1 0
1 1

0
0 1
1 1

0
1 0
1 0

0
0 0
1 1

0
0 1
0 1

0
0 0
1 0

0
0 0
0 1

0
0 0
0 0

↖

↗ ↖

↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗

(G,BPM(G)) =

• •
• •
• •

↙ ↘ ↙
↘ ↙ ↘ (O(G),⊂1) =

1 1
1 1
1 1

1 0
1 1
1 1

0 1
1 1
1 1

0 0
1 1
1 1

0 1
0 1
1 1

0 0
1 0
1 1

0 0
0 1
1 1

0 0
1 01 0

0 0
0 01 1

0 0
0 0
1 0

0 0
0 0
0 1

0 0
0 0
0 0

↗ ↖

↖ ↗ ↖

↗ ↖ ↗

↗ ↖ ↗

↖ ↗ ↖

↖ ↗

(W,BPM(W)) =
• • •
• •↘ ↙ ↘ ↙ (O(W),⊂1) =

1 1 1
1 1

1 1 0
1 1

1 0 1
1 1

0 1 1
1 1

1 0 0
1 1

0 1 0
1 1

0 0 1
1 1

1 0 0
1 0

0 0 0
1 1

0 0 1
0 1

0 0 0
1 0

0 0 0
0 1

0 0 0
0 0

↗ ↑ ↖

↑ ↖↗ ↖↗ ↑

↗ ↖ ↑ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗

2016planar-has December 18, 2016 13:54

19

We can formalize a “way to draw O(D) as a ZHA” (or “...as a ZDAG”) as
a bijective function f from a ZHA (or from a ZSet) S to O(D) that creates a
perfect correspondence between the white moves in S and the “V ⊂1 U -arrows”;
more precisely, an f such that this holds: if a, b ∈ S then (a, b) ∈ WPM(S) iff
f(a) ⊂1 f(b).

Note that the number of elements in an open set corresponds to the height
where it is drawn; if f : S → O(D) is a way to draw O(D) as a ZHA or a
ZDAG then f takes points of the form (, y) to open sets with y elements, and
if f : S → O(D) is a way to draw O(D) as a ZHA (not a ZDAG!) then we also
have that f((0, 0)) = ∅ ∈ O(D).

The diagram for (O(H),⊂1) above is a way to draw O(H) as a ZHA.
The diagram for (O(G),⊂1) above is a way to draw O(H) as a ZHA.
The diagram for (O(W),⊂1) above is not a way to draw O(W) as a ZSet.

Look at 0 1 0
1 1 and 1 0 1

1 1 in the middle of the cube formed by all open sets of the
form a b c

1 1 . We don’t have 0 1 0
1 1 ⊂1

1 0 1
1 1 , but we do have a white pawn move

(not draw in the diagram!) from f−1(0 1 0
1 1) to f−1(1 0 1

1 1). We say that a ZSet
is thin when it doesn’t have three independent points.

Every time that a ZSet D has three independent points, as in W , we will
have a situation like in (O(W),⊂1); for example, if B = • •• • •• • then the open
sets of B of the form 0 0

a b c
1 1

form a cube.

12 2-Column Graphs

Note: in this section we will manipulate objects with names like 1 , 2 , 3 , . . . ,
1, 2, 3, . . .; here are two good ways to formalize them:

...
...

4 = (0, 4) 4 = (1, 4)
3 = (0, 3) 3 = (1, 3)
2 = (0, 2) 2 = (1, 2)
1 = (0, 1) 1 = (1, 1)

or

...
...

4 = "4_" 4 = "_4"

3 = "3_" 3 = "_3"

2 = "2_" 2 = "_2"

1 = "1_" 1 = "_1"

,

where "1_", "_2", "", "Hello!", etc are strings.

We define:
LC(l) := {1 , 2 , . . . , l }
RC(l) := { 1, 2, . . . , r},

which generate a “left column” of height l and a “right column” of height r.
A description for a 2-column graph (a “D2CG”) is a 4-tuple (l, r, R, L), where

l, r ∈ N, R ⊂ LC(l)×RC(r), L ⊂ RC(r)×LC(l); l is the height of the left column,
r is the height of the right column, and R and L are set of intercolumn arrows
(going right and left respectively).

The operation 2CG (in a sans-serif font) generates a directed graph from a
D2CG:

2016planar-has December 18, 2016 13:54

20

2CG(l, r, R, L) :=

(
LC(l) ∪ RC(r),

{
{l →(l−1) , ..., 2 →1 }∪
{ r→ (r−1), ..., 2→ 1}∪

R∪L

})
For example,

2CG(3, 4,
{

3 → 4,
2 → 3

}
,
{

2 ← 2,
1 ← 2

}
) :=

({ 3 , 2 , 1 ,
4, 3, 2, 1

}
,

{
3 →2 , 2 →1 ,

4→ 3, 3→ 2, 2→ 1,
3 → 4, 2 → 3,
2 ← 2, 1 ← 2

})

which is:
1

2

3

1

2

3

4

we will usually draw that more compactly, by omitting the intracolumn (i.e.,
vertical) arrows: (

1
2
3

1
2
3
4
)

or

(
•
•
•

•
•
•
•)

.

A 2-column graph (a “2CG”) is a directed graph that is of the form 2CG(l, r, R, L).
We will often say (P,A) = 2CG(l, r, R, L), where the P stand for “points” and
A for “arrows”.

A 2-column acyclical graph (a “2CAG”) is a 2CG that doesn’t have cycles.
If L has an arrow that is the opposite of an arrow in R, this generates a cycle of
length 2; if R has an arrow l → r′ and L has an arrow l′ ← r, where l ≤ l′ and
r ≤ r′, this generates a cycle that can have a more complex shape — a triangle
or a bowtie. For example,

1

2

3

4

1

2

3

 and

1

2

3

1

2

3

4
 .

13 Topologies on 2CGs

In this section we will see that ZHAs are topologies on 2CAGs.

Let (P,A) = 2CG(l, r, R, L) be a 2-column graph.
What happens if we look at the open sets of (P,A), i.e., at OA(P)? Two things:

1) every open set U ∈ OA(P) is of the form LC(a) ∪ LC(b),
2) arrows in R and L forbids some ‘LC(a) ∪ LC(b)’s from being open sets.

In order to understand that we need to introduce some notations for “piles”.

2016planar-has December 18, 2016 13:54

21

The function
pile(〈a, b〉) := LC(a) ∪ LC(b)

converts an element 〈a, b〉 ∈ LR into a pile of elements in the left column of
height a and a pile of elements in the right column of height b. We will write
subsets of the points of a 2CG using a positional notation with arrows. So, for
example, if (P,A) = 2CG(3, 4, {2 → 3}, {2 ← 2}) then

(P,A) =

(
1
2
3

1
2
3
4
)

and pile(21) =

(
1
1
0

1
0
0
0
)

(as a subset of P).

Note that pile(21) is not open in (P,OA(P)), as it has an arrow ‘1→ 0’. In
fact, the presence of the arrow {2 → 3} in A means that all piles of the form(

1
1
?

?
?
0
0
)

are not open, the presence of the arrow {2 ← 2} means that the piles of the
form (

?
0
0

1
1
?
?
)

are not open sets.
The effect of these prohibitions can be expressed nicely with implications. If

(P,A) = 2CG(l, r,
{

c → d,
e → f

}
,
{

g ← h,
i ← j

}
)

then

OA(P) = { pile(ab) | a ∈ {0, . . . , l}, b ∈ {0, . . . , r},

(
a≥c→b≥d ∧
a≥e→b≥f ∧
a≥g←b≥h ∧
a≥i←b≥j

)
}

Let’s use a shorter notation for comparing 2CGs and their topologies:

O

1

2

3

4

1

2

3

4

5

=

42
43
44
45

32
33
34

35

20
21
22
23

24
25

10
11
12

13
14

00
01

02
03

the arrows in R and L and the values of l and r are easy to read from the 2CG
at the left, and we omit the ‘pile’s at the right.

In a situation like the above we say that the 2CG in the ‘O(. . .)’ generates
the ZHA at the right. There is an easy way to draw the ZHA generated by a

2016planar-has December 18, 2016 13:54

22

2CG, and a simple way to find the 2CG that generates a given ZHA. To describe
them we need two new concepts.

If (A,R) is a directed graph and S ⊂ A then ↓S is the smallest open set
in OR(A) that contains S. If (A,R) is a ZDAG with black pawns moves as its
arrows, think that the ‘1’s in S are painted with a black paint that is very wet,
and that that paint flows into the ‘0’s below; the result of ↓S is what we get
when all the ‘0’s below ‘1’s get painted black. For example: ↓ 0 1

0 0
0 0

= 0 1
0 1
1 1

. When
(P,A) is a 2CG and S ⊆ P , we have to think that the paint flows along the
arrows, even if some of the intercolumn arrows point upward. For example:

↓

(
1
0
0

0
1
0
0
)

=

(
1
1
0

1
1
1
0
)

and if S consists of a single point, S = {s}, then we may write ↓s instead of
↓{s} = ↓S. In the 2CG above, we have (omitting the ‘pile’s):

↓ 2 = ↓{ 2} = ↓

(
0
0
0

0
1
0
0
)

=

(
1
1
0

1
1
1
0
)

= 23, and
↓ 4=24,

↓3 =33, ↓ 3=23,
↓2 =23, ↓ 2=23,
↓1 =10, ↓ 1=01,

The second concept is this: the “generators” of a ZDAG D with white pawns
moves as its arrows — or of a ZHA D — are the points of D that have exactly
one white pawn move pointing to them (not going out of them).

If (P,A) is a 2CAG, then OA(P) is a ZHA, and ‘↓’ is a bijection from P to
the generators of OA(P); for example:

O

1

2

3

4

1

2

3

4

5

=

42
43
44

45

32
33

34
35

20
21
22

23
24
25

10
11

12
13
14

00
01
02
03

4
·
·
·

3
·
·
·

2
·
·
·
·

5

1
·
·
·

4

·
1

2
3

but if (P,A) is a 2CG with cycles, then OA(P) is not a ZHA because each
cycle generates a “gap” that disconnects the points of OA(P). We just saw an
example of a 2CG with a cycle in which ↓2 = 23 = ↓ 3 = ↓ 2; look at its
topology:

O

1

2

3

1

2

3

4
 =

34
33 24
23

11
10 01
00

2016planar-has December 18, 2016 13:54

23

14 Converting bewteen ZHAs and 2CAGs

Let’s now see how to start from a 2CAG and produce its topology (a ZHA)
quickly, and how to find quickly the 2CAG that generates a given ZHA.

From 2CAGs to ZHAs. Let (P,A) = 2CG(l, r, R, L) be a 2CAG, and call
the ZHA generated by it H. Then the top point of H is lr, its bottom point is
00. Let C := {00, ↓1 , ↓2 , . . . , ↓l , lr}; then C has some of the points of the left
wall (sec.4) of H, but usually not all. To “complete” C, apply this operation
repeatedly: if ab ∈ C and ab 6= lr, then test if either (a+ 1)b or a(b+ 1) are in
C; if none of them are, add a(b + 1), which is northeast of ab. When there is
nothing else to add, then C is the whole of the left wall of H. For the right wall,
start with D := {00, ↓ 1, ↓ 2, . . . , ↓ r, lr}, and for each ab ∈ C with ab 6= lr, test
if either (a+ 1)b or a(b+ 1) are in D; if none of them are, add (a+ 1)b, which
is northwest of ab. When there is nothing else to add, then D is the whole of
the right wall of H.

In the acyclic example of the last section this yields:

C = {00, ↓1 , ↓2 , ↓3 , ↓4 , lr}
= {00, 10, 20, 32, 42, 45}
 {00, 10, 20, 21, 22, 32, 42, 43, 44, 45},

D = {00, ↓ 1, ↓ 2, ↓ 3, ↓ 4, ↓ 5, lr}
= {00, 01, 02, 03, 14, 25, 45}
 {00, 01, 02, 03, 13, 14, 24, 25, 35, 45}.

and the ZHA is everything between the “left wall” C and the “right wall” D.

From ZHAs to 2CAGs. Let H be a ZHA and let lr be its top point. Form
the sequence of its left wall generators (the generators of H in which the arrow
pointing to them points northwest) and the sequence of its right wall generators
(the generators of H in which the arrow pointing to them points northeast).
Look at where there are “gaps” in these sequences; each gap in the left wall
generators becomes an intercolumn arrow going right, and each gap in the right
wall generators becomes an intercolun arrow going left. In the acyclic example
of the last section, this yields:

5 = 25
(gap becomes 2 ← 5)

4 = 42 4 = 14
(no gap) (gap becomes 1 ← 4)

3 = 32 3 = 03
(gap becomes 3 → 2) (no gap)

2 = 20 2 = 02
(no gap) (no gap)

1 = 10 1 = 01

We know l and r from the top point of the ZHA, and from the gaps we get R

2016planar-has December 18, 2016 13:54

24

and L; the 2CAG that generates this ZHA is:

(4, 5,
{
3 → 2

}
,

{
2 ← 5,
1 ← 4

}
).

2016planar-has December 18, 2016 13:54

25

15 Piccs and slashings

A picc (“partition into contiguous classes”) of an interval I = {0, . . . , n} is a
partition P of I that obeys this condition (“picc-ness”):

∀a, b, c ∈ {0, . . . , n}. (a < b < c & a ∼P c)→ (a ∼P b ∼P c).

So P = {{0}, {1, 2, 3}, {4, 5}} is a picc of {0, . . . , 5}, and P ′ = {{0}, {1, 2, 4, 5}, {3}}
is a partition of {0, . . . , 5} that is not a picc.

A short notation for piccs is this:

0|123|45 ≡ {{0}, {1, 2, 3}, {4, 5}}

we list all digits in the “interval” in order, and we put bars to indicate where
we change from one equivalence class to another.

Let’s define a notation for “intervals” in LR,

[ab, cd] := [〈a, b〉, 〈c, d〉] := { 〈l, r〉 ∈ LR | a ≤ l ≤ c&b ≤ r ≤ d },

Note that it can be adapted to define “intervals” in a ZHAs H:

[ab, cd] ∩H := { 〈l, r〉 ∈ LR | a ≤ l ≤ c&b ≤ r ≤ d } ∩H
= { 〈l, r〉 ∈ H | a ≤ l ≤ c&b ≤ r ≤ d }.

A slashing S on a ZHA H with top element ab is a pair of piccs, S = (L,R),
where L is a picc on {0, . . . , a} and R is a picc on {0, . . . , b}; for example,
S = (4321/0, 0123\45\6) is a slashing on [00, 46]. We write the bars in L as ‘/’s
and the bars in R as ‘\’ as a reminder that they are to be interpreted as northeast
and northwest “cuts” respectively; S = (4321/0, 0123\45\6) is interpreted as
the diagram at the left below, and it “slashes” [00, 46] and the ZHA at the right
below as:

0
1

2
3

4

0
1
2
3
4
5
6

40
41
42
43

44
45
46

30
31
32

33
34
35

36

20
21

22
23
24

25
26

10
11
12
13

14
15
16

00
01
02

03
04
05

06

45
46

34
35
36

22
23

24
25

26

11
12

13
14

00
01

02
03

04

A slashing S = (L,R) on a ZHA H with top element ab induces an equiv-
alence relation ‘∼S ’ on H that works like this: 〈c, d〉 ∼S 〈e, f〉 iff c ∼L e and
d ∼R f . We write

[c]L := { e ∈ {0, . . . , a} | c ∼L a }
[d]R := { f ∈ {0, . . . , b} | d ∼L f }
[cd]S := { ef ∈ H | cd ∼S ef }

2016planar-has December 18, 2016 13:54

26

for the equivalence classes, and note that

if [c]L = {c′, . . . , c′′}
and [d]L = {d′, . . . , d′′}
then [cd]S = [c′d′, c′′d′′] ∩H;

for example, in the ZHA at the right at the example above we have:

[1]L = {1, 2, 3, 4},
[2]R = {0, 1, 2, 3},
[12]S = [10, 43] ∩H = {11, 12, 13, 22, 23}.

We say that a slashing S on a ZHA H partitions H into slash-regions; later
(sec.21) we will see that a J-operator J also partitions H, and we will refer to
its equivalence classes as J-regions.

Slash-regions are intervals, but note that neither 10 or 43 belong to the
slash-region [12]S = [10, 43] ∩H above.

A slash-partition is a partition on a ZHA induced by a slashing, and a slash-
equivalence is an equivalence relation on a ZHA induced by a slashing. Formally,
a slash-partition on H is a set of subsets of H, and a slash-equivalence is sub-
set of H × H, but it is so easy to convert between partitions and equivalence
relations that we will often use both terms interchangeably. Our visual repre-
sentation for slash-partitions and slash-equivalences on a ZHA H will be the
same: H slashed by diagonal cuts.

16 From slash-partitions back to slashings

We saw how to go from a slashing S = (L,R) on H to an equivalence relation
∼S on H; let’s see now how to recover L and R from ∼S .

Let LWH be the left wall of H, and RWH the right wall of H. For example,

H =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

LWH = {00, 01, 11, 12, 22, 23, 24, 34, 35, 45, 46}
RWH = {00, 01, 02, 03, 04, 14, 24, 25, 26, 36, 46}

To recover the picc L — which is a picc on {0, 1, 2, 3, 4} — we need to find
where we change from an L-equivalence class to another when we go from one
digit to the next; and to recover the picc R —which is a picc on {0, 1, 2, 3, 4, 5, 6}
—we need to find where we change from an R-equivalence class to another when
we go from one digit to the next.

2016planar-has December 18, 2016 13:54

27

We can recover L and R by walking LWH (or RWH) from bottom to top
in a series of white pawns moves, and checking when we change from one
S-equivalence class to another. Northwest moves give information about L,
and northeast moves give information about R. Look at the example below, in
which we walk on RWH :

H =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

LWH =

45
46

34
35

22
23
24

11
12

00
01

RWH =

46
36

24
25
26

14

00
01

02
03
04

26
↗

25
: 25 6∼S26 ⇒ 5 6∼R6 ⇒ 5\6

25
↗

24
: 24∼S25 ⇒ 4∼R5 ⇒ 45

46
↖

36
: 36∼S46 ⇒ 3∼L4 ⇒ 43

04
↗

03
: 03 6∼S04 ⇒ 3 6∼R4 ⇒ 3\4

36
↖

26
: 26∼S36 ⇒ 2∼L3 ⇒ 32

03
↗

02
: 02∼S03 ⇒ 2∼R3 ⇒ 23

24
↖

14
: 14∼S24 ⇒ 1∼L2 ⇒ 21

02
↗

01
: 01∼S02 ⇒ 1∼R2 ⇒ 12

14
↖

04
: 04 6∼S14 ⇒ 0 6∼L1 ⇒ 1/0

01
↗

00
: 00∼S01 ⇒ 0∼R1 ⇒ 01

(L,R) = (4321/0, 0123\45\6)

17 Slash-regions have maximal elements

...here is how our argument will work, in a particular case:

[1]L = {1, 2, 3, 4},
[2]R = {0, 1, 2, 3},

I = [10, 43],
[12]S = I ∩H = {11, 12, 13, 22, 23}.

(((11 ∨ 12︸ ︷︷ ︸
=12∈I

) ∨ 13

︸ ︷︷ ︸
=13∈I

) ∨ 22

︸ ︷︷ ︸
=23∈I

) ∨ 23

︸ ︷︷ ︸
=23∈I

(((11 ∨ 12︸ ︷︷ ︸
=12∈H

) ∨ 13

︸ ︷︷ ︸
=13∈H

) ∨ 22

︸ ︷︷ ︸
=23∈H

) ∨ 23

︸ ︷︷ ︸
=23∈H∨

[12]S =
∨
{11, 12, 13, 22, 23} = 11 ∨ 12 ∨ 13 ∨ 22 ∨ 23 ∈ I ∩H

2016planar-has December 18, 2016 13:54

28

11 ≤
∨

[12]S , 12 ≤
∨

[12]S , . . . , 23 ≤
∨

[12]S

We have [12]S = I ∩H, and
∨
[12]S belongs to I ∩H and is greter-or-equal

than all elements of I ∩H, so
∨
[12]S is the maximal element of [12]S .

Here is how we can do that in the general case. Let S = (L,R) be a slashing
on a ZHA H. Let P be a point of H. The equivalence class [P]S is a finite set
{P1, . . . , Pn}, and we know that [P]S = H ∩ I for some interval I. Look at the
elements P1, P1∨P2, (P1∨P2)∨P3, . . ., ((P1∨P2)∨. . .)∨Pn We can see that all of
them belong to both H and I, so we conclude that

∨
[P]S = ((P1∨P2)∨. . .)∨Pn

belongs to H∩I, and it is easy to see that it is greater-or-equal that all elements
in H ∩ I, so it is the maximal element of H ∩ I.

A similar argument shows that
∧
[P]S = ((P1∧P2)∧ . . .)∧Pn is the smallest

element of [P]S .

The same argument shows that if C is any non-empty set of the form I ∩H,
where I is an interval, then

∨
C ∈ C,

∧
C ∈ C, [

∧
C,
∨
C] ∩H = C.

Remember that an interval in a ZHA H is any set of the form [P,Q] ∩ H.
Let’s introduce a new definition: a closed interval in a ZHA H is a non-empty
set C ⊂ H, with

∨
C ∈ C,

∧
C ∈ C, [

∧
C,
∨
C] ∩H = C; informally, a closed

interval in a ZHA has a lowest and highest element, and it “is” everything
between them.

18 Cuts stopping midway

We saw in the last section that every slash-region is a closed interval. A partition
into closed intervals of a ZHA H is, as its name says, a partition of H whose
equivalence classes are all closed intervals in H.

Some partitions into closed intervals of a ZHA are not slashings — for ex-
ample, take the partition P with these equivalence classes:

50
51
52
53

40
41
42

43

30
31

32
33

20
21
22
23

10
11
12
13

00
01
02

03

Here is an easy way to prove formally that the partition above does not
come from a slashing S = (L,R). We will adapt the idea from sec.16, where we
recovered L and R from northwest and northeast steps.

21 ∼P 31︸ ︷︷ ︸
false

↔ 2 ∼L 3︸ ︷︷ ︸
=(

↔ 22 ∼P 32︸ ︷︷ ︸
true

31 ∼P 41︸ ︷︷ ︸
true

↔ 3 ∼L 4︸ ︷︷ ︸
=(

↔ 32 ∼P 42︸ ︷︷ ︸
false

2016planar-has December 18, 2016 13:54

29

The problem is that the figure above has “cuts stopping midway”... if its
cuts all crossed the ZHA all the way through, we would have this for L and
northeast cuts,

0 ∼L 1 ↔ 00 ∼P 10 ↔ 01 ∼P 11 ↔ 02 ∼P 12 ↔ 03 ∼P 13
1 ∼L 2 ↔ 10 ∼P 20 ↔ 11 ∼P 21 ↔ 12 ∼P 22 ↔ 13 ∼P 23
2 ∼L 3 ↔ 20 ∼P 30 ↔ 21 ∼P 31 ↔ 22 ∼P 32 ↔ 23 ∼P 33
3 ∼L 4 ↔ 30 ∼P 40 ↔ 31 ∼P 41 ↔ 32 ∼P 42 ↔ 33 ∼P 43
4 ∼L 5 ↔ 40 ∼P 50 ↔ 41 ∼P 51 ↔ 42 ∼P 52 ↔ 43 ∼P 53
5 ∼L 6 ↔ 50 ∼P 60 ↔ 51 ∼P 61 ↔ 52 ∼P 62 ↔ 53 ∼P 63

and something similar for R and northwest cuts.

Formally, a partition P on H has an “L-cut between c and c+ stopping
midway” if cd ∼P c+d 6↔ cd ∼P c+d for some d, and it has an “R-cut between
d and d+ stopping midway” if cd ∼P cd+ 6↔ c+d ∼P c+d+ for some c; here we
are writing x+ for x+ 1.

Theorem: a partition of H into closed intervals is a slash-partition if and
only if it doesn’t have any cuts stopping midway. Proof: use the ideas above
to recover L and R from ∼P , and then check that S = (L,R) induces an
equivalence relation ∼S that coincides with ∼P .

19 Slash-operators

We can define operations that take each each P ∈ H to the maximal and to the
minimal element of its S-equivalent class, now that we know that these maximal
and minimal elements exist:

PS :=
∨
[P]S (maximal element),

P coS :=
∧
[P]S (minimal element).

Note that [P]S = [P coS , PS] ∩H.
We will use the operation ·S a lot and ·coS very little. The ‘co’ in ‘coS’

means that ·coS is dual to ·S , in a sense that will be made precise later.

A slash-operator on a ZHA H is a function ·S : H → H induced by a slashing
S = (L,R) on H. It is easy to see that P ≤ PS (“ ·S is non-decreasing”) and
that PS = (PS)S (“ ·S is idempotent”).

Any idempotent function ·F : H → H induces an equivalence relation on
H: P ∼F Q iff PF = QF . We can use that to test if a given ·F : H → H is a
slash-operator: ·F is a slash-operator iff it obeys all this:

1) ·F is idempotent,
2) ·F is non-decreasing,
3) ∼F partitions H into closed intervals,
4) ∼F doesn’t have cuts stopping midway.

2016planar-has December 18, 2016 13:54

30

20 Slash-operators: a property

Slash-operators obey a certain property that will be very important later. Let’s
state that property in five equivalent ways:

1) If cd ∼S c′d′ and ef ∼S e′f ′ then cd ∧ ef ∼S c′d′ ∧ e′f ′.
2) If P ∼S P ′ and Q ∼S Q′ then P ∧Q ∼S P ′ ∧Q′.
3) If P ∼S P ′ and Q ∼S Q′ then (P ∧Q)S = (P ′ ∧Q′)S .
4) If P ∼S P ′ and Q ∼S Q′ then

(P ∧Q)S = (PS ∧QS)S (a)
= ((P ′)S ∧ (Q′)S)S (b)
= (P ′ ∧Q′)S (c)

5) (P ∧Q)S = (PS ∧QS)S .

Here’s a proof of 1↔ 2↔ 3↔ 4↔ 5.
1↔ 2: we just changed notation,
2↔ 3: because A ∼S B iff AS = BS ,

3→ 5: make the substitution
[
P ′:=PS

Q′:=QS

]
in 3,

5 → 4: 4a is just a copy of 5, and 4c is a copy of 5 with
[
P :=P ′

Q:=Q′

]
. For 4b,

note that P ∼P P ′ implies PS = (P ′)S and Q ∼P Q′ implies QS = (Q′)S ,
4→ 3: 4 is an equality between more expressions than 3,

...and here is a way to visualize what is going on:

30

31

32

33

20
21

22

23

10

11
12

13

00

01

02
03 P

P ′
PS

Q

Q′
QS

(P︸︷︷︸
30

∧ Q︸︷︷︸
03︸ ︷︷ ︸

00

)S

︸ ︷︷ ︸
22

= (P︸︷︷︸
30

S

︸ ︷︷ ︸
32

∧ Q︸︷︷︸
03

S

︸ ︷︷ ︸
23︸ ︷︷ ︸

22

)S

︸ ︷︷ ︸
22

= (P ′︸︷︷︸
31

S

︸ ︷︷ ︸
32

∧ Q′︸︷︷︸
13

S

︸ ︷︷ ︸
23︸ ︷︷ ︸

22

)S

︸ ︷︷ ︸
22

= (P ′︸︷︷︸
31

∧ Q′︸︷︷︸
13︸ ︷︷ ︸

11

)S

︸ ︷︷ ︸
22

Note that all subexpressions belong to three S-regions: a region with P , P ′,
PS = P ′S , another with Q, Q′, QS = Q′S , and one with all the ‘∧’s. If we had
cuts stopping midway then some of the ‘∧’s could be in different regions.

2016planar-has December 18, 2016 13:54

31

I think that the clearest way to show (1) is by putting its proof in tree form:

cd ∼S c′d′

c ∼L c′
ef ∼S e′f ′

e ∼L e′

min(c, e) ∼L min(c′, e′)

cd ∼S c′d′

d ∼R d′
ef ∼S e′f ′

f ∼R f ′

min(d, f) ∼L min(d′, f ′)

min(c, e)min(d, f) ∼S min(c′, e′)min(d′, f ′)

cd ∧ ef ∼S c′d′ ∧ e′f ′

2016planar-has December 18, 2016 13:54

32

21 J-operators and J-regions

A J-operator on a Heyting Algebra H = (Ω,≤,>,⊥,∧,∨,→,↔,¬) is a function
J : Ω → Ω that obeys the axioms J1, J2, J3 below; we usually write J as
·∗ : Ω→ Ω, and write the axioms as rules.

P ≤ P ∗
J1

P ∗ = P ∗∗
J2

(P&Q)∗ = P ∗&Q∗
J3

J1 says that the operation ·∗ is non-decreasing.
J2 says that the operation ·∗ is idempotent.
J3 is a bit mysterious but will have interesting consequences.

Note that when H is a ZHA then any slash-operator on H is a J-operator
on it; see secs.19 and 20.

A J-operator induces an equivalence relation and equivalence classes on Ω,
like slashings do:

P ∼J Q iff P ∗ = Q∗

[P]J := {Q ∈ Ω | P ∗ = Q∗ }

The axioms J1, J2, J3 have many consequences. The first ones are listed in
Figure 3 as derived rules, whose names mean:

Mop (monotonicity for products): a lemma used to prove Mo,
Mo (monotonicity): P ≤ Q implies P ∗ ≤ Q∗,
Sand (sandwiching): all truth values between P and P ∗ are equivalent,
EC&: equivalence classes are closed by ‘&’,
EC∨: equivalence classes are closed by ‘∨’,
ECS: equivalence classes are closed by sandwiching,

Take a J-equivalence class, [P]J , and list its elements: [P]J = {P1, . . . , Pn}.
Let P∧ := ((P1 ∧ P2) ∧ . . .) ∧ Pn and Let P∨ := ((P1 ∨ P2) ∨ . . .) ∨ Pn. It turns
out that [P]J = [P∧, P∨] ∩ Ω; let’s prove that by doing ‘⊆’ first, then ‘⊇’.

Using EC& and EC∨ several times we see that

P1 ∧ P2 ∼J P P1 ∨ P2 ∼J P
(P1 ∧ P2) ∧ P3 ∼J P (P1 ∨ P2) ∨ P3 ∼J P

...
...

((P1 ∧ P2) ∧ . . .) ∧ Pn ∼J P ((P1 ∨ P2) ∨ . . .) ∨ Pn ∼J P

so P∧ ∼J P∨ ∼J P , and by the sandwich lemma ([P∧, P∨] ∩ Ω) ⊆ [P]J .
For any Pi ∈ [P]J we have P∧ ≤ Pi ≤ P∨, which means that:

[P]J = {P1, . . . , Pn}
⊆ {Q ∈ Ω | P∧ ≤ Q ≤ P∨ }
= [P∧, P∨] ∩ Ω,

so [P]J ⊆ [P∧, P∨] ∩ Ω.

2016planar-has December 18, 2016 13:54

33

(P&Q)∗ ≤ Q∗
Mop

:=

(P&Q)∗ = P ∗&Q∗
J3

P ∗&Q∗ ≤ Q∗

(P&Q)∗ ≤ Q∗

P ≤ Q

P ∗ ≤ Q∗
Mo

:=

P ≤ Q

P = P&Q

P ∗ = (P&Q)∗ (P&Q)∗ ≤ Q∗
Mop

P ∗ ≤ Q∗

P ≤ Q ≤ P ∗

P ∗ = Q∗
Sand

:=

P ≤ Q

P ∗ ≤ Q∗
Mo

Q ≤ P ∗

Q∗ ≤ P ∗∗
Mo

P ∗∗ = P ∗
J2

Q∗ ≤ P ∗

P ∗ = Q∗

P ∗ = Q∗

P ∗ = Q∗ = (P&Q)∗
EC&

:=

P ∗ = Q∗

P ∗ = Q∗ = P ∗&Q∗ P ∗&Q∗ = (P&Q)∗
J3

P ∗ = Q∗ = (P&Q)∗

P ∗ = Q∗

P ∗ = Q∗ = (P ∨Q)∗
EC∨

:=

P ∗ = Q∗

P ≤ P ∨Q

P ≤ P ∗
J1

Q ≤ Q∗
J1

P ∗ = Q∗

Q∗ = P ∗

Q ≤ P ∗

P ∨Q ≤ P ∗

P ≤ P ∨Q ≤ P ∗

P ∗ = (P ∨Q)∗
Sand

P ∗ = Q∗ = (P ∨Q)∗

P ≤ Q ≤ R P ∗ = R∗

P ∗ = Q∗ = R∗
ECS

:=

P ≤ Q ≤ R R ≤ R∗
J1

P ∗ = R∗

R∗ = P ∗

P ≤ Q ≤ P ∗

P ∗ = Q∗
Sand

P ∗ = R∗

P ∗ = Q∗ = R∗

Figure 3: J-operators: basic derived rules

2016planar-has December 18, 2016 13:54

34

As the operation ‘·∗’ is increasing and idempotent, each equivalence class
[P]J has exactly one maximal element, which is P ∗; but P∨ is also the maximal
element of [P]J , so P∨ = P ∗, and we can interpret the operation ‘·∗’ as “take
each P to the top element in its equivalence class”, which is similar to how we
defined an(other) operation ‘·∗’ on slashings in the previous section.

The operation “take each P to the bottom element in its equivalence class”
will be useful in a few occasions; we will call it ‘·co∗’ to indicate that it is dual
to ‘·∗’ in some sense. Note that P co∗ = P∧.

Look at the figure below, that shows a partition of a ZHA A = [00, 66] into
five regions, each region being an interval; this partition does not come from a
slashing, as it has cuts that stop midway. Define an operation ‘·∗’ on A, that
works by taking each truth-value P in it to the top element of its region; for
example, 30∗ = 61.

60
61
62

63
64
65

66

50
51

52
53
54

55
56

40
41
42
43

44
45
46

30
31
32

33
34
35
36

20
21

22
23
24
25

26

10
11
12
13
14

15
16

00
01
02
03

04
05
06

It is easy to see that ‘·∗’ obeys J1 and J2; however, it does not obey J3 — we will
prove that in sec.23. As we will see, the partitons of a ZHA into intervals that
obey J1, J2, J3 ae exactly the slashings; or, in other words, every J-operator
comes from a slashing.

22 How J-operators interact with connectives

23 J-regions come from slashings

2016planar-has December 18, 2016 13:54

35

24 Appendix: on “children”

...from the slides of my minicourse in the UniLog 2016 (Istanbul):

• Why study Category Theory now?

Public education in Brazil is being dismantled — maybe we should be
doing better things than studying very technical & inaccessible subjects
with no research grants —

(Here I showed a photo called “The New Girl From Ipanema” — a girl
walking on the Ipanema beach at night with a gas mask, with a huge cloud
of tear gas behind her)

• Category theory should be more accessible

Most texts about CT are for specialists in research universities... Category
theory should be more accessible..

To whom?...

– Non-specialists (in research universities)

– Grad students (in research universities)

– Undergrads (in research universities)

– Non-specialists (in conferences - where we have to be quick)

– Undergrads (e.g., in CompSci - in teaching colleges) - (“Children”)

• What do we mean by ”accessible”?

– Done on very firm grounds: mathematical objects made from num-
bers, sets and tuples; FINITE, SMALL mathematical objects when-
ever possible. Avoid references to non-mathematical things like win-
dows, cars and pizzas (like the object-orientation people do); avoid
reference to Physics; avoid Quantum Mecanics at all costs; time is
difficult to draw, prefer static rather than changing

– People have very short attention spans nowadays

– Self-contained, but not isolated or isolating; our material should make
the literature more accessible

– We learn better by doing. Our material should have lots of space for
exercises.

– Most people with whom I interact are not from Maths/CS/etc

– Proving general cases is relatively hard. Checking and calculating is
much easier. People can believe that something can be generalized
after seeing a convincing particular case. (Sometimes leave them to
look for the right generalization by themselves)

2016planar-has December 18, 2016 13:54

36

I’ve been using “for children” in titles for a while. This is a bit of a marketing
strategy, of course, but the term “children” here has a precise, though unusual,
meaning: it means “people with very little mathematical maturity”, where I
am taking these as the main aspects of “mathematical maturity”: the ability to
work on very abstract settings, to generalize, to particularize, and to use infinite
objects.

Writing things “for children” in this sense results in material that [is acces-
sible] [exercises, not included here] [visual, easy to check] [who I’ve tested this
with]

A note for “adults”. In [Ochs2013] I sketched a method for working in a
general case and in a particular case (an “archetypal case”) in parallel, and
also a way to prove things in the archetypal case and then “lift” the proofs to
the general case. This paper is an offspring of that one; I believe that planar
Heyting Algebras presented here (ZHAs, sec.4) are archetypal Heyting Algebras,
and when we add “closure operators” to ZHAs (as in the seminar notes http:
//angg.twu.net/math-b.html#zhas-for-children, pp.13–30; they are called
“J-operators” there) we get something that is archetypal for studying toposes
and sheaves; that will be the subject of a sequel of this paper.

[Topos theory books are too hard for me] [a bridge between philosophers and
toposophers]

25 Appendix: notations for set comprehension

This is section is just to clarify the exact meaning of the “{ . . . | . . . }-expressions”
in the previous sections.

We’ll use three notations for set comprehensions: a “low-level” one, with
generators and filters separated by commas, then a semicolon and then the
result expression, and two higher-level notations using a ‘|’, that are closer to
the standard ones.

Here are some examples of the low-level notation,

{a ∈ {1, 2, 3, 4}︸ ︷︷ ︸
gen

; 10a︸︷︷︸
expr

} = {10, 20, 30, 40}

{a ∈ {1, 2, 3, 4}︸ ︷︷ ︸
gen

; a︸︷︷︸
expr

} = {1, 2, 3, 4}

{a ∈ {1, 2, 3, 4}︸ ︷︷ ︸
gen

, a ≥ 3︸ ︷︷ ︸
filt

; a︸︷︷︸
expr

} = {3, 4}

{a ∈ {1, 2, 3, 4}︸ ︷︷ ︸
gen

, a ≥ 3︸ ︷︷ ︸
filt

; 10a︸︷︷︸
expr

} = {30, 40}

{a ∈ {10, 20}︸ ︷︷ ︸
gen

, b ∈ {3, 4}︸ ︷︷ ︸
gen

; a+ b︸ ︷︷ ︸
expr

} = {13, 14, 23, 24}

{a ∈ {1, 2}︸ ︷︷ ︸
gen

, b ∈ {3, 4}︸ ︷︷ ︸
gen

; (a, b)︸ ︷︷ ︸
expr

} = {(1, 3), (1, 4), (2, 3), (2, 4)}

2016planar-has December 18, 2016 13:54

http://angg.twu.net/math-b.html#zhas-for-children
http://angg.twu.net/math-b.html#zhas-for-children

37

Here is how to calculate the results of some low-level comprehensions using
tables; note that when a filter yields “false” we stop — this is indicated by
a vertical bar — and we don’t calculate the rest of the line. The result of
the comprehension is the set of the results in the lines where all filters yielded
“true”.

{x ∈ {1, 2, 3}︸ ︷︷ ︸
gen

, y ∈ {3, 4}︸ ︷︷ ︸
gen

, x+ y < 6︸ ︷︷ ︸
filt

; (x, y)︸ ︷︷ ︸
expr

} = {(1, 3), (1, 4), (2, 3)}

x y x+y<6 (x,y)
1 3 T (1,3)
1 4 T (1,4)
2 3 T (2,3)
2 4 F
3 3 F
3 4 F

{(x, y) ∈ {1, 2, 3}2︸ ︷︷ ︸
gen

, x > y︸ ︷︷ ︸
filt

; (x, y)︸ ︷︷ ︸
expr

} = {(2, 1), (3, 1), (3, 2)}

(x,y) x y x>y (x,y)
(1,1) 1 1 F
(1,2) 1 2 F
(1,3) 1 3 F
(2,1) 2 1 T (2,1)
(2,2) 2 2 F
(2,3) 2 3 F
(3,1) 3 1 T (3,1)
(3,2) 3 2 T (3,2)
(3,3) 3 3 F

Here are some examples of the higher-level, standard-ish notations for set
comprehensions, and how they can be translated into the low-level notation:

(standard) (low-level)

{ 10a︸︷︷︸
expr

| a ∈ {1, 2, 3, 4}︸ ︷︷ ︸
gen

} = {a ∈ {1, 2, 3, 4}︸ ︷︷ ︸
gen

; 10a︸︷︷︸
expr

}

{ a︸︷︷︸
expr

| a ∈ {1, 2, 3, 4}︸ ︷︷ ︸
gen

} = {a ∈ {1, 2, 3, 4}︸ ︷︷ ︸
gen

; a︸︷︷︸
expr

}

{ 10a︸︷︷︸
expr

| a ∈ {1, 2, 3, 4}︸ ︷︷ ︸
gen

, a ≥ 3︸ ︷︷ ︸
filt

} = {a ∈ {1, 2, 3, 4}︸ ︷︷ ︸
gen

, a ≥ 3︸ ︷︷ ︸
filt

; 10a︸︷︷︸
expr

}

{ a︸︷︷︸
expr

| a ∈ {1, 2, 3, 4}︸ ︷︷ ︸
gen

, a ≥ 3︸ ︷︷ ︸
filt

} = {a ∈ {1, 2, 3, 4}︸ ︷︷ ︸
gen

, a ≥ 3︸ ︷︷ ︸
filt

; a︸︷︷︸
expr

}

{ a ∈ {1, 2, 3, 4}︸ ︷︷ ︸
gen

| a ≥ 3︸ ︷︷ ︸
filt

} = {a ∈ {1, 2, 3, 4}︸ ︷︷ ︸
gen

, a ≥ 3︸ ︷︷ ︸
filt

; a︸︷︷︸
expr

}

The first four are of the form “{ expr | generators and filters }” (“e|gf”), and
the last one is of the form “{ generator | filters }” (“g|f”). In “g|f” comprehen-
sions the final ‘expr’ is the variable of the generator:

{ a︸︷︷︸
var

∈ {1, 2, 3, 4}︸ ︷︷ ︸
gen

| a ≥ 3︸ ︷︷ ︸
filt

} = {a ∈ {1, 2, 3, 4}︸ ︷︷ ︸
gen

, a ≥ 3︸ ︷︷ ︸
filt

; a︸︷︷︸
expr

}

2016planar-has December 18, 2016 13:54

	Positional notations
	ZDAGs
	LR-coordinates
	ZHAs
	Propositional calculus
	Propositional calculus in a ZHA
	Heyting Algebras
	Logic in a Heyting Algebra
	Derived rules

	Topologies
	The default topology on a ZSet
	Topologies as partial orders
	2-Column Graphs
	Topologies on 2CGs
	Converting bewteen ZHAs and 2CAGs
	Piccs and slashings
	From slash-partitions back to slashings
	Slash-regions have maximal elements
	Cuts stopping midway
	Slash-operators
	Slash-operators: a property
	J-operators and J-regions
	How J-operators interact with connectives
	J-regions come from slashings
	Appendix: on ``children''
	Appendix: notations for set comprehension

